mm: memmap_init: iterate over memblock regions rather that check each PFN
[linux-2.6-microblaze.git] / crypto / crypto_engine.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Handle async block request by crypto hardware engine.
4  *
5  * Copyright (C) 2016 Linaro, Inc.
6  *
7  * Author: Baolin Wang <baolin.wang@linaro.org>
8  */
9
10 #include <linux/err.h>
11 #include <linux/delay.h>
12 #include <crypto/engine.h>
13 #include <uapi/linux/sched/types.h>
14 #include "internal.h"
15
16 #define CRYPTO_ENGINE_MAX_QLEN 10
17
18 /**
19  * crypto_finalize_request - finalize one request if the request is done
20  * @engine: the hardware engine
21  * @req: the request need to be finalized
22  * @err: error number
23  */
24 static void crypto_finalize_request(struct crypto_engine *engine,
25                                     struct crypto_async_request *req, int err)
26 {
27         unsigned long flags;
28         bool finalize_req = false;
29         int ret;
30         struct crypto_engine_ctx *enginectx;
31
32         /*
33          * If hardware cannot enqueue more requests
34          * and retry mechanism is not supported
35          * make sure we are completing the current request
36          */
37         if (!engine->retry_support) {
38                 spin_lock_irqsave(&engine->queue_lock, flags);
39                 if (engine->cur_req == req) {
40                         finalize_req = true;
41                         engine->cur_req = NULL;
42                 }
43                 spin_unlock_irqrestore(&engine->queue_lock, flags);
44         }
45
46         if (finalize_req || engine->retry_support) {
47                 enginectx = crypto_tfm_ctx(req->tfm);
48                 if (enginectx->op.prepare_request &&
49                     enginectx->op.unprepare_request) {
50                         ret = enginectx->op.unprepare_request(engine, req);
51                         if (ret)
52                                 dev_err(engine->dev, "failed to unprepare request\n");
53                 }
54         }
55         req->complete(req, err);
56
57         kthread_queue_work(engine->kworker, &engine->pump_requests);
58 }
59
60 /**
61  * crypto_pump_requests - dequeue one request from engine queue to process
62  * @engine: the hardware engine
63  * @in_kthread: true if we are in the context of the request pump thread
64  *
65  * This function checks if there is any request in the engine queue that
66  * needs processing and if so call out to the driver to initialize hardware
67  * and handle each request.
68  */
69 static void crypto_pump_requests(struct crypto_engine *engine,
70                                  bool in_kthread)
71 {
72         struct crypto_async_request *async_req, *backlog;
73         unsigned long flags;
74         bool was_busy = false;
75         int ret;
76         struct crypto_engine_ctx *enginectx;
77
78         spin_lock_irqsave(&engine->queue_lock, flags);
79
80         /* Make sure we are not already running a request */
81         if (!engine->retry_support && engine->cur_req)
82                 goto out;
83
84         /* If another context is idling then defer */
85         if (engine->idling) {
86                 kthread_queue_work(engine->kworker, &engine->pump_requests);
87                 goto out;
88         }
89
90         /* Check if the engine queue is idle */
91         if (!crypto_queue_len(&engine->queue) || !engine->running) {
92                 if (!engine->busy)
93                         goto out;
94
95                 /* Only do teardown in the thread */
96                 if (!in_kthread) {
97                         kthread_queue_work(engine->kworker,
98                                            &engine->pump_requests);
99                         goto out;
100                 }
101
102                 engine->busy = false;
103                 engine->idling = true;
104                 spin_unlock_irqrestore(&engine->queue_lock, flags);
105
106                 if (engine->unprepare_crypt_hardware &&
107                     engine->unprepare_crypt_hardware(engine))
108                         dev_err(engine->dev, "failed to unprepare crypt hardware\n");
109
110                 spin_lock_irqsave(&engine->queue_lock, flags);
111                 engine->idling = false;
112                 goto out;
113         }
114
115 start_request:
116         /* Get the fist request from the engine queue to handle */
117         backlog = crypto_get_backlog(&engine->queue);
118         async_req = crypto_dequeue_request(&engine->queue);
119         if (!async_req)
120                 goto out;
121
122         /*
123          * If hardware doesn't support the retry mechanism,
124          * keep track of the request we are processing now.
125          * We'll need it on completion (crypto_finalize_request).
