Merge branch 'for-linus' into for-next
[linux-2.6-microblaze.git] / block / blk-throttle.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include "blk.h"
14 #include "blk-cgroup-rwstat.h"
15 #include "blk-stat.h"
16 #include "blk-throttle.h"
17
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
20
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
23
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
28 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
29 #define MIN_THROTL_BPS (320 * 1024)
30 #define MIN_THROTL_IOPS (10)
31 #define DFL_LATENCY_TARGET (-1L)
32 #define DFL_IDLE_THRESHOLD (0)
33 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34 #define LATENCY_FILTERED_SSD (0)
35 /*
36  * For HD, very small latency comes from sequential IO. Such IO is helpless to
37  * help determine if its IO is impacted by others, hence we ignore the IO
38  */
39 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
40
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct *kthrotld_workqueue;
43
44 #define rb_entry_tg(node)       rb_entry((node), struct throtl_grp, rb_node)
45
46 /* We measure latency for request size from <= 4k to >= 1M */
47 #define LATENCY_BUCKET_SIZE 9
48
49 struct latency_bucket {
50         unsigned long total_latency; /* ns / 1024 */
51         int samples;
52 };
53
54 struct avg_latency_bucket {
55         unsigned long latency; /* ns / 1024 */
56         bool valid;
57 };
58
59 struct throtl_data
60 {
61         /* service tree for active throtl groups */
62         struct throtl_service_queue service_queue;
63
64         struct request_queue *queue;
65
66         /* Total Number of queued bios on READ and WRITE lists */
67         unsigned int nr_queued[2];
68
69         unsigned int throtl_slice;
70
71         /* Work for dispatching throttled bios */
72         struct work_struct dispatch_work;
73         unsigned int limit_index;
74         bool limit_valid[LIMIT_CNT];
75
76         unsigned long low_upgrade_time;
77         unsigned long low_downgrade_time;
78
79         unsigned int scale;
80
81         struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
82         struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
83         struct latency_bucket __percpu *latency_buckets[2];
84         unsigned long last_calculate_time;
85         unsigned long filtered_latency;
86
87         bool track_bio_latency;
88 };
89
90 static void throtl_pending_timer_fn(struct timer_list *t);
91
92 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
93 {
94         return pd_to_blkg(&tg->pd);
95 }
96
97 /**
98  * sq_to_tg - return the throl_grp the specified service queue belongs to
99  * @sq: the throtl_service_queue of interest
100  *
101  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
102  * embedded in throtl_data, %NULL is returned.
103  */
104 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
105 {
106         if (sq && sq->parent_sq)
107                 return container_of(sq, struct throtl_grp, service_queue);
108         else
109                 return NULL;
110 }
111
112 /**
113  * sq_to_td - return throtl_data the specified service queue belongs to
114  * @sq: the throtl_service_queue of interest
115  *
116  * A service_queue can be embedded in either a throtl_grp or throtl_data.
117  * Determine the associated throtl_data accordingly and return it.
118  */
119 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
120 {
121         struct throtl_grp *tg = sq_to_tg(sq);
122
123         if (tg)
124                 return tg->td;
125         else
126                 return container_of(sq, struct throtl_data, service_queue);
127 }
128
129 /*
130  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
131  * make the IO dispatch more smooth.
132  * Scale up: linearly scale up according to lapsed time since upgrade. For
133  *           every throtl_slice, the limit scales up 1/2 .low limit till the
134  *           limit hits .max limit
135  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
136  */
137 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
138 {
139         /* arbitrary value to avoid too big scale */
140         if (td->scale < 4096 && time_after_eq(jiffies,
141             td->low_upgrade_time + td->scale * td->throtl_slice))
142                 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
143
144         return low + (low >> 1) * td->scale;
145 }
146
147 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
148 {
149         struct blkcg_gq *blkg = tg_to_blkg(tg);
150         struct throtl_data *td;
151         uint64_t ret;
152
153         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
154                 return U64_MAX;
155
156         td = tg->td;
157         ret = tg->bps[rw][td->limit_index];
158         if (ret == 0 && td->limit_index == LIMIT_LOW) {
159                 /* intermediate node or iops isn't 0 */
160                 if (!list_empty(&blkg->blkcg->css.children) ||
161                     tg->iops[rw][td->limit_index])
162                         return U64_MAX;
163                 else
164                         return MIN_THROTL_BPS;
165         }
166
167         if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
168             tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
169                 uint64_t adjusted;
170
171                 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
172                 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
173         }
174         return ret;
175 }
176
177 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
178 {
179         struct blkcg_gq *blkg = tg_to_blkg(tg);
180         struct throtl_data *td;
181         unsigned int ret;
182
183         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
184                 return UINT_MAX;
185
186         td = tg->td;
187         ret = tg->iops[rw][td->limit_index];
188         if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
189                 /* intermediate node or bps isn't 0 */
190                 if (!list_empty(&blkg->blkcg->css.children) ||
191                     tg->bps[rw][td->limit_index])
192                         return UINT_MAX;
193                 else
194                         return MIN_THROTL_IOPS;
195         }
196
197         if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
198             tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
199                 uint64_t adjusted;
200
201                 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
202                 if (adjusted > UINT_MAX)
203                         adjusted = UINT_MAX;
204                 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
205         }
206         return ret;
207 }
208
209 #define request_bucket_index(sectors) \
210         clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
211
212 /**
213  * throtl_log - log debug message via blktrace
214  * @sq: the service_queue being reported
215  * @fmt: printf format string
216  * @args: printf args
217  *
218  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
219  * throtl_grp; otherwise, just "throtl".
220  */
221 #define throtl_log(sq, fmt, args...)    do {                            \
222         struct throtl_grp *__tg = sq_to_tg((sq));                       \
223         struct throtl_data *__td = sq_to_td((sq));                      \
224                                                                         \
225         (void)__td;                                                     \
226         if (likely(!blk_trace_note_message_enabled(__td->queue)))       \
227                 break;                                                  \
228         if ((__tg)) {                                                   \
229                 blk_add_cgroup_trace_msg(__td->queue,                   \
230                         &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
231         } else {                                                        \
232                 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);  \
233         }                                                               \
234 } while (0)
235
236 static inline unsigned int throtl_bio_data_size(struct bio *bio)
237 {
238         /* assume it's one sector */
239         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
240                 return 512;
241         return bio->bi_iter.bi_size;
242 }
243
244 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
245 {
246         INIT_LIST_HEAD(&qn->node);
247         bio_list_init(&qn->bios);
248         qn->tg = tg;
249 }
250
251 /**
252  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
253  * @bio: bio being added
254  * @qn: qnode to add bio to
255  * @queued: the service_queue->queued[] list @qn belongs to
256  *
257  * Add @bio to @qn and put @qn on @queued if it's not already on.
258  * @qn->tg's reference count is bumped when @qn is activated.  See the
259  * comment on top of throtl_qnode definition for details.
260  */
261 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
262                                  struct list_head *queued)
263 {
264         bio_list_add(&qn->bios, bio);
265         if (list_empty(&qn->node)) {
266                 list_add_tail(&qn->node, queued);
267                 blkg_get(tg_to_blkg(qn->tg));
268         }
269 }
270
271 /**
272  * throtl_peek_queued - peek the first bio on a qnode list
273  * @queued: the qnode list to peek
274  */
275 static struct bio *throtl_peek_queued(struct list_head *queued)
276 {
277         struct throtl_qnode *qn;
278         struct bio *bio;
279
280         if (list_empty(queued))
281                 return NULL;
282
283         qn = list_first_entry(queued, struct throtl_qnode, node);
284         bio = bio_list_peek(&qn->bios);
285         WARN_ON_ONCE(!bio);
286         return bio;
287 }
288
289 /**
290  * throtl_pop_queued - pop the first bio form a qnode list
291  * @queued: the qnode list to pop a bio from
292  * @tg_to_put: optional out argument for throtl_grp to put
293  *
294  * Pop the first bio from the qnode list @queued.  After popping, the first
295  * qnode is removed from @queued if empty or moved to the end of @queued so
296  * that the popping order is round-robin.
297  *
298  * When the first qnode is removed, its associated throtl_grp should be put
299  * too.  If @tg_to_put is NULL, this function automatically puts it;
300  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
301  * responsible for putting it.
