Merge tag 'leds-next-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/leds
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31
32 #include <trace/events/block.h>
33
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-pm.h"
39 #include "blk-stat.h"
40 #include "blk-mq-sched.h"
41 #include "blk-rq-qos.h"
42
43 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
44 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
45
46 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
47 static void blk_mq_request_bypass_insert(struct request *rq,
48                 blk_insert_t flags);
49 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
50                 struct list_head *list);
51 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
52                          struct io_comp_batch *iob, unsigned int flags);
53
54 /*
55  * Check if any of the ctx, dispatch list or elevator
56  * have pending work in this hardware queue.
57  */
58 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
59 {
60         return !list_empty_careful(&hctx->dispatch) ||
61                 sbitmap_any_bit_set(&hctx->ctx_map) ||
62                         blk_mq_sched_has_work(hctx);
63 }
64
65 /*
66  * Mark this ctx as having pending work in this hardware queue
67  */
68 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
69                                      struct blk_mq_ctx *ctx)
70 {
71         const int bit = ctx->index_hw[hctx->type];
72
73         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
74                 sbitmap_set_bit(&hctx->ctx_map, bit);
75 }
76
77 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
78                                       struct blk_mq_ctx *ctx)
79 {
80         const int bit = ctx->index_hw[hctx->type];
81
82         sbitmap_clear_bit(&hctx->ctx_map, bit);
83 }
84
85 struct mq_inflight {
86         struct block_device *part;
87         unsigned int inflight[2];
88 };
89
90 static bool blk_mq_check_inflight(struct request *rq, void *priv)
91 {
92         struct mq_inflight *mi = priv;
93
94         if (rq->part && blk_do_io_stat(rq) &&
95             (!mi->part->bd_partno || rq->part == mi->part) &&
96             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
97                 mi->inflight[rq_data_dir(rq)]++;
98
99         return true;
100 }
101
102 unsigned int blk_mq_in_flight(struct request_queue *q,
103                 struct block_device *part)
104 {
105         struct mq_inflight mi = { .part = part };
106
107         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
108
109         return mi.inflight[0] + mi.inflight[1];
110 }
111
112 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
113                 unsigned int inflight[2])
114 {
115         struct mq_inflight mi = { .part = part };
116
117         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118         inflight[0] = mi.inflight[0];
119         inflight[1] = mi.inflight[1];
120 }
121
122 void blk_freeze_queue_start(struct request_queue *q)
123 {
124         mutex_lock(&q->mq_freeze_lock);
125         if (++q->mq_freeze_depth == 1) {
126                 percpu_ref_kill(&q->q_usage_counter);
127                 mutex_unlock(&q->mq_freeze_lock);
128                 if (queue_is_mq(q))
129                         blk_mq_run_hw_queues(q, false);
130         } else {
131                 mutex_unlock(&q->mq_freeze_lock);
132         }
133 }
134 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
135
136 void blk_mq_freeze_queue_wait(struct request_queue *q)
137 {
138         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
139 }
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
141
142 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
143                                      unsigned long timeout)
144 {
145         return wait_event_timeout(q->mq_freeze_wq,
146                                         percpu_ref_is_zero(&q->q_usage_counter),
147                                         timeout);
148 }
149 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
150
151 /*
152  * Guarantee no request is in use, so we can change any data structure of
153  * the queue afterward.
154  */
155 void blk_freeze_queue(struct request_queue *q)
156 {
157         /*
158          * In the !blk_mq case we are only calling this to kill the
159          * q_usage_counter, otherwise this increases the freeze depth
160          * and waits for it to return to zero.  For this reason there is
161          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
162          * exported to drivers as the only user for unfreeze is blk_mq.
163          */
164         blk_freeze_queue_start(q);
165         blk_mq_freeze_queue_wait(q);
166 }
167
168 void blk_mq_freeze_queue(struct request_queue *q)
169 {
170         /*
171          * ...just an alias to keep freeze and unfreeze actions balanced
172          * in the blk_mq_* namespace
173          */
174         blk_freeze_queue(q);
175 }
176 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
177
178 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
179 {
180         mutex_lock(&q->mq_freeze_lock);
181         if (force_atomic)
182                 q->q_usage_counter.data->force_atomic = true;
183         q->mq_freeze_depth--;
184         WARN_ON_ONCE(q->mq_freeze_depth < 0);
185         if (!q->mq_freeze_depth) {
186                 percpu_ref_resurrect(&q->q_usage_counter);
187                 wake_up_all(&q->mq_freeze_wq);
188         }
189         mutex_unlock(&q->mq_freeze_lock);
190 }
191
192 void blk_mq_unfreeze_queue(struct request_queue *q)
193 {
194         __blk_mq_unfreeze_queue(q, false);
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
197
198 /*
199  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
200  * mpt3sas driver such that this function can be removed.
201  */
202 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
203 {
204         unsigned long flags;
205
206         spin_lock_irqsave(&q->queue_lock, flags);
207         if (!q->quiesce_depth++)
208                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
209         spin_unlock_irqrestore(&q->queue_lock, flags);
210 }
211 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
212
213 /**
214  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
215  * @set: tag_set to wait on
216  *
217  * Note: it is driver's responsibility for making sure that quiesce has
218  * been started on or more of the request_queues of the tag_set.  This
219  * function only waits for the quiesce on those request_queues that had
220  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
221  */
222 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
223 {
224         if (set->flags & BLK_MQ_F_BLOCKING)
225                 synchronize_srcu(set->srcu);
226         else
227                 synchronize_rcu();
228 }
229 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
230
231 /**
232  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
233  * @q: request queue.
234  *
235  * Note: this function does not prevent that the struct request end_io()
236  * callback function is invoked. Once this function is returned, we make
237  * sure no dispatch can happen until the queue is unquiesced via
238  * blk_mq_unquiesce_queue().
239  */
240 void blk_mq_quiesce_queue(struct request_queue *q)
241 {
242         blk_mq_quiesce_queue_nowait(q);
243         /* nothing to wait for non-mq queues */
244         if (queue_is_mq(q))
245                 blk_mq_wait_quiesce_done(q->tag_set);
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248
249 /*
250  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251  * @q: request queue.
252  *
253  * This function recovers queue into the state before quiescing
254  * which is done by blk_mq_quiesce_queue.
255  */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258         unsigned long flags;
259         bool run_queue = false;
260
261         spin_lock_irqsave(&q->queue_lock, flags);
262         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
263                 ;
264         } else if (!--q->quiesce_depth) {
265                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
266                 run_queue = true;
267         }
268         spin_unlock_irqrestore(&q->queue_lock, flags);
269
270         /* dispatch requests which are inserted during quiescing */
271         if (run_queue)
272                 blk_mq_run_hw_queues(q, true);
273 }
274 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
275
276 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
277 {
278         struct request_queue *q;
279
280         mutex_lock(&set->tag_list_lock);
281         list_for_each_entry(q, &set->tag_list, tag_set_list) {
282                 if (!blk_queue_skip_tagset_quiesce(q))
283                         blk_mq_quiesce_queue_nowait(q);
284         }
285         blk_mq_wait_quiesce_done(set);
286         mutex_unlock(&set->tag_list_lock);
287 }
288 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
289
290 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
291 {
292         struct request_queue *q;
293
294         mutex_lock(&set->tag_list_lock);
295         list_for_each_entry(q, &set->tag_list, tag_set_list) {
296                 if (!blk_queue_skip_tagset_quiesce(q))
297                         blk_mq_unquiesce_queue(q);
298         }
299         mutex_unlock(&set->tag_list_lock);
300 }
301 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
302
303 void blk_mq_wake_waiters(struct request_queue *q)
304 {
305         struct blk_mq_hw_ctx *hctx;
306         unsigned long i;
307
308         queue_for_each_hw_ctx(q, hctx, i)
309                 if (blk_mq_hw_queue_mapped(hctx))
310                         blk_mq_tag_wakeup_all(hctx->tags, true);
311 }
312
313 void blk_rq_init(struct request_queue *q, struct request *rq)
314 {
315         memset(rq, 0, sizeof(*rq));
316
317         INIT_LIST_HEAD(&rq->queuelist);
318         rq->q = q;
319         rq->__sector = (sector_t) -1;
320         INIT_HLIST_NODE(&rq->hash);
321         RB_CLEAR_NODE(&rq->rb_node);
322         rq->tag = BLK_MQ_NO_TAG;
323         rq->internal_tag = BLK_MQ_NO_TAG;
324         rq->start_time_ns = blk_time_get_ns();
325         rq->part = NULL;
326         blk_crypto_rq_set_defaults(rq);
327 }
328 EXPORT_SYMBOL(blk_rq_init);
329
330 /* Set start and alloc time when the allocated request is actually used */
331 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
332 {
333         if (blk_mq_need_time_stamp(rq))
334                 rq->start_time_ns = blk_time_get_ns();
335         else
336                 rq->start_time_ns = 0;
337
338 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
339         if (blk_queue_rq_alloc_time(rq->q))
340                 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
341         else
342                 rq->alloc_time_ns = 0;
343 #endif
344 }
345
346 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
347                 struct blk_mq_tags *tags, unsigned int tag)
348 {
349         struct blk_mq_ctx *ctx = data->ctx;
350         struct blk_mq_hw_ctx *hctx = data->hctx;
351         struct request_queue *q = data->q;
352         struct request *rq = tags->static_rqs[tag];
353
354         rq->q = q;
355         rq->mq_ctx = ctx;
356         rq->mq_hctx = hctx;
357         rq->cmd_flags = data->cmd_flags;
358
359         if (data->flags & BLK_MQ_REQ_PM)
360                 data->rq_flags |= RQF_PM;
361         if (blk_queue_io_stat(q))
362                 data->rq_flags |= RQF_IO_STAT;
363         rq->rq_flags = data->rq_flags;
364
365         if (data->rq_flags & RQF_SCHED_TAGS) {
366                 rq->tag = BLK_MQ_NO_TAG;
367                 rq->internal_tag = tag;
368         } else {
369                 rq->tag = tag;
370                 rq->internal_tag = BLK_MQ_NO_TAG;
371         }
372         rq->timeout = 0;
373
374         rq->part = NULL;
375         rq->io_start_time_ns = 0;
376         rq->stats_sectors = 0;
377         rq->nr_phys_segments = 0;
378 #if defined(CONFIG_BLK_DEV_INTEGRITY)
379         rq->nr_integrity_segments = 0;
380 #endif
381         rq->end_io = NULL;
382         rq->end_io_data = NULL;
383
384         blk_crypto_rq_set_defaults(rq);
385         INIT_LIST_HEAD(&rq->queuelist);
386         /* tag was already set */
387         WRITE_ONCE(rq->deadline, 0);
388         req_ref_set(rq, 1);
389
390         if (rq->rq_flags & RQF_USE_SCHED) {
391                 struct elevator_queue *e = data->q->elevator;
392
393                 INIT_HLIST_NODE(&rq->hash);
394                 RB_CLEAR_NODE(&rq->rb_node);
395
396                 if (e->type->ops.prepare_request)
397                         e->type->ops.prepare_request(rq);
398         }
399
400         return rq;
401 }
402
403 static inline struct request *
404 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
405 {
406         unsigned int tag, tag_offset;
407         struct blk_mq_tags *tags;
408         struct request *rq;
409         unsigned long tag_mask;
410         int i, nr = 0;
411
412         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
413         if (unlikely(!tag_mask))
414                 return NULL;
415
416         tags = blk_mq_tags_from_data(data);
417         for (i = 0; tag_mask; i++) {
418                 if (!(tag_mask & (1UL << i)))
419                         continue;
420                 tag = tag_offset + i;
421                 prefetch(tags->static_rqs[tag]);
422                 tag_mask &= ~(1UL << i);
423                 rq = blk_mq_rq_ctx_init(data, tags, tag);
424                 rq_list_add(data->cached_rq, rq);
425                 nr++;
426         }
427         if (!(data->rq_flags & RQF_SCHED_TAGS))
428                 blk_mq_add_active_requests(data->hctx, nr);
429         /* caller already holds a reference, add for remainder */
430         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
431         data->nr_tags -= nr;
432
433         return rq_list_pop(data->cached_rq);
434 }
435
436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
437 {
438         struct request_queue *q = data->q;
439         u64 alloc_time_ns = 0;
440         struct request *rq;
441         unsigned int tag;
442
443         /* alloc_time includes depth and tag waits */
444         if (blk_queue_rq_alloc_time(q))
445                 alloc_time_ns = blk_time_get_ns();
446
447         if (data->cmd_flags & REQ_NOWAIT)
448                 data->flags |= BLK_MQ_REQ_NOWAIT;
449
450         if (q->elevator) {
451                 /*
452                  * All requests use scheduler tags when an I/O scheduler is
453                  * enabled for the queue.
454                  */
455                 data->rq_flags |= RQF_SCHED_TAGS;
456
457                 /*
458                  * Flush/passthrough requests are special and go directly to the
459                  * dispatch list.
460                  */
461                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
462                     !blk_op_is_passthrough(data->cmd_flags)) {
463                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
464
465                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
466
467                         data->rq_flags |= RQF_USE_SCHED;
468                         if (ops->limit_depth)
469                                 ops->limit_depth(data->cmd_flags, data);
470                 }
471         }
472
473 retry:
474         data->ctx = blk_mq_get_ctx(q);
475         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
476         if (!(data->rq_flags & RQF_SCHED_TAGS))
477                 blk_mq_tag_busy(data->hctx);
478
479         if (data->flags & BLK_MQ_REQ_RESERVED)
480                 data->rq_flags |= RQF_RESV;
481
482         /*
483          * Try batched alloc if we want more than 1 tag.
484          */
485         if (data->nr_tags > 1) {
486                 rq = __blk_mq_alloc_requests_batch(data);
487                 if (rq) {
488                         blk_mq_rq_time_init(rq, alloc_time_ns);
489                         return rq;
490                 }
491                 data->nr_tags = 1;
492         }
493
494         /*
495          * Waiting allocations only fail because of an inactive hctx.  In that
496          * case just retry the hctx assignment and tag allocation as CPU hotplug
497          * should have migrated us to an online CPU by now.
498          */
499         tag = blk_mq_get_tag(data);
500         if (tag == BLK_MQ_NO_TAG) {
501                 if (data->flags & BLK_MQ_REQ_NOWAIT)
502                         return NULL;
503                 /*
504                  * Give up the CPU and sleep for a random short time to
505                  * ensure that thread using a realtime scheduling class
506                  * are migrated off the CPU, and thus off the hctx that
507                  * is going away.
508                  */
509                 msleep(3);
510                 goto retry;
511         }
512
513         if (!(data->rq_flags & RQF_SCHED_TAGS))
514                 blk_mq_inc_active_requests(data->hctx);
515         rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
516         blk_mq_rq_time_init(rq, alloc_time_ns);
517         return rq;
518 }
519
520 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
521                                             struct blk_plug *plug,
522                                             blk_opf_t opf,
523                                             blk_mq_req_flags_t flags)
524 {
525         struct blk_mq_alloc_data data = {
526                 .q              = q,
527                 .flags          = flags,
528                 .cmd_flags      = opf,
529                 .nr_tags        = plug->nr_ios,
530                 .cached_rq      = &plug->cached_rq,
531         };
532         struct request *rq;
533
534         if (blk_queue_enter(q, flags))
535                 return NULL;
536
537         plug->nr_ios = 1;
538
539         rq = __blk_mq_alloc_requests(&data);
540         if (unlikely(!rq))
541                 blk_queue_exit(q);
542         return rq;
543 }
544
545 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
546                                                    blk_opf_t opf,
547                                                    blk_mq_req_flags_t flags)
548 {
549         struct blk_plug *plug = current->plug;
550         struct request *rq;
551
552         if (!plug)
553                 return NULL;
554
555         if (rq_list_empty(plug->cached_rq)) {
556                 if (plug->nr_ios == 1)
557                         return NULL;
558                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
559                 if (!rq)
560                         return NULL;
561         } else {
562                 rq = rq_list_peek(&plug->cached_rq);
563                 if (!rq || rq->q != q)
564                         return NULL;
565
566                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
567                         return NULL;
568                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
569                         return NULL;
570
571                 plug->cached_rq = rq_list_next(rq);
572                 blk_mq_rq_time_init(rq, 0);
573         }
574
575         rq->cmd_flags = opf;
576         INIT_LIST_HEAD(&rq->queuelist);
577         return rq;
578 }
579
580 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
581                 blk_mq_req_flags_t flags)
582 {
583         struct request *rq;
584
585         rq = blk_mq_alloc_cached_request(q, opf, flags);
586         if (!rq) {
587                 struct blk_mq_alloc_data data = {
588                         .q              = q,
589                         .flags          = flags,
590                         .cmd_flags      = opf,
591                         .nr_tags        = 1,
592                 };
593                 int ret;
594
595                 ret = blk_queue_enter(q, flags);
596                 if (ret)
597                         return ERR_PTR(ret);
598
599                 rq = __blk_mq_alloc_requests(&data);
600                 if (!rq)
601                         goto out_queue_exit;
602         }
603         rq->__data_len = 0;
604         rq->__sector = (sector_t) -1;
605         rq->bio = rq->biotail = NULL;
606         return rq;
607 out_queue_exit:
608         blk_queue_exit(q);
609         return ERR_PTR(-EWOULDBLOCK);
610 }
611 EXPORT_SYMBOL(blk_mq_alloc_request);
612
613 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
614         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
615 {
616         struct blk_mq_alloc_data data = {
617                 .q              = q,
618                 .flags          = flags,
619                 .cmd_flags      = opf,
620                 .nr_tags        = 1,
621         };
622         u64 alloc_time_ns = 0;
623         struct request *rq;
624         unsigned int cpu;
625         unsigned int tag;
626         int ret;
627
628         /* alloc_time includes depth and tag waits */
629         if (blk_queue_rq_alloc_time(q))
630                 alloc_time_ns = blk_time_get_ns();
631
632         /*
633          * If the tag allocator sleeps we could get an allocation for a
634          * different hardware context.  No need to complicate the low level
635          * allocator for this for the rare use case of a command tied to
636          * a specific queue.
637          */
638         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
639             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
640                 return ERR_PTR(-EINVAL);
641
642         if (hctx_idx >= q->nr_hw_queues)
643                 return ERR_PTR(-EIO);
644
645         ret = blk_queue_enter(q, flags);
646         if (ret)
647                 return ERR_PTR(ret);
648
649         /*
650          * Check if the hardware context is actually mapped to anything.
