Revert "dm crypt: export sysfs of kcryptd workqueue"
[linux-2.6-microblaze.git] / crypto / asymmetric_keys / x509_public_key.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Instantiate a public key crypto key from an X.509 Certificate
3  *
4  * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7
8 #define pr_fmt(fmt) "X.509: "fmt
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <keys/asymmetric-subtype.h>
13 #include <keys/asymmetric-parser.h>
14 #include <keys/system_keyring.h>
15 #include <crypto/hash.h>
16 #include "asymmetric_keys.h"
17 #include "x509_parser.h"
18
19 /*
20  * Set up the signature parameters in an X.509 certificate.  This involves
21  * digesting the signed data and extracting the signature.
22  */
23 int x509_get_sig_params(struct x509_certificate *cert)
24 {
25         struct public_key_signature *sig = cert->sig;
26         struct crypto_shash *tfm;
27         struct shash_desc *desc;
28         size_t desc_size;
29         int ret;
30
31         pr_devel("==>%s()\n", __func__);
32
33         sig->data = cert->tbs;
34         sig->data_size = cert->tbs_size;
35
36         if (!cert->pub->pkey_algo)
37                 cert->unsupported_key = true;
38
39         if (!sig->pkey_algo)
40                 cert->unsupported_sig = true;
41
42         /* We check the hash if we can - even if we can't then verify it */
43         if (!sig->hash_algo) {
44                 cert->unsupported_sig = true;
45                 return 0;
46         }
47
48         sig->s = kmemdup(cert->raw_sig, cert->raw_sig_size, GFP_KERNEL);
49         if (!sig->s)
50                 return -ENOMEM;
51
52         sig->s_size = cert->raw_sig_size;
53
54         /* Allocate the hashing algorithm we're going to need and find out how
55          * big the hash operational data will be.
56          */
57         tfm = crypto_alloc_shash(sig->hash_algo, 0, 0);
58         if (IS_ERR(tfm)) {
59                 if (PTR_ERR(tfm) == -ENOENT) {
60                         cert->unsupported_sig = true;
61                         return 0;
62                 }
63                 return PTR_ERR(tfm);
64         }
65
66         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
67         sig->digest_size = crypto_shash_digestsize(tfm);
68
69         ret = -ENOMEM;
70         sig->digest = kmalloc(sig->digest_size, GFP_KERNEL);
71         if (!sig->digest)
72                 goto error;
73
74         desc = kzalloc(desc_size, GFP_KERNEL);
75         if (!desc)
76                 goto error;
77
78         desc->tfm = tfm;
79
80         ret = crypto_shash_digest(desc, cert->tbs, cert->tbs_size, sig->digest);
81         if (ret < 0)
82                 goto error_2;
83
84         ret = is_hash_blacklisted(sig->digest, sig->digest_size, "tbs");
85         if (ret == -EKEYREJECTED) {
86                 pr_err("Cert %*phN is blacklisted\n",
87                        sig->digest_size, sig->digest);
88                 cert->blacklisted = true;
89                 ret = 0;
90         }
91
92 error_2:
93         kfree(desc);
94 error:
95         crypto_free_shash(tfm);
96         pr_devel("<==%s() = %d\n", __func__, ret);
97         return ret;
98 }
99
100 /*
101  * Check for self-signedness in an X.509 cert and if found, check the signature
102  * immediately if we can.
103  */
104 int x509_check_for_self_signed(struct x509_certificate *cert)
105 {
106         int ret = 0;
107
108         pr_devel("==>%s()\n", __func__);
109
110         if (cert->raw_subject_size != cert->raw_issuer_size ||
111             memcmp(cert->raw_subject, cert->raw_issuer,
112                    cert->raw_issuer_size) != 0)
113                 goto not_self_signed;
114
115         if (cert->sig->auth_ids[0] || cert->sig->auth_ids[1]) {
116                 /* If the AKID is present it may have one or two parts.  If
117                  * both are supplied, both must match.
