Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51         int ddir, sectors, bucket;
52
53         ddir = rq_data_dir(rq);
54         sectors = blk_rq_stats_sectors(rq);
55
56         bucket = ddir + 2 * ilog2(sectors);
57
58         if (bucket < 0)
59                 return -1;
60         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63         return bucket;
64 }
65
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72         return !list_empty_careful(&hctx->dispatch) ||
73                 sbitmap_any_bit_set(&hctx->ctx_map) ||
74                         blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81                                      struct blk_mq_ctx *ctx)
82 {
83         const int bit = ctx->index_hw[hctx->type];
84
85         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86                 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90                                       struct blk_mq_ctx *ctx)
91 {
92         const int bit = ctx->index_hw[hctx->type];
93
94         sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98         struct block_device *part;
99         unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103                                   struct request *rq, void *priv,
104                                   bool reserved)
105 {
106         struct mq_inflight *mi = priv;
107
108         if ((!mi->part->bd_partno || rq->part == mi->part) &&
109             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110                 mi->inflight[rq_data_dir(rq)]++;
111
112         return true;
113 }
114
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116                 struct block_device *part)
117 {
118         struct mq_inflight mi = { .part = part };
119
120         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121
122         return mi.inflight[0] + mi.inflight[1];
123 }
124
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126                 unsigned int inflight[2])
127 {
128         struct mq_inflight mi = { .part = part };
129
130         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131         inflight[0] = mi.inflight[0];
132         inflight[1] = mi.inflight[1];
133 }
134
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137         mutex_lock(&q->mq_freeze_lock);
138         if (++q->mq_freeze_depth == 1) {
139                 percpu_ref_kill(&q->q_usage_counter);
140                 mutex_unlock(&q->mq_freeze_lock);
141                 if (queue_is_mq(q))
142                         blk_mq_run_hw_queues(q, false);
143         } else {
144                 mutex_unlock(&q->mq_freeze_lock);
145         }
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156                                      unsigned long timeout)
157 {
158         return wait_event_timeout(q->mq_freeze_wq,
159                                         percpu_ref_is_zero(&q->q_usage_counter),
160                                         timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170         /*
171          * In the !blk_mq case we are only calling this to kill the
172          * q_usage_counter, otherwise this increases the freeze depth
173          * and waits for it to return to zero.  For this reason there is
174          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175          * exported to drivers as the only user for unfreeze is blk_mq.
176          */
177         blk_freeze_queue_start(q);
178         blk_mq_freeze_queue_wait(q);
179 }
180
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183         /*
184          * ...just an alias to keep freeze and unfreeze actions balanced
185          * in the blk_mq_* namespace
186          */
187         blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190
191 void blk_mq_unfreeze_queue(struct request_queue *q)
192 {
193         mutex_lock(&q->mq_freeze_lock);
194         q->mq_freeze_depth--;
195         WARN_ON_ONCE(q->mq_freeze_depth < 0);
196         if (!q->mq_freeze_depth) {
197                 percpu_ref_resurrect(&q->q_usage_counter);
198                 wake_up_all(&q->mq_freeze_wq);
199         }
200         mutex_unlock(&q->mq_freeze_lock);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203
204 /*
205  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206  * mpt3sas driver such that this function can be removed.
207  */
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209 {
210         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
214 /**
215  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216  * @q: request queue.
217  *
218  * Note: this function does not prevent that the struct request end_io()
219  * callback function is invoked. Once this function is returned, we make
220  * sure no dispatch can happen until the queue is unquiesced via
221  * blk_mq_unquiesce_queue().
222  */
223 void blk_mq_quiesce_queue(struct request_queue *q)
224 {
225         struct blk_mq_hw_ctx *hctx;
226         unsigned int i;
227         bool rcu = false;
228
229         blk_mq_quiesce_queue_nowait(q);
230
231         queue_for_each_hw_ctx(q, hctx, i) {
232                 if (hctx->flags & BLK_MQ_F_BLOCKING)
233                         synchronize_srcu(hctx->srcu);
234                 else
235                         rcu = true;
236         }
237         if (rcu)
238                 synchronize_rcu();
239 }
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241
242 /*
243  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244  * @q: request queue.
245  *
246  * This function recovers queue into the state before quiescing
247  * which is done by blk_mq_quiesce_queue.
248  */
249 void blk_mq_unquiesce_queue(struct request_queue *q)
250 {
251         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252
253         /* dispatch requests which are inserted during quiescing */
254         blk_mq_run_hw_queues(q, true);
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257
258 void blk_mq_wake_waiters(struct request_queue *q)
259 {
260         struct blk_mq_hw_ctx *hctx;
261         unsigned int i;
262
263         queue_for_each_hw_ctx(q, hctx, i)
264                 if (blk_mq_hw_queue_mapped(hctx))
265                         blk_mq_tag_wakeup_all(hctx->tags, true);
266 }
267
268 /*
269  * Only need start/end time stamping if we have iostat or
270  * blk stats enabled, or using an IO scheduler.
271  */
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
273 {
274         return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 }
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278                 unsigned int tag, u64 alloc_time_ns)
279 {
280         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281         struct request *rq = tags->static_rqs[tag];
282
283         if (data->q->elevator) {
284                 rq->tag = BLK_MQ_NO_TAG;
285                 rq->internal_tag = tag;
286         } else {
287                 rq->tag = tag;
288                 rq->internal_tag = BLK_MQ_NO_TAG;
289         }
290
291         /* csd/requeue_work/fifo_time is initialized before use */
292         rq->q = data->q;
293         rq->mq_ctx = data->ctx;
294         rq->mq_hctx = data->hctx;
295         rq->rq_flags = 0;
296         rq->cmd_flags = data->cmd_flags;
297         if (data->flags & BLK_MQ_REQ_PM)
298                 rq->rq_flags |= RQF_PM;
299         if (blk_queue_io_stat(data->q))
300                 rq->rq_flags |= RQF_IO_STAT;
301         INIT_LIST_HEAD(&rq->queuelist);
302         INIT_HLIST_NODE(&rq->hash);
303         RB_CLEAR_NODE(&rq->rb_node);
304         rq->rq_disk = NULL;
305         rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307         rq->alloc_time_ns = alloc_time_ns;
308 #endif
309         if (blk_mq_need_time_stamp(rq))
310                 rq->start_time_ns = ktime_get_ns();
311         else
312                 rq->start_time_ns = 0;
313         rq->io_start_time_ns = 0;
314         rq->stats_sectors = 0;
315         rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317         rq->nr_integrity_segments = 0;
318 #endif
319         blk_crypto_rq_set_defaults(rq);
320         /* tag was already set */
321         WRITE_ONCE(rq->deadline, 0);
322
323         rq->timeout = 0;
324
325         rq->end_io = NULL;
326         rq->end_io_data = NULL;
327
328         data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329         refcount_set(&rq->ref, 1);
330
331         if (!op_is_flush(data->cmd_flags)) {
332                 struct elevator_queue *e = data->q->elevator;
333
334                 rq->elv.icq = NULL;
335                 if (e && e->type->ops.prepare_request) {
336                         if (e->type->icq_cache)
337                                 blk_mq_sched_assign_ioc(rq);
338
339                         e->type->ops.prepare_request(rq);
340                         rq->rq_flags |= RQF_ELVPRIV;
341                 }
342         }
343
344         data->hctx->queued++;
345         return rq;
346 }
347
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349 {
350         struct request_queue *q = data->q;
351         struct elevator_queue *e = q->elevator;
352         u64 alloc_time_ns = 0;
353         unsigned int tag;
354
355         /* alloc_time includes depth and tag waits */
356         if (blk_queue_rq_alloc_time(q))
357                 alloc_time_ns = ktime_get_ns();
358
359         if (data->cmd_flags & REQ_NOWAIT)
360                 data->flags |= BLK_MQ_REQ_NOWAIT;
361
362         if (e) {
363                 /*
364                  * Flush/passthrough requests are special and go directly to the
365                  * dispatch list. Don't include reserved tags in the
366                  * limiting, as it isn't useful.
367                  */
368                 if (!op_is_flush(data->cmd_flags) &&
369                     !blk_op_is_passthrough(data->cmd_flags) &&
370                     e->type->ops.limit_depth &&
371                     !(data->flags & BLK_MQ_REQ_RESERVED))
372                         e->type->ops.limit_depth(data->cmd_flags, data);
373         }
374
375 retry:
376         data->ctx = blk_mq_get_ctx(q);
377         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
378         if (!e)
379                 blk_mq_tag_busy(data->hctx);
380
381         /*
382          * Waiting allocations only fail because of an inactive hctx.  In that
383          * case just retry the hctx assignment and tag allocation as CPU hotplug
384          * should have migrated us to an online CPU by now.
385          */
386         tag = blk_mq_get_tag(data);
387         if (tag == BLK_MQ_NO_TAG) {
388                 if (data->flags & BLK_MQ_REQ_NOWAIT)
389                         return NULL;
390
391                 /*
392                  * Give up the CPU and sleep for a random short time to ensure
393                  * that thread using a realtime scheduling class are migrated
394                  * off the CPU, and thus off the hctx that is going away.
395                  */
396                 msleep(3);
397                 goto retry;
398         }
399         return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
400 }
401
402 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
403                 blk_mq_req_flags_t flags)
404 {
405         struct blk_mq_alloc_data data = {
406                 .q              = q,
407                 .flags          = flags,
408                 .cmd_flags      = op,
409         };
410         struct request *rq;
411         int ret;
412
413         ret = blk_queue_enter(q, flags);
414         if (ret)
415                 return ERR_PTR(ret);
416
417         rq = __blk_mq_alloc_request(&data);
418         if (!rq)
419                 goto out_queue_exit;
420         rq->__data_len = 0;
421         rq->__sector = (sector_t) -1;
422         rq->bio = rq->biotail = NULL;
423         return rq;
424 out_queue_exit:
425         blk_queue_exit(q);
426         return ERR_PTR(-EWOULDBLOCK);
427 }
428 EXPORT_SYMBOL(blk_mq_alloc_request);
429
430 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
431         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
432 {
433         struct blk_mq_alloc_data data = {
434                 .q              = q,
435                 .flags          = flags,
436                 .cmd_flags      = op,
437         };
438         u64 alloc_time_ns = 0;
439         unsigned int cpu;
440         unsigned int tag;
441         int ret;
442
443         /* alloc_time includes depth and tag waits */
444         if (blk_queue_rq_alloc_time(q))
445                 alloc_time_ns = ktime_get_ns();
446
447         /*
448          * If the tag allocator sleeps we could get an allocation for a
449          * different hardware context.  No need to complicate the low level
450          * allocator for this for the rare use case of a command tied to
451          * a specific queue.
452          */
453         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
454                 return ERR_PTR(-EINVAL);
455
456         if (hctx_idx >= q->nr_hw_queues)
457                 return ERR_PTR(-EIO);
458
459         ret = blk_queue_enter(q, flags);
460         if (ret)
461                 return ERR_PTR(ret);
462
463         /*
464          * Check if the hardware context is actually mapped to anything.
465          * If not tell the caller that it should skip this queue.
466          */
467         ret = -EXDEV;
468         data.hctx = q->queue_hw_ctx[hctx_idx];
469         if (!blk_mq_hw_queue_mapped(data.hctx))
470                 goto out_queue_exit;
471         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
472         data.ctx = __blk_mq_get_ctx(q, cpu);
473
474         if (!q->elevator)
475                 blk_mq_tag_busy(data.hctx);
476
477         ret = -EWOULDBLOCK;
478         tag = blk_mq_get_tag(&data);
479         if (tag == BLK_MQ_NO_TAG)
480                 goto out_queue_exit;
481         return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
482
483 out_queue_exit:
484         blk_queue_exit(q);
485         return ERR_PTR(ret);
486 }
487 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
488
489 static void __blk_mq_free_request(struct request *rq)
490 {
491         struct request_queue *q = rq->q;
492         struct blk_mq_ctx *ctx = rq->mq_ctx;
493         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
494         const int sched_tag = rq->internal_tag;
495
496         blk_crypto_free_request(rq);
497         blk_pm_mark_last_busy(rq);
498         rq->mq_hctx = NULL;
499         if (rq->tag != BLK_MQ_NO_TAG)
500                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
501         if (sched_tag != BLK_MQ_NO_TAG)
502                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
503         blk_mq_sched_restart(hctx);
504         blk_queue_exit(q);
505 }
506
507 void blk_mq_free_request(struct request *rq)
508 {
509         struct request_queue *q = rq->q;
510         struct elevator_queue *e = q->elevator;
511         struct blk_mq_ctx *ctx = rq->mq_ctx;
512         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
513
514         if (rq->rq_flags & RQF_ELVPRIV) {
515                 if (e && e->type->ops.finish_request)
516                         e->type->ops.finish_request(rq);
517                 if (rq->elv.icq) {
518                         put_io_context(rq->elv.icq->ioc);
519                         rq->elv.icq = NULL;
520                 }
521         }
522
523         ctx->rq_completed[rq_is_sync(rq)]++;
524         if (rq->rq_flags & RQF_MQ_INFLIGHT)
525                 __blk_mq_dec_active_requests(hctx);
526
527         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
528                 laptop_io_completion(q->backing_dev_info);
529
530         rq_qos_done(q, rq);
531
532         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
533         if (refcount_dec_and_test(&rq->ref))
534                 __blk_mq_free_request(rq);
535 }
536 EXPORT_SYMBOL_GPL(blk_mq_free_request);
537
538 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
539 {
540         u64 now = 0;
541
542         if (blk_mq_need_time_stamp(rq))
543                 now = ktime_get_ns();
544
545         if (rq->rq_flags & RQF_STATS) {
546                 blk_mq_poll_stats_start(rq->q);
547                 blk_stat_add(rq, now);
548         }
549
550         blk_mq_sched_completed_request(rq, now);
551
552         blk_account_io_done(rq, now);
553
554         if (rq->end_io) {
555                 rq_qos_done(rq->q, rq);
556                 rq->end_io(rq, error);
557         } else {
558                 blk_mq_free_request(rq);
559         }
560 }
561 EXPORT_SYMBOL(__blk_mq_end_request);
562
563 void blk_mq_end_request(struct request *rq, blk_status_t error)
564 {
565         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
566                 BUG();
567         __blk_mq_end_request(rq, error);
568 }
569 EXPORT_SYMBOL(blk_mq_end_request);
570
571 static void blk_complete_reqs(struct llist_head *list)
572 {
573         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
574         struct request *rq, *next;
575
576         llist_for_each_entry_safe(rq, next, entry, ipi_list)
577                 rq->q->mq_ops->complete(rq);
578 }
579
580 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
581 {
582         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
583 }
584
585 static int blk_softirq_cpu_dead(unsigned int cpu)
586 {
587         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
588         return 0;
589 }
590
591 static void __blk_mq_complete_request_remote(void *data)
592 {
593         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
594 }
595
596 static inline bool blk_mq_complete_need_ipi(struct request *rq)
597 {
598         int cpu = raw_smp_processor_id();
599
600         if (!IS_ENABLED(CONFIG_SMP) ||
601             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
602                 return false;
603         /*
604          * With force threaded interrupts enabled, raising softirq from an SMP
605          * function call will always result in waking the ksoftirqd thread.