302  */
303 static struct bio *throtl_pop_queued(struct list_head *queued,
304                                      struct throtl_grp **tg_to_put)
305 {
306         struct throtl_qnode *qn;
307         struct bio *bio;
308
309         if (list_empty(queued))
310                 return NULL;
311
312         qn = list_first_entry(queued, struct throtl_qnode, node);
313         bio = bio_list_pop(&qn->bios);
314         WARN_ON_ONCE(!bio);
315
316         if (bio_list_empty(&qn->bios)) {
317                 list_del_init(&qn->node);
318                 if (tg_to_put)
319                         *tg_to_put = qn->tg;
320                 else
321                         blkg_put(tg_to_blkg(qn->tg));
322         } else {
323                 list_move_tail(&qn->node, queued);
324         }
325
326         return bio;
327 }
328
329 /* init a service_queue, assumes the caller zeroed it */
330 static void throtl_service_queue_init(struct throtl_service_queue *sq)
331 {
332         INIT_LIST_HEAD(&sq->queued[0]);
333         INIT_LIST_HEAD(&sq->queued[1]);
334         sq->pending_tree = RB_ROOT_CACHED;
335         timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
336 }
337
338 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
339                                                 struct request_queue *q,
340                                                 struct blkcg *blkcg)
341 {
342         struct throtl_grp *tg;
343         int rw;
344
345         tg = kzalloc_node(sizeof(*tg), gfp, q->node);
346         if (!tg)
347                 return NULL;
348
349         if (blkg_rwstat_init(&tg->stat_bytes, gfp))
350                 goto err_free_tg;
351
352         if (blkg_rwstat_init(&tg->stat_ios, gfp))
353                 goto err_exit_stat_bytes;
354
355         throtl_service_queue_init(&tg->service_queue);
356
357         for (rw = READ; rw <= WRITE; rw++) {
358                 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
359                 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
360         }
361
362         RB_CLEAR_NODE(&tg->rb_node);
363         tg->bps[READ][LIMIT_MAX] = U64_MAX;
364         tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
365         tg->iops[READ][LIMIT_MAX] = UINT_MAX;
366         tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
367         tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
368         tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
369         tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
370         tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
371         /* LIMIT_LOW will have default value 0 */
372
373         tg->latency_target = DFL_LATENCY_TARGET;
374         tg->latency_target_conf = DFL_LATENCY_TARGET;
375         tg->idletime_threshold = DFL_IDLE_THRESHOLD;
376         tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
377
378         return &tg->pd;
379
380 err_exit_stat_bytes:
381         blkg_rwstat_exit(&tg->stat_bytes);
382 err_free_tg:
383         kfree(tg);
384         return NULL;
385 }
386
387 static void throtl_pd_init(struct blkg_policy_data *pd)
388 {
389         struct throtl_grp *tg = pd_to_tg(pd);
390         struct blkcg_gq *blkg = tg_to_blkg(tg);
391         struct throtl_data *td = blkg->q->td;
392         struct throtl_service_queue *sq = &tg->service_queue;
393
394         /*
395          * If on the default hierarchy, we switch to properly hierarchical
396          * behavior where limits on a given throtl_grp are applied to the
397          * whole subtree rather than just the group itself.  e.g. If 16M
398          * read_bps limit is set on the root group, the whole system can't
399          * exceed 16M for the device.
400          *
401          * If not on the default hierarchy, the broken flat hierarchy
402          * behavior is retained where all throtl_grps are treated as if
403          * they're all separate root groups right below throtl_data.
404          * Limits of a group don't interact with limits of other groups
405          * regardless of the position of the group in the hierarchy.
406          */
407         sq->parent_sq = &td->service_queue;
408         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
409                 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
410         tg->td = td;
411 }
412
413 /*
414  * Set has_rules[] if @tg or any of its parents have limits configured.
415  * This doesn't require walking up to the top of the hierarchy as the
416  * parent's has_rules[] is guaranteed to be correct.
417  */
418 static void tg_update_has_rules(struct throtl_grp *tg)
419 {
420         struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
421         struct throtl_data *td = tg->td;
422         int rw;
423         int has_iops_limit = 0;
424
425         for (rw = READ; rw <= WRITE; rw++) {
426                 unsigned int iops_limit = tg_iops_limit(tg, rw);
427
428                 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
429                         (td->limit_valid[td->limit_index] &&
430                          (tg_bps_limit(tg, rw) != U64_MAX ||
431                           iops_limit != UINT_MAX));
432
433                 if (iops_limit != UINT_MAX)
434                         has_iops_limit = 1;
435         }
436
437         if (has_iops_limit)
438                 tg->flags |= THROTL_TG_HAS_IOPS_LIMIT;
439         else
440                 tg->flags &= ~THROTL_TG_HAS_IOPS_LIMIT;
441 }
442
443 static void throtl_pd_online(struct blkg_policy_data *pd)
444 {
445         struct throtl_grp *tg = pd_to_tg(pd);
446         /*
447          * We don't want new groups to escape the limits of its ancestors.
448          * Update has_rules[] after a new group is brought online.
449          */
450         tg_update_has_rules(tg);
451 }
452
453 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
454 static void blk_throtl_update_limit_valid(struct throtl_data *td)
455 {
456         struct cgroup_subsys_state *pos_css;
457         struct blkcg_gq *blkg;
458         bool low_valid = false;
459
460         rcu_read_lock();
461         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
462                 struct throtl_grp *tg = blkg_to_tg(blkg);
463
464                 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
465                     tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
466                         low_valid = true;
467                         break;
468                 }
469         }
470         rcu_read_unlock();
471
472         td->limit_valid[LIMIT_LOW] = low_valid;
473 }
474 #else
475 static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
476 {
477 }
478 #endif
479
480 static void throtl_upgrade_state(struct throtl_data *td);
481 static void throtl_pd_offline(struct blkg_policy_data *pd)
482 {
483         struct throtl_grp *tg = pd_to_tg(pd);
484
485         tg->bps[READ][LIMIT_LOW] = 0;
486         tg->bps[WRITE][LIMIT_LOW] = 0;
487         tg->iops[READ][LIMIT_LOW] = 0;
488         tg->iops[WRITE][LIMIT_LOW] = 0;
489
490         blk_throtl_update_limit_valid(tg->td);
491
492         if (!tg->td->limit_valid[tg->td->limit_index])
493                 throtl_upgrade_state(tg->td);
494 }
495
496 static void throtl_pd_free(struct blkg_policy_data *pd)
497 {
498         struct throtl_grp *tg = pd_to_tg(pd);
499
500         del_timer_sync(&tg->service_queue.pending_timer);
501         blkg_rwstat_exit(&tg->stat_bytes);
502         blkg_rwstat_exit(&tg->stat_ios);
503         kfree(tg);
504 }
505
506 static struct throtl_grp *
507 throtl_rb_first(struct throtl_service_queue *parent_sq)
508 {
509         struct rb_node *n;
510
511         n = rb_first_cached(&parent_sq->pending_tree);
512         WARN_ON_ONCE(!n);
513         if (!n)
514                 return NULL;
515         return rb_entry_tg(n);
516 }
517
518 static void throtl_rb_erase(struct rb_node *n,
519                             struct throtl_service_queue *parent_sq)
520 {
521         rb_erase_cached(n, &parent_sq->pending_tree);
522         RB_CLEAR_NODE(n);
523         --parent_sq->nr_pending;
524 }
525
526 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
527 {
528         struct throtl_grp *tg;
529
530         tg = throtl_rb_first(parent_sq);
531         if (!tg)
532                 return;
533
534         parent_sq->first_pending_disptime = tg->disptime;
535 }
536
537 static void tg_service_queue_add(struct throtl_grp *tg)
538 {
539         struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
540         struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
541         struct rb_node *parent = NULL;
542         struct throtl_grp *__tg;
543         unsigned long key = tg->disptime;
544         bool leftmost = true;
545
546         while (*node != NULL) {
547                 parent = *node;
548                 __tg = rb_entry_tg(parent);
549
550                 if (time_before(key, __tg->disptime))
551                         node = &parent->rb_left;
552                 else {
553                         node = &parent->rb_right;
554                         leftmost = false;
555                 }
556         }
557
558         rb_link_node(&tg->rb_node, parent, node);
559         rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
560                                leftmost);
561 }
562
563 static void throtl_enqueue_tg(struct throtl_grp *tg)
564 {
565         if (!(tg->flags & THROTL_TG_PENDING)) {
566                 tg_service_queue_add(tg);
567                 tg->flags |= THROTL_TG_PENDING;
568                 tg->service_queue.parent_sq->nr_pending++;
569         }
570 }
571
572 static void throtl_dequeue_tg(struct throtl_grp *tg)
573 {
574         if (tg->flags & THROTL_TG_PENDING) {
575                 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
576                 tg->flags &= ~THROTL_TG_PENDING;
577         }
578 }
579
580 /* Call with queue lock held */
581 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
582                                           unsigned long expires)
583 {
584         unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
585
586         /*
587          * Since we are adjusting the throttle limit dynamically, the sleep
588          * time calculated according to previous limit might be invalid. It's
589          * possible the cgroup sleep time is very long and no other cgroups
590          * have IO running so notify the limit changes. Make sure the cgroup
591          * doesn't sleep too long to avoid the missed notification.
592          */
593         if (time_after(expires, max_expire))
594                 expires = max_expire;
595         mod_timer(&sq->pending_timer, expires);
596         throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
597                    expires - jiffies, jiffies);
598 }
599
600 /**
601  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
602  * @sq: the service_queue to schedule dispatch for
603  * @force: force scheduling
604  *
605  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
606  * dispatch time of the first pending child.  Returns %true if either timer
607  * is armed or there's no pending child left.  %false if the current
608  * dispatch window is still open and the caller should continue
609  * dispatching.
610  *
611  * If @force is %true, the dispatch timer is always scheduled and this
612  * function is guaranteed to return %true.  This is to be used when the
613  * caller can't dispatch itself and needs to invoke pending_timer
614  * unconditionally.  Note that forced scheduling is likely to induce short
615  * delay before dispatch starts even if @sq->first_pending_disptime is not
616  * in the future and thus shouldn't be used in hot paths.
617  */
618 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
619                                           bool force)
620 {
621         /* any pending children left? */
622         if (!sq->nr_pending)
623                 return true;
624
625         update_min_dispatch_time(sq);
626
627         /* is the next dispatch time in the future? */
628         if (force || time_after(sq->first_pending_disptime, jiffies)) {
629                 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
630                 return true;
631         }
632
633         /* tell the caller to continue dispatching */
634         return false;
635 }
636
637 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
638                 bool rw, unsigned long start)
639 {
640         tg->bytes_disp[rw] = 0;
641         tg->io_disp[rw] = 0;
642
643         /*
644          * Previous slice has expired. We must have trimmed it after last
645          * bio dispatch. That means since start of last slice, we never used
646          * that bandwidth. Do try to make use of that bandwidth while giving
647          * credit.