651          * If not tell the caller that it should skip this queue.
652          */
653         ret = -EXDEV;
654         data.hctx = xa_load(&q->hctx_table, hctx_idx);
655         if (!blk_mq_hw_queue_mapped(data.hctx))
656                 goto out_queue_exit;
657         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
658         if (cpu >= nr_cpu_ids)
659                 goto out_queue_exit;
660         data.ctx = __blk_mq_get_ctx(q, cpu);
661
662         if (q->elevator)
663                 data.rq_flags |= RQF_SCHED_TAGS;
664         else
665                 blk_mq_tag_busy(data.hctx);
666
667         if (flags & BLK_MQ_REQ_RESERVED)
668                 data.rq_flags |= RQF_RESV;
669
670         ret = -EWOULDBLOCK;
671         tag = blk_mq_get_tag(&data);
672         if (tag == BLK_MQ_NO_TAG)
673                 goto out_queue_exit;
674         if (!(data.rq_flags & RQF_SCHED_TAGS))
675                 blk_mq_inc_active_requests(data.hctx);
676         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
677         blk_mq_rq_time_init(rq, alloc_time_ns);
678         rq->__data_len = 0;
679         rq->__sector = (sector_t) -1;
680         rq->bio = rq->biotail = NULL;
681         return rq;
682
683 out_queue_exit:
684         blk_queue_exit(q);
685         return ERR_PTR(ret);
686 }
687 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
688
689 static void blk_mq_finish_request(struct request *rq)
690 {
691         struct request_queue *q = rq->q;
692
693         if (rq->rq_flags & RQF_USE_SCHED) {
694                 q->elevator->type->ops.finish_request(rq);
695                 /*
696                  * For postflush request that may need to be
697                  * completed twice, we should clear this flag
698                  * to avoid double finish_request() on the rq.
699                  */
700                 rq->rq_flags &= ~RQF_USE_SCHED;
701         }
702 }
703
704 static void __blk_mq_free_request(struct request *rq)
705 {
706         struct request_queue *q = rq->q;
707         struct blk_mq_ctx *ctx = rq->mq_ctx;
708         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
709         const int sched_tag = rq->internal_tag;
710
711         blk_crypto_free_request(rq);
712         blk_pm_mark_last_busy(rq);
713         rq->mq_hctx = NULL;
714
715         if (rq->tag != BLK_MQ_NO_TAG) {
716                 blk_mq_dec_active_requests(hctx);
717                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
718         }
719         if (sched_tag != BLK_MQ_NO_TAG)
720                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
721         blk_mq_sched_restart(hctx);
722         blk_queue_exit(q);
723 }
724
725 void blk_mq_free_request(struct request *rq)
726 {
727         struct request_queue *q = rq->q;
728
729         blk_mq_finish_request(rq);
730
731         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
732                 laptop_io_completion(q->disk->bdi);
733
734         rq_qos_done(q, rq);
735
736         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
737         if (req_ref_put_and_test(rq))
738                 __blk_mq_free_request(rq);
739 }
740 EXPORT_SYMBOL_GPL(blk_mq_free_request);
741
742 void blk_mq_free_plug_rqs(struct blk_plug *plug)
743 {
744         struct request *rq;
745
746         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
747                 blk_mq_free_request(rq);
748 }
749
750 void blk_dump_rq_flags(struct request *rq, char *msg)
751 {
752         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
753                 rq->q->disk ? rq->q->disk->disk_name : "?",
754                 (__force unsigned long long) rq->cmd_flags);
755
756         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
757                (unsigned long long)blk_rq_pos(rq),
758                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
759         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
760                rq->bio, rq->biotail, blk_rq_bytes(rq));
761 }
762 EXPORT_SYMBOL(blk_dump_rq_flags);
763
764 static void req_bio_endio(struct request *rq, struct bio *bio,
765                           unsigned int nbytes, blk_status_t error)
766 {
767         if (unlikely(error)) {
768                 bio->bi_status = error;
769         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
770                 /*
771                  * Partial zone append completions cannot be supported as the
772                  * BIO fragments may end up not being written sequentially.
773                  * For such case, force the completed nbytes to be equal to
774                  * the BIO size so that bio_advance() sets the BIO remaining
775                  * size to 0 and we end up calling bio_endio() before returning.
776                  */
777                 if (bio->bi_iter.bi_size != nbytes) {
778                         bio->bi_status = BLK_STS_IOERR;
779                         nbytes = bio->bi_iter.bi_size;
780                 } else {
781                         bio->bi_iter.bi_sector = rq->__sector;
782                 }
783         }
784
785         bio_advance(bio, nbytes);
786
787         if (unlikely(rq->rq_flags & RQF_QUIET))
788                 bio_set_flag(bio, BIO_QUIET);
789         /* don't actually finish bio if it's part of flush sequence */
790         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
791                 bio_endio(bio);
792 }
793
794 static void blk_account_io_completion(struct request *req, unsigned int bytes)
795 {
796         if (req->part && blk_do_io_stat(req)) {
797                 const int sgrp = op_stat_group(req_op(req));
798
799                 part_stat_lock();
800                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
801                 part_stat_unlock();
802         }
803 }
804
805 static void blk_print_req_error(struct request *req, blk_status_t status)
806 {
807         printk_ratelimited(KERN_ERR
808                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
809                 "phys_seg %u prio class %u\n",
810                 blk_status_to_str(status),
811                 req->q->disk ? req->q->disk->disk_name : "?",
812                 blk_rq_pos(req), (__force u32)req_op(req),
813                 blk_op_str(req_op(req)),
814                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
815                 req->nr_phys_segments,
816                 IOPRIO_PRIO_CLASS(req->ioprio));
817 }
818
819 /*
820  * Fully end IO on a request. Does not support partial completions, or
821  * errors.
822  */
823 static void blk_complete_request(struct request *req)
824 {
825         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
826         int total_bytes = blk_rq_bytes(req);
827         struct bio *bio = req->bio;
828
829         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
830
831         if (!bio)
832                 return;
833
834 #ifdef CONFIG_BLK_DEV_INTEGRITY
835         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
836                 req->q->integrity.profile->complete_fn(req, total_bytes);
837 #endif
838
839         /*
840          * Upper layers may call blk_crypto_evict_key() anytime after the last
841          * bio_endio().  Therefore, the keyslot must be released before that.
842          */
843         blk_crypto_rq_put_keyslot(req);
844
845         blk_account_io_completion(req, total_bytes);
846
847         do {
848                 struct bio *next = bio->bi_next;
849
850                 /* Completion has already been traced */
851                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
852
853                 if (req_op(req) == REQ_OP_ZONE_APPEND)
854                         bio->bi_iter.bi_sector = req->__sector;
855
856                 if (!is_flush)
857                         bio_endio(bio);
858                 bio = next;
859         } while (bio);
860
861         /*
862          * Reset counters so that the request stacking driver
863          * can find how many bytes remain in the request
864          * later.
865          */
866         if (!req->end_io) {
867                 req->bio = NULL;
868                 req->__data_len = 0;
869         }
870 }
871
872 /**
873  * blk_update_request - Complete multiple bytes without completing the request
874  * @req:      the request being processed
875  * @error:    block status code
876  * @nr_bytes: number of bytes to complete for @req
877  *
878  * Description:
879  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
880  *     the request structure even if @req doesn't have leftover.
881  *     If @req has leftover, sets it up for the next range of segments.
882  *
883  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
884  *     %false return from this function.
885  *
886  * Note:
887  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
888  *      except in the consistency check at the end of this function.
889  *
890  * Return:
891  *     %false - this request doesn't have any more data
892  *     %true  - this request has more data
893  **/
894 bool blk_update_request(struct request *req, blk_status_t error,
895                 unsigned int nr_bytes)
896 {
897         int total_bytes;
898
899         trace_block_rq_complete(req, error, nr_bytes);
900
901         if (!req->bio)
902                 return false;
903
904 #ifdef CONFIG_BLK_DEV_INTEGRITY
905         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
906             error == BLK_STS_OK)
907                 req->q->integrity.profile->complete_fn(req, nr_bytes);
908 #endif
909
910         /*
911          * Upper layers may call blk_crypto_evict_key() anytime after the last
912          * bio_endio().  Therefore, the keyslot must be released before that.
913          */
914         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
915                 __blk_crypto_rq_put_keyslot(req);
916
917         if (unlikely(error && !blk_rq_is_passthrough(req) &&
918                      !(req->rq_flags & RQF_QUIET)) &&
919                      !test_bit(GD_DEAD, &req->q->disk->state)) {
920                 blk_print_req_error(req, error);
921                 trace_block_rq_error(req, error, nr_bytes);
922         }
923
924         blk_account_io_completion(req, nr_bytes);
925
926         total_bytes = 0;
927         while (req->bio) {
928                 struct bio *bio = req->bio;
929                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
930
931                 if (bio_bytes == bio->bi_iter.bi_size)
932                         req->bio = bio->bi_next;
933
934                 /* Completion has already been traced */
935                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
936                 req_bio_endio(req, bio, bio_bytes, error);
937
938                 total_bytes += bio_bytes;
939                 nr_bytes -= bio_bytes;
940
941                 if (!nr_bytes)
942                         break;
943         }
944
945         /*
946          * completely done
947          */
948         if (!req->bio) {
949                 /*
950                  * Reset counters so that the request stacking driver
951                  * can find how many bytes remain in the request
952                  * later.
953                  */
954                 req->__data_len = 0;
955                 return false;
956         }
957
958         req->__data_len -= total_bytes;
959
960         /* update sector only for requests with clear definition of sector */
961         if (!blk_rq_is_passthrough(req))
962                 req->__sector += total_bytes >> 9;
963
964         /* mixed attributes always follow the first bio */
965         if (req->rq_flags & RQF_MIXED_MERGE) {
966                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
967                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
968         }
969
970         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
971                 /*
972                  * If total number of sectors is less than the first segment
973                  * size, something has gone terribly wrong.
974                  */
975                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
976                         blk_dump_rq_flags(req, "request botched");
977                         req->__data_len = blk_rq_cur_bytes(req);
978                 }
979
980                 /* recalculate the number of segments */
981                 req->nr_phys_segments = blk_recalc_rq_segments(req);
982         }
983
984         return true;
985 }
986 EXPORT_SYMBOL_GPL(blk_update_request);
987
988 static inline void blk_account_io_done(struct request *req, u64 now)
989 {
990         trace_block_io_done(req);
991
992         /*
993          * Account IO completion.  flush_rq isn't accounted as a
994          * normal IO on queueing nor completion.  Accounting the
995          * containing request is enough.
996          */
997         if (blk_do_io_stat(req) && req->part &&
998             !(req->rq_flags & RQF_FLUSH_SEQ)) {
999                 const int sgrp = op_stat_group(req_op(req));
1000
1001                 part_stat_lock();
1002                 update_io_ticks(req->part, jiffies, true);
1003                 part_stat_inc(req->part, ios[sgrp]);
1004                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1005                 part_stat_unlock();
1006         }
1007 }
1008
1009 static inline void blk_account_io_start(struct request *req)
1010 {
1011         trace_block_io_start(req);
1012
1013         if (blk_do_io_stat(req)) {
1014                 /*
1015                  * All non-passthrough requests are created from a bio with one
1016                  * exception: when a flush command that is part of a flush sequence
1017                  * generated by the state machine in blk-flush.c is cloned onto the
1018                  * lower device by dm-multipath we can get here without a bio.
1019                  */
1020                 if (req->bio)
1021                         req->part = req->bio->bi_bdev;
1022                 else
1023                         req->part = req->q->disk->part0;
1024
1025                 part_stat_lock();
1026                 update_io_ticks(req->part, jiffies, false);
1027                 part_stat_unlock();
1028         }
1029 }
1030
1031 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1032 {
1033         if (rq->rq_flags & RQF_STATS)
1034                 blk_stat_add(rq, now);
1035
1036         blk_mq_sched_completed_request(rq, now);
1037         blk_account_io_done(rq, now);
1038 }
1039
1040 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1041 {
1042         if (blk_mq_need_time_stamp(rq))
1043                 __blk_mq_end_request_acct(rq, blk_time_get_ns());
1044
1045         blk_mq_finish_request(rq);
1046
1047         if (rq->end_io) {
1048                 rq_qos_done(rq->q, rq);
1049                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1050                         blk_mq_free_request(rq);
1051         } else {
1052                 blk_mq_free_request(rq);
1053         }
1054 }
1055 EXPORT_SYMBOL(__blk_mq_end_request);
1056
1057 void blk_mq_end_request(struct request *rq, blk_status_t error)
1058 {
1059         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1060                 BUG();
1061         __blk_mq_end_request(rq, error);
1062 }
1063 EXPORT_SYMBOL(blk_mq_end_request);
1064
1065 #define TAG_COMP_BATCH          32
1066
1067 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1068                                           int *tag_array, int nr_tags)
1069 {
1070         struct request_queue *q = hctx->queue;
1071
1072         blk_mq_sub_active_requests(hctx, nr_tags);
1073
1074         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1075         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1076 }
1077
1078 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1079 {
1080         int tags[TAG_COMP_BATCH], nr_tags = 0;
1081         struct blk_mq_hw_ctx *cur_hctx = NULL;
1082         struct request *rq;
1083         u64 now = 0;
1084
1085         if (iob->need_ts)
1086                 now = blk_time_get_ns();
1087
1088         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1089                 prefetch(rq->bio);
1090                 prefetch(rq->rq_next);
1091
1092                 blk_complete_request(rq);
1093                 if (iob->need_ts)
1094                         __blk_mq_end_request_acct(rq, now);
1095
1096                 blk_mq_finish_request(rq);
1097
1098                 rq_qos_done(rq->q, rq);
1099
1100                 /*
1101                  * If end_io handler returns NONE, then it still has
1102                  * ownership of the request.
1103                  */
1104                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1105                         continue;
1106
1107                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1108                 if (!req_ref_put_and_test(rq))
1109                         continue;
1110
1111                 blk_crypto_free_request(rq);
1112                 blk_pm_mark_last_busy(rq);
1113
1114                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1115                         if (cur_hctx)
1116                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1117                         nr_tags = 0;
1118                         cur_hctx = rq->mq_hctx;
1119                 }
1120                 tags[nr_tags++] = rq->tag;
1121         }
1122
1123         if (nr_tags)
1124                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1125 }
1126 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1127
1128 static void blk_complete_reqs(struct llist_head *list)
1129 {
1130         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1131         struct request *rq, *next;
1132
1133         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1134                 rq->q->mq_ops->complete(rq);
1135 }
1136
1137 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1138 {
1139         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1140 }
1141
1142 static int blk_softirq_cpu_dead(unsigned int cpu)
1143 {
1144         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1145         return 0;
1146 }
1147
1148 static void __blk_mq_complete_request_remote(void *data)
1149 {
1150         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1151 }
1152
1153 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1154 {
1155         int cpu = raw_smp_processor_id();
1156
1157         if (!IS_ENABLED(CONFIG_SMP) ||
1158             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1159                 return false;
1160         /*
1161          * With force threaded interrupts enabled, raising softirq from an SMP
1162          * function call will always result in waking the ksoftirqd thread.
1163          * This is probably worse than completing the request on a different
1164          * cache domain.
1165          */
1166         if (force_irqthreads())
1167                 return false;
1168
1169         /* same CPU or cache domain and capacity?  Complete locally */
1170         if (cpu == rq->mq_ctx->cpu ||
1171             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1172              cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1173              cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1174                 return false;
1175
1176         /* don't try to IPI to an offline CPU */
1177         return cpu_online(rq->mq_ctx->cpu);
1178 }
1179
1180 static void blk_mq_complete_send_ipi(struct request *rq)
1181 {
1182         unsigned int cpu;
1183
1184         cpu = rq->mq_ctx->cpu;
1185         if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1186                 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1187 }
1188
1189 static void blk_mq_raise_softirq(struct request *rq)
1190 {
1191         struct llist_head *list;
1192
1193         preempt_disable();
1194         list = this_cpu_ptr(&blk_cpu_done);
1195         if (llist_add(&rq->ipi_list, list))
1196                 raise_softirq(BLOCK_SOFTIRQ);
1197         preempt_enable();
1198 }
1199
1200 bool blk_mq_complete_request_remote(struct request *rq)
1201 {
1202         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1203
1204         /*
1205          * For request which hctx has only one ctx mapping,
1206          * or a polled request, always complete locally,
1207          * it's pointless to redirect the completion.
1208          */
1209         if ((rq->mq_hctx->nr_ctx == 1 &&
1210              rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1211              rq->cmd_flags & REQ_POLLED)
1212                 return false;
1213
1214         if (blk_mq_complete_need_ipi(rq)) {
1215                 blk_mq_complete_send_ipi(rq);
1216                 return true;
1217         }
1218
1219         if (rq->q->nr_hw_queues == 1) {
1220                 blk_mq_raise_softirq(rq);
1221                 return true;
1222         }
1223         return false;
1224 }
1225 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1226
1227 /**
1228  * blk_mq_complete_request - end I/O on a request
1229  * @rq:         the request being processed
1230  *
1231  * Description:
1232  *      Complete a request by scheduling the ->complete_rq operation.
1233  **/
1234 void blk_mq_complete_request(struct request *rq)
1235 {
1236         if (!blk_mq_complete_request_remote(rq))
1237                 rq->q->mq_ops->complete(rq);
1238 }
1239 EXPORT_SYMBOL(blk_mq_complete_request);
1240
1241 /**
1242  * blk_mq_start_request - Start processing a request
1243  * @rq: Pointer to request to be started
1244  *
1245  * Function used by device drivers to notify the block layer that a request
1246  * is going to be processed now, so blk layer can do proper initializations
1247  * such as starting the timeout timer.
