tools headers UAPI: Sync linux/prctl.h with the kernel sources
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51         int ddir, sectors, bucket;
52
53         ddir = rq_data_dir(rq);
54         sectors = blk_rq_stats_sectors(rq);
55
56         bucket = ddir + 2 * ilog2(sectors);
57
58         if (bucket < 0)
59                 return -1;
60         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63         return bucket;
64 }
65
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72         return !list_empty_careful(&hctx->dispatch) ||
73                 sbitmap_any_bit_set(&hctx->ctx_map) ||
74                         blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81                                      struct blk_mq_ctx *ctx)
82 {
83         const int bit = ctx->index_hw[hctx->type];
84
85         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86                 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90                                       struct blk_mq_ctx *ctx)
91 {
92         const int bit = ctx->index_hw[hctx->type];
93
94         sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98         struct block_device *part;
99         unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103                                   struct request *rq, void *priv,
104                                   bool reserved)
105 {
106         struct mq_inflight *mi = priv;
107
108         if ((!mi->part->bd_partno || rq->part == mi->part) &&
109             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110                 mi->inflight[rq_data_dir(rq)]++;
111
112         return true;
113 }
114
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116                 struct block_device *part)
117 {
118         struct mq_inflight mi = { .part = part };
119
120         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121
122         return mi.inflight[0] + mi.inflight[1];
123 }
124
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126                 unsigned int inflight[2])
127 {
128         struct mq_inflight mi = { .part = part };
129
130         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131         inflight[0] = mi.inflight[0];
132         inflight[1] = mi.inflight[1];
133 }
134
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137         mutex_lock(&q->mq_freeze_lock);
138         if (++q->mq_freeze_depth == 1) {
139                 percpu_ref_kill(&q->q_usage_counter);
140                 mutex_unlock(&q->mq_freeze_lock);
141                 if (queue_is_mq(q))
142                         blk_mq_run_hw_queues(q, false);
143         } else {
144                 mutex_unlock(&q->mq_freeze_lock);
145         }
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156                                      unsigned long timeout)
157 {
158         return wait_event_timeout(q->mq_freeze_wq,
159                                         percpu_ref_is_zero(&q->q_usage_counter),
160                                         timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170         /*
171          * In the !blk_mq case we are only calling this to kill the
172          * q_usage_counter, otherwise this increases the freeze depth
173          * and waits for it to return to zero.  For this reason there is
174          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175          * exported to drivers as the only user for unfreeze is blk_mq.
176          */
177         blk_freeze_queue_start(q);
178         blk_mq_freeze_queue_wait(q);
179 }
180
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183         /*
184          * ...just an alias to keep freeze and unfreeze actions balanced
185          * in the blk_mq_* namespace
186          */
187         blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190
191 void blk_mq_unfreeze_queue(struct request_queue *q)
192 {
193         mutex_lock(&q->mq_freeze_lock);
194         q->mq_freeze_depth--;
195         WARN_ON_ONCE(q->mq_freeze_depth < 0);
196         if (!q->mq_freeze_depth) {
197                 percpu_ref_resurrect(&q->q_usage_counter);
198                 wake_up_all(&q->mq_freeze_wq);
199         }
200         mutex_unlock(&q->mq_freeze_lock);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203
204 /*
205  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206  * mpt3sas driver such that this function can be removed.
207  */
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209 {
210         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
214 /**
215  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216  * @q: request queue.
217  *
218  * Note: this function does not prevent that the struct request end_io()
219  * callback function is invoked. Once this function is returned, we make
220  * sure no dispatch can happen until the queue is unquiesced via
221  * blk_mq_unquiesce_queue().
222  */
223 void blk_mq_quiesce_queue(struct request_queue *q)
224 {
225         struct blk_mq_hw_ctx *hctx;
226         unsigned int i;
227         bool rcu = false;
228
229         blk_mq_quiesce_queue_nowait(q);
230
231         queue_for_each_hw_ctx(q, hctx, i) {
232                 if (hctx->flags & BLK_MQ_F_BLOCKING)
233                         synchronize_srcu(hctx->srcu);
234                 else
235                         rcu = true;
236         }
237         if (rcu)
238                 synchronize_rcu();
239 }
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241
242 /*
243  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244  * @q: request queue.
245  *
246  * This function recovers queue into the state before quiescing
247  * which is done by blk_mq_quiesce_queue.