648          */
649         if (time_after_eq(start, tg->slice_start[rw]))
650                 tg->slice_start[rw] = start;
651
652         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
653         throtl_log(&tg->service_queue,
654                    "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
655                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
656                    tg->slice_end[rw], jiffies);
657 }
658
659 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
660 {
661         tg->bytes_disp[rw] = 0;
662         tg->io_disp[rw] = 0;
663         tg->slice_start[rw] = jiffies;
664         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
665
666         throtl_log(&tg->service_queue,
667                    "[%c] new slice start=%lu end=%lu jiffies=%lu",
668                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
669                    tg->slice_end[rw], jiffies);
670 }
671
672 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
673                                         unsigned long jiffy_end)
674 {
675         tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
676 }
677
678 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
679                                        unsigned long jiffy_end)
680 {
681         throtl_set_slice_end(tg, rw, jiffy_end);
682         throtl_log(&tg->service_queue,
683                    "[%c] extend slice start=%lu end=%lu jiffies=%lu",
684                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
685                    tg->slice_end[rw], jiffies);
686 }
687
688 /* Determine if previously allocated or extended slice is complete or not */
689 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
690 {
691         if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
692                 return false;
693
694         return true;
695 }
696
697 /* Trim the used slices and adjust slice start accordingly */
698 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
699 {
700         unsigned long nr_slices, time_elapsed, io_trim;
701         u64 bytes_trim, tmp;
702
703         BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
704
705         /*
706          * If bps are unlimited (-1), then time slice don't get
707          * renewed. Don't try to trim the slice if slice is used. A new
708          * slice will start when appropriate.
709          */
710         if (throtl_slice_used(tg, rw))
711                 return;
712
713         /*
714          * A bio has been dispatched. Also adjust slice_end. It might happen
715          * that initially cgroup limit was very low resulting in high
716          * slice_end, but later limit was bumped up and bio was dispatched
717          * sooner, then we need to reduce slice_end. A high bogus slice_end
718          * is bad because it does not allow new slice to start.
719          */
720
721         throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
722
723         time_elapsed = jiffies - tg->slice_start[rw];
724
725         nr_slices = time_elapsed / tg->td->throtl_slice;
726
727         if (!nr_slices)
728                 return;
729         tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
730         do_div(tmp, HZ);
731         bytes_trim = tmp;
732
733         io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
734                 HZ;
735
736         if (!bytes_trim && !io_trim)
737                 return;
738
739         if (tg->bytes_disp[rw] >= bytes_trim)
740                 tg->bytes_disp[rw] -= bytes_trim;
741         else
742                 tg->bytes_disp[rw] = 0;
743
744         if (tg->io_disp[rw] >= io_trim)
745                 tg->io_disp[rw] -= io_trim;
746         else
747                 tg->io_disp[rw] = 0;
748
749         tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
750
751         throtl_log(&tg->service_queue,
752                    "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
753                    rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
754                    tg->slice_start[rw], tg->slice_end[rw], jiffies);
755 }
756
757 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
758                                   u32 iops_limit, unsigned long *wait)
759 {
760         bool rw = bio_data_dir(bio);
761         unsigned int io_allowed;
762         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
763         u64 tmp;
764
765         if (iops_limit == UINT_MAX) {
766                 if (wait)
767                         *wait = 0;
768                 return true;
769         }
770
771         jiffy_elapsed = jiffies - tg->slice_start[rw];
772
773         /* Round up to the next throttle slice, wait time must be nonzero */
774         jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
775
776         /*
777          * jiffy_elapsed_rnd should not be a big value as minimum iops can be
778          * 1 then at max jiffy elapsed should be equivalent of 1 second as we
779          * will allow dispatch after 1 second and after that slice should
780          * have been trimmed.
781          */
782
783         tmp = (u64)iops_limit * jiffy_elapsed_rnd;
784         do_div(tmp, HZ);
785
786         if (tmp > UINT_MAX)
787                 io_allowed = UINT_MAX;
788         else
789                 io_allowed = tmp;
790
791         if (tg->io_disp[rw] + 1 <= io_allowed) {
792                 if (wait)
793                         *wait = 0;
794                 return true;
795         }
796
797         /* Calc approx time to dispatch */
798         jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
799
800         if (wait)
801                 *wait = jiffy_wait;
802         return false;
803 }
804
805 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
806                                  u64 bps_limit, unsigned long *wait)
807 {
808         bool rw = bio_data_dir(bio);
809         u64 bytes_allowed, extra_bytes, tmp;
810         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
811         unsigned int bio_size = throtl_bio_data_size(bio);
812
813         /* no need to throttle if this bio's bytes have been accounted */
814         if (bps_limit == U64_MAX || bio_flagged(bio, BIO_THROTTLED)) {
815                 if (wait)
816                         *wait = 0;
817                 return true;
818         }
819
820         jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
821
822         /* Slice has just started. Consider one slice interval */
823         if (!jiffy_elapsed)
824                 jiffy_elapsed_rnd = tg->td->throtl_slice;
825
826         jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
827
828         tmp = bps_limit * jiffy_elapsed_rnd;
829         do_div(tmp, HZ);
830         bytes_allowed = tmp;
831
832         if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
833                 if (wait)
834                         *wait = 0;
835                 return true;
836         }
837
838         /* Calc approx time to dispatch */
839         extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
840         jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
841
842         if (!jiffy_wait)
843                 jiffy_wait = 1;
844
845         /*
846          * This wait time is without taking into consideration the rounding
847          * up we did. Add that time also.
848          */
849         jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
850         if (wait)
851                 *wait = jiffy_wait;
852         return false;
853 }
854
855 /*
856  * Returns whether one can dispatch a bio or not. Also returns approx number
857  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
858  */
859 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
860                             unsigned long *wait)
861 {
862         bool rw = bio_data_dir(bio);
863         unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
864         u64 bps_limit = tg_bps_limit(tg, rw);
865         u32 iops_limit = tg_iops_limit(tg, rw);
866
867         /*
868          * Currently whole state machine of group depends on first bio
869          * queued in the group bio list. So one should not be calling
870          * this function with a different bio if there are other bios
871          * queued.
872          */
873         BUG_ON(tg->service_queue.nr_queued[rw] &&
874                bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
875
876         /* If tg->bps = -1, then BW is unlimited */
877         if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
878             tg->flags & THROTL_TG_CANCELING) {
879                 if (wait)
880                         *wait = 0;
881                 return true;
882         }
883
884         /*
885          * If previous slice expired, start a new one otherwise renew/extend
886          * existing slice to make sure it is at least throtl_slice interval
887          * long since now. New slice is started only for empty throttle group.
888          * If there is queued bio, that means there should be an active
889          * slice and it should be extended instead.
890          */
891         if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
892                 throtl_start_new_slice(tg, rw);
893         else {
894                 if (time_before(tg->slice_end[rw],
895                     jiffies + tg->td->throtl_slice))
896                         throtl_extend_slice(tg, rw,
897                                 jiffies + tg->td->throtl_slice);
898         }
899
900         if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
901             tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
902                 if (wait)
903                         *wait = 0;
904                 return true;
905         }
906
907         max_wait = max(bps_wait, iops_wait);
908
909         if (wait)
910                 *wait = max_wait;
911
912         if (time_before(tg->slice_end[rw], jiffies + max_wait))
913                 throtl_extend_slice(tg, rw, jiffies + max_wait);
914
915         return false;
916 }
917
918 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
919 {
920         bool rw = bio_data_dir(bio);
921         unsigned int bio_size = throtl_bio_data_size(bio);
922
923         /* Charge the bio to the group */
924         if (!bio_flagged(bio, BIO_THROTTLED)) {
925                 tg->bytes_disp[rw] += bio_size;
926                 tg->last_bytes_disp[rw] += bio_size;
927         }
928
929         tg->io_disp[rw]++;
930         tg->last_io_disp[rw]++;
931
932         /*
933          * BIO_THROTTLED is used to prevent the same bio to be throttled
934          * more than once as a throttled bio will go through blk-throtl the
935          * second time when it eventually gets issued.  Set it when a bio
936          * is being charged to a tg.
937          */
938         if (!bio_flagged(bio, BIO_THROTTLED))
939                 bio_set_flag(bio, BIO_THROTTLED);
940 }
941
942 /**
943  * throtl_add_bio_tg - add a bio to the specified throtl_grp
944  * @bio: bio to add
945  * @qn: qnode to use
946  * @tg: the target throtl_grp
947  *
948  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
949  * tg->qnode_on_self[] is used.
950  */
951 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
952                               struct throtl_grp *tg)
953 {
954         struct throtl_service_queue *sq = &tg->service_queue;
955         bool rw = bio_data_dir(bio);
956
957         if (!qn)
958                 qn = &tg->qnode_on_self[rw];
959
960         /*
961          * If @tg doesn't currently have any bios queued in the same
962          * direction, queueing @bio can change when @tg should be
963          * dispatched.  Mark that @tg was empty.  This is automatically
964          * cleared on the next tg_update_disptime().
