Merge tag 'armsoc-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / crypto / async_tx / async_raid6_recov.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Asynchronous RAID-6 recovery calculations ASYNC_TX API.
4  * Copyright(c) 2009 Intel Corporation
5  *
6  * based on raid6recov.c:
7  *   Copyright 2002 H. Peter Anvin
8  */
9 #include <linux/kernel.h>
10 #include <linux/interrupt.h>
11 #include <linux/module.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/raid/pq.h>
14 #include <linux/async_tx.h>
15 #include <linux/dmaengine.h>
16
17 static struct dma_async_tx_descriptor *
18 async_sum_product(struct page *dest, unsigned int d_off,
19                 struct page **srcs, unsigned int *src_offs, unsigned char *coef,
20                 size_t len, struct async_submit_ctl *submit)
21 {
22         struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
23                                                       &dest, 1, srcs, 2, len);
24         struct dma_device *dma = chan ? chan->device : NULL;
25         struct dmaengine_unmap_data *unmap = NULL;
26         const u8 *amul, *bmul;
27         u8 ax, bx;
28         u8 *a, *b, *c;
29
30         if (dma)
31                 unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT);
32
33         if (unmap) {
34                 struct device *dev = dma->dev;
35                 dma_addr_t pq[2];
36                 struct dma_async_tx_descriptor *tx;
37                 enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
38
39                 if (submit->flags & ASYNC_TX_FENCE)
40                         dma_flags |= DMA_PREP_FENCE;
41                 unmap->addr[0] = dma_map_page(dev, srcs[0], src_offs[0],
42                                                 len, DMA_TO_DEVICE);
43                 unmap->addr[1] = dma_map_page(dev, srcs[1], src_offs[1],
44                                                 len, DMA_TO_DEVICE);
45                 unmap->to_cnt = 2;
46
47                 unmap->addr[2] = dma_map_page(dev, dest, d_off,
48                                                 len, DMA_BIDIRECTIONAL);
49                 unmap->bidi_cnt = 1;
50                 /* engine only looks at Q, but expects it to follow P */
51                 pq[1] = unmap->addr[2];
52
53                 unmap->len = len;
54                 tx = dma->device_prep_dma_pq(chan, pq, unmap->addr, 2, coef,
55                                              len, dma_flags);
56                 if (tx) {
57                         dma_set_unmap(tx, unmap);
58                         async_tx_submit(chan, tx, submit);
59                         dmaengine_unmap_put(unmap);
60                         return tx;
61                 }
62
63                 /* could not get a descriptor, unmap and fall through to
64                  * the synchronous path
65                  */
66                 dmaengine_unmap_put(unmap);
67         }
68
69         /* run the operation synchronously */
70         async_tx_quiesce(&submit->depend_tx);
71         amul = raid6_gfmul[coef[0]];
72         bmul = raid6_gfmul[coef[1]];
73         a = page_address(srcs[0]) + src_offs[0];
74         b = page_address(srcs[1]) + src_offs[1];
75         c = page_address(dest) + d_off;
76
77         while (len--) {
78                 ax    = amul[*a++];
79                 bx    = bmul[*b++];
80                 *c++ = ax ^ bx;
81         }
82
83         return NULL;
84 }
85
86 static struct dma_async_tx_descriptor *
87 async_mult(struct page *dest, unsigned int d_off, struct page *src,
88                 unsigned int s_off, u8 coef, size_t len,
89                 struct async_submit_ctl *submit)
90 {
91         struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
92                                                       &dest, 1, &src, 1, len);
93         struct dma_device *dma = chan ? chan->device : NULL;
94         struct dmaengine_unmap_data *unmap = NULL;
95         const u8 *qmul; /* Q multiplier table */
96         u8 *d, *s;
97
98         if (dma)
99                 unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT);
100
101         if (unmap) {
102                 dma_addr_t dma_dest[2];
103                 struct device *dev = dma->dev;
104                 struct dma_async_tx_descriptor *tx;
105                 enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
106
107                 if (submit->flags & ASYNC_TX_FENCE)
108                         dma_flags |= DMA_PREP_FENCE;