118                  */
119                 bool a = asymmetric_key_id_same(cert->skid, cert->sig->auth_ids[1]);
120                 bool b = asymmetric_key_id_same(cert->id, cert->sig->auth_ids[0]);
121
122                 if (!a && !b)
123                         goto not_self_signed;
124
125                 ret = -EKEYREJECTED;
126                 if (((a && !b) || (b && !a)) &&
127                     cert->sig->auth_ids[0] && cert->sig->auth_ids[1])
128                         goto out;
129         }
130
131         ret = -EKEYREJECTED;
132         if (strcmp(cert->pub->pkey_algo, cert->sig->pkey_algo) != 0)
133                 goto out;
134
135         ret = public_key_verify_signature(cert->pub, cert->sig);
136         if (ret < 0) {
137                 if (ret == -ENOPKG) {
138                         cert->unsupported_sig = true;
139                         ret = 0;
140                 }
141                 goto out;
142         }
143
144         pr_devel("Cert Self-signature verified");
145         cert->self_signed = true;
146
147 out:
148         pr_devel("<==%s() = %d\n", __func__, ret);
149         return ret;
150
151 not_self_signed:
152         pr_devel("<==%s() = 0 [not]\n", __func__);
153         return 0;
154 }
155
156 /*
157  * Attempt to parse a data blob for a key as an X509 certificate.
158  */
159 static int x509_key_preparse(struct key_preparsed_payload *prep)
160 {
161         struct asymmetric_key_ids *kids;
162         struct x509_certificate *cert;
163         const char *q;
164         size_t srlen, sulen;
165         char *desc = NULL, *p;
166         int ret;
167
168         cert = x509_cert_parse(prep->data, prep->datalen);
169         if (IS_ERR(cert))
170                 return PTR_ERR(cert);
171
172         pr_devel("Cert Issuer: %s\n", cert->issuer);
173         pr_devel("Cert Subject: %s\n", cert->subject);
174
175         if (cert->unsupported_key) {
176                 ret = -ENOPKG;
177                 goto error_free_cert;
178         }
179
180         pr_devel("Cert Key Algo: %s\n", cert->pub->pkey_algo);
181         pr_devel("Cert Valid period: %lld-%lld\n", cert->valid_from, cert->valid_to);
182
183         cert->pub->id_type = "X509";
184
185         if (cert->unsupported_sig) {
186                 public_key_signature_free(cert->sig);
187                 cert->sig = NULL;
188         } else {
189                 pr_devel("Cert Signature: %s + %s\n",
190                          cert->sig->pkey_algo, cert->sig->hash_algo);
191         }
192
193         /* Don't permit addition of blacklisted keys */
194         ret = -EKEYREJECTED;
195         if (cert->blacklisted)
196                 goto error_free_cert;
197
198         /* Propose a description */
199         sulen = strlen(cert->subject);
200         if (cert->raw_skid) {
201                 srlen = cert->raw_skid_size;
202                 q = cert->raw_skid;
203         } else {
204                 srlen = cert->raw_serial_size;
205                 q = cert->raw_serial;
206         }
207
208         ret = -ENOMEM;
209         desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL);
210         if (!desc)
211                 goto error_free_cert;
212         p = memcpy(desc, cert->subject, sulen);
213         p += sulen;
214         *p++ = ':';
215         *p++ = ' ';
216         p = bin2hex(p, q, srlen);
217         *p = 0;
218
219         kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL);
220         if (!kids)
221                 goto error_free_desc;
222         kids->id[0] = cert->id;
223         kids->id[1] = cert->skid;
224
225         /* We're pinning the module by being linked against it */
226         __module_get(public_key_subtype.owner);
227         prep->payload.data[asym_subtype] = &public_key_subtype;
228         prep->payload.data[asym_key_ids] = kids;
229         prep->payload.data[asym_crypto] = cert->pub;
230         prep->payload.data[asym_auth] = cert->sig;
231         prep->description = desc;
232         prep->quotalen = 100;
233
234         /* We've finished with the certificate */
235         cert->pub = NULL;
236         cert->id = NULL;
237         cert->skid = NULL;
238         cert->sig = NULL;
239         desc = NULL;
240         ret = 0;
241
242 error_free_desc:
243         kfree(desc);
244 error_free_cert:
245         x509_free_certificate(cert);
246         return ret;
247 }
248
249 static struct asymmetric_key_parser x509_key_parser = {
250         .owner  = THIS_MODULE,
251         .name   = "x509",
252         .parse  = x509_key_preparse,
253 };
254
255 /*
256  * Module stuff
257  */
258 static int __init x509_key_init(void)
259 {
260         return register_asymmetric_key_parser(&x509_key_parser);
261 }
262
263 static void __exit x509_key_exit(void)
264 {
265         unregister_asymmetric_key_parser(&x509_key_parser);
266 }
267
268 module_init(x509_key_init);
269 module_exit(x509_key_exit);
270
271 MODULE_DESCRIPTION("X.509 certificate parser");
272 MODULE_AUTHOR("Red Hat, Inc.");
273 MODULE_LICENSE("GPL");