965          */
966         if (!sq->nr_queued[rw])
967                 tg->flags |= THROTL_TG_WAS_EMPTY;
968
969         throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
970
971         sq->nr_queued[rw]++;
972         throtl_enqueue_tg(tg);
973 }
974
975 static void tg_update_disptime(struct throtl_grp *tg)
976 {
977         struct throtl_service_queue *sq = &tg->service_queue;
978         unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
979         struct bio *bio;
980
981         bio = throtl_peek_queued(&sq->queued[READ]);
982         if (bio)
983                 tg_may_dispatch(tg, bio, &read_wait);
984
985         bio = throtl_peek_queued(&sq->queued[WRITE]);
986         if (bio)
987                 tg_may_dispatch(tg, bio, &write_wait);
988
989         min_wait = min(read_wait, write_wait);
990         disptime = jiffies + min_wait;
991
992         /* Update dispatch time */
993         throtl_dequeue_tg(tg);
994         tg->disptime = disptime;
995         throtl_enqueue_tg(tg);
996
997         /* see throtl_add_bio_tg() */
998         tg->flags &= ~THROTL_TG_WAS_EMPTY;
999 }
1000
1001 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1002                                         struct throtl_grp *parent_tg, bool rw)
1003 {
1004         if (throtl_slice_used(parent_tg, rw)) {
1005                 throtl_start_new_slice_with_credit(parent_tg, rw,
1006                                 child_tg->slice_start[rw]);
1007         }
1008
1009 }
1010
1011 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1012 {
1013         struct throtl_service_queue *sq = &tg->service_queue;
1014         struct throtl_service_queue *parent_sq = sq->parent_sq;
1015         struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1016         struct throtl_grp *tg_to_put = NULL;
1017         struct bio *bio;
1018
1019         /*
1020          * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1021          * from @tg may put its reference and @parent_sq might end up
1022          * getting released prematurely.  Remember the tg to put and put it
1023          * after @bio is transferred to @parent_sq.
1024          */
1025         bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1026         sq->nr_queued[rw]--;
1027
1028         throtl_charge_bio(tg, bio);
1029
1030         /*
1031          * If our parent is another tg, we just need to transfer @bio to
1032          * the parent using throtl_add_bio_tg().  If our parent is
1033          * @td->service_queue, @bio is ready to be issued.  Put it on its
1034          * bio_lists[] and decrease total number queued.  The caller is
1035          * responsible for issuing these bios.
1036          */
1037         if (parent_tg) {
1038                 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1039                 start_parent_slice_with_credit(tg, parent_tg, rw);
1040         } else {
1041                 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1042                                      &parent_sq->queued[rw]);
1043                 BUG_ON(tg->td->nr_queued[rw] <= 0);
1044                 tg->td->nr_queued[rw]--;
1045         }
1046
1047         throtl_trim_slice(tg, rw);
1048
1049         if (tg_to_put)
1050                 blkg_put(tg_to_blkg(tg_to_put));
1051 }
1052
1053 static int throtl_dispatch_tg(struct throtl_grp *tg)
1054 {
1055         struct throtl_service_queue *sq = &tg->service_queue;
1056         unsigned int nr_reads = 0, nr_writes = 0;
1057         unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1058         unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1059         struct bio *bio;
1060
1061         /* Try to dispatch 75% READS and 25% WRITES */
1062
1063         while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1064                tg_may_dispatch(tg, bio, NULL)) {
1065
1066                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1067                 nr_reads++;
1068
1069                 if (nr_reads >= max_nr_reads)
1070                         break;
1071         }
1072
1073         while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1074                tg_may_dispatch(tg, bio, NULL)) {
1075
1076                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1077                 nr_writes++;
1078
1079                 if (nr_writes >= max_nr_writes)
1080                         break;
1081         }
1082
1083         return nr_reads + nr_writes;
1084 }
1085
1086 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1087 {
1088         unsigned int nr_disp = 0;
1089
1090         while (1) {
1091                 struct throtl_grp *tg;
1092                 struct throtl_service_queue *sq;
1093
1094                 if (!parent_sq->nr_pending)
1095                         break;
1096
1097                 tg = throtl_rb_first(parent_sq);
1098                 if (!tg)
1099                         break;
1100
1101                 if (time_before(jiffies, tg->disptime))
1102                         break;
1103
1104                 throtl_dequeue_tg(tg);
1105
1106                 nr_disp += throtl_dispatch_tg(tg);
1107
1108                 sq = &tg->service_queue;
1109                 if (sq->nr_queued[0] || sq->nr_queued[1])
1110                         tg_update_disptime(tg);
1111
1112                 if (nr_disp >= THROTL_QUANTUM)
1113                         break;
1114         }
1115
1116         return nr_disp;
1117 }
1118
1119 static bool throtl_can_upgrade(struct throtl_data *td,
1120         struct throtl_grp *this_tg);
1121 /**
1122  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1123  * @t: the pending_timer member of the throtl_service_queue being serviced
1124  *
1125  * This timer is armed when a child throtl_grp with active bio's become
1126  * pending and queued on the service_queue's pending_tree and expires when
1127  * the first child throtl_grp should be dispatched.  This function
1128  * dispatches bio's from the children throtl_grps to the parent
1129  * service_queue.
1130  *
1131  * If the parent's parent is another throtl_grp, dispatching is propagated
1132  * by either arming its pending_timer or repeating dispatch directly.  If
1133  * the top-level service_tree is reached, throtl_data->dispatch_work is
1134  * kicked so that the ready bio's are issued.
1135  */
1136 static void throtl_pending_timer_fn(struct timer_list *t)
1137 {
1138         struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1139         struct throtl_grp *tg = sq_to_tg(sq);
1140         struct throtl_data *td = sq_to_td(sq);
1141         struct throtl_service_queue *parent_sq;
1142         struct request_queue *q;
1143         bool dispatched;
1144         int ret;
1145
1146         /* throtl_data may be gone, so figure out request queue by blkg */
1147         if (tg)
1148                 q = tg->pd.blkg->q;
1149         else
1150                 q = td->queue;
1151
1152         spin_lock_irq(&q->queue_lock);
1153
1154         if (!q->root_blkg)
1155                 goto out_unlock;
1156
1157         if (throtl_can_upgrade(td, NULL))
1158                 throtl_upgrade_state(td);
1159
1160 again:
1161         parent_sq = sq->parent_sq;
1162         dispatched = false;
1163
1164         while (true) {
1165                 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1166                            sq->nr_queued[READ] + sq->nr_queued[WRITE],
1167                            sq->nr_queued[READ], sq->nr_queued[WRITE]);
1168
1169                 ret = throtl_select_dispatch(sq);
1170                 if (ret) {
1171                         throtl_log(sq, "bios disp=%u", ret);
1172                         dispatched = true;
1173                 }
1174
1175                 if (throtl_schedule_next_dispatch(sq, false))
1176                         break;
1177
1178                 /* this dispatch windows is still open, relax and repeat */
1179                 spin_unlock_irq(&q->queue_lock);
1180                 cpu_relax();
1181                 spin_lock_irq(&q->queue_lock);
1182         }
1183
1184         if (!dispatched)
1185                 goto out_unlock;
1186
1187         if (parent_sq) {
1188                 /* @parent_sq is another throl_grp, propagate dispatch */
1189                 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1190                         tg_update_disptime(tg);
1191                         if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1192                                 /* window is already open, repeat dispatching */
1193                                 sq = parent_sq;
1194                                 tg = sq_to_tg(sq);
1195                                 goto again;
1196                         }
1197                 }
1198         } else {
1199                 /* reached the top-level, queue issuing */
1200                 queue_work(kthrotld_workqueue, &td->dispatch_work);
1201         }
1202 out_unlock:
1203         spin_unlock_irq(&q->queue_lock);
1204 }
1205
1206 /**
1207  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1208  * @work: work item being executed
1209  *
1210  * This function is queued for execution when bios reach the bio_lists[]
1211  * of throtl_data->service_queue.  Those bios are ready and issued by this
1212  * function.
1213  */
1214 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1215 {
1216         struct throtl_data *td = container_of(work, struct throtl_data,
1217                                               dispatch_work);
1218         struct throtl_service_queue *td_sq = &td->service_queue;
1219         struct request_queue *q = td->queue;
1220         struct bio_list bio_list_on_stack;
1221         struct bio *bio;
1222         struct blk_plug plug;
1223         int rw;
1224
1225         bio_list_init(&bio_list_on_stack);
1226
1227         spin_lock_irq(&q->queue_lock);
1228         for (rw = READ; rw <= WRITE; rw++)
1229                 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1230                         bio_list_add(&bio_list_on_stack, bio);
1231         spin_unlock_irq(&q->queue_lock);
1232
1233         if (!bio_list_empty(&bio_list_on_stack)) {
1234                 blk_start_plug(&plug);
1235                 while ((bio = bio_list_pop(&bio_list_on_stack)))
1236                         submit_bio_noacct_nocheck(bio);
1237                 blk_finish_plug(&plug);
1238         }
1239 }
1240
1241 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1242                               int off)
1243 {
1244         struct throtl_grp *tg = pd_to_tg(pd);
1245         u64 v = *(u64 *)((void *)tg + off);
1246
1247         if (v == U64_MAX)
1248                 return 0;
1249         return __blkg_prfill_u64(sf, pd, v);
1250 }
1251
1252 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1253                                int off)
1254 {
1255         struct throtl_grp *tg = pd_to_tg(pd);
1256         unsigned int v = *(unsigned int *)((void *)tg + off);
1257
1258         if (v == UINT_MAX)
1259                 return 0;
1260         return __blkg_prfill_u64(sf, pd, v);
1261 }
1262
1263 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1264 {
1265         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1266                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1267         return 0;
1268 }
1269
1270 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1271 {
1272         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1273                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1274         return 0;
1275 }
1276
1277 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1278 {
1279         struct throtl_service_queue *sq = &tg->service_queue;
1280         struct cgroup_subsys_state *pos_css;
1281         struct blkcg_gq *blkg;
1282
1283         throtl_log(&tg->service_queue,
1284                    "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1285                    tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1286                    tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1287
1288         /*
1289          * Update has_rules[] flags for the updated tg's subtree.  A tg is
1290          * considered to have rules if either the tg itself or any of its
1291          * ancestors has rules.  This identifies groups without any
1292          * restrictions in the whole hierarchy and allows them to bypass
1293          * blk-throttle.