109                 unmap->addr[0] = dma_map_page(dev, src, s_off,
110                                                 len, DMA_TO_DEVICE);
111                 unmap->to_cnt++;
112                 unmap->addr[1] = dma_map_page(dev, dest, d_off,
113                                                 len, DMA_BIDIRECTIONAL);
114                 dma_dest[1] = unmap->addr[1];
115                 unmap->bidi_cnt++;
116                 unmap->len = len;
117
118                 /* this looks funny, but the engine looks for Q at
119                  * dma_dest[1] and ignores dma_dest[0] as a dest
120                  * due to DMA_PREP_PQ_DISABLE_P
121                  */
122                 tx = dma->device_prep_dma_pq(chan, dma_dest, unmap->addr,
123                                              1, &coef, len, dma_flags);
124
125                 if (tx) {
126                         dma_set_unmap(tx, unmap);
127                         dmaengine_unmap_put(unmap);
128                         async_tx_submit(chan, tx, submit);
129                         return tx;
130                 }
131
132                 /* could not get a descriptor, unmap and fall through to
133                  * the synchronous path
134                  */
135                 dmaengine_unmap_put(unmap);
136         }
137
138         /* no channel available, or failed to allocate a descriptor, so
139          * perform the operation synchronously
140          */
141         async_tx_quiesce(&submit->depend_tx);
142         qmul  = raid6_gfmul[coef];
143         d = page_address(dest) + d_off;
144         s = page_address(src) + s_off;
145
146         while (len--)
147                 *d++ = qmul[*s++];
148
149         return NULL;
150 }
151
152 static struct dma_async_tx_descriptor *
153 __2data_recov_4(int disks, size_t bytes, int faila, int failb,
154                 struct page **blocks, unsigned int *offs,
155                 struct async_submit_ctl *submit)
156 {
157         struct dma_async_tx_descriptor *tx = NULL;
158         struct page *p, *q, *a, *b;
159         unsigned int p_off, q_off, a_off, b_off;
160         struct page *srcs[2];
161         unsigned int src_offs[2];
162         unsigned char coef[2];
163         enum async_tx_flags flags = submit->flags;
164         dma_async_tx_callback cb_fn = submit->cb_fn;
165         void *cb_param = submit->cb_param;
166         void *scribble = submit->scribble;
167
168         p = blocks[disks-2];
169         p_off = offs[disks-2];
170         q = blocks[disks-1];
171         q_off = offs[disks-1];
172
173         a = blocks[faila];
174         a_off = offs[faila];
175         b = blocks[failb];
176         b_off = offs[failb];
177
178         /* in the 4 disk case P + Pxy == P and Q + Qxy == Q */
179         /* Dx = A*(P+Pxy) + B*(Q+Qxy) */
180         srcs[0] = p;
181         src_offs[0] = p_off;
182         srcs[1] = q;
183         src_offs[1] = q_off;
184         coef[0] = raid6_gfexi[failb-faila];
185         coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
186         init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
187         tx = async_sum_product(b, b_off, srcs, src_offs, coef, bytes, submit);
188
189         /* Dy = P+Pxy+Dx */
190         srcs[0] = p;
191         src_offs[0] = p_off;
192         srcs[1] = b;
193         src_offs[1] = b_off;
194         init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn,
195                           cb_param, scribble);
196         tx = async_xor_offs(a, a_off, srcs, src_offs, 2, bytes, submit);
197
198         return tx;
199
200 }
201
202 static struct dma_async_tx_descriptor *
203 __2data_recov_5(int disks, size_t bytes, int faila, int failb,
204                 struct page **blocks, unsigned int *offs,
205                 struct async_submit_ctl *submit)
206 {
207         struct dma_async_tx_descriptor *tx = NULL;
208         struct page *p, *q, *g, *dp, *dq;
209         unsigned int p_off, q_off, g_off, dp_off, dq_off;
210         struct page *srcs[2];
211         unsigned int src_offs[2];
212         unsigned char coef[2];
213         enum async_tx_flags flags = submit->flags;
214         dma_async_tx_callback cb_fn = submit->cb_fn;
215         void *cb_param = submit->cb_param;
216         void *scribble = submit->scribble;
217         int good_srcs, good, i;
218
219         good_srcs = 0;
220         good = -1;
221         for (i = 0; i < disks-2; i++) {
222                 if (blocks[i] == NULL)
223                         continue;