248  */
249 void blk_mq_unquiesce_queue(struct request_queue *q)
250 {
251         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252
253         /* dispatch requests which are inserted during quiescing */
254         blk_mq_run_hw_queues(q, true);
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257
258 void blk_mq_wake_waiters(struct request_queue *q)
259 {
260         struct blk_mq_hw_ctx *hctx;
261         unsigned int i;
262
263         queue_for_each_hw_ctx(q, hctx, i)
264                 if (blk_mq_hw_queue_mapped(hctx))
265                         blk_mq_tag_wakeup_all(hctx->tags, true);
266 }
267
268 /*
269  * Only need start/end time stamping if we have iostat or
270  * blk stats enabled, or using an IO scheduler.
271  */
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
273 {
274         return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 }
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278                 unsigned int tag, u64 alloc_time_ns)
279 {
280         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281         struct request *rq = tags->static_rqs[tag];
282
283         if (data->q->elevator) {
284                 rq->tag = BLK_MQ_NO_TAG;
285                 rq->internal_tag = tag;
286         } else {
287                 rq->tag = tag;
288                 rq->internal_tag = BLK_MQ_NO_TAG;
289         }
290
291         /* csd/requeue_work/fifo_time is initialized before use */
292         rq->q = data->q;
293         rq->mq_ctx = data->ctx;
294         rq->mq_hctx = data->hctx;
295         rq->rq_flags = 0;
296         rq->cmd_flags = data->cmd_flags;
297         if (data->flags & BLK_MQ_REQ_PM)
298                 rq->rq_flags |= RQF_PM;
299         if (blk_queue_io_stat(data->q))
300                 rq->rq_flags |= RQF_IO_STAT;
301         INIT_LIST_HEAD(&rq->queuelist);
302         INIT_HLIST_NODE(&rq->hash);
303         RB_CLEAR_NODE(&rq->rb_node);
304         rq->rq_disk = NULL;
305         rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307         rq->alloc_time_ns = alloc_time_ns;
308 #endif
309         if (blk_mq_need_time_stamp(rq))
310                 rq->start_time_ns = ktime_get_ns();
311         else
312                 rq->start_time_ns = 0;
313         rq->io_start_time_ns = 0;
314         rq->stats_sectors = 0;
315         rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317         rq->nr_integrity_segments = 0;
318 #endif
319         blk_crypto_rq_set_defaults(rq);
320         /* tag was already set */
321         WRITE_ONCE(rq->deadline, 0);
322
323         rq->timeout = 0;
324
325         rq->end_io = NULL;
326         rq->end_io_data = NULL;
327
328         data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329         refcount_set(&rq->ref, 1);
330
331         if (!op_is_flush(data->cmd_flags)) {
332                 struct elevator_queue *e = data->q->elevator;
333
334                 rq->elv.icq = NULL;
335                 if (e && e->type->ops.prepare_request) {
336                         if (e->type->icq_cache)
337                                 blk_mq_sched_assign_ioc(rq);
338
339                         e->type->ops.prepare_request(rq);
340                         rq->rq_flags |= RQF_ELVPRIV;
341                 }
342         }
343
344         data->hctx->queued++;
345         return rq;
346 }
347
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349 {
350         struct request_queue *q = data->q;
351         struct elevator_queue *e = q->elevator;
352         u64 alloc_time_ns = 0;
353         unsigned int tag;
354
355         /* alloc_time includes depth and tag waits */
356         if (blk_queue_rq_alloc_time(q))
357                 alloc_time_ns = ktime_get_ns();
358
359         if (data->cmd_flags & REQ_NOWAIT)
360                 data->flags |= BLK_MQ_REQ_NOWAIT;
361
362         if (e) {
363                 /*
364                  * Flush/passthrough requests are special and go directly to the
365                  * dispatch list. Don't include reserved tags in the
366                  * limiting, as it isn't useful.
367                  */
368                 if (!op_is_flush(data->cmd_flags) &&
369                     !blk_op_is_passthrough(data->cmd_flags) &&
370                     e->type->ops.limit_depth &&
371                     !(data->flags & BLK_MQ_REQ_RESERVED))
372                         e->type->ops.limit_depth(data->cmd_flags, data);
373         }
374
375 retry:
376         data->ctx = blk_mq_get_ctx(q);
377         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
378         if (!e)
379                 blk_mq_tag_busy(data->hctx);
380
381         /*
382          * Waiting allocations only fail because of an inactive hctx.  In that
383          * case just retry the hctx assignment and tag allocation as CPU hotplug
384          * should have migrated us to an online CPU by now.