1294          */
1295         blkg_for_each_descendant_pre(blkg, pos_css,
1296                         global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1297                 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1298                 struct throtl_grp *parent_tg;
1299
1300                 tg_update_has_rules(this_tg);
1301                 /* ignore root/second level */
1302                 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1303                     !blkg->parent->parent)
1304                         continue;
1305                 parent_tg = blkg_to_tg(blkg->parent);
1306                 /*
1307                  * make sure all children has lower idle time threshold and
1308                  * higher latency target
1309                  */
1310                 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1311                                 parent_tg->idletime_threshold);
1312                 this_tg->latency_target = max(this_tg->latency_target,
1313                                 parent_tg->latency_target);
1314         }
1315
1316         /*
1317          * We're already holding queue_lock and know @tg is valid.  Let's
1318          * apply the new config directly.
1319          *
1320          * Restart the slices for both READ and WRITES. It might happen
1321          * that a group's limit are dropped suddenly and we don't want to
1322          * account recently dispatched IO with new low rate.
1323          */
1324         throtl_start_new_slice(tg, READ);
1325         throtl_start_new_slice(tg, WRITE);
1326
1327         if (tg->flags & THROTL_TG_PENDING) {
1328                 tg_update_disptime(tg);
1329                 throtl_schedule_next_dispatch(sq->parent_sq, true);
1330         }
1331 }
1332
1333 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1334                            char *buf, size_t nbytes, loff_t off, bool is_u64)
1335 {
1336         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1337         struct blkg_conf_ctx ctx;
1338         struct throtl_grp *tg;
1339         int ret;
1340         u64 v;
1341
1342         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1343         if (ret)
1344                 return ret;
1345
1346         ret = -EINVAL;
1347         if (sscanf(ctx.body, "%llu", &v) != 1)
1348                 goto out_finish;
1349         if (!v)
1350                 v = U64_MAX;
1351
1352         tg = blkg_to_tg(ctx.blkg);
1353
1354         if (is_u64)
1355                 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1356         else
1357                 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1358
1359         tg_conf_updated(tg, false);
1360         ret = 0;
1361 out_finish:
1362         blkg_conf_finish(&ctx);
1363         return ret ?: nbytes;
1364 }
1365
1366 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1367                                char *buf, size_t nbytes, loff_t off)
1368 {
1369         return tg_set_conf(of, buf, nbytes, off, true);
1370 }
1371
1372 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1373                                 char *buf, size_t nbytes, loff_t off)
1374 {
1375         return tg_set_conf(of, buf, nbytes, off, false);
1376 }
1377
1378 static int tg_print_rwstat(struct seq_file *sf, void *v)
1379 {
1380         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1381                           blkg_prfill_rwstat, &blkcg_policy_throtl,
1382                           seq_cft(sf)->private, true);
1383         return 0;
1384 }
1385
1386 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1387                                       struct blkg_policy_data *pd, int off)
1388 {
1389         struct blkg_rwstat_sample sum;
1390
1391         blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1392                                   &sum);
1393         return __blkg_prfill_rwstat(sf, pd, &sum);
1394 }
1395
1396 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1397 {
1398         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1399                           tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1400                           seq_cft(sf)->private, true);
1401         return 0;
1402 }
1403
1404 static struct cftype throtl_legacy_files[] = {
1405         {
1406                 .name = "throttle.read_bps_device",
1407                 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1408                 .seq_show = tg_print_conf_u64,
1409                 .write = tg_set_conf_u64,
1410         },
1411         {
1412                 .name = "throttle.write_bps_device",
1413                 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1414                 .seq_show = tg_print_conf_u64,
1415                 .write = tg_set_conf_u64,
1416         },
1417         {
1418                 .name = "throttle.read_iops_device",
1419                 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1420                 .seq_show = tg_print_conf_uint,
1421                 .write = tg_set_conf_uint,
1422         },
1423         {
1424                 .name = "throttle.write_iops_device",
1425                 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1426                 .seq_show = tg_print_conf_uint,
1427                 .write = tg_set_conf_uint,
1428         },
1429         {
1430                 .name = "throttle.io_service_bytes",
1431                 .private = offsetof(struct throtl_grp, stat_bytes),
1432                 .seq_show = tg_print_rwstat,
1433         },
1434         {
1435                 .name = "throttle.io_service_bytes_recursive",
1436                 .private = offsetof(struct throtl_grp, stat_bytes),
1437                 .seq_show = tg_print_rwstat_recursive,
1438         },
1439         {
1440                 .name = "throttle.io_serviced",
1441                 .private = offsetof(struct throtl_grp, stat_ios),
1442                 .seq_show = tg_print_rwstat,
1443         },
1444         {
1445                 .name = "throttle.io_serviced_recursive",
1446                 .private = offsetof(struct throtl_grp, stat_ios),
1447                 .seq_show = tg_print_rwstat_recursive,
1448         },
1449         { }     /* terminate */
1450 };
1451
1452 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1453                          int off)
1454 {
1455         struct throtl_grp *tg = pd_to_tg(pd);
1456         const char *dname = blkg_dev_name(pd->blkg);
1457         char bufs[4][21] = { "max", "max", "max", "max" };
1458         u64 bps_dft;
1459         unsigned int iops_dft;
1460         char idle_time[26] = "";
1461         char latency_time[26] = "";
1462
1463         if (!dname)
1464                 return 0;
1465
1466         if (off == LIMIT_LOW) {
1467                 bps_dft = 0;
1468                 iops_dft = 0;
1469         } else {
1470                 bps_dft = U64_MAX;
1471                 iops_dft = UINT_MAX;
1472         }
1473
1474         if (tg->bps_conf[READ][off] == bps_dft &&
1475             tg->bps_conf[WRITE][off] == bps_dft &&
1476             tg->iops_conf[READ][off] == iops_dft &&
1477             tg->iops_conf[WRITE][off] == iops_dft &&
1478             (off != LIMIT_LOW ||
1479              (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1480               tg->latency_target_conf == DFL_LATENCY_TARGET)))
1481                 return 0;
1482
1483         if (tg->bps_conf[READ][off] != U64_MAX)
1484                 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1485                         tg->bps_conf[READ][off]);
1486         if (tg->bps_conf[WRITE][off] != U64_MAX)
1487                 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1488                         tg->bps_conf[WRITE][off]);
1489         if (tg->iops_conf[READ][off] != UINT_MAX)
1490                 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1491                         tg->iops_conf[READ][off]);
1492         if (tg->iops_conf[WRITE][off] != UINT_MAX)
1493                 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1494                         tg->iops_conf[WRITE][off]);
1495         if (off == LIMIT_LOW) {
1496                 if (tg->idletime_threshold_conf == ULONG_MAX)
1497                         strcpy(idle_time, " idle=max");
1498                 else
1499                         snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1500                                 tg->idletime_threshold_conf);
1501
1502                 if (tg->latency_target_conf == ULONG_MAX)
1503                         strcpy(latency_time, " latency=max");
1504                 else
1505                         snprintf(latency_time, sizeof(latency_time),
1506                                 " latency=%lu", tg->latency_target_conf);
1507         }
1508
1509         seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1510                    dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1511                    latency_time);
1512         return 0;
1513 }
1514
1515 static int tg_print_limit(struct seq_file *sf, void *v)
1516 {
1517         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1518                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1519         return 0;
1520 }
1521
1522 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1523                           char *buf, size_t nbytes, loff_t off)
1524 {
1525         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1526         struct blkg_conf_ctx ctx;
1527         struct throtl_grp *tg;
1528         u64 v[4];
1529         unsigned long idle_time;
1530         unsigned long latency_time;
1531         int ret;
1532         int index = of_cft(of)->private;
1533
1534         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1535         if (ret)
1536                 return ret;
1537
1538         tg = blkg_to_tg(ctx.blkg);
1539
1540         v[0] = tg->bps_conf[READ][index];
1541         v[1] = tg->bps_conf[WRITE][index];
1542         v[2] = tg->iops_conf[READ][index];
1543         v[3] = tg->iops_conf[WRITE][index];
1544
1545         idle_time = tg->idletime_threshold_conf;
1546         latency_time = tg->latency_target_conf;
1547         while (true) {
1548                 char tok[27];   /* wiops=18446744073709551616 */
1549                 char *p;
1550                 u64 val = U64_MAX;
1551                 int len;
1552
1553                 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1554                         break;
1555                 if (tok[0] == '\0')