1248  */
1249 void blk_mq_start_request(struct request *rq)
1250 {
1251         struct request_queue *q = rq->q;
1252
1253         trace_block_rq_issue(rq);
1254
1255         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1256             !blk_rq_is_passthrough(rq)) {
1257                 rq->io_start_time_ns = blk_time_get_ns();
1258                 rq->stats_sectors = blk_rq_sectors(rq);
1259                 rq->rq_flags |= RQF_STATS;
1260                 rq_qos_issue(q, rq);
1261         }
1262
1263         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1264
1265         blk_add_timer(rq);
1266         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1267         rq->mq_hctx->tags->rqs[rq->tag] = rq;
1268
1269 #ifdef CONFIG_BLK_DEV_INTEGRITY
1270         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1271                 q->integrity.profile->prepare_fn(rq);
1272 #endif
1273         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1274                 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1275 }
1276 EXPORT_SYMBOL(blk_mq_start_request);
1277
1278 /*
1279  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1280  * queues. This is important for md arrays to benefit from merging
1281  * requests.
1282  */
1283 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1284 {
1285         if (plug->multiple_queues)
1286                 return BLK_MAX_REQUEST_COUNT * 2;
1287         return BLK_MAX_REQUEST_COUNT;
1288 }
1289
1290 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1291 {
1292         struct request *last = rq_list_peek(&plug->mq_list);
1293
1294         if (!plug->rq_count) {
1295                 trace_block_plug(rq->q);
1296         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1297                    (!blk_queue_nomerges(rq->q) &&
1298                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1299                 blk_mq_flush_plug_list(plug, false);
1300                 last = NULL;
1301                 trace_block_plug(rq->q);
1302         }
1303
1304         if (!plug->multiple_queues && last && last->q != rq->q)
1305                 plug->multiple_queues = true;
1306         /*
1307          * Any request allocated from sched tags can't be issued to
1308          * ->queue_rqs() directly
1309          */
1310         if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1311                 plug->has_elevator = true;
1312         rq->rq_next = NULL;
1313         rq_list_add(&plug->mq_list, rq);
1314         plug->rq_count++;
1315 }
1316
1317 /**
1318  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1319  * @rq:         request to insert
1320  * @at_head:    insert request at head or tail of queue
1321  *
1322  * Description:
1323  *    Insert a fully prepared request at the back of the I/O scheduler queue
1324  *    for execution.  Don't wait for completion.
1325  *
1326  * Note:
1327  *    This function will invoke @done directly if the queue is dead.
1328  */
1329 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1330 {
1331         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1332
1333         WARN_ON(irqs_disabled());
1334         WARN_ON(!blk_rq_is_passthrough(rq));
1335
1336         blk_account_io_start(rq);
1337
1338         /*
1339          * As plugging can be enabled for passthrough requests on a zoned
1340          * device, directly accessing the plug instead of using blk_mq_plug()
1341          * should not have any consequences.
1342          */
1343         if (current->plug && !at_head) {
1344                 blk_add_rq_to_plug(current->plug, rq);
1345                 return;
1346         }
1347
1348         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1349         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1350 }
1351 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1352
1353 struct blk_rq_wait {
1354         struct completion done;
1355         blk_status_t ret;
1356 };
1357
1358 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1359 {
1360         struct blk_rq_wait *wait = rq->end_io_data;
1361
1362         wait->ret = ret;
1363         complete(&wait->done);
1364         return RQ_END_IO_NONE;
1365 }
1366
1367 bool blk_rq_is_poll(struct request *rq)
1368 {
1369         if (!rq->mq_hctx)
1370                 return false;
1371         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1372                 return false;
1373         return true;
1374 }
1375 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1376
1377 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1378 {
1379         do {
1380                 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1381                 cond_resched();
1382         } while (!completion_done(wait));
1383 }
1384
1385 /**
1386  * blk_execute_rq - insert a request into queue for execution
1387  * @rq:         request to insert
1388  * @at_head:    insert request at head or tail of queue
1389  *
1390  * Description:
1391  *    Insert a fully prepared request at the back of the I/O scheduler queue
1392  *    for execution and wait for completion.
1393  * Return: The blk_status_t result provided to blk_mq_end_request().
1394  */
1395 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1396 {
1397         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1398         struct blk_rq_wait wait = {
1399                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1400         };
1401
1402         WARN_ON(irqs_disabled());
1403         WARN_ON(!blk_rq_is_passthrough(rq));
1404
1405         rq->end_io_data = &wait;
1406         rq->end_io = blk_end_sync_rq;
1407
1408         blk_account_io_start(rq);
1409         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1410         blk_mq_run_hw_queue(hctx, false);
1411
1412         if (blk_rq_is_poll(rq))
1413                 blk_rq_poll_completion(rq, &wait.done);
1414         else
1415                 blk_wait_io(&wait.done);
1416
1417         return wait.ret;
1418 }
1419 EXPORT_SYMBOL(blk_execute_rq);
1420
1421 static void __blk_mq_requeue_request(struct request *rq)
1422 {
1423         struct request_queue *q = rq->q;
1424
1425         blk_mq_put_driver_tag(rq);
1426
1427         trace_block_rq_requeue(rq);
1428         rq_qos_requeue(q, rq);
1429
1430         if (blk_mq_request_started(rq)) {
1431                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1432                 rq->rq_flags &= ~RQF_TIMED_OUT;
1433         }
1434 }
1435
1436 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1437 {
1438         struct request_queue *q = rq->q;
1439         unsigned long flags;
1440
1441         __blk_mq_requeue_request(rq);
1442
1443         /* this request will be re-inserted to io scheduler queue */
1444         blk_mq_sched_requeue_request(rq);
1445
1446         spin_lock_irqsave(&q->requeue_lock, flags);
1447         list_add_tail(&rq->queuelist, &q->requeue_list);
1448         spin_unlock_irqrestore(&q->requeue_lock, flags);
1449
1450         if (kick_requeue_list)
1451                 blk_mq_kick_requeue_list(q);
1452 }
1453 EXPORT_SYMBOL(blk_mq_requeue_request);
1454
1455 static void blk_mq_requeue_work(struct work_struct *work)
1456 {
1457         struct request_queue *q =
1458                 container_of(work, struct request_queue, requeue_work.work);
1459         LIST_HEAD(rq_list);
1460         LIST_HEAD(flush_list);
1461         struct request *rq;
1462
1463         spin_lock_irq(&q->requeue_lock);
1464         list_splice_init(&q->requeue_list, &rq_list);
1465         list_splice_init(&q->flush_list, &flush_list);
1466         spin_unlock_irq(&q->requeue_lock);
1467
1468         while (!list_empty(&rq_list)) {
1469                 rq = list_entry(rq_list.next, struct request, queuelist);
1470                 /*
1471                  * If RQF_DONTPREP ist set, the request has been started by the
1472                  * driver already and might have driver-specific data allocated
1473                  * already.  Insert it into the hctx dispatch list to avoid
1474                  * block layer merges for the request.
1475                  */
1476                 if (rq->rq_flags & RQF_DONTPREP) {
1477                         list_del_init(&rq->queuelist);
1478                         blk_mq_request_bypass_insert(rq, 0);
1479                 } else {
1480                         list_del_init(&rq->queuelist);
1481                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1482                 }
1483         }
1484
1485         while (!list_empty(&flush_list)) {
1486                 rq = list_entry(flush_list.next, struct request, queuelist);
1487                 list_del_init(&rq->queuelist);
1488                 blk_mq_insert_request(rq, 0);
1489         }
1490
1491         blk_mq_run_hw_queues(q, false);
1492 }
1493
1494 void blk_mq_kick_requeue_list(struct request_queue *q)
1495 {
1496         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1497 }
1498 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1499
1500 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1501                                     unsigned long msecs)
1502 {
1503         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1504                                     msecs_to_jiffies(msecs));
1505 }
1506 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1507
1508 static bool blk_is_flush_data_rq(struct request *rq)
1509 {
1510         return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1511 }
1512
1513 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1514 {
1515         /*
1516          * If we find a request that isn't idle we know the queue is busy
1517          * as it's checked in the iter.
1518          * Return false to stop the iteration.
1519          *
1520          * In case of queue quiesce, if one flush data request is completed,
1521          * don't count it as inflight given the flush sequence is suspended,
1522          * and the original flush data request is invisible to driver, just
1523          * like other pending requests because of quiesce
1524          */
1525         if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1526                                 blk_is_flush_data_rq(rq) &&
1527                                 blk_mq_request_completed(rq))) {
1528                 bool *busy = priv;
1529
1530                 *busy = true;
1531                 return false;
1532         }
1533
1534         return true;
1535 }
1536
1537 bool blk_mq_queue_inflight(struct request_queue *q)
1538 {
1539         bool busy = false;
1540
1541         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1542         return busy;
1543 }
1544 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1545
1546 static void blk_mq_rq_timed_out(struct request *req)
1547 {
1548         req->rq_flags |= RQF_TIMED_OUT;
1549         if (req->q->mq_ops->timeout) {
1550                 enum blk_eh_timer_return ret;
1551
1552                 ret = req->q->mq_ops->timeout(req);
1553                 if (ret == BLK_EH_DONE)
1554                         return;
1555                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1556         }
1557
1558         blk_add_timer(req);
1559 }
1560
1561 struct blk_expired_data {
1562         bool has_timedout_rq;
1563         unsigned long next;
1564         unsigned long timeout_start;
1565 };
1566
1567 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1568 {
1569         unsigned long deadline;
1570
1571         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1572                 return false;
1573         if (rq->rq_flags & RQF_TIMED_OUT)
1574                 return false;
1575
1576         deadline = READ_ONCE(rq->deadline);
1577         if (time_after_eq(expired->timeout_start, deadline))
1578                 return true;
1579
1580         if (expired->next == 0)
1581                 expired->next = deadline;
1582         else if (time_after(expired->next, deadline))
1583                 expired->next = deadline;
1584         return false;
1585 }
1586
1587 void blk_mq_put_rq_ref(struct request *rq)
1588 {
1589         if (is_flush_rq(rq)) {
1590                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1591                         blk_mq_free_request(rq);
1592         } else if (req_ref_put_and_test(rq)) {
1593                 __blk_mq_free_request(rq);
1594         }
1595 }
1596
1597 static bool blk_mq_check_expired(struct request *rq, void *priv)
1598 {
1599         struct blk_expired_data *expired = priv;
1600
1601         /*
1602          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1603          * be reallocated underneath the timeout handler's processing, then
1604          * the expire check is reliable. If the request is not expired, then
1605          * it was completed and reallocated as a new request after returning
1606          * from blk_mq_check_expired().
1607          */
1608         if (blk_mq_req_expired(rq, expired)) {
1609                 expired->has_timedout_rq = true;
1610                 return false;
1611         }
1612         return true;
1613 }
1614
1615 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1616 {
1617         struct blk_expired_data *expired = priv;
1618
1619         if (blk_mq_req_expired(rq, expired))
1620                 blk_mq_rq_timed_out(rq);
1621         return true;
1622 }
1623
1624 static void blk_mq_timeout_work(struct work_struct *work)
1625 {
1626         struct request_queue *q =
1627                 container_of(work, struct request_queue, timeout_work);
1628         struct blk_expired_data expired = {
1629                 .timeout_start = jiffies,
1630         };
1631         struct blk_mq_hw_ctx *hctx;
1632         unsigned long i;
1633
1634         /* A deadlock might occur if a request is stuck requiring a
1635          * timeout at the same time a queue freeze is waiting
1636          * completion, since the timeout code would not be able to
1637          * acquire the queue reference here.
1638          *
1639          * That's why we don't use blk_queue_enter here; instead, we use
1640          * percpu_ref_tryget directly, because we need to be able to
1641          * obtain a reference even in the short window between the queue
1642          * starting to freeze, by dropping the first reference in
1643          * blk_freeze_queue_start, and the moment the last request is
1644          * consumed, marked by the instant q_usage_counter reaches
1645          * zero.
1646          */
1647         if (!percpu_ref_tryget(&q->q_usage_counter))
1648                 return;
1649
1650         /* check if there is any timed-out request */
1651         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1652         if (expired.has_timedout_rq) {
1653                 /*
1654                  * Before walking tags, we must ensure any submit started
1655                  * before the current time has finished. Since the submit
1656                  * uses srcu or rcu, wait for a synchronization point to
1657                  * ensure all running submits have finished
1658                  */
1659                 blk_mq_wait_quiesce_done(q->tag_set);
1660
1661                 expired.next = 0;
1662                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1663         }
1664
1665         if (expired.next != 0) {
1666                 mod_timer(&q->timeout, expired.next);
1667         } else {
1668                 /*
1669                  * Request timeouts are handled as a forward rolling timer. If
1670                  * we end up here it means that no requests are pending and
1671                  * also that no request has been pending for a while. Mark
1672                  * each hctx as idle.
1673                  */
1674                 queue_for_each_hw_ctx(q, hctx, i) {
1675                         /* the hctx may be unmapped, so check it here */
1676                         if (blk_mq_hw_queue_mapped(hctx))
1677                                 blk_mq_tag_idle(hctx);
1678                 }
1679         }
1680         blk_queue_exit(q);
1681 }
1682
1683 struct flush_busy_ctx_data {
1684         struct blk_mq_hw_ctx *hctx;
1685         struct list_head *list;
1686 };
1687
1688 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1689 {
1690         struct flush_busy_ctx_data *flush_data = data;
1691         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1692         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1693         enum hctx_type type = hctx->type;
1694
1695         spin_lock(&ctx->lock);
1696         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1697         sbitmap_clear_bit(sb, bitnr);
1698         spin_unlock(&ctx->lock);
1699         return true;
1700 }
1701
1702 /*
1703  * Process software queues that have been marked busy, splicing them
1704  * to the for-dispatch
1705  */
1706 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1707 {
1708         struct flush_busy_ctx_data data = {
1709                 .hctx = hctx,
1710                 .list = list,
1711         };
1712
1713         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1714 }
1715 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1716
1717 struct dispatch_rq_data {
1718         struct blk_mq_hw_ctx *hctx;
1719         struct request *rq;
1720 };
1721
1722 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1723                 void *data)
1724 {
1725         struct dispatch_rq_data *dispatch_data = data;
1726         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1727         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1728         enum hctx_type type = hctx->type;
1729
1730         spin_lock(&ctx->lock);
1731         if (!list_empty(&ctx->rq_lists[type])) {
1732                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1733                 list_del_init(&dispatch_data->rq->queuelist);
1734                 if (list_empty(&ctx->rq_lists[type]))
1735                         sbitmap_clear_bit(sb, bitnr);
1736         }
1737         spin_unlock(&ctx->lock);
1738
1739         return !dispatch_data->rq;
1740 }
1741
1742 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1743                                         struct blk_mq_ctx *start)
1744 {
1745         unsigned off = start ? start->index_hw[hctx->type] : 0;
1746         struct dispatch_rq_data data = {
1747                 .hctx = hctx,
1748                 .rq   = NULL,
1749         };
1750
1751         __sbitmap_for_each_set(&hctx->ctx_map, off,
1752                                dispatch_rq_from_ctx, &data);
1753
1754         return data.rq;
1755 }
1756
1757 bool __blk_mq_alloc_driver_tag(struct request *rq)
1758 {
1759         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1760         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1761         int tag;
1762
1763         blk_mq_tag_busy(rq->mq_hctx);
1764
1765         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1766                 bt = &rq->mq_hctx->tags->breserved_tags;
1767                 tag_offset = 0;
1768         } else {
1769                 if (!hctx_may_queue(rq->mq_hctx, bt))
1770                         return false;
1771         }
1772
1773         tag = __sbitmap_queue_get(bt);
1774         if (tag == BLK_MQ_NO_TAG)
1775                 return false;
1776
1777         rq->tag = tag + tag_offset;
1778         blk_mq_inc_active_requests(rq->mq_hctx);
1779         return true;
1780 }
1781
1782 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1783                                 int flags, void *key)
1784 {
1785         struct blk_mq_hw_ctx *hctx;
1786
1787         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1788
1789         spin_lock(&hctx->dispatch_wait_lock);
1790         if (!list_empty(&wait->entry)) {
1791                 struct sbitmap_queue *sbq;
1792
1793                 list_del_init(&wait->entry);
1794                 sbq = &hctx->tags->bitmap_tags;
1795                 atomic_dec(&sbq->ws_active);
1796         }
1797         spin_unlock(&hctx->dispatch_wait_lock);
1798
1799         blk_mq_run_hw_queue(hctx, true);
1800         return 1;
1801 }
1802
1803 /*
1804  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1805  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1806  * restart. For both cases, take care to check the condition again after
1807  * marking us as waiting.
1808  */
1809 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1810                                  struct request *rq)
1811 {
1812         struct sbitmap_queue *sbq;
1813         struct wait_queue_head *wq;
1814         wait_queue_entry_t *wait;
1815         bool ret;
1816
1817         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1818             !(blk_mq_is_shared_tags(hctx->flags))) {
1819                 blk_mq_sched_mark_restart_hctx(hctx);
1820
1821                 /*
1822                  * It's possible that a tag was freed in the window between the
1823                  * allocation failure and adding the hardware queue to the wait
1824                  * queue.
1825                  *
1826                  * Don't clear RESTART here, someone else could have set it.
1827                  * At most this will cost an extra queue run.
1828                  */
1829                 return blk_mq_get_driver_tag(rq);
1830         }
1831
1832         wait = &hctx->dispatch_wait;
1833         if (!list_empty_careful(&wait->entry))
1834                 return false;
1835
1836         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1837                 sbq = &hctx->tags->breserved_tags;
1838         else
1839                 sbq = &hctx->tags->bitmap_tags;
1840         wq = &bt_wait_ptr(sbq, hctx)->wait;
1841
1842         spin_lock_irq(&wq->lock);
1843         spin_lock(&hctx->dispatch_wait_lock);
1844         if (!list_empty(&wait->entry)) {
1845                 spin_unlock(&hctx->dispatch_wait_lock);
1846                 spin_unlock_irq(&wq->lock);
1847                 return false;
1848         }
1849
1850         atomic_inc(&sbq->ws_active);
1851         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1852         __add_wait_queue(wq, wait);
1853
1854         /*
1855          * Add one explicit barrier since blk_mq_get_driver_tag() may
1856          * not imply barrier in case of failure.
1857          *
1858          * Order adding us to wait queue and allocating driver tag.
1859          *
1860          * The pair is the one implied in sbitmap_queue_wake_up() which
1861          * orders clearing sbitmap tag bits and waitqueue_active() in
1862          * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1863          *
1864          * Otherwise, re-order of adding wait queue and getting driver tag
1865          * may cause __sbitmap_queue_wake_up() to wake up nothing because
1866          * the waitqueue_active() may not observe us in wait queue.
