Merge tag 'block-6.9-20240322' of git://git.kernel.dk/linux
[linux-2.6-microblaze.git] / crypto / adiantum.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Adiantum length-preserving encryption mode
4  *
5  * Copyright 2018 Google LLC
6  */
7
8 /*
9  * Adiantum is a tweakable, length-preserving encryption mode designed for fast
10  * and secure disk encryption, especially on CPUs without dedicated crypto
11  * instructions.  Adiantum encrypts each sector using the XChaCha12 stream
12  * cipher, two passes of an ε-almost-∆-universal (ε-∆U) hash function based on
13  * NH and Poly1305, and an invocation of the AES-256 block cipher on a single
14  * 16-byte block.  See the paper for details:
15  *
16  *      Adiantum: length-preserving encryption for entry-level processors
17  *      (https://eprint.iacr.org/2018/720.pdf)
18  *
19  * For flexibility, this implementation also allows other ciphers:
20  *
21  *      - Stream cipher: XChaCha12 or XChaCha20
22  *      - Block cipher: any with a 128-bit block size and 256-bit key
23  *
24  * This implementation doesn't currently allow other ε-∆U hash functions, i.e.
25  * HPolyC is not supported.  This is because Adiantum is ~20% faster than HPolyC
26  * but still provably as secure, and also the ε-∆U hash function of HBSH is
27  * formally defined to take two inputs (tweak, message) which makes it difficult
28  * to wrap with the crypto_shash API.  Rather, some details need to be handled
29  * here.  Nevertheless, if needed in the future, support for other ε-∆U hash
30  * functions could be added here.
31  */
32
33 #include <crypto/b128ops.h>
34 #include <crypto/chacha.h>
35 #include <crypto/internal/cipher.h>
36 #include <crypto/internal/hash.h>
37 #include <crypto/internal/poly1305.h>
38 #include <crypto/internal/skcipher.h>
39 #include <crypto/nhpoly1305.h>
40 #include <crypto/scatterwalk.h>
41 #include <linux/module.h>
42
43 /*
44  * Size of right-hand part of input data, in bytes; also the size of the block
45  * cipher's block size and the hash function's output.
46  */
47 #define BLOCKCIPHER_BLOCK_SIZE          16
48
49 /* Size of the block cipher key (K_E) in bytes */
50 #define BLOCKCIPHER_KEY_SIZE            32
51
52 /* Size of the hash key (K_H) in bytes */
53 #define HASH_KEY_SIZE           (POLY1305_BLOCK_SIZE + NHPOLY1305_KEY_SIZE)
54
55 /*
56  * The specification allows variable-length tweaks, but Linux's crypto API
57  * currently only allows algorithms to support a single length.  The "natural"
58  * tweak length for Adiantum is 16, since that fits into one Poly1305 block for
59  * the best performance.  But longer tweaks are useful for fscrypt, to avoid
60  * needing to derive per-file keys.  So instead we use two blocks, or 32 bytes.
61  */
62 #define TWEAK_SIZE              32
63
64 struct adiantum_instance_ctx {
65         struct crypto_skcipher_spawn streamcipher_spawn;
66         struct crypto_cipher_spawn blockcipher_spawn;
67         struct crypto_shash_spawn hash_spawn;
68 };
69
70 struct adiantum_tfm_ctx {
71         struct crypto_skcipher *streamcipher;
72         struct crypto_cipher *blockcipher;
73         struct crypto_shash *hash;
74         struct poly1305_core_key header_hash_key;
75 };
76
77 struct adiantum_request_ctx {
78
79         /*
80          * Buffer for right-hand part of data, i.e.
81          *
82          *    P_L => P_M => C_M => C_R when encrypting, or
83          *    C_R => C_M => P_M => P_L when decrypting.
84          *
85          * Also used to build the IV for the stream cipher.