1556                         break;
1557                 ctx.body += len;
1558
1559                 ret = -EINVAL;
1560                 p = tok;
1561                 strsep(&p, "=");
1562                 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1563                         goto out_finish;
1564
1565                 ret = -ERANGE;
1566                 if (!val)
1567                         goto out_finish;
1568
1569                 ret = -EINVAL;
1570                 if (!strcmp(tok, "rbps") && val > 1)
1571                         v[0] = val;
1572                 else if (!strcmp(tok, "wbps") && val > 1)
1573                         v[1] = val;
1574                 else if (!strcmp(tok, "riops") && val > 1)
1575                         v[2] = min_t(u64, val, UINT_MAX);
1576                 else if (!strcmp(tok, "wiops") && val > 1)
1577                         v[3] = min_t(u64, val, UINT_MAX);
1578                 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1579                         idle_time = val;
1580                 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1581                         latency_time = val;
1582                 else
1583                         goto out_finish;
1584         }
1585
1586         tg->bps_conf[READ][index] = v[0];
1587         tg->bps_conf[WRITE][index] = v[1];
1588         tg->iops_conf[READ][index] = v[2];
1589         tg->iops_conf[WRITE][index] = v[3];
1590
1591         if (index == LIMIT_MAX) {
1592                 tg->bps[READ][index] = v[0];
1593                 tg->bps[WRITE][index] = v[1];
1594                 tg->iops[READ][index] = v[2];
1595                 tg->iops[WRITE][index] = v[3];
1596         }
1597         tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1598                 tg->bps_conf[READ][LIMIT_MAX]);
1599         tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1600                 tg->bps_conf[WRITE][LIMIT_MAX]);
1601         tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1602                 tg->iops_conf[READ][LIMIT_MAX]);
1603         tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1604                 tg->iops_conf[WRITE][LIMIT_MAX]);
1605         tg->idletime_threshold_conf = idle_time;
1606         tg->latency_target_conf = latency_time;
1607
1608         /* force user to configure all settings for low limit  */
1609         if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1610               tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1611             tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1612             tg->latency_target_conf == DFL_LATENCY_TARGET) {
1613                 tg->bps[READ][LIMIT_LOW] = 0;
1614                 tg->bps[WRITE][LIMIT_LOW] = 0;
1615                 tg->iops[READ][LIMIT_LOW] = 0;
1616                 tg->iops[WRITE][LIMIT_LOW] = 0;
1617                 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1618                 tg->latency_target = DFL_LATENCY_TARGET;
1619         } else if (index == LIMIT_LOW) {
1620                 tg->idletime_threshold = tg->idletime_threshold_conf;
1621                 tg->latency_target = tg->latency_target_conf;
1622         }
1623
1624         blk_throtl_update_limit_valid(tg->td);
1625         if (tg->td->limit_valid[LIMIT_LOW]) {
1626                 if (index == LIMIT_LOW)
1627                         tg->td->limit_index = LIMIT_LOW;
1628         } else
1629                 tg->td->limit_index = LIMIT_MAX;
1630         tg_conf_updated(tg, index == LIMIT_LOW &&
1631                 tg->td->limit_valid[LIMIT_LOW]);
1632         ret = 0;
1633 out_finish:
1634         blkg_conf_finish(&ctx);
1635         return ret ?: nbytes;
1636 }
1637
1638 static struct cftype throtl_files[] = {
1639 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1640         {
1641                 .name = "low",
1642                 .flags = CFTYPE_NOT_ON_ROOT,
1643                 .seq_show = tg_print_limit,
1644                 .write = tg_set_limit,
1645                 .private = LIMIT_LOW,
1646         },
1647 #endif
1648         {
1649                 .name = "max",
1650                 .flags = CFTYPE_NOT_ON_ROOT,
1651                 .seq_show = tg_print_limit,
1652                 .write = tg_set_limit,
1653                 .private = LIMIT_MAX,
1654         },
1655         { }     /* terminate */
1656 };
1657
1658 static void throtl_shutdown_wq(struct request_queue *q)
1659 {
1660         struct throtl_data *td = q->td;
1661
1662         cancel_work_sync(&td->dispatch_work);
1663 }
1664
1665 struct blkcg_policy blkcg_policy_throtl = {
1666         .dfl_cftypes            = throtl_files,
1667         .legacy_cftypes         = throtl_legacy_files,
1668
1669         .pd_alloc_fn            = throtl_pd_alloc,
1670         .pd_init_fn             = throtl_pd_init,
1671         .pd_online_fn           = throtl_pd_online,
1672         .pd_offline_fn          = throtl_pd_offline,
1673         .pd_free_fn             = throtl_pd_free,
1674 };
1675
1676 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1677 {
1678         unsigned long rtime = jiffies, wtime = jiffies;
1679
1680         if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1681                 rtime = tg->last_low_overflow_time[READ];
1682         if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1683                 wtime = tg->last_low_overflow_time[WRITE];
1684         return min(rtime, wtime);
1685 }
1686
1687 /* tg should not be an intermediate node */
1688 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1689 {
1690         struct throtl_service_queue *parent_sq;
1691         struct throtl_grp *parent = tg;
1692         unsigned long ret = __tg_last_low_overflow_time(tg);
1693
1694         while (true) {
1695                 parent_sq = parent->service_queue.parent_sq;
1696                 parent = sq_to_tg(parent_sq);
1697                 if (!parent)
1698                         break;
1699
1700                 /*
1701                  * The parent doesn't have low limit, it always reaches low
1702                  * limit. Its overflow time is useless for children
1703                  */
1704                 if (!parent->bps[READ][LIMIT_LOW] &&
1705                     !parent->iops[READ][LIMIT_LOW] &&
1706                     !parent->bps[WRITE][LIMIT_LOW] &&
1707                     !parent->iops[WRITE][LIMIT_LOW])
1708                         continue;
1709                 if (time_after(__tg_last_low_overflow_time(parent), ret))
1710                         ret = __tg_last_low_overflow_time(parent);
1711         }
1712         return ret;
1713 }
1714
1715 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1716 {
1717         /*
1718          * cgroup is idle if:
1719          * - single idle is too long, longer than a fixed value (in case user
1720          *   configure a too big threshold) or 4 times of idletime threshold
1721          * - average think time is more than threshold
1722          * - IO latency is largely below threshold
1723          */
1724         unsigned long time;
1725         bool ret;
1726
1727         time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1728         ret = tg->latency_target == DFL_LATENCY_TARGET ||
1729               tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1730               (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1731               tg->avg_idletime > tg->idletime_threshold ||
1732               (tg->latency_target && tg->bio_cnt &&
1733                 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1734         throtl_log(&tg->service_queue,
1735                 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1736                 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1737                 tg->bio_cnt, ret, tg->td->scale);
1738         return ret;
1739 }
1740
1741 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1742 {
1743         struct throtl_service_queue *sq = &tg->service_queue;
1744         bool read_limit, write_limit;
1745
1746         /*
1747          * if cgroup reaches low limit (if low limit is 0, the cgroup always
1748          * reaches), it's ok to upgrade to next limit
1749          */
1750         read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1751         write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1752         if (!read_limit && !write_limit)
1753                 return true;
1754         if (read_limit && sq->nr_queued[READ] &&
1755             (!write_limit || sq->nr_queued[WRITE]))
1756                 return true;
1757         if (write_limit && sq->nr_queued[WRITE] &&
1758             (!read_limit || sq->nr_queued[READ]))
1759                 return true;
1760
1761         if (time_after_eq(jiffies,
1762                 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1763             throtl_tg_is_idle(tg))
1764                 return true;
1765         return false;
1766 }
1767
1768 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1769 {
1770         while (true) {
1771                 if (throtl_tg_can_upgrade(tg))
1772                         return true;
1773                 tg = sq_to_tg(tg->service_queue.parent_sq);
1774                 if (!tg || !tg_to_blkg(tg)->parent)
1775                         return false;
1776         }
1777         return false;
1778 }
1779
1780 void blk_throtl_cancel_bios(struct request_queue *q)
1781 {
1782         struct cgroup_subsys_state *pos_css;
1783         struct blkcg_gq *blkg;
1784
1785         spin_lock_irq(&q->queue_lock);
1786         /*
1787          * queue_lock is held, rcu lock is not needed here technically.
1788          * However, rcu lock is still held to emphasize that following
1789          * path need RCU protection and to prevent warning from lockdep.
1790          */
1791         rcu_read_lock();
1792         blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1793                 struct throtl_grp *tg = blkg_to_tg(blkg);
1794                 struct throtl_service_queue *sq = &tg->service_queue;
1795
1796                 /*
1797                  * Set the flag to make sure throtl_pending_timer_fn() won't
1798                  * stop until all throttled bios are dispatched.
1799                  */
1800                 blkg_to_tg(blkg)->flags |= THROTL_TG_CANCELING;
1801                 /*
1802                  * Update disptime after setting the above flag to make sure
1803                  * throtl_select_dispatch() won't exit without dispatching.
