Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-2.6-microblaze.git] / block / kyber-iosched.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * The Kyber I/O scheduler. Controls latency by throttling queue depths using
4  * scalable techniques.
5  *
6  * Copyright (C) 2017 Facebook
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/elevator.h>
13 #include <linux/module.h>
14 #include <linux/sbitmap.h>
15
16 #include <trace/events/block.h>
17
18 #include "blk.h"
19 #include "blk-mq.h"
20 #include "blk-mq-debugfs.h"
21 #include "blk-mq-sched.h"
22 #include "blk-mq-tag.h"
23
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/kyber.h>
26
27 /*
28  * Scheduling domains: the device is divided into multiple domains based on the
29  * request type.
30  */
31 enum {
32         KYBER_READ,
33         KYBER_WRITE,
34         KYBER_DISCARD,
35         KYBER_OTHER,
36         KYBER_NUM_DOMAINS,
37 };
38
39 static const char *kyber_domain_names[] = {
40         [KYBER_READ] = "READ",
41         [KYBER_WRITE] = "WRITE",
42         [KYBER_DISCARD] = "DISCARD",
43         [KYBER_OTHER] = "OTHER",
44 };
45
46 enum {
47         /*
48          * In order to prevent starvation of synchronous requests by a flood of
49          * asynchronous requests, we reserve 25% of requests for synchronous
50          * operations.
51          */
52         KYBER_ASYNC_PERCENT = 75,
53 };
54
55 /*
56  * Maximum device-wide depth for each scheduling domain.
57  *
58  * Even for fast devices with lots of tags like NVMe, you can saturate the
59  * device with only a fraction of the maximum possible queue depth. So, we cap
60  * these to a reasonable value.
61  */
62 static const unsigned int kyber_depth[] = {
63         [KYBER_READ] = 256,
64         [KYBER_WRITE] = 128,
65         [KYBER_DISCARD] = 64,
66         [KYBER_OTHER] = 16,
67 };
68
69 /*
70  * Default latency targets for each scheduling domain.
71  */
72 static const u64 kyber_latency_targets[] = {
73         [KYBER_READ] = 2ULL * NSEC_PER_MSEC,
74         [KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
75         [KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
76 };
77
78 /*
79  * Batch size (number of requests we'll dispatch in a row) for each scheduling
80  * domain.
81  */
82 static const unsigned int kyber_batch_size[] = {
83         [KYBER_READ] = 16,
84         [KYBER_WRITE] = 8,
85         [KYBER_DISCARD] = 1,
86         [KYBER_OTHER] = 1,
87 };
88
89 /*
90  * Requests latencies are recorded in a histogram with buckets defined relative
91  * to the target latency:
92  *
93  * <= 1/4 * target latency
94  * <= 1/2 * target latency
95  * <= 3/4 * target latency
96  * <= target latency
97  * <= 1 1/4 * target latency
98  * <= 1 1/2 * target latency
99  * <= 1 3/4 * target latency
100  * > 1 3/4 * target latency
101  */
102 enum {
103         /*
104          * The width of the latency histogram buckets is
105          * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
106          */
107         KYBER_LATENCY_SHIFT = 2,
108         /*
109          * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
110          * thus, "good".
111          */
112         KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
113         /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
114         KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
115 };
116
117 /*
118  * We measure both the total latency and the I/O latency (i.e., latency after
119  * submitting to the device).
120  */
121 enum {
122         KYBER_TOTAL_LATENCY,
123         KYBER_IO_LATENCY,
124 };
125
126 static const char *kyber_latency_type_names[] = {
127         [KYBER_TOTAL_LATENCY] = "total",
128         [KYBER_IO_LATENCY] = "I/O",
129 };
130
131 /*
132  * Per-cpu latency histograms: total latency and I/O latency for each scheduling
133  * domain except for KYBER_OTHER.
134  */
135 struct kyber_cpu_latency {
136         atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
137 };
138
139 /*
140  * There is a same mapping between ctx & hctx and kcq & khd,
141  * we use request->mq_ctx->index_hw to index the kcq in khd.
