Merge tag 'for-5.14-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-2.6-microblaze.git] / crypto / ecc.h
1 /*
2  * Copyright (c) 2013, Kenneth MacKay
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are
7  * met:
8  *  * Redistributions of source code must retain the above copyright
9  *   notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 #ifndef _CRYPTO_ECC_H
27 #define _CRYPTO_ECC_H
28
29 #include <crypto/ecc_curve.h>
30
31 /* One digit is u64 qword. */
32 #define ECC_CURVE_NIST_P192_DIGITS  3
33 #define ECC_CURVE_NIST_P256_DIGITS  4
34 #define ECC_CURVE_NIST_P384_DIGITS  6
35 #define ECC_MAX_DIGITS              (512 / 64) /* due to ecrdsa */
36
37 #define ECC_DIGITS_TO_BYTES_SHIFT 3
38
39 #define ECC_MAX_BYTES (ECC_MAX_DIGITS << ECC_DIGITS_TO_BYTES_SHIFT)
40
41 #define ECC_POINT_INIT(x, y, ndigits)   (struct ecc_point) { x, y, ndigits }
42
43 /**
44  * ecc_swap_digits() - Copy ndigits from big endian array to native array
45  * @in:       Input array
46  * @out:      Output array
47  * @ndigits:  Number of digits to copy
48  */
49 static inline void ecc_swap_digits(const u64 *in, u64 *out, unsigned int ndigits)
50 {
51         const __be64 *src = (__force __be64 *)in;
52         int i;
53
54         for (i = 0; i < ndigits; i++)
55                 out[i] = be64_to_cpu(src[ndigits - 1 - i]);
56 }
57
58 /**
59  * ecc_is_key_valid() - Validate a given ECDH private key
60  *
61  * @curve_id:           id representing the curve to use
62  * @ndigits:            curve's number of digits
63  * @private_key:        private key to be used for the given curve
64  * @private_key_len:    private key length
65  *
66  * Returns 0 if the key is acceptable, a negative value otherwise
67  */
68 int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
69                      const u64 *private_key, unsigned int private_key_len);
70
71 /**
72  * ecc_gen_privkey() -  Generates an ECC private key.
73  * The private key is a random integer in the range 0 < random < n, where n is a
74  * prime that is the order of the cyclic subgroup generated by the distinguished
75  * point G.
76  * @curve_id:           id representing the curve to use
77  * @ndigits:            curve number of digits
78  * @private_key:        buffer for storing the generated private key
79  *
80  * Returns 0 if the private key was generated successfully, a negative value
81  * if an error occurred.
82  */
83 int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey);
84
85 /**
86  * ecc_make_pub_key() - Compute an ECC public key
87  *
88  * @curve_id:           id representing the curve to use
89  * @ndigits:            curve's number of digits
90  * @private_key:        pregenerated private key for the given curve
91  * @public_key:         buffer for storing the generated public key
92  *
93  * Returns 0 if the public key was generated successfully, a negative value
94  * if an error occurred.
95  */
96 int ecc_make_pub_key(const unsigned int curve_id, unsigned int ndigits,
97                      const u64 *private_key, u64 *public_key);
98
99 /**
100  * crypto_ecdh_shared_secret() - Compute a shared secret
101  *
102  * @curve_id:           id representing the curve to use
103  * @ndigits:            curve's number of digits
104  * @private_key:        private key of part A
105  * @public_key:         public key of counterpart B
106  * @secret:             buffer for storing the calculated shared secret
107  *
108  * Note: It is recommended that you hash the result of crypto_ecdh_shared_secret
109  * before using it for symmetric encryption or HMAC.
110  *
111  * Returns 0 if the shared secret was generated successfully, a negative value
112  * if an error occurred.
113  */
114 int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
115                               const u64 *private_key, const u64 *public_key,
116                               u64 *secret);
117
118 /**
119  * ecc_is_pubkey_valid_partial() - Partial public key validation
120  *
121  * @curve:              elliptic curve domain parameters
122  * @pk:                 public key as a point
123  *
124  * Valdiate public key according to SP800-56A section 5.6.2.3.4 ECC Partial
125  * Public-Key Validation Routine.
126  *
127  * Note: There is no check that the public key is in the correct elliptic curve
128  * subgroup.
129  *
130  * Return: 0 if validation is successful, -EINVAL if validation is failed.
131  */
132 int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
133                                 struct ecc_point *pk);
134
135 /**
136  * ecc_is_pubkey_valid_full() - Full public key validation
137  *
138  * @curve:              elliptic curve domain parameters
139  * @pk:                 public key as a point
140  *
141  * Valdiate public key according to SP800-56A section 5.6.2.3.3 ECC Full
142  * Public-Key Validation Routine.
143  *
144  * Return: 0 if validation is successful, -EINVAL if validation is failed.
145  */
146 int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
147                              struct ecc_point *pk);
148
149 /**
150  * vli_is_zero() - Determine is vli is zero
151  *
152  * @vli:                vli to check.
153  * @ndigits:            length of the @vli
154  */
155 bool vli_is_zero(const u64 *vli, unsigned int ndigits);
156
157 /**
158  * vli_cmp() - compare left and right vlis
159  *
160  * @left:               vli
161  * @right:              vli
162  * @ndigits:            length of both vlis
163  *
164  * Returns sign of @left - @right, i.e. -1 if @left < @right,
165  * 0 if @left == @right, 1 if @left > @right.
166  */
167 int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits);
168
169 /**
170  * vli_sub() - Subtracts right from left
171  *
172  * @result:             where to write result
173  * @left:               vli
174  * @right               vli
175  * @ndigits:            length of all vlis
176  *
177  * Note: can modify in-place.
178  *
179  * Return: carry bit.
180  */
181 u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
182             unsigned int ndigits);
183
184 /**
185  * vli_from_be64() - Load vli from big-endian u64 array
186  *
187  * @dest:               destination vli
188  * @src:                source array of u64 BE values
189  * @ndigits:            length of both vli and array
190  */
191 void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits);
192
193 /**
194  * vli_from_le64() - Load vli from little-endian u64 array
195  *
196  * @dest:               destination vli
197  * @src:                source array of u64 LE values
198  * @ndigits:            length of both vli and array
199  */
200 void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits);
201
202 /**
203  * vli_mod_inv() - Modular inversion
204  *
205  * @result:             where to write vli number
206  * @input:              vli value to operate on
207  * @mod:                modulus
208  * @ndigits:            length of all vlis
209  */
210 void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
211                  unsigned int ndigits);
212
213 /**
214  * vli_mod_mult_slow() - Modular multiplication
215  *
216  * @result:             where to write result value
217  * @left:               vli number to multiply with @right
218  * @right:              vli number to multiply with @left
219  * @mod:                modulus
220  * @ndigits:            length of all vlis
221  *
222  * Note: Assumes that mod is big enough curve order.
223  */
224 void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
225                        const u64 *mod, unsigned int ndigits);
226
227 /**
228  * ecc_point_mult_shamir() - Add two points multiplied by scalars
229  *
230  * @result:             resulting point
231  * @x:                  scalar to multiply with @p
232  * @p:                  point to multiply with @x
233  * @y:                  scalar to multiply with @q
234  * @q:                  point to multiply with @y
235  * @curve:              curve
236  *
237  * Returns result = x * p + x * q over the curve.
238  * This works faster than two multiplications and addition.
239  */
240 void ecc_point_mult_shamir(const struct ecc_point *result,
241                            const u64 *x, const struct ecc_point *p,
242                            const u64 *y, const struct ecc_point *q,
243                            const struct ecc_curve *curve);
244 #endif