86          */
87         union {
88                 u8 bytes[XCHACHA_IV_SIZE];
89                 __le32 words[XCHACHA_IV_SIZE / sizeof(__le32)];
90                 le128 bignum;   /* interpret as element of Z/(2^{128}Z) */
91         } rbuf;
92
93         bool enc; /* true if encrypting, false if decrypting */
94
95         /*
96          * The result of the Poly1305 ε-∆U hash function applied to
97          * (bulk length, tweak)
98          */
99         le128 header_hash;
100
101         /* Sub-requests, must be last */
102         union {
103                 struct shash_desc hash_desc;
104                 struct skcipher_request streamcipher_req;
105         } u;
106 };
107
108 /*
109  * Given the XChaCha stream key K_S, derive the block cipher key K_E and the
110  * hash key K_H as follows:
111  *
112  *     K_E || K_H || ... = XChaCha(key=K_S, nonce=1||0^191)
113  *
114  * Note that this denotes using bits from the XChaCha keystream, which here we
115  * get indirectly by encrypting a buffer containing all 0's.
116  */
117 static int adiantum_setkey(struct crypto_skcipher *tfm, const u8 *key,
118                            unsigned int keylen)
119 {
120         struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
121         struct {
122                 u8 iv[XCHACHA_IV_SIZE];
123                 u8 derived_keys[BLOCKCIPHER_KEY_SIZE + HASH_KEY_SIZE];
124                 struct scatterlist sg;
125                 struct crypto_wait wait;
126                 struct skcipher_request req; /* must be last */
127         } *data;
128         u8 *keyp;
129         int err;
130
131         /* Set the stream cipher key (K_S) */
132         crypto_skcipher_clear_flags(tctx->streamcipher, CRYPTO_TFM_REQ_MASK);
133         crypto_skcipher_set_flags(tctx->streamcipher,
134                                   crypto_skcipher_get_flags(tfm) &
135                                   CRYPTO_TFM_REQ_MASK);
136         err = crypto_skcipher_setkey(tctx->streamcipher, key, keylen);
137         if (err)
138                 return err;
139
140         /* Derive the subkeys */
141         data = kzalloc(sizeof(*data) +
142                        crypto_skcipher_reqsize(tctx->streamcipher), GFP_KERNEL);
143         if (!data)
144                 return -ENOMEM;
145         data->iv[0] = 1;
146         sg_init_one(&data->sg, data->derived_keys, sizeof(data->derived_keys));
147         crypto_init_wait(&data->wait);
148         skcipher_request_set_tfm(&data->req, tctx->streamcipher);
149         skcipher_request_set_callback(&data->req, CRYPTO_TFM_REQ_MAY_SLEEP |
150                                                   CRYPTO_TFM_REQ_MAY_BACKLOG,
151                                       crypto_req_done, &data->wait);
152         skcipher_request_set_crypt(&data->req, &data->sg, &data->sg,
153                                    sizeof(data->derived_keys), data->iv);
154         err = crypto_wait_req(crypto_skcipher_encrypt(&data->req), &data->wait);
155         if (err)
156                 goto out;
157         keyp = data->derived_keys;
158
159         /* Set the block cipher key (K_E) */
160         crypto_cipher_clear_flags(tctx->blockcipher, CRYPTO_TFM_REQ_MASK);
161         crypto_cipher_set_flags(tctx->blockcipher,
162                                 crypto_skcipher_get_flags(tfm) &
163                                 CRYPTO_TFM_REQ_MASK);
164         err = crypto_cipher_setkey(tctx->blockcipher, keyp,
165                                    BLOCKCIPHER_KEY_SIZE);
166         if (err)
167                 goto out;
168         keyp += BLOCKCIPHER_KEY_SIZE;
169
170         /* Set the hash key (K_H) */
171         poly1305_core_setkey(&tctx->header_hash_key, keyp);
172         keyp += POLY1305_BLOCK_SIZE;
173
174         crypto_shash_clear_flags(tctx->hash, CRYPTO_TFM_REQ_MASK);
175         crypto_shash_set_flags(tctx->hash, crypto_skcipher_get_flags(tfm) &
176                                            CRYPTO_TFM_REQ_MASK);
177         err = crypto_shash_setkey(tctx->hash, keyp, NHPOLY1305_KEY_SIZE);