142  */
143 struct kyber_ctx_queue {
144         /*
145          * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
146          * Also protect the rqs on rq_list when merge.
147          */
148         spinlock_t lock;
149         struct list_head rq_list[KYBER_NUM_DOMAINS];
150 } ____cacheline_aligned_in_smp;
151
152 struct kyber_queue_data {
153         struct request_queue *q;
154
155         /*
156          * Each scheduling domain has a limited number of in-flight requests
157          * device-wide, limited by these tokens.
158          */
159         struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
160
161         /*
162          * Async request percentage, converted to per-word depth for
163          * sbitmap_get_shallow().
164          */
165         unsigned int async_depth;
166
167         struct kyber_cpu_latency __percpu *cpu_latency;
168
169         /* Timer for stats aggregation and adjusting domain tokens. */
170         struct timer_list timer;
171
172         unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
173
174         unsigned long latency_timeout[KYBER_OTHER];
175
176         int domain_p99[KYBER_OTHER];
177
178         /* Target latencies in nanoseconds. */
179         u64 latency_targets[KYBER_OTHER];
180 };
181
182 struct kyber_hctx_data {
183         spinlock_t lock;
184         struct list_head rqs[KYBER_NUM_DOMAINS];
185         unsigned int cur_domain;
186         unsigned int batching;
187         struct kyber_ctx_queue *kcqs;
188         struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
189         struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
190         struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
191         atomic_t wait_index[KYBER_NUM_DOMAINS];
192 };
193
194 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
195                              void *key);
196
197 static unsigned int kyber_sched_domain(unsigned int op)
198 {
199         switch (op & REQ_OP_MASK) {
200         case REQ_OP_READ:
201                 return KYBER_READ;
202         case REQ_OP_WRITE:
203                 return KYBER_WRITE;
204         case REQ_OP_DISCARD:
205                 return KYBER_DISCARD;
206         default:
207                 return KYBER_OTHER;
208         }
209 }
210
211 static void flush_latency_buckets(struct kyber_queue_data *kqd,
212                                   struct kyber_cpu_latency *cpu_latency,
213                                   unsigned int sched_domain, unsigned int type)
214 {
215         unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
216         atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
217         unsigned int bucket;
218
219         for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
220                 buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
221 }
222
223 /*
224  * Calculate the histogram bucket with the given percentile rank, or -1 if there
225  * aren't enough samples yet.
226  */
227 static int calculate_percentile(struct kyber_queue_data *kqd,
228                                 unsigned int sched_domain, unsigned int type,
229                                 unsigned int percentile)
230 {
231         unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
232         unsigned int bucket, samples = 0, percentile_samples;
233
234         for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
235                 samples += buckets[bucket];
236
237         if (!samples)
238                 return -1;
239
240         /*
241          * We do the calculation once we have 500 samples or one second passes
242          * since the first sample was recorded, whichever comes first.
243          */
244         if (!kqd->latency_timeout[sched_domain])
245                 kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
246         if (samples < 500 &&
247             time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
248                 return -1;
249         }
250         kqd->latency_timeout[sched_domain] = 0;
251
252         percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
253         for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
254                 if (buckets[bucket] >= percentile_samples)
255                         break;
256                 percentile_samples -= buckets[bucket];
257         }
258         memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
259
260         trace_kyber_latency(kqd->q, kyber_domain_names[sched_domain],
261                             kyber_latency_type_names[type], percentile,
262                             bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
263
264         return bucket;
265 }
266
267 static void kyber_resize_domain(struct kyber_queue_data *kqd,
268                                 unsigned int sched_domain, unsigned int depth)
269 {
270         depth = clamp(depth, 1U, kyber_depth[sched_domain]);
271         if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
272                 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
273                 trace_kyber_adjust(kqd->q, kyber_domain_names[sched_domain],
274                                    depth);
275         }
276 }
277
278 static void kyber_timer_fn(struct timer_list *t)
279 {
280         struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
281         unsigned int sched_domain;
282         int cpu;
283         bool bad = false;
284
285         /* Sum all of the per-cpu latency histograms. */
286         for_each_online_cpu(cpu) {
287                 struct kyber_cpu_latency *cpu_latency;
288
289                 cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
290                 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
291                         flush_latency_buckets(kqd, cpu_latency, sched_domain,
292                                               KYBER_TOTAL_LATENCY);
293                         flush_latency_buckets(kqd, cpu_latency, sched_domain,
294                                               KYBER_IO_LATENCY);
295                 }
296         }
297
298         /*
299          * Check if any domains have a high I/O latency, which might indicate
300          * congestion in the device. Note that we use the p90; we don't want to
301          * be too sensitive to outliers here.
