Merge tag 'platform-drivers-x86-v5.12-1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51         int ddir, sectors, bucket;
52
53         ddir = rq_data_dir(rq);
54         sectors = blk_rq_stats_sectors(rq);
55
56         bucket = ddir + 2 * ilog2(sectors);
57
58         if (bucket < 0)
59                 return -1;
60         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63         return bucket;
64 }
65
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72         return !list_empty_careful(&hctx->dispatch) ||
73                 sbitmap_any_bit_set(&hctx->ctx_map) ||
74                         blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81                                      struct blk_mq_ctx *ctx)
82 {
83         const int bit = ctx->index_hw[hctx->type];
84
85         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86                 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90                                       struct blk_mq_ctx *ctx)
91 {
92         const int bit = ctx->index_hw[hctx->type];
93
94         sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98         struct block_device *part;
99         unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103                                   struct request *rq, void *priv,
104                                   bool reserved)
105 {
106         struct mq_inflight *mi = priv;
107
108         if ((!mi->part->bd_partno || rq->part == mi->part) &&
109             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110                 mi->inflight[rq_data_dir(rq)]++;
111
112         return true;
113 }
114
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116                 struct block_device *part)
117 {
118         struct mq_inflight mi = { .part = part };
119
120         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121
122         return mi.inflight[0] + mi.inflight[1];
123 }
124
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126                 unsigned int inflight[2])
127 {
128         struct mq_inflight mi = { .part = part };
129
130         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131         inflight[0] = mi.inflight[0];
132         inflight[1] = mi.inflight[1];
133 }
134
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137         mutex_lock(&q->mq_freeze_lock);
138         if (++q->mq_freeze_depth == 1) {
139                 percpu_ref_kill(&q->q_usage_counter);
140                 mutex_unlock(&q->mq_freeze_lock);
141                 if (queue_is_mq(q))
142                         blk_mq_run_hw_queues(q, false);
143         } else {
144                 mutex_unlock(&q->mq_freeze_lock);
145         }
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156                                      unsigned long timeout)
157 {
158         return wait_event_timeout(q->mq_freeze_wq,
159                                         percpu_ref_is_zero(&q->q_usage_counter),
160                                         timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170         /*
171          * In the !blk_mq case we are only calling this to kill the
172          * q_usage_counter, otherwise this increases the freeze depth
173          * and waits for it to return to zero.  For this reason there is
174          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175          * exported to drivers as the only user for unfreeze is blk_mq.
176          */
177         blk_freeze_queue_start(q);
178         blk_mq_freeze_queue_wait(q);
179 }
180
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183         /*
184          * ...just an alias to keep freeze and unfreeze actions balanced
185          * in the blk_mq_* namespace
186          */
187         blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190
191 void blk_mq_unfreeze_queue(struct request_queue *q)
192 {
193         mutex_lock(&q->mq_freeze_lock);
194         q->mq_freeze_depth--;
195         WARN_ON_ONCE(q->mq_freeze_depth < 0);
196         if (!q->mq_freeze_depth) {
197                 percpu_ref_resurrect(&q->q_usage_counter);
198                 wake_up_all(&q->mq_freeze_wq);
199         }
200         mutex_unlock(&q->mq_freeze_lock);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203
204 /*
205  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206  * mpt3sas driver such that this function can be removed.
207  */
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209 {
210         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
214 /**
215  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216  * @q: request queue.
217  *
218  * Note: this function does not prevent that the struct request end_io()
219  * callback function is invoked. Once this function is returned, we make
220  * sure no dispatch can happen until the queue is unquiesced via
221  * blk_mq_unquiesce_queue().
222  */
223 void blk_mq_quiesce_queue(struct request_queue *q)
224 {
225         struct blk_mq_hw_ctx *hctx;
226         unsigned int i;
227         bool rcu = false;
228
229         blk_mq_quiesce_queue_nowait(q);
230
231         queue_for_each_hw_ctx(q, hctx, i) {
232                 if (hctx->flags & BLK_MQ_F_BLOCKING)
233                         synchronize_srcu(hctx->srcu);
234                 else
235                         rcu = true;
236         }
237         if (rcu)
238                 synchronize_rcu();
239 }
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241
242 /*
243  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244  * @q: request queue.
245  *
246  * This function recovers queue into the state before quiescing
247  * which is done by blk_mq_quiesce_queue.
248  */
249 void blk_mq_unquiesce_queue(struct request_queue *q)
250 {
251         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252
253         /* dispatch requests which are inserted during quiescing */
254         blk_mq_run_hw_queues(q, true);
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257
258 void blk_mq_wake_waiters(struct request_queue *q)
259 {
260         struct blk_mq_hw_ctx *hctx;
261         unsigned int i;
262
263         queue_for_each_hw_ctx(q, hctx, i)
264                 if (blk_mq_hw_queue_mapped(hctx))
265                         blk_mq_tag_wakeup_all(hctx->tags, true);
266 }
267
268 /*
269  * Only need start/end time stamping if we have iostat or
270  * blk stats enabled, or using an IO scheduler.
271  */
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
273 {
274         return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 }
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278                 unsigned int tag, u64 alloc_time_ns)
279 {
280         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281         struct request *rq = tags->static_rqs[tag];
282
283         if (data->q->elevator) {
284                 rq->tag = BLK_MQ_NO_TAG;
285                 rq->internal_tag = tag;
286         } else {
287                 rq->tag = tag;
288                 rq->internal_tag = BLK_MQ_NO_TAG;
289         }
290
291         /* csd/requeue_work/fifo_time is initialized before use */
292         rq->q = data->q;
293         rq->mq_ctx = data->ctx;
294         rq->mq_hctx = data->hctx;
295         rq->rq_flags = 0;
296         rq->cmd_flags = data->cmd_flags;
297         if (data->flags & BLK_MQ_REQ_PM)
298                 rq->rq_flags |= RQF_PM;
299         if (blk_queue_io_stat(data->q))
300                 rq->rq_flags |= RQF_IO_STAT;
301         INIT_LIST_HEAD(&rq->queuelist);
302         INIT_HLIST_NODE(&rq->hash);
303         RB_CLEAR_NODE(&rq->rb_node);
304         rq->rq_disk = NULL;
305         rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307         rq->alloc_time_ns = alloc_time_ns;
308 #endif
309         if (blk_mq_need_time_stamp(rq))
310                 rq->start_time_ns = ktime_get_ns();
311         else
312                 rq->start_time_ns = 0;
313         rq->io_start_time_ns = 0;
314         rq->stats_sectors = 0;
315         rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317         rq->nr_integrity_segments = 0;
318 #endif
319         blk_crypto_rq_set_defaults(rq);
320         /* tag was already set */
321         WRITE_ONCE(rq->deadline, 0);
322
323         rq->timeout = 0;
324
325         rq->end_io = NULL;
326         rq->end_io_data = NULL;
327
328         data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329         refcount_set(&rq->ref, 1);
330
331         if (!op_is_flush(data->cmd_flags)) {
332                 struct elevator_queue *e = data->q->elevator;
333
334                 rq->elv.icq = NULL;
335                 if (e && e->type->ops.prepare_request) {
336                         if (e->type->icq_cache)
337                                 blk_mq_sched_assign_ioc(rq);
338
339                         e->type->ops.prepare_request(rq);
340                         rq->rq_flags |= RQF_ELVPRIV;
341                 }
342         }
343
344         data->hctx->queued++;
345         return rq;
346 }
347
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349 {
350         struct request_queue *q = data->q;
351         struct elevator_queue *e = q->elevator;
352         u64 alloc_time_ns = 0;
353         unsigned int tag;
354
355         /* alloc_time includes depth and tag waits */
356         if (blk_queue_rq_alloc_time(q))
357                 alloc_time_ns = ktime_get_ns();
358
359         if (data->cmd_flags & REQ_NOWAIT)
360                 data->flags |= BLK_MQ_REQ_NOWAIT;
361
362         if (e) {
363                 /*
364                  * Flush requests are special and go directly to the
365                  * dispatch list. Don't include reserved tags in the
366                  * limiting, as it isn't useful.
367                  */
368                 if (!op_is_flush(data->cmd_flags) &&
369                     e->type->ops.limit_depth &&
370                     !(data->flags & BLK_MQ_REQ_RESERVED))
371                         e->type->ops.limit_depth(data->cmd_flags, data);
372         }
373
374 retry:
375         data->ctx = blk_mq_get_ctx(q);
376         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
377         if (!e)
378                 blk_mq_tag_busy(data->hctx);
379
380         /*
381          * Waiting allocations only fail because of an inactive hctx.  In that
382          * case just retry the hctx assignment and tag allocation as CPU hotplug
383          * should have migrated us to an online CPU by now.
384          */
385         tag = blk_mq_get_tag(data);
386         if (tag == BLK_MQ_NO_TAG) {
387                 if (data->flags & BLK_MQ_REQ_NOWAIT)
388                         return NULL;
389
390                 /*
391                  * Give up the CPU and sleep for a random short time to ensure
392                  * that thread using a realtime scheduling class are migrated
393                  * off the CPU, and thus off the hctx that is going away.
394                  */
395                 msleep(3);
396                 goto retry;
397         }
398         return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
399 }
400
401 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
402                 blk_mq_req_flags_t flags)
403 {
404         struct blk_mq_alloc_data data = {
405                 .q              = q,
406                 .flags          = flags,
407                 .cmd_flags      = op,
408         };
409         struct request *rq;
410         int ret;
411
412         ret = blk_queue_enter(q, flags);
413         if (ret)
414                 return ERR_PTR(ret);
415
416         rq = __blk_mq_alloc_request(&data);
417         if (!rq)
418                 goto out_queue_exit;
419         rq->__data_len = 0;
420         rq->__sector = (sector_t) -1;
421         rq->bio = rq->biotail = NULL;
422         return rq;
423 out_queue_exit:
424         blk_queue_exit(q);
425         return ERR_PTR(-EWOULDBLOCK);
426 }
427 EXPORT_SYMBOL(blk_mq_alloc_request);
428
429 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
430         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
431 {
432         struct blk_mq_alloc_data data = {
433                 .q              = q,
434                 .flags          = flags,
435                 .cmd_flags      = op,
436         };
437         u64 alloc_time_ns = 0;
438         unsigned int cpu;
439         unsigned int tag;
440         int ret;
441
442         /* alloc_time includes depth and tag waits */
443         if (blk_queue_rq_alloc_time(q))
444                 alloc_time_ns = ktime_get_ns();
445
446         /*
447          * If the tag allocator sleeps we could get an allocation for a
448          * different hardware context.  No need to complicate the low level
449          * allocator for this for the rare use case of a command tied to
450          * a specific queue.
451          */
452         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
453                 return ERR_PTR(-EINVAL);
454
455         if (hctx_idx >= q->nr_hw_queues)
456                 return ERR_PTR(-EIO);
457
458         ret = blk_queue_enter(q, flags);
459         if (ret)
460                 return ERR_PTR(ret);
461
462         /*
463          * Check if the hardware context is actually mapped to anything.
464          * If not tell the caller that it should skip this queue.
465          */
466         ret = -EXDEV;
467         data.hctx = q->queue_hw_ctx[hctx_idx];
468         if (!blk_mq_hw_queue_mapped(data.hctx))
469                 goto out_queue_exit;
470         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
471         data.ctx = __blk_mq_get_ctx(q, cpu);
472
473         if (!q->elevator)
474                 blk_mq_tag_busy(data.hctx);
475
476         ret = -EWOULDBLOCK;
477         tag = blk_mq_get_tag(&data);
478         if (tag == BLK_MQ_NO_TAG)
479                 goto out_queue_exit;
480         return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
481
482 out_queue_exit:
483         blk_queue_exit(q);
484         return ERR_PTR(ret);
485 }
486 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
487
488 static void __blk_mq_free_request(struct request *rq)
489 {
490         struct request_queue *q = rq->q;
491         struct blk_mq_ctx *ctx = rq->mq_ctx;
492         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
493         const int sched_tag = rq->internal_tag;
494
495         blk_crypto_free_request(rq);
496         blk_pm_mark_last_busy(rq);
497         rq->mq_hctx = NULL;
498         if (rq->tag != BLK_MQ_NO_TAG)
499                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
500         if (sched_tag != BLK_MQ_NO_TAG)
501                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
502         blk_mq_sched_restart(hctx);
503         blk_queue_exit(q);
504 }
505
506 void blk_mq_free_request(struct request *rq)
507 {
508         struct request_queue *q = rq->q;
509         struct elevator_queue *e = q->elevator;
510         struct blk_mq_ctx *ctx = rq->mq_ctx;
511         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
512
513         if (rq->rq_flags & RQF_ELVPRIV) {
514                 if (e && e->type->ops.finish_request)
515                         e->type->ops.finish_request(rq);
516                 if (rq->elv.icq) {
517                         put_io_context(rq->elv.icq->ioc);
518                         rq->elv.icq = NULL;
519                 }
520         }
521
522         ctx->rq_completed[rq_is_sync(rq)]++;
523         if (rq->rq_flags & RQF_MQ_INFLIGHT)
524                 __blk_mq_dec_active_requests(hctx);
525
526         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
527                 laptop_io_completion(q->backing_dev_info);
528
529         rq_qos_done(q, rq);
530
531         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
532         if (refcount_dec_and_test(&rq->ref))
533                 __blk_mq_free_request(rq);
534 }
535 EXPORT_SYMBOL_GPL(blk_mq_free_request);
536
537 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
538 {
539         u64 now = 0;
540
541         if (blk_mq_need_time_stamp(rq))
542                 now = ktime_get_ns();
543
544         if (rq->rq_flags & RQF_STATS) {
545                 blk_mq_poll_stats_start(rq->q);
546                 blk_stat_add(rq, now);
547         }
548
549         blk_mq_sched_completed_request(rq, now);
550
551         blk_account_io_done(rq, now);
552
553         if (rq->end_io) {
554                 rq_qos_done(rq->q, rq);
555                 rq->end_io(rq, error);
556         } else {
557                 blk_mq_free_request(rq);
558         }
559 }
560 EXPORT_SYMBOL(__blk_mq_end_request);
561
562 void blk_mq_end_request(struct request *rq, blk_status_t error)
563 {
564         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
565                 BUG();
566         __blk_mq_end_request(rq, error);
567 }
568 EXPORT_SYMBOL(blk_mq_end_request);
569
570 /*
571  * Softirq action handler - move entries to local list and loop over them
572  * while passing them to the queue registered handler.