178         keyp += NHPOLY1305_KEY_SIZE;
179         WARN_ON(keyp != &data->derived_keys[ARRAY_SIZE(data->derived_keys)]);
180 out:
181         kfree_sensitive(data);
182         return err;
183 }
184
185 /* Addition in Z/(2^{128}Z) */
186 static inline void le128_add(le128 *r, const le128 *v1, const le128 *v2)
187 {
188         u64 x = le64_to_cpu(v1->b);
189         u64 y = le64_to_cpu(v2->b);
190
191         r->b = cpu_to_le64(x + y);
192         r->a = cpu_to_le64(le64_to_cpu(v1->a) + le64_to_cpu(v2->a) +
193                            (x + y < x));
194 }
195
196 /* Subtraction in Z/(2^{128}Z) */
197 static inline void le128_sub(le128 *r, const le128 *v1, const le128 *v2)
198 {
199         u64 x = le64_to_cpu(v1->b);
200         u64 y = le64_to_cpu(v2->b);
201
202         r->b = cpu_to_le64(x - y);
203         r->a = cpu_to_le64(le64_to_cpu(v1->a) - le64_to_cpu(v2->a) -
204                            (x - y > x));
205 }
206
207 /*
208  * Apply the Poly1305 ε-∆U hash function to (bulk length, tweak) and save the
209  * result to rctx->header_hash.  This is the calculation
210  *
211  *      H_T ← Poly1305_{K_T}(bin_{128}(|L|) || T)
212  *
213  * from the procedure in section 6.4 of the Adiantum paper.  The resulting value
214  * is reused in both the first and second hash steps.  Specifically, it's added
215  * to the result of an independently keyed ε-∆U hash function (for equal length
216  * inputs only) taken over the left-hand part (the "bulk") of the message, to
217  * give the overall Adiantum hash of the (tweak, left-hand part) pair.
218  */
219 static void adiantum_hash_header(struct skcipher_request *req)
220 {
221         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
222         const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
223         struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
224         const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
225         struct {
226                 __le64 message_bits;
227                 __le64 padding;
228         } header = {
229                 .message_bits = cpu_to_le64((u64)bulk_len * 8)
230         };
231         struct poly1305_state state;
232
233         poly1305_core_init(&state);
234
235         BUILD_BUG_ON(sizeof(header) % POLY1305_BLOCK_SIZE != 0);
236         poly1305_core_blocks(&state, &tctx->header_hash_key,
237                              &header, sizeof(header) / POLY1305_BLOCK_SIZE, 1);
238
239         BUILD_BUG_ON(TWEAK_SIZE % POLY1305_BLOCK_SIZE != 0);
240         poly1305_core_blocks(&state, &tctx->header_hash_key, req->iv,
241                              TWEAK_SIZE / POLY1305_BLOCK_SIZE, 1);
242
243         poly1305_core_emit(&state, NULL, &rctx->header_hash);
244 }
245
246 /* Hash the left-hand part (the "bulk") of the message using NHPoly1305 */
247 static int adiantum_hash_message(struct skcipher_request *req,
248                                  struct scatterlist *sgl, unsigned int nents,
249                                  le128 *digest)
250 {
251         struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
252         const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
253         struct shash_desc *hash_desc = &rctx->u.hash_desc;
254         struct sg_mapping_iter miter;
255         unsigned int i, n;
256         int err;
257
258         err = crypto_shash_init(hash_desc);
259         if (err)
260                 return err;
261
262         sg_miter_start(&miter, sgl, nents, SG_MITER_FROM_SG | SG_MITER_ATOMIC);
263         for (i = 0; i < bulk_len; i += n) {
264                 sg_miter_next(&miter);
265                 n = min_t(unsigned int, miter.length, bulk_len - i);
266                 err = crypto_shash_update(hash_desc, miter.addr, n);
267                 if (err)
268                         break;
269         }
270         sg_miter_stop(&miter);
271         if (err)
272                 return err;
273
274         return crypto_shash_final(hash_desc, (u8 *)digest);
275 }
276
277 /* Continue Adiantum encryption/decryption after the stream cipher step */