224                 if (i == faila || i == failb)
225                         continue;
226                 good = i;
227                 good_srcs++;
228         }
229         BUG_ON(good_srcs > 1);
230
231         p = blocks[disks-2];
232         p_off = offs[disks-2];
233         q = blocks[disks-1];
234         q_off = offs[disks-1];
235         g = blocks[good];
236         g_off = offs[good];
237
238         /* Compute syndrome with zero for the missing data pages
239          * Use the dead data pages as temporary storage for delta p and
240          * delta q
241          */
242         dp = blocks[faila];
243         dp_off = offs[faila];
244         dq = blocks[failb];
245         dq_off = offs[failb];
246
247         init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
248         tx = async_memcpy(dp, g, dp_off, g_off, bytes, submit);
249         init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
250         tx = async_mult(dq, dq_off, g, g_off,
251                         raid6_gfexp[good], bytes, submit);
252
253         /* compute P + Pxy */
254         srcs[0] = dp;
255         src_offs[0] = dp_off;
256         srcs[1] = p;
257         src_offs[1] = p_off;
258         init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
259                           NULL, NULL, scribble);
260         tx = async_xor_offs(dp, dp_off, srcs, src_offs, 2, bytes, submit);
261
262         /* compute Q + Qxy */
263         srcs[0] = dq;
264         src_offs[0] = dq_off;
265         srcs[1] = q;
266         src_offs[1] = q_off;
267         init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
268                           NULL, NULL, scribble);
269         tx = async_xor_offs(dq, dq_off, srcs, src_offs, 2, bytes, submit);
270
271         /* Dx = A*(P+Pxy) + B*(Q+Qxy) */
272         srcs[0] = dp;
273         src_offs[0] = dp_off;
274         srcs[1] = dq;
275         src_offs[1] = dq_off;
276         coef[0] = raid6_gfexi[failb-faila];
277         coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
278         init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
279         tx = async_sum_product(dq, dq_off, srcs, src_offs, coef, bytes, submit);
280
281         /* Dy = P+Pxy+Dx */
282         srcs[0] = dp;
283         src_offs[0] = dp_off;
284         srcs[1] = dq;
285         src_offs[1] = dq_off;
286         init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
287                           cb_param, scribble);
288         tx = async_xor_offs(dp, dp_off, srcs, src_offs, 2, bytes, submit);
289
290         return tx;
291 }
292
293 static struct dma_async_tx_descriptor *
294 __2data_recov_n(int disks, size_t bytes, int faila, int failb,
295               struct page **blocks, unsigned int *offs,
296                   struct async_submit_ctl *submit)
297 {
298         struct dma_async_tx_descriptor *tx = NULL;
299         struct page *p, *q, *dp, *dq;
300         unsigned int p_off, q_off, dp_off, dq_off;
301         struct page *srcs[2];
302         unsigned int src_offs[2];
303         unsigned char coef[2];
304         enum async_tx_flags flags = submit->flags;
305         dma_async_tx_callback cb_fn = submit->cb_fn;
306         void *cb_param = submit->cb_param;
307         void *scribble = submit->scribble;
308
309         p = blocks[disks-2];
310         p_off = offs[disks-2];
311         q = blocks[disks-1];
312         q_off = offs[disks-1];
313
314         /* Compute syndrome with zero for the missing data pages
315          * Use the dead data pages as temporary storage for
316          * delta p and delta q
317          */
318         dp = blocks[faila];
319         dp_off = offs[faila];
320         blocks[faila] = NULL;
321         blocks[disks-2] = dp;
322         offs[disks-2] = dp_off;
323         dq = blocks[failb];
324         dq_off = offs[failb];
325         blocks[failb] = NULL;
326         blocks[disks-1] = dq;
327         offs[disks-1] = dq_off;
328
329         init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
330         tx = async_gen_syndrome(blocks, offs, disks, bytes, submit);
331
332         /* Restore pointer table */
333         blocks[faila]   = dp;
334         offs[faila] = dp_off;
335         blocks[failb]   = dq;
336         offs[failb] = dq_off;
337         blocks[disks-2] = p;
338         offs[disks-2] = p_off;
339         blocks[disks-1] = q;
340         offs[disks-1] = q_off;
341
342         /* compute P + Pxy */
343         srcs[0] = dp;
344         src_offs[0] = dp_off;