385          */
386         tag = blk_mq_get_tag(data);
387         if (tag == BLK_MQ_NO_TAG) {
388                 if (data->flags & BLK_MQ_REQ_NOWAIT)
389                         return NULL;
390
391                 /*
392                  * Give up the CPU and sleep for a random short time to ensure
393                  * that thread using a realtime scheduling class are migrated
394                  * off the CPU, and thus off the hctx that is going away.
395                  */
396                 msleep(3);
397                 goto retry;
398         }
399         return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
400 }
401
402 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
403                 blk_mq_req_flags_t flags)
404 {
405         struct blk_mq_alloc_data data = {
406                 .q              = q,
407                 .flags          = flags,
408                 .cmd_flags      = op,
409         };
410         struct request *rq;
411         int ret;
412
413         ret = blk_queue_enter(q, flags);
414         if (ret)
415                 return ERR_PTR(ret);
416
417         rq = __blk_mq_alloc_request(&data);
418         if (!rq)
419                 goto out_queue_exit;
420         rq->__data_len = 0;
421         rq->__sector = (sector_t) -1;
422         rq->bio = rq->biotail = NULL;
423         return rq;
424 out_queue_exit:
425         blk_queue_exit(q);
426         return ERR_PTR(-EWOULDBLOCK);
427 }
428 EXPORT_SYMBOL(blk_mq_alloc_request);
429
430 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
431         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
432 {
433         struct blk_mq_alloc_data data = {
434                 .q              = q,
435                 .flags          = flags,
436                 .cmd_flags      = op,
437         };
438         u64 alloc_time_ns = 0;
439         unsigned int cpu;
440         unsigned int tag;
441         int ret;
442
443         /* alloc_time includes depth and tag waits */
444         if (blk_queue_rq_alloc_time(q))
445                 alloc_time_ns = ktime_get_ns();
446
447         /*
448          * If the tag allocator sleeps we could get an allocation for a
449          * different hardware context.  No need to complicate the low level
450          * allocator for this for the rare use case of a command tied to
451          * a specific queue.
452          */
453         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
454                 return ERR_PTR(-EINVAL);
455
456         if (hctx_idx >= q->nr_hw_queues)
457                 return ERR_PTR(-EIO);
458
459         ret = blk_queue_enter(q, flags);
460         if (ret)
461                 return ERR_PTR(ret);
462
463         /*
464          * Check if the hardware context is actually mapped to anything.
465          * If not tell the caller that it should skip this queue.
466          */
467         ret = -EXDEV;
468         data.hctx = q->queue_hw_ctx[hctx_idx];
469         if (!blk_mq_hw_queue_mapped(data.hctx))
470                 goto out_queue_exit;
471         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
472         data.ctx = __blk_mq_get_ctx(q, cpu);
473
474         if (!q->elevator)
475                 blk_mq_tag_busy(data.hctx);
476
477         ret = -EWOULDBLOCK;
478         tag = blk_mq_get_tag(&data);
479         if (tag == BLK_MQ_NO_TAG)
480                 goto out_queue_exit;
481         return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
482
483 out_queue_exit:
484         blk_queue_exit(q);
485         return ERR_PTR(ret);
486 }
487 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
488
489 static void __blk_mq_free_request(struct request *rq)
490 {
491         struct request_queue *q = rq->q;
492         struct blk_mq_ctx *ctx = rq->mq_ctx;
493         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
494         const int sched_tag = rq->internal_tag;
495
496         blk_crypto_free_request(rq);
497         blk_pm_mark_last_busy(rq);
498         rq->mq_hctx = NULL;
499         if (rq->tag != BLK_MQ_NO_TAG)
500                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
501         if (sched_tag != BLK_MQ_NO_TAG)
502                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
503         blk_mq_sched_restart(hctx);
504         blk_queue_exit(q);
505 }
506
507 void blk_mq_free_request(struct request *rq)
508 {
509         struct request_queue *q = rq->q;
510         struct elevator_queue *e = q->elevator;
511         struct blk_mq_ctx *ctx = rq->mq_ctx;
512         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
513
514         if (rq->rq_flags & RQF_ELVPRIV) {
515                 if (e && e->type->ops.finish_request)
516                         e->type->ops.finish_request(rq);
517                 if (rq->elv.icq) {
518                         put_io_context(rq->elv.icq->ioc);
519                         rq->elv.icq = NULL;
520                 }
521         }
522