278 static int adiantum_finish(struct skcipher_request *req)
279 {
280         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
281         const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
282         struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
283         const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
284         struct scatterlist *dst = req->dst;
285         const unsigned int dst_nents = sg_nents(dst);
286         le128 digest;
287         int err;
288
289         /* If decrypting, decrypt C_M with the block cipher to get P_M */
290         if (!rctx->enc)
291                 crypto_cipher_decrypt_one(tctx->blockcipher, rctx->rbuf.bytes,
292                                           rctx->rbuf.bytes);
293
294         /*
295          * Second hash step
296          *      enc: C_R = C_M - H_{K_H}(T, C_L)
297          *      dec: P_R = P_M - H_{K_H}(T, P_L)
298          */
299         rctx->u.hash_desc.tfm = tctx->hash;
300         le128_sub(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &rctx->header_hash);
301         if (dst_nents == 1 && dst->offset + req->cryptlen <= PAGE_SIZE) {
302                 /* Fast path for single-page destination */
303                 struct page *page = sg_page(dst);
304                 void *virt = kmap_local_page(page) + dst->offset;
305
306                 err = crypto_shash_digest(&rctx->u.hash_desc, virt, bulk_len,
307                                           (u8 *)&digest);
308                 if (err) {
309                         kunmap_local(virt);
310                         return err;
311                 }
312                 le128_sub(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest);
313                 memcpy(virt + bulk_len, &rctx->rbuf.bignum, sizeof(le128));
314                 flush_dcache_page(page);
315                 kunmap_local(virt);
316         } else {
317                 /* Slow path that works for any destination scatterlist */
318                 err = adiantum_hash_message(req, dst, dst_nents, &digest);
319                 if (err)
320                         return err;
321                 le128_sub(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest);
322                 scatterwalk_map_and_copy(&rctx->rbuf.bignum, dst,
323                                          bulk_len, sizeof(le128), 1);
324         }
325         return 0;
326 }
327
328 static void adiantum_streamcipher_done(void *data, int err)
329 {
330         struct skcipher_request *req = data;
331
332         if (!err)
333                 err = adiantum_finish(req);
334
335         skcipher_request_complete(req, err);
336 }
337
338 static int adiantum_crypt(struct skcipher_request *req, bool enc)
339 {
340         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
341         const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
342         struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
343         const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
344         struct scatterlist *src = req->src;
345         const unsigned int src_nents = sg_nents(src);
346         unsigned int stream_len;
347         le128 digest;
348         int err;
349
350         if (req->cryptlen < BLOCKCIPHER_BLOCK_SIZE)
351                 return -EINVAL;
352
353         rctx->enc = enc;
354
355         /*
356          * First hash step
357          *      enc: P_M = P_R + H_{K_H}(T, P_L)
358          *      dec: C_M = C_R + H_{K_H}(T, C_L)
359          */
360         adiantum_hash_header(req);
361         rctx->u.hash_desc.tfm = tctx->hash;
362         if (src_nents == 1 && src->offset + req->cryptlen <= PAGE_SIZE) {
363                 /* Fast path for single-page source */
364                 void *virt = kmap_local_page(sg_page(src)) + src->offset;
365
366                 err = crypto_shash_digest(&rctx->u.hash_desc, virt, bulk_len,
367                                           (u8 *)&digest);
368                 memcpy(&rctx->rbuf.bignum, virt + bulk_len, sizeof(le128));
369                 kunmap_local(virt);