1804                  */
1805                 tg_update_disptime(tg);
1806
1807                 throtl_schedule_pending_timer(sq, jiffies + 1);
1808         }
1809         rcu_read_unlock();
1810         spin_unlock_irq(&q->queue_lock);
1811 }
1812
1813 static bool throtl_can_upgrade(struct throtl_data *td,
1814         struct throtl_grp *this_tg)
1815 {
1816         struct cgroup_subsys_state *pos_css;
1817         struct blkcg_gq *blkg;
1818
1819         if (td->limit_index != LIMIT_LOW)
1820                 return false;
1821
1822         if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1823                 return false;
1824
1825         rcu_read_lock();
1826         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1827                 struct throtl_grp *tg = blkg_to_tg(blkg);
1828
1829                 if (tg == this_tg)
1830                         continue;
1831                 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1832                         continue;
1833                 if (!throtl_hierarchy_can_upgrade(tg)) {
1834                         rcu_read_unlock();
1835                         return false;
1836                 }
1837         }
1838         rcu_read_unlock();
1839         return true;
1840 }
1841
1842 static void throtl_upgrade_check(struct throtl_grp *tg)
1843 {
1844         unsigned long now = jiffies;
1845
1846         if (tg->td->limit_index != LIMIT_LOW)
1847                 return;
1848
1849         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1850                 return;
1851
1852         tg->last_check_time = now;
1853
1854         if (!time_after_eq(now,
1855              __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1856                 return;
1857
1858         if (throtl_can_upgrade(tg->td, NULL))
1859                 throtl_upgrade_state(tg->td);
1860 }
1861
1862 static void throtl_upgrade_state(struct throtl_data *td)
1863 {
1864         struct cgroup_subsys_state *pos_css;
1865         struct blkcg_gq *blkg;
1866
1867         throtl_log(&td->service_queue, "upgrade to max");
1868         td->limit_index = LIMIT_MAX;
1869         td->low_upgrade_time = jiffies;
1870         td->scale = 0;
1871         rcu_read_lock();
1872         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1873                 struct throtl_grp *tg = blkg_to_tg(blkg);
1874                 struct throtl_service_queue *sq = &tg->service_queue;
1875
1876                 tg->disptime = jiffies - 1;
1877                 throtl_select_dispatch(sq);
1878                 throtl_schedule_next_dispatch(sq, true);
1879         }
1880         rcu_read_unlock();
1881         throtl_select_dispatch(&td->service_queue);
1882         throtl_schedule_next_dispatch(&td->service_queue, true);
1883         queue_work(kthrotld_workqueue, &td->dispatch_work);
1884 }
1885
1886 static void throtl_downgrade_state(struct throtl_data *td)
1887 {
1888         td->scale /= 2;
1889
1890         throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1891         if (td->scale) {
1892                 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1893                 return;
1894         }
1895
1896         td->limit_index = LIMIT_LOW;
1897         td->low_downgrade_time = jiffies;
1898 }
1899
1900 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1901 {
1902         struct throtl_data *td = tg->td;
1903         unsigned long now = jiffies;
1904
1905         /*
1906          * If cgroup is below low limit, consider downgrade and throttle other
1907          * cgroups
1908          */
1909         if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1910             time_after_eq(now, tg_last_low_overflow_time(tg) +
1911                                         td->throtl_slice) &&
1912             (!throtl_tg_is_idle(tg) ||
1913              !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1914                 return true;
1915         return false;
1916 }
1917
1918 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1919 {
1920         while (true) {
1921                 if (!throtl_tg_can_downgrade(tg))
1922                         return false;
1923                 tg = sq_to_tg(tg->service_queue.parent_sq);
1924                 if (!tg || !tg_to_blkg(tg)->parent)
1925                         break;
1926         }
1927         return true;
1928 }
1929
1930 static void throtl_downgrade_check(struct throtl_grp *tg)
1931 {
1932         uint64_t bps;
1933         unsigned int iops;
1934         unsigned long elapsed_time;
1935         unsigned long now = jiffies;
1936
1937         if (tg->td->limit_index != LIMIT_MAX ||
1938             !tg->td->limit_valid[LIMIT_LOW])
1939                 return;
1940         if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1941                 return;
1942         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1943                 return;
1944
1945         elapsed_time = now - tg->last_check_time;
1946         tg->last_check_time = now;
1947
1948         if (time_before(now, tg_last_low_overflow_time(tg) +
1949                         tg->td->throtl_slice))
1950                 return;
1951
1952         if (tg->bps[READ][LIMIT_LOW]) {
1953                 bps = tg->last_bytes_disp[READ] * HZ;
1954                 do_div(bps, elapsed_time);
1955                 if (bps >= tg->bps[READ][LIMIT_LOW])
1956                         tg->last_low_overflow_time[READ] = now;
1957         }
1958
1959         if (tg->bps[WRITE][LIMIT_LOW]) {
1960                 bps = tg->last_bytes_disp[WRITE] * HZ;
1961                 do_div(bps, elapsed_time);
1962                 if (bps >= tg->bps[WRITE][LIMIT_LOW])
1963                         tg->last_low_overflow_time[WRITE] = now;
1964         }
1965
1966         if (tg->iops[READ][LIMIT_LOW]) {
1967                 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1968                 if (iops >= tg->iops[READ][LIMIT_LOW])
1969                         tg->last_low_overflow_time[READ] = now;
1970         }
1971
1972         if (tg->iops[WRITE][LIMIT_LOW]) {
1973                 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
1974                 if (iops >= tg->iops[WRITE][LIMIT_LOW])
1975                         tg->last_low_overflow_time[WRITE] = now;
1976         }
1977
1978         /*
1979          * If cgroup is below low limit, consider downgrade and throttle other
1980          * cgroups
1981          */
1982         if (throtl_hierarchy_can_downgrade(tg))
1983                 throtl_downgrade_state(tg->td);
1984
1985         tg->last_bytes_disp[READ] = 0;
1986         tg->last_bytes_disp[WRITE] = 0;
1987         tg->last_io_disp[READ] = 0;
1988         tg->last_io_disp[WRITE] = 0;
1989 }
1990
1991 static void blk_throtl_update_idletime(struct throtl_grp *tg)
1992 {
1993         unsigned long now;
1994         unsigned long last_finish_time = tg->last_finish_time;
1995
1996         if (last_finish_time == 0)
1997                 return;
1998
1999         now = ktime_get_ns() >> 10;
2000         if (now <= last_finish_time ||
2001             last_finish_time == tg->checked_last_finish_time)
2002                 return;
2003
2004         tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2005         tg->checked_last_finish_time = last_finish_time;
2006 }
2007
2008 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2009 static void throtl_update_latency_buckets(struct throtl_data *td)
2010 {
2011         struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2012         int i, cpu, rw;
2013         unsigned long last_latency[2] = { 0 };
2014         unsigned long latency[2];
2015
2016         if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2017                 return;
2018         if (time_before(jiffies, td->last_calculate_time + HZ))
2019                 return;
2020         td->last_calculate_time = jiffies;
2021
2022         memset(avg_latency, 0, sizeof(avg_latency));
2023         for (rw = READ; rw <= WRITE; rw++) {
2024                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2025                         struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2026
2027                         for_each_possible_cpu(cpu) {
2028                                 struct latency_bucket *bucket;
2029
2030                                 /* this isn't race free, but ok in practice */
2031                                 bucket = per_cpu_ptr(td->latency_buckets[rw],
2032                                         cpu);
2033                                 tmp->total_latency += bucket[i].total_latency;
2034                                 tmp->samples += bucket[i].samples;
2035                                 bucket[i].total_latency = 0;
2036                                 bucket[i].samples = 0;
2037                         }
2038
2039                         if (tmp->samples >= 32) {
2040                                 int samples = tmp->samples;
2041
2042                                 latency[rw] = tmp->total_latency;
2043
2044                                 tmp->total_latency = 0;
2045                                 tmp->samples = 0;
2046                                 latency[rw] /= samples;
2047                                 if (latency[rw] == 0)
2048                                         continue;
2049                                 avg_latency[rw][i].latency = latency[rw];
2050                         }
2051                 }
2052         }
2053
2054         for (rw = READ; rw <= WRITE; rw++) {
2055                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2056                         if (!avg_latency[rw][i].latency) {
2057                                 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2058                                         td->avg_buckets[rw][i].latency =
2059                                                 last_latency[rw];
2060                                 continue;
2061                         }
2062
2063                         if (!td->avg_buckets[rw][i].valid)
2064                                 latency[rw] = avg_latency[rw][i].latency;
2065                         else
2066                                 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2067                                         avg_latency[rw][i].latency) >> 3;
2068
2069                         td->avg_buckets[rw][i].latency = max(latency[rw],
2070                                 last_latency[rw]);
2071                         td->avg_buckets[rw][i].valid = true;
2072                         last_latency[rw] = td->avg_buckets[rw][i].latency;
2073                 }
2074         }
2075
2076         for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2077                 throtl_log(&td->service_queue,
2078                         "Latency bucket %d: read latency=%ld, read valid=%d, "
2079                         "write latency=%ld, write valid=%d", i,
2080                         td->avg_buckets[READ][i].latency,
2081                         td->avg_buckets[READ][i].valid,
2082                         td->avg_buckets[WRITE][i].latency,
2083                         td->avg_buckets[WRITE][i].valid);
2084 }
2085 #else
2086 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2087 {
2088 }
2089 #endif
2090
2091 bool __blk_throtl_bio(struct bio *bio)
2092 {
2093         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2094         struct blkcg_gq *blkg = bio->bi_blkg;
2095         struct throtl_qnode *qn = NULL;
2096         struct throtl_grp *tg = blkg_to_tg(blkg);
2097         struct throtl_service_queue *sq;
2098         bool rw = bio_data_dir(bio);
2099         bool throttled = false;
2100         struct throtl_data *td = tg->td;
2101
2102         rcu_read_lock();
2103
2104         if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2105                 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2106                                 bio->bi_iter.bi_size);
2107                 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2108         }
2109
2110         spin_lock_irq(&q->queue_lock);
2111
2112         throtl_update_latency_buckets(td);
2113
2114         blk_throtl_update_idletime(tg);
2115
2116         sq = &tg->service_queue;
2117
2118 again:
2119         while (true) {
2120                 if (tg->last_low_overflow_time[rw] == 0)
2121                         tg->last_low_overflow_time[rw] = jiffies;
2122                 throtl_downgrade_check(tg);
2123                 throtl_upgrade_check(tg);
2124                 /* throtl is FIFO - if bios are already queued, should queue */
2125                 if (sq->nr_queued[rw])
2126                         break;
2127
2128                 /* if above limits, break to queue */
2129                 if (!tg_may_dispatch(tg, bio, NULL)) {
2130                         tg->last_low_overflow_time[rw] = jiffies;
2131                         if (throtl_can_upgrade(td, tg)) {
2132                                 throtl_upgrade_state(td);
2133                                 goto again;
2134                         }
2135                         break;
2136                 }
2137
2138                 /* within limits, let's charge and dispatch directly */
2139                 throtl_charge_bio(tg, bio);
2140
2141                 /*
2142                  * We need to trim slice even when bios are not being queued
2143                  * otherwise it might happen that a bio is not queued for
2144                  * a long time and slice keeps on extending and trim is not
2145                  * called for a long time. Now if limits are reduced suddenly
2146                  * we take into account all the IO dispatched so far at new
2147                  * low rate and * newly queued IO gets a really long dispatch
2148                  * time.