1867          */
1868         smp_mb();
1869
1870         /*
1871          * It's possible that a tag was freed in the window between the
1872          * allocation failure and adding the hardware queue to the wait
1873          * queue.
1874          */
1875         ret = blk_mq_get_driver_tag(rq);
1876         if (!ret) {
1877                 spin_unlock(&hctx->dispatch_wait_lock);
1878                 spin_unlock_irq(&wq->lock);
1879                 return false;
1880         }
1881
1882         /*
1883          * We got a tag, remove ourselves from the wait queue to ensure
1884          * someone else gets the wakeup.
1885          */
1886         list_del_init(&wait->entry);
1887         atomic_dec(&sbq->ws_active);
1888         spin_unlock(&hctx->dispatch_wait_lock);
1889         spin_unlock_irq(&wq->lock);
1890
1891         return true;
1892 }
1893
1894 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1895 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1896 /*
1897  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1898  * - EWMA is one simple way to compute running average value
1899  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1900  * - take 4 as factor for avoiding to get too small(0) result, and this
1901  *   factor doesn't matter because EWMA decreases exponentially
1902  */
1903 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1904 {
1905         unsigned int ewma;
1906
1907         ewma = hctx->dispatch_busy;
1908
1909         if (!ewma && !busy)
1910                 return;
1911
1912         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1913         if (busy)
1914                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1915         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1916
1917         hctx->dispatch_busy = ewma;
1918 }
1919
1920 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1921
1922 static void blk_mq_handle_dev_resource(struct request *rq,
1923                                        struct list_head *list)
1924 {
1925         list_add(&rq->queuelist, list);
1926         __blk_mq_requeue_request(rq);
1927 }
1928
1929 static void blk_mq_handle_zone_resource(struct request *rq,
1930                                         struct list_head *zone_list)
1931 {
1932         /*
1933          * If we end up here it is because we cannot dispatch a request to a
1934          * specific zone due to LLD level zone-write locking or other zone
1935          * related resource not being available. In this case, set the request
1936          * aside in zone_list for retrying it later.
1937          */
1938         list_add(&rq->queuelist, zone_list);
1939         __blk_mq_requeue_request(rq);
1940 }
1941
1942 enum prep_dispatch {
1943         PREP_DISPATCH_OK,
1944         PREP_DISPATCH_NO_TAG,
1945         PREP_DISPATCH_NO_BUDGET,
1946 };
1947
1948 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1949                                                   bool need_budget)
1950 {
1951         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1952         int budget_token = -1;
1953
1954         if (need_budget) {
1955                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1956                 if (budget_token < 0) {
1957                         blk_mq_put_driver_tag(rq);
1958                         return PREP_DISPATCH_NO_BUDGET;
1959                 }
1960                 blk_mq_set_rq_budget_token(rq, budget_token);
1961         }
1962
1963         if (!blk_mq_get_driver_tag(rq)) {
1964                 /*
1965                  * The initial allocation attempt failed, so we need to
1966                  * rerun the hardware queue when a tag is freed. The
1967                  * waitqueue takes care of that. If the queue is run
1968                  * before we add this entry back on the dispatch list,
1969                  * we'll re-run it below.
1970                  */
1971                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1972                         /*
1973                          * All budgets not got from this function will be put
1974                          * together during handling partial dispatch
1975                          */
1976                         if (need_budget)
1977                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1978                         return PREP_DISPATCH_NO_TAG;
1979                 }
1980         }
1981
1982         return PREP_DISPATCH_OK;
1983 }
1984
1985 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1986 static void blk_mq_release_budgets(struct request_queue *q,
1987                 struct list_head *list)
1988 {
1989         struct request *rq;
1990
1991         list_for_each_entry(rq, list, queuelist) {
1992                 int budget_token = blk_mq_get_rq_budget_token(rq);
1993
1994                 if (budget_token >= 0)
1995                         blk_mq_put_dispatch_budget(q, budget_token);
1996         }
1997 }
1998
1999 /*
2000  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2001  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2002  * details)
2003  * Attention, we should explicitly call this in unusual cases:
2004  *  1) did not queue everything initially scheduled to queue
2005  *  2) the last attempt to queue a request failed
2006  */
2007 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2008                               bool from_schedule)
2009 {
2010         if (hctx->queue->mq_ops->commit_rqs && queued) {
2011                 trace_block_unplug(hctx->queue, queued, !from_schedule);
2012                 hctx->queue->mq_ops->commit_rqs(hctx);
2013         }
2014 }
2015
2016 /*
2017  * Returns true if we did some work AND can potentially do more.
2018  */
2019 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2020                              unsigned int nr_budgets)
2021 {
2022         enum prep_dispatch prep;
2023         struct request_queue *q = hctx->queue;
2024         struct request *rq;
2025         int queued;
2026         blk_status_t ret = BLK_STS_OK;
2027         LIST_HEAD(zone_list);
2028         bool needs_resource = false;
2029
2030         if (list_empty(list))
2031                 return false;
2032
2033         /*
2034          * Now process all the entries, sending them to the driver.
2035          */
2036         queued = 0;
2037         do {
2038                 struct blk_mq_queue_data bd;
2039
2040                 rq = list_first_entry(list, struct request, queuelist);
2041
2042                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2043                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2044                 if (prep != PREP_DISPATCH_OK)
2045                         break;
2046
2047                 list_del_init(&rq->queuelist);
2048
2049                 bd.rq = rq;
2050                 bd.last = list_empty(list);
2051
2052                 /*
2053                  * once the request is queued to lld, no need to cover the
2054                  * budget any more
2055                  */
2056                 if (nr_budgets)
2057                         nr_budgets--;
2058                 ret = q->mq_ops->queue_rq(hctx, &bd);
2059                 switch (ret) {
2060                 case BLK_STS_OK:
2061                         queued++;
2062                         break;
2063                 case BLK_STS_RESOURCE:
2064                         needs_resource = true;
2065                         fallthrough;
2066                 case BLK_STS_DEV_RESOURCE:
2067                         blk_mq_handle_dev_resource(rq, list);
2068                         goto out;
2069                 case BLK_STS_ZONE_RESOURCE:
2070                         /*
2071                          * Move the request to zone_list and keep going through
2072                          * the dispatch list to find more requests the drive can
2073                          * accept.
2074                          */
2075                         blk_mq_handle_zone_resource(rq, &zone_list);
2076                         needs_resource = true;
2077                         break;
2078                 default:
2079                         blk_mq_end_request(rq, ret);
2080                 }
2081         } while (!list_empty(list));
2082 out:
2083         if (!list_empty(&zone_list))
2084                 list_splice_tail_init(&zone_list, list);
2085
2086         /* If we didn't flush the entire list, we could have told the driver
2087          * there was more coming, but that turned out to be a lie.
2088          */
2089         if (!list_empty(list) || ret != BLK_STS_OK)
2090                 blk_mq_commit_rqs(hctx, queued, false);
2091
2092         /*
2093          * Any items that need requeuing? Stuff them into hctx->dispatch,
2094          * that is where we will continue on next queue run.
2095          */
2096         if (!list_empty(list)) {
2097                 bool needs_restart;
2098                 /* For non-shared tags, the RESTART check will suffice */
2099                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2100                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2101                         blk_mq_is_shared_tags(hctx->flags));
2102
2103                 if (nr_budgets)
2104                         blk_mq_release_budgets(q, list);
2105
2106                 spin_lock(&hctx->lock);
2107                 list_splice_tail_init(list, &hctx->dispatch);
2108                 spin_unlock(&hctx->lock);
2109
2110                 /*
2111                  * Order adding requests to hctx->dispatch and checking
2112                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2113                  * in blk_mq_sched_restart(). Avoid restart code path to
2114                  * miss the new added requests to hctx->dispatch, meantime
2115                  * SCHED_RESTART is observed here.
2116                  */
2117                 smp_mb();
2118
2119                 /*
2120                  * If SCHED_RESTART was set by the caller of this function and
2121                  * it is no longer set that means that it was cleared by another
2122                  * thread and hence that a queue rerun is needed.
2123                  *
2124                  * If 'no_tag' is set, that means that we failed getting
2125                  * a driver tag with an I/O scheduler attached. If our dispatch
2126                  * waitqueue is no longer active, ensure that we run the queue
2127                  * AFTER adding our entries back to the list.
2128                  *
2129                  * If no I/O scheduler has been configured it is possible that
2130                  * the hardware queue got stopped and restarted before requests
2131                  * were pushed back onto the dispatch list. Rerun the queue to
2132                  * avoid starvation. Notes:
2133                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2134                  *   been stopped before rerunning a queue.
2135                  * - Some but not all block drivers stop a queue before
2136                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2137                  *   and dm-rq.
2138                  *
2139                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2140                  * bit is set, run queue after a delay to avoid IO stalls
2141                  * that could otherwise occur if the queue is idle.  We'll do
2142                  * similar if we couldn't get budget or couldn't lock a zone
2143                  * and SCHED_RESTART is set.
2144                  */
2145                 needs_restart = blk_mq_sched_needs_restart(hctx);
2146                 if (prep == PREP_DISPATCH_NO_BUDGET)
2147                         needs_resource = true;
2148                 if (!needs_restart ||
2149                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2150                         blk_mq_run_hw_queue(hctx, true);
2151                 else if (needs_resource)
2152                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2153
2154                 blk_mq_update_dispatch_busy(hctx, true);
2155                 return false;
2156         }
2157
2158         blk_mq_update_dispatch_busy(hctx, false);
2159         return true;
2160 }
2161
2162 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2163 {
2164         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2165
2166         if (cpu >= nr_cpu_ids)
2167                 cpu = cpumask_first(hctx->cpumask);
2168         return cpu;
2169 }
2170
2171 /*
2172  * It'd be great if the workqueue API had a way to pass
2173  * in a mask and had some smarts for more clever placement.
2174  * For now we just round-robin here, switching for every
2175  * BLK_MQ_CPU_WORK_BATCH queued items.
2176  */
2177 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2178 {
2179         bool tried = false;
2180         int next_cpu = hctx->next_cpu;
2181
2182         if (hctx->queue->nr_hw_queues == 1)
2183                 return WORK_CPU_UNBOUND;
2184
2185         if (--hctx->next_cpu_batch <= 0) {
2186 select_cpu:
2187                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2188                                 cpu_online_mask);
2189                 if (next_cpu >= nr_cpu_ids)
2190                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2191                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2192         }
2193
2194         /*
2195          * Do unbound schedule if we can't find a online CPU for this hctx,
2196          * and it should only happen in the path of handling CPU DEAD.
2197          */
2198         if (!cpu_online(next_cpu)) {
2199                 if (!tried) {
2200                         tried = true;
2201                         goto select_cpu;
2202                 }
2203
2204                 /*
2205                  * Make sure to re-select CPU next time once after CPUs
2206                  * in hctx->cpumask become online again.
2207                  */
2208                 hctx->next_cpu = next_cpu;
2209                 hctx->next_cpu_batch = 1;
2210                 return WORK_CPU_UNBOUND;
2211         }
2212
2213         hctx->next_cpu = next_cpu;
2214         return next_cpu;
2215 }
2216
2217 /**
2218  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2219  * @hctx: Pointer to the hardware queue to run.
2220  * @msecs: Milliseconds of delay to wait before running the queue.
2221  *
2222  * Run a hardware queue asynchronously with a delay of @msecs.
2223  */
2224 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2225 {
2226         if (unlikely(blk_mq_hctx_stopped(hctx)))
2227                 return;
2228         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2229                                     msecs_to_jiffies(msecs));
2230 }
2231 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2232
2233 /**
2234  * blk_mq_run_hw_queue - Start to run a hardware queue.
2235  * @hctx: Pointer to the hardware queue to run.
2236  * @async: If we want to run the queue asynchronously.
2237  *
2238  * Check if the request queue is not in a quiesced state and if there are
2239  * pending requests to be sent. If this is true, run the queue to send requests
2240  * to hardware.
2241  */
2242 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2243 {
2244         bool need_run;
2245
2246         /*
2247          * We can't run the queue inline with interrupts disabled.
2248          */
2249         WARN_ON_ONCE(!async && in_interrupt());
2250
2251         might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2252
2253         /*
2254          * When queue is quiesced, we may be switching io scheduler, or
2255          * updating nr_hw_queues, or other things, and we can't run queue
2256          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2257          *
2258          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2259          * quiesced.
2260          */
2261         __blk_mq_run_dispatch_ops(hctx->queue, false,
2262                 need_run = !blk_queue_quiesced(hctx->queue) &&
2263                 blk_mq_hctx_has_pending(hctx));
2264
2265         if (!need_run)
2266                 return;
2267
2268         if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2269                 blk_mq_delay_run_hw_queue(hctx, 0);
2270                 return;
2271         }
2272
2273         blk_mq_run_dispatch_ops(hctx->queue,
2274                                 blk_mq_sched_dispatch_requests(hctx));
2275 }
2276 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2277
2278 /*
2279  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2280  * scheduler.
2281  */
2282 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2283 {
2284         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2285         /*
2286          * If the IO scheduler does not respect hardware queues when
2287          * dispatching, we just don't bother with multiple HW queues and
2288          * dispatch from hctx for the current CPU since running multiple queues
2289          * just causes lock contention inside the scheduler and pointless cache
2290          * bouncing.
2291          */
2292         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2293
2294         if (!blk_mq_hctx_stopped(hctx))
2295                 return hctx;
2296         return NULL;
2297 }
2298
2299 /**
2300  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2301  * @q: Pointer to the request queue to run.
2302  * @async: If we want to run the queue asynchronously.
2303  */
2304 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2305 {
2306         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2307         unsigned long i;
2308
2309         sq_hctx = NULL;
2310         if (blk_queue_sq_sched(q))
2311                 sq_hctx = blk_mq_get_sq_hctx(q);
2312         queue_for_each_hw_ctx(q, hctx, i) {
2313                 if (blk_mq_hctx_stopped(hctx))
2314                         continue;
2315                 /*
2316                  * Dispatch from this hctx either if there's no hctx preferred
2317                  * by IO scheduler or if it has requests that bypass the
2318                  * scheduler.
2319                  */
2320                 if (!sq_hctx || sq_hctx == hctx ||
2321                     !list_empty_careful(&hctx->dispatch))
2322                         blk_mq_run_hw_queue(hctx, async);
2323         }
2324 }
2325 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2326
2327 /**
2328  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2329  * @q: Pointer to the request queue to run.
2330  * @msecs: Milliseconds of delay to wait before running the queues.
2331  */
2332 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2333 {
2334         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2335         unsigned long i;
2336
2337         sq_hctx = NULL;
2338         if (blk_queue_sq_sched(q))
2339                 sq_hctx = blk_mq_get_sq_hctx(q);
2340         queue_for_each_hw_ctx(q, hctx, i) {
2341                 if (blk_mq_hctx_stopped(hctx))
2342                         continue;
2343                 /*
2344                  * If there is already a run_work pending, leave the
2345                  * pending delay untouched. Otherwise, a hctx can stall
2346                  * if another hctx is re-delaying the other's work
2347                  * before the work executes.
2348                  */
2349                 if (delayed_work_pending(&hctx->run_work))
2350                         continue;
2351                 /*
2352                  * Dispatch from this hctx either if there's no hctx preferred
2353                  * by IO scheduler or if it has requests that bypass the
2354                  * scheduler.
2355                  */
2356                 if (!sq_hctx || sq_hctx == hctx ||
2357                     !list_empty_careful(&hctx->dispatch))
2358                         blk_mq_delay_run_hw_queue(hctx, msecs);
2359         }
2360 }
2361 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2362
2363 /*
2364  * This function is often used for pausing .queue_rq() by driver when
2365  * there isn't enough resource or some conditions aren't satisfied, and
2366  * BLK_STS_RESOURCE is usually returned.
2367  *
2368  * We do not guarantee that dispatch can be drained or blocked
2369  * after blk_mq_stop_hw_queue() returns. Please use
2370  * blk_mq_quiesce_queue() for that requirement.
2371  */
2372 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2373 {
2374         cancel_delayed_work(&hctx->run_work);
2375
2376         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2377 }
2378 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2379
2380 /*
2381  * This function is often used for pausing .queue_rq() by driver when
2382  * there isn't enough resource or some conditions aren't satisfied, and
2383  * BLK_STS_RESOURCE is usually returned.
2384  *
2385  * We do not guarantee that dispatch can be drained or blocked
2386  * after blk_mq_stop_hw_queues() returns. Please use
2387  * blk_mq_quiesce_queue() for that requirement.
2388  */
2389 void blk_mq_stop_hw_queues(struct request_queue *q)
2390 {
2391         struct blk_mq_hw_ctx *hctx;
2392         unsigned long i;
2393
2394         queue_for_each_hw_ctx(q, hctx, i)
2395                 blk_mq_stop_hw_queue(hctx);
2396 }
2397 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2398
2399 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2400 {
2401         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2402
2403         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2404 }
2405 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2406
2407 void blk_mq_start_hw_queues(struct request_queue *q)
2408 {
2409         struct blk_mq_hw_ctx *hctx;
2410         unsigned long i;
2411
2412         queue_for_each_hw_ctx(q, hctx, i)
2413                 blk_mq_start_hw_queue(hctx);
2414 }
2415 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2416
2417 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2418 {
2419         if (!blk_mq_hctx_stopped(hctx))
2420                 return;
2421
2422         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2423         blk_mq_run_hw_queue(hctx, async);
2424 }
2425 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2426
2427 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2428 {
2429         struct blk_mq_hw_ctx *hctx;
2430         unsigned long i;
2431
2432         queue_for_each_hw_ctx(q, hctx, i)
2433                 blk_mq_start_stopped_hw_queue(hctx, async ||
2434                                         (hctx->flags & BLK_MQ_F_BLOCKING));
2435 }
2436 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2437
2438 static void blk_mq_run_work_fn(struct work_struct *work)
2439 {
2440         struct blk_mq_hw_ctx *hctx =
2441                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2442
2443         blk_mq_run_dispatch_ops(hctx->queue,
2444                                 blk_mq_sched_dispatch_requests(hctx));
2445 }
2446
2447 /**
2448  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2449  * @rq: Pointer to request to be inserted.