606          * This is probably worse than completing the request on a different
607          * cache domain.
608          */
609         if (force_irqthreads)
610                 return false;
611
612         /* same CPU or cache domain?  Complete locally */
613         if (cpu == rq->mq_ctx->cpu ||
614             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
615              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
616                 return false;
617
618         /* don't try to IPI to an offline CPU */
619         return cpu_online(rq->mq_ctx->cpu);
620 }
621
622 static void blk_mq_complete_send_ipi(struct request *rq)
623 {
624         struct llist_head *list;
625         unsigned int cpu;
626
627         cpu = rq->mq_ctx->cpu;
628         list = &per_cpu(blk_cpu_done, cpu);
629         if (llist_add(&rq->ipi_list, list)) {
630                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
631                 smp_call_function_single_async(cpu, &rq->csd);
632         }
633 }
634
635 static void blk_mq_raise_softirq(struct request *rq)
636 {
637         struct llist_head *list;
638
639         preempt_disable();
640         list = this_cpu_ptr(&blk_cpu_done);
641         if (llist_add(&rq->ipi_list, list))
642                 raise_softirq(BLOCK_SOFTIRQ);
643         preempt_enable();
644 }
645
646 bool blk_mq_complete_request_remote(struct request *rq)
647 {
648         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
649
650         /*
651          * For a polled request, always complete locallly, it's pointless
652          * to redirect the completion.
653          */
654         if (rq->cmd_flags & REQ_HIPRI)
655                 return false;
656
657         if (blk_mq_complete_need_ipi(rq)) {
658                 blk_mq_complete_send_ipi(rq);
659                 return true;
660         }
661
662         if (rq->q->nr_hw_queues == 1) {
663                 blk_mq_raise_softirq(rq);
664                 return true;
665         }
666         return false;
667 }
668 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
669
670 /**
671  * blk_mq_complete_request - end I/O on a request
672  * @rq:         the request being processed
673  *
674  * Description:
675  *      Complete a request by scheduling the ->complete_rq operation.
676  **/
677 void blk_mq_complete_request(struct request *rq)
678 {
679         if (!blk_mq_complete_request_remote(rq))
680                 rq->q->mq_ops->complete(rq);
681 }
682 EXPORT_SYMBOL(blk_mq_complete_request);
683
684 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
685         __releases(hctx->srcu)
686 {
687         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
688                 rcu_read_unlock();
689         else
690                 srcu_read_unlock(hctx->srcu, srcu_idx);
691 }
692
693 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
694         __acquires(hctx->srcu)
695 {
696         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
697                 /* shut up gcc false positive */
698                 *srcu_idx = 0;
699                 rcu_read_lock();
700         } else
701                 *srcu_idx = srcu_read_lock(hctx->srcu);
702 }
703
704 /**
705  * blk_mq_start_request - Start processing a request
706  * @rq: Pointer to request to be started
707  *
708  * Function used by device drivers to notify the block layer that a request
709  * is going to be processed now, so blk layer can do proper initializations
710  * such as starting the timeout timer.
711  */
712 void blk_mq_start_request(struct request *rq)
713 {
714         struct request_queue *q = rq->q;
715
716         trace_block_rq_issue(rq);
717
718         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
719                 rq->io_start_time_ns = ktime_get_ns();
720                 rq->stats_sectors = blk_rq_sectors(rq);
721                 rq->rq_flags |= RQF_STATS;
722                 rq_qos_issue(q, rq);
723         }
724
725         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
726
727         blk_add_timer(rq);
728         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
729
730 #ifdef CONFIG_BLK_DEV_INTEGRITY
731         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
732                 q->integrity.profile->prepare_fn(rq);
733 #endif
734 }
735 EXPORT_SYMBOL(blk_mq_start_request);
736
737 static void __blk_mq_requeue_request(struct request *rq)
738 {
739         struct request_queue *q = rq->q;
740
741         blk_mq_put_driver_tag(rq);
742
743         trace_block_rq_requeue(rq);
744         rq_qos_requeue(q, rq);
745
746         if (blk_mq_request_started(rq)) {
747                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
748                 rq->rq_flags &= ~RQF_TIMED_OUT;
749         }
750 }
751
752 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
753 {
754         __blk_mq_requeue_request(rq);
755
756         /* this request will be re-inserted to io scheduler queue */
757         blk_mq_sched_requeue_request(rq);
758
759         BUG_ON(!list_empty(&rq->queuelist));
760         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
761 }
762 EXPORT_SYMBOL(blk_mq_requeue_request);
763
764 static void blk_mq_requeue_work(struct work_struct *work)
765 {
766         struct request_queue *q =
767                 container_of(work, struct request_queue, requeue_work.work);
768         LIST_HEAD(rq_list);
769         struct request *rq, *next;
770
771         spin_lock_irq(&q->requeue_lock);
772         list_splice_init(&q->requeue_list, &rq_list);
773         spin_unlock_irq(&q->requeue_lock);
774
775         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
776                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
777                         continue;
778
779                 rq->rq_flags &= ~RQF_SOFTBARRIER;
780                 list_del_init(&rq->queuelist);
781                 /*
782                  * If RQF_DONTPREP, rq has contained some driver specific
783                  * data, so insert it to hctx dispatch list to avoid any
784                  * merge.
785                  */
786                 if (rq->rq_flags & RQF_DONTPREP)
787                         blk_mq_request_bypass_insert(rq, false, false);
788                 else
789                         blk_mq_sched_insert_request(rq, true, false, false);
790         }
791
792         while (!list_empty(&rq_list)) {
793                 rq = list_entry(rq_list.next, struct request, queuelist);
794                 list_del_init(&rq->queuelist);
795                 blk_mq_sched_insert_request(rq, false, false, false);
796         }
797
798         blk_mq_run_hw_queues(q, false);
799 }
800
801 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
802                                 bool kick_requeue_list)
803 {
804         struct request_queue *q = rq->q;
805         unsigned long flags;
806
807         /*
808          * We abuse this flag that is otherwise used by the I/O scheduler to
809          * request head insertion from the workqueue.
810          */
811         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
812
813         spin_lock_irqsave(&q->requeue_lock, flags);
814         if (at_head) {
815                 rq->rq_flags |= RQF_SOFTBARRIER;
816                 list_add(&rq->queuelist, &q->requeue_list);
817         } else {
818                 list_add_tail(&rq->queuelist, &q->requeue_list);
819         }
820         spin_unlock_irqrestore(&q->requeue_lock, flags);
821
822         if (kick_requeue_list)
823                 blk_mq_kick_requeue_list(q);
824 }
825
826 void blk_mq_kick_requeue_list(struct request_queue *q)
827 {
828         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
829 }
830 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
831
832 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
833                                     unsigned long msecs)
834 {
835         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
836                                     msecs_to_jiffies(msecs));
837 }
838 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
839
840 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
841 {
842         if (tag < tags->nr_tags) {
843                 prefetch(tags->rqs[tag]);
844                 return tags->rqs[tag];
845         }
846
847         return NULL;
848 }
849 EXPORT_SYMBOL(blk_mq_tag_to_rq);
850
851 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
852                                void *priv, bool reserved)
853 {
854         /*
855          * If we find a request that isn't idle and the queue matches,
856          * we know the queue is busy. Return false to stop the iteration.
857          */
858         if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
859                 bool *busy = priv;
860
861                 *busy = true;
862                 return false;
863         }
864
865         return true;
866 }
867
868 bool blk_mq_queue_inflight(struct request_queue *q)
869 {
870         bool busy = false;
871
872         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
873         return busy;
874 }
875 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
876
877 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
878 {
879         req->rq_flags |= RQF_TIMED_OUT;
880         if (req->q->mq_ops->timeout) {
881                 enum blk_eh_timer_return ret;
882
883                 ret = req->q->mq_ops->timeout(req, reserved);
884                 if (ret == BLK_EH_DONE)
885                         return;
886                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
887         }
888
889         blk_add_timer(req);
890 }
891
892 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
893 {
894         unsigned long deadline;
895
896         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
897                 return false;
898         if (rq->rq_flags & RQF_TIMED_OUT)
899                 return false;
900
901         deadline = READ_ONCE(rq->deadline);
902         if (time_after_eq(jiffies, deadline))
903                 return true;
904
905         if (*next == 0)
906                 *next = deadline;
907         else if (time_after(*next, deadline))
908                 *next = deadline;
909         return false;
910 }
911
912 void blk_mq_put_rq_ref(struct request *rq)
913 {
914         if (is_flush_rq(rq, rq->mq_hctx))
915                 rq->end_io(rq, 0);
916         else if (refcount_dec_and_test(&rq->ref))
917                 __blk_mq_free_request(rq);
918 }
919
920 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
921                 struct request *rq, void *priv, bool reserved)
922 {
923         unsigned long *next = priv;
924
925         /*
926          * Just do a quick check if it is expired before locking the request in
927          * so we're not unnecessarilly synchronizing across CPUs.
928          */
929         if (!blk_mq_req_expired(rq, next))
930                 return true;
931
932         /*
933          * We have reason to believe the request may be expired. Take a
934          * reference on the request to lock this request lifetime into its
935          * currently allocated context to prevent it from being reallocated in
936          * the event the completion by-passes this timeout handler.
937          *
938          * If the reference was already released, then the driver beat the
939          * timeout handler to posting a natural completion.
940          */
941         if (!refcount_inc_not_zero(&rq->ref))
942                 return true;
943
944         /*
945          * The request is now locked and cannot be reallocated underneath the
946          * timeout handler's processing. Re-verify this exact request is truly
947          * expired; if it is not expired, then the request was completed and
948          * reallocated as a new request.
949          */
950         if (blk_mq_req_expired(rq, next))
951                 blk_mq_rq_timed_out(rq, reserved);
952
953         blk_mq_put_rq_ref(rq);
954         return true;
955 }
956
957 static void blk_mq_timeout_work(struct work_struct *work)
958 {
959         struct request_queue *q =
960                 container_of(work, struct request_queue, timeout_work);
961         unsigned long next = 0;
962         struct blk_mq_hw_ctx *hctx;
963         int i;
964
965         /* A deadlock might occur if a request is stuck requiring a
966          * timeout at the same time a queue freeze is waiting
967          * completion, since the timeout code would not be able to
968          * acquire the queue reference here.
969          *
970          * That's why we don't use blk_queue_enter here; instead, we use
971          * percpu_ref_tryget directly, because we need to be able to
972          * obtain a reference even in the short window between the queue
973          * starting to freeze, by dropping the first reference in
974          * blk_freeze_queue_start, and the moment the last request is
975          * consumed, marked by the instant q_usage_counter reaches
976          * zero.
977          */
978         if (!percpu_ref_tryget(&q->q_usage_counter))
979                 return;
980
981         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
982
983         if (next != 0) {
984                 mod_timer(&q->timeout, next);
985         } else {
986                 /*
987                  * Request timeouts are handled as a forward rolling timer. If
988                  * we end up here it means that no requests are pending and
989                  * also that no request has been pending for a while. Mark
990                  * each hctx as idle.
991                  */
992                 queue_for_each_hw_ctx(q, hctx, i) {
993                         /* the hctx may be unmapped, so check it here */
994                         if (blk_mq_hw_queue_mapped(hctx))
995                                 blk_mq_tag_idle(hctx);
996                 }
997         }
998         blk_queue_exit(q);
999 }
1000
1001 struct flush_busy_ctx_data {
1002         struct blk_mq_hw_ctx *hctx;
1003         struct list_head *list;
1004 };
1005
1006 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1007 {
1008         struct flush_busy_ctx_data *flush_data = data;
1009         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1010         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1011         enum hctx_type type = hctx->type;
1012
1013         spin_lock(&ctx->lock);
1014         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1015         sbitmap_clear_bit(sb, bitnr);
1016         spin_unlock(&ctx->lock);
1017         return true;
1018 }
1019
1020 /*
1021  * Process software queues that have been marked busy, splicing them
1022  * to the for-dispatch
1023  */
1024 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1025 {
1026         struct flush_busy_ctx_data data = {
1027                 .hctx = hctx,
1028                 .list = list,
1029         };
1030
1031         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1032 }
1033 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1034
1035 struct dispatch_rq_data {
1036         struct blk_mq_hw_ctx *hctx;
1037         struct request *rq;
1038 };
1039
1040 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1041                 void *data)
1042 {
1043         struct dispatch_rq_data *dispatch_data = data;
1044         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1045         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1046         enum hctx_type type = hctx->type;
1047
1048         spin_lock(&ctx->lock);
1049         if (!list_empty(&ctx->rq_lists[type])) {
1050                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1051                 list_del_init(&dispatch_data->rq->queuelist);
1052                 if (list_empty(&ctx->rq_lists[type]))
1053                         sbitmap_clear_bit(sb, bitnr);
1054         }
1055         spin_unlock(&ctx->lock);
1056
1057         return !dispatch_data->rq;
1058 }
1059
1060 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1061                                         struct blk_mq_ctx *start)
1062 {
1063         unsigned off = start ? start->index_hw[hctx->type] : 0;
1064         struct dispatch_rq_data data = {
1065                 .hctx = hctx,
1066                 .rq   = NULL,
1067         };
1068
1069         __sbitmap_for_each_set(&hctx->ctx_map, off,
1070                                dispatch_rq_from_ctx, &data);
1071
1072         return data.rq;
1073 }
1074
1075 static inline unsigned int queued_to_index(unsigned int queued)
1076 {
1077         if (!queued)
1078                 return 0;
1079
1080         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1081 }
1082
1083 static bool __blk_mq_get_driver_tag(struct request *rq)
1084 {
1085         struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1086         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1087         int tag;
1088
1089         blk_mq_tag_busy(rq->mq_hctx);
1090
1091         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1092                 bt = rq->mq_hctx->tags->breserved_tags;
1093                 tag_offset = 0;
1094         } else {
1095                 if (!hctx_may_queue(rq->mq_hctx, bt))
1096                         return false;
1097         }
1098
1099         tag = __sbitmap_queue_get(bt);
1100         if (tag == BLK_MQ_NO_TAG)
1101                 return false;
1102
1103         rq->tag = tag + tag_offset;
1104         return true;
1105 }
1106
1107 bool blk_mq_get_driver_tag(struct request *rq)
1108 {
1109         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1110
1111         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1112                 return false;
1113
1114         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1115                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1116                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1117                 __blk_mq_inc_active_requests(hctx);
1118         }
1119         hctx->tags->rqs[rq->tag] = rq;
1120         return true;
1121 }
1122
1123 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1124                                 int flags, void *key)
1125 {
1126         struct blk_mq_hw_ctx *hctx;
1127
1128         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1129
1130         spin_lock(&hctx->dispatch_wait_lock);
1131         if (!list_empty(&wait->entry)) {
1132                 struct sbitmap_queue *sbq;
1133
1134                 list_del_init(&wait->entry);
1135                 sbq = hctx->tags->bitmap_tags;
1136                 atomic_dec(&sbq->ws_active);
1137         }
1138         spin_unlock(&hctx->dispatch_wait_lock);
1139
1140         blk_mq_run_hw_queue(hctx, true);
1141         return 1;
1142 }
1143
1144 /*
1145  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1146  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1147  * restart. For both cases, take care to check the condition again after
1148  * marking us as waiting.