573  */
574 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
575 {
576         struct list_head *cpu_list, local_list;
577
578         local_irq_disable();
579         cpu_list = this_cpu_ptr(&blk_cpu_done);
580         list_replace_init(cpu_list, &local_list);
581         local_irq_enable();
582
583         while (!list_empty(&local_list)) {
584                 struct request *rq;
585
586                 rq = list_entry(local_list.next, struct request, ipi_list);
587                 list_del_init(&rq->ipi_list);
588                 rq->q->mq_ops->complete(rq);
589         }
590 }
591
592 static void blk_mq_trigger_softirq(struct request *rq)
593 {
594         struct list_head *list;
595         unsigned long flags;
596
597         local_irq_save(flags);
598         list = this_cpu_ptr(&blk_cpu_done);
599         list_add_tail(&rq->ipi_list, list);
600
601         /*
602          * If the list only contains our just added request, signal a raise of
603          * the softirq.  If there are already entries there, someone already
604          * raised the irq but it hasn't run yet.
605          */
606         if (list->next == &rq->ipi_list)
607                 raise_softirq_irqoff(BLOCK_SOFTIRQ);
608         local_irq_restore(flags);
609 }
610
611 static int blk_softirq_cpu_dead(unsigned int cpu)
612 {
613         /*
614          * If a CPU goes away, splice its entries to the current CPU
615          * and trigger a run of the softirq
616          */
617         local_irq_disable();
618         list_splice_init(&per_cpu(blk_cpu_done, cpu),
619                          this_cpu_ptr(&blk_cpu_done));
620         raise_softirq_irqoff(BLOCK_SOFTIRQ);
621         local_irq_enable();
622
623         return 0;
624 }
625
626
627 static void __blk_mq_complete_request_remote(void *data)
628 {
629         struct request *rq = data;
630
631         /*
632          * For most of single queue controllers, there is only one irq vector
633          * for handling I/O completion, and the only irq's affinity is set
634          * to all possible CPUs.  On most of ARCHs, this affinity means the irq
635          * is handled on one specific CPU.
636          *
637          * So complete I/O requests in softirq context in case of single queue
638          * devices to avoid degrading I/O performance due to irqsoff latency.
639          */
640         if (rq->q->nr_hw_queues == 1)
641                 blk_mq_trigger_softirq(rq);
642         else
643                 rq->q->mq_ops->complete(rq);
644 }
645
646 static inline bool blk_mq_complete_need_ipi(struct request *rq)
647 {
648         int cpu = raw_smp_processor_id();
649
650         if (!IS_ENABLED(CONFIG_SMP) ||
651             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
652                 return false;
653         /*
654          * With force threaded interrupts enabled, raising softirq from an SMP
655          * function call will always result in waking the ksoftirqd thread.
656          * This is probably worse than completing the request on a different
657          * cache domain.
658          */
659         if (force_irqthreads)
660                 return false;
661
662         /* same CPU or cache domain?  Complete locally */
663         if (cpu == rq->mq_ctx->cpu ||
664             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
665              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
666                 return false;
667
668         /* don't try to IPI to an offline CPU */
669         return cpu_online(rq->mq_ctx->cpu);
670 }
671
672 bool blk_mq_complete_request_remote(struct request *rq)
673 {
674         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
675
676         /*
677          * For a polled request, always complete locallly, it's pointless
678          * to redirect the completion.
679          */
680         if (rq->cmd_flags & REQ_HIPRI)
681                 return false;
682
683         if (blk_mq_complete_need_ipi(rq)) {
684                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
685                 smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
686         } else {
687                 if (rq->q->nr_hw_queues > 1)
688                         return false;
689                 blk_mq_trigger_softirq(rq);
690         }
691
692         return true;
693 }
694 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
695
696 /**
697  * blk_mq_complete_request - end I/O on a request
698  * @rq:         the request being processed
699  *
700  * Description:
701  *      Complete a request by scheduling the ->complete_rq operation.
702  **/
703 void blk_mq_complete_request(struct request *rq)
704 {
705         if (!blk_mq_complete_request_remote(rq))
706                 rq->q->mq_ops->complete(rq);
707 }
708 EXPORT_SYMBOL(blk_mq_complete_request);
709
710 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
711         __releases(hctx->srcu)
712 {
713         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
714                 rcu_read_unlock();
715         else
716                 srcu_read_unlock(hctx->srcu, srcu_idx);
717 }
718
719 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
720         __acquires(hctx->srcu)
721 {
722         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
723                 /* shut up gcc false positive */
724                 *srcu_idx = 0;
725                 rcu_read_lock();
726         } else
727                 *srcu_idx = srcu_read_lock(hctx->srcu);
728 }
729
730 /**
731  * blk_mq_start_request - Start processing a request
732  * @rq: Pointer to request to be started
733  *
734  * Function used by device drivers to notify the block layer that a request
735  * is going to be processed now, so blk layer can do proper initializations
736  * such as starting the timeout timer.
737  */
738 void blk_mq_start_request(struct request *rq)
739 {
740         struct request_queue *q = rq->q;
741
742         trace_block_rq_issue(rq);
743
744         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
745                 rq->io_start_time_ns = ktime_get_ns();
746                 rq->stats_sectors = blk_rq_sectors(rq);
747                 rq->rq_flags |= RQF_STATS;
748                 rq_qos_issue(q, rq);
749         }
750
751         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
752
753         blk_add_timer(rq);
754         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
755
756 #ifdef CONFIG_BLK_DEV_INTEGRITY
757         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
758                 q->integrity.profile->prepare_fn(rq);
759 #endif
760 }
761 EXPORT_SYMBOL(blk_mq_start_request);
762
763 static void __blk_mq_requeue_request(struct request *rq)
764 {
765         struct request_queue *q = rq->q;
766
767         blk_mq_put_driver_tag(rq);
768
769         trace_block_rq_requeue(rq);
770         rq_qos_requeue(q, rq);
771
772         if (blk_mq_request_started(rq)) {
773                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
774                 rq->rq_flags &= ~RQF_TIMED_OUT;
775         }
776 }
777
778 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
779 {
780         __blk_mq_requeue_request(rq);
781
782         /* this request will be re-inserted to io scheduler queue */
783         blk_mq_sched_requeue_request(rq);
784
785         BUG_ON(!list_empty(&rq->queuelist));
786         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
787 }
788 EXPORT_SYMBOL(blk_mq_requeue_request);
789
790 static void blk_mq_requeue_work(struct work_struct *work)
791 {
792         struct request_queue *q =
793                 container_of(work, struct request_queue, requeue_work.work);
794         LIST_HEAD(rq_list);
795         struct request *rq, *next;
796
797         spin_lock_irq(&q->requeue_lock);
798         list_splice_init(&q->requeue_list, &rq_list);
799         spin_unlock_irq(&q->requeue_lock);
800
801         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
802                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
803                         continue;
804
805                 rq->rq_flags &= ~RQF_SOFTBARRIER;
806                 list_del_init(&rq->queuelist);
807                 /*
808                  * If RQF_DONTPREP, rq has contained some driver specific
809                  * data, so insert it to hctx dispatch list to avoid any
810                  * merge.
811                  */
812                 if (rq->rq_flags & RQF_DONTPREP)
813                         blk_mq_request_bypass_insert(rq, false, false);
814                 else
815                         blk_mq_sched_insert_request(rq, true, false, false);
816         }
817
818         while (!list_empty(&rq_list)) {
819                 rq = list_entry(rq_list.next, struct request, queuelist);
820                 list_del_init(&rq->queuelist);
821                 blk_mq_sched_insert_request(rq, false, false, false);
822         }
823
824         blk_mq_run_hw_queues(q, false);
825 }
826
827 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
828                                 bool kick_requeue_list)
829 {
830         struct request_queue *q = rq->q;
831         unsigned long flags;
832
833         /*
834          * We abuse this flag that is otherwise used by the I/O scheduler to
835          * request head insertion from the workqueue.
836          */
837         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
838
839         spin_lock_irqsave(&q->requeue_lock, flags);
840         if (at_head) {
841                 rq->rq_flags |= RQF_SOFTBARRIER;
842                 list_add(&rq->queuelist, &q->requeue_list);
843         } else {
844                 list_add_tail(&rq->queuelist, &q->requeue_list);
845         }
846         spin_unlock_irqrestore(&q->requeue_lock, flags);
847
848         if (kick_requeue_list)
849                 blk_mq_kick_requeue_list(q);
850 }
851
852 void blk_mq_kick_requeue_list(struct request_queue *q)
853 {
854         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
855 }
856 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
857
858 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
859                                     unsigned long msecs)
860 {
861         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
862                                     msecs_to_jiffies(msecs));
863 }
864 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
865
866 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
867 {
868         if (tag < tags->nr_tags) {
869                 prefetch(tags->rqs[tag]);
870                 return tags->rqs[tag];
871         }
872
873         return NULL;
874 }
875 EXPORT_SYMBOL(blk_mq_tag_to_rq);
876
877 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
878                                void *priv, bool reserved)
879 {
880         /*
881          * If we find a request that isn't idle and the queue matches,
882          * we know the queue is busy. Return false to stop the iteration.
883          */
884         if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
885                 bool *busy = priv;
886
887                 *busy = true;
888                 return false;
889         }
890
891         return true;
892 }
893
894 bool blk_mq_queue_inflight(struct request_queue *q)
895 {
896         bool busy = false;
897
898         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
899         return busy;
900 }
901 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
902
903 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
904 {
905         req->rq_flags |= RQF_TIMED_OUT;
906         if (req->q->mq_ops->timeout) {
907                 enum blk_eh_timer_return ret;
908
909                 ret = req->q->mq_ops->timeout(req, reserved);
910                 if (ret == BLK_EH_DONE)
911                         return;
912                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
913         }
914
915         blk_add_timer(req);
916 }
917
918 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
919 {
920         unsigned long deadline;
921
922         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
923                 return false;
924         if (rq->rq_flags & RQF_TIMED_OUT)
925                 return false;
926
927         deadline = READ_ONCE(rq->deadline);
928         if (time_after_eq(jiffies, deadline))
929                 return true;
930
931         if (*next == 0)
932                 *next = deadline;
933         else if (time_after(*next, deadline))
934                 *next = deadline;
935         return false;
936 }
937
938 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
939                 struct request *rq, void *priv, bool reserved)
940 {
941         unsigned long *next = priv;
942
943         /*
944          * Just do a quick check if it is expired before locking the request in
945          * so we're not unnecessarilly synchronizing across CPUs.
946          */
947         if (!blk_mq_req_expired(rq, next))
948                 return true;
949
950         /*
951          * We have reason to believe the request may be expired. Take a
952          * reference on the request to lock this request lifetime into its
953          * currently allocated context to prevent it from being reallocated in
954          * the event the completion by-passes this timeout handler.
955          *
956          * If the reference was already released, then the driver beat the
957          * timeout handler to posting a natural completion.
958          */
959         if (!refcount_inc_not_zero(&rq->ref))
960                 return true;
961
962         /*
963          * The request is now locked and cannot be reallocated underneath the
964          * timeout handler's processing. Re-verify this exact request is truly
965          * expired; if it is not expired, then the request was completed and
966          * reallocated as a new request.
967          */
968         if (blk_mq_req_expired(rq, next))
969                 blk_mq_rq_timed_out(rq, reserved);
970
971         if (is_flush_rq(rq, hctx))
972                 rq->end_io(rq, 0);
973         else if (refcount_dec_and_test(&rq->ref))
974                 __blk_mq_free_request(rq);
975
976         return true;
977 }
978
979 static void blk_mq_timeout_work(struct work_struct *work)
980 {
981         struct request_queue *q =
982                 container_of(work, struct request_queue, timeout_work);
983         unsigned long next = 0;
984         struct blk_mq_hw_ctx *hctx;
985         int i;
986
987         /* A deadlock might occur if a request is stuck requiring a
988          * timeout at the same time a queue freeze is waiting
989          * completion, since the timeout code would not be able to
990          * acquire the queue reference here.
991          *
992          * That's why we don't use blk_queue_enter here; instead, we use
993          * percpu_ref_tryget directly, because we need to be able to
994          * obtain a reference even in the short window between the queue
995          * starting to freeze, by dropping the first reference in
996          * blk_freeze_queue_start, and the moment the last request is
997          * consumed, marked by the instant q_usage_counter reaches
998          * zero.
999          */
1000         if (!percpu_ref_tryget(&q->q_usage_counter))
1001                 return;
1002
1003         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1004
1005         if (next != 0) {
1006                 mod_timer(&q->timeout, next);
1007         } else {
1008                 /*
1009                  * Request timeouts are handled as a forward rolling timer. If
1010                  * we end up here it means that no requests are pending and
1011                  * also that no request has been pending for a while. Mark
1012                  * each hctx as idle.