2450  * @flags: BLK_MQ_INSERT_*
2451  *
2452  * Should only be used carefully, when the caller knows we want to
2453  * bypass a potential IO scheduler on the target device.
2454  */
2455 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2456 {
2457         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2458
2459         spin_lock(&hctx->lock);
2460         if (flags & BLK_MQ_INSERT_AT_HEAD)
2461                 list_add(&rq->queuelist, &hctx->dispatch);
2462         else
2463                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2464         spin_unlock(&hctx->lock);
2465 }
2466
2467 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2468                 struct blk_mq_ctx *ctx, struct list_head *list,
2469                 bool run_queue_async)
2470 {
2471         struct request *rq;
2472         enum hctx_type type = hctx->type;
2473
2474         /*
2475          * Try to issue requests directly if the hw queue isn't busy to save an
2476          * extra enqueue & dequeue to the sw queue.
2477          */
2478         if (!hctx->dispatch_busy && !run_queue_async) {
2479                 blk_mq_run_dispatch_ops(hctx->queue,
2480                         blk_mq_try_issue_list_directly(hctx, list));
2481                 if (list_empty(list))
2482                         goto out;
2483         }
2484
2485         /*
2486          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2487          * offline now
2488          */
2489         list_for_each_entry(rq, list, queuelist) {
2490                 BUG_ON(rq->mq_ctx != ctx);
2491                 trace_block_rq_insert(rq);
2492                 if (rq->cmd_flags & REQ_NOWAIT)
2493                         run_queue_async = true;
2494         }
2495
2496         spin_lock(&ctx->lock);
2497         list_splice_tail_init(list, &ctx->rq_lists[type]);
2498         blk_mq_hctx_mark_pending(hctx, ctx);
2499         spin_unlock(&ctx->lock);
2500 out:
2501         blk_mq_run_hw_queue(hctx, run_queue_async);
2502 }
2503
2504 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2505 {
2506         struct request_queue *q = rq->q;
2507         struct blk_mq_ctx *ctx = rq->mq_ctx;
2508         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2509
2510         if (blk_rq_is_passthrough(rq)) {
2511                 /*
2512                  * Passthrough request have to be added to hctx->dispatch
2513                  * directly.  The device may be in a situation where it can't
2514                  * handle FS request, and always returns BLK_STS_RESOURCE for
2515                  * them, which gets them added to hctx->dispatch.
2516                  *
2517                  * If a passthrough request is required to unblock the queues,
2518                  * and it is added to the scheduler queue, there is no chance to
2519                  * dispatch it given we prioritize requests in hctx->dispatch.
2520                  */
2521                 blk_mq_request_bypass_insert(rq, flags);
2522         } else if (req_op(rq) == REQ_OP_FLUSH) {
2523                 /*
2524                  * Firstly normal IO request is inserted to scheduler queue or
2525                  * sw queue, meantime we add flush request to dispatch queue(
2526                  * hctx->dispatch) directly and there is at most one in-flight
2527                  * flush request for each hw queue, so it doesn't matter to add
2528                  * flush request to tail or front of the dispatch queue.
2529                  *
2530                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2531                  * command, and queueing it will fail when there is any
2532                  * in-flight normal IO request(NCQ command). When adding flush
2533                  * rq to the front of hctx->dispatch, it is easier to introduce
2534                  * extra time to flush rq's latency because of S_SCHED_RESTART
2535                  * compared with adding to the tail of dispatch queue, then
2536                  * chance of flush merge is increased, and less flush requests
2537                  * will be issued to controller. It is observed that ~10% time
2538                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2539                  * drive when adding flush rq to the front of hctx->dispatch.
2540                  *
2541                  * Simply queue flush rq to the front of hctx->dispatch so that
2542                  * intensive flush workloads can benefit in case of NCQ HW.
2543                  */
2544                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2545         } else if (q->elevator) {
2546                 LIST_HEAD(list);
2547
2548                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2549
2550                 list_add(&rq->queuelist, &list);
2551                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2552         } else {
2553                 trace_block_rq_insert(rq);
2554
2555                 spin_lock(&ctx->lock);
2556                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2557                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2558                 else
2559                         list_add_tail(&rq->queuelist,
2560                                       &ctx->rq_lists[hctx->type]);
2561                 blk_mq_hctx_mark_pending(hctx, ctx);
2562                 spin_unlock(&ctx->lock);
2563         }
2564 }
2565
2566 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2567                 unsigned int nr_segs)
2568 {
2569         int err;
2570
2571         if (bio->bi_opf & REQ_RAHEAD)
2572                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2573
2574         rq->__sector = bio->bi_iter.bi_sector;
2575         rq->write_hint = bio->bi_write_hint;
2576         blk_rq_bio_prep(rq, bio, nr_segs);
2577
2578         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2579         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2580         WARN_ON_ONCE(err);
2581
2582         blk_account_io_start(rq);
2583 }
2584
2585 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2586                                             struct request *rq, bool last)
2587 {
2588         struct request_queue *q = rq->q;
2589         struct blk_mq_queue_data bd = {
2590                 .rq = rq,
2591                 .last = last,
2592         };
2593         blk_status_t ret;
2594
2595         /*
2596          * For OK queue, we are done. For error, caller may kill it.
2597          * Any other error (busy), just add it to our list as we
2598          * previously would have done.
2599          */
2600         ret = q->mq_ops->queue_rq(hctx, &bd);
2601         switch (ret) {
2602         case BLK_STS_OK:
2603                 blk_mq_update_dispatch_busy(hctx, false);
2604                 break;
2605         case BLK_STS_RESOURCE:
2606         case BLK_STS_DEV_RESOURCE:
2607                 blk_mq_update_dispatch_busy(hctx, true);
2608                 __blk_mq_requeue_request(rq);
2609                 break;
2610         default:
2611                 blk_mq_update_dispatch_busy(hctx, false);
2612                 break;
2613         }
2614
2615         return ret;
2616 }
2617
2618 static bool blk_mq_get_budget_and_tag(struct request *rq)
2619 {
2620         int budget_token;
2621
2622         budget_token = blk_mq_get_dispatch_budget(rq->q);
2623         if (budget_token < 0)
2624                 return false;
2625         blk_mq_set_rq_budget_token(rq, budget_token);
2626         if (!blk_mq_get_driver_tag(rq)) {
2627                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2628                 return false;
2629         }
2630         return true;
2631 }
2632
2633 /**
2634  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2635  * @hctx: Pointer of the associated hardware queue.
2636  * @rq: Pointer to request to be sent.
2637  *
2638  * If the device has enough resources to accept a new request now, send the
2639  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2640  * we can try send it another time in the future. Requests inserted at this
2641  * queue have higher priority.
2642  */
2643 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2644                 struct request *rq)
2645 {
2646         blk_status_t ret;
2647
2648         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2649                 blk_mq_insert_request(rq, 0);
2650                 return;
2651         }
2652
2653         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2654                 blk_mq_insert_request(rq, 0);
2655                 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2656                 return;
2657         }
2658
2659         ret = __blk_mq_issue_directly(hctx, rq, true);
2660         switch (ret) {
2661         case BLK_STS_OK:
2662                 break;
2663         case BLK_STS_RESOURCE:
2664         case BLK_STS_DEV_RESOURCE:
2665                 blk_mq_request_bypass_insert(rq, 0);
2666                 blk_mq_run_hw_queue(hctx, false);
2667                 break;
2668         default:
2669                 blk_mq_end_request(rq, ret);
2670                 break;
2671         }
2672 }
2673
2674 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2675 {
2676         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2677
2678         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2679                 blk_mq_insert_request(rq, 0);
2680                 return BLK_STS_OK;
2681         }
2682
2683         if (!blk_mq_get_budget_and_tag(rq))
2684                 return BLK_STS_RESOURCE;
2685         return __blk_mq_issue_directly(hctx, rq, last);
2686 }
2687
2688 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2689 {
2690         struct blk_mq_hw_ctx *hctx = NULL;
2691         struct request *rq;
2692         int queued = 0;
2693         blk_status_t ret = BLK_STS_OK;
2694
2695         while ((rq = rq_list_pop(&plug->mq_list))) {
2696                 bool last = rq_list_empty(plug->mq_list);
2697
2698                 if (hctx != rq->mq_hctx) {
2699                         if (hctx) {
2700                                 blk_mq_commit_rqs(hctx, queued, false);
2701                                 queued = 0;
2702                         }
2703                         hctx = rq->mq_hctx;
2704                 }
2705
2706                 ret = blk_mq_request_issue_directly(rq, last);
2707                 switch (ret) {
2708                 case BLK_STS_OK:
2709                         queued++;
2710                         break;
2711                 case BLK_STS_RESOURCE:
2712                 case BLK_STS_DEV_RESOURCE:
2713                         blk_mq_request_bypass_insert(rq, 0);
2714                         blk_mq_run_hw_queue(hctx, false);
2715                         goto out;
2716                 default:
2717                         blk_mq_end_request(rq, ret);
2718                         break;
2719                 }
2720         }
2721
2722 out:
2723         if (ret != BLK_STS_OK)
2724                 blk_mq_commit_rqs(hctx, queued, false);
2725 }
2726
2727 static void __blk_mq_flush_plug_list(struct request_queue *q,
2728                                      struct blk_plug *plug)
2729 {
2730         if (blk_queue_quiesced(q))
2731                 return;
2732         q->mq_ops->queue_rqs(&plug->mq_list);
2733 }
2734
2735 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2736 {
2737         struct blk_mq_hw_ctx *this_hctx = NULL;
2738         struct blk_mq_ctx *this_ctx = NULL;
2739         struct request *requeue_list = NULL;
2740         struct request **requeue_lastp = &requeue_list;
2741         unsigned int depth = 0;
2742         bool is_passthrough = false;
2743         LIST_HEAD(list);
2744
2745         do {
2746                 struct request *rq = rq_list_pop(&plug->mq_list);
2747
2748                 if (!this_hctx) {
2749                         this_hctx = rq->mq_hctx;
2750                         this_ctx = rq->mq_ctx;
2751                         is_passthrough = blk_rq_is_passthrough(rq);
2752                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2753                            is_passthrough != blk_rq_is_passthrough(rq)) {
2754                         rq_list_add_tail(&requeue_lastp, rq);
2755                         continue;
2756                 }
2757                 list_add(&rq->queuelist, &list);
2758                 depth++;
2759         } while (!rq_list_empty(plug->mq_list));
2760
2761         plug->mq_list = requeue_list;
2762         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2763
2764         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2765         /* passthrough requests should never be issued to the I/O scheduler */
2766         if (is_passthrough) {
2767                 spin_lock(&this_hctx->lock);
2768                 list_splice_tail_init(&list, &this_hctx->dispatch);
2769                 spin_unlock(&this_hctx->lock);
2770                 blk_mq_run_hw_queue(this_hctx, from_sched);
2771         } else if (this_hctx->queue->elevator) {
2772                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2773                                 &list, 0);
2774                 blk_mq_run_hw_queue(this_hctx, from_sched);
2775         } else {
2776                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2777         }
2778         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2779 }
2780
2781 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2782 {
2783         struct request *rq;
2784
2785         /*
2786          * We may have been called recursively midway through handling
2787          * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2788          * To avoid mq_list changing under our feet, clear rq_count early and
2789          * bail out specifically if rq_count is 0 rather than checking
2790          * whether the mq_list is empty.
2791          */
2792         if (plug->rq_count == 0)
2793                 return;
2794         plug->rq_count = 0;
2795
2796         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2797                 struct request_queue *q;
2798
2799                 rq = rq_list_peek(&plug->mq_list);
2800                 q = rq->q;
2801
2802                 /*
2803                  * Peek first request and see if we have a ->queue_rqs() hook.
2804                  * If we do, we can dispatch the whole plug list in one go. We
2805                  * already know at this point that all requests belong to the
2806                  * same queue, caller must ensure that's the case.
2807                  */
2808                 if (q->mq_ops->queue_rqs) {
2809                         blk_mq_run_dispatch_ops(q,
2810                                 __blk_mq_flush_plug_list(q, plug));
2811                         if (rq_list_empty(plug->mq_list))
2812                                 return;
2813                 }
2814
2815                 blk_mq_run_dispatch_ops(q,
2816                                 blk_mq_plug_issue_direct(plug));
2817                 if (rq_list_empty(plug->mq_list))
2818                         return;
2819         }
2820
2821         do {
2822                 blk_mq_dispatch_plug_list(plug, from_schedule);
2823         } while (!rq_list_empty(plug->mq_list));
2824 }
2825
2826 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2827                 struct list_head *list)
2828 {
2829         int queued = 0;
2830         blk_status_t ret = BLK_STS_OK;
2831
2832         while (!list_empty(list)) {
2833                 struct request *rq = list_first_entry(list, struct request,
2834                                 queuelist);
2835
2836                 list_del_init(&rq->queuelist);
2837                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2838                 switch (ret) {
2839                 case BLK_STS_OK:
2840                         queued++;
2841                         break;
2842                 case BLK_STS_RESOURCE:
2843                 case BLK_STS_DEV_RESOURCE:
2844                         blk_mq_request_bypass_insert(rq, 0);
2845                         if (list_empty(list))
2846                                 blk_mq_run_hw_queue(hctx, false);
2847                         goto out;
2848                 default:
2849                         blk_mq_end_request(rq, ret);
2850                         break;
2851                 }
2852         }
2853
2854 out:
2855         if (ret != BLK_STS_OK)
2856                 blk_mq_commit_rqs(hctx, queued, false);
2857 }
2858
2859 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2860                                      struct bio *bio, unsigned int nr_segs)
2861 {
2862         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2863                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2864                         return true;
2865                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2866                         return true;
2867         }
2868         return false;
2869 }
2870
2871 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2872                                                struct blk_plug *plug,
2873                                                struct bio *bio,
2874                                                unsigned int nsegs)
2875 {
2876         struct blk_mq_alloc_data data = {
2877                 .q              = q,
2878                 .nr_tags        = 1,
2879                 .cmd_flags      = bio->bi_opf,
2880         };
2881         struct request *rq;
2882
2883         rq_qos_throttle(q, bio);
2884
2885         if (plug) {
2886                 data.nr_tags = plug->nr_ios;
2887                 plug->nr_ios = 1;
2888                 data.cached_rq = &plug->cached_rq;
2889         }
2890
2891         rq = __blk_mq_alloc_requests(&data);
2892         if (rq)
2893                 return rq;
2894         rq_qos_cleanup(q, bio);
2895         if (bio->bi_opf & REQ_NOWAIT)
2896                 bio_wouldblock_error(bio);
2897         return NULL;
2898 }
2899
2900 /*
2901  * Check if there is a suitable cached request and return it.
2902  */
2903 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
2904                 struct request_queue *q, blk_opf_t opf)
2905 {
2906         enum hctx_type type = blk_mq_get_hctx_type(opf);
2907         struct request *rq;
2908
2909         if (!plug)
2910                 return NULL;
2911         rq = rq_list_peek(&plug->cached_rq);
2912         if (!rq || rq->q != q)
2913                 return NULL;
2914         if (type != rq->mq_hctx->type &&
2915             (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
2916                 return NULL;
2917         if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
2918                 return NULL;
2919         return rq;
2920 }
2921
2922 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
2923                 struct bio *bio)
2924 {
2925         WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2926
2927         /*
2928          * If any qos ->throttle() end up blocking, we will have flushed the
2929          * plug and hence killed the cached_rq list as well. Pop this entry
2930          * before we throttle.
2931          */
2932         plug->cached_rq = rq_list_next(rq);
2933         rq_qos_throttle(rq->q, bio);
2934
2935         blk_mq_rq_time_init(rq, 0);
2936         rq->cmd_flags = bio->bi_opf;
2937         INIT_LIST_HEAD(&rq->queuelist);
2938 }
2939
2940 /**
2941  * blk_mq_submit_bio - Create and send a request to block device.
2942  * @bio: Bio pointer.
2943  *
2944  * Builds up a request structure from @q and @bio and send to the device. The
2945  * request may not be queued directly to hardware if:
2946  * * This request can be merged with another one
2947  * * We want to place request at plug queue for possible future merging
2948  * * There is an IO scheduler active at this queue
2949  *
2950  * It will not queue the request if there is an error with the bio, or at the
2951  * request creation.
2952  */
2953 void blk_mq_submit_bio(struct bio *bio)
2954 {
2955         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2956         struct blk_plug *plug = blk_mq_plug(bio);
2957         const int is_sync = op_is_sync(bio->bi_opf);
2958         struct blk_mq_hw_ctx *hctx;
2959         unsigned int nr_segs = 1;
2960         struct request *rq;
2961         blk_status_t ret;
2962
2963         bio = blk_queue_bounce(bio, q);
2964
2965         /*
2966          * If the plug has a cached request for this queue, try use it.
2967          *
2968          * The cached request already holds a q_usage_counter reference and we
2969          * don't have to acquire a new one if we use it.
2970          */
2971         rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
2972         if (!rq) {
2973                 if (unlikely(bio_queue_enter(bio)))
2974                         return;
2975         }
2976
2977         if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2978                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2979                 if (!bio)
2980                         goto queue_exit;
2981         }
2982         if (!bio_integrity_prep(bio))
2983                 goto queue_exit;
2984
2985         if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2986                 goto queue_exit;
2987
2988         if (!rq) {
2989                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2990                 if (unlikely(!rq))
2991                         goto queue_exit;
2992         } else {
2993                 blk_mq_use_cached_rq(rq, plug, bio);
2994         }
2995
2996         trace_block_getrq(bio);
2997
2998         rq_qos_track(q, rq, bio);
2999
3000         blk_mq_bio_to_request(rq, bio, nr_segs);
3001
3002         ret = blk_crypto_rq_get_keyslot(rq);
3003         if (ret != BLK_STS_OK) {
3004                 bio->bi_status = ret;
3005                 bio_endio(bio);
3006                 blk_mq_free_request(rq);
3007                 return;
3008         }
3009
3010         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3011                 return;
3012
3013         if (plug) {
3014                 blk_add_rq_to_plug(plug, rq);
3015                 return;
3016         }
3017
3018         hctx = rq->mq_hctx;
3019         if ((rq->rq_flags & RQF_USE_SCHED) ||
3020             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3021                 blk_mq_insert_request(rq, 0);
3022                 blk_mq_run_hw_queue(hctx, true);
3023         } else {
3024                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3025         }
3026         return;
3027
3028 queue_exit:
3029         /*
3030          * Don't drop the queue reference if we were trying to use a cached
3031          * request and thus didn't acquire one.