302          */
303         for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
304                 int p90;
305
306                 p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
307                                            90);
308                 if (p90 >= KYBER_GOOD_BUCKETS)
309                         bad = true;
310         }
311
312         /*
313          * Adjust the scheduling domain depths. If we determined that there was
314          * congestion, we throttle all domains with good latencies. Either way,
315          * we ease up on throttling domains with bad latencies.
316          */
317         for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
318                 unsigned int orig_depth, depth;
319                 int p99;
320
321                 p99 = calculate_percentile(kqd, sched_domain,
322                                            KYBER_TOTAL_LATENCY, 99);
323                 /*
324                  * This is kind of subtle: different domains will not
325                  * necessarily have enough samples to calculate the latency
326                  * percentiles during the same window, so we have to remember
327                  * the p99 for the next time we observe congestion; once we do,
328                  * we don't want to throttle again until we get more data, so we
329                  * reset it to -1.
330                  */
331                 if (bad) {
332                         if (p99 < 0)
333                                 p99 = kqd->domain_p99[sched_domain];
334                         kqd->domain_p99[sched_domain] = -1;
335                 } else if (p99 >= 0) {
336                         kqd->domain_p99[sched_domain] = p99;
337                 }
338                 if (p99 < 0)
339                         continue;
340
341                 /*
342                  * If this domain has bad latency, throttle less. Otherwise,
343                  * throttle more iff we determined that there is congestion.
344                  *
345                  * The new depth is scaled linearly with the p99 latency vs the
346                  * latency target. E.g., if the p99 is 3/4 of the target, then
347                  * we throttle down to 3/4 of the current depth, and if the p99
348                  * is 2x the target, then we double the depth.
349                  */
350                 if (bad || p99 >= KYBER_GOOD_BUCKETS) {
351                         orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
352                         depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
353                         kyber_resize_domain(kqd, sched_domain, depth);
354                 }
355         }
356 }
357
358 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
359 {
360         struct kyber_queue_data *kqd;
361         int ret = -ENOMEM;
362         int i;
363
364         kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
365         if (!kqd)
366                 goto err;
367
368         kqd->q = q;
369
370         kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
371                                             GFP_KERNEL | __GFP_ZERO);
372         if (!kqd->cpu_latency)
373                 goto err_kqd;
374
375         timer_setup(&kqd->timer, kyber_timer_fn, 0);
376
377         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
378                 WARN_ON(!kyber_depth[i]);
379                 WARN_ON(!kyber_batch_size[i]);
380                 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
381                                               kyber_depth[i], -1, false,
382                                               GFP_KERNEL, q->node);
383                 if (ret) {
384                         while (--i >= 0)
385                                 sbitmap_queue_free(&kqd->domain_tokens[i]);
386                         goto err_buckets;
387                 }
388         }
389
390         for (i = 0; i < KYBER_OTHER; i++) {
391                 kqd->domain_p99[i] = -1;
392                 kqd->latency_targets[i] = kyber_latency_targets[i];
393         }
394
395         return kqd;
396
397 err_buckets:
398         free_percpu(kqd->cpu_latency);
399 err_kqd:
400         kfree(kqd);
401 err:
402         return ERR_PTR(ret);
403 }
404
405 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
406 {
407         struct kyber_queue_data *kqd;
408         struct elevator_queue *eq;
409
410         eq = elevator_alloc(q, e);
411         if (!eq)
412                 return -ENOMEM;
413
414         kqd = kyber_queue_data_alloc(q);