126          */
127         if (!engine->retry_support)
128                 engine->cur_req = async_req;
129
130         if (backlog)
131                 backlog->complete(backlog, -EINPROGRESS);
132
133         if (engine->busy)
134                 was_busy = true;
135         else
136                 engine->busy = true;
137
138         spin_unlock_irqrestore(&engine->queue_lock, flags);
139
140         /* Until here we get the request need to be encrypted successfully */
141         if (!was_busy && engine->prepare_crypt_hardware) {
142                 ret = engine->prepare_crypt_hardware(engine);
143                 if (ret) {
144                         dev_err(engine->dev, "failed to prepare crypt hardware\n");
145                         goto req_err_2;
146                 }
147         }
148
149         enginectx = crypto_tfm_ctx(async_req->tfm);
150
151         if (enginectx->op.prepare_request) {
152                 ret = enginectx->op.prepare_request(engine, async_req);
153                 if (ret) {
154                         dev_err(engine->dev, "failed to prepare request: %d\n",
155                                 ret);
156                         goto req_err_2;
157                 }
158         }
159         if (!enginectx->op.do_one_request) {
160                 dev_err(engine->dev, "failed to do request\n");
161                 ret = -EINVAL;
162                 goto req_err_1;
163         }
164
165         ret = enginectx->op.do_one_request(engine, async_req);
166
167         /* Request unsuccessfully executed by hardware */
168         if (ret < 0) {
169                 /*
170                  * If hardware queue is full (-ENOSPC), requeue request
171                  * regardless of backlog flag.
172                  * Otherwise, unprepare and complete the request.
173                  */
174                 if (!engine->retry_support ||
175                     (ret != -ENOSPC)) {
176                         dev_err(engine->dev,
177                                 "Failed to do one request from queue: %d\n",
178                                 ret);
179                         goto req_err_1;
180                 }
181                 /*
182                  * If retry mechanism is supported,
183                  * unprepare current request and
184                  * enqueue it back into crypto-engine queue.
185                  */
186                 if (enginectx->op.unprepare_request) {
187                         ret = enginectx->op.unprepare_request(engine,
188                                                               async_req);
189                         if (ret)
190                                 dev_err(engine->dev,
191                                         "failed to unprepare request\n");
192                 }
193                 spin_lock_irqsave(&engine->queue_lock, flags);
194                 /*
195                  * If hardware was unable to execute request, enqueue it
196                  * back in front of crypto-engine queue, to keep the order
197                  * of requests.
198                  */
199                 crypto_enqueue_request_head(&engine->queue, async_req);
200
201                 kthread_queue_work(engine->kworker, &engine->pump_requests);
202                 goto out;
203         }
204
205         goto retry;
206
207 req_err_1:
208         if (enginectx->op.unprepare_request) {
209                 ret = enginectx->op.unprepare_request(engine, async_req);
210                 if (ret)
211                         dev_err(engine->dev, "failed to unprepare request\n");
212         }
213
214 req_err_2:
215         async_req->complete(async_req, ret);
216
217 retry:
218         /* If retry mechanism is supported, send new requests to engine */
219         if (engine->retry_support) {
220                 spin_lock_irqsave(&engine->queue_lock, flags);
221                 goto start_request;
222         }
223         return;
224
225 out:
226         spin_unlock_irqrestore(&engine->queue_lock, flags);
227
228         /*
229          * Batch requests is possible only if
230          * hardware can enqueue multiple requests
231          */
232         if (engine->do_batch_requests) {
233                 ret = engine->do_batch_requests(engine);
234                 if (ret)
235                         dev_err(engine->dev, "failed to do batch requests: %d\n",
236                                 ret);
237         }
238
239         return;
240 }
241
242 static void crypto_pump_work(struct kthread_work *work)
243 {
244         struct crypto_engine *engine =
245                 container_of(work, struct crypto_engine, pump_requests);
246
247         crypto_pump_requests(engine, true);
248 }
249
250 /**
251  * crypto_transfer_request - transfer the new request into the engine queue
252  * @engine: the hardware engine
253  * @req: the request need to be listed into the engine queue
254  */
255 static int crypto_transfer_request(struct crypto_engine *engine,
256                                    struct crypto_async_request *req,
257                                    bool need_pump)
258 {
259         unsigned long flags;
260         int ret;
261
262         spin_lock_irqsave(&engine->queue_lock, flags);
263
264         if (!engine->running) {
265                 spin_unlock_irqrestore(&engine->queue_lock, flags);
266                 return -ESHUTDOWN;
267         }
268
269         ret = crypto_enqueue_request(&engine->queue, req);
270
271         if (!engine->busy && need_pump)
272                 kthread_queue_work(engine->kworker, &engine->pump_requests);