370         } else {
371                 /* Slow path that works for any source scatterlist */
372                 err = adiantum_hash_message(req, src, src_nents, &digest);
373                 scatterwalk_map_and_copy(&rctx->rbuf.bignum, src,
374                                          bulk_len, sizeof(le128), 0);
375         }
376         if (err)
377                 return err;
378         le128_add(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &rctx->header_hash);
379         le128_add(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest);
380
381         /* If encrypting, encrypt P_M with the block cipher to get C_M */
382         if (enc)
383                 crypto_cipher_encrypt_one(tctx->blockcipher, rctx->rbuf.bytes,
384                                           rctx->rbuf.bytes);
385
386         /* Initialize the rest of the XChaCha IV (first part is C_M) */
387         BUILD_BUG_ON(BLOCKCIPHER_BLOCK_SIZE != 16);
388         BUILD_BUG_ON(XCHACHA_IV_SIZE != 32);    /* nonce || stream position */
389         rctx->rbuf.words[4] = cpu_to_le32(1);
390         rctx->rbuf.words[5] = 0;
391         rctx->rbuf.words[6] = 0;
392         rctx->rbuf.words[7] = 0;
393
394         /*
395          * XChaCha needs to be done on all the data except the last 16 bytes;
396          * for disk encryption that usually means 4080 or 496 bytes.  But ChaCha
397          * implementations tend to be most efficient when passed a whole number
398          * of 64-byte ChaCha blocks, or sometimes even a multiple of 256 bytes.
399          * And here it doesn't matter whether the last 16 bytes are written to,
400          * as the second hash step will overwrite them.  Thus, round the XChaCha
401          * length up to the next 64-byte boundary if possible.
402          */
403         stream_len = bulk_len;
404         if (round_up(stream_len, CHACHA_BLOCK_SIZE) <= req->cryptlen)
405                 stream_len = round_up(stream_len, CHACHA_BLOCK_SIZE);
406
407         skcipher_request_set_tfm(&rctx->u.streamcipher_req, tctx->streamcipher);
408         skcipher_request_set_crypt(&rctx->u.streamcipher_req, req->src,
409                                    req->dst, stream_len, &rctx->rbuf);
410         skcipher_request_set_callback(&rctx->u.streamcipher_req,
411                                       req->base.flags,
412                                       adiantum_streamcipher_done, req);
413         return crypto_skcipher_encrypt(&rctx->u.streamcipher_req) ?:
414                 adiantum_finish(req);
415 }
416
417 static int adiantum_encrypt(struct skcipher_request *req)
418 {
419         return adiantum_crypt(req, true);
420 }
421
422 static int adiantum_decrypt(struct skcipher_request *req)
423 {
424         return adiantum_crypt(req, false);
425 }
426
427 static int adiantum_init_tfm(struct crypto_skcipher *tfm)
428 {
429         struct skcipher_instance *inst = skcipher_alg_instance(tfm);
430         struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst);
431         struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
432         struct crypto_skcipher *streamcipher;
433         struct crypto_cipher *blockcipher;
434         struct crypto_shash *hash;
435         unsigned int subreq_size;
436         int err;
437
438         streamcipher = crypto_spawn_skcipher(&ictx->streamcipher_spawn);
439         if (IS_ERR(streamcipher))
440                 return PTR_ERR(streamcipher);
441
442         blockcipher = crypto_spawn_cipher(&ictx->blockcipher_spawn);
443         if (IS_ERR(blockcipher)) {
444                 err = PTR_ERR(blockcipher);
445                 goto err_free_streamcipher;
446         }
447
448         hash = crypto_spawn_shash(&ictx->hash_spawn);
449         if (IS_ERR(hash)) {
450                 err = PTR_ERR(hash);
451                 goto err_free_blockcipher;
452         }
453
454         tctx->streamcipher = streamcipher;
455         tctx->blockcipher = blockcipher;
456         tctx->hash = hash;
457
458         BUILD_BUG_ON(offsetofend(struct adiantum_request_ctx, u) !=