1149  */
1150 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1151                                  struct request *rq)
1152 {
1153         struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1154         struct wait_queue_head *wq;
1155         wait_queue_entry_t *wait;
1156         bool ret;
1157
1158         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1159                 blk_mq_sched_mark_restart_hctx(hctx);
1160
1161                 /*
1162                  * It's possible that a tag was freed in the window between the
1163                  * allocation failure and adding the hardware queue to the wait
1164                  * queue.
1165                  *
1166                  * Don't clear RESTART here, someone else could have set it.
1167                  * At most this will cost an extra queue run.
1168                  */
1169                 return blk_mq_get_driver_tag(rq);
1170         }
1171
1172         wait = &hctx->dispatch_wait;
1173         if (!list_empty_careful(&wait->entry))
1174                 return false;
1175
1176         wq = &bt_wait_ptr(sbq, hctx)->wait;
1177
1178         spin_lock_irq(&wq->lock);
1179         spin_lock(&hctx->dispatch_wait_lock);
1180         if (!list_empty(&wait->entry)) {
1181                 spin_unlock(&hctx->dispatch_wait_lock);
1182                 spin_unlock_irq(&wq->lock);
1183                 return false;
1184         }
1185
1186         atomic_inc(&sbq->ws_active);
1187         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1188         __add_wait_queue(wq, wait);
1189
1190         /*
1191          * It's possible that a tag was freed in the window between the
1192          * allocation failure and adding the hardware queue to the wait
1193          * queue.
1194          */
1195         ret = blk_mq_get_driver_tag(rq);
1196         if (!ret) {
1197                 spin_unlock(&hctx->dispatch_wait_lock);
1198                 spin_unlock_irq(&wq->lock);
1199                 return false;
1200         }
1201
1202         /*
1203          * We got a tag, remove ourselves from the wait queue to ensure
1204          * someone else gets the wakeup.
1205          */
1206         list_del_init(&wait->entry);
1207         atomic_dec(&sbq->ws_active);
1208         spin_unlock(&hctx->dispatch_wait_lock);
1209         spin_unlock_irq(&wq->lock);
1210
1211         return true;
1212 }
1213
1214 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1215 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1216 /*
1217  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1218  * - EWMA is one simple way to compute running average value
1219  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1220  * - take 4 as factor for avoiding to get too small(0) result, and this
1221  *   factor doesn't matter because EWMA decreases exponentially
1222  */
1223 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1224 {
1225         unsigned int ewma;
1226
1227         ewma = hctx->dispatch_busy;
1228
1229         if (!ewma && !busy)
1230                 return;
1231
1232         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1233         if (busy)
1234                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1235         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1236
1237         hctx->dispatch_busy = ewma;
1238 }
1239
1240 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1241
1242 static void blk_mq_handle_dev_resource(struct request *rq,
1243                                        struct list_head *list)
1244 {
1245         struct request *next =
1246                 list_first_entry_or_null(list, struct request, queuelist);
1247
1248         /*
1249          * If an I/O scheduler has been configured and we got a driver tag for
1250          * the next request already, free it.
1251          */
1252         if (next)
1253                 blk_mq_put_driver_tag(next);
1254
1255         list_add(&rq->queuelist, list);
1256         __blk_mq_requeue_request(rq);
1257 }
1258
1259 static void blk_mq_handle_zone_resource(struct request *rq,
1260                                         struct list_head *zone_list)
1261 {
1262         /*
1263          * If we end up here it is because we cannot dispatch a request to a
1264          * specific zone due to LLD level zone-write locking or other zone
1265          * related resource not being available. In this case, set the request
1266          * aside in zone_list for retrying it later.
1267          */
1268         list_add(&rq->queuelist, zone_list);
1269         __blk_mq_requeue_request(rq);
1270 }
1271
1272 enum prep_dispatch {
1273         PREP_DISPATCH_OK,
1274         PREP_DISPATCH_NO_TAG,
1275         PREP_DISPATCH_NO_BUDGET,
1276 };
1277
1278 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1279                                                   bool need_budget)
1280 {
1281         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1282         int budget_token = -1;
1283
1284         if (need_budget) {
1285                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1286                 if (budget_token < 0) {
1287                         blk_mq_put_driver_tag(rq);
1288                         return PREP_DISPATCH_NO_BUDGET;
1289                 }
1290                 blk_mq_set_rq_budget_token(rq, budget_token);
1291         }
1292
1293         if (!blk_mq_get_driver_tag(rq)) {
1294                 /*
1295                  * The initial allocation attempt failed, so we need to
1296                  * rerun the hardware queue when a tag is freed. The
1297                  * waitqueue takes care of that. If the queue is run
1298                  * before we add this entry back on the dispatch list,
1299                  * we'll re-run it below.
1300                  */
1301                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1302                         /*
1303                          * All budgets not got from this function will be put
1304                          * together during handling partial dispatch
1305                          */
1306                         if (need_budget)
1307                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1308                         return PREP_DISPATCH_NO_TAG;
1309                 }
1310         }
1311
1312         return PREP_DISPATCH_OK;
1313 }
1314
1315 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1316 static void blk_mq_release_budgets(struct request_queue *q,
1317                 struct list_head *list)
1318 {
1319         struct request *rq;
1320
1321         list_for_each_entry(rq, list, queuelist) {
1322                 int budget_token = blk_mq_get_rq_budget_token(rq);
1323
1324                 if (budget_token >= 0)
1325                         blk_mq_put_dispatch_budget(q, budget_token);
1326         }
1327 }
1328
1329 /*
1330  * Returns true if we did some work AND can potentially do more.
1331  */
1332 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1333                              unsigned int nr_budgets)
1334 {
1335         enum prep_dispatch prep;
1336         struct request_queue *q = hctx->queue;
1337         struct request *rq, *nxt;
1338         int errors, queued;
1339         blk_status_t ret = BLK_STS_OK;
1340         LIST_HEAD(zone_list);
1341
1342         if (list_empty(list))
1343                 return false;
1344
1345         /*
1346          * Now process all the entries, sending them to the driver.
1347          */
1348         errors = queued = 0;
1349         do {
1350                 struct blk_mq_queue_data bd;
1351
1352                 rq = list_first_entry(list, struct request, queuelist);
1353
1354                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1355                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1356                 if (prep != PREP_DISPATCH_OK)
1357                         break;
1358
1359                 list_del_init(&rq->queuelist);
1360
1361                 bd.rq = rq;
1362
1363                 /*
1364                  * Flag last if we have no more requests, or if we have more
1365                  * but can't assign a driver tag to it.
1366                  */
1367                 if (list_empty(list))
1368                         bd.last = true;
1369                 else {
1370                         nxt = list_first_entry(list, struct request, queuelist);
1371                         bd.last = !blk_mq_get_driver_tag(nxt);
1372                 }
1373
1374                 /*
1375                  * once the request is queued to lld, no need to cover the
1376                  * budget any more
1377                  */
1378                 if (nr_budgets)
1379                         nr_budgets--;
1380                 ret = q->mq_ops->queue_rq(hctx, &bd);
1381                 switch (ret) {
1382                 case BLK_STS_OK:
1383                         queued++;
1384                         break;
1385                 case BLK_STS_RESOURCE:
1386                 case BLK_STS_DEV_RESOURCE:
1387                         blk_mq_handle_dev_resource(rq, list);
1388                         goto out;
1389                 case BLK_STS_ZONE_RESOURCE:
1390                         /*
1391                          * Move the request to zone_list and keep going through
1392                          * the dispatch list to find more requests the drive can
1393                          * accept.
1394                          */
1395                         blk_mq_handle_zone_resource(rq, &zone_list);
1396                         break;
1397                 default:
1398                         errors++;
1399                         blk_mq_end_request(rq, ret);
1400                 }
1401         } while (!list_empty(list));
1402 out:
1403         if (!list_empty(&zone_list))
1404                 list_splice_tail_init(&zone_list, list);
1405
1406         hctx->dispatched[queued_to_index(queued)]++;
1407
1408         /* If we didn't flush the entire list, we could have told the driver
1409          * there was more coming, but that turned out to be a lie.
1410          */
1411         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1412                 q->mq_ops->commit_rqs(hctx);
1413         /*
1414          * Any items that need requeuing? Stuff them into hctx->dispatch,
1415          * that is where we will continue on next queue run.
1416          */
1417         if (!list_empty(list)) {
1418                 bool needs_restart;
1419                 /* For non-shared tags, the RESTART check will suffice */
1420                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1421                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1422                 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1423
1424                 if (nr_budgets)
1425                         blk_mq_release_budgets(q, list);
1426
1427                 spin_lock(&hctx->lock);
1428                 list_splice_tail_init(list, &hctx->dispatch);
1429                 spin_unlock(&hctx->lock);
1430
1431                 /*
1432                  * Order adding requests to hctx->dispatch and checking
1433                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1434                  * in blk_mq_sched_restart(). Avoid restart code path to
1435                  * miss the new added requests to hctx->dispatch, meantime
1436                  * SCHED_RESTART is observed here.
1437                  */
1438                 smp_mb();
1439
1440                 /*
1441                  * If SCHED_RESTART was set by the caller of this function and
1442                  * it is no longer set that means that it was cleared by another
1443                  * thread and hence that a queue rerun is needed.
1444                  *
1445                  * If 'no_tag' is set, that means that we failed getting
1446                  * a driver tag with an I/O scheduler attached. If our dispatch
1447                  * waitqueue is no longer active, ensure that we run the queue
1448                  * AFTER adding our entries back to the list.
1449                  *
1450                  * If no I/O scheduler has been configured it is possible that
1451                  * the hardware queue got stopped and restarted before requests
1452                  * were pushed back onto the dispatch list. Rerun the queue to
1453                  * avoid starvation. Notes:
1454                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1455                  *   been stopped before rerunning a queue.
1456                  * - Some but not all block drivers stop a queue before
1457                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1458                  *   and dm-rq.
1459                  *
1460                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1461                  * bit is set, run queue after a delay to avoid IO stalls
1462                  * that could otherwise occur if the queue is idle.  We'll do
1463                  * similar if we couldn't get budget and SCHED_RESTART is set.
1464                  */
1465                 needs_restart = blk_mq_sched_needs_restart(hctx);
1466                 if (!needs_restart ||
1467                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1468                         blk_mq_run_hw_queue(hctx, true);
1469                 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1470                                            no_budget_avail))
1471                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1472
1473                 blk_mq_update_dispatch_busy(hctx, true);
1474                 return false;
1475         } else
1476                 blk_mq_update_dispatch_busy(hctx, false);
1477
1478         return (queued + errors) != 0;
1479 }
1480
1481 /**
1482  * __blk_mq_run_hw_queue - Run a hardware queue.
1483  * @hctx: Pointer to the hardware queue to run.
1484  *
1485  * Send pending requests to the hardware.
1486  */
1487 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1488 {
1489         int srcu_idx;
1490
1491         /*
1492          * We can't run the queue inline with ints disabled. Ensure that
1493          * we catch bad users of this early.
1494          */
1495         WARN_ON_ONCE(in_interrupt());
1496
1497         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1498
1499         hctx_lock(hctx, &srcu_idx);
1500         blk_mq_sched_dispatch_requests(hctx);
1501         hctx_unlock(hctx, srcu_idx);
1502 }
1503
1504 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1505 {
1506         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1507
1508         if (cpu >= nr_cpu_ids)
1509                 cpu = cpumask_first(hctx->cpumask);
1510         return cpu;
1511 }
1512
1513 /*
1514  * It'd be great if the workqueue API had a way to pass
1515  * in a mask and had some smarts for more clever placement.
1516  * For now we just round-robin here, switching for every
1517  * BLK_MQ_CPU_WORK_BATCH queued items.
1518  */
1519 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1520 {
1521         bool tried = false;
1522         int next_cpu = hctx->next_cpu;
1523
1524         if (hctx->queue->nr_hw_queues == 1)
1525                 return WORK_CPU_UNBOUND;
1526
1527         if (--hctx->next_cpu_batch <= 0) {
1528 select_cpu:
1529                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1530                                 cpu_online_mask);
1531                 if (next_cpu >= nr_cpu_ids)
1532                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1533                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1534         }
1535
1536         /*
1537          * Do unbound schedule if we can't find a online CPU for this hctx,
1538          * and it should only happen in the path of handling CPU DEAD.
1539          */
1540         if (!cpu_online(next_cpu)) {
1541                 if (!tried) {
1542                         tried = true;
1543                         goto select_cpu;
1544                 }
1545
1546                 /*
1547                  * Make sure to re-select CPU next time once after CPUs
1548                  * in hctx->cpumask become online again.
1549                  */
1550                 hctx->next_cpu = next_cpu;
1551                 hctx->next_cpu_batch = 1;
1552                 return WORK_CPU_UNBOUND;
1553         }
1554
1555         hctx->next_cpu = next_cpu;
1556         return next_cpu;
1557 }
1558
1559 /**
1560  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1561  * @hctx: Pointer to the hardware queue to run.
1562  * @async: If we want to run the queue asynchronously.
1563  * @msecs: Milliseconds of delay to wait before running the queue.
1564  *
1565  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1566  * with a delay of @msecs.
1567  */
1568 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1569                                         unsigned long msecs)
1570 {
1571         if (unlikely(blk_mq_hctx_stopped(hctx)))
1572                 return;
1573
1574         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1575                 int cpu = get_cpu();
1576                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1577                         __blk_mq_run_hw_queue(hctx);
1578                         put_cpu();
1579                         return;
1580                 }
1581
1582                 put_cpu();
1583         }
1584
1585         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1586                                     msecs_to_jiffies(msecs));
1587 }
1588
1589 /**
1590  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1591  * @hctx: Pointer to the hardware queue to run.