345         srcs[1] = p;
346         src_offs[1] = p_off;
347         init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
348                           NULL, NULL, scribble);
349         tx = async_xor_offs(dp, dp_off, srcs, src_offs, 2, bytes, submit);
350
351         /* compute Q + Qxy */
352         srcs[0] = dq;
353         src_offs[0] = dq_off;
354         srcs[1] = q;
355         src_offs[1] = q_off;
356         init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
357                           NULL, NULL, scribble);
358         tx = async_xor_offs(dq, dq_off, srcs, src_offs, 2, bytes, submit);
359
360         /* Dx = A*(P+Pxy) + B*(Q+Qxy) */
361         srcs[0] = dp;
362         src_offs[0] = dp_off;
363         srcs[1] = dq;
364         src_offs[1] = dq_off;
365         coef[0] = raid6_gfexi[failb-faila];
366         coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
367         init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
368         tx = async_sum_product(dq, dq_off, srcs, src_offs, coef, bytes, submit);
369
370         /* Dy = P+Pxy+Dx */
371         srcs[0] = dp;
372         src_offs[0] = dp_off;
373         srcs[1] = dq;
374         src_offs[1] = dq_off;
375         init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
376                           cb_param, scribble);
377         tx = async_xor_offs(dp, dp_off, srcs, src_offs, 2, bytes, submit);
378
379         return tx;
380 }
381
382 /**
383  * async_raid6_2data_recov - asynchronously calculate two missing data blocks
384  * @disks: number of disks in the RAID-6 array
385  * @bytes: block size
386  * @faila: first failed drive index
387  * @failb: second failed drive index
388  * @blocks: array of source pointers where the last two entries are p and q
389  * @offs: array of offset for pages in blocks
390  * @submit: submission/completion modifiers
391  */
392 struct dma_async_tx_descriptor *
393 async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
394                         struct page **blocks, unsigned int *offs,
395                         struct async_submit_ctl *submit)
396 {
397         void *scribble = submit->scribble;
398         int non_zero_srcs, i;
399
400         BUG_ON(faila == failb);
401         if (failb < faila)
402                 swap(faila, failb);
403
404         pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
405
406         /* if a dma resource is not available or a scribble buffer is not
407          * available punt to the synchronous path.  In the 'dma not
408          * available' case be sure to use the scribble buffer to
409          * preserve the content of 'blocks' as the caller intended.
410          */
411         if (!async_dma_find_channel(DMA_PQ) || !scribble) {
412                 void **ptrs = scribble ? scribble : (void **) blocks;
413
414                 async_tx_quiesce(&submit->depend_tx);
415                 for (i = 0; i < disks; i++)
416                         if (blocks[i] == NULL)
417                                 ptrs[i] = (void *) raid6_empty_zero_page;
418                         else
419                                 ptrs[i] = page_address(blocks[i]) + offs[i];
420
421                 raid6_2data_recov(disks, bytes, faila, failb, ptrs);
422
423                 async_tx_sync_epilog(submit);
424
425                 return NULL;
426         }
427
428         non_zero_srcs = 0;
429         for (i = 0; i < disks-2 && non_zero_srcs < 4; i++)
430                 if (blocks[i])
431                         non_zero_srcs++;
432         switch (non_zero_srcs) {
433         case 0:
434         case 1:
435                 /* There must be at least 2 sources - the failed devices. */
436                 BUG();
437
438         case 2:
439                 /* dma devices do not uniformly understand a zero source pq
440                  * operation (in contrast to the synchronous case), so
441                  * explicitly handle the special case of a 4 disk array with
442                  * both data disks missing.
443                  */
444                 return __2data_recov_4(disks, bytes, faila, failb,
445                                 blocks, offs, submit);
446         case 3:
447                 /* dma devices do not uniformly understand a single
448                  * source pq operation (in contrast to the synchronous
449                  * case), so explicitly handle the special case of a 5 disk
450                  * array with 2 of 3 data disks missing.