3032          */
3033         if (!rq)
3034                 blk_queue_exit(q);
3035 }
3036
3037 #ifdef CONFIG_BLK_MQ_STACKING
3038 /**
3039  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3040  * @rq: the request being queued
3041  */
3042 blk_status_t blk_insert_cloned_request(struct request *rq)
3043 {
3044         struct request_queue *q = rq->q;
3045         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3046         unsigned int max_segments = blk_rq_get_max_segments(rq);
3047         blk_status_t ret;
3048
3049         if (blk_rq_sectors(rq) > max_sectors) {
3050                 /*
3051                  * SCSI device does not have a good way to return if
3052                  * Write Same/Zero is actually supported. If a device rejects
3053                  * a non-read/write command (discard, write same,etc.) the
3054                  * low-level device driver will set the relevant queue limit to
3055                  * 0 to prevent blk-lib from issuing more of the offending
3056                  * operations. Commands queued prior to the queue limit being
3057                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3058                  * errors being propagated to upper layers.
3059                  */
3060                 if (max_sectors == 0)
3061                         return BLK_STS_NOTSUPP;
3062
3063                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3064                         __func__, blk_rq_sectors(rq), max_sectors);
3065                 return BLK_STS_IOERR;
3066         }
3067
3068         /*
3069          * The queue settings related to segment counting may differ from the
3070          * original queue.
3071          */
3072         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3073         if (rq->nr_phys_segments > max_segments) {
3074                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3075                         __func__, rq->nr_phys_segments, max_segments);
3076                 return BLK_STS_IOERR;
3077         }
3078
3079         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3080                 return BLK_STS_IOERR;
3081
3082         ret = blk_crypto_rq_get_keyslot(rq);
3083         if (ret != BLK_STS_OK)
3084                 return ret;
3085
3086         blk_account_io_start(rq);
3087
3088         /*
3089          * Since we have a scheduler attached on the top device,
3090          * bypass a potential scheduler on the bottom device for
3091          * insert.
3092          */
3093         blk_mq_run_dispatch_ops(q,
3094                         ret = blk_mq_request_issue_directly(rq, true));
3095         if (ret)
3096                 blk_account_io_done(rq, blk_time_get_ns());
3097         return ret;
3098 }
3099 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3100
3101 /**
3102  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3103  * @rq: the clone request to be cleaned up
3104  *
3105  * Description:
3106  *     Free all bios in @rq for a cloned request.
3107  */
3108 void blk_rq_unprep_clone(struct request *rq)
3109 {
3110         struct bio *bio;
3111
3112         while ((bio = rq->bio) != NULL) {
3113                 rq->bio = bio->bi_next;
3114
3115                 bio_put(bio);
3116         }
3117 }
3118 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3119
3120 /**
3121  * blk_rq_prep_clone - Helper function to setup clone request
3122  * @rq: the request to be setup
3123  * @rq_src: original request to be cloned
3124  * @bs: bio_set that bios for clone are allocated from
3125  * @gfp_mask: memory allocation mask for bio
3126  * @bio_ctr: setup function to be called for each clone bio.
3127  *           Returns %0 for success, non %0 for failure.
3128  * @data: private data to be passed to @bio_ctr
3129  *
3130  * Description:
3131  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3132  *     Also, pages which the original bios are pointing to are not copied
3133  *     and the cloned bios just point same pages.
3134  *     So cloned bios must be completed before original bios, which means
3135  *     the caller must complete @rq before @rq_src.
3136  */
3137 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3138                       struct bio_set *bs, gfp_t gfp_mask,
3139                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3140                       void *data)
3141 {
3142         struct bio *bio, *bio_src;
3143
3144         if (!bs)
3145                 bs = &fs_bio_set;
3146
3147         __rq_for_each_bio(bio_src, rq_src) {
3148                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3149                                       bs);
3150                 if (!bio)
3151                         goto free_and_out;
3152
3153                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3154                         goto free_and_out;
3155
3156                 if (rq->bio) {
3157                         rq->biotail->bi_next = bio;
3158                         rq->biotail = bio;
3159                 } else {
3160                         rq->bio = rq->biotail = bio;
3161                 }
3162                 bio = NULL;
3163         }
3164
3165         /* Copy attributes of the original request to the clone request. */
3166         rq->__sector = blk_rq_pos(rq_src);
3167         rq->__data_len = blk_rq_bytes(rq_src);
3168         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3169                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3170                 rq->special_vec = rq_src->special_vec;
3171         }
3172         rq->nr_phys_segments = rq_src->nr_phys_segments;
3173         rq->ioprio = rq_src->ioprio;
3174         rq->write_hint = rq_src->write_hint;
3175
3176         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3177                 goto free_and_out;
3178
3179         return 0;
3180
3181 free_and_out:
3182         if (bio)
3183                 bio_put(bio);
3184         blk_rq_unprep_clone(rq);
3185
3186         return -ENOMEM;
3187 }
3188 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3189 #endif /* CONFIG_BLK_MQ_STACKING */
3190
3191 /*
3192  * Steal bios from a request and add them to a bio list.
3193  * The request must not have been partially completed before.
3194  */
3195 void blk_steal_bios(struct bio_list *list, struct request *rq)
3196 {
3197         if (rq->bio) {
3198                 if (list->tail)
3199                         list->tail->bi_next = rq->bio;
3200                 else
3201                         list->head = rq->bio;
3202                 list->tail = rq->biotail;
3203
3204                 rq->bio = NULL;
3205                 rq->biotail = NULL;
3206         }
3207
3208         rq->__data_len = 0;
3209 }
3210 EXPORT_SYMBOL_GPL(blk_steal_bios);
3211
3212 static size_t order_to_size(unsigned int order)
3213 {
3214         return (size_t)PAGE_SIZE << order;
3215 }
3216
3217 /* called before freeing request pool in @tags */
3218 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3219                                     struct blk_mq_tags *tags)
3220 {
3221         struct page *page;
3222         unsigned long flags;
3223
3224         /*
3225          * There is no need to clear mapping if driver tags is not initialized
3226          * or the mapping belongs to the driver tags.
3227          */
3228         if (!drv_tags || drv_tags == tags)
3229                 return;
3230
3231         list_for_each_entry(page, &tags->page_list, lru) {
3232                 unsigned long start = (unsigned long)page_address(page);
3233                 unsigned long end = start + order_to_size(page->private);
3234                 int i;
3235
3236                 for (i = 0; i < drv_tags->nr_tags; i++) {
3237                         struct request *rq = drv_tags->rqs[i];
3238                         unsigned long rq_addr = (unsigned long)rq;
3239
3240                         if (rq_addr >= start && rq_addr < end) {
3241                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3242                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3243                         }
3244                 }
3245         }
3246
3247         /*
3248          * Wait until all pending iteration is done.
3249          *
3250          * Request reference is cleared and it is guaranteed to be observed
3251          * after the ->lock is released.
3252          */
3253         spin_lock_irqsave(&drv_tags->lock, flags);
3254         spin_unlock_irqrestore(&drv_tags->lock, flags);
3255 }
3256
3257 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3258                      unsigned int hctx_idx)
3259 {
3260         struct blk_mq_tags *drv_tags;
3261         struct page *page;
3262
3263         if (list_empty(&tags->page_list))
3264                 return;
3265
3266         if (blk_mq_is_shared_tags(set->flags))
3267                 drv_tags = set->shared_tags;
3268         else
3269                 drv_tags = set->tags[hctx_idx];
3270
3271         if (tags->static_rqs && set->ops->exit_request) {
3272                 int i;
3273
3274                 for (i = 0; i < tags->nr_tags; i++) {
3275                         struct request *rq = tags->static_rqs[i];
3276
3277                         if (!rq)
3278                                 continue;
3279                         set->ops->exit_request(set, rq, hctx_idx);
3280                         tags->static_rqs[i] = NULL;
3281                 }
3282         }
3283
3284         blk_mq_clear_rq_mapping(drv_tags, tags);
3285
3286         while (!list_empty(&tags->page_list)) {
3287                 page = list_first_entry(&tags->page_list, struct page, lru);
3288                 list_del_init(&page->lru);
3289                 /*
3290                  * Remove kmemleak object previously allocated in
3291                  * blk_mq_alloc_rqs().
3292                  */
3293                 kmemleak_free(page_address(page));
3294                 __free_pages(page, page->private);
3295         }
3296 }
3297
3298 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3299 {
3300         kfree(tags->rqs);
3301         tags->rqs = NULL;
3302         kfree(tags->static_rqs);
3303         tags->static_rqs = NULL;
3304
3305         blk_mq_free_tags(tags);
3306 }
3307
3308 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3309                 unsigned int hctx_idx)
3310 {
3311         int i;
3312
3313         for (i = 0; i < set->nr_maps; i++) {
3314                 unsigned int start = set->map[i].queue_offset;
3315                 unsigned int end = start + set->map[i].nr_queues;
3316
3317                 if (hctx_idx >= start && hctx_idx < end)
3318                         break;
3319         }
3320
3321         if (i >= set->nr_maps)
3322                 i = HCTX_TYPE_DEFAULT;
3323
3324         return i;
3325 }
3326
3327 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3328                 unsigned int hctx_idx)
3329 {
3330         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3331
3332         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3333 }
3334
3335 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3336                                                unsigned int hctx_idx,
3337                                                unsigned int nr_tags,
3338                                                unsigned int reserved_tags)
3339 {
3340         int node = blk_mq_get_hctx_node(set, hctx_idx);
3341         struct blk_mq_tags *tags;
3342
3343         if (node == NUMA_NO_NODE)
3344                 node = set->numa_node;
3345
3346         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3347                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3348         if (!tags)
3349                 return NULL;
3350
3351         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3352                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3353                                  node);
3354         if (!tags->rqs)
3355                 goto err_free_tags;
3356
3357         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3358                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3359                                         node);
3360         if (!tags->static_rqs)
3361                 goto err_free_rqs;
3362
3363         return tags;
3364
3365 err_free_rqs:
3366         kfree(tags->rqs);
3367 err_free_tags:
3368         blk_mq_free_tags(tags);
3369         return NULL;
3370 }
3371
3372 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3373                                unsigned int hctx_idx, int node)
3374 {
3375         int ret;
3376
3377         if (set->ops->init_request) {
3378                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3379                 if (ret)
3380                         return ret;
3381         }
3382
3383         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3384         return 0;
3385 }
3386
3387 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3388                             struct blk_mq_tags *tags,
3389                             unsigned int hctx_idx, unsigned int depth)
3390 {
3391         unsigned int i, j, entries_per_page, max_order = 4;
3392         int node = blk_mq_get_hctx_node(set, hctx_idx);
3393         size_t rq_size, left;
3394
3395         if (node == NUMA_NO_NODE)
3396                 node = set->numa_node;
3397
3398         INIT_LIST_HEAD(&tags->page_list);
3399
3400         /*
3401          * rq_size is the size of the request plus driver payload, rounded
3402          * to the cacheline size
3403          */
3404         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3405                                 cache_line_size());
3406         left = rq_size * depth;
3407
3408         for (i = 0; i < depth; ) {
3409                 int this_order = max_order;
3410                 struct page *page;
3411                 int to_do;
3412                 void *p;
3413
3414                 while (this_order && left < order_to_size(this_order - 1))
3415                         this_order--;
3416
3417                 do {
3418                         page = alloc_pages_node(node,
3419                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3420                                 this_order);
3421                         if (page)
3422                                 break;
3423                         if (!this_order--)
3424                                 break;
3425                         if (order_to_size(this_order) < rq_size)
3426                                 break;
3427                 } while (1);
3428
3429                 if (!page)
3430                         goto fail;
3431
3432                 page->private = this_order;
3433                 list_add_tail(&page->lru, &tags->page_list);
3434
3435                 p = page_address(page);
3436                 /*
3437                  * Allow kmemleak to scan these pages as they contain pointers
3438                  * to additional allocations like via ops->init_request().
3439                  */
3440                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3441                 entries_per_page = order_to_size(this_order) / rq_size;
3442                 to_do = min(entries_per_page, depth - i);
3443                 left -= to_do * rq_size;
3444                 for (j = 0; j < to_do; j++) {
3445                         struct request *rq = p;
3446
3447                         tags->static_rqs[i] = rq;
3448                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3449                                 tags->static_rqs[i] = NULL;
3450                                 goto fail;
3451                         }
3452
3453                         p += rq_size;
3454                         i++;
3455                 }
3456         }
3457         return 0;
3458
3459 fail:
3460         blk_mq_free_rqs(set, tags, hctx_idx);
3461         return -ENOMEM;
3462 }
3463
3464 struct rq_iter_data {
3465         struct blk_mq_hw_ctx *hctx;
3466         bool has_rq;
3467 };
3468
3469 static bool blk_mq_has_request(struct request *rq, void *data)
3470 {
3471         struct rq_iter_data *iter_data = data;
3472
3473         if (rq->mq_hctx != iter_data->hctx)
3474                 return true;
3475         iter_data->has_rq = true;
3476         return false;
3477 }
3478
3479 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3480 {
3481         struct blk_mq_tags *tags = hctx->sched_tags ?
3482                         hctx->sched_tags : hctx->tags;
3483         struct rq_iter_data data = {
3484                 .hctx   = hctx,
3485         };
3486
3487         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3488         return data.has_rq;
3489 }
3490
3491 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3492                 struct blk_mq_hw_ctx *hctx)
3493 {
3494         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3495                 return false;
3496         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3497                 return false;
3498         return true;
3499 }
3500
3501 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3502 {
3503         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3504                         struct blk_mq_hw_ctx, cpuhp_online);
3505
3506         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3507             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3508                 return 0;
3509
3510         /*
3511          * Prevent new request from being allocated on the current hctx.
3512          *
3513          * The smp_mb__after_atomic() Pairs with the implied barrier in
3514          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3515          * seen once we return from the tag allocator.
3516          */
3517         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3518         smp_mb__after_atomic();
3519
3520         /*
3521          * Try to grab a reference to the queue and wait for any outstanding
3522          * requests.  If we could not grab a reference the queue has been
3523          * frozen and there are no requests.
3524          */
3525         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3526                 while (blk_mq_hctx_has_requests(hctx))
3527                         msleep(5);
3528                 percpu_ref_put(&hctx->queue->q_usage_counter);
3529         }
3530
3531         return 0;
3532 }
3533
3534 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3535 {
3536         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3537                         struct blk_mq_hw_ctx, cpuhp_online);
3538
3539         if (cpumask_test_cpu(cpu, hctx->cpumask))
3540                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3541         return 0;
3542 }
3543
3544 /*
3545  * 'cpu' is going away. splice any existing rq_list entries from this
3546  * software queue to the hw queue dispatch list, and ensure that it
3547  * gets run.
3548  */
3549 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3550 {
3551         struct blk_mq_hw_ctx *hctx;
3552         struct blk_mq_ctx *ctx;
3553         LIST_HEAD(tmp);
3554         enum hctx_type type;
3555
3556         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3557         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3558                 return 0;
3559
3560         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3561         type = hctx->type;
3562
3563         spin_lock(&ctx->lock);
3564         if (!list_empty(&ctx->rq_lists[type])) {
3565                 list_splice_init(&ctx->rq_lists[type], &tmp);
3566                 blk_mq_hctx_clear_pending(hctx, ctx);
3567         }
3568         spin_unlock(&ctx->lock);
3569
3570         if (list_empty(&tmp))
3571                 return 0;
3572
3573         spin_lock(&hctx->lock);
3574         list_splice_tail_init(&tmp, &hctx->dispatch);
3575         spin_unlock(&hctx->lock);
3576
3577         blk_mq_run_hw_queue(hctx, true);
3578         return 0;
3579 }
3580
3581 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3582 {
3583         if (!(hctx->flags & BLK_MQ_F_STACKING))
3584                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3585                                                     &hctx->cpuhp_online);
3586         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3587                                             &hctx->cpuhp_dead);
3588 }
3589
3590 /*
3591  * Before freeing hw queue, clearing the flush request reference in
3592  * tags->rqs[] for avoiding potential UAF.
3593  */
3594 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3595                 unsigned int queue_depth, struct request *flush_rq)
3596 {
3597         int i;
3598         unsigned long flags;
3599
3600         /* The hw queue may not be mapped yet */
3601         if (!tags)
3602                 return;
3603
3604         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3605
3606         for (i = 0; i < queue_depth; i++)
3607                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3608
3609         /*
3610          * Wait until all pending iteration is done.
3611          *
3612          * Request reference is cleared and it is guaranteed to be observed
3613          * after the ->lock is released.