1592  * @msecs: Milliseconds of delay to wait before running the queue.
1593  *
1594  * Run a hardware queue asynchronously with a delay of @msecs.
1595  */
1596 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1597 {
1598         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1599 }
1600 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1601
1602 /**
1603  * blk_mq_run_hw_queue - Start to run a hardware queue.
1604  * @hctx: Pointer to the hardware queue to run.
1605  * @async: If we want to run the queue asynchronously.
1606  *
1607  * Check if the request queue is not in a quiesced state and if there are
1608  * pending requests to be sent. If this is true, run the queue to send requests
1609  * to hardware.
1610  */
1611 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1612 {
1613         int srcu_idx;
1614         bool need_run;
1615
1616         /*
1617          * When queue is quiesced, we may be switching io scheduler, or
1618          * updating nr_hw_queues, or other things, and we can't run queue
1619          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1620          *
1621          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1622          * quiesced.
1623          */
1624         hctx_lock(hctx, &srcu_idx);
1625         need_run = !blk_queue_quiesced(hctx->queue) &&
1626                 blk_mq_hctx_has_pending(hctx);
1627         hctx_unlock(hctx, srcu_idx);
1628
1629         if (need_run)
1630                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1631 }
1632 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1633
1634 /*
1635  * Is the request queue handled by an IO scheduler that does not respect
1636  * hardware queues when dispatching?
1637  */
1638 static bool blk_mq_has_sqsched(struct request_queue *q)
1639 {
1640         struct elevator_queue *e = q->elevator;
1641
1642         if (e && e->type->ops.dispatch_request &&
1643             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1644                 return true;
1645         return false;
1646 }
1647
1648 /*
1649  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1650  * scheduler.
1651  */
1652 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1653 {
1654         struct blk_mq_hw_ctx *hctx;
1655
1656         /*
1657          * If the IO scheduler does not respect hardware queues when
1658          * dispatching, we just don't bother with multiple HW queues and
1659          * dispatch from hctx for the current CPU since running multiple queues
1660          * just causes lock contention inside the scheduler and pointless cache
1661          * bouncing.
1662          */
1663         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1664                                      raw_smp_processor_id());
1665         if (!blk_mq_hctx_stopped(hctx))
1666                 return hctx;
1667         return NULL;
1668 }
1669
1670 /**
1671  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1672  * @q: Pointer to the request queue to run.
1673  * @async: If we want to run the queue asynchronously.
1674  */
1675 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1676 {
1677         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1678         int i;
1679
1680         sq_hctx = NULL;
1681         if (blk_mq_has_sqsched(q))
1682                 sq_hctx = blk_mq_get_sq_hctx(q);
1683         queue_for_each_hw_ctx(q, hctx, i) {
1684                 if (blk_mq_hctx_stopped(hctx))
1685                         continue;
1686                 /*
1687                  * Dispatch from this hctx either if there's no hctx preferred
1688                  * by IO scheduler or if it has requests that bypass the
1689                  * scheduler.
1690                  */
1691                 if (!sq_hctx || sq_hctx == hctx ||
1692                     !list_empty_careful(&hctx->dispatch))
1693                         blk_mq_run_hw_queue(hctx, async);
1694         }
1695 }
1696 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1697
1698 /**
1699  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1700  * @q: Pointer to the request queue to run.
1701  * @msecs: Milliseconds of delay to wait before running the queues.
1702  */
1703 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1704 {
1705         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1706         int i;
1707
1708         sq_hctx = NULL;
1709         if (blk_mq_has_sqsched(q))
1710                 sq_hctx = blk_mq_get_sq_hctx(q);
1711         queue_for_each_hw_ctx(q, hctx, i) {
1712                 if (blk_mq_hctx_stopped(hctx))
1713                         continue;
1714                 /*
1715                  * Dispatch from this hctx either if there's no hctx preferred
1716                  * by IO scheduler or if it has requests that bypass the
1717                  * scheduler.
1718                  */
1719                 if (!sq_hctx || sq_hctx == hctx ||
1720                     !list_empty_careful(&hctx->dispatch))
1721                         blk_mq_delay_run_hw_queue(hctx, msecs);
1722         }
1723 }
1724 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1725
1726 /**
1727  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1728  * @q: request queue.
1729  *
1730  * The caller is responsible for serializing this function against
1731  * blk_mq_{start,stop}_hw_queue().
1732  */
1733 bool blk_mq_queue_stopped(struct request_queue *q)
1734 {
1735         struct blk_mq_hw_ctx *hctx;
1736         int i;
1737
1738         queue_for_each_hw_ctx(q, hctx, i)
1739                 if (blk_mq_hctx_stopped(hctx))
1740                         return true;
1741
1742         return false;
1743 }
1744 EXPORT_SYMBOL(blk_mq_queue_stopped);
1745
1746 /*
1747  * This function is often used for pausing .queue_rq() by driver when
1748  * there isn't enough resource or some conditions aren't satisfied, and
1749  * BLK_STS_RESOURCE is usually returned.
1750  *
1751  * We do not guarantee that dispatch can be drained or blocked
1752  * after blk_mq_stop_hw_queue() returns. Please use
1753  * blk_mq_quiesce_queue() for that requirement.
1754  */
1755 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1756 {
1757         cancel_delayed_work(&hctx->run_work);
1758
1759         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1760 }
1761 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1762
1763 /*
1764  * This function is often used for pausing .queue_rq() by driver when
1765  * there isn't enough resource or some conditions aren't satisfied, and
1766  * BLK_STS_RESOURCE is usually returned.
1767  *
1768  * We do not guarantee that dispatch can be drained or blocked
1769  * after blk_mq_stop_hw_queues() returns. Please use
1770  * blk_mq_quiesce_queue() for that requirement.
1771  */
1772 void blk_mq_stop_hw_queues(struct request_queue *q)
1773 {
1774         struct blk_mq_hw_ctx *hctx;
1775         int i;
1776
1777         queue_for_each_hw_ctx(q, hctx, i)
1778                 blk_mq_stop_hw_queue(hctx);
1779 }
1780 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1781
1782 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1783 {
1784         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1785
1786         blk_mq_run_hw_queue(hctx, false);
1787 }
1788 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1789
1790 void blk_mq_start_hw_queues(struct request_queue *q)
1791 {
1792         struct blk_mq_hw_ctx *hctx;
1793         int i;
1794
1795         queue_for_each_hw_ctx(q, hctx, i)
1796                 blk_mq_start_hw_queue(hctx);
1797 }
1798 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1799
1800 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1801 {
1802         if (!blk_mq_hctx_stopped(hctx))
1803                 return;
1804
1805         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1806         blk_mq_run_hw_queue(hctx, async);
1807 }
1808 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1809
1810 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1811 {
1812         struct blk_mq_hw_ctx *hctx;
1813         int i;
1814
1815         queue_for_each_hw_ctx(q, hctx, i)
1816                 blk_mq_start_stopped_hw_queue(hctx, async);
1817 }
1818 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1819
1820 static void blk_mq_run_work_fn(struct work_struct *work)
1821 {
1822         struct blk_mq_hw_ctx *hctx;
1823
1824         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1825
1826         /*
1827          * If we are stopped, don't run the queue.
1828          */
1829         if (blk_mq_hctx_stopped(hctx))
1830                 return;
1831
1832         __blk_mq_run_hw_queue(hctx);
1833 }
1834
1835 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1836                                             struct request *rq,
1837                                             bool at_head)
1838 {
1839         struct blk_mq_ctx *ctx = rq->mq_ctx;
1840         enum hctx_type type = hctx->type;
1841
1842         lockdep_assert_held(&ctx->lock);
1843
1844         trace_block_rq_insert(rq);
1845
1846         if (at_head)
1847                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1848         else
1849                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1850 }
1851
1852 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1853                              bool at_head)
1854 {
1855         struct blk_mq_ctx *ctx = rq->mq_ctx;
1856
1857         lockdep_assert_held(&ctx->lock);
1858
1859         __blk_mq_insert_req_list(hctx, rq, at_head);
1860         blk_mq_hctx_mark_pending(hctx, ctx);
1861 }
1862
1863 /**
1864  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1865  * @rq: Pointer to request to be inserted.
1866  * @at_head: true if the request should be inserted at the head of the list.
1867  * @run_queue: If we should run the hardware queue after inserting the request.
1868  *
1869  * Should only be used carefully, when the caller knows we want to
1870  * bypass a potential IO scheduler on the target device.
1871  */
1872 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1873                                   bool run_queue)
1874 {
1875         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1876
1877         spin_lock(&hctx->lock);
1878         if (at_head)
1879                 list_add(&rq->queuelist, &hctx->dispatch);
1880         else
1881                 list_add_tail(&rq->queuelist, &hctx->dispatch);
1882         spin_unlock(&hctx->lock);
1883
1884         if (run_queue)
1885                 blk_mq_run_hw_queue(hctx, false);
1886 }
1887
1888 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1889                             struct list_head *list)
1890
1891 {
1892         struct request *rq;
1893         enum hctx_type type = hctx->type;
1894
1895         /*
1896          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1897          * offline now
1898          */
1899         list_for_each_entry(rq, list, queuelist) {
1900                 BUG_ON(rq->mq_ctx != ctx);
1901                 trace_block_rq_insert(rq);
1902         }
1903
1904         spin_lock(&ctx->lock);
1905         list_splice_tail_init(list, &ctx->rq_lists[type]);
1906         blk_mq_hctx_mark_pending(hctx, ctx);
1907         spin_unlock(&ctx->lock);
1908 }
1909
1910 static int plug_rq_cmp(void *priv, const struct list_head *a,
1911                        const struct list_head *b)
1912 {
1913         struct request *rqa = container_of(a, struct request, queuelist);
1914         struct request *rqb = container_of(b, struct request, queuelist);
1915
1916         if (rqa->mq_ctx != rqb->mq_ctx)
1917                 return rqa->mq_ctx > rqb->mq_ctx;
1918         if (rqa->mq_hctx != rqb->mq_hctx)
1919                 return rqa->mq_hctx > rqb->mq_hctx;
1920
1921         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1922 }
1923
1924 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1925 {
1926         LIST_HEAD(list);
1927
1928         if (list_empty(&plug->mq_list))
1929                 return;
1930         list_splice_init(&plug->mq_list, &list);
1931
1932         if (plug->rq_count > 2 && plug->multiple_queues)
1933                 list_sort(NULL, &list, plug_rq_cmp);
1934
1935         plug->rq_count = 0;
1936
1937         do {
1938                 struct list_head rq_list;
1939                 struct request *rq, *head_rq = list_entry_rq(list.next);
1940                 struct list_head *pos = &head_rq->queuelist; /* skip first */
1941                 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1942                 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1943                 unsigned int depth = 1;
1944
1945                 list_for_each_continue(pos, &list) {
1946                         rq = list_entry_rq(pos);
1947                         BUG_ON(!rq->q);
1948                         if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1949                                 break;
1950                         depth++;
1951                 }
1952
1953                 list_cut_before(&rq_list, &list, pos);
1954                 trace_block_unplug(head_rq->q, depth, !from_schedule);
1955                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1956                                                 from_schedule);
1957         } while(!list_empty(&list));
1958 }
1959
1960 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1961                 unsigned int nr_segs)
1962 {
1963         int err;
1964
1965         if (bio->bi_opf & REQ_RAHEAD)
1966                 rq->cmd_flags |= REQ_FAILFAST_MASK;
1967
1968         rq->__sector = bio->bi_iter.bi_sector;
1969         rq->write_hint = bio->bi_write_hint;
1970         blk_rq_bio_prep(rq, bio, nr_segs);
1971
1972         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1973         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1974         WARN_ON_ONCE(err);
1975
1976         blk_account_io_start(rq);
1977 }
1978
1979 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1980                                             struct request *rq,
1981                                             blk_qc_t *cookie, bool last)
1982 {
1983         struct request_queue *q = rq->q;
1984         struct blk_mq_queue_data bd = {
1985                 .rq = rq,
1986                 .last = last,
1987         };
1988         blk_qc_t new_cookie;
1989         blk_status_t ret;
1990
1991         new_cookie = request_to_qc_t(hctx, rq);
1992
1993         /*
1994          * For OK queue, we are done. For error, caller may kill it.
1995          * Any other error (busy), just add it to our list as we
1996          * previously would have done.
1997          */
1998         ret = q->mq_ops->queue_rq(hctx, &bd);
1999         switch (ret) {
2000         case BLK_STS_OK:
2001                 blk_mq_update_dispatch_busy(hctx, false);
2002                 *cookie = new_cookie;
2003                 break;
2004         case BLK_STS_RESOURCE:
2005         case BLK_STS_DEV_RESOURCE:
2006                 blk_mq_update_dispatch_busy(hctx, true);
2007                 __blk_mq_requeue_request(rq);
2008                 break;
2009         default:
2010                 blk_mq_update_dispatch_busy(hctx, false);
2011                 *cookie = BLK_QC_T_NONE;
2012                 break;
2013         }
2014
2015         return ret;
2016 }
2017
2018 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2019                                                 struct request *rq,
2020                                                 blk_qc_t *cookie,
2021                                                 bool bypass_insert, bool last)
2022 {
2023         struct request_queue *q = rq->q;
2024         bool run_queue = true;
2025         int budget_token;
2026
2027         /*
2028          * RCU or SRCU read lock is needed before checking quiesced flag.
2029          *
2030          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2031          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2032          * and avoid driver to try to dispatch again.
2033          */
2034         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2035                 run_queue = false;
2036                 bypass_insert = false;
2037                 goto insert;
2038         }
2039
2040         if (q->elevator && !bypass_insert)
2041                 goto insert;
2042
2043         budget_token = blk_mq_get_dispatch_budget(q);
2044         if (budget_token < 0)
2045                 goto insert;
2046
2047         blk_mq_set_rq_budget_token(rq, budget_token);
2048
2049         if (!blk_mq_get_driver_tag(rq)) {
2050                 blk_mq_put_dispatch_budget(q, budget_token);
2051                 goto insert;
2052         }
2053
2054         return __blk_mq_issue_directly(hctx, rq, cookie, last);
2055 insert:
2056         if (bypass_insert)
2057                 return BLK_STS_RESOURCE;
2058
2059         blk_mq_sched_insert_request(rq, false, run_queue, false);
2060
2061         return BLK_STS_OK;
2062 }
2063
2064 /**
2065  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2066  * @hctx: Pointer of the associated hardware queue.
2067  * @rq: Pointer to request to be sent.
2068  * @cookie: Request queue cookie.