1013                  */
1014                 queue_for_each_hw_ctx(q, hctx, i) {
1015                         /* the hctx may be unmapped, so check it here */
1016                         if (blk_mq_hw_queue_mapped(hctx))
1017                                 blk_mq_tag_idle(hctx);
1018                 }
1019         }
1020         blk_queue_exit(q);
1021 }
1022
1023 struct flush_busy_ctx_data {
1024         struct blk_mq_hw_ctx *hctx;
1025         struct list_head *list;
1026 };
1027
1028 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1029 {
1030         struct flush_busy_ctx_data *flush_data = data;
1031         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1032         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1033         enum hctx_type type = hctx->type;
1034
1035         spin_lock(&ctx->lock);
1036         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1037         sbitmap_clear_bit(sb, bitnr);
1038         spin_unlock(&ctx->lock);
1039         return true;
1040 }
1041
1042 /*
1043  * Process software queues that have been marked busy, splicing them
1044  * to the for-dispatch
1045  */
1046 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1047 {
1048         struct flush_busy_ctx_data data = {
1049                 .hctx = hctx,
1050                 .list = list,
1051         };
1052
1053         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1054 }
1055 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1056
1057 struct dispatch_rq_data {
1058         struct blk_mq_hw_ctx *hctx;
1059         struct request *rq;
1060 };
1061
1062 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1063                 void *data)
1064 {
1065         struct dispatch_rq_data *dispatch_data = data;
1066         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1067         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1068         enum hctx_type type = hctx->type;
1069
1070         spin_lock(&ctx->lock);
1071         if (!list_empty(&ctx->rq_lists[type])) {
1072                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1073                 list_del_init(&dispatch_data->rq->queuelist);
1074                 if (list_empty(&ctx->rq_lists[type]))
1075                         sbitmap_clear_bit(sb, bitnr);
1076         }
1077         spin_unlock(&ctx->lock);
1078
1079         return !dispatch_data->rq;
1080 }
1081
1082 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1083                                         struct blk_mq_ctx *start)
1084 {
1085         unsigned off = start ? start->index_hw[hctx->type] : 0;
1086         struct dispatch_rq_data data = {
1087                 .hctx = hctx,
1088                 .rq   = NULL,
1089         };
1090
1091         __sbitmap_for_each_set(&hctx->ctx_map, off,
1092                                dispatch_rq_from_ctx, &data);
1093
1094         return data.rq;
1095 }
1096
1097 static inline unsigned int queued_to_index(unsigned int queued)
1098 {
1099         if (!queued)
1100                 return 0;
1101
1102         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1103 }
1104
1105 static bool __blk_mq_get_driver_tag(struct request *rq)
1106 {
1107         struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1108         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1109         int tag;
1110
1111         blk_mq_tag_busy(rq->mq_hctx);
1112
1113         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1114                 bt = rq->mq_hctx->tags->breserved_tags;
1115                 tag_offset = 0;
1116         } else {
1117                 if (!hctx_may_queue(rq->mq_hctx, bt))
1118                         return false;
1119         }
1120
1121         tag = __sbitmap_queue_get(bt);
1122         if (tag == BLK_MQ_NO_TAG)
1123                 return false;
1124
1125         rq->tag = tag + tag_offset;
1126         return true;
1127 }
1128
1129 static bool blk_mq_get_driver_tag(struct request *rq)
1130 {
1131         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1132
1133         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1134                 return false;
1135
1136         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1137                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1138                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1139                 __blk_mq_inc_active_requests(hctx);
1140         }
1141         hctx->tags->rqs[rq->tag] = rq;
1142         return true;
1143 }
1144
1145 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1146                                 int flags, void *key)
1147 {
1148         struct blk_mq_hw_ctx *hctx;
1149
1150         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1151
1152         spin_lock(&hctx->dispatch_wait_lock);
1153         if (!list_empty(&wait->entry)) {
1154                 struct sbitmap_queue *sbq;
1155
1156                 list_del_init(&wait->entry);
1157                 sbq = hctx->tags->bitmap_tags;
1158                 atomic_dec(&sbq->ws_active);
1159         }
1160         spin_unlock(&hctx->dispatch_wait_lock);
1161
1162         blk_mq_run_hw_queue(hctx, true);
1163         return 1;
1164 }
1165
1166 /*
1167  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1168  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1169  * restart. For both cases, take care to check the condition again after
1170  * marking us as waiting.
1171  */
1172 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1173                                  struct request *rq)
1174 {
1175         struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1176         struct wait_queue_head *wq;
1177         wait_queue_entry_t *wait;
1178         bool ret;
1179
1180         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1181                 blk_mq_sched_mark_restart_hctx(hctx);
1182
1183                 /*
1184                  * It's possible that a tag was freed in the window between the
1185                  * allocation failure and adding the hardware queue to the wait
1186                  * queue.
1187                  *
1188                  * Don't clear RESTART here, someone else could have set it.
1189                  * At most this will cost an extra queue run.
1190                  */
1191                 return blk_mq_get_driver_tag(rq);
1192         }
1193
1194         wait = &hctx->dispatch_wait;
1195         if (!list_empty_careful(&wait->entry))
1196                 return false;
1197
1198         wq = &bt_wait_ptr(sbq, hctx)->wait;
1199
1200         spin_lock_irq(&wq->lock);
1201         spin_lock(&hctx->dispatch_wait_lock);
1202         if (!list_empty(&wait->entry)) {
1203                 spin_unlock(&hctx->dispatch_wait_lock);
1204                 spin_unlock_irq(&wq->lock);
1205                 return false;
1206         }
1207
1208         atomic_inc(&sbq->ws_active);
1209         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1210         __add_wait_queue(wq, wait);
1211
1212         /*
1213          * It's possible that a tag was freed in the window between the
1214          * allocation failure and adding the hardware queue to the wait
1215          * queue.
1216          */
1217         ret = blk_mq_get_driver_tag(rq);
1218         if (!ret) {
1219                 spin_unlock(&hctx->dispatch_wait_lock);
1220                 spin_unlock_irq(&wq->lock);
1221                 return false;
1222         }
1223
1224         /*
1225          * We got a tag, remove ourselves from the wait queue to ensure
1226          * someone else gets the wakeup.
1227          */
1228         list_del_init(&wait->entry);
1229         atomic_dec(&sbq->ws_active);
1230         spin_unlock(&hctx->dispatch_wait_lock);
1231         spin_unlock_irq(&wq->lock);
1232
1233         return true;
1234 }
1235
1236 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1237 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1238 /*
1239  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1240  * - EWMA is one simple way to compute running average value
1241  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1242  * - take 4 as factor for avoiding to get too small(0) result, and this
1243  *   factor doesn't matter because EWMA decreases exponentially
1244  */
1245 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1246 {
1247         unsigned int ewma;
1248
1249         if (hctx->queue->elevator)
1250                 return;
1251
1252         ewma = hctx->dispatch_busy;
1253
1254         if (!ewma && !busy)
1255                 return;
1256
1257         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1258         if (busy)
1259                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1260         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1261
1262         hctx->dispatch_busy = ewma;
1263 }
1264
1265 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1266
1267 static void blk_mq_handle_dev_resource(struct request *rq,
1268                                        struct list_head *list)
1269 {
1270         struct request *next =
1271                 list_first_entry_or_null(list, struct request, queuelist);
1272
1273         /*
1274          * If an I/O scheduler has been configured and we got a driver tag for
1275          * the next request already, free it.
1276          */
1277         if (next)
1278                 blk_mq_put_driver_tag(next);
1279
1280         list_add(&rq->queuelist, list);
1281         __blk_mq_requeue_request(rq);
1282 }
1283
1284 static void blk_mq_handle_zone_resource(struct request *rq,
1285                                         struct list_head *zone_list)
1286 {
1287         /*
1288          * If we end up here it is because we cannot dispatch a request to a
1289          * specific zone due to LLD level zone-write locking or other zone
1290          * related resource not being available. In this case, set the request
1291          * aside in zone_list for retrying it later.
1292          */
1293         list_add(&rq->queuelist, zone_list);
1294         __blk_mq_requeue_request(rq);
1295 }
1296
1297 enum prep_dispatch {
1298         PREP_DISPATCH_OK,
1299         PREP_DISPATCH_NO_TAG,
1300         PREP_DISPATCH_NO_BUDGET,
1301 };
1302
1303 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1304                                                   bool need_budget)
1305 {
1306         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1307
1308         if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1309                 blk_mq_put_driver_tag(rq);
1310                 return PREP_DISPATCH_NO_BUDGET;
1311         }
1312
1313         if (!blk_mq_get_driver_tag(rq)) {
1314                 /*
1315                  * The initial allocation attempt failed, so we need to
1316                  * rerun the hardware queue when a tag is freed. The
1317                  * waitqueue takes care of that. If the queue is run
1318                  * before we add this entry back on the dispatch list,
1319                  * we'll re-run it below.
1320                  */
1321                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1322                         /*
1323                          * All budgets not got from this function will be put
1324                          * together during handling partial dispatch
1325                          */
1326                         if (need_budget)
1327                                 blk_mq_put_dispatch_budget(rq->q);
1328                         return PREP_DISPATCH_NO_TAG;
1329                 }
1330         }
1331
1332         return PREP_DISPATCH_OK;
1333 }
1334
1335 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1336 static void blk_mq_release_budgets(struct request_queue *q,
1337                 unsigned int nr_budgets)
1338 {
1339         int i;
1340
1341         for (i = 0; i < nr_budgets; i++)
1342                 blk_mq_put_dispatch_budget(q);
1343 }
1344
1345 /*
1346  * Returns true if we did some work AND can potentially do more.
1347  */
1348 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1349                              unsigned int nr_budgets)
1350 {
1351         enum prep_dispatch prep;
1352         struct request_queue *q = hctx->queue;
1353         struct request *rq, *nxt;
1354         int errors, queued;
1355         blk_status_t ret = BLK_STS_OK;
1356         LIST_HEAD(zone_list);
1357
1358         if (list_empty(list))
1359                 return false;
1360
1361         /*
1362          * Now process all the entries, sending them to the driver.
1363          */
1364         errors = queued = 0;
1365         do {
1366                 struct blk_mq_queue_data bd;
1367
1368                 rq = list_first_entry(list, struct request, queuelist);
1369
1370                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1371                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1372                 if (prep != PREP_DISPATCH_OK)
1373                         break;
1374
1375                 list_del_init(&rq->queuelist);
1376
1377                 bd.rq = rq;
1378
1379                 /*
1380                  * Flag last if we have no more requests, or if we have more
1381                  * but can't assign a driver tag to it.
1382                  */
1383                 if (list_empty(list))
1384                         bd.last = true;
1385                 else {
1386                         nxt = list_first_entry(list, struct request, queuelist);
1387                         bd.last = !blk_mq_get_driver_tag(nxt);
1388                 }
1389
1390                 /*
1391                  * once the request is queued to lld, no need to cover the
1392                  * budget any more
1393                  */
1394                 if (nr_budgets)
1395                         nr_budgets--;
1396                 ret = q->mq_ops->queue_rq(hctx, &bd);
1397                 switch (ret) {
1398                 case BLK_STS_OK:
1399                         queued++;
1400                         break;
1401                 case BLK_STS_RESOURCE:
1402                 case BLK_STS_DEV_RESOURCE:
1403                         blk_mq_handle_dev_resource(rq, list);
1404                         goto out;
1405                 case BLK_STS_ZONE_RESOURCE:
1406                         /*
1407                          * Move the request to zone_list and keep going through
1408                          * the dispatch list to find more requests the drive can
1409                          * accept.
1410                          */
1411                         blk_mq_handle_zone_resource(rq, &zone_list);
1412                         break;
1413                 default:
1414                         errors++;
1415                         blk_mq_end_request(rq, ret);
1416                 }
1417         } while (!list_empty(list));
1418 out:
1419         if (!list_empty(&zone_list))
1420                 list_splice_tail_init(&zone_list, list);
1421
1422         hctx->dispatched[queued_to_index(queued)]++;
1423
1424         /* If we didn't flush the entire list, we could have told the driver
1425          * there was more coming, but that turned out to be a lie.
1426          */
1427         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1428                 q->mq_ops->commit_rqs(hctx);
1429         /*
1430          * Any items that need requeuing? Stuff them into hctx->dispatch,
1431          * that is where we will continue on next queue run.
1432          */
1433         if (!list_empty(list)) {
1434                 bool needs_restart;
1435                 /* For non-shared tags, the RESTART check will suffice */
1436                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1437                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1438                 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1439
1440                 blk_mq_release_budgets(q, nr_budgets);
1441
1442                 spin_lock(&hctx->lock);
1443                 list_splice_tail_init(list, &hctx->dispatch);
1444                 spin_unlock(&hctx->lock);
1445
1446                 /*
1447                  * Order adding requests to hctx->dispatch and checking
1448                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1449                  * in blk_mq_sched_restart(). Avoid restart code path to
1450                  * miss the new added requests to hctx->dispatch, meantime
1451                  * SCHED_RESTART is observed here.
1452                  */
1453                 smp_mb();
1454
1455                 /*
1456                  * If SCHED_RESTART was set by the caller of this function and
1457                  * it is no longer set that means that it was cleared by another
1458                  * thread and hence that a queue rerun is needed.
1459                  *
1460                  * If 'no_tag' is set, that means that we failed getting
1461                  * a driver tag with an I/O scheduler attached. If our dispatch
1462                  * waitqueue is no longer active, ensure that we run the queue
1463                  * AFTER adding our entries back to the list.
1464                  *
1465                  * If no I/O scheduler has been configured it is possible that
1466                  * the hardware queue got stopped and restarted before requests
1467                  * were pushed back onto the dispatch list. Rerun the queue to
1468                  * avoid starvation. Notes:
1469                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1470                  *   been stopped before rerunning a queue.
1471                  * - Some but not all block drivers stop a queue before
1472                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1473                  *   and dm-rq.
1474                  *
1475                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1476                  * bit is set, run queue after a delay to avoid IO stalls
1477                  * that could otherwise occur if the queue is idle.  We'll do
1478                  * similar if we couldn't get budget and SCHED_RESTART is set.
1479                  */
1480                 needs_restart = blk_mq_sched_needs_restart(hctx);
1481                 if (!needs_restart ||
1482                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1483                         blk_mq_run_hw_queue(hctx, true);
1484                 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1485                                            no_budget_avail))
1486                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1487
1488                 blk_mq_update_dispatch_busy(hctx, true);
1489                 return false;
1490         } else
1491                 blk_mq_update_dispatch_busy(hctx, false);
1492
1493         return (queued + errors) != 0;
1494 }
1495
1496 /**
1497  * __blk_mq_run_hw_queue - Run a hardware queue.
1498  * @hctx: Pointer to the hardware queue to run.
1499  *
1500  * Send pending requests to the hardware.
1501  */
1502 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1503 {
1504         int srcu_idx;
1505
1506         /*
1507          * We can't run the queue inline with ints disabled. Ensure that
1508          * we catch bad users of this early.
1509          */
1510         WARN_ON_ONCE(in_interrupt());
1511
1512         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1513
1514         hctx_lock(hctx, &srcu_idx);
1515         blk_mq_sched_dispatch_requests(hctx);
1516         hctx_unlock(hctx, srcu_idx);
1517 }
1518
1519 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1520 {
1521         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1522
1523         if (cpu >= nr_cpu_ids)
1524                 cpu = cpumask_first(hctx->cpumask);
1525         return cpu;
1526 }
1527
1528 /*
1529  * It'd be great if the workqueue API had a way to pass
1530  * in a mask and had some smarts for more clever placement.
1531  * For now we just round-robin here, switching for every
1532  * BLK_MQ_CPU_WORK_BATCH queued items.
1533  */
1534 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1535 {
1536         bool tried = false;
1537         int next_cpu = hctx->next_cpu;
1538
1539         if (hctx->queue->nr_hw_queues == 1)
1540                 return WORK_CPU_UNBOUND;
1541
1542         if (--hctx->next_cpu_batch <= 0) {
1543 select_cpu:
1544                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1545                                 cpu_online_mask);
1546                 if (next_cpu >= nr_cpu_ids)
1547                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1548                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1549         }
1550
1551         /*
1552          * Do unbound schedule if we can't find a online CPU for this hctx,
1553          * and it should only happen in the path of handling CPU DEAD.
