lkdtm/heap: Hide allocation size from -Warray-bounds
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50
51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53         int ddir, sectors, bucket;
54
55         ddir = rq_data_dir(rq);
56         sectors = blk_rq_stats_sectors(rq);
57
58         bucket = ddir + 2 * ilog2(sectors);
59
60         if (bucket < 0)
61                 return -1;
62         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64
65         return bucket;
66 }
67
68 #define BLK_QC_T_SHIFT          16
69 #define BLK_QC_T_INTERNAL       (1U << 31)
70
71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72                 blk_qc_t qc)
73 {
74         return xa_load(&q->hctx_table,
75                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
76 }
77
78 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
79                 blk_qc_t qc)
80 {
81         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
82
83         if (qc & BLK_QC_T_INTERNAL)
84                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
85         return blk_mq_tag_to_rq(hctx->tags, tag);
86 }
87
88 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
89 {
90         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
91                 (rq->tag != -1 ?
92                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
93 }
94
95 /*
96  * Check if any of the ctx, dispatch list or elevator
97  * have pending work in this hardware queue.
98  */
99 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
100 {
101         return !list_empty_careful(&hctx->dispatch) ||
102                 sbitmap_any_bit_set(&hctx->ctx_map) ||
103                         blk_mq_sched_has_work(hctx);
104 }
105
106 /*
107  * Mark this ctx as having pending work in this hardware queue
108  */
109 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
110                                      struct blk_mq_ctx *ctx)
111 {
112         const int bit = ctx->index_hw[hctx->type];
113
114         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
115                 sbitmap_set_bit(&hctx->ctx_map, bit);
116 }
117
118 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
119                                       struct blk_mq_ctx *ctx)
120 {
121         const int bit = ctx->index_hw[hctx->type];
122
123         sbitmap_clear_bit(&hctx->ctx_map, bit);
124 }
125
126 struct mq_inflight {
127         struct block_device *part;
128         unsigned int inflight[2];
129 };
130
131 static bool blk_mq_check_inflight(struct request *rq, void *priv,
132                                   bool reserved)
133 {
134         struct mq_inflight *mi = priv;
135
136         if ((!mi->part->bd_partno || rq->part == mi->part) &&
137             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
138                 mi->inflight[rq_data_dir(rq)]++;
139
140         return true;
141 }
142
143 unsigned int blk_mq_in_flight(struct request_queue *q,
144                 struct block_device *part)
145 {
146         struct mq_inflight mi = { .part = part };
147
148         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
149
150         return mi.inflight[0] + mi.inflight[1];
151 }
152
153 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
154                 unsigned int inflight[2])
155 {
156         struct mq_inflight mi = { .part = part };
157
158         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
159         inflight[0] = mi.inflight[0];
160         inflight[1] = mi.inflight[1];
161 }
162
163 void blk_freeze_queue_start(struct request_queue *q)
164 {
165         mutex_lock(&q->mq_freeze_lock);
166         if (++q->mq_freeze_depth == 1) {
167                 percpu_ref_kill(&q->q_usage_counter);
168                 mutex_unlock(&q->mq_freeze_lock);
169                 if (queue_is_mq(q))
170                         blk_mq_run_hw_queues(q, false);
171         } else {
172                 mutex_unlock(&q->mq_freeze_lock);
173         }
174 }
175 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
176
177 void blk_mq_freeze_queue_wait(struct request_queue *q)
178 {
179         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
180 }
181 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
182
183 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
184                                      unsigned long timeout)
185 {
186         return wait_event_timeout(q->mq_freeze_wq,
187                                         percpu_ref_is_zero(&q->q_usage_counter),
188                                         timeout);
189 }
190 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
191
192 /*
193  * Guarantee no request is in use, so we can change any data structure of
194  * the queue afterward.
195  */
196 void blk_freeze_queue(struct request_queue *q)
197 {
198         /*
199          * In the !blk_mq case we are only calling this to kill the
200          * q_usage_counter, otherwise this increases the freeze depth
201          * and waits for it to return to zero.  For this reason there is
202          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
203          * exported to drivers as the only user for unfreeze is blk_mq.
204          */
205         blk_freeze_queue_start(q);
206         blk_mq_freeze_queue_wait(q);
207 }
208
209 void blk_mq_freeze_queue(struct request_queue *q)
210 {
211         /*
212          * ...just an alias to keep freeze and unfreeze actions balanced
213          * in the blk_mq_* namespace
214          */
215         blk_freeze_queue(q);
216 }
217 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
218
219 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
220 {
221         mutex_lock(&q->mq_freeze_lock);
222         if (force_atomic)
223                 q->q_usage_counter.data->force_atomic = true;
224         q->mq_freeze_depth--;
225         WARN_ON_ONCE(q->mq_freeze_depth < 0);
226         if (!q->mq_freeze_depth) {
227                 percpu_ref_resurrect(&q->q_usage_counter);
228                 wake_up_all(&q->mq_freeze_wq);
229         }
230         mutex_unlock(&q->mq_freeze_lock);
231 }
232
233 void blk_mq_unfreeze_queue(struct request_queue *q)
234 {
235         __blk_mq_unfreeze_queue(q, false);
236 }
237 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
238
239 /*
240  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
241  * mpt3sas driver such that this function can be removed.
242  */
243 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
244 {
245         unsigned long flags;
246
247         spin_lock_irqsave(&q->queue_lock, flags);
248         if (!q->quiesce_depth++)
249                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
250         spin_unlock_irqrestore(&q->queue_lock, flags);
251 }
252 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
253
254 /**
255  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
256  * @q: request queue.
257  *
258  * Note: it is driver's responsibility for making sure that quiesce has
259  * been started.
260  */
261 void blk_mq_wait_quiesce_done(struct request_queue *q)
262 {
263         if (blk_queue_has_srcu(q))
264                 synchronize_srcu(q->srcu);
265         else
266                 synchronize_rcu();
267 }
268 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
269
270 /**
271  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
272  * @q: request queue.
273  *
274  * Note: this function does not prevent that the struct request end_io()
275  * callback function is invoked. Once this function is returned, we make
276  * sure no dispatch can happen until the queue is unquiesced via
277  * blk_mq_unquiesce_queue().
278  */
279 void blk_mq_quiesce_queue(struct request_queue *q)
280 {
281         blk_mq_quiesce_queue_nowait(q);
282         blk_mq_wait_quiesce_done(q);
283 }
284 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
285
286 /*
287  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
288  * @q: request queue.
289  *
290  * This function recovers queue into the state before quiescing
291  * which is done by blk_mq_quiesce_queue.
292  */
293 void blk_mq_unquiesce_queue(struct request_queue *q)
294 {
295         unsigned long flags;
296         bool run_queue = false;
297
298         spin_lock_irqsave(&q->queue_lock, flags);
299         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
300                 ;
301         } else if (!--q->quiesce_depth) {
302                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
303                 run_queue = true;
304         }
305         spin_unlock_irqrestore(&q->queue_lock, flags);
306
307         /* dispatch requests which are inserted during quiescing */
308         if (run_queue)
309                 blk_mq_run_hw_queues(q, true);
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
312
313 void blk_mq_wake_waiters(struct request_queue *q)
314 {
315         struct blk_mq_hw_ctx *hctx;
316         unsigned long i;
317
318         queue_for_each_hw_ctx(q, hctx, i)
319                 if (blk_mq_hw_queue_mapped(hctx))
320                         blk_mq_tag_wakeup_all(hctx->tags, true);
321 }
322
323 void blk_rq_init(struct request_queue *q, struct request *rq)
324 {
325         memset(rq, 0, sizeof(*rq));
326
327         INIT_LIST_HEAD(&rq->queuelist);
328         rq->q = q;
329         rq->__sector = (sector_t) -1;
330         INIT_HLIST_NODE(&rq->hash);
331         RB_CLEAR_NODE(&rq->rb_node);
332         rq->tag = BLK_MQ_NO_TAG;
333         rq->internal_tag = BLK_MQ_NO_TAG;
334         rq->start_time_ns = ktime_get_ns();
335         rq->part = NULL;
336         blk_crypto_rq_set_defaults(rq);
337 }
338 EXPORT_SYMBOL(blk_rq_init);
339
340 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
341                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
342 {
343         struct blk_mq_ctx *ctx = data->ctx;
344         struct blk_mq_hw_ctx *hctx = data->hctx;
345         struct request_queue *q = data->q;
346         struct request *rq = tags->static_rqs[tag];
347
348         rq->q = q;
349         rq->mq_ctx = ctx;
350         rq->mq_hctx = hctx;
351         rq->cmd_flags = data->cmd_flags;
352
353         if (data->flags & BLK_MQ_REQ_PM)
354                 data->rq_flags |= RQF_PM;
355         if (blk_queue_io_stat(q))
356                 data->rq_flags |= RQF_IO_STAT;
357         rq->rq_flags = data->rq_flags;
358
359         if (!(data->rq_flags & RQF_ELV)) {
360                 rq->tag = tag;
361                 rq->internal_tag = BLK_MQ_NO_TAG;
362         } else {
363                 rq->tag = BLK_MQ_NO_TAG;
364                 rq->internal_tag = tag;
365         }
366         rq->timeout = 0;
367
368         if (blk_mq_need_time_stamp(rq))
369                 rq->start_time_ns = ktime_get_ns();
370         else
371                 rq->start_time_ns = 0;
372         rq->part = NULL;
373 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
374         rq->alloc_time_ns = alloc_time_ns;
375 #endif
376         rq->io_start_time_ns = 0;
377         rq->stats_sectors = 0;
378         rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380         rq->nr_integrity_segments = 0;
381 #endif
382         rq->end_io = NULL;
383         rq->end_io_data = NULL;
384
385         blk_crypto_rq_set_defaults(rq);
386         INIT_LIST_HEAD(&rq->queuelist);
387         /* tag was already set */
388         WRITE_ONCE(rq->deadline, 0);
389         req_ref_set(rq, 1);
390
391         if (rq->rq_flags & RQF_ELV) {
392                 struct elevator_queue *e = data->q->elevator;
393
394                 INIT_HLIST_NODE(&rq->hash);
395                 RB_CLEAR_NODE(&rq->rb_node);
396
397                 if (!op_is_flush(data->cmd_flags) &&
398                     e->type->ops.prepare_request) {
399                         e->type->ops.prepare_request(rq);
400                         rq->rq_flags |= RQF_ELVPRIV;
401                 }
402         }
403
404         return rq;
405 }
406
407 static inline struct request *
408 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
409                 u64 alloc_time_ns)
410 {
411         unsigned int tag, tag_offset;
412         struct blk_mq_tags *tags;
413         struct request *rq;
414         unsigned long tag_mask;
415         int i, nr = 0;
416
417         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
418         if (unlikely(!tag_mask))
419                 return NULL;
420
421         tags = blk_mq_tags_from_data(data);
422         for (i = 0; tag_mask; i++) {
423                 if (!(tag_mask & (1UL << i)))
424                         continue;
425                 tag = tag_offset + i;
426                 prefetch(tags->static_rqs[tag]);
427                 tag_mask &= ~(1UL << i);
428                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
429                 rq_list_add(data->cached_rq, rq);
430                 nr++;
431         }
432         /* caller already holds a reference, add for remainder */
433         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
434         data->nr_tags -= nr;
435
436         return rq_list_pop(data->cached_rq);
437 }
438
439 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
440 {
441         struct request_queue *q = data->q;
442         u64 alloc_time_ns = 0;
443         struct request *rq;
444         unsigned int tag;
445
446         /* alloc_time includes depth and tag waits */
447         if (blk_queue_rq_alloc_time(q))
448                 alloc_time_ns = ktime_get_ns();
449
450         if (data->cmd_flags & REQ_NOWAIT)
451                 data->flags |= BLK_MQ_REQ_NOWAIT;
452
453         if (q->elevator) {
454                 struct elevator_queue *e = q->elevator;
455
456                 data->rq_flags |= RQF_ELV;
457
458                 /*
459                  * Flush/passthrough requests are special and go directly to the
460                  * dispatch list. Don't include reserved tags in the
461                  * limiting, as it isn't useful.
462                  */
463                 if (!op_is_flush(data->cmd_flags) &&
464                     !blk_op_is_passthrough(data->cmd_flags) &&
465                     e->type->ops.limit_depth &&
466                     !(data->flags & BLK_MQ_REQ_RESERVED))
467                         e->type->ops.limit_depth(data->cmd_flags, data);
468         }
469
470 retry:
471         data->ctx = blk_mq_get_ctx(q);
472         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
473         if (!(data->rq_flags & RQF_ELV))
474                 blk_mq_tag_busy(data->hctx);
475
476         /*
477          * Try batched alloc if we want more than 1 tag.
478          */
479         if (data->nr_tags > 1) {
480                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
481                 if (rq)
482                         return rq;
483                 data->nr_tags = 1;
484         }
485
486         /*
487          * Waiting allocations only fail because of an inactive hctx.  In that
488          * case just retry the hctx assignment and tag allocation as CPU hotplug
489          * should have migrated us to an online CPU by now.
490          */
491         tag = blk_mq_get_tag(data);
492         if (tag == BLK_MQ_NO_TAG) {
493                 if (data->flags & BLK_MQ_REQ_NOWAIT)
494                         return NULL;
495                 /*
496                  * Give up the CPU and sleep for a random short time to
497                  * ensure that thread using a realtime scheduling class
498                  * are migrated off the CPU, and thus off the hctx that
499                  * is going away.
500                  */
501                 msleep(3);
502                 goto retry;
503         }
504
505         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
506                                         alloc_time_ns);
507 }
508
509 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
510                 blk_mq_req_flags_t flags)
511 {
512         struct blk_mq_alloc_data data = {
513                 .q              = q,
514                 .flags          = flags,
515                 .cmd_flags      = op,
516                 .nr_tags        = 1,
517         };
518         struct request *rq;
519         int ret;
520
521         ret = blk_queue_enter(q, flags);
522         if (ret)
523                 return ERR_PTR(ret);
524
525         rq = __blk_mq_alloc_requests(&data);
526         if (!rq)
527                 goto out_queue_exit;
528         rq->__data_len = 0;
529         rq->__sector = (sector_t) -1;
530         rq->bio = rq->biotail = NULL;
531         return rq;
532 out_queue_exit:
533         blk_queue_exit(q);
534         return ERR_PTR(-EWOULDBLOCK);
535 }
536 EXPORT_SYMBOL(blk_mq_alloc_request);
537
538 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
539         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
540 {
541         struct blk_mq_alloc_data data = {
542                 .q              = q,
543                 .flags          = flags,
544                 .cmd_flags      = op,
545                 .nr_tags        = 1,
546         };
547         u64 alloc_time_ns = 0;
548         unsigned int cpu;
549         unsigned int tag;
550         int ret;
551
552         /* alloc_time includes depth and tag waits */
553         if (blk_queue_rq_alloc_time(q))
554                 alloc_time_ns = ktime_get_ns();
555
556         /*
557          * If the tag allocator sleeps we could get an allocation for a
558          * different hardware context.  No need to complicate the low level
559          * allocator for this for the rare use case of a command tied to
560          * a specific queue.
561          */
562         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
563                 return ERR_PTR(-EINVAL);
564
565         if (hctx_idx >= q->nr_hw_queues)
566                 return ERR_PTR(-EIO);
567
568         ret = blk_queue_enter(q, flags);
569         if (ret)
570                 return ERR_PTR(ret);
571
572         /*
573          * Check if the hardware context is actually mapped to anything.
574          * If not tell the caller that it should skip this queue.
575          */
576         ret = -EXDEV;
577         data.hctx = xa_load(&q->hctx_table, hctx_idx);
578         if (!blk_mq_hw_queue_mapped(data.hctx))
579                 goto out_queue_exit;
580         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
581         data.ctx = __blk_mq_get_ctx(q, cpu);
582
583         if (!q->elevator)
584                 blk_mq_tag_busy(data.hctx);
585         else
586                 data.rq_flags |= RQF_ELV;
587
588         ret = -EWOULDBLOCK;
589         tag = blk_mq_get_tag(&data);
590         if (tag == BLK_MQ_NO_TAG)
591                 goto out_queue_exit;
592         return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
593                                         alloc_time_ns);
594
595 out_queue_exit:
596         blk_queue_exit(q);
597         return ERR_PTR(ret);
598 }
599 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
600
601 static void __blk_mq_free_request(struct request *rq)
602 {
603         struct request_queue *q = rq->q;
604         struct blk_mq_ctx *ctx = rq->mq_ctx;
605         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
606         const int sched_tag = rq->internal_tag;
607
608         blk_crypto_free_request(rq);
609         blk_pm_mark_last_busy(rq);
610         rq->mq_hctx = NULL;
611         if (rq->tag != BLK_MQ_NO_TAG)
612                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
613         if (sched_tag != BLK_MQ_NO_TAG)
614                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
615         blk_mq_sched_restart(hctx);
616         blk_queue_exit(q);
617 }
618
619 void blk_mq_free_request(struct request *rq)
620 {
621         struct request_queue *q = rq->q;
622         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
623
624         if ((rq->rq_flags & RQF_ELVPRIV) &&
625             q->elevator->type->ops.finish_request)
626                 q->elevator->type->ops.finish_request(rq);
627
628         if (rq->rq_flags & RQF_MQ_INFLIGHT)
629                 __blk_mq_dec_active_requests(hctx);
630
631         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
632                 laptop_io_completion(q->disk->bdi);
633
634         rq_qos_done(q, rq);
635
636         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
637         if (req_ref_put_and_test(rq))
638                 __blk_mq_free_request(rq);
639 }
640 EXPORT_SYMBOL_GPL(blk_mq_free_request);
641
642 void blk_mq_free_plug_rqs(struct blk_plug *plug)
643 {
644         struct request *rq;
645
646         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
647                 blk_mq_free_request(rq);
648 }
649
650 void blk_dump_rq_flags(struct request *rq, char *msg)
651 {
652         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
653                 rq->q->disk ? rq->q->disk->disk_name : "?",
654                 (unsigned long long) rq->cmd_flags);
655
656         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
657                (unsigned long long)blk_rq_pos(rq),
658                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
659         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
660                rq->bio, rq->biotail, blk_rq_bytes(rq));
661 }
662 EXPORT_SYMBOL(blk_dump_rq_flags);
663
664 static void req_bio_endio(struct request *rq, struct bio *bio,
665                           unsigned int nbytes, blk_status_t error)
666 {
667         if (unlikely(error)) {
668                 bio->bi_status = error;
669         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
670                 /*
671                  * Partial zone append completions cannot be supported as the
672                  * BIO fragments may end up not being written sequentially.