3614          */
3615         spin_lock_irqsave(&tags->lock, flags);
3616         spin_unlock_irqrestore(&tags->lock, flags);
3617 }
3618
3619 /* hctx->ctxs will be freed in queue's release handler */
3620 static void blk_mq_exit_hctx(struct request_queue *q,
3621                 struct blk_mq_tag_set *set,
3622                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3623 {
3624         struct request *flush_rq = hctx->fq->flush_rq;
3625
3626         if (blk_mq_hw_queue_mapped(hctx))
3627                 blk_mq_tag_idle(hctx);
3628
3629         if (blk_queue_init_done(q))
3630                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3631                                 set->queue_depth, flush_rq);
3632         if (set->ops->exit_request)
3633                 set->ops->exit_request(set, flush_rq, hctx_idx);
3634
3635         if (set->ops->exit_hctx)
3636                 set->ops->exit_hctx(hctx, hctx_idx);
3637
3638         blk_mq_remove_cpuhp(hctx);
3639
3640         xa_erase(&q->hctx_table, hctx_idx);
3641
3642         spin_lock(&q->unused_hctx_lock);
3643         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3644         spin_unlock(&q->unused_hctx_lock);
3645 }
3646
3647 static void blk_mq_exit_hw_queues(struct request_queue *q,
3648                 struct blk_mq_tag_set *set, int nr_queue)
3649 {
3650         struct blk_mq_hw_ctx *hctx;
3651         unsigned long i;
3652
3653         queue_for_each_hw_ctx(q, hctx, i) {
3654                 if (i == nr_queue)
3655                         break;
3656                 blk_mq_exit_hctx(q, set, hctx, i);
3657         }
3658 }
3659
3660 static int blk_mq_init_hctx(struct request_queue *q,
3661                 struct blk_mq_tag_set *set,
3662                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3663 {
3664         hctx->queue_num = hctx_idx;
3665
3666         if (!(hctx->flags & BLK_MQ_F_STACKING))
3667                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3668                                 &hctx->cpuhp_online);
3669         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3670
3671         hctx->tags = set->tags[hctx_idx];
3672
3673         if (set->ops->init_hctx &&
3674             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3675                 goto unregister_cpu_notifier;
3676
3677         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3678                                 hctx->numa_node))
3679                 goto exit_hctx;
3680
3681         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3682                 goto exit_flush_rq;
3683
3684         return 0;
3685
3686  exit_flush_rq:
3687         if (set->ops->exit_request)
3688                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3689  exit_hctx:
3690         if (set->ops->exit_hctx)
3691                 set->ops->exit_hctx(hctx, hctx_idx);
3692  unregister_cpu_notifier:
3693         blk_mq_remove_cpuhp(hctx);
3694         return -1;
3695 }
3696
3697 static struct blk_mq_hw_ctx *
3698 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3699                 int node)
3700 {
3701         struct blk_mq_hw_ctx *hctx;
3702         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3703
3704         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3705         if (!hctx)
3706                 goto fail_alloc_hctx;
3707
3708         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3709                 goto free_hctx;
3710
3711         atomic_set(&hctx->nr_active, 0);
3712         if (node == NUMA_NO_NODE)
3713                 node = set->numa_node;
3714         hctx->numa_node = node;
3715
3716         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3717         spin_lock_init(&hctx->lock);
3718         INIT_LIST_HEAD(&hctx->dispatch);
3719         hctx->queue = q;
3720         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3721
3722         INIT_LIST_HEAD(&hctx->hctx_list);
3723
3724         /*
3725          * Allocate space for all possible cpus to avoid allocation at
3726          * runtime
3727          */
3728         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3729                         gfp, node);
3730         if (!hctx->ctxs)
3731                 goto free_cpumask;
3732
3733         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3734                                 gfp, node, false, false))
3735                 goto free_ctxs;
3736         hctx->nr_ctx = 0;
3737
3738         spin_lock_init(&hctx->dispatch_wait_lock);
3739         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3740         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3741
3742         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3743         if (!hctx->fq)
3744                 goto free_bitmap;
3745
3746         blk_mq_hctx_kobj_init(hctx);
3747
3748         return hctx;
3749
3750  free_bitmap:
3751         sbitmap_free(&hctx->ctx_map);
3752  free_ctxs:
3753         kfree(hctx->ctxs);
3754  free_cpumask:
3755         free_cpumask_var(hctx->cpumask);
3756  free_hctx:
3757         kfree(hctx);
3758  fail_alloc_hctx:
3759         return NULL;
3760 }
3761
3762 static void blk_mq_init_cpu_queues(struct request_queue *q,
3763                                    unsigned int nr_hw_queues)
3764 {
3765         struct blk_mq_tag_set *set = q->tag_set;
3766         unsigned int i, j;
3767
3768         for_each_possible_cpu(i) {
3769                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3770                 struct blk_mq_hw_ctx *hctx;
3771                 int k;
3772
3773                 __ctx->cpu = i;
3774                 spin_lock_init(&__ctx->lock);
3775                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3776                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3777
3778                 __ctx->queue = q;
3779
3780                 /*
3781                  * Set local node, IFF we have more than one hw queue. If
3782                  * not, we remain on the home node of the device
3783                  */
3784                 for (j = 0; j < set->nr_maps; j++) {
3785                         hctx = blk_mq_map_queue_type(q, j, i);
3786                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3787                                 hctx->numa_node = cpu_to_node(i);
3788                 }
3789         }
3790 }
3791
3792 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3793                                              unsigned int hctx_idx,
3794                                              unsigned int depth)
3795 {
3796         struct blk_mq_tags *tags;
3797         int ret;
3798
3799         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3800         if (!tags)
3801                 return NULL;
3802
3803         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3804         if (ret) {
3805                 blk_mq_free_rq_map(tags);
3806                 return NULL;
3807         }
3808
3809         return tags;
3810 }
3811
3812 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3813                                        int hctx_idx)
3814 {
3815         if (blk_mq_is_shared_tags(set->flags)) {
3816                 set->tags[hctx_idx] = set->shared_tags;
3817
3818                 return true;
3819         }
3820
3821         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3822                                                        set->queue_depth);
3823
3824         return set->tags[hctx_idx];
3825 }
3826
3827 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3828                              struct blk_mq_tags *tags,
3829                              unsigned int hctx_idx)
3830 {
3831         if (tags) {
3832                 blk_mq_free_rqs(set, tags, hctx_idx);
3833                 blk_mq_free_rq_map(tags);
3834         }
3835 }
3836
3837 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3838                                       unsigned int hctx_idx)
3839 {
3840         if (!blk_mq_is_shared_tags(set->flags))
3841                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3842
3843         set->tags[hctx_idx] = NULL;
3844 }
3845
3846 static void blk_mq_map_swqueue(struct request_queue *q)
3847 {
3848         unsigned int j, hctx_idx;
3849         unsigned long i;
3850         struct blk_mq_hw_ctx *hctx;
3851         struct blk_mq_ctx *ctx;
3852         struct blk_mq_tag_set *set = q->tag_set;
3853
3854         queue_for_each_hw_ctx(q, hctx, i) {
3855                 cpumask_clear(hctx->cpumask);
3856                 hctx->nr_ctx = 0;
3857                 hctx->dispatch_from = NULL;
3858         }
3859
3860         /*
3861          * Map software to hardware queues.
3862          *
3863          * If the cpu isn't present, the cpu is mapped to first hctx.
3864          */
3865         for_each_possible_cpu(i) {
3866
3867                 ctx = per_cpu_ptr(q->queue_ctx, i);
3868                 for (j = 0; j < set->nr_maps; j++) {
3869                         if (!set->map[j].nr_queues) {
3870                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3871                                                 HCTX_TYPE_DEFAULT, i);
3872                                 continue;
3873                         }
3874                         hctx_idx = set->map[j].mq_map[i];
3875                         /* unmapped hw queue can be remapped after CPU topo changed */
3876                         if (!set->tags[hctx_idx] &&
3877                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3878                                 /*
3879                                  * If tags initialization fail for some hctx,
3880                                  * that hctx won't be brought online.  In this
3881                                  * case, remap the current ctx to hctx[0] which
3882                                  * is guaranteed to always have tags allocated
3883                                  */
3884                                 set->map[j].mq_map[i] = 0;
3885                         }
3886
3887                         hctx = blk_mq_map_queue_type(q, j, i);
3888                         ctx->hctxs[j] = hctx;
3889                         /*
3890                          * If the CPU is already set in the mask, then we've
3891                          * mapped this one already. This can happen if
3892                          * devices share queues across queue maps.
3893                          */
3894                         if (cpumask_test_cpu(i, hctx->cpumask))
3895                                 continue;
3896
3897                         cpumask_set_cpu(i, hctx->cpumask);
3898                         hctx->type = j;
3899                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3900                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3901
3902                         /*
3903                          * If the nr_ctx type overflows, we have exceeded the
3904                          * amount of sw queues we can support.
3905                          */
3906                         BUG_ON(!hctx->nr_ctx);
3907                 }
3908
3909                 for (; j < HCTX_MAX_TYPES; j++)
3910                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3911                                         HCTX_TYPE_DEFAULT, i);
3912         }
3913
3914         queue_for_each_hw_ctx(q, hctx, i) {
3915                 /*
3916                  * If no software queues are mapped to this hardware queue,
3917                  * disable it and free the request entries.
3918                  */
3919                 if (!hctx->nr_ctx) {
3920                         /* Never unmap queue 0.  We need it as a
3921                          * fallback in case of a new remap fails
3922                          * allocation
3923                          */
3924                         if (i)
3925                                 __blk_mq_free_map_and_rqs(set, i);
3926
3927                         hctx->tags = NULL;
3928                         continue;
3929                 }
3930
3931                 hctx->tags = set->tags[i];
3932                 WARN_ON(!hctx->tags);
3933
3934                 /*
3935                  * Set the map size to the number of mapped software queues.
3936                  * This is more accurate and more efficient than looping
3937                  * over all possibly mapped software queues.
3938                  */
3939                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3940
3941                 /*
3942                  * Initialize batch roundrobin counts
3943                  */
3944                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3945                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3946         }
3947 }
3948
3949 /*
3950  * Caller needs to ensure that we're either frozen/quiesced, or that
3951  * the queue isn't live yet.
3952  */
3953 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3954 {
3955         struct blk_mq_hw_ctx *hctx;
3956         unsigned long i;
3957
3958         queue_for_each_hw_ctx(q, hctx, i) {
3959                 if (shared) {
3960                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3961                 } else {
3962                         blk_mq_tag_idle(hctx);
3963                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3964                 }
3965         }
3966 }
3967
3968 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3969                                          bool shared)
3970 {
3971         struct request_queue *q;
3972
3973         lockdep_assert_held(&set->tag_list_lock);
3974
3975         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3976                 blk_mq_freeze_queue(q);
3977                 queue_set_hctx_shared(q, shared);
3978                 blk_mq_unfreeze_queue(q);
3979         }
3980 }
3981
3982 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3983 {
3984         struct blk_mq_tag_set *set = q->tag_set;
3985
3986         mutex_lock(&set->tag_list_lock);
3987         list_del(&q->tag_set_list);
3988         if (list_is_singular(&set->tag_list)) {
3989                 /* just transitioned to unshared */
3990                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3991                 /* update existing queue */
3992                 blk_mq_update_tag_set_shared(set, false);
3993         }
3994         mutex_unlock(&set->tag_list_lock);
3995         INIT_LIST_HEAD(&q->tag_set_list);
3996 }
3997
3998 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3999                                      struct request_queue *q)
4000 {
4001         mutex_lock(&set->tag_list_lock);
4002
4003         /*
4004          * Check to see if we're transitioning to shared (from 1 to 2 queues).
4005          */
4006         if (!list_empty(&set->tag_list) &&
4007             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4008                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4009                 /* update existing queue */
4010                 blk_mq_update_tag_set_shared(set, true);
4011         }
4012         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4013                 queue_set_hctx_shared(q, true);
4014         list_add_tail(&q->tag_set_list, &set->tag_list);
4015
4016         mutex_unlock(&set->tag_list_lock);
4017 }
4018
4019 /* All allocations will be freed in release handler of q->mq_kobj */
4020 static int blk_mq_alloc_ctxs(struct request_queue *q)
4021 {
4022         struct blk_mq_ctxs *ctxs;
4023         int cpu;
4024
4025         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4026         if (!ctxs)
4027                 return -ENOMEM;
4028
4029         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4030         if (!ctxs->queue_ctx)
4031                 goto fail;
4032
4033         for_each_possible_cpu(cpu) {
4034                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4035                 ctx->ctxs = ctxs;
4036         }
4037
4038         q->mq_kobj = &ctxs->kobj;
4039         q->queue_ctx = ctxs->queue_ctx;
4040
4041         return 0;
4042  fail:
4043         kfree(ctxs);
4044         return -ENOMEM;
4045 }
4046
4047 /*
4048  * It is the actual release handler for mq, but we do it from
4049  * request queue's release handler for avoiding use-after-free
4050  * and headache because q->mq_kobj shouldn't have been introduced,
4051  * but we can't group ctx/kctx kobj without it.
4052  */
4053 void blk_mq_release(struct request_queue *q)
4054 {
4055         struct blk_mq_hw_ctx *hctx, *next;
4056         unsigned long i;
4057
4058         queue_for_each_hw_ctx(q, hctx, i)
4059                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4060
4061         /* all hctx are in .unused_hctx_list now */
4062         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4063                 list_del_init(&hctx->hctx_list);
4064                 kobject_put(&hctx->kobj);
4065         }
4066
4067         xa_destroy(&q->hctx_table);
4068
4069         /*
4070          * release .mq_kobj and sw queue's kobject now because
4071          * both share lifetime with request queue.
4072          */
4073         blk_mq_sysfs_deinit(q);
4074 }
4075
4076 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4077                 struct queue_limits *lim, void *queuedata)
4078 {
4079         struct queue_limits default_lim = { };
4080         struct request_queue *q;
4081         int ret;
4082
4083         q = blk_alloc_queue(lim ? lim : &default_lim, set->numa_node);
4084         if (IS_ERR(q))
4085                 return q;
4086         q->queuedata = queuedata;
4087         ret = blk_mq_init_allocated_queue(set, q);
4088         if (ret) {
4089                 blk_put_queue(q);
4090                 return ERR_PTR(ret);
4091         }
4092         return q;
4093 }
4094 EXPORT_SYMBOL(blk_mq_alloc_queue);
4095
4096 /**
4097  * blk_mq_destroy_queue - shutdown a request queue
4098  * @q: request queue to shutdown
4099  *
4100  * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4101  * requests will be failed with -ENODEV. The caller is responsible for dropping
4102  * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4103  *
4104  * Context: can sleep
4105  */
4106 void blk_mq_destroy_queue(struct request_queue *q)
4107 {
4108         WARN_ON_ONCE(!queue_is_mq(q));
4109         WARN_ON_ONCE(blk_queue_registered(q));
4110
4111         might_sleep();
4112
4113         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4114         blk_queue_start_drain(q);
4115         blk_mq_freeze_queue_wait(q);
4116
4117         blk_sync_queue(q);
4118         blk_mq_cancel_work_sync(q);
4119         blk_mq_exit_queue(q);
4120 }
4121 EXPORT_SYMBOL(blk_mq_destroy_queue);
4122
4123 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4124                 struct queue_limits *lim, void *queuedata,
4125                 struct lock_class_key *lkclass)
4126 {
4127         struct request_queue *q;
4128         struct gendisk *disk;
4129
4130         q = blk_mq_alloc_queue(set, lim, queuedata);
4131         if (IS_ERR(q))
4132                 return ERR_CAST(q);
4133
4134         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4135         if (!disk) {
4136                 blk_mq_destroy_queue(q);
4137                 blk_put_queue(q);
4138                 return ERR_PTR(-ENOMEM);
4139         }
4140         set_bit(GD_OWNS_QUEUE, &disk->state);
4141         return disk;
4142 }
4143 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4144
4145 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4146                 struct lock_class_key *lkclass)
4147 {
4148         struct gendisk *disk;
4149
4150         if (!blk_get_queue(q))
4151                 return NULL;
4152         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4153         if (!disk)
4154                 blk_put_queue(q);
4155         return disk;
4156 }
4157 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4158
4159 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4160                 struct blk_mq_tag_set *set, struct request_queue *q,
4161                 int hctx_idx, int node)
4162 {
4163         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4164
4165         /* reuse dead hctx first */
4166         spin_lock(&q->unused_hctx_lock);
4167         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4168                 if (tmp->numa_node == node) {
4169                         hctx = tmp;
4170                         break;
4171                 }
4172         }
4173         if (hctx)
4174                 list_del_init(&hctx->hctx_list);
4175         spin_unlock(&q->unused_hctx_lock);
4176
4177         if (!hctx)
4178                 hctx = blk_mq_alloc_hctx(q, set, node);
4179         if (!hctx)
4180                 goto fail;
4181
4182         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4183                 goto free_hctx;
4184
4185         return hctx;
4186
4187  free_hctx:
4188         kobject_put(&hctx->kobj);
4189  fail:
4190         return NULL;
4191 }
4192
4193 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4194                                                 struct request_queue *q)
4195 {
4196         struct blk_mq_hw_ctx *hctx;
4197         unsigned long i, j;
4198
4199         /* protect against switching io scheduler  */
4200         mutex_lock(&q->sysfs_lock);
4201         for (i = 0; i < set->nr_hw_queues; i++) {
4202                 int old_node;
4203                 int node = blk_mq_get_hctx_node(set, i);
4204                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4205
4206                 if (old_hctx) {
4207                         old_node = old_hctx->numa_node;
4208                         blk_mq_exit_hctx(q, set, old_hctx, i);
4209                 }
4210
4211                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4212                         if (!old_hctx)
4213                                 break;
4214                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4215                                         node, old_node);
4216                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4217                         WARN_ON_ONCE(!hctx);
4218                 }
4219         }
4220         /*
4221          * Increasing nr_hw_queues fails. Free the newly allocated
4222          * hctxs and keep the previous q->nr_hw_queues.
4223          */
4224         if (i != set->nr_hw_queues) {
4225                 j = q->nr_hw_queues;
4226         } else {
4227                 j = i;
4228                 q->nr_hw_queues = set->nr_hw_queues;
4229         }
4230
4231         xa_for_each_start(&q->hctx_table, j, hctx, j)
4232                 blk_mq_exit_hctx(q, set, hctx, j);
4233         mutex_unlock(&q->sysfs_lock);
4234 }
4235
4236 static void blk_mq_update_poll_flag(struct request_queue *q)
4237 {
4238         struct blk_mq_tag_set *set = q->tag_set;
4239
4240         if (set->nr_maps > HCTX_TYPE_POLL &&
4241             set->map[HCTX_TYPE_POLL].nr_queues)
4242                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4243         else
4244                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4245 }
4246
4247 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4248                 struct request_queue *q)
4249 {
4250         /* mark the queue as mq asap */
4251         q->mq_ops = set->ops;
4252
4253         if (blk_mq_alloc_ctxs(q))
4254                 goto err_exit;
4255
4256         /* init q->mq_kobj and sw queues' kobjects */
4257         blk_mq_sysfs_init(q);
4258
4259         INIT_LIST_HEAD(&q->unused_hctx_list);
4260         spin_lock_init(&q->unused_hctx_lock);
4261
4262         xa_init(&q->hctx_table);
4263
4264         blk_mq_realloc_hw_ctxs(set, q);
4265         if (!q->nr_hw_queues)
4266                 goto err_hctxs;
4267
4268         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4269         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4270
4271         q->tag_set = set;
4272
4273         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4274         blk_mq_update_poll_flag(q);
4275
4276         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4277         INIT_LIST_HEAD(&q->flush_list);
4278         INIT_LIST_HEAD(&q->requeue_list);
4279         spin_lock_init(&q->requeue_lock);
4280
4281         q->nr_requests = set->queue_depth;
4282
4283         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4284         blk_mq_add_queue_tag_set(set, q);
4285         blk_mq_map_swqueue(q);
4286         return 0;
4287
4288 err_hctxs:
4289         blk_mq_release(q);
4290 err_exit:
4291         q->mq_ops = NULL;
4292         return -ENOMEM;
4293 }
4294 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4295
4296 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4297 void blk_mq_exit_queue(struct request_queue *q)
4298 {
4299         struct blk_mq_tag_set *set = q->tag_set;
4300
4301         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4302         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4303         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4304         blk_mq_del_queue_tag_set(q);
4305 }
4306
4307 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4308 {
4309         int i;
4310
4311         if (blk_mq_is_shared_tags(set->flags)) {
4312                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4313                                                 BLK_MQ_NO_HCTX_IDX,
4314                                                 set->queue_depth);
4315                 if (!set->shared_tags)
4316                         return -ENOMEM;
4317         }
4318
4319         for (i = 0; i < set->nr_hw_queues; i++) {
4320                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4321                         goto out_unwind;
4322                 cond_resched();
4323         }
4324
4325         return 0;
4326
4327 out_unwind:
4328         while (--i >= 0)
4329                 __blk_mq_free_map_and_rqs(set, i);
4330
4331         if (blk_mq_is_shared_tags(set->flags)) {
4332                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4333                                         BLK_MQ_NO_HCTX_IDX);
4334         }
4335
4336         return -ENOMEM;
4337 }
4338
4339 /*
4340  * Allocate the request maps associated with this tag_set. Note that this
4341  * may reduce the depth asked for, if memory is tight. set->queue_depth
4342  * will be updated to reflect the allocated depth.