1554          */
1555         if (!cpu_online(next_cpu)) {
1556                 if (!tried) {
1557                         tried = true;
1558                         goto select_cpu;
1559                 }
1560
1561                 /*
1562                  * Make sure to re-select CPU next time once after CPUs
1563                  * in hctx->cpumask become online again.
1564                  */
1565                 hctx->next_cpu = next_cpu;
1566                 hctx->next_cpu_batch = 1;
1567                 return WORK_CPU_UNBOUND;
1568         }
1569
1570         hctx->next_cpu = next_cpu;
1571         return next_cpu;
1572 }
1573
1574 /**
1575  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1576  * @hctx: Pointer to the hardware queue to run.
1577  * @async: If we want to run the queue asynchronously.
1578  * @msecs: Milliseconds of delay to wait before running the queue.
1579  *
1580  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1581  * with a delay of @msecs.
1582  */
1583 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1584                                         unsigned long msecs)
1585 {
1586         if (unlikely(blk_mq_hctx_stopped(hctx)))
1587                 return;
1588
1589         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1590                 int cpu = get_cpu();
1591                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1592                         __blk_mq_run_hw_queue(hctx);
1593                         put_cpu();
1594                         return;
1595                 }
1596
1597                 put_cpu();
1598         }
1599
1600         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1601                                     msecs_to_jiffies(msecs));
1602 }
1603
1604 /**
1605  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1606  * @hctx: Pointer to the hardware queue to run.
1607  * @msecs: Milliseconds of delay to wait before running the queue.
1608  *
1609  * Run a hardware queue asynchronously with a delay of @msecs.
1610  */
1611 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1612 {
1613         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1614 }
1615 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1616
1617 /**
1618  * blk_mq_run_hw_queue - Start to run a hardware queue.
1619  * @hctx: Pointer to the hardware queue to run.
1620  * @async: If we want to run the queue asynchronously.
1621  *
1622  * Check if the request queue is not in a quiesced state and if there are
1623  * pending requests to be sent. If this is true, run the queue to send requests
1624  * to hardware.
1625  */
1626 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1627 {
1628         int srcu_idx;
1629         bool need_run;
1630
1631         /*
1632          * When queue is quiesced, we may be switching io scheduler, or
1633          * updating nr_hw_queues, or other things, and we can't run queue
1634          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1635          *
1636          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1637          * quiesced.
1638          */
1639         hctx_lock(hctx, &srcu_idx);
1640         need_run = !blk_queue_quiesced(hctx->queue) &&
1641                 blk_mq_hctx_has_pending(hctx);
1642         hctx_unlock(hctx, srcu_idx);
1643
1644         if (need_run)
1645                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1646 }
1647 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1648
1649 /*
1650  * Is the request queue handled by an IO scheduler that does not respect
1651  * hardware queues when dispatching?
1652  */
1653 static bool blk_mq_has_sqsched(struct request_queue *q)
1654 {
1655         struct elevator_queue *e = q->elevator;
1656
1657         if (e && e->type->ops.dispatch_request &&
1658             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1659                 return true;
1660         return false;
1661 }
1662
1663 /*
1664  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1665  * scheduler.
1666  */
1667 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1668 {
1669         struct blk_mq_hw_ctx *hctx;
1670
1671         /*
1672          * If the IO scheduler does not respect hardware queues when
1673          * dispatching, we just don't bother with multiple HW queues and
1674          * dispatch from hctx for the current CPU since running multiple queues
1675          * just causes lock contention inside the scheduler and pointless cache
1676          * bouncing.
1677          */
1678         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1679                                      raw_smp_processor_id());
1680         if (!blk_mq_hctx_stopped(hctx))
1681                 return hctx;
1682         return NULL;
1683 }
1684
1685 /**
1686  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1687  * @q: Pointer to the request queue to run.
1688  * @async: If we want to run the queue asynchronously.
1689  */
1690 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1691 {
1692         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1693         int i;
1694
1695         sq_hctx = NULL;
1696         if (blk_mq_has_sqsched(q))
1697                 sq_hctx = blk_mq_get_sq_hctx(q);
1698         queue_for_each_hw_ctx(q, hctx, i) {
1699                 if (blk_mq_hctx_stopped(hctx))
1700                         continue;
1701                 /*
1702                  * Dispatch from this hctx either if there's no hctx preferred
1703                  * by IO scheduler or if it has requests that bypass the
1704                  * scheduler.
1705                  */
1706                 if (!sq_hctx || sq_hctx == hctx ||
1707                     !list_empty_careful(&hctx->dispatch))
1708                         blk_mq_run_hw_queue(hctx, async);
1709         }
1710 }
1711 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1712
1713 /**
1714  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1715  * @q: Pointer to the request queue to run.
1716  * @msecs: Milliseconds of delay to wait before running the queues.
1717  */
1718 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1719 {
1720         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1721         int i;
1722
1723         sq_hctx = NULL;
1724         if (blk_mq_has_sqsched(q))
1725                 sq_hctx = blk_mq_get_sq_hctx(q);
1726         queue_for_each_hw_ctx(q, hctx, i) {
1727                 if (blk_mq_hctx_stopped(hctx))
1728                         continue;
1729                 /*
1730                  * Dispatch from this hctx either if there's no hctx preferred
1731                  * by IO scheduler or if it has requests that bypass the
1732                  * scheduler.
1733                  */
1734                 if (!sq_hctx || sq_hctx == hctx ||
1735                     !list_empty_careful(&hctx->dispatch))
1736                         blk_mq_delay_run_hw_queue(hctx, msecs);
1737         }
1738 }
1739 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1740
1741 /**
1742  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1743  * @q: request queue.
1744  *
1745  * The caller is responsible for serializing this function against
1746  * blk_mq_{start,stop}_hw_queue().
1747  */
1748 bool blk_mq_queue_stopped(struct request_queue *q)
1749 {
1750         struct blk_mq_hw_ctx *hctx;
1751         int i;
1752
1753         queue_for_each_hw_ctx(q, hctx, i)
1754                 if (blk_mq_hctx_stopped(hctx))
1755                         return true;
1756
1757         return false;
1758 }
1759 EXPORT_SYMBOL(blk_mq_queue_stopped);
1760
1761 /*
1762  * This function is often used for pausing .queue_rq() by driver when
1763  * there isn't enough resource or some conditions aren't satisfied, and
1764  * BLK_STS_RESOURCE is usually returned.
1765  *
1766  * We do not guarantee that dispatch can be drained or blocked
1767  * after blk_mq_stop_hw_queue() returns. Please use
1768  * blk_mq_quiesce_queue() for that requirement.
1769  */
1770 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1771 {
1772         cancel_delayed_work(&hctx->run_work);
1773
1774         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1775 }
1776 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1777
1778 /*
1779  * This function is often used for pausing .queue_rq() by driver when
1780  * there isn't enough resource or some conditions aren't satisfied, and
1781  * BLK_STS_RESOURCE is usually returned.
1782  *
1783  * We do not guarantee that dispatch can be drained or blocked
1784  * after blk_mq_stop_hw_queues() returns. Please use
1785  * blk_mq_quiesce_queue() for that requirement.
1786  */
1787 void blk_mq_stop_hw_queues(struct request_queue *q)
1788 {
1789         struct blk_mq_hw_ctx *hctx;
1790         int i;
1791
1792         queue_for_each_hw_ctx(q, hctx, i)
1793                 blk_mq_stop_hw_queue(hctx);
1794 }
1795 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1796
1797 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1798 {
1799         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1800
1801         blk_mq_run_hw_queue(hctx, false);
1802 }
1803 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1804
1805 void blk_mq_start_hw_queues(struct request_queue *q)
1806 {
1807         struct blk_mq_hw_ctx *hctx;
1808         int i;
1809
1810         queue_for_each_hw_ctx(q, hctx, i)
1811                 blk_mq_start_hw_queue(hctx);
1812 }
1813 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1814
1815 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1816 {
1817         if (!blk_mq_hctx_stopped(hctx))
1818                 return;
1819
1820         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1821         blk_mq_run_hw_queue(hctx, async);
1822 }
1823 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1824
1825 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1826 {
1827         struct blk_mq_hw_ctx *hctx;
1828         int i;
1829
1830         queue_for_each_hw_ctx(q, hctx, i)
1831                 blk_mq_start_stopped_hw_queue(hctx, async);
1832 }
1833 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1834
1835 static void blk_mq_run_work_fn(struct work_struct *work)
1836 {
1837         struct blk_mq_hw_ctx *hctx;
1838
1839         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1840
1841         /*
1842          * If we are stopped, don't run the queue.
1843          */
1844         if (blk_mq_hctx_stopped(hctx))
1845                 return;
1846
1847         __blk_mq_run_hw_queue(hctx);
1848 }
1849
1850 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1851                                             struct request *rq,
1852                                             bool at_head)
1853 {
1854         struct blk_mq_ctx *ctx = rq->mq_ctx;
1855         enum hctx_type type = hctx->type;
1856
1857         lockdep_assert_held(&ctx->lock);
1858
1859         trace_block_rq_insert(rq);
1860
1861         if (at_head)
1862                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1863         else
1864                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1865 }
1866
1867 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1868                              bool at_head)
1869 {
1870         struct blk_mq_ctx *ctx = rq->mq_ctx;
1871
1872         lockdep_assert_held(&ctx->lock);
1873
1874         __blk_mq_insert_req_list(hctx, rq, at_head);
1875         blk_mq_hctx_mark_pending(hctx, ctx);
1876 }
1877
1878 /**
1879  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1880  * @rq: Pointer to request to be inserted.
1881  * @at_head: true if the request should be inserted at the head of the list.
1882  * @run_queue: If we should run the hardware queue after inserting the request.
1883  *
1884  * Should only be used carefully, when the caller knows we want to
1885  * bypass a potential IO scheduler on the target device.
1886  */
1887 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1888                                   bool run_queue)
1889 {
1890         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1891
1892         spin_lock(&hctx->lock);
1893         if (at_head)
1894                 list_add(&rq->queuelist, &hctx->dispatch);
1895         else
1896                 list_add_tail(&rq->queuelist, &hctx->dispatch);
1897         spin_unlock(&hctx->lock);
1898
1899         if (run_queue)
1900                 blk_mq_run_hw_queue(hctx, false);
1901 }
1902
1903 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1904                             struct list_head *list)
1905
1906 {
1907         struct request *rq;
1908         enum hctx_type type = hctx->type;
1909
1910         /*
1911          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1912          * offline now
1913          */
1914         list_for_each_entry(rq, list, queuelist) {
1915                 BUG_ON(rq->mq_ctx != ctx);
1916                 trace_block_rq_insert(rq);
1917         }
1918
1919         spin_lock(&ctx->lock);
1920         list_splice_tail_init(list, &ctx->rq_lists[type]);
1921         blk_mq_hctx_mark_pending(hctx, ctx);
1922         spin_unlock(&ctx->lock);
1923 }
1924
1925 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1926 {
1927         struct request *rqa = container_of(a, struct request, queuelist);
1928         struct request *rqb = container_of(b, struct request, queuelist);
1929
1930         if (rqa->mq_ctx != rqb->mq_ctx)
1931                 return rqa->mq_ctx > rqb->mq_ctx;
1932         if (rqa->mq_hctx != rqb->mq_hctx)
1933                 return rqa->mq_hctx > rqb->mq_hctx;
1934
1935         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1936 }
1937
1938 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1939 {
1940         LIST_HEAD(list);
1941
1942         if (list_empty(&plug->mq_list))
1943                 return;
1944         list_splice_init(&plug->mq_list, &list);
1945
1946         if (plug->rq_count > 2 && plug->multiple_queues)
1947                 list_sort(NULL, &list, plug_rq_cmp);
1948
1949         plug->rq_count = 0;
1950
1951         do {
1952                 struct list_head rq_list;
1953                 struct request *rq, *head_rq = list_entry_rq(list.next);
1954                 struct list_head *pos = &head_rq->queuelist; /* skip first */
1955                 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1956                 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1957                 unsigned int depth = 1;
1958
1959                 list_for_each_continue(pos, &list) {
1960                         rq = list_entry_rq(pos);
1961                         BUG_ON(!rq->q);
1962                         if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1963                                 break;
1964                         depth++;
1965                 }
1966
1967                 list_cut_before(&rq_list, &list, pos);
1968                 trace_block_unplug(head_rq->q, depth, !from_schedule);
1969                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1970                                                 from_schedule);
1971         } while(!list_empty(&list));
1972 }
1973
1974 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1975                 unsigned int nr_segs)
1976 {
1977         int err;
1978
1979         if (bio->bi_opf & REQ_RAHEAD)
1980                 rq->cmd_flags |= REQ_FAILFAST_MASK;
1981
1982         rq->__sector = bio->bi_iter.bi_sector;
1983         rq->write_hint = bio->bi_write_hint;
1984         blk_rq_bio_prep(rq, bio, nr_segs);
1985
1986         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1987         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1988         WARN_ON_ONCE(err);
1989
1990         blk_account_io_start(rq);
1991 }
1992
1993 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1994                                             struct request *rq,
1995                                             blk_qc_t *cookie, bool last)
1996 {
1997         struct request_queue *q = rq->q;
1998         struct blk_mq_queue_data bd = {
1999                 .rq = rq,
2000                 .last = last,
2001         };
2002         blk_qc_t new_cookie;
2003         blk_status_t ret;
2004
2005         new_cookie = request_to_qc_t(hctx, rq);
2006
2007         /*
2008          * For OK queue, we are done. For error, caller may kill it.
2009          * Any other error (busy), just add it to our list as we
2010          * previously would have done.
2011          */
2012         ret = q->mq_ops->queue_rq(hctx, &bd);
2013         switch (ret) {
2014         case BLK_STS_OK:
2015                 blk_mq_update_dispatch_busy(hctx, false);
2016                 *cookie = new_cookie;
2017                 break;
2018         case BLK_STS_RESOURCE:
2019         case BLK_STS_DEV_RESOURCE:
2020                 blk_mq_update_dispatch_busy(hctx, true);
2021                 __blk_mq_requeue_request(rq);
2022                 break;
2023         default:
2024                 blk_mq_update_dispatch_busy(hctx, false);
2025                 *cookie = BLK_QC_T_NONE;
2026                 break;
2027         }
2028
2029         return ret;
2030 }
2031
2032 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2033                                                 struct request *rq,
2034                                                 blk_qc_t *cookie,
2035                                                 bool bypass_insert, bool last)
2036 {
2037         struct request_queue *q = rq->q;
2038         bool run_queue = true;
2039
2040         /*
2041          * RCU or SRCU read lock is needed before checking quiesced flag.