523         ctx->rq_completed[rq_is_sync(rq)]++;
524         if (rq->rq_flags & RQF_MQ_INFLIGHT)
525                 __blk_mq_dec_active_requests(hctx);
526
527         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
528                 laptop_io_completion(q->backing_dev_info);
529
530         rq_qos_done(q, rq);
531
532         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
533         if (refcount_dec_and_test(&rq->ref))
534                 __blk_mq_free_request(rq);
535 }
536 EXPORT_SYMBOL_GPL(blk_mq_free_request);
537
538 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
539 {
540         u64 now = 0;
541
542         if (blk_mq_need_time_stamp(rq))
543                 now = ktime_get_ns();
544
545         if (rq->rq_flags & RQF_STATS) {
546                 blk_mq_poll_stats_start(rq->q);
547                 blk_stat_add(rq, now);
548         }
549
550         blk_mq_sched_completed_request(rq, now);
551
552         blk_account_io_done(rq, now);
553
554         if (rq->end_io) {
555                 rq_qos_done(rq->q, rq);
556                 rq->end_io(rq, error);
557         } else {
558                 blk_mq_free_request(rq);
559         }
560 }
561 EXPORT_SYMBOL(__blk_mq_end_request);
562
563 void blk_mq_end_request(struct request *rq, blk_status_t error)
564 {
565         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
566                 BUG();
567         __blk_mq_end_request(rq, error);
568 }
569 EXPORT_SYMBOL(blk_mq_end_request);
570
571 static void blk_complete_reqs(struct llist_head *list)
572 {
573         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
574         struct request *rq, *next;
575
576         llist_for_each_entry_safe(rq, next, entry, ipi_list)
577                 rq->q->mq_ops->complete(rq);
578 }
579
580 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
581 {
582         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
583 }
584
585 static int blk_softirq_cpu_dead(unsigned int cpu)
586 {
587         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
588         return 0;
589 }
590
591 static void __blk_mq_complete_request_remote(void *data)
592 {
593         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
594 }
595
596 static inline bool blk_mq_complete_need_ipi(struct request *rq)
597 {
598         int cpu = raw_smp_processor_id();
599
600         if (!IS_ENABLED(CONFIG_SMP) ||
601             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
602                 return false;
603         /*
604          * With force threaded interrupts enabled, raising softirq from an SMP
605          * function call will always result in waking the ksoftirqd thread.
606          * This is probably worse than completing the request on a different
607          * cache domain.
608          */
609         if (force_irqthreads)
610                 return false;
611
612         /* same CPU or cache domain?  Complete locally */
613         if (cpu == rq->mq_ctx->cpu ||
614             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
615              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
616                 return false;
617
618         /* don't try to IPI to an offline CPU */
619         return cpu_online(rq->mq_ctx->cpu);
620 }
621
622 static void blk_mq_complete_send_ipi(struct request *rq)
623 {
624         struct llist_head *list;
625         unsigned int cpu;
626
627         cpu = rq->mq_ctx->cpu;
628         list = &per_cpu(blk_cpu_done, cpu);
629         if (llist_add(&rq->ipi_list, list)) {
630                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
631                 smp_call_function_single_async(cpu, &rq->csd);
632         }
633 }
634
635 static void blk_mq_raise_softirq(struct request *rq)
636 {
637         struct llist_head *list;
638
639         preempt_disable();
640         list = this_cpu_ptr(&blk_cpu_done);
641         if (llist_add(&rq->ipi_list, list))
642                 raise_softirq(BLOCK_SOFTIRQ);
643         preempt_enable();
644 }
645
646 bool blk_mq_complete_request_remote(struct request *rq)
647 {
648         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
649
650         /*
651          * For a polled request, always complete locallly, it's pointless
652          * to redirect the completion.
653          */
654         if (rq->cmd_flags & REQ_HIPRI)
655                 return false;
656
657         if (blk_mq_complete_need_ipi(rq)) {
658                 blk_mq_complete_send_ipi(rq);
659                 return true;
660         }
661
662         if (rq->q->nr_hw_queues == 1) {
663                 blk_mq_raise_softirq(rq);
664                 return true;
665         }
666         return false;
667 }
668 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
669
670 /**
671  * blk_mq_complete_request - end I/O on a request
672  * @rq:         the request being processed
673  *
674  * Description:
675  *      Complete a request by scheduling the ->complete_rq operation.