415         if (IS_ERR(kqd)) {
416                 kobject_put(&eq->kobj);
417                 return PTR_ERR(kqd);
418         }
419
420         blk_stat_enable_accounting(q);
421
422         eq->elevator_data = kqd;
423         q->elevator = eq;
424
425         return 0;
426 }
427
428 static void kyber_exit_sched(struct elevator_queue *e)
429 {
430         struct kyber_queue_data *kqd = e->elevator_data;
431         int i;
432
433         del_timer_sync(&kqd->timer);
434
435         for (i = 0; i < KYBER_NUM_DOMAINS; i++)
436                 sbitmap_queue_free(&kqd->domain_tokens[i]);
437         free_percpu(kqd->cpu_latency);
438         kfree(kqd);
439 }
440
441 static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
442 {
443         unsigned int i;
444
445         spin_lock_init(&kcq->lock);
446         for (i = 0; i < KYBER_NUM_DOMAINS; i++)
447                 INIT_LIST_HEAD(&kcq->rq_list[i]);
448 }
449
450 static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx)
451 {
452         struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
453         struct blk_mq_tags *tags = hctx->sched_tags;
454         unsigned int shift = tags->bitmap_tags->sb.shift;
455
456         kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
457
458         sbitmap_queue_min_shallow_depth(tags->bitmap_tags, kqd->async_depth);
459 }
460
461 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
462 {
463         struct kyber_hctx_data *khd;
464         int i;
465
466         khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
467         if (!khd)
468                 return -ENOMEM;
469
470         khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
471                                        sizeof(struct kyber_ctx_queue),
472                                        GFP_KERNEL, hctx->numa_node);
473         if (!khd->kcqs)
474                 goto err_khd;
475
476         for (i = 0; i < hctx->nr_ctx; i++)
477                 kyber_ctx_queue_init(&khd->kcqs[i]);
478
479         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
480                 if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
481                                       ilog2(8), GFP_KERNEL, hctx->numa_node)) {
482                         while (--i >= 0)
483                                 sbitmap_free(&khd->kcq_map[i]);
484                         goto err_kcqs;
485                 }
486         }
487
488         spin_lock_init(&khd->lock);
489
490         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
491                 INIT_LIST_HEAD(&khd->rqs[i]);
492                 khd->domain_wait[i].sbq = NULL;
493                 init_waitqueue_func_entry(&khd->domain_wait[i].wait,
494                                           kyber_domain_wake);
495                 khd->domain_wait[i].wait.private = hctx;
496                 INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
497                 atomic_set(&khd->wait_index[i], 0);
498         }
499
500         khd->cur_domain = 0;
501         khd->batching = 0;
502
503         hctx->sched_data = khd;
504         kyber_depth_updated(hctx);
505
506         return 0;
507
508 err_kcqs:
509         kfree(khd->kcqs);
510 err_khd:
511         kfree(khd);
512         return -ENOMEM;
513 }
514
515 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
516 {
517         struct kyber_hctx_data *khd = hctx->sched_data;
518         int i;
519
520         for (i = 0; i < KYBER_NUM_DOMAINS; i++)
521                 sbitmap_free(&khd->kcq_map[i]);
522         kfree(khd->kcqs);
523         kfree(hctx->sched_data);
524 }
525
526 static int rq_get_domain_token(struct request *rq)
527 {
528         return (long)rq->elv.priv[0];
529 }
530
531 static void rq_set_domain_token(struct request *rq, int token)
532 {
533         rq->elv.priv[0] = (void *)(long)token;
534 }
535
536 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
537                                   struct request *rq)
538 {
539         unsigned int sched_domain;
540         int nr;
541
542         nr = rq_get_domain_token(rq);
543         if (nr != -1) {
544                 sched_domain = kyber_sched_domain(rq->cmd_flags);
545                 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
546                                     rq->mq_ctx->cpu);
547         }
548 }
549
550 static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
551 {
552         /*
553          * We use the scheduler tags as per-hardware queue queueing tokens.
554          * Async requests can be limited at this stage.