2042          *
2043          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2044          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2045          * and avoid driver to try to dispatch again.
2046          */
2047         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2048                 run_queue = false;
2049                 bypass_insert = false;
2050                 goto insert;
2051         }
2052
2053         if (q->elevator && !bypass_insert)
2054                 goto insert;
2055
2056         if (!blk_mq_get_dispatch_budget(q))
2057                 goto insert;
2058
2059         if (!blk_mq_get_driver_tag(rq)) {
2060                 blk_mq_put_dispatch_budget(q);
2061                 goto insert;
2062         }
2063
2064         return __blk_mq_issue_directly(hctx, rq, cookie, last);
2065 insert:
2066         if (bypass_insert)
2067                 return BLK_STS_RESOURCE;
2068
2069         blk_mq_sched_insert_request(rq, false, run_queue, false);
2070
2071         return BLK_STS_OK;
2072 }
2073
2074 /**
2075  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2076  * @hctx: Pointer of the associated hardware queue.
2077  * @rq: Pointer to request to be sent.
2078  * @cookie: Request queue cookie.
2079  *
2080  * If the device has enough resources to accept a new request now, send the
2081  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2082  * we can try send it another time in the future. Requests inserted at this
2083  * queue have higher priority.
2084  */
2085 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2086                 struct request *rq, blk_qc_t *cookie)
2087 {
2088         blk_status_t ret;
2089         int srcu_idx;
2090
2091         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2092
2093         hctx_lock(hctx, &srcu_idx);
2094
2095         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2096         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2097                 blk_mq_request_bypass_insert(rq, false, true);
2098         else if (ret != BLK_STS_OK)
2099                 blk_mq_end_request(rq, ret);
2100
2101         hctx_unlock(hctx, srcu_idx);
2102 }
2103
2104 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2105 {
2106         blk_status_t ret;
2107         int srcu_idx;
2108         blk_qc_t unused_cookie;
2109         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2110
2111         hctx_lock(hctx, &srcu_idx);
2112         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2113         hctx_unlock(hctx, srcu_idx);
2114
2115         return ret;
2116 }
2117
2118 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2119                 struct list_head *list)
2120 {
2121         int queued = 0;
2122         int errors = 0;
2123
2124         while (!list_empty(list)) {
2125                 blk_status_t ret;
2126                 struct request *rq = list_first_entry(list, struct request,
2127                                 queuelist);
2128
2129                 list_del_init(&rq->queuelist);
2130                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2131                 if (ret != BLK_STS_OK) {
2132                         if (ret == BLK_STS_RESOURCE ||
2133                                         ret == BLK_STS_DEV_RESOURCE) {
2134                                 blk_mq_request_bypass_insert(rq, false,
2135                                                         list_empty(list));
2136                                 break;
2137                         }
2138                         blk_mq_end_request(rq, ret);
2139                         errors++;
2140                 } else
2141                         queued++;
2142         }
2143
2144         /*
2145          * If we didn't flush the entire list, we could have told
2146          * the driver there was more coming, but that turned out to
2147          * be a lie.
2148          */
2149         if ((!list_empty(list) || errors) &&
2150              hctx->queue->mq_ops->commit_rqs && queued)
2151                 hctx->queue->mq_ops->commit_rqs(hctx);
2152 }
2153
2154 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2155 {
2156         list_add_tail(&rq->queuelist, &plug->mq_list);
2157         plug->rq_count++;
2158         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2159                 struct request *tmp;
2160
2161                 tmp = list_first_entry(&plug->mq_list, struct request,
2162                                                 queuelist);
2163                 if (tmp->q != rq->q)
2164                         plug->multiple_queues = true;
2165         }
2166 }
2167
2168 /**
2169  * blk_mq_submit_bio - Create and send a request to block device.
2170  * @bio: Bio pointer.
2171  *
2172  * Builds up a request structure from @q and @bio and send to the device. The
2173  * request may not be queued directly to hardware if:
2174  * * This request can be merged with another one
2175  * * We want to place request at plug queue for possible future merging
2176  * * There is an IO scheduler active at this queue
2177  *
2178  * It will not queue the request if there is an error with the bio, or at the
2179  * request creation.
2180  *
2181  * Returns: Request queue cookie.
2182  */
2183 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2184 {
2185         struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2186         const int is_sync = op_is_sync(bio->bi_opf);
2187         const int is_flush_fua = op_is_flush(bio->bi_opf);
2188         struct blk_mq_alloc_data data = {
2189                 .q              = q,
2190         };
2191         struct request *rq;
2192         struct blk_plug *plug;
2193         struct request *same_queue_rq = NULL;
2194         unsigned int nr_segs;
2195         blk_qc_t cookie;
2196         blk_status_t ret;
2197         bool hipri;
2198
2199         blk_queue_bounce(q, &bio);
2200         __blk_queue_split(&bio, &nr_segs);
2201
2202         if (!bio_integrity_prep(bio))
2203                 goto queue_exit;
2204
2205         if (!is_flush_fua && !blk_queue_nomerges(q) &&
2206             blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2207                 goto queue_exit;
2208
2209         if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2210                 goto queue_exit;
2211
2212         rq_qos_throttle(q, bio);
2213
2214         hipri = bio->bi_opf & REQ_HIPRI;
2215
2216         data.cmd_flags = bio->bi_opf;
2217         rq = __blk_mq_alloc_request(&data);
2218         if (unlikely(!rq)) {
2219                 rq_qos_cleanup(q, bio);
2220                 if (bio->bi_opf & REQ_NOWAIT)
2221                         bio_wouldblock_error(bio);
2222                 goto queue_exit;
2223         }
2224
2225         trace_block_getrq(bio);
2226
2227         rq_qos_track(q, rq, bio);
2228
2229         cookie = request_to_qc_t(data.hctx, rq);
2230
2231         blk_mq_bio_to_request(rq, bio, nr_segs);
2232
2233         ret = blk_crypto_init_request(rq);
2234         if (ret != BLK_STS_OK) {
2235                 bio->bi_status = ret;
2236                 bio_endio(bio);
2237                 blk_mq_free_request(rq);
2238                 return BLK_QC_T_NONE;
2239         }
2240
2241         plug = blk_mq_plug(q, bio);
2242         if (unlikely(is_flush_fua)) {
2243                 /* Bypass scheduler for flush requests */
2244                 blk_insert_flush(rq);
2245                 blk_mq_run_hw_queue(data.hctx, true);
2246         } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2247                                 !blk_queue_nonrot(q))) {
2248                 /*
2249                  * Use plugging if we have a ->commit_rqs() hook as well, as
2250                  * we know the driver uses bd->last in a smart fashion.
2251                  *
2252                  * Use normal plugging if this disk is slow HDD, as sequential
2253                  * IO may benefit a lot from plug merging.
2254                  */
2255                 unsigned int request_count = plug->rq_count;
2256                 struct request *last = NULL;
2257
2258                 if (!request_count)
2259                         trace_block_plug(q);
2260                 else
2261                         last = list_entry_rq(plug->mq_list.prev);
2262
2263                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2264                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2265                         blk_flush_plug_list(plug, false);
2266                         trace_block_plug(q);
2267                 }
2268
2269                 blk_add_rq_to_plug(plug, rq);
2270         } else if (q->elevator) {
2271                 /* Insert the request at the IO scheduler queue */
2272                 blk_mq_sched_insert_request(rq, false, true, true);
2273         } else if (plug && !blk_queue_nomerges(q)) {
2274                 /*
2275                  * We do limited plugging. If the bio can be merged, do that.
2276                  * Otherwise the existing request in the plug list will be
2277                  * issued. So the plug list will have one request at most
2278                  * The plug list might get flushed before this. If that happens,
2279                  * the plug list is empty, and same_queue_rq is invalid.
2280                  */
2281                 if (list_empty(&plug->mq_list))
2282                         same_queue_rq = NULL;
2283                 if (same_queue_rq) {
2284                         list_del_init(&same_queue_rq->queuelist);
2285                         plug->rq_count--;
2286                 }
2287                 blk_add_rq_to_plug(plug, rq);
2288                 trace_block_plug(q);
2289
2290                 if (same_queue_rq) {
2291                         data.hctx = same_queue_rq->mq_hctx;
2292                         trace_block_unplug(q, 1, true);
2293                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2294                                         &cookie);
2295                 }
2296         } else if ((q->nr_hw_queues > 1 && is_sync) ||
2297                         !data.hctx->dispatch_busy) {
2298                 /*
2299                  * There is no scheduler and we can try to send directly
2300                  * to the hardware.
2301                  */
2302                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2303         } else {
2304                 /* Default case. */
2305                 blk_mq_sched_insert_request(rq, false, true, true);
2306         }
2307
2308         if (!hipri)
2309                 return BLK_QC_T_NONE;
2310         return cookie;
2311 queue_exit:
2312         blk_queue_exit(q);
2313         return BLK_QC_T_NONE;
2314 }
2315
2316 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2317                      unsigned int hctx_idx)
2318 {
2319         struct page *page;
2320
2321         if (tags->rqs && set->ops->exit_request) {
2322                 int i;
2323
2324                 for (i = 0; i < tags->nr_tags; i++) {
2325                         struct request *rq = tags->static_rqs[i];
2326
2327                         if (!rq)
2328                                 continue;
2329                         set->ops->exit_request(set, rq, hctx_idx);
2330                         tags->static_rqs[i] = NULL;
2331                 }
2332         }
2333
2334         while (!list_empty(&tags->page_list)) {
2335                 page = list_first_entry(&tags->page_list, struct page, lru);
2336                 list_del_init(&page->lru);
2337                 /*
2338                  * Remove kmemleak object previously allocated in
2339                  * blk_mq_alloc_rqs().
2340                  */
2341                 kmemleak_free(page_address(page));
2342                 __free_pages(page, page->private);
2343         }
2344 }
2345
2346 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2347 {
2348         kfree(tags->rqs);
2349         tags->rqs = NULL;
2350         kfree(tags->static_rqs);
2351         tags->static_rqs = NULL;
2352
2353         blk_mq_free_tags(tags, flags);
2354 }
2355
2356 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2357                                         unsigned int hctx_idx,
2358                                         unsigned int nr_tags,
2359                                         unsigned int reserved_tags,
2360                                         unsigned int flags)
2361 {
2362         struct blk_mq_tags *tags;
2363         int node;
2364
2365         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2366         if (node == NUMA_NO_NODE)
2367                 node = set->numa_node;
2368
2369         tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2370         if (!tags)
2371                 return NULL;
2372
2373         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2374                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2375                                  node);
2376         if (!tags->rqs) {
2377                 blk_mq_free_tags(tags, flags);
2378                 return NULL;
2379         }
2380
2381         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2382                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2383                                         node);
2384         if (!tags->static_rqs) {
2385                 kfree(tags->rqs);
2386                 blk_mq_free_tags(tags, flags);
2387                 return NULL;
2388         }
2389
2390         return tags;
2391 }
2392
2393 static size_t order_to_size(unsigned int order)
2394 {
2395         return (size_t)PAGE_SIZE << order;
2396 }
2397
2398 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2399                                unsigned int hctx_idx, int node)
2400 {
2401         int ret;
2402
2403         if (set->ops->init_request) {
2404                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2405                 if (ret)
2406                         return ret;
2407         }
2408
2409         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2410         return 0;
2411 }
2412
2413 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2414                      unsigned int hctx_idx, unsigned int depth)
2415 {
2416         unsigned int i, j, entries_per_page, max_order = 4;
2417         size_t rq_size, left;
2418         int node;
2419
2420         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2421         if (node == NUMA_NO_NODE)
2422                 node = set->numa_node;
2423
2424         INIT_LIST_HEAD(&tags->page_list);
2425
2426         /*
2427          * rq_size is the size of the request plus driver payload, rounded
2428          * to the cacheline size
2429          */
2430         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2431                                 cache_line_size());
2432         left = rq_size * depth;
2433
2434         for (i = 0; i < depth; ) {
2435                 int this_order = max_order;
2436                 struct page *page;
2437                 int to_do;
2438                 void *p;
2439
2440                 while (this_order && left < order_to_size(this_order - 1))
2441                         this_order--;
2442
2443                 do {
2444                         page = alloc_pages_node(node,
2445                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2446                                 this_order);
2447                         if (page)
2448                                 break;
2449                         if (!this_order--)
2450                                 break;
2451                         if (order_to_size(this_order) < rq_size)
2452                                 break;
2453                 } while (1);
2454
2455                 if (!page)
2456                         goto fail;
2457
2458                 page->private = this_order;
2459                 list_add_tail(&page->lru, &tags->page_list);
2460
2461                 p = page_address(page);
2462                 /*
2463                  * Allow kmemleak to scan these pages as they contain pointers
2464                  * to additional allocations like via ops->init_request().
2465                  */
2466                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2467                 entries_per_page = order_to_size(this_order) / rq_size;
2468                 to_do = min(entries_per_page, depth - i);
2469                 left -= to_do * rq_size;
2470                 for (j = 0; j < to_do; j++) {
2471                         struct request *rq = p;
2472
2473                         tags->static_rqs[i] = rq;
2474                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2475                                 tags->static_rqs[i] = NULL;
2476                                 goto fail;
2477                         }
2478
2479                         p += rq_size;
2480                         i++;
2481                 }
2482         }
2483         return 0;
2484
2485 fail:
2486         blk_mq_free_rqs(set, tags, hctx_idx);
2487         return -ENOMEM;
2488 }
2489
2490 struct rq_iter_data {
2491         struct blk_mq_hw_ctx *hctx;
2492         bool has_rq;
2493 };
2494
2495 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2496 {
2497         struct rq_iter_data *iter_data = data;
2498
2499         if (rq->mq_hctx != iter_data->hctx)
2500                 return true;
2501         iter_data->has_rq = true;
2502         return false;
2503 }
2504
2505 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2506 {
2507         struct blk_mq_tags *tags = hctx->sched_tags ?