673                  */
674                 if (bio->bi_iter.bi_size != nbytes)
675                         bio->bi_status = BLK_STS_IOERR;
676                 else
677                         bio->bi_iter.bi_sector = rq->__sector;
678         }
679
680         bio_advance(bio, nbytes);
681
682         if (unlikely(rq->rq_flags & RQF_QUIET))
683                 bio_set_flag(bio, BIO_QUIET);
684         /* don't actually finish bio if it's part of flush sequence */
685         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
686                 bio_endio(bio);
687 }
688
689 static void blk_account_io_completion(struct request *req, unsigned int bytes)
690 {
691         if (req->part && blk_do_io_stat(req)) {
692                 const int sgrp = op_stat_group(req_op(req));
693
694                 part_stat_lock();
695                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
696                 part_stat_unlock();
697         }
698 }
699
700 static void blk_print_req_error(struct request *req, blk_status_t status)
701 {
702         printk_ratelimited(KERN_ERR
703                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
704                 "phys_seg %u prio class %u\n",
705                 blk_status_to_str(status),
706                 req->q->disk ? req->q->disk->disk_name : "?",
707                 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
708                 req->cmd_flags & ~REQ_OP_MASK,
709                 req->nr_phys_segments,
710                 IOPRIO_PRIO_CLASS(req->ioprio));
711 }
712
713 /*
714  * Fully end IO on a request. Does not support partial completions, or
715  * errors.
716  */
717 static void blk_complete_request(struct request *req)
718 {
719         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
720         int total_bytes = blk_rq_bytes(req);
721         struct bio *bio = req->bio;
722
723         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
724
725         if (!bio)
726                 return;
727
728 #ifdef CONFIG_BLK_DEV_INTEGRITY
729         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
730                 req->q->integrity.profile->complete_fn(req, total_bytes);
731 #endif
732
733         blk_account_io_completion(req, total_bytes);
734
735         do {
736                 struct bio *next = bio->bi_next;
737
738                 /* Completion has already been traced */
739                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
740
741                 if (req_op(req) == REQ_OP_ZONE_APPEND)
742                         bio->bi_iter.bi_sector = req->__sector;
743
744                 if (!is_flush)
745                         bio_endio(bio);
746                 bio = next;
747         } while (bio);
748
749         /*
750          * Reset counters so that the request stacking driver
751          * can find how many bytes remain in the request
752          * later.
753          */
754         req->bio = NULL;
755         req->__data_len = 0;
756 }
757
758 /**
759  * blk_update_request - Complete multiple bytes without completing the request
760  * @req:      the request being processed
761  * @error:    block status code
762  * @nr_bytes: number of bytes to complete for @req
763  *
764  * Description:
765  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
766  *     the request structure even if @req doesn't have leftover.
767  *     If @req has leftover, sets it up for the next range of segments.
768  *
769  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
770  *     %false return from this function.
771  *
772  * Note:
773  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
774  *      except in the consistency check at the end of this function.
775  *
776  * Return:
777  *     %false - this request doesn't have any more data
778  *     %true  - this request has more data
779  **/
780 bool blk_update_request(struct request *req, blk_status_t error,
781                 unsigned int nr_bytes)
782 {
783         int total_bytes;
784
785         trace_block_rq_complete(req, error, nr_bytes);
786
787         if (!req->bio)
788                 return false;
789
790 #ifdef CONFIG_BLK_DEV_INTEGRITY
791         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
792             error == BLK_STS_OK)
793                 req->q->integrity.profile->complete_fn(req, nr_bytes);
794 #endif
795
796         if (unlikely(error && !blk_rq_is_passthrough(req) &&
797                      !(req->rq_flags & RQF_QUIET))) {
798                 blk_print_req_error(req, error);
799                 trace_block_rq_error(req, error, nr_bytes);
800         }
801
802         blk_account_io_completion(req, nr_bytes);
803
804         total_bytes = 0;
805         while (req->bio) {
806                 struct bio *bio = req->bio;
807                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
808
809                 if (bio_bytes == bio->bi_iter.bi_size)
810                         req->bio = bio->bi_next;
811
812                 /* Completion has already been traced */
813                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
814                 req_bio_endio(req, bio, bio_bytes, error);
815
816                 total_bytes += bio_bytes;
817                 nr_bytes -= bio_bytes;
818
819                 if (!nr_bytes)
820                         break;
821         }
822
823         /*
824          * completely done
825          */
826         if (!req->bio) {
827                 /*
828                  * Reset counters so that the request stacking driver
829                  * can find how many bytes remain in the request
830                  * later.
831                  */
832                 req->__data_len = 0;
833                 return false;
834         }
835
836         req->__data_len -= total_bytes;
837
838         /* update sector only for requests with clear definition of sector */
839         if (!blk_rq_is_passthrough(req))
840                 req->__sector += total_bytes >> 9;
841
842         /* mixed attributes always follow the first bio */
843         if (req->rq_flags & RQF_MIXED_MERGE) {
844                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
845                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
846         }
847
848         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
849                 /*
850                  * If total number of sectors is less than the first segment
851                  * size, something has gone terribly wrong.
852                  */
853                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
854                         blk_dump_rq_flags(req, "request botched");
855                         req->__data_len = blk_rq_cur_bytes(req);
856                 }
857
858                 /* recalculate the number of segments */
859                 req->nr_phys_segments = blk_recalc_rq_segments(req);
860         }
861
862         return true;
863 }
864 EXPORT_SYMBOL_GPL(blk_update_request);
865
866 static void __blk_account_io_done(struct request *req, u64 now)
867 {
868         const int sgrp = op_stat_group(req_op(req));
869
870         part_stat_lock();
871         update_io_ticks(req->part, jiffies, true);
872         part_stat_inc(req->part, ios[sgrp]);
873         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
874         part_stat_unlock();
875 }
876
877 static inline void blk_account_io_done(struct request *req, u64 now)
878 {
879         /*
880          * Account IO completion.  flush_rq isn't accounted as a
881          * normal IO on queueing nor completion.  Accounting the
882          * containing request is enough.
883          */
884         if (blk_do_io_stat(req) && req->part &&
885             !(req->rq_flags & RQF_FLUSH_SEQ))
886                 __blk_account_io_done(req, now);
887 }
888
889 static void __blk_account_io_start(struct request *rq)
890 {
891         /*
892          * All non-passthrough requests are created from a bio with one
893          * exception: when a flush command that is part of a flush sequence
894          * generated by the state machine in blk-flush.c is cloned onto the
895          * lower device by dm-multipath we can get here without a bio.
896          */
897         if (rq->bio)
898                 rq->part = rq->bio->bi_bdev;
899         else
900                 rq->part = rq->q->disk->part0;
901
902         part_stat_lock();
903         update_io_ticks(rq->part, jiffies, false);
904         part_stat_unlock();
905 }
906
907 static inline void blk_account_io_start(struct request *req)
908 {
909         if (blk_do_io_stat(req))
910                 __blk_account_io_start(req);
911 }
912
913 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
914 {
915         if (rq->rq_flags & RQF_STATS) {
916                 blk_mq_poll_stats_start(rq->q);
917                 blk_stat_add(rq, now);
918         }
919
920         blk_mq_sched_completed_request(rq, now);
921         blk_account_io_done(rq, now);
922 }
923
924 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
925 {
926         if (blk_mq_need_time_stamp(rq))
927                 __blk_mq_end_request_acct(rq, ktime_get_ns());
928
929         if (rq->end_io) {
930                 rq_qos_done(rq->q, rq);
931                 rq->end_io(rq, error);
932         } else {
933                 blk_mq_free_request(rq);
934         }
935 }
936 EXPORT_SYMBOL(__blk_mq_end_request);
937
938 void blk_mq_end_request(struct request *rq, blk_status_t error)
939 {
940         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
941                 BUG();
942         __blk_mq_end_request(rq, error);
943 }
944 EXPORT_SYMBOL(blk_mq_end_request);
945
946 #define TAG_COMP_BATCH          32
947
948 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
949                                           int *tag_array, int nr_tags)
950 {
951         struct request_queue *q = hctx->queue;
952
953         /*
954          * All requests should have been marked as RQF_MQ_INFLIGHT, so
955          * update hctx->nr_active in batch
956          */
957         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
958                 __blk_mq_sub_active_requests(hctx, nr_tags);
959
960         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
961         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
962 }
963
964 void blk_mq_end_request_batch(struct io_comp_batch *iob)
965 {
966         int tags[TAG_COMP_BATCH], nr_tags = 0;
967         struct blk_mq_hw_ctx *cur_hctx = NULL;
968         struct request *rq;
969         u64 now = 0;
970
971         if (iob->need_ts)
972                 now = ktime_get_ns();
973
974         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
975                 prefetch(rq->bio);
976                 prefetch(rq->rq_next);
977
978                 blk_complete_request(rq);
979                 if (iob->need_ts)
980                         __blk_mq_end_request_acct(rq, now);
981
982                 rq_qos_done(rq->q, rq);
983
984                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
985                 if (!req_ref_put_and_test(rq))
986                         continue;
987
988                 blk_crypto_free_request(rq);
989                 blk_pm_mark_last_busy(rq);
990
991                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
992                         if (cur_hctx)
993                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
994                         nr_tags = 0;
995                         cur_hctx = rq->mq_hctx;
996                 }
997                 tags[nr_tags++] = rq->tag;
998         }
999
1000         if (nr_tags)
1001                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1002 }
1003 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1004
1005 static void blk_complete_reqs(struct llist_head *list)
1006 {
1007         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1008         struct request *rq, *next;
1009
1010         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1011                 rq->q->mq_ops->complete(rq);
1012 }
1013
1014 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1015 {
1016         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1017 }
1018
1019 static int blk_softirq_cpu_dead(unsigned int cpu)
1020 {
1021         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1022         return 0;
1023 }
1024
1025 static void __blk_mq_complete_request_remote(void *data)
1026 {
1027         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1028 }
1029
1030 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1031 {
1032         int cpu = raw_smp_processor_id();
1033
1034         if (!IS_ENABLED(CONFIG_SMP) ||
1035             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1036                 return false;
1037         /*
1038          * With force threaded interrupts enabled, raising softirq from an SMP
1039          * function call will always result in waking the ksoftirqd thread.
1040          * This is probably worse than completing the request on a different
1041          * cache domain.
1042          */
1043         if (force_irqthreads())
1044                 return false;
1045
1046         /* same CPU or cache domain?  Complete locally */
1047         if (cpu == rq->mq_ctx->cpu ||
1048             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1049              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1050                 return false;
1051
1052         /* don't try to IPI to an offline CPU */
1053         return cpu_online(rq->mq_ctx->cpu);
1054 }
1055
1056 static void blk_mq_complete_send_ipi(struct request *rq)
1057 {
1058         struct llist_head *list;
1059         unsigned int cpu;
1060
1061         cpu = rq->mq_ctx->cpu;
1062         list = &per_cpu(blk_cpu_done, cpu);
1063         if (llist_add(&rq->ipi_list, list)) {
1064                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1065                 smp_call_function_single_async(cpu, &rq->csd);
1066         }
1067 }
1068
1069 static void blk_mq_raise_softirq(struct request *rq)
1070 {
1071         struct llist_head *list;
1072
1073         preempt_disable();
1074         list = this_cpu_ptr(&blk_cpu_done);
1075         if (llist_add(&rq->ipi_list, list))
1076                 raise_softirq(BLOCK_SOFTIRQ);
1077         preempt_enable();
1078 }
1079
1080 bool blk_mq_complete_request_remote(struct request *rq)
1081 {
1082         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1083
1084         /*
1085          * For a polled request, always complete locallly, it's pointless
1086          * to redirect the completion.
1087          */
1088         if (rq->cmd_flags & REQ_POLLED)
1089                 return false;
1090
1091         if (blk_mq_complete_need_ipi(rq)) {
1092                 blk_mq_complete_send_ipi(rq);
1093                 return true;
1094         }
1095
1096         if (rq->q->nr_hw_queues == 1) {
1097                 blk_mq_raise_softirq(rq);
1098                 return true;
1099         }
1100         return false;
1101 }
1102 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1103
1104 /**
1105  * blk_mq_complete_request - end I/O on a request
1106  * @rq:         the request being processed
1107  *
1108  * Description:
1109  *      Complete a request by scheduling the ->complete_rq operation.
1110  **/
1111 void blk_mq_complete_request(struct request *rq)
1112 {
1113         if (!blk_mq_complete_request_remote(rq))
1114                 rq->q->mq_ops->complete(rq);
1115 }
1116 EXPORT_SYMBOL(blk_mq_complete_request);
1117
1118 /**
1119  * blk_mq_start_request - Start processing a request
1120  * @rq: Pointer to request to be started
1121  *
1122  * Function used by device drivers to notify the block layer that a request
1123  * is going to be processed now, so blk layer can do proper initializations
1124  * such as starting the timeout timer.
1125  */
1126 void blk_mq_start_request(struct request *rq)
1127 {
1128         struct request_queue *q = rq->q;
1129
1130         trace_block_rq_issue(rq);
1131
1132         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1133                 u64 start_time;
1134 #ifdef CONFIG_BLK_CGROUP
1135                 if (rq->bio)
1136                         start_time = bio_issue_time(&rq->bio->bi_issue);
1137                 else
1138 #endif
1139                         start_time = ktime_get_ns();
1140                 rq->io_start_time_ns = start_time;
1141                 rq->stats_sectors = blk_rq_sectors(rq);
1142                 rq->rq_flags |= RQF_STATS;
1143                 rq_qos_issue(q, rq);
1144         }
1145
1146         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1147
1148         blk_add_timer(rq);
1149         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1150
1151 #ifdef CONFIG_BLK_DEV_INTEGRITY
1152         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1153                 q->integrity.profile->prepare_fn(rq);
1154 #endif
1155         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1156                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1157 }
1158 EXPORT_SYMBOL(blk_mq_start_request);
1159
1160 /**
1161  * blk_end_sync_rq - executes a completion event on a request
1162  * @rq: request to complete
1163  * @error: end I/O status of the request
1164  */
1165 static void blk_end_sync_rq(struct request *rq, blk_status_t error)
1166 {
1167         struct completion *waiting = rq->end_io_data;
1168
1169         rq->end_io_data = (void *)(uintptr_t)error;
1170
1171         /*
1172          * complete last, if this is a stack request the process (and thus
1173          * the rq pointer) could be invalid right after this complete()
1174          */
1175         complete(waiting);
1176 }
1177
1178 /**
1179  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1180  * @rq:         request to insert
1181  * @at_head:    insert request at head or tail of queue
1182  * @done:       I/O completion handler
1183  *
1184  * Description:
1185  *    Insert a fully prepared request at the back of the I/O scheduler queue
1186  *    for execution.  Don't wait for completion.
1187  *
1188  * Note:
1189  *    This function will invoke @done directly if the queue is dead.
1190  */
1191 void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done)
1192 {
1193         WARN_ON(irqs_disabled());
1194         WARN_ON(!blk_rq_is_passthrough(rq));
1195
1196         rq->end_io = done;
1197
1198         blk_account_io_start(rq);
1199
1200         /*
1201          * don't check dying flag for MQ because the request won't
1202          * be reused after dying flag is set
1203          */
1204         blk_mq_sched_insert_request(rq, at_head, true, false);
1205 }
1206 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1207
1208 static bool blk_rq_is_poll(struct request *rq)
1209 {
1210         if (!rq->mq_hctx)
1211                 return false;
1212         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1213                 return false;
1214         if (WARN_ON_ONCE(!rq->bio))
1215                 return false;
1216         return true;
1217 }
1218
1219 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1220 {
1221         do {
1222                 bio_poll(rq->bio, NULL, 0);
1223                 cond_resched();
1224         } while (!completion_done(wait));
1225 }
1226
1227 /**
1228  * blk_execute_rq - insert a request into queue for execution
1229  * @rq:         request to insert
1230  * @at_head:    insert request at head or tail of queue
1231  *
1232  * Description:
1233  *    Insert a fully prepared request at the back of the I/O scheduler queue
1234  *    for execution and wait for completion.
1235  * Return: The blk_status_t result provided to blk_mq_end_request().