555          */
556         if (!op_is_sync(op)) {
557                 struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
558
559                 data->shallow_depth = kqd->async_depth;
560         }
561 }
562
563 static bool kyber_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio,
564                 unsigned int nr_segs)
565 {
566         struct kyber_hctx_data *khd = hctx->sched_data;
567         struct blk_mq_ctx *ctx = blk_mq_get_ctx(hctx->queue);
568         struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
569         unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
570         struct list_head *rq_list = &kcq->rq_list[sched_domain];
571         bool merged;
572
573         spin_lock(&kcq->lock);
574         merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
575         spin_unlock(&kcq->lock);
576
577         return merged;
578 }
579
580 static void kyber_prepare_request(struct request *rq)
581 {
582         rq_set_domain_token(rq, -1);
583 }
584
585 static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
586                                   struct list_head *rq_list, bool at_head)
587 {
588         struct kyber_hctx_data *khd = hctx->sched_data;
589         struct request *rq, *next;
590
591         list_for_each_entry_safe(rq, next, rq_list, queuelist) {
592                 unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
593                 struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
594                 struct list_head *head = &kcq->rq_list[sched_domain];
595
596                 spin_lock(&kcq->lock);
597                 if (at_head)
598                         list_move(&rq->queuelist, head);
599                 else
600                         list_move_tail(&rq->queuelist, head);
601                 sbitmap_set_bit(&khd->kcq_map[sched_domain],
602                                 rq->mq_ctx->index_hw[hctx->type]);
603                 trace_block_rq_insert(rq);
604                 spin_unlock(&kcq->lock);
605         }
606 }
607
608 static void kyber_finish_request(struct request *rq)
609 {
610         struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
611
612         rq_clear_domain_token(kqd, rq);
613 }
614
615 static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
616                                unsigned int sched_domain, unsigned int type,
617                                u64 target, u64 latency)
618 {
619         unsigned int bucket;
620         u64 divisor;
621
622         if (latency > 0) {
623                 divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
624                 bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
625                                KYBER_LATENCY_BUCKETS - 1);
626         } else {
627                 bucket = 0;
628         }
629
630         atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
631 }
632
633 static void kyber_completed_request(struct request *rq, u64 now)
634 {
635         struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
636         struct kyber_cpu_latency *cpu_latency;
637         unsigned int sched_domain;
638         u64 target;
639
640         sched_domain = kyber_sched_domain(rq->cmd_flags);
641         if (sched_domain == KYBER_OTHER)
642                 return;
643
644         cpu_latency = get_cpu_ptr(kqd->cpu_latency);
645         target = kqd->latency_targets[sched_domain];
646         add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
647                            target, now - rq->start_time_ns);
648         add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
649                            now - rq->io_start_time_ns);
650         put_cpu_ptr(kqd->cpu_latency);
651
652         timer_reduce(&kqd->timer, jiffies + HZ / 10);
653 }
654
655 struct flush_kcq_data {
656         struct kyber_hctx_data *khd;
657         unsigned int sched_domain;
658         struct list_head *list;
659 };
660
661 static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
662 {
663         struct flush_kcq_data *flush_data = data;
664         struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
665
666         spin_lock(&kcq->lock);
667         list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
668                               flush_data->list);
669         sbitmap_clear_bit(sb, bitnr);
670         spin_unlock(&kcq->lock);
671
672         return true;
673 }
674
675 static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
676                                   unsigned int sched_domain,
677                                   struct list_head *list)
678 {
679         struct flush_kcq_data data = {
680                 .khd = khd,
681                 .sched_domain = sched_domain,
682                 .list = list,
683         };
684
685         sbitmap_for_each_set(&khd->kcq_map[sched_domain],
686                              flush_busy_kcq, &data);
687 }
688
689 static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
690                              void *key)
691 {
692         struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
693         struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
694
695         sbitmap_del_wait_queue(wait);
696         blk_mq_run_hw_queue(hctx, true);
697         return 1;
698 }
699
700 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
701                                   struct kyber_hctx_data *khd,
702                                   struct blk_mq_hw_ctx *hctx)
703 {
704         unsigned int sched_domain = khd->cur_domain;
705         struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
706         struct sbq_wait *wait = &khd->domain_wait[sched_domain];
707         struct sbq_wait_state *ws;
708         int nr;
709
710         nr = __sbitmap_queue_get(domain_tokens);
711
712         /*
713          * If we failed to get a domain token, make sure the hardware queue is
714          * run when one becomes available. Note that this is serialized on
715          * khd->lock, but we still need to be careful about the waker.