2069  *
2070  * If the device has enough resources to accept a new request now, send the
2071  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2072  * we can try send it another time in the future. Requests inserted at this
2073  * queue have higher priority.
2074  */
2075 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2076                 struct request *rq, blk_qc_t *cookie)
2077 {
2078         blk_status_t ret;
2079         int srcu_idx;
2080
2081         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2082
2083         hctx_lock(hctx, &srcu_idx);
2084
2085         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2086         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2087                 blk_mq_request_bypass_insert(rq, false, true);
2088         else if (ret != BLK_STS_OK)
2089                 blk_mq_end_request(rq, ret);
2090
2091         hctx_unlock(hctx, srcu_idx);
2092 }
2093
2094 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2095 {
2096         blk_status_t ret;
2097         int srcu_idx;
2098         blk_qc_t unused_cookie;
2099         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2100
2101         hctx_lock(hctx, &srcu_idx);
2102         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2103         hctx_unlock(hctx, srcu_idx);
2104
2105         return ret;
2106 }
2107
2108 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2109                 struct list_head *list)
2110 {
2111         int queued = 0;
2112         int errors = 0;
2113
2114         while (!list_empty(list)) {
2115                 blk_status_t ret;
2116                 struct request *rq = list_first_entry(list, struct request,
2117                                 queuelist);
2118
2119                 list_del_init(&rq->queuelist);
2120                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2121                 if (ret != BLK_STS_OK) {
2122                         if (ret == BLK_STS_RESOURCE ||
2123                                         ret == BLK_STS_DEV_RESOURCE) {
2124                                 blk_mq_request_bypass_insert(rq, false,
2125                                                         list_empty(list));
2126                                 break;
2127                         }
2128                         blk_mq_end_request(rq, ret);
2129                         errors++;
2130                 } else
2131                         queued++;
2132         }
2133
2134         /*
2135          * If we didn't flush the entire list, we could have told
2136          * the driver there was more coming, but that turned out to
2137          * be a lie.
2138          */
2139         if ((!list_empty(list) || errors) &&
2140              hctx->queue->mq_ops->commit_rqs && queued)
2141                 hctx->queue->mq_ops->commit_rqs(hctx);
2142 }
2143
2144 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2145 {
2146         list_add_tail(&rq->queuelist, &plug->mq_list);
2147         plug->rq_count++;
2148         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2149                 struct request *tmp;
2150
2151                 tmp = list_first_entry(&plug->mq_list, struct request,
2152                                                 queuelist);
2153                 if (tmp->q != rq->q)
2154                         plug->multiple_queues = true;
2155         }
2156 }
2157
2158 /**
2159  * blk_mq_submit_bio - Create and send a request to block device.
2160  * @bio: Bio pointer.
2161  *
2162  * Builds up a request structure from @q and @bio and send to the device. The
2163  * request may not be queued directly to hardware if:
2164  * * This request can be merged with another one
2165  * * We want to place request at plug queue for possible future merging
2166  * * There is an IO scheduler active at this queue
2167  *
2168  * It will not queue the request if there is an error with the bio, or at the
2169  * request creation.
2170  *
2171  * Returns: Request queue cookie.
2172  */
2173 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2174 {
2175         struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2176         const int is_sync = op_is_sync(bio->bi_opf);
2177         const int is_flush_fua = op_is_flush(bio->bi_opf);
2178         struct blk_mq_alloc_data data = {
2179                 .q              = q,
2180         };
2181         struct request *rq;
2182         struct blk_plug *plug;
2183         struct request *same_queue_rq = NULL;
2184         unsigned int nr_segs;
2185         blk_qc_t cookie;
2186         blk_status_t ret;
2187         bool hipri;
2188
2189         blk_queue_bounce(q, &bio);
2190         __blk_queue_split(&bio, &nr_segs);
2191
2192         if (!bio_integrity_prep(bio))
2193                 goto queue_exit;
2194
2195         if (!is_flush_fua && !blk_queue_nomerges(q) &&
2196             blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2197                 goto queue_exit;
2198
2199         if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2200                 goto queue_exit;
2201
2202         rq_qos_throttle(q, bio);
2203
2204         hipri = bio->bi_opf & REQ_HIPRI;
2205
2206         data.cmd_flags = bio->bi_opf;
2207         rq = __blk_mq_alloc_request(&data);
2208         if (unlikely(!rq)) {
2209                 rq_qos_cleanup(q, bio);
2210                 if (bio->bi_opf & REQ_NOWAIT)
2211                         bio_wouldblock_error(bio);
2212                 goto queue_exit;
2213         }
2214
2215         trace_block_getrq(bio);
2216
2217         rq_qos_track(q, rq, bio);
2218
2219         cookie = request_to_qc_t(data.hctx, rq);
2220
2221         blk_mq_bio_to_request(rq, bio, nr_segs);
2222
2223         ret = blk_crypto_init_request(rq);
2224         if (ret != BLK_STS_OK) {
2225                 bio->bi_status = ret;
2226                 bio_endio(bio);
2227                 blk_mq_free_request(rq);
2228                 return BLK_QC_T_NONE;
2229         }
2230
2231         plug = blk_mq_plug(q, bio);
2232         if (unlikely(is_flush_fua)) {
2233                 /* Bypass scheduler for flush requests */
2234                 blk_insert_flush(rq);
2235                 blk_mq_run_hw_queue(data.hctx, true);
2236         } else if (plug && (q->nr_hw_queues == 1 ||
2237                    blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2238                    q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2239                 /*
2240                  * Use plugging if we have a ->commit_rqs() hook as well, as
2241                  * we know the driver uses bd->last in a smart fashion.
2242                  *
2243                  * Use normal plugging if this disk is slow HDD, as sequential
2244                  * IO may benefit a lot from plug merging.
2245                  */
2246                 unsigned int request_count = plug->rq_count;
2247                 struct request *last = NULL;
2248
2249                 if (!request_count)
2250                         trace_block_plug(q);
2251                 else
2252                         last = list_entry_rq(plug->mq_list.prev);
2253
2254                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2255                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2256                         blk_flush_plug_list(plug, false);
2257                         trace_block_plug(q);
2258                 }
2259
2260                 blk_add_rq_to_plug(plug, rq);
2261         } else if (q->elevator) {
2262                 /* Insert the request at the IO scheduler queue */
2263                 blk_mq_sched_insert_request(rq, false, true, true);
2264         } else if (plug && !blk_queue_nomerges(q)) {
2265                 /*
2266                  * We do limited plugging. If the bio can be merged, do that.
2267                  * Otherwise the existing request in the plug list will be
2268                  * issued. So the plug list will have one request at most
2269                  * The plug list might get flushed before this. If that happens,
2270                  * the plug list is empty, and same_queue_rq is invalid.
2271                  */
2272                 if (list_empty(&plug->mq_list))
2273                         same_queue_rq = NULL;
2274                 if (same_queue_rq) {
2275                         list_del_init(&same_queue_rq->queuelist);
2276                         plug->rq_count--;
2277                 }
2278                 blk_add_rq_to_plug(plug, rq);
2279                 trace_block_plug(q);
2280
2281                 if (same_queue_rq) {
2282                         data.hctx = same_queue_rq->mq_hctx;
2283                         trace_block_unplug(q, 1, true);
2284                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2285                                         &cookie);
2286                 }
2287         } else if ((q->nr_hw_queues > 1 && is_sync) ||
2288                         !data.hctx->dispatch_busy) {
2289                 /*
2290                  * There is no scheduler and we can try to send directly
2291                  * to the hardware.
2292                  */
2293                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2294         } else {
2295                 /* Default case. */
2296                 blk_mq_sched_insert_request(rq, false, true, true);
2297         }
2298
2299         if (!hipri)
2300                 return BLK_QC_T_NONE;
2301         return cookie;
2302 queue_exit:
2303         blk_queue_exit(q);
2304         return BLK_QC_T_NONE;
2305 }
2306
2307 static size_t order_to_size(unsigned int order)
2308 {
2309         return (size_t)PAGE_SIZE << order;
2310 }
2311
2312 /* called before freeing request pool in @tags */
2313 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2314                 struct blk_mq_tags *tags, unsigned int hctx_idx)
2315 {
2316         struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2317         struct page *page;
2318         unsigned long flags;
2319
2320         list_for_each_entry(page, &tags->page_list, lru) {
2321                 unsigned long start = (unsigned long)page_address(page);
2322                 unsigned long end = start + order_to_size(page->private);
2323                 int i;
2324
2325                 for (i = 0; i < set->queue_depth; i++) {
2326                         struct request *rq = drv_tags->rqs[i];
2327                         unsigned long rq_addr = (unsigned long)rq;
2328
2329                         if (rq_addr >= start && rq_addr < end) {
2330                                 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2331                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2332                         }
2333                 }
2334         }
2335
2336         /*
2337          * Wait until all pending iteration is done.
2338          *
2339          * Request reference is cleared and it is guaranteed to be observed
2340          * after the ->lock is released.
2341          */
2342         spin_lock_irqsave(&drv_tags->lock, flags);
2343         spin_unlock_irqrestore(&drv_tags->lock, flags);
2344 }
2345
2346 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2347                      unsigned int hctx_idx)
2348 {
2349         struct page *page;
2350
2351         if (tags->rqs && set->ops->exit_request) {
2352                 int i;
2353
2354                 for (i = 0; i < tags->nr_tags; i++) {
2355                         struct request *rq = tags->static_rqs[i];
2356
2357                         if (!rq)
2358                                 continue;
2359                         set->ops->exit_request(set, rq, hctx_idx);
2360                         tags->static_rqs[i] = NULL;
2361                 }
2362         }
2363
2364         blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2365
2366         while (!list_empty(&tags->page_list)) {
2367                 page = list_first_entry(&tags->page_list, struct page, lru);
2368                 list_del_init(&page->lru);
2369                 /*
2370                  * Remove kmemleak object previously allocated in
2371                  * blk_mq_alloc_rqs().
2372                  */
2373                 kmemleak_free(page_address(page));
2374                 __free_pages(page, page->private);
2375         }
2376 }
2377
2378 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2379 {
2380         kfree(tags->rqs);
2381         tags->rqs = NULL;
2382         kfree(tags->static_rqs);
2383         tags->static_rqs = NULL;
2384
2385         blk_mq_free_tags(tags, flags);
2386 }
2387
2388 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2389                                         unsigned int hctx_idx,
2390                                         unsigned int nr_tags,
2391                                         unsigned int reserved_tags,
2392                                         unsigned int flags)
2393 {
2394         struct blk_mq_tags *tags;
2395         int node;
2396
2397         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2398         if (node == NUMA_NO_NODE)
2399                 node = set->numa_node;
2400
2401         tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2402         if (!tags)
2403                 return NULL;
2404
2405         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2406                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2407                                  node);
2408         if (!tags->rqs) {
2409                 blk_mq_free_tags(tags, flags);
2410                 return NULL;
2411         }
2412
2413         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2414                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2415                                         node);
2416         if (!tags->static_rqs) {
2417                 kfree(tags->rqs);
2418                 blk_mq_free_tags(tags, flags);
2419                 return NULL;
2420         }
2421
2422         return tags;
2423 }
2424
2425 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2426                                unsigned int hctx_idx, int node)
2427 {
2428         int ret;
2429
2430         if (set->ops->init_request) {
2431                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2432                 if (ret)
2433                         return ret;
2434         }
2435
2436         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2437         return 0;
2438 }
2439
2440 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2441                      unsigned int hctx_idx, unsigned int depth)
2442 {
2443         unsigned int i, j, entries_per_page, max_order = 4;
2444         size_t rq_size, left;
2445         int node;
2446
2447         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2448         if (node == NUMA_NO_NODE)
2449                 node = set->numa_node;
2450
2451         INIT_LIST_HEAD(&tags->page_list);
2452
2453         /*
2454          * rq_size is the size of the request plus driver payload, rounded
2455          * to the cacheline size
2456          */
2457         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2458                                 cache_line_size());
2459         left = rq_size * depth;
2460
2461         for (i = 0; i < depth; ) {
2462                 int this_order = max_order;
2463                 struct page *page;
2464                 int to_do;
2465                 void *p;
2466
2467                 while (this_order && left < order_to_size(this_order - 1))
2468                         this_order--;
2469
2470                 do {
2471                         page = alloc_pages_node(node,
2472                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2473                                 this_order);
2474                         if (page)
2475                                 break;
2476                         if (!this_order--)
2477                                 break;
2478                         if (order_to_size(this_order) < rq_size)
2479                                 break;
2480                 } while (1);
2481
2482                 if (!page)
2483                         goto fail;
2484
2485                 page->private = this_order;
2486                 list_add_tail(&page->lru, &tags->page_list);
2487
2488                 p = page_address(page);
2489                 /*
2490                  * Allow kmemleak to scan these pages as they contain pointers
2491                  * to additional allocations like via ops->init_request().
2492                  */
2493                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2494                 entries_per_page = order_to_size(this_order) / rq_size;
2495                 to_do = min(entries_per_page, depth - i);
2496                 left -= to_do * rq_size;
2497                 for (j = 0; j < to_do; j++) {
2498                         struct request *rq = p;
2499
2500                         tags->static_rqs[i] = rq;
2501                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2502                                 tags->static_rqs[i] = NULL;
2503                                 goto fail;
2504                         }
2505
2506                         p += rq_size;
2507                         i++;
2508                 }
2509         }
2510         return 0;
2511
2512 fail:
2513         blk_mq_free_rqs(set, tags, hctx_idx);
2514         return -ENOMEM;
2515 }
2516
2517 struct rq_iter_data {
2518         struct blk_mq_hw_ctx *hctx;
2519         bool has_rq;
2520 };
2521
2522 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2523 {
2524         struct rq_iter_data *iter_data = data;
2525
2526         if (rq->mq_hctx != iter_data->hctx)
2527                 return true;
2528         iter_data->has_rq = true;
2529         return false;
2530 }
2531
2532 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2533 {
2534         struct blk_mq_tags *tags = hctx->sched_tags ?
2535                         hctx->sched_tags : hctx->tags;
2536         struct rq_iter_data data = {
2537                 .hctx   = hctx,
2538         };
2539
2540         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2541         return data.has_rq;
2542 }
2543
2544 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2545                 struct blk_mq_hw_ctx *hctx)
2546 {
2547         if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2548                 return false;
2549         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2550                 return false;
2551         return true;
2552 }
2553
2554 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2555 {
2556         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2557                         struct blk_mq_hw_ctx, cpuhp_online);
2558
2559         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2560             !blk_mq_last_cpu_in_hctx(cpu, hctx))
2561                 return 0;
2562
2563         /*
2564          * Prevent new request from being allocated on the current hctx.
2565          *
2566          * The smp_mb__after_atomic() Pairs with the implied barrier in
2567          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2568          * seen once we return from the tag allocator.