1236  */
1237 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1238 {
1239         DECLARE_COMPLETION_ONSTACK(wait);
1240         unsigned long hang_check;
1241
1242         rq->end_io_data = &wait;
1243         blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq);
1244
1245         /* Prevent hang_check timer from firing at us during very long I/O */
1246         hang_check = sysctl_hung_task_timeout_secs;
1247
1248         if (blk_rq_is_poll(rq))
1249                 blk_rq_poll_completion(rq, &wait);
1250         else if (hang_check)
1251                 while (!wait_for_completion_io_timeout(&wait,
1252                                 hang_check * (HZ/2)))
1253                         ;
1254         else
1255                 wait_for_completion_io(&wait);
1256
1257         return (blk_status_t)(uintptr_t)rq->end_io_data;
1258 }
1259 EXPORT_SYMBOL(blk_execute_rq);
1260
1261 static void __blk_mq_requeue_request(struct request *rq)
1262 {
1263         struct request_queue *q = rq->q;
1264
1265         blk_mq_put_driver_tag(rq);
1266
1267         trace_block_rq_requeue(rq);
1268         rq_qos_requeue(q, rq);
1269
1270         if (blk_mq_request_started(rq)) {
1271                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1272                 rq->rq_flags &= ~RQF_TIMED_OUT;
1273         }
1274 }
1275
1276 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1277 {
1278         __blk_mq_requeue_request(rq);
1279
1280         /* this request will be re-inserted to io scheduler queue */
1281         blk_mq_sched_requeue_request(rq);
1282
1283         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1284 }
1285 EXPORT_SYMBOL(blk_mq_requeue_request);
1286
1287 static void blk_mq_requeue_work(struct work_struct *work)
1288 {
1289         struct request_queue *q =
1290                 container_of(work, struct request_queue, requeue_work.work);
1291         LIST_HEAD(rq_list);
1292         struct request *rq, *next;
1293
1294         spin_lock_irq(&q->requeue_lock);
1295         list_splice_init(&q->requeue_list, &rq_list);
1296         spin_unlock_irq(&q->requeue_lock);
1297
1298         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1299                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1300                         continue;
1301
1302                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1303                 list_del_init(&rq->queuelist);
1304                 /*
1305                  * If RQF_DONTPREP, rq has contained some driver specific
1306                  * data, so insert it to hctx dispatch list to avoid any
1307                  * merge.
1308                  */
1309                 if (rq->rq_flags & RQF_DONTPREP)
1310                         blk_mq_request_bypass_insert(rq, false, false);
1311                 else
1312                         blk_mq_sched_insert_request(rq, true, false, false);
1313         }
1314
1315         while (!list_empty(&rq_list)) {
1316                 rq = list_entry(rq_list.next, struct request, queuelist);
1317                 list_del_init(&rq->queuelist);
1318                 blk_mq_sched_insert_request(rq, false, false, false);
1319         }
1320
1321         blk_mq_run_hw_queues(q, false);
1322 }
1323
1324 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1325                                 bool kick_requeue_list)
1326 {
1327         struct request_queue *q = rq->q;
1328         unsigned long flags;
1329
1330         /*
1331          * We abuse this flag that is otherwise used by the I/O scheduler to
1332          * request head insertion from the workqueue.
1333          */
1334         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1335
1336         spin_lock_irqsave(&q->requeue_lock, flags);
1337         if (at_head) {
1338                 rq->rq_flags |= RQF_SOFTBARRIER;
1339                 list_add(&rq->queuelist, &q->requeue_list);
1340         } else {
1341                 list_add_tail(&rq->queuelist, &q->requeue_list);
1342         }
1343         spin_unlock_irqrestore(&q->requeue_lock, flags);
1344
1345         if (kick_requeue_list)
1346                 blk_mq_kick_requeue_list(q);
1347 }
1348
1349 void blk_mq_kick_requeue_list(struct request_queue *q)
1350 {
1351         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1352 }
1353 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1354
1355 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1356                                     unsigned long msecs)
1357 {
1358         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1359                                     msecs_to_jiffies(msecs));
1360 }
1361 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1362
1363 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1364                                bool reserved)
1365 {
1366         /*
1367          * If we find a request that isn't idle we know the queue is busy
1368          * as it's checked in the iter.
1369          * Return false to stop the iteration.
1370          */
1371         if (blk_mq_request_started(rq)) {
1372                 bool *busy = priv;
1373
1374                 *busy = true;
1375                 return false;
1376         }
1377
1378         return true;
1379 }
1380
1381 bool blk_mq_queue_inflight(struct request_queue *q)
1382 {
1383         bool busy = false;
1384
1385         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1386         return busy;
1387 }
1388 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1389
1390 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1391 {
1392         req->rq_flags |= RQF_TIMED_OUT;
1393         if (req->q->mq_ops->timeout) {
1394                 enum blk_eh_timer_return ret;
1395
1396                 ret = req->q->mq_ops->timeout(req, reserved);
1397                 if (ret == BLK_EH_DONE)
1398                         return;
1399                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1400         }
1401
1402         blk_add_timer(req);
1403 }
1404
1405 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1406 {
1407         unsigned long deadline;
1408
1409         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1410                 return false;
1411         if (rq->rq_flags & RQF_TIMED_OUT)
1412                 return false;
1413
1414         deadline = READ_ONCE(rq->deadline);
1415         if (time_after_eq(jiffies, deadline))
1416                 return true;
1417
1418         if (*next == 0)
1419                 *next = deadline;
1420         else if (time_after(*next, deadline))
1421                 *next = deadline;
1422         return false;
1423 }
1424
1425 void blk_mq_put_rq_ref(struct request *rq)
1426 {
1427         if (is_flush_rq(rq))
1428                 rq->end_io(rq, 0);
1429         else if (req_ref_put_and_test(rq))
1430                 __blk_mq_free_request(rq);
1431 }
1432
1433 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1434 {
1435         unsigned long *next = priv;
1436
1437         /*
1438          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1439          * be reallocated underneath the timeout handler's processing, then
1440          * the expire check is reliable. If the request is not expired, then
1441          * it was completed and reallocated as a new request after returning
1442          * from blk_mq_check_expired().
1443          */
1444         if (blk_mq_req_expired(rq, next))
1445                 blk_mq_rq_timed_out(rq, reserved);
1446         return true;
1447 }
1448
1449 static void blk_mq_timeout_work(struct work_struct *work)
1450 {
1451         struct request_queue *q =
1452                 container_of(work, struct request_queue, timeout_work);
1453         unsigned long next = 0;
1454         struct blk_mq_hw_ctx *hctx;
1455         unsigned long i;
1456
1457         /* A deadlock might occur if a request is stuck requiring a
1458          * timeout at the same time a queue freeze is waiting
1459          * completion, since the timeout code would not be able to
1460          * acquire the queue reference here.
1461          *
1462          * That's why we don't use blk_queue_enter here; instead, we use
1463          * percpu_ref_tryget directly, because we need to be able to
1464          * obtain a reference even in the short window between the queue
1465          * starting to freeze, by dropping the first reference in
1466          * blk_freeze_queue_start, and the moment the last request is
1467          * consumed, marked by the instant q_usage_counter reaches
1468          * zero.
1469          */
1470         if (!percpu_ref_tryget(&q->q_usage_counter))
1471                 return;
1472
1473         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1474
1475         if (next != 0) {
1476                 mod_timer(&q->timeout, next);
1477         } else {
1478                 /*
1479                  * Request timeouts are handled as a forward rolling timer. If
1480                  * we end up here it means that no requests are pending and
1481                  * also that no request has been pending for a while. Mark
1482                  * each hctx as idle.
1483                  */
1484                 queue_for_each_hw_ctx(q, hctx, i) {
1485                         /* the hctx may be unmapped, so check it here */
1486                         if (blk_mq_hw_queue_mapped(hctx))
1487                                 blk_mq_tag_idle(hctx);
1488                 }
1489         }
1490         blk_queue_exit(q);
1491 }
1492
1493 struct flush_busy_ctx_data {
1494         struct blk_mq_hw_ctx *hctx;
1495         struct list_head *list;
1496 };
1497
1498 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1499 {
1500         struct flush_busy_ctx_data *flush_data = data;
1501         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1502         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1503         enum hctx_type type = hctx->type;
1504
1505         spin_lock(&ctx->lock);
1506         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1507         sbitmap_clear_bit(sb, bitnr);
1508         spin_unlock(&ctx->lock);
1509         return true;
1510 }
1511
1512 /*
1513  * Process software queues that have been marked busy, splicing them
1514  * to the for-dispatch
1515  */
1516 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1517 {
1518         struct flush_busy_ctx_data data = {
1519                 .hctx = hctx,
1520                 .list = list,
1521         };
1522
1523         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1524 }
1525 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1526
1527 struct dispatch_rq_data {
1528         struct blk_mq_hw_ctx *hctx;
1529         struct request *rq;
1530 };
1531
1532 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1533                 void *data)
1534 {
1535         struct dispatch_rq_data *dispatch_data = data;
1536         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1537         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1538         enum hctx_type type = hctx->type;
1539
1540         spin_lock(&ctx->lock);
1541         if (!list_empty(&ctx->rq_lists[type])) {
1542                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1543                 list_del_init(&dispatch_data->rq->queuelist);
1544                 if (list_empty(&ctx->rq_lists[type]))
1545                         sbitmap_clear_bit(sb, bitnr);
1546         }
1547         spin_unlock(&ctx->lock);
1548
1549         return !dispatch_data->rq;
1550 }
1551
1552 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1553                                         struct blk_mq_ctx *start)
1554 {
1555         unsigned off = start ? start->index_hw[hctx->type] : 0;
1556         struct dispatch_rq_data data = {
1557                 .hctx = hctx,
1558                 .rq   = NULL,
1559         };
1560
1561         __sbitmap_for_each_set(&hctx->ctx_map, off,
1562                                dispatch_rq_from_ctx, &data);
1563
1564         return data.rq;
1565 }
1566
1567 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1568 {
1569         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1570         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1571         int tag;
1572
1573         blk_mq_tag_busy(rq->mq_hctx);
1574
1575         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1576                 bt = &rq->mq_hctx->tags->breserved_tags;
1577                 tag_offset = 0;
1578         } else {
1579                 if (!hctx_may_queue(rq->mq_hctx, bt))
1580                         return false;
1581         }
1582
1583         tag = __sbitmap_queue_get(bt);
1584         if (tag == BLK_MQ_NO_TAG)
1585                 return false;
1586
1587         rq->tag = tag + tag_offset;
1588         return true;
1589 }
1590
1591 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1592 {
1593         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1594                 return false;
1595
1596         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1597                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1598                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1599                 __blk_mq_inc_active_requests(hctx);
1600         }
1601         hctx->tags->rqs[rq->tag] = rq;
1602         return true;
1603 }
1604
1605 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1606                                 int flags, void *key)
1607 {
1608         struct blk_mq_hw_ctx *hctx;
1609
1610         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1611
1612         spin_lock(&hctx->dispatch_wait_lock);
1613         if (!list_empty(&wait->entry)) {
1614                 struct sbitmap_queue *sbq;
1615
1616                 list_del_init(&wait->entry);
1617                 sbq = &hctx->tags->bitmap_tags;
1618                 atomic_dec(&sbq->ws_active);
1619         }
1620         spin_unlock(&hctx->dispatch_wait_lock);
1621
1622         blk_mq_run_hw_queue(hctx, true);
1623         return 1;
1624 }
1625
1626 /*
1627  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1628  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1629  * restart. For both cases, take care to check the condition again after
1630  * marking us as waiting.
1631  */
1632 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1633                                  struct request *rq)
1634 {
1635         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1636         struct wait_queue_head *wq;
1637         wait_queue_entry_t *wait;
1638         bool ret;
1639
1640         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1641                 blk_mq_sched_mark_restart_hctx(hctx);
1642
1643                 /*
1644                  * It's possible that a tag was freed in the window between the
1645                  * allocation failure and adding the hardware queue to the wait
1646                  * queue.
1647                  *
1648                  * Don't clear RESTART here, someone else could have set it.
1649                  * At most this will cost an extra queue run.
1650                  */
1651                 return blk_mq_get_driver_tag(rq);
1652         }
1653
1654         wait = &hctx->dispatch_wait;
1655         if (!list_empty_careful(&wait->entry))
1656                 return false;
1657
1658         wq = &bt_wait_ptr(sbq, hctx)->wait;
1659
1660         spin_lock_irq(&wq->lock);
1661         spin_lock(&hctx->dispatch_wait_lock);
1662         if (!list_empty(&wait->entry)) {
1663                 spin_unlock(&hctx->dispatch_wait_lock);
1664                 spin_unlock_irq(&wq->lock);
1665                 return false;
1666         }
1667
1668         atomic_inc(&sbq->ws_active);
1669         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1670         __add_wait_queue(wq, wait);
1671
1672         /*
1673          * It's possible that a tag was freed in the window between the
1674          * allocation failure and adding the hardware queue to the wait
1675          * queue.
1676          */
1677         ret = blk_mq_get_driver_tag(rq);
1678         if (!ret) {
1679                 spin_unlock(&hctx->dispatch_wait_lock);
1680                 spin_unlock_irq(&wq->lock);
1681                 return false;
1682         }
1683
1684         /*
1685          * We got a tag, remove ourselves from the wait queue to ensure
1686          * someone else gets the wakeup.
1687          */
1688         list_del_init(&wait->entry);
1689         atomic_dec(&sbq->ws_active);
1690         spin_unlock(&hctx->dispatch_wait_lock);
1691         spin_unlock_irq(&wq->lock);
1692
1693         return true;
1694 }
1695
1696 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1697 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1698 /*
1699  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1700  * - EWMA is one simple way to compute running average value
1701  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1702  * - take 4 as factor for avoiding to get too small(0) result, and this
1703  *   factor doesn't matter because EWMA decreases exponentially
1704  */
1705 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1706 {
1707         unsigned int ewma;
1708
1709         ewma = hctx->dispatch_busy;
1710
1711         if (!ewma && !busy)
1712                 return;
1713
1714         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1715         if (busy)
1716                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1717         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1718
1719         hctx->dispatch_busy = ewma;
1720 }
1721
1722 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1723
1724 static void blk_mq_handle_dev_resource(struct request *rq,
1725                                        struct list_head *list)
1726 {
1727         struct request *next =
1728                 list_first_entry_or_null(list, struct request, queuelist);
1729
1730         /*
1731          * If an I/O scheduler has been configured and we got a driver tag for
1732          * the next request already, free it.
1733          */
1734         if (next)
1735                 blk_mq_put_driver_tag(next);
1736
1737         list_add(&rq->queuelist, list);
1738         __blk_mq_requeue_request(rq);
1739 }
1740
1741 static void blk_mq_handle_zone_resource(struct request *rq,
1742                                         struct list_head *zone_list)
1743 {
1744         /*
1745          * If we end up here it is because we cannot dispatch a request to a
1746          * specific zone due to LLD level zone-write locking or other zone
1747          * related resource not being available. In this case, set the request
1748          * aside in zone_list for retrying it later.
1749          */
1750         list_add(&rq->queuelist, zone_list);
1751         __blk_mq_requeue_request(rq);
1752 }
1753
1754 enum prep_dispatch {
1755         PREP_DISPATCH_OK,
1756         PREP_DISPATCH_NO_TAG,
1757         PREP_DISPATCH_NO_BUDGET,
1758 };
1759
1760 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1761                                                   bool need_budget)
1762 {
1763         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1764         int budget_token = -1;
1765
1766         if (need_budget) {
1767                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1768                 if (budget_token < 0) {
1769                         blk_mq_put_driver_tag(rq);
1770                         return PREP_DISPATCH_NO_BUDGET;
1771                 }
1772                 blk_mq_set_rq_budget_token(rq, budget_token);
1773         }
1774
1775         if (!blk_mq_get_driver_tag(rq)) {
1776                 /*
1777                  * The initial allocation attempt failed, so we need to
1778                  * rerun the hardware queue when a tag is freed. The
1779                  * waitqueue takes care of that. If the queue is run
1780                  * before we add this entry back on the dispatch list,
1781                  * we'll re-run it below.
1782                  */
1783                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1784                         /*
1785                          * All budgets not got from this function will be put
1786                          * together during handling partial dispatch
1787                          */
1788                         if (need_budget)
1789                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1790                         return PREP_DISPATCH_NO_TAG;
1791                 }
1792         }
1793
1794         return PREP_DISPATCH_OK;
1795 }
1796
1797 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1798 static void blk_mq_release_budgets(struct request_queue *q,
1799                 struct list_head *list)
1800 {
1801         struct request *rq;
1802
1803         list_for_each_entry(rq, list, queuelist) {
1804                 int budget_token = blk_mq_get_rq_budget_token(rq);
1805
1806                 if (budget_token >= 0)
1807                         blk_mq_put_dispatch_budget(q, budget_token);
1808         }
1809 }
1810
1811 /*
1812  * Returns true if we did some work AND can potentially do more.
1813  */
1814 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1815                              unsigned int nr_budgets)
1816 {
1817         enum prep_dispatch prep;
1818         struct request_queue *q = hctx->queue;
1819         struct request *rq, *nxt;
1820         int errors, queued;
1821         blk_status_t ret = BLK_STS_OK;
1822         LIST_HEAD(zone_list);
1823         bool needs_resource = false;
1824
1825         if (list_empty(list))
1826                 return false;
1827
1828         /*
1829          * Now process all the entries, sending them to the driver.