2508                         hctx->sched_tags : hctx->tags;
2509         struct rq_iter_data data = {
2510                 .hctx   = hctx,
2511         };
2512
2513         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2514         return data.has_rq;
2515 }
2516
2517 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2518                 struct blk_mq_hw_ctx *hctx)
2519 {
2520         if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2521                 return false;
2522         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2523                 return false;
2524         return true;
2525 }
2526
2527 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2528 {
2529         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2530                         struct blk_mq_hw_ctx, cpuhp_online);
2531
2532         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2533             !blk_mq_last_cpu_in_hctx(cpu, hctx))
2534                 return 0;
2535
2536         /*
2537          * Prevent new request from being allocated on the current hctx.
2538          *
2539          * The smp_mb__after_atomic() Pairs with the implied barrier in
2540          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2541          * seen once we return from the tag allocator.
2542          */
2543         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2544         smp_mb__after_atomic();
2545
2546         /*
2547          * Try to grab a reference to the queue and wait for any outstanding
2548          * requests.  If we could not grab a reference the queue has been
2549          * frozen and there are no requests.
2550          */
2551         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2552                 while (blk_mq_hctx_has_requests(hctx))
2553                         msleep(5);
2554                 percpu_ref_put(&hctx->queue->q_usage_counter);
2555         }
2556
2557         return 0;
2558 }
2559
2560 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2561 {
2562         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2563                         struct blk_mq_hw_ctx, cpuhp_online);
2564
2565         if (cpumask_test_cpu(cpu, hctx->cpumask))
2566                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2567         return 0;
2568 }
2569
2570 /*
2571  * 'cpu' is going away. splice any existing rq_list entries from this
2572  * software queue to the hw queue dispatch list, and ensure that it
2573  * gets run.
2574  */
2575 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2576 {
2577         struct blk_mq_hw_ctx *hctx;
2578         struct blk_mq_ctx *ctx;
2579         LIST_HEAD(tmp);
2580         enum hctx_type type;
2581
2582         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2583         if (!cpumask_test_cpu(cpu, hctx->cpumask))
2584                 return 0;
2585
2586         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2587         type = hctx->type;
2588
2589         spin_lock(&ctx->lock);
2590         if (!list_empty(&ctx->rq_lists[type])) {
2591                 list_splice_init(&ctx->rq_lists[type], &tmp);
2592                 blk_mq_hctx_clear_pending(hctx, ctx);
2593         }
2594         spin_unlock(&ctx->lock);
2595
2596         if (list_empty(&tmp))
2597                 return 0;
2598
2599         spin_lock(&hctx->lock);
2600         list_splice_tail_init(&tmp, &hctx->dispatch);
2601         spin_unlock(&hctx->lock);
2602
2603         blk_mq_run_hw_queue(hctx, true);
2604         return 0;
2605 }
2606
2607 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2608 {
2609         if (!(hctx->flags & BLK_MQ_F_STACKING))
2610                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2611                                                     &hctx->cpuhp_online);
2612         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2613                                             &hctx->cpuhp_dead);
2614 }
2615
2616 /* hctx->ctxs will be freed in queue's release handler */
2617 static void blk_mq_exit_hctx(struct request_queue *q,
2618                 struct blk_mq_tag_set *set,
2619                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2620 {
2621         if (blk_mq_hw_queue_mapped(hctx))
2622                 blk_mq_tag_idle(hctx);
2623
2624         if (set->ops->exit_request)
2625                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2626
2627         if (set->ops->exit_hctx)
2628                 set->ops->exit_hctx(hctx, hctx_idx);
2629
2630         blk_mq_remove_cpuhp(hctx);
2631
2632         spin_lock(&q->unused_hctx_lock);
2633         list_add(&hctx->hctx_list, &q->unused_hctx_list);
2634         spin_unlock(&q->unused_hctx_lock);
2635 }
2636
2637 static void blk_mq_exit_hw_queues(struct request_queue *q,
2638                 struct blk_mq_tag_set *set, int nr_queue)
2639 {
2640         struct blk_mq_hw_ctx *hctx;
2641         unsigned int i;
2642
2643         queue_for_each_hw_ctx(q, hctx, i) {
2644                 if (i == nr_queue)
2645                         break;
2646                 blk_mq_debugfs_unregister_hctx(hctx);
2647                 blk_mq_exit_hctx(q, set, hctx, i);
2648         }
2649 }
2650
2651 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2652 {
2653         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2654
2655         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2656                            __alignof__(struct blk_mq_hw_ctx)) !=
2657                      sizeof(struct blk_mq_hw_ctx));
2658
2659         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2660                 hw_ctx_size += sizeof(struct srcu_struct);
2661
2662         return hw_ctx_size;
2663 }
2664
2665 static int blk_mq_init_hctx(struct request_queue *q,
2666                 struct blk_mq_tag_set *set,
2667                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2668 {
2669         hctx->queue_num = hctx_idx;
2670
2671         if (!(hctx->flags & BLK_MQ_F_STACKING))
2672                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2673                                 &hctx->cpuhp_online);
2674         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2675
2676         hctx->tags = set->tags[hctx_idx];
2677
2678         if (set->ops->init_hctx &&
2679             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2680                 goto unregister_cpu_notifier;
2681
2682         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2683                                 hctx->numa_node))
2684                 goto exit_hctx;
2685         return 0;
2686
2687  exit_hctx:
2688         if (set->ops->exit_hctx)
2689                 set->ops->exit_hctx(hctx, hctx_idx);
2690  unregister_cpu_notifier:
2691         blk_mq_remove_cpuhp(hctx);
2692         return -1;
2693 }
2694
2695 static struct blk_mq_hw_ctx *
2696 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2697                 int node)
2698 {
2699         struct blk_mq_hw_ctx *hctx;
2700         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2701
2702         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2703         if (!hctx)
2704                 goto fail_alloc_hctx;
2705
2706         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2707                 goto free_hctx;
2708
2709         atomic_set(&hctx->nr_active, 0);
2710         if (node == NUMA_NO_NODE)
2711                 node = set->numa_node;
2712         hctx->numa_node = node;
2713
2714         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2715         spin_lock_init(&hctx->lock);
2716         INIT_LIST_HEAD(&hctx->dispatch);
2717         hctx->queue = q;
2718         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2719
2720         INIT_LIST_HEAD(&hctx->hctx_list);
2721
2722         /*
2723          * Allocate space for all possible cpus to avoid allocation at
2724          * runtime
2725          */
2726         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2727                         gfp, node);
2728         if (!hctx->ctxs)
2729                 goto free_cpumask;
2730
2731         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2732                                 gfp, node))
2733                 goto free_ctxs;
2734         hctx->nr_ctx = 0;
2735
2736         spin_lock_init(&hctx->dispatch_wait_lock);
2737         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2738         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2739
2740         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2741         if (!hctx->fq)
2742                 goto free_bitmap;
2743
2744         if (hctx->flags & BLK_MQ_F_BLOCKING)
2745                 init_srcu_struct(hctx->srcu);
2746         blk_mq_hctx_kobj_init(hctx);
2747
2748         return hctx;
2749
2750  free_bitmap:
2751         sbitmap_free(&hctx->ctx_map);
2752  free_ctxs:
2753         kfree(hctx->ctxs);
2754  free_cpumask:
2755         free_cpumask_var(hctx->cpumask);
2756  free_hctx:
2757         kfree(hctx);
2758  fail_alloc_hctx:
2759         return NULL;
2760 }
2761
2762 static void blk_mq_init_cpu_queues(struct request_queue *q,
2763                                    unsigned int nr_hw_queues)
2764 {
2765         struct blk_mq_tag_set *set = q->tag_set;
2766         unsigned int i, j;
2767
2768         for_each_possible_cpu(i) {
2769                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2770                 struct blk_mq_hw_ctx *hctx;
2771                 int k;
2772
2773                 __ctx->cpu = i;
2774                 spin_lock_init(&__ctx->lock);
2775                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2776                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2777
2778                 __ctx->queue = q;
2779
2780                 /*
2781                  * Set local node, IFF we have more than one hw queue. If
2782                  * not, we remain on the home node of the device
2783                  */
2784                 for (j = 0; j < set->nr_maps; j++) {
2785                         hctx = blk_mq_map_queue_type(q, j, i);
2786                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2787                                 hctx->numa_node = cpu_to_node(i);
2788                 }
2789         }
2790 }
2791
2792 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2793                                         int hctx_idx)
2794 {
2795         unsigned int flags = set->flags;
2796         int ret = 0;
2797
2798         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2799                                         set->queue_depth, set->reserved_tags, flags);
2800         if (!set->tags[hctx_idx])
2801                 return false;
2802
2803         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2804                                 set->queue_depth);
2805         if (!ret)
2806                 return true;
2807
2808         blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2809         set->tags[hctx_idx] = NULL;
2810         return false;
2811 }
2812
2813 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2814                                          unsigned int hctx_idx)
2815 {
2816         unsigned int flags = set->flags;
2817
2818         if (set->tags && set->tags[hctx_idx]) {
2819                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2820                 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2821                 set->tags[hctx_idx] = NULL;
2822         }
2823 }
2824
2825 static void blk_mq_map_swqueue(struct request_queue *q)
2826 {
2827         unsigned int i, j, hctx_idx;
2828         struct blk_mq_hw_ctx *hctx;
2829         struct blk_mq_ctx *ctx;
2830         struct blk_mq_tag_set *set = q->tag_set;
2831
2832         queue_for_each_hw_ctx(q, hctx, i) {
2833                 cpumask_clear(hctx->cpumask);
2834                 hctx->nr_ctx = 0;
2835                 hctx->dispatch_from = NULL;
2836         }
2837
2838         /*
2839          * Map software to hardware queues.
2840          *
2841          * If the cpu isn't present, the cpu is mapped to first hctx.
2842          */
2843         for_each_possible_cpu(i) {
2844
2845                 ctx = per_cpu_ptr(q->queue_ctx, i);
2846                 for (j = 0; j < set->nr_maps; j++) {
2847                         if (!set->map[j].nr_queues) {
2848                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2849                                                 HCTX_TYPE_DEFAULT, i);
2850                                 continue;
2851                         }
2852                         hctx_idx = set->map[j].mq_map[i];
2853                         /* unmapped hw queue can be remapped after CPU topo changed */
2854                         if (!set->tags[hctx_idx] &&
2855                             !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2856                                 /*
2857                                  * If tags initialization fail for some hctx,
2858                                  * that hctx won't be brought online.  In this
2859                                  * case, remap the current ctx to hctx[0] which
2860                                  * is guaranteed to always have tags allocated
2861                                  */
2862                                 set->map[j].mq_map[i] = 0;
2863                         }
2864
2865                         hctx = blk_mq_map_queue_type(q, j, i);
2866                         ctx->hctxs[j] = hctx;
2867                         /*
2868                          * If the CPU is already set in the mask, then we've
2869                          * mapped this one already. This can happen if
2870                          * devices share queues across queue maps.
2871                          */
2872                         if (cpumask_test_cpu(i, hctx->cpumask))
2873                                 continue;
2874
2875                         cpumask_set_cpu(i, hctx->cpumask);
2876                         hctx->type = j;
2877                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2878                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2879
2880                         /*
2881                          * If the nr_ctx type overflows, we have exceeded the
2882                          * amount of sw queues we can support.
2883                          */
2884                         BUG_ON(!hctx->nr_ctx);
2885                 }
2886
2887                 for (; j < HCTX_MAX_TYPES; j++)
2888                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2889                                         HCTX_TYPE_DEFAULT, i);
2890         }
2891
2892         queue_for_each_hw_ctx(q, hctx, i) {
2893                 /*
2894                  * If no software queues are mapped to this hardware queue,
2895                  * disable it and free the request entries.
2896                  */
2897                 if (!hctx->nr_ctx) {
2898                         /* Never unmap queue 0.  We need it as a
2899                          * fallback in case of a new remap fails
2900                          * allocation
2901                          */
2902                         if (i && set->tags[i])
2903                                 blk_mq_free_map_and_requests(set, i);
2904
2905                         hctx->tags = NULL;
2906                         continue;
2907                 }
2908
2909                 hctx->tags = set->tags[i];
2910                 WARN_ON(!hctx->tags);
2911
2912                 /*
2913                  * Set the map size to the number of mapped software queues.
2914                  * This is more accurate and more efficient than looping
2915                  * over all possibly mapped software queues.
2916                  */
2917                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2918
2919                 /*
2920                  * Initialize batch roundrobin counts
2921                  */
2922                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2923                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2924         }
2925 }
2926
2927 /*
2928  * Caller needs to ensure that we're either frozen/quiesced, or that
2929  * the queue isn't live yet.
2930  */
2931 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2932 {
2933         struct blk_mq_hw_ctx *hctx;
2934         int i;
2935
2936         queue_for_each_hw_ctx(q, hctx, i) {
2937                 if (shared)
2938                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2939                 else
2940                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2941         }
2942 }
2943
2944 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2945                                          bool shared)
2946 {
2947         struct request_queue *q;
2948
2949         lockdep_assert_held(&set->tag_list_lock);
2950
2951         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2952                 blk_mq_freeze_queue(q);
2953                 queue_set_hctx_shared(q, shared);
2954                 blk_mq_unfreeze_queue(q);
2955         }
2956 }
2957
2958 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2959 {
2960         struct blk_mq_tag_set *set = q->tag_set;
2961
2962         mutex_lock(&set->tag_list_lock);
2963         list_del(&q->tag_set_list);
2964         if (list_is_singular(&set->tag_list)) {
2965                 /* just transitioned to unshared */
2966                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2967                 /* update existing queue */
2968                 blk_mq_update_tag_set_shared(set, false);
2969         }
2970         mutex_unlock(&set->tag_list_lock);
2971         INIT_LIST_HEAD(&q->tag_set_list);
2972 }
2973
2974 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2975                                      struct request_queue *q)
2976 {
2977         mutex_lock(&set->tag_list_lock);
2978
2979         /*
2980          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2981          */
2982         if (!list_empty(&set->tag_list) &&
2983             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2984                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2985                 /* update existing queue */
2986                 blk_mq_update_tag_set_shared(set, true);
2987         }
2988         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2989                 queue_set_hctx_shared(q, true);
2990         list_add_tail(&q->tag_set_list, &set->tag_list);
2991
2992         mutex_unlock(&set->tag_list_lock);
2993 }
2994
2995 /* All allocations will be freed in release handler of q->mq_kobj */
2996 static int blk_mq_alloc_ctxs(struct request_queue *q)
2997 {
2998         struct blk_mq_ctxs *ctxs;
2999         int cpu;
3000
3001         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3002         if (!ctxs)
3003                 return -ENOMEM;
3004
3005         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3006         if (!ctxs->queue_ctx)
3007                 goto fail;
3008
3009         for_each_possible_cpu(cpu) {
3010                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3011                 ctx->ctxs = ctxs;
3012         }
3013
3014         q->mq_kobj = &ctxs->kobj;
3015         q->queue_ctx = ctxs->queue_ctx;
3016
3017         return 0;
3018  fail:
3019         kfree(ctxs);
3020         return -ENOMEM;
3021 }
3022
3023 /*
3024  * It is the actual release handler for mq, but we do it from
3025  * request queue's release handler for avoiding use-after-free
3026  * and headache because q->mq_kobj shouldn't have been introduced,
3027  * but we can't group ctx/kctx kobj without it.