273
274         spin_unlock_irqrestore(&engine->queue_lock, flags);
275         return ret;
276 }
277
278 /**
279  * crypto_transfer_request_to_engine - transfer one request to list
280  * into the engine queue
281  * @engine: the hardware engine
282  * @req: the request need to be listed into the engine queue
283  */
284 static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
285                                              struct crypto_async_request *req)
286 {
287         return crypto_transfer_request(engine, req, true);
288 }
289
290 /**
291  * crypto_transfer_aead_request_to_engine - transfer one aead_request
292  * to list into the engine queue
293  * @engine: the hardware engine
294  * @req: the request need to be listed into the engine queue
295  */
296 int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
297                                            struct aead_request *req)
298 {
299         return crypto_transfer_request_to_engine(engine, &req->base);
300 }
301 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
302
303 /**
304  * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
305  * to list into the engine queue
306  * @engine: the hardware engine
307  * @req: the request need to be listed into the engine queue
308  */
309 int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
310                                                struct akcipher_request *req)
311 {
312         return crypto_transfer_request_to_engine(engine, &req->base);
313 }
314 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
315
316 /**
317  * crypto_transfer_hash_request_to_engine - transfer one ahash_request
318  * to list into the engine queue
319  * @engine: the hardware engine
320  * @req: the request need to be listed into the engine queue
321  */
322 int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
323                                            struct ahash_request *req)
324 {
325         return crypto_transfer_request_to_engine(engine, &req->base);
326 }
327 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
328
329 /**
330  * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
331  * to list into the engine queue
332  * @engine: the hardware engine
333  * @req: the request need to be listed into the engine queue
334  */
335 int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
336                                                struct skcipher_request *req)
337 {
338         return crypto_transfer_request_to_engine(engine, &req->base);
339 }
340 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
341
342 /**
343  * crypto_finalize_aead_request - finalize one aead_request if
344  * the request is done
345  * @engine: the hardware engine
346  * @req: the request need to be finalized
347  * @err: error number
348  */
349 void crypto_finalize_aead_request(struct crypto_engine *engine,
350                                   struct aead_request *req, int err)
351 {
352         return crypto_finalize_request(engine, &req->base, err);
353 }
354 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
355
356 /**
357  * crypto_finalize_akcipher_request - finalize one akcipher_request if
358  * the request is done
359  * @engine: the hardware engine
360  * @req: the request need to be finalized
361  * @err: error number
362  */
363 void crypto_finalize_akcipher_request(struct crypto_engine *engine,
364                                       struct akcipher_request *req, int err)
365 {
366         return crypto_finalize_request(engine, &req->base, err);
367 }
368 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
369
370 /**
371  * crypto_finalize_hash_request - finalize one ahash_request if
372  * the request is done
373  * @engine: the hardware engine
374  * @req: the request need to be finalized
375  * @err: error number
376  */
377 void crypto_finalize_hash_request(struct crypto_engine *engine,
378                                   struct ahash_request *req, int err)
379 {
380         return crypto_finalize_request(engine, &req->base, err);
381 }
382 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
383
384 /**
385  * crypto_finalize_skcipher_request - finalize one skcipher_request if
386  * the request is done
387  * @engine: the hardware engine
388  * @req: the request need to be finalized
389  * @err: error number
390  */
391 void crypto_finalize_skcipher_request(struct crypto_engine *engine,
392                                       struct skcipher_request *req, int err)
393 {
394         return crypto_finalize_request(engine, &req->base, err);
395 }
396 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
397
398 /**
399  * crypto_engine_start - start the hardware engine
400  * @engine: the hardware engine need to be started
401  *
402  * Return 0 on success, else on fail.
403  */
404 int crypto_engine_start(struct crypto_engine *engine)
405 {
406         unsigned long flags;
407
408         spin_lock_irqsave(&engine->queue_lock, flags);
409
410         if (engine->running || engine->busy) {
411                 spin_unlock_irqrestore(&engine->queue_lock, flags);
412                 return -EBUSY;
413         }
414
415         engine->running = true;
416         spin_unlock_irqrestore(&engine->queue_lock, flags);
417
418         kthread_queue_work(engine->kworker, &engine->pump_requests);
419
420         return 0;
421 }
422 EXPORT_SYMBOL_GPL(crypto_engine_start);
423
424 /**
425  * crypto_engine_stop - stop the hardware engine
426  * @engine: the hardware engine need to be stopped
427  *
428  * Return 0 on success, else on fail.