1830          */
1831         errors = queued = 0;
1832         do {
1833                 struct blk_mq_queue_data bd;
1834
1835                 rq = list_first_entry(list, struct request, queuelist);
1836
1837                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1838                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1839                 if (prep != PREP_DISPATCH_OK)
1840                         break;
1841
1842                 list_del_init(&rq->queuelist);
1843
1844                 bd.rq = rq;
1845
1846                 /*
1847                  * Flag last if we have no more requests, or if we have more
1848                  * but can't assign a driver tag to it.
1849                  */
1850                 if (list_empty(list))
1851                         bd.last = true;
1852                 else {
1853                         nxt = list_first_entry(list, struct request, queuelist);
1854                         bd.last = !blk_mq_get_driver_tag(nxt);
1855                 }
1856
1857                 /*
1858                  * once the request is queued to lld, no need to cover the
1859                  * budget any more
1860                  */
1861                 if (nr_budgets)
1862                         nr_budgets--;
1863                 ret = q->mq_ops->queue_rq(hctx, &bd);
1864                 switch (ret) {
1865                 case BLK_STS_OK:
1866                         queued++;
1867                         break;
1868                 case BLK_STS_RESOURCE:
1869                         needs_resource = true;
1870                         fallthrough;
1871                 case BLK_STS_DEV_RESOURCE:
1872                         blk_mq_handle_dev_resource(rq, list);
1873                         goto out;
1874                 case BLK_STS_ZONE_RESOURCE:
1875                         /*
1876                          * Move the request to zone_list and keep going through
1877                          * the dispatch list to find more requests the drive can
1878                          * accept.
1879                          */
1880                         blk_mq_handle_zone_resource(rq, &zone_list);
1881                         needs_resource = true;
1882                         break;
1883                 default:
1884                         errors++;
1885                         blk_mq_end_request(rq, ret);
1886                 }
1887         } while (!list_empty(list));
1888 out:
1889         if (!list_empty(&zone_list))
1890                 list_splice_tail_init(&zone_list, list);
1891
1892         /* If we didn't flush the entire list, we could have told the driver
1893          * there was more coming, but that turned out to be a lie.
1894          */
1895         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1896                 q->mq_ops->commit_rqs(hctx);
1897         /*
1898          * Any items that need requeuing? Stuff them into hctx->dispatch,
1899          * that is where we will continue on next queue run.
1900          */
1901         if (!list_empty(list)) {
1902                 bool needs_restart;
1903                 /* For non-shared tags, the RESTART check will suffice */
1904                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1905                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1906
1907                 if (nr_budgets)
1908                         blk_mq_release_budgets(q, list);
1909
1910                 spin_lock(&hctx->lock);
1911                 list_splice_tail_init(list, &hctx->dispatch);
1912                 spin_unlock(&hctx->lock);
1913
1914                 /*
1915                  * Order adding requests to hctx->dispatch and checking
1916                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1917                  * in blk_mq_sched_restart(). Avoid restart code path to
1918                  * miss the new added requests to hctx->dispatch, meantime
1919                  * SCHED_RESTART is observed here.
1920                  */
1921                 smp_mb();
1922
1923                 /*
1924                  * If SCHED_RESTART was set by the caller of this function and
1925                  * it is no longer set that means that it was cleared by another
1926                  * thread and hence that a queue rerun is needed.
1927                  *
1928                  * If 'no_tag' is set, that means that we failed getting
1929                  * a driver tag with an I/O scheduler attached. If our dispatch
1930                  * waitqueue is no longer active, ensure that we run the queue
1931                  * AFTER adding our entries back to the list.
1932                  *
1933                  * If no I/O scheduler has been configured it is possible that
1934                  * the hardware queue got stopped and restarted before requests
1935                  * were pushed back onto the dispatch list. Rerun the queue to
1936                  * avoid starvation. Notes:
1937                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1938                  *   been stopped before rerunning a queue.
1939                  * - Some but not all block drivers stop a queue before
1940                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1941                  *   and dm-rq.
1942                  *
1943                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1944                  * bit is set, run queue after a delay to avoid IO stalls
1945                  * that could otherwise occur if the queue is idle.  We'll do
1946                  * similar if we couldn't get budget or couldn't lock a zone
1947                  * and SCHED_RESTART is set.
1948                  */
1949                 needs_restart = blk_mq_sched_needs_restart(hctx);
1950                 if (prep == PREP_DISPATCH_NO_BUDGET)
1951                         needs_resource = true;
1952                 if (!needs_restart ||
1953                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1954                         blk_mq_run_hw_queue(hctx, true);
1955                 else if (needs_restart && needs_resource)
1956                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1957
1958                 blk_mq_update_dispatch_busy(hctx, true);
1959                 return false;
1960         } else
1961                 blk_mq_update_dispatch_busy(hctx, false);
1962
1963         return (queued + errors) != 0;
1964 }
1965
1966 /**
1967  * __blk_mq_run_hw_queue - Run a hardware queue.
1968  * @hctx: Pointer to the hardware queue to run.
1969  *
1970  * Send pending requests to the hardware.
1971  */
1972 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1973 {
1974         /*
1975          * We can't run the queue inline with ints disabled. Ensure that
1976          * we catch bad users of this early.
1977          */
1978         WARN_ON_ONCE(in_interrupt());
1979
1980         blk_mq_run_dispatch_ops(hctx->queue,
1981                         blk_mq_sched_dispatch_requests(hctx));
1982 }
1983
1984 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1985 {
1986         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1987
1988         if (cpu >= nr_cpu_ids)
1989                 cpu = cpumask_first(hctx->cpumask);
1990         return cpu;
1991 }
1992
1993 /*
1994  * It'd be great if the workqueue API had a way to pass
1995  * in a mask and had some smarts for more clever placement.
1996  * For now we just round-robin here, switching for every
1997  * BLK_MQ_CPU_WORK_BATCH queued items.
1998  */
1999 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2000 {
2001         bool tried = false;
2002         int next_cpu = hctx->next_cpu;
2003
2004         if (hctx->queue->nr_hw_queues == 1)
2005                 return WORK_CPU_UNBOUND;
2006
2007         if (--hctx->next_cpu_batch <= 0) {
2008 select_cpu:
2009                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2010                                 cpu_online_mask);
2011                 if (next_cpu >= nr_cpu_ids)
2012                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2013                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2014         }
2015
2016         /*
2017          * Do unbound schedule if we can't find a online CPU for this hctx,
2018          * and it should only happen in the path of handling CPU DEAD.
2019          */
2020         if (!cpu_online(next_cpu)) {
2021                 if (!tried) {
2022                         tried = true;
2023                         goto select_cpu;
2024                 }
2025
2026                 /*
2027                  * Make sure to re-select CPU next time once after CPUs
2028                  * in hctx->cpumask become online again.
2029                  */
2030                 hctx->next_cpu = next_cpu;
2031                 hctx->next_cpu_batch = 1;
2032                 return WORK_CPU_UNBOUND;
2033         }
2034
2035         hctx->next_cpu = next_cpu;
2036         return next_cpu;
2037 }
2038
2039 /**
2040  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2041  * @hctx: Pointer to the hardware queue to run.
2042  * @async: If we want to run the queue asynchronously.
2043  * @msecs: Milliseconds of delay to wait before running the queue.
2044  *
2045  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2046  * with a delay of @msecs.
2047  */
2048 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2049                                         unsigned long msecs)
2050 {
2051         if (unlikely(blk_mq_hctx_stopped(hctx)))
2052                 return;
2053
2054         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2055                 int cpu = get_cpu();
2056                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2057                         __blk_mq_run_hw_queue(hctx);
2058                         put_cpu();
2059                         return;
2060                 }
2061
2062                 put_cpu();
2063         }
2064
2065         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2066                                     msecs_to_jiffies(msecs));
2067 }
2068
2069 /**
2070  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2071  * @hctx: Pointer to the hardware queue to run.
2072  * @msecs: Milliseconds of delay to wait before running the queue.
2073  *
2074  * Run a hardware queue asynchronously with a delay of @msecs.
2075  */
2076 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2077 {
2078         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2079 }
2080 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2081
2082 /**
2083  * blk_mq_run_hw_queue - Start to run a hardware queue.
2084  * @hctx: Pointer to the hardware queue to run.
2085  * @async: If we want to run the queue asynchronously.
2086  *
2087  * Check if the request queue is not in a quiesced state and if there are
2088  * pending requests to be sent. If this is true, run the queue to send requests
2089  * to hardware.
2090  */
2091 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2092 {
2093         bool need_run;
2094
2095         /*
2096          * When queue is quiesced, we may be switching io scheduler, or
2097          * updating nr_hw_queues, or other things, and we can't run queue
2098          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2099          *
2100          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2101          * quiesced.
2102          */
2103         __blk_mq_run_dispatch_ops(hctx->queue, false,
2104                 need_run = !blk_queue_quiesced(hctx->queue) &&
2105                 blk_mq_hctx_has_pending(hctx));
2106
2107         if (need_run)
2108                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2109 }
2110 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2111
2112 /*
2113  * Is the request queue handled by an IO scheduler that does not respect
2114  * hardware queues when dispatching?
2115  */
2116 static bool blk_mq_has_sqsched(struct request_queue *q)
2117 {
2118         struct elevator_queue *e = q->elevator;
2119
2120         if (e && e->type->ops.dispatch_request &&
2121             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
2122                 return true;
2123         return false;
2124 }
2125
2126 /*
2127  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2128  * scheduler.
2129  */
2130 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2131 {
2132         struct blk_mq_hw_ctx *hctx;
2133
2134         /*
2135          * If the IO scheduler does not respect hardware queues when
2136          * dispatching, we just don't bother with multiple HW queues and
2137          * dispatch from hctx for the current CPU since running multiple queues
2138          * just causes lock contention inside the scheduler and pointless cache
2139          * bouncing.
2140          */
2141         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
2142                                      raw_smp_processor_id());
2143         if (!blk_mq_hctx_stopped(hctx))
2144                 return hctx;
2145         return NULL;
2146 }
2147
2148 /**
2149  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2150  * @q: Pointer to the request queue to run.
2151  * @async: If we want to run the queue asynchronously.
2152  */
2153 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2154 {
2155         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2156         unsigned long i;
2157
2158         sq_hctx = NULL;
2159         if (blk_mq_has_sqsched(q))
2160                 sq_hctx = blk_mq_get_sq_hctx(q);
2161         queue_for_each_hw_ctx(q, hctx, i) {
2162                 if (blk_mq_hctx_stopped(hctx))
2163                         continue;
2164                 /*
2165                  * Dispatch from this hctx either if there's no hctx preferred
2166                  * by IO scheduler or if it has requests that bypass the
2167                  * scheduler.
2168                  */
2169                 if (!sq_hctx || sq_hctx == hctx ||
2170                     !list_empty_careful(&hctx->dispatch))
2171                         blk_mq_run_hw_queue(hctx, async);
2172         }
2173 }
2174 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2175
2176 /**
2177  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2178  * @q: Pointer to the request queue to run.
2179  * @msecs: Milliseconds of delay to wait before running the queues.
2180  */
2181 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2182 {
2183         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2184         unsigned long i;
2185
2186         sq_hctx = NULL;
2187         if (blk_mq_has_sqsched(q))
2188                 sq_hctx = blk_mq_get_sq_hctx(q);
2189         queue_for_each_hw_ctx(q, hctx, i) {
2190                 if (blk_mq_hctx_stopped(hctx))
2191                         continue;
2192                 /*
2193                  * If there is already a run_work pending, leave the
2194                  * pending delay untouched. Otherwise, a hctx can stall
2195                  * if another hctx is re-delaying the other's work
2196                  * before the work executes.
2197                  */
2198                 if (delayed_work_pending(&hctx->run_work))
2199                         continue;
2200                 /*
2201                  * Dispatch from this hctx either if there's no hctx preferred
2202                  * by IO scheduler or if it has requests that bypass the
2203                  * scheduler.
2204                  */
2205                 if (!sq_hctx || sq_hctx == hctx ||
2206                     !list_empty_careful(&hctx->dispatch))
2207                         blk_mq_delay_run_hw_queue(hctx, msecs);
2208         }
2209 }
2210 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2211
2212 /**
2213  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2214  * @q: request queue.
2215  *
2216  * The caller is responsible for serializing this function against
2217  * blk_mq_{start,stop}_hw_queue().
2218  */
2219 bool blk_mq_queue_stopped(struct request_queue *q)
2220 {
2221         struct blk_mq_hw_ctx *hctx;
2222         unsigned long i;
2223
2224         queue_for_each_hw_ctx(q, hctx, i)
2225                 if (blk_mq_hctx_stopped(hctx))
2226                         return true;
2227
2228         return false;
2229 }
2230 EXPORT_SYMBOL(blk_mq_queue_stopped);
2231
2232 /*
2233  * This function is often used for pausing .queue_rq() by driver when
2234  * there isn't enough resource or some conditions aren't satisfied, and
2235  * BLK_STS_RESOURCE is usually returned.
2236  *
2237  * We do not guarantee that dispatch can be drained or blocked
2238  * after blk_mq_stop_hw_queue() returns. Please use
2239  * blk_mq_quiesce_queue() for that requirement.
2240  */
2241 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2242 {
2243         cancel_delayed_work(&hctx->run_work);
2244
2245         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2246 }
2247 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2248
2249 /*
2250  * This function is often used for pausing .queue_rq() by driver when
2251  * there isn't enough resource or some conditions aren't satisfied, and
2252  * BLK_STS_RESOURCE is usually returned.
2253  *
2254  * We do not guarantee that dispatch can be drained or blocked
2255  * after blk_mq_stop_hw_queues() returns. Please use
2256  * blk_mq_quiesce_queue() for that requirement.
2257  */
2258 void blk_mq_stop_hw_queues(struct request_queue *q)
2259 {
2260         struct blk_mq_hw_ctx *hctx;
2261         unsigned long i;
2262
2263         queue_for_each_hw_ctx(q, hctx, i)
2264                 blk_mq_stop_hw_queue(hctx);
2265 }
2266 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2267
2268 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2269 {
2270         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2271
2272         blk_mq_run_hw_queue(hctx, false);
2273 }
2274 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2275
2276 void blk_mq_start_hw_queues(struct request_queue *q)
2277 {
2278         struct blk_mq_hw_ctx *hctx;
2279         unsigned long i;
2280
2281         queue_for_each_hw_ctx(q, hctx, i)
2282                 blk_mq_start_hw_queue(hctx);
2283 }
2284 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2285
2286 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2287 {
2288         if (!blk_mq_hctx_stopped(hctx))
2289                 return;
2290
2291         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2292         blk_mq_run_hw_queue(hctx, async);
2293 }
2294 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2295
2296 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2297 {
2298         struct blk_mq_hw_ctx *hctx;
2299         unsigned long i;
2300
2301         queue_for_each_hw_ctx(q, hctx, i)
2302                 blk_mq_start_stopped_hw_queue(hctx, async);
2303 }
2304 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2305
2306 static void blk_mq_run_work_fn(struct work_struct *work)
2307 {
2308         struct blk_mq_hw_ctx *hctx;
2309
2310         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2311
2312         /*
2313          * If we are stopped, don't run the queue.
2314          */
2315         if (blk_mq_hctx_stopped(hctx))
2316                 return;
2317
2318         __blk_mq_run_hw_queue(hctx);
2319 }
2320
2321 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2322                                             struct request *rq,
2323                                             bool at_head)
2324 {
2325         struct blk_mq_ctx *ctx = rq->mq_ctx;
2326         enum hctx_type type = hctx->type;
2327
2328         lockdep_assert_held(&ctx->lock);
2329
2330         trace_block_rq_insert(rq);
2331
2332         if (at_head)
2333                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2334         else
2335                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2336 }
2337
2338 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2339                              bool at_head)
2340 {
2341         struct blk_mq_ctx *ctx = rq->mq_ctx;
2342
2343         lockdep_assert_held(&ctx->lock);
2344
2345         __blk_mq_insert_req_list(hctx, rq, at_head);
2346         blk_mq_hctx_mark_pending(hctx, ctx);
2347 }
2348
2349 /**
2350  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2351  * @rq: Pointer to request to be inserted.
2352  * @at_head: true if the request should be inserted at the head of the list.
2353  * @run_queue: If we should run the hardware queue after inserting the request.
2354  *
2355  * Should only be used carefully, when the caller knows we want to
2356  * bypass a potential IO scheduler on the target device.
2357  */
2358 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2359                                   bool run_queue)
2360 {
2361         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2362
2363         spin_lock(&hctx->lock);
2364         if (at_head)
2365                 list_add(&rq->queuelist, &hctx->dispatch);
2366         else
2367                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2368         spin_unlock(&hctx->lock);
2369
2370         if (run_queue)
2371                 blk_mq_run_hw_queue(hctx, false);
2372 }
2373
2374 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2375                             struct list_head *list)
2376
2377 {
2378         struct request *rq;
2379         enum hctx_type type = hctx->type;
2380
2381         /*
2382          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2383          * offline now
2384          */
2385         list_for_each_entry(rq, list, queuelist) {
2386                 BUG_ON(rq->mq_ctx != ctx);
2387                 trace_block_rq_insert(rq);
2388         }
2389
2390         spin_lock(&ctx->lock);
2391         list_splice_tail_init(list, &ctx->rq_lists[type]);
2392         blk_mq_hctx_mark_pending(hctx, ctx);
2393         spin_unlock(&ctx->lock);
2394 }
2395
2396 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2397                               bool from_schedule)
2398 {
2399         if (hctx->queue->mq_ops->commit_rqs) {
2400                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2401                 hctx->queue->mq_ops->commit_rqs(hctx);
2402         }
2403         *queued = 0;
2404 }
2405
2406 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2407                 unsigned int nr_segs)
2408 {
2409         int err;
2410
2411         if (bio->bi_opf & REQ_RAHEAD)
2412                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2413
2414         rq->__sector = bio->bi_iter.bi_sector;
2415         blk_rq_bio_prep(rq, bio, nr_segs);
2416
2417         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2418         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2419         WARN_ON_ONCE(err);
2420
2421         blk_account_io_start(rq);
2422 }
2423
2424 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2425                                             struct request *rq, bool last)
2426 {
2427         struct request_queue *q = rq->q;
2428         struct blk_mq_queue_data bd = {
2429                 .rq = rq,
2430                 .last = last,
2431         };
2432         blk_status_t ret;
2433
2434         /*
2435          * For OK queue, we are done. For error, caller may kill it.