459                      sizeof(struct adiantum_request_ctx));
460         subreq_size = max(sizeof_field(struct adiantum_request_ctx,
461                                        u.hash_desc) +
462                           crypto_shash_descsize(hash),
463                           sizeof_field(struct adiantum_request_ctx,
464                                        u.streamcipher_req) +
465                           crypto_skcipher_reqsize(streamcipher));
466
467         crypto_skcipher_set_reqsize(tfm,
468                                     offsetof(struct adiantum_request_ctx, u) +
469                                     subreq_size);
470         return 0;
471
472 err_free_blockcipher:
473         crypto_free_cipher(blockcipher);
474 err_free_streamcipher:
475         crypto_free_skcipher(streamcipher);
476         return err;
477 }
478
479 static void adiantum_exit_tfm(struct crypto_skcipher *tfm)
480 {
481         struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
482
483         crypto_free_skcipher(tctx->streamcipher);
484         crypto_free_cipher(tctx->blockcipher);
485         crypto_free_shash(tctx->hash);
486 }
487
488 static void adiantum_free_instance(struct skcipher_instance *inst)
489 {
490         struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst);
491
492         crypto_drop_skcipher(&ictx->streamcipher_spawn);
493         crypto_drop_cipher(&ictx->blockcipher_spawn);
494         crypto_drop_shash(&ictx->hash_spawn);
495         kfree(inst);
496 }
497
498 /*
499  * Check for a supported set of inner algorithms.
500  * See the comment at the beginning of this file.
501  */
502 static bool adiantum_supported_algorithms(struct skcipher_alg_common *streamcipher_alg,
503                                           struct crypto_alg *blockcipher_alg,
504                                           struct shash_alg *hash_alg)
505 {
506         if (strcmp(streamcipher_alg->base.cra_name, "xchacha12") != 0 &&
507             strcmp(streamcipher_alg->base.cra_name, "xchacha20") != 0)
508                 return false;
509
510         if (blockcipher_alg->cra_cipher.cia_min_keysize > BLOCKCIPHER_KEY_SIZE ||
511             blockcipher_alg->cra_cipher.cia_max_keysize < BLOCKCIPHER_KEY_SIZE)
512                 return false;
513         if (blockcipher_alg->cra_blocksize != BLOCKCIPHER_BLOCK_SIZE)
514                 return false;
515
516         if (strcmp(hash_alg->base.cra_name, "nhpoly1305") != 0)
517                 return false;
518
519         return true;
520 }
521
522 static int adiantum_create(struct crypto_template *tmpl, struct rtattr **tb)
523 {
524         u32 mask;
525         const char *nhpoly1305_name;
526         struct skcipher_instance *inst;
527         struct adiantum_instance_ctx *ictx;
528         struct skcipher_alg_common *streamcipher_alg;
529         struct crypto_alg *blockcipher_alg;
530         struct shash_alg *hash_alg;
531         int err;
532
533         err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
534         if (err)
535                 return err;
536
537         inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL);
538         if (!inst)
539                 return -ENOMEM;
540         ictx = skcipher_instance_ctx(inst);
541
542         /* Stream cipher, e.g. "xchacha12" */
543         err = crypto_grab_skcipher(&ictx->streamcipher_spawn,
544                                    skcipher_crypto_instance(inst),
545                                    crypto_attr_alg_name(tb[1]), 0, mask);
546         if (err)
547                 goto err_free_inst;
548         streamcipher_alg = crypto_spawn_skcipher_alg_common(&ictx->streamcipher_spawn);
549
550         /* Block cipher, e.g. "aes" */
551         err = crypto_grab_cipher(&ictx->blockcipher_spawn,
552                                  skcipher_crypto_instance(inst),
553                                  crypto_attr_alg_name(tb[2]), 0, mask);
554         if (err)
555                 goto err_free_inst;
556         blockcipher_alg = crypto_spawn_cipher_alg(&ictx->blockcipher_spawn);