2149                  *
2150                  * So keep on trimming slice even if bio is not queued.
2151                  */
2152                 throtl_trim_slice(tg, rw);
2153
2154                 /*
2155                  * @bio passed through this layer without being throttled.
2156                  * Climb up the ladder.  If we're already at the top, it
2157                  * can be executed directly.
2158                  */
2159                 qn = &tg->qnode_on_parent[rw];
2160                 sq = sq->parent_sq;
2161                 tg = sq_to_tg(sq);
2162                 if (!tg)
2163                         goto out_unlock;
2164         }
2165
2166         /* out-of-limit, queue to @tg */
2167         throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2168                    rw == READ ? 'R' : 'W',
2169                    tg->bytes_disp[rw], bio->bi_iter.bi_size,
2170                    tg_bps_limit(tg, rw),
2171                    tg->io_disp[rw], tg_iops_limit(tg, rw),
2172                    sq->nr_queued[READ], sq->nr_queued[WRITE]);
2173
2174         tg->last_low_overflow_time[rw] = jiffies;
2175
2176         td->nr_queued[rw]++;
2177         throtl_add_bio_tg(bio, qn, tg);
2178         throttled = true;
2179
2180         /*
2181          * Update @tg's dispatch time and force schedule dispatch if @tg
2182          * was empty before @bio.  The forced scheduling isn't likely to
2183          * cause undue delay as @bio is likely to be dispatched directly if
2184          * its @tg's disptime is not in the future.
2185          */
2186         if (tg->flags & THROTL_TG_WAS_EMPTY) {
2187                 tg_update_disptime(tg);
2188                 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2189         }
2190
2191 out_unlock:
2192         bio_set_flag(bio, BIO_THROTTLED);
2193
2194 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2195         if (throttled || !td->track_bio_latency)
2196                 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2197 #endif
2198         spin_unlock_irq(&q->queue_lock);
2199
2200         rcu_read_unlock();
2201         return throttled;
2202 }
2203
2204 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2205 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2206         int op, unsigned long time)
2207 {
2208         struct latency_bucket *latency;
2209         int index;
2210
2211         if (!td || td->limit_index != LIMIT_LOW ||
2212             !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2213             !blk_queue_nonrot(td->queue))
2214                 return;
2215
2216         index = request_bucket_index(size);
2217
2218         latency = get_cpu_ptr(td->latency_buckets[op]);
2219         latency[index].total_latency += time;
2220         latency[index].samples++;
2221         put_cpu_ptr(td->latency_buckets[op]);
2222 }
2223
2224 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2225 {
2226         struct request_queue *q = rq->q;
2227         struct throtl_data *td = q->td;
2228
2229         throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2230                              time_ns >> 10);
2231 }
2232
2233 void blk_throtl_bio_endio(struct bio *bio)
2234 {
2235         struct blkcg_gq *blkg;
2236         struct throtl_grp *tg;
2237         u64 finish_time_ns;
2238         unsigned long finish_time;
2239         unsigned long start_time;
2240         unsigned long lat;
2241         int rw = bio_data_dir(bio);
2242
2243         blkg = bio->bi_blkg;
2244         if (!blkg)
2245                 return;
2246         tg = blkg_to_tg(blkg);
2247         if (!tg->td->limit_valid[LIMIT_LOW])
2248                 return;
2249
2250         finish_time_ns = ktime_get_ns();
2251         tg->last_finish_time = finish_time_ns >> 10;
2252
2253         start_time = bio_issue_time(&bio->bi_issue) >> 10;
2254         finish_time = __bio_issue_time(finish_time_ns) >> 10;
2255         if (!start_time || finish_time <= start_time)
2256                 return;
2257
2258         lat = finish_time - start_time;
2259         /* this is only for bio based driver */
2260         if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2261                 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2262                                      bio_op(bio), lat);
2263
2264         if (tg->latency_target && lat >= tg->td->filtered_latency) {
2265                 int bucket;
2266                 unsigned int threshold;
2267
2268                 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2269                 threshold = tg->td->avg_buckets[rw][bucket].latency +
2270                         tg->latency_target;
2271                 if (lat > threshold)
2272                         tg->bad_bio_cnt++;
2273                 /*
2274                  * Not race free, could get wrong count, which means cgroups
2275                  * will be throttled
2276                  */
2277                 tg->bio_cnt++;
2278         }
2279
2280         if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2281                 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2282                 tg->bio_cnt /= 2;
2283                 tg->bad_bio_cnt /= 2;
2284         }
2285 }
2286 #endif
2287
2288 int blk_throtl_init(struct request_queue *q)
2289 {
2290         struct throtl_data *td;
2291         int ret;
2292
2293         td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2294         if (!td)
2295                 return -ENOMEM;
2296         td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2297                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2298         if (!td->latency_buckets[READ]) {
2299                 kfree(td);
2300                 return -ENOMEM;
2301         }
2302         td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2303                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2304         if (!td->latency_buckets[WRITE]) {
2305                 free_percpu(td->latency_buckets[READ]);
2306                 kfree(td);
2307                 return -ENOMEM;
2308         }
2309
2310         INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2311         throtl_service_queue_init(&td->service_queue);
2312
2313         q->td = td;
2314         td->queue = q;
2315
2316         td->limit_valid[LIMIT_MAX] = true;
2317         td->limit_index = LIMIT_MAX;
2318         td->low_upgrade_time = jiffies;
2319         td->low_downgrade_time = jiffies;
2320
2321         /* activate policy */
2322         ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2323         if (ret) {
2324                 free_percpu(td->latency_buckets[READ]);
2325                 free_percpu(td->latency_buckets[WRITE]);
2326                 kfree(td);
2327         }
2328         return ret;
2329 }
2330
2331 void blk_throtl_exit(struct request_queue *q)
2332 {
2333         BUG_ON(!q->td);
2334         del_timer_sync(&q->td->service_queue.pending_timer);
2335         throtl_shutdown_wq(q);
2336         blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2337         free_percpu(q->td->latency_buckets[READ]);
2338         free_percpu(q->td->latency_buckets[WRITE]);
2339         kfree(q->td);
2340 }
2341
2342 void blk_throtl_register_queue(struct request_queue *q)
2343 {
2344         struct throtl_data *td;
2345         int i;
2346
2347         td = q->td;
2348         BUG_ON(!td);
2349
2350         if (blk_queue_nonrot(q)) {
2351                 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2352                 td->filtered_latency = LATENCY_FILTERED_SSD;
2353         } else {
2354                 td->throtl_slice = DFL_THROTL_SLICE_HD;
2355                 td->filtered_latency = LATENCY_FILTERED_HD;
2356                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2357                         td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2358                         td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2359                 }
2360         }
2361 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2362         /* if no low limit, use previous default */
2363         td->throtl_slice = DFL_THROTL_SLICE_HD;
2364 #endif
2365
2366         td->track_bio_latency = !queue_is_mq(q);
2367         if (!td->track_bio_latency)
2368                 blk_stat_enable_accounting(q);
2369 }
2370
2371 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2372 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2373 {
2374         if (!q->td)
2375                 return -EINVAL;
2376         return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2377 }
2378
2379 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2380         const char *page, size_t count)
2381 {
2382         unsigned long v;
2383         unsigned long t;
2384
2385         if (!q->td)
2386                 return -EINVAL;
2387         if (kstrtoul(page, 10, &v))
2388                 return -EINVAL;
2389         t = msecs_to_jiffies(v);
2390         if (t == 0 || t > MAX_THROTL_SLICE)
2391                 return -EINVAL;
2392         q->td->throtl_slice = t;
2393         return count;
2394 }
2395 #endif
2396
2397 static int __init throtl_init(void)
2398 {
2399         kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2400         if (!kthrotld_workqueue)
2401                 panic("Failed to create kthrotld\n");
2402
2403         return blkcg_policy_register(&blkcg_policy_throtl);
2404 }
2405
2406 module_init(throtl_init);