429  */
430 int crypto_engine_stop(struct crypto_engine *engine)
431 {
432         unsigned long flags;
433         unsigned int limit = 500;
434         int ret = 0;
435
436         spin_lock_irqsave(&engine->queue_lock, flags);
437
438         /*
439          * If the engine queue is not empty or the engine is on busy state,
440          * we need to wait for a while to pump the requests of engine queue.
441          */
442         while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
443                 spin_unlock_irqrestore(&engine->queue_lock, flags);
444                 msleep(20);
445                 spin_lock_irqsave(&engine->queue_lock, flags);
446         }
447
448         if (crypto_queue_len(&engine->queue) || engine->busy)
449                 ret = -EBUSY;
450         else
451                 engine->running = false;
452
453         spin_unlock_irqrestore(&engine->queue_lock, flags);
454
455         if (ret)
456                 dev_warn(engine->dev, "could not stop engine\n");
457
458         return ret;
459 }
460 EXPORT_SYMBOL_GPL(crypto_engine_stop);
461
462 /**
463  * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure
464  * and initialize it by setting the maximum number of entries in the software
465  * crypto-engine queue.
466  * @dev: the device attached with one hardware engine
467  * @retry_support: whether hardware has support for retry mechanism
468  * @cbk_do_batch: pointer to a callback function to be invoked when executing a
469  *                a batch of requests.
470  *                This has the form:
471  *                callback(struct crypto_engine *engine)
472  *                where:
473  *                @engine: the crypto engine structure.
474  * @rt: whether this queue is set to run as a realtime task
475  * @qlen: maximum size of the crypto-engine queue
476  *
477  * This must be called from context that can sleep.
478  * Return: the crypto engine structure on success, else NULL.
479  */
480 struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
481                                                        bool retry_support,
482                                                        int (*cbk_do_batch)(struct crypto_engine *engine),
483                                                        bool rt, int qlen)
484 {
485         struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
486         struct crypto_engine *engine;
487
488         if (!dev)
489                 return NULL;
490
491         engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
492         if (!engine)
493                 return NULL;
494
495         engine->dev = dev;
496         engine->rt = rt;
497         engine->running = false;
498         engine->busy = false;
499         engine->idling = false;
500         engine->retry_support = retry_support;
501         engine->priv_data = dev;
502         /*
503          * Batch requests is possible only if
504          * hardware has support for retry mechanism.
505          */
506         engine->do_batch_requests = retry_support ? cbk_do_batch : NULL;
507
508         snprintf(engine->name, sizeof(engine->name),
509                  "%s-engine", dev_name(dev));
510
511         crypto_init_queue(&engine->queue, qlen);
512         spin_lock_init(&engine->queue_lock);
513
514         engine->kworker = kthread_create_worker(0, "%s", engine->name);
515         if (IS_ERR(engine->kworker)) {
516                 dev_err(dev, "failed to create crypto request pump task\n");
517                 return NULL;
518         }
519         kthread_init_work(&engine->pump_requests, crypto_pump_work);
520
521         if (engine->rt) {
522                 dev_info(dev, "will run requests pump with realtime priority\n");
523                 sched_setscheduler(engine->kworker->task, SCHED_FIFO, &param);
524         }
525
526         return engine;
527 }
528 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set);
529
530 /**
531  * crypto_engine_alloc_init - allocate crypto hardware engine structure and
532  * initialize it.
533  * @dev: the device attached with one hardware engine
534  * @rt: whether this queue is set to run as a realtime task
535  *
536  * This must be called from context that can sleep.
537  * Return: the crypto engine structure on success, else NULL.
538  */
539 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
540 {
541         return crypto_engine_alloc_init_and_set(dev, false, NULL, rt,
542                                                 CRYPTO_ENGINE_MAX_QLEN);
543 }
544 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
545
546 /**
547  * crypto_engine_exit - free the resources of hardware engine when exit
548  * @engine: the hardware engine need to be freed
549  *
550  * Return 0 for success.
551  */
552 int crypto_engine_exit(struct crypto_engine *engine)
553 {
554         int ret;
555
556         ret = crypto_engine_stop(engine);
557         if (ret)
558                 return ret;
559
560         kthread_destroy_worker(engine->kworker);
561
562         return 0;
563 }
564 EXPORT_SYMBOL_GPL(crypto_engine_exit);
565
566 MODULE_LICENSE("GPL");
567 MODULE_DESCRIPTION("Crypto hardware engine framework");