2569          */
2570         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2571         smp_mb__after_atomic();
2572
2573         /*
2574          * Try to grab a reference to the queue and wait for any outstanding
2575          * requests.  If we could not grab a reference the queue has been
2576          * frozen and there are no requests.
2577          */
2578         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2579                 while (blk_mq_hctx_has_requests(hctx))
2580                         msleep(5);
2581                 percpu_ref_put(&hctx->queue->q_usage_counter);
2582         }
2583
2584         return 0;
2585 }
2586
2587 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2588 {
2589         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2590                         struct blk_mq_hw_ctx, cpuhp_online);
2591
2592         if (cpumask_test_cpu(cpu, hctx->cpumask))
2593                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2594         return 0;
2595 }
2596
2597 /*
2598  * 'cpu' is going away. splice any existing rq_list entries from this
2599  * software queue to the hw queue dispatch list, and ensure that it
2600  * gets run.
2601  */
2602 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2603 {
2604         struct blk_mq_hw_ctx *hctx;
2605         struct blk_mq_ctx *ctx;
2606         LIST_HEAD(tmp);
2607         enum hctx_type type;
2608
2609         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2610         if (!cpumask_test_cpu(cpu, hctx->cpumask))
2611                 return 0;
2612
2613         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2614         type = hctx->type;
2615
2616         spin_lock(&ctx->lock);
2617         if (!list_empty(&ctx->rq_lists[type])) {
2618                 list_splice_init(&ctx->rq_lists[type], &tmp);
2619                 blk_mq_hctx_clear_pending(hctx, ctx);
2620         }
2621         spin_unlock(&ctx->lock);
2622
2623         if (list_empty(&tmp))
2624                 return 0;
2625
2626         spin_lock(&hctx->lock);
2627         list_splice_tail_init(&tmp, &hctx->dispatch);
2628         spin_unlock(&hctx->lock);
2629
2630         blk_mq_run_hw_queue(hctx, true);
2631         return 0;
2632 }
2633
2634 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2635 {
2636         if (!(hctx->flags & BLK_MQ_F_STACKING))
2637                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2638                                                     &hctx->cpuhp_online);
2639         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2640                                             &hctx->cpuhp_dead);
2641 }
2642
2643 /*
2644  * Before freeing hw queue, clearing the flush request reference in
2645  * tags->rqs[] for avoiding potential UAF.
2646  */
2647 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2648                 unsigned int queue_depth, struct request *flush_rq)
2649 {
2650         int i;
2651         unsigned long flags;
2652
2653         /* The hw queue may not be mapped yet */
2654         if (!tags)
2655                 return;
2656
2657         WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2658
2659         for (i = 0; i < queue_depth; i++)
2660                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
2661
2662         /*
2663          * Wait until all pending iteration is done.
2664          *
2665          * Request reference is cleared and it is guaranteed to be observed
2666          * after the ->lock is released.
2667          */
2668         spin_lock_irqsave(&tags->lock, flags);
2669         spin_unlock_irqrestore(&tags->lock, flags);
2670 }
2671
2672 /* hctx->ctxs will be freed in queue's release handler */
2673 static void blk_mq_exit_hctx(struct request_queue *q,
2674                 struct blk_mq_tag_set *set,
2675                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2676 {
2677         struct request *flush_rq = hctx->fq->flush_rq;
2678
2679         if (blk_mq_hw_queue_mapped(hctx))
2680                 blk_mq_tag_idle(hctx);
2681
2682         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2683                         set->queue_depth, flush_rq);
2684         if (set->ops->exit_request)
2685                 set->ops->exit_request(set, flush_rq, hctx_idx);
2686
2687         if (set->ops->exit_hctx)
2688                 set->ops->exit_hctx(hctx, hctx_idx);
2689
2690         blk_mq_remove_cpuhp(hctx);
2691
2692         spin_lock(&q->unused_hctx_lock);
2693         list_add(&hctx->hctx_list, &q->unused_hctx_list);
2694         spin_unlock(&q->unused_hctx_lock);
2695 }
2696
2697 static void blk_mq_exit_hw_queues(struct request_queue *q,
2698                 struct blk_mq_tag_set *set, int nr_queue)
2699 {
2700         struct blk_mq_hw_ctx *hctx;
2701         unsigned int i;
2702
2703         queue_for_each_hw_ctx(q, hctx, i) {
2704                 if (i == nr_queue)
2705                         break;
2706                 blk_mq_debugfs_unregister_hctx(hctx);
2707                 blk_mq_exit_hctx(q, set, hctx, i);
2708         }
2709 }
2710
2711 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2712 {
2713         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2714
2715         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2716                            __alignof__(struct blk_mq_hw_ctx)) !=
2717                      sizeof(struct blk_mq_hw_ctx));
2718
2719         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2720                 hw_ctx_size += sizeof(struct srcu_struct);
2721
2722         return hw_ctx_size;
2723 }
2724
2725 static int blk_mq_init_hctx(struct request_queue *q,
2726                 struct blk_mq_tag_set *set,
2727                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2728 {
2729         hctx->queue_num = hctx_idx;
2730
2731         if (!(hctx->flags & BLK_MQ_F_STACKING))
2732                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2733                                 &hctx->cpuhp_online);
2734         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2735
2736         hctx->tags = set->tags[hctx_idx];
2737
2738         if (set->ops->init_hctx &&
2739             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2740                 goto unregister_cpu_notifier;
2741
2742         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2743                                 hctx->numa_node))
2744                 goto exit_hctx;
2745         return 0;
2746
2747  exit_hctx:
2748         if (set->ops->exit_hctx)
2749                 set->ops->exit_hctx(hctx, hctx_idx);
2750  unregister_cpu_notifier:
2751         blk_mq_remove_cpuhp(hctx);
2752         return -1;
2753 }
2754
2755 static struct blk_mq_hw_ctx *
2756 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2757                 int node)
2758 {
2759         struct blk_mq_hw_ctx *hctx;
2760         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2761
2762         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2763         if (!hctx)
2764                 goto fail_alloc_hctx;
2765
2766         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2767                 goto free_hctx;
2768
2769         atomic_set(&hctx->nr_active, 0);
2770         if (node == NUMA_NO_NODE)
2771                 node = set->numa_node;
2772         hctx->numa_node = node;
2773
2774         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2775         spin_lock_init(&hctx->lock);
2776         INIT_LIST_HEAD(&hctx->dispatch);
2777         hctx->queue = q;
2778         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2779
2780         INIT_LIST_HEAD(&hctx->hctx_list);
2781
2782         /*
2783          * Allocate space for all possible cpus to avoid allocation at
2784          * runtime
2785          */
2786         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2787                         gfp, node);
2788         if (!hctx->ctxs)
2789                 goto free_cpumask;
2790
2791         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2792                                 gfp, node, false, false))
2793                 goto free_ctxs;
2794         hctx->nr_ctx = 0;
2795
2796         spin_lock_init(&hctx->dispatch_wait_lock);
2797         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2798         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2799
2800         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2801         if (!hctx->fq)
2802                 goto free_bitmap;
2803
2804         if (hctx->flags & BLK_MQ_F_BLOCKING)
2805                 init_srcu_struct(hctx->srcu);
2806         blk_mq_hctx_kobj_init(hctx);
2807
2808         return hctx;
2809
2810  free_bitmap:
2811         sbitmap_free(&hctx->ctx_map);
2812  free_ctxs:
2813         kfree(hctx->ctxs);
2814  free_cpumask:
2815         free_cpumask_var(hctx->cpumask);
2816  free_hctx:
2817         kfree(hctx);
2818  fail_alloc_hctx:
2819         return NULL;
2820 }
2821
2822 static void blk_mq_init_cpu_queues(struct request_queue *q,
2823                                    unsigned int nr_hw_queues)
2824 {
2825         struct blk_mq_tag_set *set = q->tag_set;
2826         unsigned int i, j;
2827
2828         for_each_possible_cpu(i) {
2829                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2830                 struct blk_mq_hw_ctx *hctx;
2831                 int k;
2832
2833                 __ctx->cpu = i;
2834                 spin_lock_init(&__ctx->lock);
2835                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2836                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2837
2838                 __ctx->queue = q;
2839
2840                 /*
2841                  * Set local node, IFF we have more than one hw queue. If
2842                  * not, we remain on the home node of the device
2843                  */
2844                 for (j = 0; j < set->nr_maps; j++) {
2845                         hctx = blk_mq_map_queue_type(q, j, i);
2846                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2847                                 hctx->numa_node = cpu_to_node(i);
2848                 }
2849         }
2850 }
2851
2852 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2853                                         int hctx_idx)
2854 {
2855         unsigned int flags = set->flags;
2856         int ret = 0;
2857
2858         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2859                                         set->queue_depth, set->reserved_tags, flags);
2860         if (!set->tags[hctx_idx])
2861                 return false;
2862
2863         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2864                                 set->queue_depth);
2865         if (!ret)
2866                 return true;
2867
2868         blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2869         set->tags[hctx_idx] = NULL;
2870         return false;
2871 }
2872
2873 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2874                                          unsigned int hctx_idx)
2875 {
2876         unsigned int flags = set->flags;
2877
2878         if (set->tags && set->tags[hctx_idx]) {
2879                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2880                 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2881                 set->tags[hctx_idx] = NULL;
2882         }
2883 }
2884
2885 static void blk_mq_map_swqueue(struct request_queue *q)
2886 {
2887         unsigned int i, j, hctx_idx;
2888         struct blk_mq_hw_ctx *hctx;
2889         struct blk_mq_ctx *ctx;
2890         struct blk_mq_tag_set *set = q->tag_set;
2891
2892         queue_for_each_hw_ctx(q, hctx, i) {
2893                 cpumask_clear(hctx->cpumask);
2894                 hctx->nr_ctx = 0;
2895                 hctx->dispatch_from = NULL;
2896         }
2897
2898         /*
2899          * Map software to hardware queues.
2900          *
2901          * If the cpu isn't present, the cpu is mapped to first hctx.
2902          */
2903         for_each_possible_cpu(i) {
2904
2905                 ctx = per_cpu_ptr(q->queue_ctx, i);
2906                 for (j = 0; j < set->nr_maps; j++) {
2907                         if (!set->map[j].nr_queues) {
2908                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2909                                                 HCTX_TYPE_DEFAULT, i);
2910                                 continue;
2911                         }
2912                         hctx_idx = set->map[j].mq_map[i];
2913                         /* unmapped hw queue can be remapped after CPU topo changed */
2914                         if (!set->tags[hctx_idx] &&
2915                             !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2916                                 /*
2917                                  * If tags initialization fail for some hctx,
2918                                  * that hctx won't be brought online.  In this
2919                                  * case, remap the current ctx to hctx[0] which
2920                                  * is guaranteed to always have tags allocated
2921                                  */
2922                                 set->map[j].mq_map[i] = 0;
2923                         }
2924
2925                         hctx = blk_mq_map_queue_type(q, j, i);
2926                         ctx->hctxs[j] = hctx;
2927                         /*
2928                          * If the CPU is already set in the mask, then we've
2929                          * mapped this one already. This can happen if
2930                          * devices share queues across queue maps.
2931                          */
2932                         if (cpumask_test_cpu(i, hctx->cpumask))
2933                                 continue;
2934
2935                         cpumask_set_cpu(i, hctx->cpumask);
2936                         hctx->type = j;
2937                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2938                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2939
2940                         /*
2941                          * If the nr_ctx type overflows, we have exceeded the
2942                          * amount of sw queues we can support.
2943                          */
2944                         BUG_ON(!hctx->nr_ctx);
2945                 }
2946
2947                 for (; j < HCTX_MAX_TYPES; j++)
2948                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2949                                         HCTX_TYPE_DEFAULT, i);
2950         }
2951
2952         queue_for_each_hw_ctx(q, hctx, i) {
2953                 /*
2954                  * If no software queues are mapped to this hardware queue,
2955                  * disable it and free the request entries.
2956                  */
2957                 if (!hctx->nr_ctx) {
2958                         /* Never unmap queue 0.  We need it as a
2959                          * fallback in case of a new remap fails
2960                          * allocation
2961                          */
2962                         if (i && set->tags[i])
2963                                 blk_mq_free_map_and_requests(set, i);
2964
2965                         hctx->tags = NULL;
2966                         continue;
2967                 }
2968
2969                 hctx->tags = set->tags[i];
2970                 WARN_ON(!hctx->tags);
2971
2972                 /*
2973                  * Set the map size to the number of mapped software queues.
2974                  * This is more accurate and more efficient than looping
2975                  * over all possibly mapped software queues.
2976                  */
2977                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2978
2979                 /*
2980                  * Initialize batch roundrobin counts
2981                  */
2982                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2983                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2984         }
2985 }
2986
2987 /*
2988  * Caller needs to ensure that we're either frozen/quiesced, or that
2989  * the queue isn't live yet.
2990  */
2991 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2992 {
2993         struct blk_mq_hw_ctx *hctx;
2994         int i;
2995
2996         queue_for_each_hw_ctx(q, hctx, i) {
2997                 if (shared)
2998                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2999                 else
3000                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3001         }
3002 }
3003
3004 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3005                                          bool shared)
3006 {
3007         struct request_queue *q;
3008
3009         lockdep_assert_held(&set->tag_list_lock);
3010
3011         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3012                 blk_mq_freeze_queue(q);
3013                 queue_set_hctx_shared(q, shared);
3014                 blk_mq_unfreeze_queue(q);
3015         }
3016 }
3017
3018 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3019 {
3020         struct blk_mq_tag_set *set = q->tag_set;
3021
3022         mutex_lock(&set->tag_list_lock);
3023         list_del(&q->tag_set_list);
3024         if (list_is_singular(&set->tag_list)) {
3025                 /* just transitioned to unshared */
3026                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3027                 /* update existing queue */
3028                 blk_mq_update_tag_set_shared(set, false);
3029         }
3030         mutex_unlock(&set->tag_list_lock);
3031         INIT_LIST_HEAD(&q->tag_set_list);
3032 }
3033
3034 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3035                                      struct request_queue *q)
3036 {
3037         mutex_lock(&set->tag_list_lock);
3038
3039         /*
3040          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3041          */
3042         if (!list_empty(&set->tag_list) &&
3043             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3044                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3045                 /* update existing queue */
3046                 blk_mq_update_tag_set_shared(set, true);
3047         }
3048         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3049                 queue_set_hctx_shared(q, true);
3050         list_add_tail(&q->tag_set_list, &set->tag_list);
3051
3052         mutex_unlock(&set->tag_list_lock);
3053 }
3054
3055 /* All allocations will be freed in release handler of q->mq_kobj */
3056 static int blk_mq_alloc_ctxs(struct request_queue *q)
3057 {
3058         struct blk_mq_ctxs *ctxs;
3059         int cpu;
3060
3061         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3062         if (!ctxs)
3063                 return -ENOMEM;
3064
3065         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3066         if (!ctxs->queue_ctx)
3067                 goto fail;
3068
3069         for_each_possible_cpu(cpu) {
3070                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3071                 ctx->ctxs = ctxs;
3072         }
3073
3074         q->mq_kobj = &ctxs->kobj;
3075         q->queue_ctx = ctxs->queue_ctx;
3076
3077         return 0;
3078  fail:
3079         kfree(ctxs);
3080         return -ENOMEM;
3081 }
3082
3083 /*
3084  * It is the actual release handler for mq, but we do it from
3085  * request queue's release handler for avoiding use-after-free
3086  * and headache because q->mq_kobj shouldn't have been introduced,
3087  * but we can't group ctx/kctx kobj without it.