451                  */
452                 return __2data_recov_5(disks, bytes, faila, failb,
453                                 blocks, offs, submit);
454         default:
455                 return __2data_recov_n(disks, bytes, faila, failb,
456                                 blocks, offs, submit);
457         }
458 }
459 EXPORT_SYMBOL_GPL(async_raid6_2data_recov);
460
461 /**
462  * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block
463  * @disks: number of disks in the RAID-6 array
464  * @bytes: block size
465  * @faila: failed drive index
466  * @blocks: array of source pointers where the last two entries are p and q
467  * @offs: array of offset for pages in blocks
468  * @submit: submission/completion modifiers
469  */
470 struct dma_async_tx_descriptor *
471 async_raid6_datap_recov(int disks, size_t bytes, int faila,
472                         struct page **blocks, unsigned int *offs,
473                         struct async_submit_ctl *submit)
474 {
475         struct dma_async_tx_descriptor *tx = NULL;
476         struct page *p, *q, *dq;
477         unsigned int p_off, q_off, dq_off;
478         u8 coef;
479         enum async_tx_flags flags = submit->flags;
480         dma_async_tx_callback cb_fn = submit->cb_fn;
481         void *cb_param = submit->cb_param;
482         void *scribble = submit->scribble;
483         int good_srcs, good, i;
484         struct page *srcs[2];
485         unsigned int src_offs[2];
486
487         pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
488
489         /* if a dma resource is not available or a scribble buffer is not
490          * available punt to the synchronous path.  In the 'dma not
491          * available' case be sure to use the scribble buffer to
492          * preserve the content of 'blocks' as the caller intended.
493          */
494         if (!async_dma_find_channel(DMA_PQ) || !scribble) {
495                 void **ptrs = scribble ? scribble : (void **) blocks;
496
497                 async_tx_quiesce(&submit->depend_tx);
498                 for (i = 0; i < disks; i++)
499                         if (blocks[i] == NULL)
500                                 ptrs[i] = (void*)raid6_empty_zero_page;
501                         else
502                                 ptrs[i] = page_address(blocks[i]) + offs[i];
503
504                 raid6_datap_recov(disks, bytes, faila, ptrs);
505
506                 async_tx_sync_epilog(submit);
507
508                 return NULL;
509         }
510
511         good_srcs = 0;
512         good = -1;
513         for (i = 0; i < disks-2; i++) {
514                 if (i == faila)
515                         continue;
516                 if (blocks[i]) {
517                         good = i;
518                         good_srcs++;
519                         if (good_srcs > 1)
520                                 break;
521                 }
522         }
523         BUG_ON(good_srcs == 0);
524
525         p = blocks[disks-2];
526         p_off = offs[disks-2];
527         q = blocks[disks-1];
528         q_off = offs[disks-1];
529
530         /* Compute syndrome with zero for the missing data page
531          * Use the dead data page as temporary storage for delta q
532          */
533         dq = blocks[faila];
534         dq_off = offs[faila];
535         blocks[faila] = NULL;
536         blocks[disks-1] = dq;
537         offs[disks-1] = dq_off;
538
539         /* in the 4-disk case we only need to perform a single source
540          * multiplication with the one good data block.
541          */
542         if (good_srcs == 1) {
543                 struct page *g = blocks[good];
544                 unsigned int g_off = offs[good];
545
546                 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
547                                   scribble);
548                 tx = async_memcpy(p, g, p_off, g_off, bytes, submit);
549
550                 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
551                                   scribble);
552                 tx = async_mult(dq, dq_off, g, g_off,
553                                 raid6_gfexp[good], bytes, submit);
554         } else {
555                 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
556                                   scribble);
557                 tx = async_gen_syndrome(blocks, offs, disks, bytes, submit);
558         }
559
560         /* Restore pointer table */
561         blocks[faila]   = dq;
562         offs[faila] = dq_off;
563         blocks[disks-1] = q;
564         offs[disks-1] = q_off;
565
566         /* calculate g^{-faila} */
567         coef = raid6_gfinv[raid6_gfexp[faila]];
568
569         srcs[0] = dq;
570         src_offs[0] = dq_off;
571         srcs[1] = q;
572         src_offs[1] = q_off;
573         init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
574                           NULL, NULL, scribble);
575         tx = async_xor_offs(dq, dq_off, srcs, src_offs, 2, bytes, submit);
576
577         init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
578         tx = async_mult(dq, dq_off, dq, dq_off, coef, bytes, submit);
579
580         srcs[0] = p;
581         src_offs[0] = p_off;
582         srcs[1] = dq;
583         src_offs[1] = dq_off;
584         init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
585                           cb_param, scribble);
586         tx = async_xor_offs(p, p_off, srcs, src_offs, 2, bytes, submit);
587
588         return tx;
589 }
590 EXPORT_SYMBOL_GPL(async_raid6_datap_recov);
591
592 MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
593 MODULE_DESCRIPTION("asynchronous RAID-6 recovery api");
594 MODULE_LICENSE("GPL");