557
558         /* NHPoly1305 ε-∆U hash function */
559         nhpoly1305_name = crypto_attr_alg_name(tb[3]);
560         if (nhpoly1305_name == ERR_PTR(-ENOENT))
561                 nhpoly1305_name = "nhpoly1305";
562         err = crypto_grab_shash(&ictx->hash_spawn,
563                                 skcipher_crypto_instance(inst),
564                                 nhpoly1305_name, 0, mask);
565         if (err)
566                 goto err_free_inst;
567         hash_alg = crypto_spawn_shash_alg(&ictx->hash_spawn);
568
569         /* Check the set of algorithms */
570         if (!adiantum_supported_algorithms(streamcipher_alg, blockcipher_alg,
571                                            hash_alg)) {
572                 pr_warn("Unsupported Adiantum instantiation: (%s,%s,%s)\n",
573                         streamcipher_alg->base.cra_name,
574                         blockcipher_alg->cra_name, hash_alg->base.cra_name);
575                 err = -EINVAL;
576                 goto err_free_inst;
577         }
578
579         /* Instance fields */
580
581         err = -ENAMETOOLONG;
582         if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
583                      "adiantum(%s,%s)", streamcipher_alg->base.cra_name,
584                      blockcipher_alg->cra_name) >= CRYPTO_MAX_ALG_NAME)
585                 goto err_free_inst;
586         if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
587                      "adiantum(%s,%s,%s)",
588                      streamcipher_alg->base.cra_driver_name,
589                      blockcipher_alg->cra_driver_name,
590                      hash_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
591                 goto err_free_inst;
592
593         inst->alg.base.cra_blocksize = BLOCKCIPHER_BLOCK_SIZE;
594         inst->alg.base.cra_ctxsize = sizeof(struct adiantum_tfm_ctx);
595         inst->alg.base.cra_alignmask = streamcipher_alg->base.cra_alignmask;
596         /*
597          * The block cipher is only invoked once per message, so for long
598          * messages (e.g. sectors for disk encryption) its performance doesn't
599          * matter as much as that of the stream cipher and hash function.  Thus,
600          * weigh the block cipher's ->cra_priority less.
601          */
602         inst->alg.base.cra_priority = (4 * streamcipher_alg->base.cra_priority +
603                                        2 * hash_alg->base.cra_priority +
604                                        blockcipher_alg->cra_priority) / 7;
605
606         inst->alg.setkey = adiantum_setkey;
607         inst->alg.encrypt = adiantum_encrypt;
608         inst->alg.decrypt = adiantum_decrypt;
609         inst->alg.init = adiantum_init_tfm;
610         inst->alg.exit = adiantum_exit_tfm;
611         inst->alg.min_keysize = streamcipher_alg->min_keysize;
612         inst->alg.max_keysize = streamcipher_alg->max_keysize;
613         inst->alg.ivsize = TWEAK_SIZE;
614
615         inst->free = adiantum_free_instance;
616
617         err = skcipher_register_instance(tmpl, inst);
618         if (err) {
619 err_free_inst:
620                 adiantum_free_instance(inst);
621         }
622         return err;
623 }
624
625 /* adiantum(streamcipher_name, blockcipher_name [, nhpoly1305_name]) */
626 static struct crypto_template adiantum_tmpl = {
627         .name = "adiantum",
628         .create = adiantum_create,
629         .module = THIS_MODULE,
630 };
631
632 static int __init adiantum_module_init(void)
633 {
634         return crypto_register_template(&adiantum_tmpl);
635 }
636
637 static void __exit adiantum_module_exit(void)
638 {
639         crypto_unregister_template(&adiantum_tmpl);
640 }
641
642 subsys_initcall(adiantum_module_init);
643 module_exit(adiantum_module_exit);
644
645 MODULE_DESCRIPTION("Adiantum length-preserving encryption mode");
646 MODULE_LICENSE("GPL v2");
647 MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>");
648 MODULE_ALIAS_CRYPTO("adiantum");
649 MODULE_IMPORT_NS(CRYPTO_INTERNAL);