2436          * Any other error (busy), just add it to our list as we
2437          * previously would have done.
2438          */
2439         ret = q->mq_ops->queue_rq(hctx, &bd);
2440         switch (ret) {
2441         case BLK_STS_OK:
2442                 blk_mq_update_dispatch_busy(hctx, false);
2443                 break;
2444         case BLK_STS_RESOURCE:
2445         case BLK_STS_DEV_RESOURCE:
2446                 blk_mq_update_dispatch_busy(hctx, true);
2447                 __blk_mq_requeue_request(rq);
2448                 break;
2449         default:
2450                 blk_mq_update_dispatch_busy(hctx, false);
2451                 break;
2452         }
2453
2454         return ret;
2455 }
2456
2457 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2458                                                 struct request *rq,
2459                                                 bool bypass_insert, bool last)
2460 {
2461         struct request_queue *q = rq->q;
2462         bool run_queue = true;
2463         int budget_token;
2464
2465         /*
2466          * RCU or SRCU read lock is needed before checking quiesced flag.
2467          *
2468          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2469          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2470          * and avoid driver to try to dispatch again.
2471          */
2472         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2473                 run_queue = false;
2474                 bypass_insert = false;
2475                 goto insert;
2476         }
2477
2478         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2479                 goto insert;
2480
2481         budget_token = blk_mq_get_dispatch_budget(q);
2482         if (budget_token < 0)
2483                 goto insert;
2484
2485         blk_mq_set_rq_budget_token(rq, budget_token);
2486
2487         if (!blk_mq_get_driver_tag(rq)) {
2488                 blk_mq_put_dispatch_budget(q, budget_token);
2489                 goto insert;
2490         }
2491
2492         return __blk_mq_issue_directly(hctx, rq, last);
2493 insert:
2494         if (bypass_insert)
2495                 return BLK_STS_RESOURCE;
2496
2497         blk_mq_sched_insert_request(rq, false, run_queue, false);
2498
2499         return BLK_STS_OK;
2500 }
2501
2502 /**
2503  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2504  * @hctx: Pointer of the associated hardware queue.
2505  * @rq: Pointer to request to be sent.
2506  *
2507  * If the device has enough resources to accept a new request now, send the
2508  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2509  * we can try send it another time in the future. Requests inserted at this
2510  * queue have higher priority.
2511  */
2512 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2513                 struct request *rq)
2514 {
2515         blk_status_t ret =
2516                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2517
2518         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2519                 blk_mq_request_bypass_insert(rq, false, true);
2520         else if (ret != BLK_STS_OK)
2521                 blk_mq_end_request(rq, ret);
2522 }
2523
2524 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2525 {
2526         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2527 }
2528
2529 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2530 {
2531         struct blk_mq_hw_ctx *hctx = NULL;
2532         struct request *rq;
2533         int queued = 0;
2534         int errors = 0;
2535
2536         while ((rq = rq_list_pop(&plug->mq_list))) {
2537                 bool last = rq_list_empty(plug->mq_list);
2538                 blk_status_t ret;
2539
2540                 if (hctx != rq->mq_hctx) {
2541                         if (hctx)
2542                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2543                         hctx = rq->mq_hctx;
2544                 }
2545
2546                 ret = blk_mq_request_issue_directly(rq, last);
2547                 switch (ret) {
2548                 case BLK_STS_OK:
2549                         queued++;
2550                         break;
2551                 case BLK_STS_RESOURCE:
2552                 case BLK_STS_DEV_RESOURCE:
2553                         blk_mq_request_bypass_insert(rq, false, last);
2554                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2555                         return;
2556                 default:
2557                         blk_mq_end_request(rq, ret);
2558                         errors++;
2559                         break;
2560                 }
2561         }
2562
2563         /*
2564          * If we didn't flush the entire list, we could have told the driver
2565          * there was more coming, but that turned out to be a lie.
2566          */
2567         if (errors)
2568                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2569 }
2570
2571 static void __blk_mq_flush_plug_list(struct request_queue *q,
2572                                      struct blk_plug *plug)
2573 {
2574         if (blk_queue_quiesced(q))
2575                 return;
2576         q->mq_ops->queue_rqs(&plug->mq_list);
2577 }
2578
2579 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2580 {
2581         struct blk_mq_hw_ctx *this_hctx = NULL;
2582         struct blk_mq_ctx *this_ctx = NULL;
2583         struct request *requeue_list = NULL;
2584         unsigned int depth = 0;
2585         LIST_HEAD(list);
2586
2587         do {
2588                 struct request *rq = rq_list_pop(&plug->mq_list);
2589
2590                 if (!this_hctx) {
2591                         this_hctx = rq->mq_hctx;
2592                         this_ctx = rq->mq_ctx;
2593                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2594                         rq_list_add(&requeue_list, rq);
2595                         continue;
2596                 }
2597                 list_add_tail(&rq->queuelist, &list);
2598                 depth++;
2599         } while (!rq_list_empty(plug->mq_list));
2600
2601         plug->mq_list = requeue_list;
2602         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2603         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2604 }
2605
2606 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2607 {
2608         struct request *rq;
2609
2610         if (rq_list_empty(plug->mq_list))
2611                 return;
2612         plug->rq_count = 0;
2613
2614         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2615                 struct request_queue *q;
2616
2617                 rq = rq_list_peek(&plug->mq_list);
2618                 q = rq->q;
2619
2620                 /*
2621                  * Peek first request and see if we have a ->queue_rqs() hook.
2622                  * If we do, we can dispatch the whole plug list in one go. We
2623                  * already know at this point that all requests belong to the
2624                  * same queue, caller must ensure that's the case.
2625                  *
2626                  * Since we pass off the full list to the driver at this point,
2627                  * we do not increment the active request count for the queue.
2628                  * Bypass shared tags for now because of that.
2629                  */
2630                 if (q->mq_ops->queue_rqs &&
2631                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2632                         blk_mq_run_dispatch_ops(q,
2633                                 __blk_mq_flush_plug_list(q, plug));
2634                         if (rq_list_empty(plug->mq_list))
2635                                 return;
2636                 }
2637
2638                 blk_mq_run_dispatch_ops(q,
2639                                 blk_mq_plug_issue_direct(plug, false));
2640                 if (rq_list_empty(plug->mq_list))
2641                         return;
2642         }
2643
2644         do {
2645                 blk_mq_dispatch_plug_list(plug, from_schedule);
2646         } while (!rq_list_empty(plug->mq_list));
2647 }
2648
2649 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2650                 struct list_head *list)
2651 {
2652         int queued = 0;
2653         int errors = 0;
2654
2655         while (!list_empty(list)) {
2656                 blk_status_t ret;
2657                 struct request *rq = list_first_entry(list, struct request,
2658                                 queuelist);
2659
2660                 list_del_init(&rq->queuelist);
2661                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2662                 if (ret != BLK_STS_OK) {
2663                         if (ret == BLK_STS_RESOURCE ||
2664                                         ret == BLK_STS_DEV_RESOURCE) {
2665                                 blk_mq_request_bypass_insert(rq, false,
2666                                                         list_empty(list));
2667                                 break;
2668                         }
2669                         blk_mq_end_request(rq, ret);
2670                         errors++;
2671                 } else
2672                         queued++;
2673         }
2674
2675         /*
2676          * If we didn't flush the entire list, we could have told
2677          * the driver there was more coming, but that turned out to
2678          * be a lie.
2679          */
2680         if ((!list_empty(list) || errors) &&
2681              hctx->queue->mq_ops->commit_rqs && queued)
2682                 hctx->queue->mq_ops->commit_rqs(hctx);
2683 }
2684
2685 /*
2686  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2687  * queues. This is important for md arrays to benefit from merging
2688  * requests.
2689  */
2690 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2691 {
2692         if (plug->multiple_queues)
2693                 return BLK_MAX_REQUEST_COUNT * 2;
2694         return BLK_MAX_REQUEST_COUNT;
2695 }
2696
2697 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2698 {
2699         struct request *last = rq_list_peek(&plug->mq_list);
2700
2701         if (!plug->rq_count) {
2702                 trace_block_plug(rq->q);
2703         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
2704                    (!blk_queue_nomerges(rq->q) &&
2705                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2706                 blk_mq_flush_plug_list(plug, false);
2707                 trace_block_plug(rq->q);
2708         }
2709
2710         if (!plug->multiple_queues && last && last->q != rq->q)
2711                 plug->multiple_queues = true;
2712         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2713                 plug->has_elevator = true;
2714         rq->rq_next = NULL;
2715         rq_list_add(&plug->mq_list, rq);
2716         plug->rq_count++;
2717 }
2718
2719 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2720                                      struct bio *bio, unsigned int nr_segs)
2721 {
2722         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2723                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2724                         return true;
2725                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2726                         return true;
2727         }
2728         return false;
2729 }
2730
2731 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2732                                                struct blk_plug *plug,
2733                                                struct bio *bio,
2734                                                unsigned int nsegs)
2735 {
2736         struct blk_mq_alloc_data data = {
2737                 .q              = q,
2738                 .nr_tags        = 1,
2739                 .cmd_flags      = bio->bi_opf,
2740         };
2741         struct request *rq;
2742
2743         if (unlikely(bio_queue_enter(bio)))
2744                 return NULL;
2745
2746         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2747                 goto queue_exit;
2748
2749         rq_qos_throttle(q, bio);
2750
2751         if (plug) {
2752                 data.nr_tags = plug->nr_ios;
2753                 plug->nr_ios = 1;
2754                 data.cached_rq = &plug->cached_rq;
2755         }
2756
2757         rq = __blk_mq_alloc_requests(&data);
2758         if (rq)
2759                 return rq;
2760         rq_qos_cleanup(q, bio);
2761         if (bio->bi_opf & REQ_NOWAIT)
2762                 bio_wouldblock_error(bio);
2763 queue_exit:
2764         blk_queue_exit(q);
2765         return NULL;
2766 }
2767
2768 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2769                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2770 {
2771         struct request *rq;
2772
2773         if (!plug)
2774                 return NULL;
2775         rq = rq_list_peek(&plug->cached_rq);
2776         if (!rq || rq->q != q)
2777                 return NULL;
2778
2779         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2780                 *bio = NULL;
2781                 return NULL;
2782         }
2783
2784         rq_qos_throttle(q, *bio);
2785
2786         if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2787                 return NULL;
2788         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2789                 return NULL;
2790
2791         rq->cmd_flags = (*bio)->bi_opf;
2792         plug->cached_rq = rq_list_next(rq);
2793         INIT_LIST_HEAD(&rq->queuelist);
2794         return rq;
2795 }
2796
2797 /**
2798  * blk_mq_submit_bio - Create and send a request to block device.
2799  * @bio: Bio pointer.
2800  *
2801  * Builds up a request structure from @q and @bio and send to the device. The
2802  * request may not be queued directly to hardware if:
2803  * * This request can be merged with another one
2804  * * We want to place request at plug queue for possible future merging
2805  * * There is an IO scheduler active at this queue
2806  *
2807  * It will not queue the request if there is an error with the bio, or at the
2808  * request creation.
2809  */
2810 void blk_mq_submit_bio(struct bio *bio)
2811 {
2812         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2813         struct blk_plug *plug = blk_mq_plug(q, bio);
2814         const int is_sync = op_is_sync(bio->bi_opf);
2815         struct request *rq;
2816         unsigned int nr_segs = 1;
2817         blk_status_t ret;
2818
2819         blk_queue_bounce(q, &bio);
2820         if (blk_may_split(q, bio))
2821                 __blk_queue_split(q, &bio, &nr_segs);
2822
2823         if (!bio_integrity_prep(bio))
2824                 return;
2825
2826         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2827         if (!rq) {
2828                 if (!bio)
2829                         return;
2830                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2831                 if (unlikely(!rq))
2832                         return;
2833         }
2834
2835         trace_block_getrq(bio);
2836
2837         rq_qos_track(q, rq, bio);
2838
2839         blk_mq_bio_to_request(rq, bio, nr_segs);
2840
2841         ret = blk_crypto_init_request(rq);
2842         if (ret != BLK_STS_OK) {
2843                 bio->bi_status = ret;
2844                 bio_endio(bio);
2845                 blk_mq_free_request(rq);
2846                 return;
2847         }
2848
2849         if (op_is_flush(bio->bi_opf)) {
2850                 blk_insert_flush(rq);
2851                 return;
2852         }
2853
2854         if (plug)
2855                 blk_add_rq_to_plug(plug, rq);
2856         else if ((rq->rq_flags & RQF_ELV) ||
2857                  (rq->mq_hctx->dispatch_busy &&
2858                   (q->nr_hw_queues == 1 || !is_sync)))
2859                 blk_mq_sched_insert_request(rq, false, true, true);
2860         else
2861                 blk_mq_run_dispatch_ops(rq->q,
2862                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2863 }
2864
2865 #ifdef CONFIG_BLK_MQ_STACKING
2866 /**
2867  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2868  * @rq: the request being queued
2869  */
2870 blk_status_t blk_insert_cloned_request(struct request *rq)
2871 {
2872         struct request_queue *q = rq->q;
2873         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2874         blk_status_t ret;
2875
2876         if (blk_rq_sectors(rq) > max_sectors) {
2877                 /*
2878                  * SCSI device does not have a good way to return if
2879                  * Write Same/Zero is actually supported. If a device rejects
2880                  * a non-read/write command (discard, write same,etc.) the
2881                  * low-level device driver will set the relevant queue limit to
2882                  * 0 to prevent blk-lib from issuing more of the offending
2883                  * operations. Commands queued prior to the queue limit being
2884                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2885                  * errors being propagated to upper layers.
2886                  */
2887                 if (max_sectors == 0)
2888                         return BLK_STS_NOTSUPP;
2889
2890                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2891                         __func__, blk_rq_sectors(rq), max_sectors);
2892                 return BLK_STS_IOERR;
2893         }
2894
2895         /*
2896          * The queue settings related to segment counting may differ from the
2897          * original queue.
2898          */
2899         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2900         if (rq->nr_phys_segments > queue_max_segments(q)) {
2901                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2902                         __func__, rq->nr_phys_segments, queue_max_segments(q));
2903                 return BLK_STS_IOERR;
2904         }
2905
2906         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2907                 return BLK_STS_IOERR;
2908
2909         if (blk_crypto_insert_cloned_request(rq))
2910                 return BLK_STS_IOERR;
2911
2912         blk_account_io_start(rq);
2913
2914         /*
2915          * Since we have a scheduler attached on the top device,
2916          * bypass a potential scheduler on the bottom device for
2917          * insert.
2918          */
2919         blk_mq_run_dispatch_ops(q,
2920                         ret = blk_mq_request_issue_directly(rq, true));
2921         if (ret)
2922                 blk_account_io_done(rq, ktime_get_ns());
2923         return ret;
2924 }
2925 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2926
2927 /**
2928  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2929  * @rq: the clone request to be cleaned up
2930  *
2931  * Description:
2932  *     Free all bios in @rq for a cloned request.
2933  */
2934 void blk_rq_unprep_clone(struct request *rq)
2935 {
2936         struct bio *bio;
2937
2938         while ((bio = rq->bio) != NULL) {
2939                 rq->bio = bio->bi_next;
2940
2941                 bio_put(bio);
2942         }
2943 }
2944 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2945
2946 /**
2947  * blk_rq_prep_clone - Helper function to setup clone request
2948  * @rq: the request to be setup
2949  * @rq_src: original request to be cloned
2950  * @bs: bio_set that bios for clone are allocated from
2951  * @gfp_mask: memory allocation mask for bio
2952  * @bio_ctr: setup function to be called for each clone bio.
2953  *           Returns %0 for success, non %0 for failure.
2954  * @data: private data to be passed to @bio_ctr
2955  *
2956  * Description:
2957  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2958  *     Also, pages which the original bios are pointing to are not copied
2959  *     and the cloned bios just point same pages.
2960  *     So cloned bios must be completed before original bios, which means
2961  *     the caller must complete @rq before @rq_src.