3028  */
3029 void blk_mq_release(struct request_queue *q)
3030 {
3031         struct blk_mq_hw_ctx *hctx, *next;
3032         int i;
3033
3034         queue_for_each_hw_ctx(q, hctx, i)
3035                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3036
3037         /* all hctx are in .unused_hctx_list now */
3038         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3039                 list_del_init(&hctx->hctx_list);
3040                 kobject_put(&hctx->kobj);
3041         }
3042
3043         kfree(q->queue_hw_ctx);
3044
3045         /*
3046          * release .mq_kobj and sw queue's kobject now because
3047          * both share lifetime with request queue.
3048          */
3049         blk_mq_sysfs_deinit(q);
3050 }
3051
3052 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3053                 void *queuedata)
3054 {
3055         struct request_queue *uninit_q, *q;
3056
3057         uninit_q = blk_alloc_queue(set->numa_node);
3058         if (!uninit_q)
3059                 return ERR_PTR(-ENOMEM);
3060         uninit_q->queuedata = queuedata;
3061
3062         /*
3063          * Initialize the queue without an elevator. device_add_disk() will do
3064          * the initialization.
3065          */
3066         q = blk_mq_init_allocated_queue(set, uninit_q, false);
3067         if (IS_ERR(q))
3068                 blk_cleanup_queue(uninit_q);
3069
3070         return q;
3071 }
3072 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3073
3074 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3075 {
3076         return blk_mq_init_queue_data(set, NULL);
3077 }
3078 EXPORT_SYMBOL(blk_mq_init_queue);
3079
3080 /*
3081  * Helper for setting up a queue with mq ops, given queue depth, and
3082  * the passed in mq ops flags.
3083  */
3084 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3085                                            const struct blk_mq_ops *ops,
3086                                            unsigned int queue_depth,
3087                                            unsigned int set_flags)
3088 {
3089         struct request_queue *q;
3090         int ret;
3091
3092         memset(set, 0, sizeof(*set));
3093         set->ops = ops;
3094         set->nr_hw_queues = 1;
3095         set->nr_maps = 1;
3096         set->queue_depth = queue_depth;
3097         set->numa_node = NUMA_NO_NODE;
3098         set->flags = set_flags;
3099
3100         ret = blk_mq_alloc_tag_set(set);
3101         if (ret)
3102                 return ERR_PTR(ret);
3103
3104         q = blk_mq_init_queue(set);
3105         if (IS_ERR(q)) {
3106                 blk_mq_free_tag_set(set);
3107                 return q;
3108         }
3109
3110         return q;
3111 }
3112 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3113
3114 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3115                 struct blk_mq_tag_set *set, struct request_queue *q,
3116                 int hctx_idx, int node)
3117 {
3118         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3119
3120         /* reuse dead hctx first */
3121         spin_lock(&q->unused_hctx_lock);
3122         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3123                 if (tmp->numa_node == node) {
3124                         hctx = tmp;
3125                         break;
3126                 }
3127         }
3128         if (hctx)
3129                 list_del_init(&hctx->hctx_list);
3130         spin_unlock(&q->unused_hctx_lock);
3131
3132         if (!hctx)
3133                 hctx = blk_mq_alloc_hctx(q, set, node);
3134         if (!hctx)
3135                 goto fail;
3136
3137         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3138                 goto free_hctx;
3139
3140         return hctx;
3141
3142  free_hctx:
3143         kobject_put(&hctx->kobj);
3144  fail:
3145         return NULL;
3146 }
3147
3148 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3149                                                 struct request_queue *q)
3150 {
3151         int i, j, end;
3152         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3153
3154         if (q->nr_hw_queues < set->nr_hw_queues) {
3155                 struct blk_mq_hw_ctx **new_hctxs;
3156
3157                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3158                                        sizeof(*new_hctxs), GFP_KERNEL,
3159                                        set->numa_node);
3160                 if (!new_hctxs)
3161                         return;
3162                 if (hctxs)
3163                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3164                                sizeof(*hctxs));
3165                 q->queue_hw_ctx = new_hctxs;
3166                 kfree(hctxs);
3167                 hctxs = new_hctxs;
3168         }
3169
3170         /* protect against switching io scheduler  */
3171         mutex_lock(&q->sysfs_lock);
3172         for (i = 0; i < set->nr_hw_queues; i++) {
3173                 int node;
3174                 struct blk_mq_hw_ctx *hctx;
3175
3176                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3177                 /*
3178                  * If the hw queue has been mapped to another numa node,
3179                  * we need to realloc the hctx. If allocation fails, fallback
3180                  * to use the previous one.
3181                  */
3182                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3183                         continue;
3184
3185                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3186                 if (hctx) {
3187                         if (hctxs[i])
3188                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3189                         hctxs[i] = hctx;
3190                 } else {
3191                         if (hctxs[i])
3192                                 pr_warn("Allocate new hctx on node %d fails,\
3193                                                 fallback to previous one on node %d\n",
3194                                                 node, hctxs[i]->numa_node);
3195                         else
3196                                 break;
3197                 }
3198         }
3199         /*
3200          * Increasing nr_hw_queues fails. Free the newly allocated
3201          * hctxs and keep the previous q->nr_hw_queues.
3202          */
3203         if (i != set->nr_hw_queues) {
3204                 j = q->nr_hw_queues;
3205                 end = i;
3206         } else {
3207                 j = i;
3208                 end = q->nr_hw_queues;
3209                 q->nr_hw_queues = set->nr_hw_queues;
3210         }
3211
3212         for (; j < end; j++) {
3213                 struct blk_mq_hw_ctx *hctx = hctxs[j];
3214
3215                 if (hctx) {
3216                         if (hctx->tags)
3217                                 blk_mq_free_map_and_requests(set, j);
3218                         blk_mq_exit_hctx(q, set, hctx, j);
3219                         hctxs[j] = NULL;
3220                 }
3221         }
3222         mutex_unlock(&q->sysfs_lock);
3223 }
3224
3225 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3226                                                   struct request_queue *q,
3227                                                   bool elevator_init)
3228 {
3229         /* mark the queue as mq asap */
3230         q->mq_ops = set->ops;
3231
3232         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3233                                              blk_mq_poll_stats_bkt,
3234                                              BLK_MQ_POLL_STATS_BKTS, q);
3235         if (!q->poll_cb)
3236                 goto err_exit;
3237
3238         if (blk_mq_alloc_ctxs(q))
3239                 goto err_poll;
3240
3241         /* init q->mq_kobj and sw queues' kobjects */
3242         blk_mq_sysfs_init(q);
3243
3244         INIT_LIST_HEAD(&q->unused_hctx_list);
3245         spin_lock_init(&q->unused_hctx_lock);
3246
3247         blk_mq_realloc_hw_ctxs(set, q);
3248         if (!q->nr_hw_queues)
3249                 goto err_hctxs;
3250
3251         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3252         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3253
3254         q->tag_set = set;
3255
3256         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3257         if (set->nr_maps > HCTX_TYPE_POLL &&
3258             set->map[HCTX_TYPE_POLL].nr_queues)
3259                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3260
3261         q->sg_reserved_size = INT_MAX;
3262
3263         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3264         INIT_LIST_HEAD(&q->requeue_list);
3265         spin_lock_init(&q->requeue_lock);
3266
3267         q->nr_requests = set->queue_depth;
3268
3269         /*
3270          * Default to classic polling
3271          */
3272         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3273
3274         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3275         blk_mq_add_queue_tag_set(set, q);
3276         blk_mq_map_swqueue(q);
3277
3278         if (elevator_init)
3279                 elevator_init_mq(q);
3280
3281         return q;
3282
3283 err_hctxs:
3284         kfree(q->queue_hw_ctx);
3285         q->nr_hw_queues = 0;
3286         blk_mq_sysfs_deinit(q);
3287 err_poll:
3288         blk_stat_free_callback(q->poll_cb);
3289         q->poll_cb = NULL;
3290 err_exit:
3291         q->mq_ops = NULL;
3292         return ERR_PTR(-ENOMEM);
3293 }
3294 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3295
3296 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3297 void blk_mq_exit_queue(struct request_queue *q)
3298 {
3299         struct blk_mq_tag_set   *set = q->tag_set;
3300
3301         blk_mq_del_queue_tag_set(q);
3302         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3303 }
3304
3305 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3306 {
3307         int i;
3308
3309         for (i = 0; i < set->nr_hw_queues; i++) {
3310                 if (!__blk_mq_alloc_map_and_request(set, i))
3311                         goto out_unwind;
3312                 cond_resched();
3313         }
3314
3315         return 0;
3316
3317 out_unwind:
3318         while (--i >= 0)
3319                 blk_mq_free_map_and_requests(set, i);
3320
3321         return -ENOMEM;
3322 }
3323
3324 /*
3325  * Allocate the request maps associated with this tag_set. Note that this
3326  * may reduce the depth asked for, if memory is tight. set->queue_depth
3327  * will be updated to reflect the allocated depth.
3328  */
3329 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3330 {
3331         unsigned int depth;
3332         int err;
3333
3334         depth = set->queue_depth;
3335         do {
3336                 err = __blk_mq_alloc_rq_maps(set);
3337                 if (!err)
3338                         break;
3339
3340                 set->queue_depth >>= 1;
3341                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3342                         err = -ENOMEM;
3343                         break;
3344                 }
3345         } while (set->queue_depth);
3346
3347         if (!set->queue_depth || err) {
3348                 pr_err("blk-mq: failed to allocate request map\n");
3349                 return -ENOMEM;
3350         }
3351
3352         if (depth != set->queue_depth)
3353                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3354                                                 depth, set->queue_depth);
3355
3356         return 0;
3357 }
3358
3359 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3360 {
3361         /*
3362          * blk_mq_map_queues() and multiple .map_queues() implementations
3363          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3364          * number of hardware queues.
3365          */
3366         if (set->nr_maps == 1)
3367                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3368
3369         if (set->ops->map_queues && !is_kdump_kernel()) {
3370                 int i;
3371
3372                 /*
3373                  * transport .map_queues is usually done in the following
3374                  * way:
3375                  *
3376                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3377                  *      mask = get_cpu_mask(queue)
3378                  *      for_each_cpu(cpu, mask)
3379                  *              set->map[x].mq_map[cpu] = queue;
3380                  * }
3381                  *
3382                  * When we need to remap, the table has to be cleared for
3383                  * killing stale mapping since one CPU may not be mapped
3384                  * to any hw queue.
3385                  */
3386                 for (i = 0; i < set->nr_maps; i++)
3387                         blk_mq_clear_mq_map(&set->map[i]);
3388
3389                 return set->ops->map_queues(set);
3390         } else {
3391                 BUG_ON(set->nr_maps > 1);
3392                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3393         }
3394 }
3395
3396 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3397                                   int cur_nr_hw_queues, int new_nr_hw_queues)
3398 {
3399         struct blk_mq_tags **new_tags;
3400
3401         if (cur_nr_hw_queues >= new_nr_hw_queues)
3402                 return 0;
3403
3404         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3405                                 GFP_KERNEL, set->numa_node);
3406         if (!new_tags)
3407                 return -ENOMEM;
3408
3409         if (set->tags)
3410                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3411                        sizeof(*set->tags));
3412         kfree(set->tags);
3413         set->tags = new_tags;
3414         set->nr_hw_queues = new_nr_hw_queues;
3415
3416         return 0;
3417 }
3418
3419 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3420                                 int new_nr_hw_queues)
3421 {
3422         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3423 }
3424
3425 /*
3426  * Alloc a tag set to be associated with one or more request queues.
3427  * May fail with EINVAL for various error conditions. May adjust the
3428  * requested depth down, if it's too large. In that case, the set
3429  * value will be stored in set->queue_depth.
3430  */
3431 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3432 {
3433         int i, ret;
3434
3435         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3436
3437         if (!set->nr_hw_queues)
3438                 return -EINVAL;
3439         if (!set->queue_depth)
3440                 return -EINVAL;
3441         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3442                 return -EINVAL;
3443
3444         if (!set->ops->queue_rq)
3445                 return -EINVAL;
3446
3447         if (!set->ops->get_budget ^ !set->ops->put_budget)
3448                 return -EINVAL;
3449
3450         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3451                 pr_info("blk-mq: reduced tag depth to %u\n",
3452                         BLK_MQ_MAX_DEPTH);
3453                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3454         }
3455
3456         if (!set->nr_maps)
3457                 set->nr_maps = 1;
3458         else if (set->nr_maps > HCTX_MAX_TYPES)
3459                 return -EINVAL;
3460
3461         /*
3462          * If a crashdump is active, then we are potentially in a very
3463          * memory constrained environment. Limit us to 1 queue and
3464          * 64 tags to prevent using too much memory.