4343  */
4344 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4345 {
4346         unsigned int depth;
4347         int err;
4348
4349         depth = set->queue_depth;
4350         do {
4351                 err = __blk_mq_alloc_rq_maps(set);
4352                 if (!err)
4353                         break;
4354
4355                 set->queue_depth >>= 1;
4356                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4357                         err = -ENOMEM;
4358                         break;
4359                 }
4360         } while (set->queue_depth);
4361
4362         if (!set->queue_depth || err) {
4363                 pr_err("blk-mq: failed to allocate request map\n");
4364                 return -ENOMEM;
4365         }
4366
4367         if (depth != set->queue_depth)
4368                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4369                                                 depth, set->queue_depth);
4370
4371         return 0;
4372 }
4373
4374 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4375 {
4376         /*
4377          * blk_mq_map_queues() and multiple .map_queues() implementations
4378          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4379          * number of hardware queues.
4380          */
4381         if (set->nr_maps == 1)
4382                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4383
4384         if (set->ops->map_queues) {
4385                 int i;
4386
4387                 /*
4388                  * transport .map_queues is usually done in the following
4389                  * way:
4390                  *
4391                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4392                  *      mask = get_cpu_mask(queue)
4393                  *      for_each_cpu(cpu, mask)
4394                  *              set->map[x].mq_map[cpu] = queue;
4395                  * }
4396                  *
4397                  * When we need to remap, the table has to be cleared for
4398                  * killing stale mapping since one CPU may not be mapped
4399                  * to any hw queue.
4400                  */
4401                 for (i = 0; i < set->nr_maps; i++)
4402                         blk_mq_clear_mq_map(&set->map[i]);
4403
4404                 set->ops->map_queues(set);
4405         } else {
4406                 BUG_ON(set->nr_maps > 1);
4407                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4408         }
4409 }
4410
4411 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4412                                        int new_nr_hw_queues)
4413 {
4414         struct blk_mq_tags **new_tags;
4415         int i;
4416
4417         if (set->nr_hw_queues >= new_nr_hw_queues)
4418                 goto done;
4419
4420         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4421                                 GFP_KERNEL, set->numa_node);
4422         if (!new_tags)
4423                 return -ENOMEM;
4424
4425         if (set->tags)
4426                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4427                        sizeof(*set->tags));
4428         kfree(set->tags);
4429         set->tags = new_tags;
4430
4431         for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4432                 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4433                         while (--i >= set->nr_hw_queues)
4434                                 __blk_mq_free_map_and_rqs(set, i);
4435                         return -ENOMEM;
4436                 }
4437                 cond_resched();
4438         }
4439
4440 done:
4441         set->nr_hw_queues = new_nr_hw_queues;
4442         return 0;
4443 }
4444
4445 /*
4446  * Alloc a tag set to be associated with one or more request queues.
4447  * May fail with EINVAL for various error conditions. May adjust the
4448  * requested depth down, if it's too large. In that case, the set
4449  * value will be stored in set->queue_depth.
4450  */
4451 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4452 {
4453         int i, ret;
4454
4455         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4456
4457         if (!set->nr_hw_queues)
4458                 return -EINVAL;
4459         if (!set->queue_depth)
4460                 return -EINVAL;
4461         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4462                 return -EINVAL;
4463
4464         if (!set->ops->queue_rq)
4465                 return -EINVAL;
4466
4467         if (!set->ops->get_budget ^ !set->ops->put_budget)
4468                 return -EINVAL;
4469
4470         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4471                 pr_info("blk-mq: reduced tag depth to %u\n",
4472                         BLK_MQ_MAX_DEPTH);
4473                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4474         }
4475
4476         if (!set->nr_maps)
4477                 set->nr_maps = 1;
4478         else if (set->nr_maps > HCTX_MAX_TYPES)
4479                 return -EINVAL;
4480
4481         /*
4482          * If a crashdump is active, then we are potentially in a very
4483          * memory constrained environment. Limit us to  64 tags to prevent
4484          * using too much memory.
4485          */
4486         if (is_kdump_kernel())
4487                 set->queue_depth = min(64U, set->queue_depth);
4488
4489         /*
4490          * There is no use for more h/w queues than cpus if we just have
4491          * a single map
4492          */
4493         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4494                 set->nr_hw_queues = nr_cpu_ids;
4495
4496         if (set->flags & BLK_MQ_F_BLOCKING) {
4497                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4498                 if (!set->srcu)
4499                         return -ENOMEM;
4500                 ret = init_srcu_struct(set->srcu);
4501                 if (ret)
4502                         goto out_free_srcu;
4503         }
4504
4505         ret = -ENOMEM;
4506         set->tags = kcalloc_node(set->nr_hw_queues,
4507                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4508                                  set->numa_node);
4509         if (!set->tags)
4510                 goto out_cleanup_srcu;
4511
4512         for (i = 0; i < set->nr_maps; i++) {
4513                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4514                                                   sizeof(set->map[i].mq_map[0]),
4515                                                   GFP_KERNEL, set->numa_node);
4516                 if (!set->map[i].mq_map)
4517                         goto out_free_mq_map;
4518                 set->map[i].nr_queues = set->nr_hw_queues;
4519         }
4520
4521         blk_mq_update_queue_map(set);
4522
4523         ret = blk_mq_alloc_set_map_and_rqs(set);
4524         if (ret)
4525                 goto out_free_mq_map;
4526
4527         mutex_init(&set->tag_list_lock);
4528         INIT_LIST_HEAD(&set->tag_list);
4529
4530         return 0;
4531
4532 out_free_mq_map:
4533         for (i = 0; i < set->nr_maps; i++) {
4534                 kfree(set->map[i].mq_map);
4535                 set->map[i].mq_map = NULL;
4536         }
4537         kfree(set->tags);
4538         set->tags = NULL;
4539 out_cleanup_srcu:
4540         if (set->flags & BLK_MQ_F_BLOCKING)
4541                 cleanup_srcu_struct(set->srcu);
4542 out_free_srcu:
4543         if (set->flags & BLK_MQ_F_BLOCKING)
4544                 kfree(set->srcu);
4545         return ret;
4546 }
4547 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4548
4549 /* allocate and initialize a tagset for a simple single-queue device */
4550 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4551                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4552                 unsigned int set_flags)
4553 {
4554         memset(set, 0, sizeof(*set));
4555         set->ops = ops;
4556         set->nr_hw_queues = 1;
4557         set->nr_maps = 1;
4558         set->queue_depth = queue_depth;
4559         set->numa_node = NUMA_NO_NODE;
4560         set->flags = set_flags;
4561         return blk_mq_alloc_tag_set(set);
4562 }
4563 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4564
4565 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4566 {
4567         int i, j;
4568
4569         for (i = 0; i < set->nr_hw_queues; i++)
4570                 __blk_mq_free_map_and_rqs(set, i);
4571
4572         if (blk_mq_is_shared_tags(set->flags)) {
4573                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4574                                         BLK_MQ_NO_HCTX_IDX);
4575         }
4576
4577         for (j = 0; j < set->nr_maps; j++) {
4578                 kfree(set->map[j].mq_map);
4579                 set->map[j].mq_map = NULL;
4580         }
4581
4582         kfree(set->tags);
4583         set->tags = NULL;
4584         if (set->flags & BLK_MQ_F_BLOCKING) {
4585                 cleanup_srcu_struct(set->srcu);
4586                 kfree(set->srcu);
4587         }
4588 }
4589 EXPORT_SYMBOL(blk_mq_free_tag_set);
4590
4591 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4592 {
4593         struct blk_mq_tag_set *set = q->tag_set;
4594         struct blk_mq_hw_ctx *hctx;
4595         int ret;
4596         unsigned long i;
4597
4598         if (!set)
4599                 return -EINVAL;
4600
4601         if (q->nr_requests == nr)
4602                 return 0;
4603
4604         blk_mq_freeze_queue(q);
4605         blk_mq_quiesce_queue(q);
4606
4607         ret = 0;
4608         queue_for_each_hw_ctx(q, hctx, i) {
4609                 if (!hctx->tags)
4610                         continue;
4611                 /*
4612                  * If we're using an MQ scheduler, just update the scheduler
4613                  * queue depth. This is similar to what the old code would do.
4614                  */
4615                 if (hctx->sched_tags) {
4616                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4617                                                       nr, true);
4618                 } else {
4619                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4620                                                       false);
4621                 }
4622                 if (ret)
4623                         break;
4624                 if (q->elevator && q->elevator->type->ops.depth_updated)
4625                         q->elevator->type->ops.depth_updated(hctx);
4626         }
4627         if (!ret) {
4628                 q->nr_requests = nr;
4629                 if (blk_mq_is_shared_tags(set->flags)) {
4630                         if (q->elevator)
4631                                 blk_mq_tag_update_sched_shared_tags(q);
4632                         else
4633                                 blk_mq_tag_resize_shared_tags(set, nr);
4634                 }
4635         }
4636
4637         blk_mq_unquiesce_queue(q);
4638         blk_mq_unfreeze_queue(q);
4639
4640         return ret;
4641 }
4642
4643 /*
4644  * request_queue and elevator_type pair.
4645  * It is just used by __blk_mq_update_nr_hw_queues to cache
4646  * the elevator_type associated with a request_queue.
4647  */
4648 struct blk_mq_qe_pair {
4649         struct list_head node;
4650         struct request_queue *q;
4651         struct elevator_type *type;
4652 };
4653
4654 /*
4655  * Cache the elevator_type in qe pair list and switch the
4656  * io scheduler to 'none'
4657  */
4658 static bool blk_mq_elv_switch_none(struct list_head *head,
4659                 struct request_queue *q)
4660 {
4661         struct blk_mq_qe_pair *qe;
4662
4663         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4664         if (!qe)
4665                 return false;
4666
4667         /* q->elevator needs protection from ->sysfs_lock */
4668         mutex_lock(&q->sysfs_lock);
4669
4670         /* the check has to be done with holding sysfs_lock */
4671         if (!q->elevator) {
4672                 kfree(qe);
4673                 goto unlock;
4674         }
4675
4676         INIT_LIST_HEAD(&qe->node);
4677         qe->q = q;
4678         qe->type = q->elevator->type;
4679         /* keep a reference to the elevator module as we'll switch back */
4680         __elevator_get(qe->type);
4681         list_add(&qe->node, head);
4682         elevator_disable(q);
4683 unlock:
4684         mutex_unlock(&q->sysfs_lock);
4685
4686         return true;
4687 }
4688
4689 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4690                                                 struct request_queue *q)
4691 {
4692         struct blk_mq_qe_pair *qe;
4693
4694         list_for_each_entry(qe, head, node)
4695                 if (qe->q == q)
4696                         return qe;
4697
4698         return NULL;
4699 }
4700
4701 static void blk_mq_elv_switch_back(struct list_head *head,
4702                                   struct request_queue *q)
4703 {
4704         struct blk_mq_qe_pair *qe;
4705         struct elevator_type *t;
4706
4707         qe = blk_lookup_qe_pair(head, q);
4708         if (!qe)
4709                 return;
4710         t = qe->type;
4711         list_del(&qe->node);
4712         kfree(qe);
4713
4714         mutex_lock(&q->sysfs_lock);
4715         elevator_switch(q, t);
4716         /* drop the reference acquired in blk_mq_elv_switch_none */
4717         elevator_put(t);
4718         mutex_unlock(&q->sysfs_lock);
4719 }
4720
4721 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4722                                                         int nr_hw_queues)
4723 {
4724         struct request_queue *q;
4725         LIST_HEAD(head);
4726         int prev_nr_hw_queues = set->nr_hw_queues;
4727         int i;
4728
4729         lockdep_assert_held(&set->tag_list_lock);
4730
4731         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4732                 nr_hw_queues = nr_cpu_ids;
4733         if (nr_hw_queues < 1)
4734                 return;
4735         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4736                 return;
4737
4738         list_for_each_entry(q, &set->tag_list, tag_set_list)
4739                 blk_mq_freeze_queue(q);
4740         /*
4741          * Switch IO scheduler to 'none', cleaning up the data associated
4742          * with the previous scheduler. We will switch back once we are done
4743          * updating the new sw to hw queue mappings.
4744          */
4745         list_for_each_entry(q, &set->tag_list, tag_set_list)
4746                 if (!blk_mq_elv_switch_none(&head, q))
4747                         goto switch_back;
4748
4749         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4750                 blk_mq_debugfs_unregister_hctxs(q);
4751                 blk_mq_sysfs_unregister_hctxs(q);
4752         }
4753
4754         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4755                 goto reregister;
4756
4757 fallback:
4758         blk_mq_update_queue_map(set);
4759         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4760                 blk_mq_realloc_hw_ctxs(set, q);
4761                 blk_mq_update_poll_flag(q);
4762                 if (q->nr_hw_queues != set->nr_hw_queues) {
4763                         int i = prev_nr_hw_queues;
4764
4765                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4766                                         nr_hw_queues, prev_nr_hw_queues);
4767                         for (; i < set->nr_hw_queues; i++)
4768                                 __blk_mq_free_map_and_rqs(set, i);
4769
4770                         set->nr_hw_queues = prev_nr_hw_queues;
4771                         goto fallback;
4772                 }
4773                 blk_mq_map_swqueue(q);
4774         }
4775
4776 reregister:
4777         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4778                 blk_mq_sysfs_register_hctxs(q);
4779                 blk_mq_debugfs_register_hctxs(q);
4780         }
4781
4782 switch_back:
4783         list_for_each_entry(q, &set->tag_list, tag_set_list)
4784                 blk_mq_elv_switch_back(&head, q);
4785
4786         list_for_each_entry(q, &set->tag_list, tag_set_list)
4787                 blk_mq_unfreeze_queue(q);
4788
4789         /* Free the excess tags when nr_hw_queues shrink. */
4790         for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4791                 __blk_mq_free_map_and_rqs(set, i);
4792 }
4793
4794 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4795 {
4796         mutex_lock(&set->tag_list_lock);
4797         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4798         mutex_unlock(&set->tag_list_lock);
4799 }
4800 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4801
4802 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4803                          struct io_comp_batch *iob, unsigned int flags)
4804 {
4805         long state = get_current_state();
4806         int ret;
4807
4808         do {
4809                 ret = q->mq_ops->poll(hctx, iob);
4810                 if (ret > 0) {
4811                         __set_current_state(TASK_RUNNING);
4812                         return ret;
4813                 }
4814
4815                 if (signal_pending_state(state, current))
4816                         __set_current_state(TASK_RUNNING);
4817                 if (task_is_running(current))
4818                         return 1;
4819
4820                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4821                         break;
4822                 cpu_relax();
4823         } while (!need_resched());
4824
4825         __set_current_state(TASK_RUNNING);
4826         return 0;
4827 }
4828
4829 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4830                 struct io_comp_batch *iob, unsigned int flags)
4831 {
4832         struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4833
4834         return blk_hctx_poll(q, hctx, iob, flags);
4835 }
4836
4837 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4838                 unsigned int poll_flags)
4839 {
4840         struct request_queue *q = rq->q;
4841         int ret;
4842
4843         if (!blk_rq_is_poll(rq))
4844                 return 0;
4845         if (!percpu_ref_tryget(&q->q_usage_counter))
4846                 return 0;
4847
4848         ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4849         blk_queue_exit(q);
4850
4851         return ret;
4852 }
4853 EXPORT_SYMBOL_GPL(blk_rq_poll);
4854
4855 unsigned int blk_mq_rq_cpu(struct request *rq)
4856 {
4857         return rq->mq_ctx->cpu;
4858 }
4859 EXPORT_SYMBOL(blk_mq_rq_cpu);
4860
4861 void blk_mq_cancel_work_sync(struct request_queue *q)
4862 {
4863         struct blk_mq_hw_ctx *hctx;
4864         unsigned long i;
4865
4866         cancel_delayed_work_sync(&q->requeue_work);
4867
4868         queue_for_each_hw_ctx(q, hctx, i)
4869                 cancel_delayed_work_sync(&hctx->run_work);
4870 }
4871
4872 static int __init blk_mq_init(void)
4873 {
4874         int i;
4875
4876         for_each_possible_cpu(i)
4877                 init_llist_head(&per_cpu(blk_cpu_done, i));
4878         for_each_possible_cpu(i)
4879                 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4880                          __blk_mq_complete_request_remote, NULL);
4881         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4882
4883         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4884                                   "block/softirq:dead", NULL,
4885                                   blk_softirq_cpu_dead);
4886         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4887                                 blk_mq_hctx_notify_dead);
4888         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4889                                 blk_mq_hctx_notify_online,
4890                                 blk_mq_hctx_notify_offline);
4891         return 0;
4892 }
4893 subsys_initcall(blk_mq_init);