2962  */
2963 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2964                       struct bio_set *bs, gfp_t gfp_mask,
2965                       int (*bio_ctr)(struct bio *, struct bio *, void *),
2966                       void *data)
2967 {
2968         struct bio *bio, *bio_src;
2969
2970         if (!bs)
2971                 bs = &fs_bio_set;
2972
2973         __rq_for_each_bio(bio_src, rq_src) {
2974                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2975                                       bs);
2976                 if (!bio)
2977                         goto free_and_out;
2978
2979                 if (bio_ctr && bio_ctr(bio, bio_src, data))
2980                         goto free_and_out;
2981
2982                 if (rq->bio) {
2983                         rq->biotail->bi_next = bio;
2984                         rq->biotail = bio;
2985                 } else {
2986                         rq->bio = rq->biotail = bio;
2987                 }
2988                 bio = NULL;
2989         }
2990
2991         /* Copy attributes of the original request to the clone request. */
2992         rq->__sector = blk_rq_pos(rq_src);
2993         rq->__data_len = blk_rq_bytes(rq_src);
2994         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2995                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2996                 rq->special_vec = rq_src->special_vec;
2997         }
2998         rq->nr_phys_segments = rq_src->nr_phys_segments;
2999         rq->ioprio = rq_src->ioprio;
3000
3001         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3002                 goto free_and_out;
3003
3004         return 0;
3005
3006 free_and_out:
3007         if (bio)
3008                 bio_put(bio);
3009         blk_rq_unprep_clone(rq);
3010
3011         return -ENOMEM;
3012 }
3013 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3014 #endif /* CONFIG_BLK_MQ_STACKING */
3015
3016 /*
3017  * Steal bios from a request and add them to a bio list.
3018  * The request must not have been partially completed before.
3019  */
3020 void blk_steal_bios(struct bio_list *list, struct request *rq)
3021 {
3022         if (rq->bio) {
3023                 if (list->tail)
3024                         list->tail->bi_next = rq->bio;
3025                 else
3026                         list->head = rq->bio;
3027                 list->tail = rq->biotail;
3028
3029                 rq->bio = NULL;
3030                 rq->biotail = NULL;
3031         }
3032
3033         rq->__data_len = 0;
3034 }
3035 EXPORT_SYMBOL_GPL(blk_steal_bios);
3036
3037 static size_t order_to_size(unsigned int order)
3038 {
3039         return (size_t)PAGE_SIZE << order;
3040 }
3041
3042 /* called before freeing request pool in @tags */
3043 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3044                                     struct blk_mq_tags *tags)
3045 {
3046         struct page *page;
3047         unsigned long flags;
3048
3049         /* There is no need to clear a driver tags own mapping */
3050         if (drv_tags == tags)
3051                 return;
3052
3053         list_for_each_entry(page, &tags->page_list, lru) {
3054                 unsigned long start = (unsigned long)page_address(page);
3055                 unsigned long end = start + order_to_size(page->private);
3056                 int i;
3057
3058                 for (i = 0; i < drv_tags->nr_tags; i++) {
3059                         struct request *rq = drv_tags->rqs[i];
3060                         unsigned long rq_addr = (unsigned long)rq;
3061
3062                         if (rq_addr >= start && rq_addr < end) {
3063                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3064                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3065                         }
3066                 }
3067         }
3068
3069         /*
3070          * Wait until all pending iteration is done.
3071          *
3072          * Request reference is cleared and it is guaranteed to be observed
3073          * after the ->lock is released.
3074          */
3075         spin_lock_irqsave(&drv_tags->lock, flags);
3076         spin_unlock_irqrestore(&drv_tags->lock, flags);
3077 }
3078
3079 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3080                      unsigned int hctx_idx)
3081 {
3082         struct blk_mq_tags *drv_tags;
3083         struct page *page;
3084
3085         if (list_empty(&tags->page_list))
3086                 return;
3087
3088         if (blk_mq_is_shared_tags(set->flags))
3089                 drv_tags = set->shared_tags;
3090         else
3091                 drv_tags = set->tags[hctx_idx];
3092
3093         if (tags->static_rqs && set->ops->exit_request) {
3094                 int i;
3095
3096                 for (i = 0; i < tags->nr_tags; i++) {
3097                         struct request *rq = tags->static_rqs[i];
3098
3099                         if (!rq)
3100                                 continue;
3101                         set->ops->exit_request(set, rq, hctx_idx);
3102                         tags->static_rqs[i] = NULL;
3103                 }
3104         }
3105
3106         blk_mq_clear_rq_mapping(drv_tags, tags);
3107
3108         while (!list_empty(&tags->page_list)) {
3109                 page = list_first_entry(&tags->page_list, struct page, lru);
3110                 list_del_init(&page->lru);
3111                 /*
3112                  * Remove kmemleak object previously allocated in
3113                  * blk_mq_alloc_rqs().
3114                  */
3115                 kmemleak_free(page_address(page));
3116                 __free_pages(page, page->private);
3117         }
3118 }
3119
3120 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3121 {
3122         kfree(tags->rqs);
3123         tags->rqs = NULL;
3124         kfree(tags->static_rqs);
3125         tags->static_rqs = NULL;
3126
3127         blk_mq_free_tags(tags);
3128 }
3129
3130 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3131                 unsigned int hctx_idx)
3132 {
3133         int i;
3134
3135         for (i = 0; i < set->nr_maps; i++) {
3136                 unsigned int start = set->map[i].queue_offset;
3137                 unsigned int end = start + set->map[i].nr_queues;
3138
3139                 if (hctx_idx >= start && hctx_idx < end)
3140                         break;
3141         }
3142
3143         if (i >= set->nr_maps)
3144                 i = HCTX_TYPE_DEFAULT;
3145
3146         return i;
3147 }
3148
3149 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3150                 unsigned int hctx_idx)
3151 {
3152         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3153
3154         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3155 }
3156
3157 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3158                                                unsigned int hctx_idx,
3159                                                unsigned int nr_tags,
3160                                                unsigned int reserved_tags)
3161 {
3162         int node = blk_mq_get_hctx_node(set, hctx_idx);
3163         struct blk_mq_tags *tags;
3164
3165         if (node == NUMA_NO_NODE)
3166                 node = set->numa_node;
3167
3168         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3169                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3170         if (!tags)
3171                 return NULL;
3172
3173         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3174                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3175                                  node);
3176         if (!tags->rqs) {
3177                 blk_mq_free_tags(tags);
3178                 return NULL;
3179         }
3180
3181         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3182                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3183                                         node);
3184         if (!tags->static_rqs) {
3185                 kfree(tags->rqs);
3186                 blk_mq_free_tags(tags);
3187                 return NULL;
3188         }
3189
3190         return tags;
3191 }
3192
3193 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3194                                unsigned int hctx_idx, int node)
3195 {
3196         int ret;
3197
3198         if (set->ops->init_request) {
3199                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3200                 if (ret)
3201                         return ret;
3202         }
3203
3204         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3205         return 0;
3206 }
3207
3208 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3209                             struct blk_mq_tags *tags,
3210                             unsigned int hctx_idx, unsigned int depth)
3211 {
3212         unsigned int i, j, entries_per_page, max_order = 4;
3213         int node = blk_mq_get_hctx_node(set, hctx_idx);
3214         size_t rq_size, left;
3215
3216         if (node == NUMA_NO_NODE)
3217                 node = set->numa_node;
3218
3219         INIT_LIST_HEAD(&tags->page_list);
3220
3221         /*
3222          * rq_size is the size of the request plus driver payload, rounded
3223          * to the cacheline size
3224          */
3225         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3226                                 cache_line_size());
3227         left = rq_size * depth;
3228
3229         for (i = 0; i < depth; ) {
3230                 int this_order = max_order;
3231                 struct page *page;
3232                 int to_do;
3233                 void *p;
3234
3235                 while (this_order && left < order_to_size(this_order - 1))
3236                         this_order--;
3237
3238                 do {
3239                         page = alloc_pages_node(node,
3240                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3241                                 this_order);
3242                         if (page)
3243                                 break;
3244                         if (!this_order--)
3245                                 break;
3246                         if (order_to_size(this_order) < rq_size)
3247                                 break;
3248                 } while (1);
3249
3250                 if (!page)
3251                         goto fail;
3252
3253                 page->private = this_order;
3254                 list_add_tail(&page->lru, &tags->page_list);
3255
3256                 p = page_address(page);
3257                 /*
3258                  * Allow kmemleak to scan these pages as they contain pointers
3259                  * to additional allocations like via ops->init_request().
3260                  */
3261                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3262                 entries_per_page = order_to_size(this_order) / rq_size;
3263                 to_do = min(entries_per_page, depth - i);
3264                 left -= to_do * rq_size;
3265                 for (j = 0; j < to_do; j++) {
3266                         struct request *rq = p;
3267
3268                         tags->static_rqs[i] = rq;
3269                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3270                                 tags->static_rqs[i] = NULL;
3271                                 goto fail;
3272                         }
3273
3274                         p += rq_size;
3275                         i++;
3276                 }
3277         }
3278         return 0;
3279
3280 fail:
3281         blk_mq_free_rqs(set, tags, hctx_idx);
3282         return -ENOMEM;
3283 }
3284
3285 struct rq_iter_data {
3286         struct blk_mq_hw_ctx *hctx;
3287         bool has_rq;
3288 };
3289
3290 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3291 {
3292         struct rq_iter_data *iter_data = data;
3293
3294         if (rq->mq_hctx != iter_data->hctx)
3295                 return true;
3296         iter_data->has_rq = true;
3297         return false;
3298 }
3299
3300 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3301 {
3302         struct blk_mq_tags *tags = hctx->sched_tags ?
3303                         hctx->sched_tags : hctx->tags;
3304         struct rq_iter_data data = {
3305                 .hctx   = hctx,
3306         };
3307
3308         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3309         return data.has_rq;
3310 }
3311
3312 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3313                 struct blk_mq_hw_ctx *hctx)
3314 {
3315         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3316                 return false;
3317         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3318                 return false;
3319         return true;
3320 }
3321
3322 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3323 {
3324         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3325                         struct blk_mq_hw_ctx, cpuhp_online);
3326
3327         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3328             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3329                 return 0;
3330
3331         /*
3332          * Prevent new request from being allocated on the current hctx.
3333          *
3334          * The smp_mb__after_atomic() Pairs with the implied barrier in
3335          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3336          * seen once we return from the tag allocator.
3337          */
3338         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3339         smp_mb__after_atomic();
3340
3341         /*
3342          * Try to grab a reference to the queue and wait for any outstanding
3343          * requests.  If we could not grab a reference the queue has been
3344          * frozen and there are no requests.
3345          */
3346         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3347                 while (blk_mq_hctx_has_requests(hctx))
3348                         msleep(5);
3349                 percpu_ref_put(&hctx->queue->q_usage_counter);
3350         }
3351
3352         return 0;
3353 }
3354
3355 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3356 {
3357         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3358                         struct blk_mq_hw_ctx, cpuhp_online);
3359
3360         if (cpumask_test_cpu(cpu, hctx->cpumask))
3361                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3362         return 0;
3363 }
3364
3365 /*
3366  * 'cpu' is going away. splice any existing rq_list entries from this
3367  * software queue to the hw queue dispatch list, and ensure that it
3368  * gets run.
3369  */
3370 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3371 {
3372         struct blk_mq_hw_ctx *hctx;
3373         struct blk_mq_ctx *ctx;
3374         LIST_HEAD(tmp);
3375         enum hctx_type type;
3376
3377         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3378         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3379                 return 0;
3380
3381         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3382         type = hctx->type;
3383
3384         spin_lock(&ctx->lock);
3385         if (!list_empty(&ctx->rq_lists[type])) {
3386                 list_splice_init(&ctx->rq_lists[type], &tmp);
3387                 blk_mq_hctx_clear_pending(hctx, ctx);
3388         }
3389         spin_unlock(&ctx->lock);
3390
3391         if (list_empty(&tmp))
3392                 return 0;
3393
3394         spin_lock(&hctx->lock);
3395         list_splice_tail_init(&tmp, &hctx->dispatch);
3396         spin_unlock(&hctx->lock);
3397
3398         blk_mq_run_hw_queue(hctx, true);
3399         return 0;
3400 }
3401
3402 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3403 {
3404         if (!(hctx->flags & BLK_MQ_F_STACKING))
3405                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3406                                                     &hctx->cpuhp_online);
3407         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3408                                             &hctx->cpuhp_dead);
3409 }
3410
3411 /*
3412  * Before freeing hw queue, clearing the flush request reference in
3413  * tags->rqs[] for avoiding potential UAF.
3414  */
3415 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3416                 unsigned int queue_depth, struct request *flush_rq)
3417 {
3418         int i;
3419         unsigned long flags;
3420
3421         /* The hw queue may not be mapped yet */
3422         if (!tags)
3423                 return;
3424
3425         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3426
3427         for (i = 0; i < queue_depth; i++)
3428                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3429
3430         /*
3431          * Wait until all pending iteration is done.
3432          *
3433          * Request reference is cleared and it is guaranteed to be observed
3434          * after the ->lock is released.
3435          */
3436         spin_lock_irqsave(&tags->lock, flags);
3437         spin_unlock_irqrestore(&tags->lock, flags);
3438 }
3439
3440 /* hctx->ctxs will be freed in queue's release handler */
3441 static void blk_mq_exit_hctx(struct request_queue *q,
3442                 struct blk_mq_tag_set *set,
3443                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3444 {
3445         struct request *flush_rq = hctx->fq->flush_rq;
3446
3447         if (blk_mq_hw_queue_mapped(hctx))
3448                 blk_mq_tag_idle(hctx);
3449
3450         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3451                         set->queue_depth, flush_rq);
3452         if (set->ops->exit_request)
3453                 set->ops->exit_request(set, flush_rq, hctx_idx);
3454
3455         if (set->ops->exit_hctx)
3456                 set->ops->exit_hctx(hctx, hctx_idx);
3457
3458         blk_mq_remove_cpuhp(hctx);
3459
3460         xa_erase(&q->hctx_table, hctx_idx);
3461
3462         spin_lock(&q->unused_hctx_lock);
3463         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3464         spin_unlock(&q->unused_hctx_lock);
3465 }
3466
3467 static void blk_mq_exit_hw_queues(struct request_queue *q,
3468                 struct blk_mq_tag_set *set, int nr_queue)
3469 {
3470         struct blk_mq_hw_ctx *hctx;
3471         unsigned long i;
3472
3473         queue_for_each_hw_ctx(q, hctx, i) {
3474                 if (i == nr_queue)
3475                         break;
3476                 blk_mq_exit_hctx(q, set, hctx, i);
3477         }
3478 }
3479
3480 static int blk_mq_init_hctx(struct request_queue *q,
3481                 struct blk_mq_tag_set *set,
3482                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3483 {
3484         hctx->queue_num = hctx_idx;
3485
3486         if (!(hctx->flags & BLK_MQ_F_STACKING))
3487                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3488                                 &hctx->cpuhp_online);
3489         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3490
3491         hctx->tags = set->tags[hctx_idx];
3492
3493         if (set->ops->init_hctx &&
3494             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3495                 goto unregister_cpu_notifier;
3496
3497         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3498                                 hctx->numa_node))
3499                 goto exit_hctx;
3500
3501         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3502                 goto exit_flush_rq;
3503
3504         return 0;
3505
3506  exit_flush_rq:
3507         if (set->ops->exit_request)
3508                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3509  exit_hctx:
3510         if (set->ops->exit_hctx)
3511                 set->ops->exit_hctx(hctx, hctx_idx);
3512  unregister_cpu_notifier:
3513         blk_mq_remove_cpuhp(hctx);
3514         return -1;
3515 }
3516
3517 static struct blk_mq_hw_ctx *
3518 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3519                 int node)
3520 {
3521         struct blk_mq_hw_ctx *hctx;
3522         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3523
3524         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3525         if (!hctx)
3526                 goto fail_alloc_hctx;
3527
3528         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3529                 goto free_hctx;
3530
3531         atomic_set(&hctx->nr_active, 0);
3532         if (node == NUMA_NO_NODE)
3533                 node = set->numa_node;
3534         hctx->numa_node = node;
3535
3536         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3537         spin_lock_init(&hctx->lock);
3538         INIT_LIST_HEAD(&hctx->dispatch);
3539         hctx->queue = q;
3540         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3541
3542         INIT_LIST_HEAD(&hctx->hctx_list);
3543
3544         /*
3545          * Allocate space for all possible cpus to avoid allocation at
3546          * runtime
3547          */
3548         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3549                         gfp, node);
3550         if (!hctx->ctxs)
3551                 goto free_cpumask;
3552
3553         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3554                                 gfp, node, false, false))
3555                 goto free_ctxs;
3556         hctx->nr_ctx = 0;
3557
3558         spin_lock_init(&hctx->dispatch_wait_lock);
3559         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3560         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3561
3562         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3563         if (!hctx->fq)
3564                 goto free_bitmap;
3565
3566         blk_mq_hctx_kobj_init(hctx);
3567
3568         return hctx;
3569
3570  free_bitmap:
3571         sbitmap_free(&hctx->ctx_map);
3572  free_ctxs:
3573         kfree(hctx->ctxs);
3574  free_cpumask:
3575         free_cpumask_var(hctx->cpumask);
3576  free_hctx:
3577         kfree(hctx);
3578  fail_alloc_hctx:
3579         return NULL;
3580 }
3581
3582 static void blk_mq_init_cpu_queues(struct request_queue *q,
3583                                    unsigned int nr_hw_queues)
3584 {
3585         struct blk_mq_tag_set *set = q->tag_set;
3586         unsigned int i, j;
3587
3588         for_each_possible_cpu(i) {
3589                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3590                 struct blk_mq_hw_ctx *hctx;
3591                 int k;
3592
3593                 __ctx->cpu = i;
3594                 spin_lock_init(&__ctx->lock);
3595                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3596                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3597
3598                 __ctx->queue = q;
3599
3600                 /*
3601                  * Set local node, IFF we have more than one hw queue. If
3602                  * not, we remain on the home node of the device
3603                  */
3604                 for (j = 0; j < set->nr_maps; j++) {
3605                         hctx = blk_mq_map_queue_type(q, j, i);
3606                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3607                                 hctx->numa_node = cpu_to_node(i);
3608                 }
3609         }
3610 }
3611
3612 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3613                                              unsigned int hctx_idx,
3614                                              unsigned int depth)
3615 {
3616         struct blk_mq_tags *tags;
3617         int ret;
3618
3619         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3620         if (!tags)
3621                 return NULL;
3622
3623         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3624         if (ret) {
3625                 blk_mq_free_rq_map(tags);
3626                 return NULL;
3627         }
3628
3629         return tags;
3630 }
3631
3632 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3633                                        int hctx_idx)
3634 {
3635         if (blk_mq_is_shared_tags(set->flags)) {
3636                 set->tags[hctx_idx] = set->shared_tags;
3637
3638                 return true;
3639         }
3640
3641         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3642                                                        set->queue_depth);
3643
3644         return set->tags[hctx_idx];
3645 }
3646
3647 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3648                              struct blk_mq_tags *tags,
3649                              unsigned int hctx_idx)
3650 {
3651         if (tags) {
3652                 blk_mq_free_rqs(set, tags, hctx_idx);
3653                 blk_mq_free_rq_map(tags);
3654         }
3655 }
3656
3657 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3658                                       unsigned int hctx_idx)
3659 {
3660         if (!blk_mq_is_shared_tags(set->flags))
3661                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3662
3663         set->tags[hctx_idx] = NULL;
3664 }
3665
3666 static void blk_mq_map_swqueue(struct request_queue *q)
3667 {
3668         unsigned int j, hctx_idx;
3669         unsigned long i;
3670         struct blk_mq_hw_ctx *hctx;
3671         struct blk_mq_ctx *ctx;
3672         struct blk_mq_tag_set *set = q->tag_set;
3673
3674         queue_for_each_hw_ctx(q, hctx, i) {
3675                 cpumask_clear(hctx->cpumask);
3676                 hctx->nr_ctx = 0;
3677                 hctx->dispatch_from = NULL;
3678         }
3679
3680         /*
3681          * Map software to hardware queues.