716          */
717         if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
718                 ws = sbq_wait_ptr(domain_tokens,
719                                   &khd->wait_index[sched_domain]);
720                 khd->domain_ws[sched_domain] = ws;
721                 sbitmap_add_wait_queue(domain_tokens, ws, wait);
722
723                 /*
724                  * Try again in case a token was freed before we got on the wait
725                  * queue.
726                  */
727                 nr = __sbitmap_queue_get(domain_tokens);
728         }
729
730         /*
731          * If we got a token while we were on the wait queue, remove ourselves
732          * from the wait queue to ensure that all wake ups make forward
733          * progress. It's possible that the waker already deleted the entry
734          * between the !list_empty_careful() check and us grabbing the lock, but
735          * list_del_init() is okay with that.
736          */
737         if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
738                 ws = khd->domain_ws[sched_domain];
739                 spin_lock_irq(&ws->wait.lock);
740                 sbitmap_del_wait_queue(wait);
741                 spin_unlock_irq(&ws->wait.lock);
742         }
743
744         return nr;
745 }
746
747 static struct request *
748 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
749                           struct kyber_hctx_data *khd,
750                           struct blk_mq_hw_ctx *hctx)
751 {
752         struct list_head *rqs;
753         struct request *rq;
754         int nr;
755
756         rqs = &khd->rqs[khd->cur_domain];
757
758         /*
759          * If we already have a flushed request, then we just need to get a
760          * token for it. Otherwise, if there are pending requests in the kcqs,
761          * flush the kcqs, but only if we can get a token. If not, we should
762          * leave the requests in the kcqs so that they can be merged. Note that
763          * khd->lock serializes the flushes, so if we observed any bit set in
764          * the kcq_map, we will always get a request.
765          */
766         rq = list_first_entry_or_null(rqs, struct request, queuelist);
767         if (rq) {
768                 nr = kyber_get_domain_token(kqd, khd, hctx);
769                 if (nr >= 0) {
770                         khd->batching++;
771                         rq_set_domain_token(rq, nr);
772                         list_del_init(&rq->queuelist);
773                         return rq;
774                 } else {
775                         trace_kyber_throttled(kqd->q,
776                                               kyber_domain_names[khd->cur_domain]);
777                 }
778         } else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
779                 nr = kyber_get_domain_token(kqd, khd, hctx);
780                 if (nr >= 0) {
781                         kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
782                         rq = list_first_entry(rqs, struct request, queuelist);
783                         khd->batching++;
784                         rq_set_domain_token(rq, nr);
785                         list_del_init(&rq->queuelist);
786                         return rq;
787                 } else {
788                         trace_kyber_throttled(kqd->q,
789                                               kyber_domain_names[khd->cur_domain]);
790                 }
791         }
792
793         /* There were either no pending requests or no tokens. */
794         return NULL;
795 }
796
797 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
798 {
799         struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
800         struct kyber_hctx_data *khd = hctx->sched_data;
801         struct request *rq;
802         int i;
803
804         spin_lock(&khd->lock);
805
806         /*
807          * First, if we are still entitled to batch, try to dispatch a request
808          * from the batch.
809          */
810         if (khd->batching < kyber_batch_size[khd->cur_domain]) {
811                 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
812                 if (rq)
813                         goto out;
814         }
815
816         /*
817          * Either,
818          * 1. We were no longer entitled to a batch.
819          * 2. The domain we were batching didn't have any requests.
820          * 3. The domain we were batching was out of tokens.
821          *
822          * Start another batch. Note that this wraps back around to the original
823          * domain if no other domains have requests or tokens.