3088  */
3089 void blk_mq_release(struct request_queue *q)
3090 {
3091         struct blk_mq_hw_ctx *hctx, *next;
3092         int i;
3093
3094         queue_for_each_hw_ctx(q, hctx, i)
3095                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3096
3097         /* all hctx are in .unused_hctx_list now */
3098         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3099                 list_del_init(&hctx->hctx_list);
3100                 kobject_put(&hctx->kobj);
3101         }
3102
3103         kfree(q->queue_hw_ctx);
3104
3105         /*
3106          * release .mq_kobj and sw queue's kobject now because
3107          * both share lifetime with request queue.
3108          */
3109         blk_mq_sysfs_deinit(q);
3110 }
3111
3112 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3113                 void *queuedata)
3114 {
3115         struct request_queue *q;
3116         int ret;
3117
3118         q = blk_alloc_queue(set->numa_node);
3119         if (!q)
3120                 return ERR_PTR(-ENOMEM);
3121         q->queuedata = queuedata;
3122         ret = blk_mq_init_allocated_queue(set, q);
3123         if (ret) {
3124                 blk_cleanup_queue(q);
3125                 return ERR_PTR(ret);
3126         }
3127         return q;
3128 }
3129 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3130
3131 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3132 {
3133         return blk_mq_init_queue_data(set, NULL);
3134 }
3135 EXPORT_SYMBOL(blk_mq_init_queue);
3136
3137 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata)
3138 {
3139         struct request_queue *q;
3140         struct gendisk *disk;
3141
3142         q = blk_mq_init_queue_data(set, queuedata);
3143         if (IS_ERR(q))
3144                 return ERR_CAST(q);
3145
3146         disk = __alloc_disk_node(0, set->numa_node);
3147         if (!disk) {
3148                 blk_cleanup_queue(q);
3149                 return ERR_PTR(-ENOMEM);
3150         }
3151         disk->queue = q;
3152         return disk;
3153 }
3154 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3155
3156 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3157                 struct blk_mq_tag_set *set, struct request_queue *q,
3158                 int hctx_idx, int node)
3159 {
3160         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3161
3162         /* reuse dead hctx first */
3163         spin_lock(&q->unused_hctx_lock);
3164         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3165                 if (tmp->numa_node == node) {
3166                         hctx = tmp;
3167                         break;
3168                 }
3169         }
3170         if (hctx)
3171                 list_del_init(&hctx->hctx_list);
3172         spin_unlock(&q->unused_hctx_lock);
3173
3174         if (!hctx)
3175                 hctx = blk_mq_alloc_hctx(q, set, node);
3176         if (!hctx)
3177                 goto fail;
3178
3179         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3180                 goto free_hctx;
3181
3182         return hctx;
3183
3184  free_hctx:
3185         kobject_put(&hctx->kobj);
3186  fail:
3187         return NULL;
3188 }
3189
3190 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3191                                                 struct request_queue *q)
3192 {
3193         int i, j, end;
3194         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3195
3196         if (q->nr_hw_queues < set->nr_hw_queues) {
3197                 struct blk_mq_hw_ctx **new_hctxs;
3198
3199                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3200                                        sizeof(*new_hctxs), GFP_KERNEL,
3201                                        set->numa_node);
3202                 if (!new_hctxs)
3203                         return;
3204                 if (hctxs)
3205                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3206                                sizeof(*hctxs));
3207                 q->queue_hw_ctx = new_hctxs;
3208                 kfree(hctxs);
3209                 hctxs = new_hctxs;
3210         }
3211
3212         /* protect against switching io scheduler  */
3213         mutex_lock(&q->sysfs_lock);
3214         for (i = 0; i < set->nr_hw_queues; i++) {
3215                 int node;
3216                 struct blk_mq_hw_ctx *hctx;
3217
3218                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3219                 /*
3220                  * If the hw queue has been mapped to another numa node,
3221                  * we need to realloc the hctx. If allocation fails, fallback
3222                  * to use the previous one.
3223                  */
3224                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3225                         continue;
3226
3227                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3228                 if (hctx) {
3229                         if (hctxs[i])
3230                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3231                         hctxs[i] = hctx;
3232                 } else {
3233                         if (hctxs[i])
3234                                 pr_warn("Allocate new hctx on node %d fails,\
3235                                                 fallback to previous one on node %d\n",
3236                                                 node, hctxs[i]->numa_node);
3237                         else
3238                                 break;
3239                 }
3240         }
3241         /*
3242          * Increasing nr_hw_queues fails. Free the newly allocated
3243          * hctxs and keep the previous q->nr_hw_queues.
3244          */
3245         if (i != set->nr_hw_queues) {
3246                 j = q->nr_hw_queues;
3247                 end = i;
3248         } else {
3249                 j = i;
3250                 end = q->nr_hw_queues;
3251                 q->nr_hw_queues = set->nr_hw_queues;
3252         }
3253
3254         for (; j < end; j++) {
3255                 struct blk_mq_hw_ctx *hctx = hctxs[j];
3256
3257                 if (hctx) {
3258                         if (hctx->tags)
3259                                 blk_mq_free_map_and_requests(set, j);
3260                         blk_mq_exit_hctx(q, set, hctx, j);
3261                         hctxs[j] = NULL;
3262                 }
3263         }
3264         mutex_unlock(&q->sysfs_lock);
3265 }
3266
3267 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3268                 struct request_queue *q)
3269 {
3270         /* mark the queue as mq asap */
3271         q->mq_ops = set->ops;
3272
3273         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3274                                              blk_mq_poll_stats_bkt,
3275                                              BLK_MQ_POLL_STATS_BKTS, q);
3276         if (!q->poll_cb)
3277                 goto err_exit;
3278
3279         if (blk_mq_alloc_ctxs(q))
3280                 goto err_poll;
3281
3282         /* init q->mq_kobj and sw queues' kobjects */
3283         blk_mq_sysfs_init(q);
3284
3285         INIT_LIST_HEAD(&q->unused_hctx_list);
3286         spin_lock_init(&q->unused_hctx_lock);
3287
3288         blk_mq_realloc_hw_ctxs(set, q);
3289         if (!q->nr_hw_queues)
3290                 goto err_hctxs;
3291
3292         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3293         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3294
3295         q->tag_set = set;
3296
3297         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3298         if (set->nr_maps > HCTX_TYPE_POLL &&
3299             set->map[HCTX_TYPE_POLL].nr_queues)
3300                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3301
3302         q->sg_reserved_size = INT_MAX;
3303
3304         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3305         INIT_LIST_HEAD(&q->requeue_list);
3306         spin_lock_init(&q->requeue_lock);
3307
3308         q->nr_requests = set->queue_depth;
3309
3310         /*
3311          * Default to classic polling
3312          */
3313         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3314
3315         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3316         blk_mq_add_queue_tag_set(set, q);
3317         blk_mq_map_swqueue(q);
3318         return 0;
3319
3320 err_hctxs:
3321         kfree(q->queue_hw_ctx);
3322         q->nr_hw_queues = 0;
3323         blk_mq_sysfs_deinit(q);
3324 err_poll:
3325         blk_stat_free_callback(q->poll_cb);
3326         q->poll_cb = NULL;
3327 err_exit:
3328         q->mq_ops = NULL;
3329         return -ENOMEM;
3330 }
3331 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3332
3333 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3334 void blk_mq_exit_queue(struct request_queue *q)
3335 {
3336         struct blk_mq_tag_set *set = q->tag_set;
3337
3338         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3339         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3340         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3341         blk_mq_del_queue_tag_set(q);
3342 }
3343
3344 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3345 {
3346         int i;
3347
3348         for (i = 0; i < set->nr_hw_queues; i++) {
3349                 if (!__blk_mq_alloc_map_and_request(set, i))
3350                         goto out_unwind;
3351                 cond_resched();
3352         }
3353
3354         return 0;
3355
3356 out_unwind:
3357         while (--i >= 0)
3358                 blk_mq_free_map_and_requests(set, i);
3359
3360         return -ENOMEM;
3361 }
3362
3363 /*
3364  * Allocate the request maps associated with this tag_set. Note that this
3365  * may reduce the depth asked for, if memory is tight. set->queue_depth
3366  * will be updated to reflect the allocated depth.
3367  */
3368 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3369 {
3370         unsigned int depth;
3371         int err;
3372
3373         depth = set->queue_depth;
3374         do {
3375                 err = __blk_mq_alloc_rq_maps(set);
3376                 if (!err)
3377                         break;
3378
3379                 set->queue_depth >>= 1;
3380                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3381                         err = -ENOMEM;
3382                         break;
3383                 }
3384         } while (set->queue_depth);
3385
3386         if (!set->queue_depth || err) {
3387                 pr_err("blk-mq: failed to allocate request map\n");
3388                 return -ENOMEM;
3389         }
3390
3391         if (depth != set->queue_depth)
3392                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3393                                                 depth, set->queue_depth);
3394
3395         return 0;
3396 }
3397
3398 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3399 {
3400         /*
3401          * blk_mq_map_queues() and multiple .map_queues() implementations
3402          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3403          * number of hardware queues.
3404          */
3405         if (set->nr_maps == 1)
3406                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3407
3408         if (set->ops->map_queues && !is_kdump_kernel()) {
3409                 int i;
3410
3411                 /*
3412                  * transport .map_queues is usually done in the following
3413                  * way:
3414                  *
3415                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3416                  *      mask = get_cpu_mask(queue)
3417                  *      for_each_cpu(cpu, mask)
3418                  *              set->map[x].mq_map[cpu] = queue;
3419                  * }
3420                  *
3421                  * When we need to remap, the table has to be cleared for
3422                  * killing stale mapping since one CPU may not be mapped
3423                  * to any hw queue.
3424                  */
3425                 for (i = 0; i < set->nr_maps; i++)
3426                         blk_mq_clear_mq_map(&set->map[i]);
3427
3428                 return set->ops->map_queues(set);
3429         } else {
3430                 BUG_ON(set->nr_maps > 1);
3431                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3432         }
3433 }
3434
3435 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3436                                   int cur_nr_hw_queues, int new_nr_hw_queues)
3437 {
3438         struct blk_mq_tags **new_tags;
3439
3440         if (cur_nr_hw_queues >= new_nr_hw_queues)
3441                 return 0;
3442
3443         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3444                                 GFP_KERNEL, set->numa_node);
3445         if (!new_tags)
3446                 return -ENOMEM;
3447
3448         if (set->tags)
3449                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3450                        sizeof(*set->tags));
3451         kfree(set->tags);
3452         set->tags = new_tags;
3453         set->nr_hw_queues = new_nr_hw_queues;
3454
3455         return 0;
3456 }
3457
3458 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3459                                 int new_nr_hw_queues)
3460 {
3461         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3462 }
3463
3464 /*
3465  * Alloc a tag set to be associated with one or more request queues.
3466  * May fail with EINVAL for various error conditions. May adjust the
3467  * requested depth down, if it's too large. In that case, the set
3468  * value will be stored in set->queue_depth.
3469  */
3470 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3471 {
3472         int i, ret;
3473
3474         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3475
3476         if (!set->nr_hw_queues)
3477                 return -EINVAL;
3478         if (!set->queue_depth)
3479                 return -EINVAL;
3480         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3481                 return -EINVAL;
3482
3483         if (!set->ops->queue_rq)
3484                 return -EINVAL;
3485
3486         if (!set->ops->get_budget ^ !set->ops->put_budget)
3487                 return -EINVAL;
3488
3489         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3490                 pr_info("blk-mq: reduced tag depth to %u\n",
3491                         BLK_MQ_MAX_DEPTH);
3492                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3493         }
3494
3495         if (!set->nr_maps)
3496                 set->nr_maps = 1;
3497         else if (set->nr_maps > HCTX_MAX_TYPES)
3498                 return -EINVAL;
3499
3500         /*
3501          * If a crashdump is active, then we are potentially in a very
3502          * memory constrained environment. Limit us to 1 queue and
3503          * 64 tags to prevent using too much memory.