3465          */
3466         if (is_kdump_kernel()) {
3467                 set->nr_hw_queues = 1;
3468                 set->nr_maps = 1;
3469                 set->queue_depth = min(64U, set->queue_depth);
3470         }
3471         /*
3472          * There is no use for more h/w queues than cpus if we just have
3473          * a single map
3474          */
3475         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3476                 set->nr_hw_queues = nr_cpu_ids;
3477
3478         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3479                 return -ENOMEM;
3480
3481         ret = -ENOMEM;
3482         for (i = 0; i < set->nr_maps; i++) {
3483                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3484                                                   sizeof(set->map[i].mq_map[0]),
3485                                                   GFP_KERNEL, set->numa_node);
3486                 if (!set->map[i].mq_map)
3487                         goto out_free_mq_map;
3488                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3489         }
3490
3491         ret = blk_mq_update_queue_map(set);
3492         if (ret)
3493                 goto out_free_mq_map;
3494
3495         ret = blk_mq_alloc_map_and_requests(set);
3496         if (ret)
3497                 goto out_free_mq_map;
3498
3499         if (blk_mq_is_sbitmap_shared(set->flags)) {
3500                 atomic_set(&set->active_queues_shared_sbitmap, 0);
3501
3502                 if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3503                         ret = -ENOMEM;
3504                         goto out_free_mq_rq_maps;
3505                 }
3506         }
3507
3508         mutex_init(&set->tag_list_lock);
3509         INIT_LIST_HEAD(&set->tag_list);
3510
3511         return 0;
3512
3513 out_free_mq_rq_maps:
3514         for (i = 0; i < set->nr_hw_queues; i++)
3515                 blk_mq_free_map_and_requests(set, i);
3516 out_free_mq_map:
3517         for (i = 0; i < set->nr_maps; i++) {
3518                 kfree(set->map[i].mq_map);
3519                 set->map[i].mq_map = NULL;
3520         }
3521         kfree(set->tags);
3522         set->tags = NULL;
3523         return ret;
3524 }
3525 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3526
3527 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3528 {
3529         int i, j;
3530
3531         for (i = 0; i < set->nr_hw_queues; i++)
3532                 blk_mq_free_map_and_requests(set, i);
3533
3534         if (blk_mq_is_sbitmap_shared(set->flags))
3535                 blk_mq_exit_shared_sbitmap(set);
3536
3537         for (j = 0; j < set->nr_maps; j++) {
3538                 kfree(set->map[j].mq_map);
3539                 set->map[j].mq_map = NULL;
3540         }
3541
3542         kfree(set->tags);
3543         set->tags = NULL;
3544 }
3545 EXPORT_SYMBOL(blk_mq_free_tag_set);
3546
3547 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3548 {
3549         struct blk_mq_tag_set *set = q->tag_set;
3550         struct blk_mq_hw_ctx *hctx;
3551         int i, ret;
3552
3553         if (!set)
3554                 return -EINVAL;
3555
3556         if (q->nr_requests == nr)
3557                 return 0;
3558
3559         blk_mq_freeze_queue(q);
3560         blk_mq_quiesce_queue(q);
3561
3562         ret = 0;
3563         queue_for_each_hw_ctx(q, hctx, i) {
3564                 if (!hctx->tags)
3565                         continue;
3566                 /*
3567                  * If we're using an MQ scheduler, just update the scheduler
3568                  * queue depth. This is similar to what the old code would do.
3569                  */
3570                 if (!hctx->sched_tags) {
3571                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3572                                                         false);
3573                         if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3574                                 blk_mq_tag_resize_shared_sbitmap(set, nr);
3575                 } else {
3576                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3577                                                         nr, true);
3578                 }
3579                 if (ret)
3580                         break;
3581                 if (q->elevator && q->elevator->type->ops.depth_updated)
3582                         q->elevator->type->ops.depth_updated(hctx);
3583         }
3584
3585         if (!ret)
3586                 q->nr_requests = nr;
3587
3588         blk_mq_unquiesce_queue(q);
3589         blk_mq_unfreeze_queue(q);
3590
3591         return ret;
3592 }
3593
3594 /*
3595  * request_queue and elevator_type pair.
3596  * It is just used by __blk_mq_update_nr_hw_queues to cache
3597  * the elevator_type associated with a request_queue.
3598  */
3599 struct blk_mq_qe_pair {
3600         struct list_head node;
3601         struct request_queue *q;
3602         struct elevator_type *type;
3603 };
3604
3605 /*
3606  * Cache the elevator_type in qe pair list and switch the
3607  * io scheduler to 'none'
3608  */
3609 static bool blk_mq_elv_switch_none(struct list_head *head,
3610                 struct request_queue *q)
3611 {
3612         struct blk_mq_qe_pair *qe;
3613
3614         if (!q->elevator)
3615                 return true;
3616
3617         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3618         if (!qe)
3619                 return false;
3620
3621         INIT_LIST_HEAD(&qe->node);
3622         qe->q = q;
3623         qe->type = q->elevator->type;
3624         list_add(&qe->node, head);
3625
3626         mutex_lock(&q->sysfs_lock);
3627         /*
3628          * After elevator_switch_mq, the previous elevator_queue will be
3629          * released by elevator_release. The reference of the io scheduler
3630          * module get by elevator_get will also be put. So we need to get
3631          * a reference of the io scheduler module here to prevent it to be
3632          * removed.
3633          */
3634         __module_get(qe->type->elevator_owner);
3635         elevator_switch_mq(q, NULL);
3636         mutex_unlock(&q->sysfs_lock);
3637
3638         return true;
3639 }
3640
3641 static void blk_mq_elv_switch_back(struct list_head *head,
3642                 struct request_queue *q)
3643 {
3644         struct blk_mq_qe_pair *qe;
3645         struct elevator_type *t = NULL;
3646
3647         list_for_each_entry(qe, head, node)
3648                 if (qe->q == q) {
3649                         t = qe->type;
3650                         break;
3651                 }
3652
3653         if (!t)
3654                 return;
3655
3656         list_del(&qe->node);
3657         kfree(qe);
3658
3659         mutex_lock(&q->sysfs_lock);
3660         elevator_switch_mq(q, t);
3661         mutex_unlock(&q->sysfs_lock);
3662 }
3663
3664 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3665                                                         int nr_hw_queues)
3666 {
3667         struct request_queue *q;
3668         LIST_HEAD(head);
3669         int prev_nr_hw_queues;
3670
3671         lockdep_assert_held(&set->tag_list_lock);
3672
3673         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3674                 nr_hw_queues = nr_cpu_ids;
3675         if (nr_hw_queues < 1)
3676                 return;
3677         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3678                 return;
3679
3680         list_for_each_entry(q, &set->tag_list, tag_set_list)
3681                 blk_mq_freeze_queue(q);
3682         /*
3683          * Switch IO scheduler to 'none', cleaning up the data associated
3684          * with the previous scheduler. We will switch back once we are done
3685          * updating the new sw to hw queue mappings.
3686          */
3687         list_for_each_entry(q, &set->tag_list, tag_set_list)
3688                 if (!blk_mq_elv_switch_none(&head, q))
3689                         goto switch_back;
3690
3691         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3692                 blk_mq_debugfs_unregister_hctxs(q);
3693                 blk_mq_sysfs_unregister(q);
3694         }
3695
3696         prev_nr_hw_queues = set->nr_hw_queues;
3697         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3698             0)
3699                 goto reregister;
3700
3701         set->nr_hw_queues = nr_hw_queues;
3702 fallback:
3703         blk_mq_update_queue_map(set);
3704         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3705                 blk_mq_realloc_hw_ctxs(set, q);
3706                 if (q->nr_hw_queues != set->nr_hw_queues) {
3707                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3708                                         nr_hw_queues, prev_nr_hw_queues);
3709                         set->nr_hw_queues = prev_nr_hw_queues;
3710                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3711                         goto fallback;
3712                 }
3713                 blk_mq_map_swqueue(q);
3714         }
3715
3716 reregister:
3717         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3718                 blk_mq_sysfs_register(q);
3719                 blk_mq_debugfs_register_hctxs(q);
3720         }
3721
3722 switch_back:
3723         list_for_each_entry(q, &set->tag_list, tag_set_list)
3724                 blk_mq_elv_switch_back(&head, q);
3725
3726         list_for_each_entry(q, &set->tag_list, tag_set_list)
3727                 blk_mq_unfreeze_queue(q);
3728 }
3729
3730 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3731 {
3732         mutex_lock(&set->tag_list_lock);
3733         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3734         mutex_unlock(&set->tag_list_lock);
3735 }
3736 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3737
3738 /* Enable polling stats and return whether they were already enabled. */
3739 static bool blk_poll_stats_enable(struct request_queue *q)
3740 {
3741         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3742             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3743                 return true;
3744         blk_stat_add_callback(q, q->poll_cb);
3745         return false;
3746 }
3747
3748 static void blk_mq_poll_stats_start(struct request_queue *q)
3749 {
3750         /*
3751          * We don't arm the callback if polling stats are not enabled or the
3752          * callback is already active.
3753          */
3754         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3755             blk_stat_is_active(q->poll_cb))
3756                 return;
3757
3758         blk_stat_activate_msecs(q->poll_cb, 100);
3759 }
3760
3761 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3762 {
3763         struct request_queue *q = cb->data;
3764         int bucket;
3765
3766         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3767                 if (cb->stat[bucket].nr_samples)
3768                         q->poll_stat[bucket] = cb->stat[bucket];
3769         }
3770 }
3771
3772 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3773                                        struct request *rq)
3774 {
3775         unsigned long ret = 0;
3776         int bucket;
3777
3778         /*
3779          * If stats collection isn't on, don't sleep but turn it on for
3780          * future users
3781          */
3782         if (!blk_poll_stats_enable(q))
3783                 return 0;
3784
3785         /*
3786          * As an optimistic guess, use half of the mean service time
3787          * for this type of request. We can (and should) make this smarter.
3788          * For instance, if the completion latencies are tight, we can
3789          * get closer than just half the mean. This is especially
3790          * important on devices where the completion latencies are longer
3791          * than ~10 usec. We do use the stats for the relevant IO size
3792          * if available which does lead to better estimates.
3793          */
3794         bucket = blk_mq_poll_stats_bkt(rq);
3795         if (bucket < 0)
3796                 return ret;
3797
3798         if (q->poll_stat[bucket].nr_samples)
3799                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3800
3801         return ret;
3802 }
3803
3804 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3805                                      struct request *rq)
3806 {
3807         struct hrtimer_sleeper hs;
3808         enum hrtimer_mode mode;
3809         unsigned int nsecs;
3810         ktime_t kt;
3811
3812         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3813                 return false;
3814
3815         /*
3816          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3817          *
3818          *  0:  use half of prev avg
3819          * >0:  use this specific value
3820          */
3821         if (q->poll_nsec > 0)
3822                 nsecs = q->poll_nsec;
3823         else
3824                 nsecs = blk_mq_poll_nsecs(q, rq);
3825
3826         if (!nsecs)
3827                 return false;
3828
3829         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3830
3831         /*
3832          * This will be replaced with the stats tracking code, using
3833          * 'avg_completion_time / 2' as the pre-sleep target.
3834          */
3835         kt = nsecs;
3836
3837         mode = HRTIMER_MODE_REL;
3838         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3839         hrtimer_set_expires(&hs.timer, kt);
3840
3841         do {
3842                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3843                         break;
3844                 set_current_state(TASK_UNINTERRUPTIBLE);
3845                 hrtimer_sleeper_start_expires(&hs, mode);
3846                 if (hs.task)
3847                         io_schedule();
3848                 hrtimer_cancel(&hs.timer);
3849                 mode = HRTIMER_MODE_ABS;
3850         } while (hs.task && !signal_pending(current));
3851
3852         __set_current_state(TASK_RUNNING);
3853         destroy_hrtimer_on_stack(&hs.timer);
3854         return true;
3855 }
3856
3857 static bool blk_mq_poll_hybrid(struct request_queue *q,
3858                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3859 {
3860         struct request *rq;
3861
3862         if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3863                 return false;
3864
3865         if (!blk_qc_t_is_internal(cookie))
3866                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3867         else {
3868                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3869                 /*
3870                  * With scheduling, if the request has completed, we'll
3871                  * get a NULL return here, as we clear the sched tag when
3872                  * that happens. The request still remains valid, like always,
3873                  * so we should be safe with just the NULL check.
3874                  */
3875                 if (!rq)
3876                         return false;
3877         }
3878
3879         return blk_mq_poll_hybrid_sleep(q, rq);
3880 }
3881
3882 /**
3883  * blk_poll - poll for IO completions
3884  * @q:  the queue
3885  * @cookie: cookie passed back at IO submission time
3886  * @spin: whether to spin for completions
3887  *
3888  * Description:
3889  *    Poll for completions on the passed in queue. Returns number of
3890  *    completed entries found. If @spin is true, then blk_poll will continue
3891  *    looping until at least one completion is found, unless the task is
3892  *    otherwise marked running (or we need to reschedule).
3893  */
3894 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3895 {
3896         struct blk_mq_hw_ctx *hctx;
3897         long state;
3898
3899         if (!blk_qc_t_valid(cookie) ||
3900             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3901                 return 0;
3902
3903         if (current->plug)
3904                 blk_flush_plug_list(current->plug, false);
3905
3906         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3907
3908         /*
3909          * If we sleep, have the caller restart the poll loop to reset
3910          * the state. Like for the other success return cases, the
3911          * caller is responsible for checking if the IO completed. If
3912          * the IO isn't complete, we'll get called again and will go
3913          * straight to the busy poll loop. If specified not to spin,
3914          * we also should not sleep.
3915          */
3916         if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3917                 return 1;
3918
3919         hctx->poll_considered++;
3920
3921         state = current->state;
3922         do {
3923                 int ret;
3924
3925                 hctx->poll_invoked++;
3926
3927                 ret = q->mq_ops->poll(hctx);
3928                 if (ret > 0) {
3929                         hctx->poll_success++;
3930                         __set_current_state(TASK_RUNNING);
3931                         return ret;
3932                 }
3933
3934                 if (signal_pending_state(state, current))
3935                         __set_current_state(TASK_RUNNING);
3936
3937                 if (current->state == TASK_RUNNING)
3938                         return 1;
3939                 if (ret < 0 || !spin)
3940                         break;
3941                 cpu_relax();
3942         } while (!need_resched());
3943
3944         __set_current_state(TASK_RUNNING);
3945         return 0;
3946 }
3947 EXPORT_SYMBOL_GPL(blk_poll);
3948
3949 unsigned int blk_mq_rq_cpu(struct request *rq)
3950 {
3951         return rq->mq_ctx->cpu;
3952 }
3953 EXPORT_SYMBOL(blk_mq_rq_cpu);
3954
3955 static int __init blk_mq_init(void)
3956 {
3957         int i;
3958
3959         for_each_possible_cpu(i)
3960                 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3961         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3962
3963         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3964                                   "block/softirq:dead", NULL,
3965                                   blk_softirq_cpu_dead);
3966         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3967                                 blk_mq_hctx_notify_dead);
3968         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3969                                 blk_mq_hctx_notify_online,
3970                                 blk_mq_hctx_notify_offline);
3971         return 0;
3972 }
3973 subsys_initcall(blk_mq_init);