824          */
825         khd->batching = 0;
826         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
827                 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
828                         khd->cur_domain = 0;
829                 else
830                         khd->cur_domain++;
831
832                 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
833                 if (rq)
834                         goto out;
835         }
836
837         rq = NULL;
838 out:
839         spin_unlock(&khd->lock);
840         return rq;
841 }
842
843 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
844 {
845         struct kyber_hctx_data *khd = hctx->sched_data;
846         int i;
847
848         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
849                 if (!list_empty_careful(&khd->rqs[i]) ||
850                     sbitmap_any_bit_set(&khd->kcq_map[i]))
851                         return true;
852         }
853
854         return false;
855 }
856
857 #define KYBER_LAT_SHOW_STORE(domain, name)                              \
858 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,        \
859                                        char *page)                      \
860 {                                                                       \
861         struct kyber_queue_data *kqd = e->elevator_data;                \
862                                                                         \
863         return sprintf(page, "%llu\n", kqd->latency_targets[domain]);   \
864 }                                                                       \
865                                                                         \
866 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,       \
867                                         const char *page, size_t count) \
868 {                                                                       \
869         struct kyber_queue_data *kqd = e->elevator_data;                \
870         unsigned long long nsec;                                        \
871         int ret;                                                        \
872                                                                         \
873         ret = kstrtoull(page, 10, &nsec);                               \
874         if (ret)                                                        \
875                 return ret;                                             \
876                                                                         \
877         kqd->latency_targets[domain] = nsec;                            \
878                                                                         \
879         return count;                                                   \
880 }
881 KYBER_LAT_SHOW_STORE(KYBER_READ, read);
882 KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
883 #undef KYBER_LAT_SHOW_STORE
884
885 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
886 static struct elv_fs_entry kyber_sched_attrs[] = {
887         KYBER_LAT_ATTR(read),
888         KYBER_LAT_ATTR(write),
889         __ATTR_NULL
890 };
891 #undef KYBER_LAT_ATTR
892
893 #ifdef CONFIG_BLK_DEBUG_FS
894 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)                        \
895 static int kyber_##name##_tokens_show(void *data, struct seq_file *m)   \
896 {                                                                       \
897         struct request_queue *q = data;                                 \
898         struct kyber_queue_data *kqd = q->elevator->elevator_data;      \
899                                                                         \
900         sbitmap_queue_show(&kqd->domain_tokens[domain], m);             \
901         return 0;                                                       \
902 }                                                                       \
903                                                                         \
904 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)  \
905         __acquires(&khd->lock)                                          \
906 {                                                                       \
907         struct blk_mq_hw_ctx *hctx = m->private;                        \
908         struct kyber_hctx_data *khd = hctx->sched_data;                 \
909                                                                         \
910         spin_lock(&khd->lock);                                          \
911         return seq_list_start(&khd->rqs[domain], *pos);                 \
912 }                                                                       \
913                                                                         \
914 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,       \
915                                      loff_t *pos)                       \
916 {                                                                       \
917         struct blk_mq_hw_ctx *hctx = m->private;                        \
918         struct kyber_hctx_data *khd = hctx->sched_data;                 \
919                                                                         \
920         return seq_list_next(v, &khd->rqs[domain], pos);                \
921 }                                                                       \
922                                                                         \
923 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)        \
924         __releases(&khd->lock)                                          \