3504          */
3505         if (is_kdump_kernel()) {
3506                 set->nr_hw_queues = 1;
3507                 set->nr_maps = 1;
3508                 set->queue_depth = min(64U, set->queue_depth);
3509         }
3510         /*
3511          * There is no use for more h/w queues than cpus if we just have
3512          * a single map
3513          */
3514         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3515                 set->nr_hw_queues = nr_cpu_ids;
3516
3517         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3518                 return -ENOMEM;
3519
3520         ret = -ENOMEM;
3521         for (i = 0; i < set->nr_maps; i++) {
3522                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3523                                                   sizeof(set->map[i].mq_map[0]),
3524                                                   GFP_KERNEL, set->numa_node);
3525                 if (!set->map[i].mq_map)
3526                         goto out_free_mq_map;
3527                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3528         }
3529
3530         ret = blk_mq_update_queue_map(set);
3531         if (ret)
3532                 goto out_free_mq_map;
3533
3534         ret = blk_mq_alloc_map_and_requests(set);
3535         if (ret)
3536                 goto out_free_mq_map;
3537
3538         if (blk_mq_is_sbitmap_shared(set->flags)) {
3539                 atomic_set(&set->active_queues_shared_sbitmap, 0);
3540
3541                 if (blk_mq_init_shared_sbitmap(set)) {
3542                         ret = -ENOMEM;
3543                         goto out_free_mq_rq_maps;
3544                 }
3545         }
3546
3547         mutex_init(&set->tag_list_lock);
3548         INIT_LIST_HEAD(&set->tag_list);
3549
3550         return 0;
3551
3552 out_free_mq_rq_maps:
3553         for (i = 0; i < set->nr_hw_queues; i++)
3554                 blk_mq_free_map_and_requests(set, i);
3555 out_free_mq_map:
3556         for (i = 0; i < set->nr_maps; i++) {
3557                 kfree(set->map[i].mq_map);
3558                 set->map[i].mq_map = NULL;
3559         }
3560         kfree(set->tags);
3561         set->tags = NULL;
3562         return ret;
3563 }
3564 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3565
3566 /* allocate and initialize a tagset for a simple single-queue device */
3567 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
3568                 const struct blk_mq_ops *ops, unsigned int queue_depth,
3569                 unsigned int set_flags)
3570 {
3571         memset(set, 0, sizeof(*set));
3572         set->ops = ops;
3573         set->nr_hw_queues = 1;
3574         set->nr_maps = 1;
3575         set->queue_depth = queue_depth;
3576         set->numa_node = NUMA_NO_NODE;
3577         set->flags = set_flags;
3578         return blk_mq_alloc_tag_set(set);
3579 }
3580 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
3581
3582 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3583 {
3584         int i, j;
3585
3586         for (i = 0; i < set->nr_hw_queues; i++)
3587                 blk_mq_free_map_and_requests(set, i);
3588
3589         if (blk_mq_is_sbitmap_shared(set->flags))
3590                 blk_mq_exit_shared_sbitmap(set);
3591
3592         for (j = 0; j < set->nr_maps; j++) {
3593                 kfree(set->map[j].mq_map);
3594                 set->map[j].mq_map = NULL;
3595         }
3596
3597         kfree(set->tags);
3598         set->tags = NULL;
3599 }
3600 EXPORT_SYMBOL(blk_mq_free_tag_set);
3601
3602 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3603 {
3604         struct blk_mq_tag_set *set = q->tag_set;
3605         struct blk_mq_hw_ctx *hctx;
3606         int i, ret;
3607
3608         if (!set)
3609                 return -EINVAL;
3610
3611         if (q->nr_requests == nr)
3612                 return 0;
3613
3614         blk_mq_freeze_queue(q);
3615         blk_mq_quiesce_queue(q);
3616
3617         ret = 0;
3618         queue_for_each_hw_ctx(q, hctx, i) {
3619                 if (!hctx->tags)
3620                         continue;
3621                 /*
3622                  * If we're using an MQ scheduler, just update the scheduler
3623                  * queue depth. This is similar to what the old code would do.
3624                  */
3625                 if (!hctx->sched_tags) {
3626                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3627                                                         false);
3628                         if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3629                                 blk_mq_tag_resize_shared_sbitmap(set, nr);
3630                 } else {
3631                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3632                                                         nr, true);
3633                         if (blk_mq_is_sbitmap_shared(set->flags)) {
3634                                 hctx->sched_tags->bitmap_tags =
3635                                         &q->sched_bitmap_tags;
3636                                 hctx->sched_tags->breserved_tags =
3637                                         &q->sched_breserved_tags;
3638                         }
3639                 }
3640                 if (ret)
3641                         break;
3642                 if (q->elevator && q->elevator->type->ops.depth_updated)
3643                         q->elevator->type->ops.depth_updated(hctx);
3644         }
3645         if (!ret) {
3646                 q->nr_requests = nr;
3647                 if (q->elevator && blk_mq_is_sbitmap_shared(set->flags))
3648                         sbitmap_queue_resize(&q->sched_bitmap_tags,
3649                                              nr - set->reserved_tags);
3650         }
3651
3652         blk_mq_unquiesce_queue(q);
3653         blk_mq_unfreeze_queue(q);
3654
3655         return ret;
3656 }
3657
3658 /*
3659  * request_queue and elevator_type pair.
3660  * It is just used by __blk_mq_update_nr_hw_queues to cache
3661  * the elevator_type associated with a request_queue.
3662  */
3663 struct blk_mq_qe_pair {
3664         struct list_head node;
3665         struct request_queue *q;
3666         struct elevator_type *type;
3667 };
3668
3669 /*
3670  * Cache the elevator_type in qe pair list and switch the
3671  * io scheduler to 'none'
3672  */
3673 static bool blk_mq_elv_switch_none(struct list_head *head,
3674                 struct request_queue *q)
3675 {
3676         struct blk_mq_qe_pair *qe;
3677
3678         if (!q->elevator)
3679                 return true;
3680
3681         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3682         if (!qe)
3683                 return false;
3684
3685         INIT_LIST_HEAD(&qe->node);
3686         qe->q = q;
3687         qe->type = q->elevator->type;
3688         list_add(&qe->node, head);
3689
3690         mutex_lock(&q->sysfs_lock);
3691         /*
3692          * After elevator_switch_mq, the previous elevator_queue will be
3693          * released by elevator_release. The reference of the io scheduler
3694          * module get by elevator_get will also be put. So we need to get
3695          * a reference of the io scheduler module here to prevent it to be
3696          * removed.
3697          */
3698         __module_get(qe->type->elevator_owner);
3699         elevator_switch_mq(q, NULL);
3700         mutex_unlock(&q->sysfs_lock);
3701
3702         return true;
3703 }
3704
3705 static void blk_mq_elv_switch_back(struct list_head *head,
3706                 struct request_queue *q)
3707 {
3708         struct blk_mq_qe_pair *qe;
3709         struct elevator_type *t = NULL;
3710
3711         list_for_each_entry(qe, head, node)
3712                 if (qe->q == q) {
3713                         t = qe->type;
3714                         break;
3715                 }
3716
3717         if (!t)
3718                 return;
3719
3720         list_del(&qe->node);
3721         kfree(qe);
3722
3723         mutex_lock(&q->sysfs_lock);
3724         elevator_switch_mq(q, t);
3725         mutex_unlock(&q->sysfs_lock);
3726 }
3727
3728 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3729                                                         int nr_hw_queues)
3730 {
3731         struct request_queue *q;
3732         LIST_HEAD(head);
3733         int prev_nr_hw_queues;
3734
3735         lockdep_assert_held(&set->tag_list_lock);
3736
3737         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3738                 nr_hw_queues = nr_cpu_ids;
3739         if (nr_hw_queues < 1)
3740                 return;
3741         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3742                 return;
3743
3744         list_for_each_entry(q, &set->tag_list, tag_set_list)
3745                 blk_mq_freeze_queue(q);
3746         /*
3747          * Switch IO scheduler to 'none', cleaning up the data associated
3748          * with the previous scheduler. We will switch back once we are done
3749          * updating the new sw to hw queue mappings.
3750          */
3751         list_for_each_entry(q, &set->tag_list, tag_set_list)
3752                 if (!blk_mq_elv_switch_none(&head, q))
3753                         goto switch_back;
3754
3755         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3756                 blk_mq_debugfs_unregister_hctxs(q);
3757                 blk_mq_sysfs_unregister(q);
3758         }
3759
3760         prev_nr_hw_queues = set->nr_hw_queues;
3761         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3762             0)
3763                 goto reregister;
3764
3765         set->nr_hw_queues = nr_hw_queues;
3766 fallback:
3767         blk_mq_update_queue_map(set);
3768         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3769                 blk_mq_realloc_hw_ctxs(set, q);
3770                 if (q->nr_hw_queues != set->nr_hw_queues) {
3771                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3772                                         nr_hw_queues, prev_nr_hw_queues);
3773                         set->nr_hw_queues = prev_nr_hw_queues;
3774                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3775                         goto fallback;
3776                 }
3777                 blk_mq_map_swqueue(q);
3778         }
3779
3780 reregister:
3781         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3782                 blk_mq_sysfs_register(q);
3783                 blk_mq_debugfs_register_hctxs(q);
3784         }
3785
3786 switch_back:
3787         list_for_each_entry(q, &set->tag_list, tag_set_list)
3788                 blk_mq_elv_switch_back(&head, q);
3789
3790         list_for_each_entry(q, &set->tag_list, tag_set_list)
3791                 blk_mq_unfreeze_queue(q);
3792 }
3793
3794 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3795 {
3796         mutex_lock(&set->tag_list_lock);
3797         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3798         mutex_unlock(&set->tag_list_lock);
3799 }
3800 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3801
3802 /* Enable polling stats and return whether they were already enabled. */
3803 static bool blk_poll_stats_enable(struct request_queue *q)
3804 {
3805         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3806             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3807                 return true;
3808         blk_stat_add_callback(q, q->poll_cb);
3809         return false;
3810 }
3811
3812 static void blk_mq_poll_stats_start(struct request_queue *q)
3813 {
3814         /*
3815          * We don't arm the callback if polling stats are not enabled or the
3816          * callback is already active.
3817          */
3818         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3819             blk_stat_is_active(q->poll_cb))
3820                 return;
3821
3822         blk_stat_activate_msecs(q->poll_cb, 100);
3823 }
3824
3825 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3826 {
3827         struct request_queue *q = cb->data;
3828         int bucket;
3829
3830         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3831                 if (cb->stat[bucket].nr_samples)
3832                         q->poll_stat[bucket] = cb->stat[bucket];
3833         }
3834 }
3835
3836 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3837                                        struct request *rq)
3838 {
3839         unsigned long ret = 0;
3840         int bucket;
3841
3842         /*
3843          * If stats collection isn't on, don't sleep but turn it on for
3844          * future users
3845          */
3846         if (!blk_poll_stats_enable(q))
3847                 return 0;
3848
3849         /*
3850          * As an optimistic guess, use half of the mean service time
3851          * for this type of request. We can (and should) make this smarter.
3852          * For instance, if the completion latencies are tight, we can
3853          * get closer than just half the mean. This is especially
3854          * important on devices where the completion latencies are longer
3855          * than ~10 usec. We do use the stats for the relevant IO size
3856          * if available which does lead to better estimates.
3857          */
3858         bucket = blk_mq_poll_stats_bkt(rq);
3859         if (bucket < 0)
3860                 return ret;
3861
3862         if (q->poll_stat[bucket].nr_samples)
3863                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3864
3865         return ret;
3866 }
3867
3868 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3869                                      struct request *rq)
3870 {
3871         struct hrtimer_sleeper hs;
3872         enum hrtimer_mode mode;
3873         unsigned int nsecs;
3874         ktime_t kt;
3875
3876         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3877                 return false;
3878
3879         /*
3880          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3881          *
3882          *  0:  use half of prev avg
3883          * >0:  use this specific value
3884          */
3885         if (q->poll_nsec > 0)
3886                 nsecs = q->poll_nsec;
3887         else
3888                 nsecs = blk_mq_poll_nsecs(q, rq);
3889
3890         if (!nsecs)
3891                 return false;
3892
3893         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3894
3895         /*
3896          * This will be replaced with the stats tracking code, using
3897          * 'avg_completion_time / 2' as the pre-sleep target.
3898          */
3899         kt = nsecs;
3900
3901         mode = HRTIMER_MODE_REL;
3902         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3903         hrtimer_set_expires(&hs.timer, kt);
3904
3905         do {
3906                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3907                         break;
3908                 set_current_state(TASK_UNINTERRUPTIBLE);
3909                 hrtimer_sleeper_start_expires(&hs, mode);
3910                 if (hs.task)
3911                         io_schedule();
3912                 hrtimer_cancel(&hs.timer);
3913                 mode = HRTIMER_MODE_ABS;
3914         } while (hs.task && !signal_pending(current));
3915
3916         __set_current_state(TASK_RUNNING);
3917         destroy_hrtimer_on_stack(&hs.timer);
3918         return true;
3919 }
3920
3921 static bool blk_mq_poll_hybrid(struct request_queue *q,
3922                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3923 {
3924         struct request *rq;
3925
3926         if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3927                 return false;
3928
3929         if (!blk_qc_t_is_internal(cookie))
3930                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3931         else {
3932                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3933                 /*
3934                  * With scheduling, if the request has completed, we'll
3935                  * get a NULL return here, as we clear the sched tag when
3936                  * that happens. The request still remains valid, like always,
3937                  * so we should be safe with just the NULL check.
3938                  */
3939                 if (!rq)
3940                         return false;
3941         }
3942
3943         return blk_mq_poll_hybrid_sleep(q, rq);
3944 }
3945
3946 /**
3947  * blk_poll - poll for IO completions
3948  * @q:  the queue
3949  * @cookie: cookie passed back at IO submission time
3950  * @spin: whether to spin for completions
3951  *
3952  * Description:
3953  *    Poll for completions on the passed in queue. Returns number of
3954  *    completed entries found. If @spin is true, then blk_poll will continue
3955  *    looping until at least one completion is found, unless the task is
3956  *    otherwise marked running (or we need to reschedule).
3957  */
3958 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3959 {
3960         struct blk_mq_hw_ctx *hctx;
3961         unsigned int state;
3962
3963         if (!blk_qc_t_valid(cookie) ||
3964             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3965                 return 0;
3966
3967         if (current->plug)
3968                 blk_flush_plug_list(current->plug, false);
3969
3970         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3971
3972         /*
3973          * If we sleep, have the caller restart the poll loop to reset
3974          * the state. Like for the other success return cases, the
3975          * caller is responsible for checking if the IO completed. If
3976          * the IO isn't complete, we'll get called again and will go
3977          * straight to the busy poll loop. If specified not to spin,
3978          * we also should not sleep.
3979          */
3980         if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3981                 return 1;
3982
3983         hctx->poll_considered++;
3984
3985         state = get_current_state();
3986         do {
3987                 int ret;
3988
3989                 hctx->poll_invoked++;
3990
3991                 ret = q->mq_ops->poll(hctx);
3992                 if (ret > 0) {
3993                         hctx->poll_success++;
3994                         __set_current_state(TASK_RUNNING);
3995                         return ret;
3996                 }
3997
3998                 if (signal_pending_state(state, current))
3999                         __set_current_state(TASK_RUNNING);
4000
4001                 if (task_is_running(current))
4002                         return 1;
4003                 if (ret < 0 || !spin)
4004                         break;
4005                 cpu_relax();
4006         } while (!need_resched());
4007
4008         __set_current_state(TASK_RUNNING);
4009         return 0;
4010 }
4011 EXPORT_SYMBOL_GPL(blk_poll);
4012
4013 unsigned int blk_mq_rq_cpu(struct request *rq)
4014 {
4015         return rq->mq_ctx->cpu;
4016 }
4017 EXPORT_SYMBOL(blk_mq_rq_cpu);
4018
4019 static int __init blk_mq_init(void)
4020 {
4021         int i;
4022
4023         for_each_possible_cpu(i)
4024                 init_llist_head(&per_cpu(blk_cpu_done, i));
4025         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4026
4027         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4028                                   "block/softirq:dead", NULL,
4029                                   blk_softirq_cpu_dead);
4030         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4031                                 blk_mq_hctx_notify_dead);
4032         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4033                                 blk_mq_hctx_notify_online,
4034                                 blk_mq_hctx_notify_offline);
4035         return 0;
4036 }
4037 subsys_initcall(blk_mq_init);