3682          *
3683          * If the cpu isn't present, the cpu is mapped to first hctx.
3684          */
3685         for_each_possible_cpu(i) {
3686
3687                 ctx = per_cpu_ptr(q->queue_ctx, i);
3688                 for (j = 0; j < set->nr_maps; j++) {
3689                         if (!set->map[j].nr_queues) {
3690                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3691                                                 HCTX_TYPE_DEFAULT, i);
3692                                 continue;
3693                         }
3694                         hctx_idx = set->map[j].mq_map[i];
3695                         /* unmapped hw queue can be remapped after CPU topo changed */
3696                         if (!set->tags[hctx_idx] &&
3697                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3698                                 /*
3699                                  * If tags initialization fail for some hctx,
3700                                  * that hctx won't be brought online.  In this
3701                                  * case, remap the current ctx to hctx[0] which
3702                                  * is guaranteed to always have tags allocated
3703                                  */
3704                                 set->map[j].mq_map[i] = 0;
3705                         }
3706
3707                         hctx = blk_mq_map_queue_type(q, j, i);
3708                         ctx->hctxs[j] = hctx;
3709                         /*
3710                          * If the CPU is already set in the mask, then we've
3711                          * mapped this one already. This can happen if
3712                          * devices share queues across queue maps.
3713                          */
3714                         if (cpumask_test_cpu(i, hctx->cpumask))
3715                                 continue;
3716
3717                         cpumask_set_cpu(i, hctx->cpumask);
3718                         hctx->type = j;
3719                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3720                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3721
3722                         /*
3723                          * If the nr_ctx type overflows, we have exceeded the
3724                          * amount of sw queues we can support.
3725                          */
3726                         BUG_ON(!hctx->nr_ctx);
3727                 }
3728
3729                 for (; j < HCTX_MAX_TYPES; j++)
3730                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3731                                         HCTX_TYPE_DEFAULT, i);
3732         }
3733
3734         queue_for_each_hw_ctx(q, hctx, i) {
3735                 /*
3736                  * If no software queues are mapped to this hardware queue,
3737                  * disable it and free the request entries.
3738                  */
3739                 if (!hctx->nr_ctx) {
3740                         /* Never unmap queue 0.  We need it as a
3741                          * fallback in case of a new remap fails
3742                          * allocation
3743                          */
3744                         if (i)
3745                                 __blk_mq_free_map_and_rqs(set, i);
3746
3747                         hctx->tags = NULL;
3748                         continue;
3749                 }
3750
3751                 hctx->tags = set->tags[i];
3752                 WARN_ON(!hctx->tags);
3753
3754                 /*
3755                  * Set the map size to the number of mapped software queues.
3756                  * This is more accurate and more efficient than looping
3757                  * over all possibly mapped software queues.
3758                  */
3759                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3760
3761                 /*
3762                  * Initialize batch roundrobin counts
3763                  */
3764                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3765                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3766         }
3767 }
3768
3769 /*
3770  * Caller needs to ensure that we're either frozen/quiesced, or that
3771  * the queue isn't live yet.
3772  */
3773 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3774 {
3775         struct blk_mq_hw_ctx *hctx;
3776         unsigned long i;
3777
3778         queue_for_each_hw_ctx(q, hctx, i) {
3779                 if (shared) {
3780                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3781                 } else {
3782                         blk_mq_tag_idle(hctx);
3783                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3784                 }
3785         }
3786 }
3787
3788 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3789                                          bool shared)
3790 {
3791         struct request_queue *q;
3792
3793         lockdep_assert_held(&set->tag_list_lock);
3794
3795         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3796                 blk_mq_freeze_queue(q);
3797                 queue_set_hctx_shared(q, shared);
3798                 blk_mq_unfreeze_queue(q);
3799         }
3800 }
3801
3802 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3803 {
3804         struct blk_mq_tag_set *set = q->tag_set;
3805
3806         mutex_lock(&set->tag_list_lock);
3807         list_del(&q->tag_set_list);
3808         if (list_is_singular(&set->tag_list)) {
3809                 /* just transitioned to unshared */
3810                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3811                 /* update existing queue */
3812                 blk_mq_update_tag_set_shared(set, false);
3813         }
3814         mutex_unlock(&set->tag_list_lock);
3815         INIT_LIST_HEAD(&q->tag_set_list);
3816 }
3817
3818 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3819                                      struct request_queue *q)
3820 {
3821         mutex_lock(&set->tag_list_lock);
3822
3823         /*
3824          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3825          */
3826         if (!list_empty(&set->tag_list) &&
3827             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3828                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3829                 /* update existing queue */
3830                 blk_mq_update_tag_set_shared(set, true);
3831         }
3832         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3833                 queue_set_hctx_shared(q, true);
3834         list_add_tail(&q->tag_set_list, &set->tag_list);
3835
3836         mutex_unlock(&set->tag_list_lock);
3837 }
3838
3839 /* All allocations will be freed in release handler of q->mq_kobj */
3840 static int blk_mq_alloc_ctxs(struct request_queue *q)
3841 {
3842         struct blk_mq_ctxs *ctxs;
3843         int cpu;
3844
3845         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3846         if (!ctxs)
3847                 return -ENOMEM;
3848
3849         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3850         if (!ctxs->queue_ctx)
3851                 goto fail;
3852
3853         for_each_possible_cpu(cpu) {
3854                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3855                 ctx->ctxs = ctxs;
3856         }
3857
3858         q->mq_kobj = &ctxs->kobj;
3859         q->queue_ctx = ctxs->queue_ctx;
3860
3861         return 0;
3862  fail:
3863         kfree(ctxs);
3864         return -ENOMEM;
3865 }
3866
3867 /*
3868  * It is the actual release handler for mq, but we do it from
3869  * request queue's release handler for avoiding use-after-free
3870  * and headache because q->mq_kobj shouldn't have been introduced,
3871  * but we can't group ctx/kctx kobj without it.
3872  */
3873 void blk_mq_release(struct request_queue *q)
3874 {
3875         struct blk_mq_hw_ctx *hctx, *next;
3876         unsigned long i;
3877
3878         queue_for_each_hw_ctx(q, hctx, i)
3879                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3880
3881         /* all hctx are in .unused_hctx_list now */
3882         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3883                 list_del_init(&hctx->hctx_list);
3884                 kobject_put(&hctx->kobj);
3885         }
3886
3887         xa_destroy(&q->hctx_table);
3888
3889         /*
3890          * release .mq_kobj and sw queue's kobject now because
3891          * both share lifetime with request queue.
3892          */
3893         blk_mq_sysfs_deinit(q);
3894 }
3895
3896 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3897                 void *queuedata)
3898 {
3899         struct request_queue *q;
3900         int ret;
3901
3902         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3903         if (!q)
3904                 return ERR_PTR(-ENOMEM);
3905         q->queuedata = queuedata;
3906         ret = blk_mq_init_allocated_queue(set, q);
3907         if (ret) {
3908                 blk_cleanup_queue(q);
3909                 return ERR_PTR(ret);
3910         }
3911         return q;
3912 }
3913
3914 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3915 {
3916         return blk_mq_init_queue_data(set, NULL);
3917 }
3918 EXPORT_SYMBOL(blk_mq_init_queue);
3919
3920 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3921                 struct lock_class_key *lkclass)
3922 {
3923         struct request_queue *q;
3924         struct gendisk *disk;
3925
3926         q = blk_mq_init_queue_data(set, queuedata);
3927         if (IS_ERR(q))
3928                 return ERR_CAST(q);
3929
3930         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3931         if (!disk) {
3932                 blk_cleanup_queue(q);
3933                 return ERR_PTR(-ENOMEM);
3934         }
3935         return disk;
3936 }
3937 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3938
3939 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3940                 struct blk_mq_tag_set *set, struct request_queue *q,
3941                 int hctx_idx, int node)
3942 {
3943         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3944
3945         /* reuse dead hctx first */
3946         spin_lock(&q->unused_hctx_lock);
3947         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3948                 if (tmp->numa_node == node) {
3949                         hctx = tmp;
3950                         break;
3951                 }
3952         }
3953         if (hctx)
3954                 list_del_init(&hctx->hctx_list);
3955         spin_unlock(&q->unused_hctx_lock);
3956
3957         if (!hctx)
3958                 hctx = blk_mq_alloc_hctx(q, set, node);
3959         if (!hctx)
3960                 goto fail;
3961
3962         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3963                 goto free_hctx;
3964
3965         return hctx;
3966
3967  free_hctx:
3968         kobject_put(&hctx->kobj);
3969  fail:
3970         return NULL;
3971 }
3972
3973 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3974                                                 struct request_queue *q)
3975 {
3976         struct blk_mq_hw_ctx *hctx;
3977         unsigned long i, j;
3978
3979         /* protect against switching io scheduler  */
3980         mutex_lock(&q->sysfs_lock);
3981         for (i = 0; i < set->nr_hw_queues; i++) {
3982                 int old_node;
3983                 int node = blk_mq_get_hctx_node(set, i);
3984                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
3985
3986                 if (old_hctx) {
3987                         old_node = old_hctx->numa_node;
3988                         blk_mq_exit_hctx(q, set, old_hctx, i);
3989                 }
3990
3991                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
3992                         if (!old_hctx)
3993                                 break;
3994                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
3995                                         node, old_node);
3996                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
3997                         WARN_ON_ONCE(!hctx);
3998                 }
3999         }
4000         /*
4001          * Increasing nr_hw_queues fails. Free the newly allocated
4002          * hctxs and keep the previous q->nr_hw_queues.
4003          */
4004         if (i != set->nr_hw_queues) {
4005                 j = q->nr_hw_queues;
4006         } else {
4007                 j = i;
4008                 q->nr_hw_queues = set->nr_hw_queues;
4009         }
4010
4011         xa_for_each_start(&q->hctx_table, j, hctx, j)
4012                 blk_mq_exit_hctx(q, set, hctx, j);
4013         mutex_unlock(&q->sysfs_lock);
4014 }
4015
4016 static void blk_mq_update_poll_flag(struct request_queue *q)
4017 {
4018         struct blk_mq_tag_set *set = q->tag_set;
4019
4020         if (set->nr_maps > HCTX_TYPE_POLL &&
4021             set->map[HCTX_TYPE_POLL].nr_queues)
4022                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4023         else
4024                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4025 }
4026
4027 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4028                 struct request_queue *q)
4029 {
4030         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4031                         !!(set->flags & BLK_MQ_F_BLOCKING));
4032
4033         /* mark the queue as mq asap */
4034         q->mq_ops = set->ops;
4035
4036         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4037                                              blk_mq_poll_stats_bkt,
4038                                              BLK_MQ_POLL_STATS_BKTS, q);
4039         if (!q->poll_cb)
4040                 goto err_exit;
4041
4042         if (blk_mq_alloc_ctxs(q))
4043                 goto err_poll;
4044
4045         /* init q->mq_kobj and sw queues' kobjects */
4046         blk_mq_sysfs_init(q);
4047
4048         INIT_LIST_HEAD(&q->unused_hctx_list);
4049         spin_lock_init(&q->unused_hctx_lock);
4050
4051         xa_init(&q->hctx_table);
4052
4053         blk_mq_realloc_hw_ctxs(set, q);
4054         if (!q->nr_hw_queues)
4055                 goto err_hctxs;
4056
4057         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4058         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4059
4060         q->tag_set = set;
4061
4062         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4063         blk_mq_update_poll_flag(q);
4064
4065         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4066         INIT_LIST_HEAD(&q->requeue_list);
4067         spin_lock_init(&q->requeue_lock);
4068
4069         q->nr_requests = set->queue_depth;
4070
4071         /*
4072          * Default to classic polling
4073          */
4074         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4075
4076         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4077         blk_mq_add_queue_tag_set(set, q);
4078         blk_mq_map_swqueue(q);
4079         return 0;
4080
4081 err_hctxs:
4082         xa_destroy(&q->hctx_table);
4083         q->nr_hw_queues = 0;
4084         blk_mq_sysfs_deinit(q);
4085 err_poll:
4086         blk_stat_free_callback(q->poll_cb);
4087         q->poll_cb = NULL;
4088 err_exit:
4089         q->mq_ops = NULL;
4090         return -ENOMEM;
4091 }
4092 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4093
4094 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4095 void blk_mq_exit_queue(struct request_queue *q)
4096 {
4097         struct blk_mq_tag_set *set = q->tag_set;
4098
4099         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4100         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4101         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4102         blk_mq_del_queue_tag_set(q);
4103 }
4104
4105 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4106 {
4107         int i;
4108
4109         if (blk_mq_is_shared_tags(set->flags)) {
4110                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4111                                                 BLK_MQ_NO_HCTX_IDX,
4112                                                 set->queue_depth);
4113                 if (!set->shared_tags)
4114                         return -ENOMEM;
4115         }
4116
4117         for (i = 0; i < set->nr_hw_queues; i++) {
4118                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4119                         goto out_unwind;
4120                 cond_resched();
4121         }
4122
4123         return 0;
4124
4125 out_unwind:
4126         while (--i >= 0)
4127                 __blk_mq_free_map_and_rqs(set, i);
4128
4129         if (blk_mq_is_shared_tags(set->flags)) {
4130                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4131                                         BLK_MQ_NO_HCTX_IDX);
4132         }
4133
4134         return -ENOMEM;
4135 }
4136
4137 /*
4138  * Allocate the request maps associated with this tag_set. Note that this
4139  * may reduce the depth asked for, if memory is tight. set->queue_depth
4140  * will be updated to reflect the allocated depth.
4141  */
4142 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4143 {
4144         unsigned int depth;
4145         int err;
4146
4147         depth = set->queue_depth;
4148         do {
4149                 err = __blk_mq_alloc_rq_maps(set);
4150                 if (!err)
4151                         break;
4152
4153                 set->queue_depth >>= 1;
4154                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4155                         err = -ENOMEM;
4156                         break;
4157                 }
4158         } while (set->queue_depth);
4159
4160         if (!set->queue_depth || err) {
4161                 pr_err("blk-mq: failed to allocate request map\n");
4162                 return -ENOMEM;
4163         }
4164
4165         if (depth != set->queue_depth)
4166                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4167                                                 depth, set->queue_depth);
4168
4169         return 0;
4170 }
4171
4172 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4173 {
4174         /*
4175          * blk_mq_map_queues() and multiple .map_queues() implementations
4176          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4177          * number of hardware queues.
4178          */
4179         if (set->nr_maps == 1)
4180                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4181
4182         if (set->ops->map_queues && !is_kdump_kernel()) {
4183                 int i;
4184
4185                 /*
4186                  * transport .map_queues is usually done in the following
4187                  * way:
4188                  *
4189                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4190                  *      mask = get_cpu_mask(queue)
4191                  *      for_each_cpu(cpu, mask)
4192                  *              set->map[x].mq_map[cpu] = queue;
4193                  * }
4194                  *
4195                  * When we need to remap, the table has to be cleared for
4196                  * killing stale mapping since one CPU may not be mapped
4197                  * to any hw queue.