925 {                                                                       \
926         struct blk_mq_hw_ctx *hctx = m->private;                        \
927         struct kyber_hctx_data *khd = hctx->sched_data;                 \
928                                                                         \
929         spin_unlock(&khd->lock);                                        \
930 }                                                                       \
931                                                                         \
932 static const struct seq_operations kyber_##name##_rqs_seq_ops = {       \
933         .start  = kyber_##name##_rqs_start,                             \
934         .next   = kyber_##name##_rqs_next,                              \
935         .stop   = kyber_##name##_rqs_stop,                              \
936         .show   = blk_mq_debugfs_rq_show,                               \
937 };                                                                      \
938                                                                         \
939 static int kyber_##name##_waiting_show(void *data, struct seq_file *m)  \
940 {                                                                       \
941         struct blk_mq_hw_ctx *hctx = data;                              \
942         struct kyber_hctx_data *khd = hctx->sched_data;                 \
943         wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;      \
944                                                                         \
945         seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));       \
946         return 0;                                                       \
947 }
948 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
949 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
950 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
951 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
952 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
953
954 static int kyber_async_depth_show(void *data, struct seq_file *m)
955 {
956         struct request_queue *q = data;
957         struct kyber_queue_data *kqd = q->elevator->elevator_data;
958
959         seq_printf(m, "%u\n", kqd->async_depth);
960         return 0;
961 }
962
963 static int kyber_cur_domain_show(void *data, struct seq_file *m)
964 {
965         struct blk_mq_hw_ctx *hctx = data;
966         struct kyber_hctx_data *khd = hctx->sched_data;
967
968         seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
969         return 0;
970 }
971
972 static int kyber_batching_show(void *data, struct seq_file *m)
973 {
974         struct blk_mq_hw_ctx *hctx = data;
975         struct kyber_hctx_data *khd = hctx->sched_data;
976
977         seq_printf(m, "%u\n", khd->batching);
978         return 0;
979 }
980
981 #define KYBER_QUEUE_DOMAIN_ATTRS(name)  \
982         {#name "_tokens", 0400, kyber_##name##_tokens_show}
983 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
984         KYBER_QUEUE_DOMAIN_ATTRS(read),
985         KYBER_QUEUE_DOMAIN_ATTRS(write),
986         KYBER_QUEUE_DOMAIN_ATTRS(discard),
987         KYBER_QUEUE_DOMAIN_ATTRS(other),
988         {"async_depth", 0400, kyber_async_depth_show},
989         {},
990 };
991 #undef KYBER_QUEUE_DOMAIN_ATTRS
992
993 #define KYBER_HCTX_DOMAIN_ATTRS(name)                                   \
994         {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},   \
995         {#name "_waiting", 0400, kyber_##name##_waiting_show}
996 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
997         KYBER_HCTX_DOMAIN_ATTRS(read),
998         KYBER_HCTX_DOMAIN_ATTRS(write),
999         KYBER_HCTX_DOMAIN_ATTRS(discard),
1000         KYBER_HCTX_DOMAIN_ATTRS(other),
1001         {"cur_domain", 0400, kyber_cur_domain_show},
1002         {"batching", 0400, kyber_batching_show},
1003         {},
1004 };
1005 #undef KYBER_HCTX_DOMAIN_ATTRS
1006 #endif
1007
1008 static struct elevator_type kyber_sched = {
1009         .ops = {
1010                 .init_sched = kyber_init_sched,
1011                 .exit_sched = kyber_exit_sched,
1012                 .init_hctx = kyber_init_hctx,
1013                 .exit_hctx = kyber_exit_hctx,
1014                 .limit_depth = kyber_limit_depth,
1015                 .bio_merge = kyber_bio_merge,
1016                 .prepare_request = kyber_prepare_request,
1017                 .insert_requests = kyber_insert_requests,
1018                 .finish_request = kyber_finish_request,
1019                 .requeue_request = kyber_finish_request,
1020                 .completed_request = kyber_completed_request,
1021                 .dispatch_request = kyber_dispatch_request,
1022                 .has_work = kyber_has_work,
1023                 .depth_updated = kyber_depth_updated,
1024         },
1025 #ifdef CONFIG_BLK_DEBUG_FS
1026         .queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1027         .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1028 #endif
1029         .elevator_attrs = kyber_sched_attrs,
1030         .elevator_name = "kyber",
1031         .elevator_features = ELEVATOR_F_MQ_AWARE,
1032         .elevator_owner = THIS_MODULE,
1033 };
1034
1035 static int __init kyber_init(void)
1036 {
1037         return elv_register(&kyber_sched);
1038 }
1039
1040 static void __exit kyber_exit(void)
1041 {
1042         elv_unregister(&kyber_sched);
1043 }
1044
1045 module_init(kyber_init);
1046 module_exit(kyber_exit);
1047
1048 MODULE_AUTHOR("Omar Sandoval");
1049 MODULE_LICENSE("GPL");
1050 MODULE_DESCRIPTION("Kyber I/O scheduler");