4198                  */
4199                 for (i = 0; i < set->nr_maps; i++)
4200                         blk_mq_clear_mq_map(&set->map[i]);
4201
4202                 return set->ops->map_queues(set);
4203         } else {
4204                 BUG_ON(set->nr_maps > 1);
4205                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4206         }
4207 }
4208
4209 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4210                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4211 {
4212         struct blk_mq_tags **new_tags;
4213
4214         if (cur_nr_hw_queues >= new_nr_hw_queues)
4215                 return 0;
4216
4217         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4218                                 GFP_KERNEL, set->numa_node);
4219         if (!new_tags)
4220                 return -ENOMEM;
4221
4222         if (set->tags)
4223                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4224                        sizeof(*set->tags));
4225         kfree(set->tags);
4226         set->tags = new_tags;
4227         set->nr_hw_queues = new_nr_hw_queues;
4228
4229         return 0;
4230 }
4231
4232 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4233                                 int new_nr_hw_queues)
4234 {
4235         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4236 }
4237
4238 /*
4239  * Alloc a tag set to be associated with one or more request queues.
4240  * May fail with EINVAL for various error conditions. May adjust the
4241  * requested depth down, if it's too large. In that case, the set
4242  * value will be stored in set->queue_depth.
4243  */
4244 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4245 {
4246         int i, ret;
4247
4248         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4249
4250         if (!set->nr_hw_queues)
4251                 return -EINVAL;
4252         if (!set->queue_depth)
4253                 return -EINVAL;
4254         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4255                 return -EINVAL;
4256
4257         if (!set->ops->queue_rq)
4258                 return -EINVAL;
4259
4260         if (!set->ops->get_budget ^ !set->ops->put_budget)
4261                 return -EINVAL;
4262
4263         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4264                 pr_info("blk-mq: reduced tag depth to %u\n",
4265                         BLK_MQ_MAX_DEPTH);
4266                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4267         }
4268
4269         if (!set->nr_maps)
4270                 set->nr_maps = 1;
4271         else if (set->nr_maps > HCTX_MAX_TYPES)
4272                 return -EINVAL;
4273
4274         /*
4275          * If a crashdump is active, then we are potentially in a very
4276          * memory constrained environment. Limit us to 1 queue and
4277          * 64 tags to prevent using too much memory.
4278          */
4279         if (is_kdump_kernel()) {
4280                 set->nr_hw_queues = 1;
4281                 set->nr_maps = 1;
4282                 set->queue_depth = min(64U, set->queue_depth);
4283         }
4284         /*
4285          * There is no use for more h/w queues than cpus if we just have
4286          * a single map
4287          */
4288         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4289                 set->nr_hw_queues = nr_cpu_ids;
4290
4291         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4292                 return -ENOMEM;
4293
4294         ret = -ENOMEM;
4295         for (i = 0; i < set->nr_maps; i++) {
4296                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4297                                                   sizeof(set->map[i].mq_map[0]),
4298                                                   GFP_KERNEL, set->numa_node);
4299                 if (!set->map[i].mq_map)
4300                         goto out_free_mq_map;
4301                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4302         }
4303
4304         ret = blk_mq_update_queue_map(set);
4305         if (ret)
4306                 goto out_free_mq_map;
4307
4308         ret = blk_mq_alloc_set_map_and_rqs(set);
4309         if (ret)
4310                 goto out_free_mq_map;
4311
4312         mutex_init(&set->tag_list_lock);
4313         INIT_LIST_HEAD(&set->tag_list);
4314
4315         return 0;
4316
4317 out_free_mq_map:
4318         for (i = 0; i < set->nr_maps; i++) {
4319                 kfree(set->map[i].mq_map);
4320                 set->map[i].mq_map = NULL;
4321         }
4322         kfree(set->tags);
4323         set->tags = NULL;
4324         return ret;
4325 }
4326 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4327
4328 /* allocate and initialize a tagset for a simple single-queue device */
4329 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4330                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4331                 unsigned int set_flags)
4332 {
4333         memset(set, 0, sizeof(*set));
4334         set->ops = ops;
4335         set->nr_hw_queues = 1;
4336         set->nr_maps = 1;
4337         set->queue_depth = queue_depth;
4338         set->numa_node = NUMA_NO_NODE;
4339         set->flags = set_flags;
4340         return blk_mq_alloc_tag_set(set);
4341 }
4342 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4343
4344 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4345 {
4346         int i, j;
4347
4348         for (i = 0; i < set->nr_hw_queues; i++)
4349                 __blk_mq_free_map_and_rqs(set, i);
4350
4351         if (blk_mq_is_shared_tags(set->flags)) {
4352                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4353                                         BLK_MQ_NO_HCTX_IDX);
4354         }
4355
4356         for (j = 0; j < set->nr_maps; j++) {
4357                 kfree(set->map[j].mq_map);
4358                 set->map[j].mq_map = NULL;
4359         }
4360
4361         kfree(set->tags);
4362         set->tags = NULL;
4363 }
4364 EXPORT_SYMBOL(blk_mq_free_tag_set);
4365
4366 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4367 {
4368         struct blk_mq_tag_set *set = q->tag_set;
4369         struct blk_mq_hw_ctx *hctx;
4370         int ret;
4371         unsigned long i;
4372
4373         if (!set)
4374                 return -EINVAL;
4375
4376         if (q->nr_requests == nr)
4377                 return 0;
4378
4379         blk_mq_freeze_queue(q);
4380         blk_mq_quiesce_queue(q);
4381
4382         ret = 0;
4383         queue_for_each_hw_ctx(q, hctx, i) {
4384                 if (!hctx->tags)
4385                         continue;
4386                 /*
4387                  * If we're using an MQ scheduler, just update the scheduler
4388                  * queue depth. This is similar to what the old code would do.
4389                  */
4390                 if (hctx->sched_tags) {
4391                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4392                                                       nr, true);
4393                 } else {
4394                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4395                                                       false);
4396                 }
4397                 if (ret)
4398                         break;
4399                 if (q->elevator && q->elevator->type->ops.depth_updated)
4400                         q->elevator->type->ops.depth_updated(hctx);
4401         }
4402         if (!ret) {
4403                 q->nr_requests = nr;
4404                 if (blk_mq_is_shared_tags(set->flags)) {
4405                         if (q->elevator)
4406                                 blk_mq_tag_update_sched_shared_tags(q);
4407                         else
4408                                 blk_mq_tag_resize_shared_tags(set, nr);
4409                 }
4410         }
4411
4412         blk_mq_unquiesce_queue(q);
4413         blk_mq_unfreeze_queue(q);
4414
4415         return ret;
4416 }
4417
4418 /*
4419  * request_queue and elevator_type pair.
4420  * It is just used by __blk_mq_update_nr_hw_queues to cache
4421  * the elevator_type associated with a request_queue.
4422  */
4423 struct blk_mq_qe_pair {
4424         struct list_head node;
4425         struct request_queue *q;
4426         struct elevator_type *type;
4427 };
4428
4429 /*
4430  * Cache the elevator_type in qe pair list and switch the
4431  * io scheduler to 'none'
4432  */
4433 static bool blk_mq_elv_switch_none(struct list_head *head,
4434                 struct request_queue *q)
4435 {
4436         struct blk_mq_qe_pair *qe;
4437
4438         if (!q->elevator)
4439                 return true;
4440
4441         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4442         if (!qe)
4443                 return false;
4444
4445         INIT_LIST_HEAD(&qe->node);
4446         qe->q = q;
4447         qe->type = q->elevator->type;
4448         list_add(&qe->node, head);
4449
4450         mutex_lock(&q->sysfs_lock);
4451         /*
4452          * After elevator_switch_mq, the previous elevator_queue will be
4453          * released by elevator_release. The reference of the io scheduler
4454          * module get by elevator_get will also be put. So we need to get
4455          * a reference of the io scheduler module here to prevent it to be
4456          * removed.
4457          */
4458         __module_get(qe->type->elevator_owner);
4459         elevator_switch_mq(q, NULL);
4460         mutex_unlock(&q->sysfs_lock);
4461
4462         return true;
4463 }
4464
4465 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4466                                                 struct request_queue *q)
4467 {
4468         struct blk_mq_qe_pair *qe;
4469
4470         list_for_each_entry(qe, head, node)
4471                 if (qe->q == q)
4472                         return qe;
4473
4474         return NULL;
4475 }
4476
4477 static void blk_mq_elv_switch_back(struct list_head *head,
4478                                   struct request_queue *q)
4479 {
4480         struct blk_mq_qe_pair *qe;
4481         struct elevator_type *t;
4482
4483         qe = blk_lookup_qe_pair(head, q);
4484         if (!qe)
4485                 return;
4486         t = qe->type;
4487         list_del(&qe->node);
4488         kfree(qe);
4489
4490         mutex_lock(&q->sysfs_lock);
4491         elevator_switch_mq(q, t);
4492         mutex_unlock(&q->sysfs_lock);
4493 }
4494
4495 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4496                                                         int nr_hw_queues)
4497 {
4498         struct request_queue *q;
4499         LIST_HEAD(head);
4500         int prev_nr_hw_queues;
4501
4502         lockdep_assert_held(&set->tag_list_lock);
4503
4504         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4505                 nr_hw_queues = nr_cpu_ids;
4506         if (nr_hw_queues < 1)
4507                 return;
4508         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4509                 return;
4510
4511         list_for_each_entry(q, &set->tag_list, tag_set_list)
4512                 blk_mq_freeze_queue(q);
4513         /*
4514          * Switch IO scheduler to 'none', cleaning up the data associated
4515          * with the previous scheduler. We will switch back once we are done
4516          * updating the new sw to hw queue mappings.
4517          */
4518         list_for_each_entry(q, &set->tag_list, tag_set_list)
4519                 if (!blk_mq_elv_switch_none(&head, q))
4520                         goto switch_back;
4521
4522         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4523                 blk_mq_debugfs_unregister_hctxs(q);
4524                 blk_mq_sysfs_unregister(q);
4525         }
4526
4527         prev_nr_hw_queues = set->nr_hw_queues;
4528         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4529             0)
4530                 goto reregister;
4531
4532         set->nr_hw_queues = nr_hw_queues;
4533 fallback:
4534         blk_mq_update_queue_map(set);
4535         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4536                 blk_mq_realloc_hw_ctxs(set, q);
4537                 blk_mq_update_poll_flag(q);
4538                 if (q->nr_hw_queues != set->nr_hw_queues) {
4539                         int i = prev_nr_hw_queues;
4540
4541                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4542                                         nr_hw_queues, prev_nr_hw_queues);
4543                         for (; i < set->nr_hw_queues; i++)
4544                                 __blk_mq_free_map_and_rqs(set, i);
4545
4546                         set->nr_hw_queues = prev_nr_hw_queues;
4547                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4548                         goto fallback;
4549                 }
4550                 blk_mq_map_swqueue(q);
4551         }
4552
4553 reregister:
4554         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4555                 blk_mq_sysfs_register(q);
4556                 blk_mq_debugfs_register_hctxs(q);
4557         }
4558
4559 switch_back:
4560         list_for_each_entry(q, &set->tag_list, tag_set_list)
4561                 blk_mq_elv_switch_back(&head, q);
4562
4563         list_for_each_entry(q, &set->tag_list, tag_set_list)
4564                 blk_mq_unfreeze_queue(q);
4565 }
4566
4567 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4568 {
4569         mutex_lock(&set->tag_list_lock);
4570         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4571         mutex_unlock(&set->tag_list_lock);
4572 }
4573 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4574
4575 /* Enable polling stats and return whether they were already enabled. */
4576 static bool blk_poll_stats_enable(struct request_queue *q)
4577 {
4578         if (q->poll_stat)
4579                 return true;
4580
4581         return blk_stats_alloc_enable(q);
4582 }
4583
4584 static void blk_mq_poll_stats_start(struct request_queue *q)
4585 {
4586         /*
4587          * We don't arm the callback if polling stats are not enabled or the
4588          * callback is already active.
4589          */
4590         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4591                 return;
4592
4593         blk_stat_activate_msecs(q->poll_cb, 100);
4594 }
4595
4596 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4597 {
4598         struct request_queue *q = cb->data;
4599         int bucket;
4600
4601         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4602                 if (cb->stat[bucket].nr_samples)
4603                         q->poll_stat[bucket] = cb->stat[bucket];
4604         }
4605 }
4606
4607 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4608                                        struct request *rq)
4609 {
4610         unsigned long ret = 0;
4611         int bucket;
4612
4613         /*
4614          * If stats collection isn't on, don't sleep but turn it on for
4615          * future users
4616          */
4617         if (!blk_poll_stats_enable(q))
4618                 return 0;
4619
4620         /*
4621          * As an optimistic guess, use half of the mean service time
4622          * for this type of request. We can (and should) make this smarter.
4623          * For instance, if the completion latencies are tight, we can
4624          * get closer than just half the mean. This is especially
4625          * important on devices where the completion latencies are longer
4626          * than ~10 usec. We do use the stats for the relevant IO size
4627          * if available which does lead to better estimates.
4628          */
4629         bucket = blk_mq_poll_stats_bkt(rq);
4630         if (bucket < 0)
4631                 return ret;
4632
4633         if (q->poll_stat[bucket].nr_samples)
4634                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4635
4636         return ret;
4637 }
4638
4639 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4640 {
4641         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4642         struct request *rq = blk_qc_to_rq(hctx, qc);
4643         struct hrtimer_sleeper hs;
4644         enum hrtimer_mode mode;
4645         unsigned int nsecs;
4646         ktime_t kt;
4647
4648         /*
4649          * If a request has completed on queue that uses an I/O scheduler, we
4650          * won't get back a request from blk_qc_to_rq.
4651          */
4652         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4653                 return false;
4654
4655         /*
4656          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4657          *
4658          *  0:  use half of prev avg
4659          * >0:  use this specific value
4660          */
4661         if (q->poll_nsec > 0)
4662                 nsecs = q->poll_nsec;
4663         else
4664                 nsecs = blk_mq_poll_nsecs(q, rq);
4665
4666         if (!nsecs)
4667                 return false;
4668
4669         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4670
4671         /*
4672          * This will be replaced with the stats tracking code, using
4673          * 'avg_completion_time / 2' as the pre-sleep target.
4674          */
4675         kt = nsecs;
4676
4677         mode = HRTIMER_MODE_REL;
4678         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4679         hrtimer_set_expires(&hs.timer, kt);
4680
4681         do {
4682                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4683                         break;
4684                 set_current_state(TASK_UNINTERRUPTIBLE);
4685                 hrtimer_sleeper_start_expires(&hs, mode);
4686                 if (hs.task)
4687                         io_schedule();
4688                 hrtimer_cancel(&hs.timer);
4689                 mode = HRTIMER_MODE_ABS;
4690         } while (hs.task && !signal_pending(current));
4691
4692         __set_current_state(TASK_RUNNING);
4693         destroy_hrtimer_on_stack(&hs.timer);
4694
4695         /*
4696          * If we sleep, have the caller restart the poll loop to reset the
4697          * state.  Like for the other success return cases, the caller is
4698          * responsible for checking if the IO completed.  If the IO isn't
4699          * complete, we'll get called again and will go straight to the busy
4700          * poll loop.
4701          */
4702         return true;
4703 }
4704
4705 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4706                                struct io_comp_batch *iob, unsigned int flags)
4707 {
4708         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4709         long state = get_current_state();
4710         int ret;
4711
4712         do {
4713                 ret = q->mq_ops->poll(hctx, iob);
4714                 if (ret > 0) {
4715                         __set_current_state(TASK_RUNNING);
4716                         return ret;
4717                 }
4718
4719                 if (signal_pending_state(state, current))
4720                         __set_current_state(TASK_RUNNING);
4721                 if (task_is_running(current))
4722                         return 1;
4723
4724                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4725                         break;
4726                 cpu_relax();
4727         } while (!need_resched());
4728
4729         __set_current_state(TASK_RUNNING);
4730         return 0;
4731 }
4732
4733 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4734                 unsigned int flags)
4735 {
4736         if (!(flags & BLK_POLL_NOSLEEP) &&
4737             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4738                 if (blk_mq_poll_hybrid(q, cookie))
4739                         return 1;
4740         }
4741         return blk_mq_poll_classic(q, cookie, iob, flags);
4742 }
4743
4744 unsigned int blk_mq_rq_cpu(struct request *rq)
4745 {
4746         return rq->mq_ctx->cpu;
4747 }
4748 EXPORT_SYMBOL(blk_mq_rq_cpu);
4749
4750 void blk_mq_cancel_work_sync(struct request_queue *q)
4751 {
4752         if (queue_is_mq(q)) {
4753                 struct blk_mq_hw_ctx *hctx;
4754                 unsigned long i;
4755
4756                 cancel_delayed_work_sync(&q->requeue_work);
4757
4758                 queue_for_each_hw_ctx(q, hctx, i)
4759                         cancel_delayed_work_sync(&hctx->run_work);
4760         }
4761 }
4762
4763 static int __init blk_mq_init(void)
4764 {
4765         int i;
4766
4767         for_each_possible_cpu(i)
4768                 init_llist_head(&per_cpu(blk_cpu_done, i));
4769         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4770
4771         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4772                                   "block/softirq:dead", NULL,
4773                                   blk_softirq_cpu_dead);
4774         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4775                                 blk_mq_hctx_notify_dead);
4776         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4777                                 blk_mq_hctx_notify_online,
4778                                 blk_mq_hctx_notify_offline);
4779         return 0;
4780 }
4781 subsys_initcall(blk_mq_init);