676  **/
677 void blk_mq_complete_request(struct request *rq)
678 {
679         if (!blk_mq_complete_request_remote(rq))
680                 rq->q->mq_ops->complete(rq);
681 }
682 EXPORT_SYMBOL(blk_mq_complete_request);
683
684 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
685         __releases(hctx->srcu)
686 {
687         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
688                 rcu_read_unlock();
689         else
690                 srcu_read_unlock(hctx->srcu, srcu_idx);
691 }
692
693 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
694         __acquires(hctx->srcu)
695 {
696         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
697                 /* shut up gcc false positive */
698                 *srcu_idx = 0;
699                 rcu_read_lock();
700         } else
701                 *srcu_idx = srcu_read_lock(hctx->srcu);
702 }
703
704 /**
705  * blk_mq_start_request - Start processing a request
706  * @rq: Pointer to request to be started
707  *
708  * Function used by device drivers to notify the block layer that a request
709  * is going to be processed now, so blk layer can do proper initializations
710  * such as starting the timeout timer.
711  */
712 void blk_mq_start_request(struct request *rq)
713 {
714         struct request_queue *q = rq->q;
715
716         trace_block_rq_issue(rq);
717
718         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
719                 rq->io_start_time_ns = ktime_get_ns();
720                 rq->stats_sectors = blk_rq_sectors(rq);
721                 rq->rq_flags |= RQF_STATS;
722                 rq_qos_issue(q, rq);
723         }
724
725         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
726
727         blk_add_timer(rq);
728         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
729
730 #ifdef CONFIG_BLK_DEV_INTEGRITY
731         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
732                 q->integrity.profile->prepare_fn(rq);
733 #endif
734 }
735 EXPORT_SYMBOL(blk_mq_start_request);
736
737 static void __blk_mq_requeue_request(struct request *rq)
738 {
739         struct request_queue *q = rq->q;
740
741         blk_mq_put_driver_tag(rq);
742
743         trace_block_rq_requeue(rq);
744         rq_qos_requeue(q, rq);
745
746         if (blk_mq_request_started(rq)) {
747                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
748                 rq->rq_flags &= ~RQF_TIMED_OUT;
749         }
750 }
751
752 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
753 {
754         __blk_mq_requeue_request(rq);
755
756         /* this request will be re-inserted to io scheduler queue */
757         blk_mq_sched_requeue_request(rq);
758
759         BUG_ON(!list_empty(&rq->queuelist));
760         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
761 }
762 EXPORT_SYMBOL(blk_mq_requeue_request);
763
764 static void blk_mq_requeue_work(struct work_struct *work)
765 {
766         struct request_queue *q =
767                 container_of(work, struct request_queue, requeue_work.work);
768         LIST_HEAD(rq_list);
769         struct request *rq, *next;
770
771         spin_lock_irq(&q->requeue_lock);
772         list_splice_init(&q->requeue_list, &rq_list);
773         spin_unlock_irq(&q->requeue_lock);
774
775         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
776                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
777                         continue;
778
779                 rq->rq_flags &= ~RQF_SOFTBARRIER;
780                 list_del_init(&rq->queuelist);
781                 /*
782                  * If RQF_DONTPREP, rq has contained some driver specific
783                  * data, so insert it to hctx dispatch list to avoid any
784                  * merge.
785                  */
786                 if (rq->rq_flags & RQF_DONTPREP)
787                         blk_mq_request_bypass_insert(rq, false, false);
788                 else
789                         blk_mq_sched_insert_request(rq, true, false, false);
790         }
791
792         while (!list_empty(&rq_list)) {
793                 rq = list_entry(rq_list.next, struct request, queuelist);
794                 list_del_init(&rq->queuelist);
795                 blk_mq_sched_insert_request(rq, false, false, false);
796         }
797
798         blk_mq_run_hw_queues(q, false);
799 }
800
801 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
802                                 bool kick_requeue_list)
803 {
804         struct request_queue *q = rq->q;
805         unsigned long flags;
806
807         /*
808          * We abuse this flag that is otherwise used by the I/O scheduler to
809          * request head insertion from the workqueue.
810          */
811         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
812
813         spin_lock_irqsave(&q->requeue_lock, flags);
814         if (at_head) {
815                 rq->rq_flags |= RQF_SOFTBARRIER;
816                 list_add(&rq->queuelist, &q->requeue_list);
817         } else {
818                 list_add_tail(&rq->queuelist, &q->requeue_list);
819         }
820         spin_unlock_irqrestore(&q->requeue_lock, flags);
821
822         if (kick_requeue_list)
823                 blk_mq_kick_requeue_list(q);
824 }
825
826 void blk_mq_kick_requeue_list(struct request_queue *q)
827 {
828         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
829 }
830 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
831
832 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
833                                     unsigned long msecs)
834 {
835         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
836                                     msecs_to_jiffies(msecs));
837 }
838 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
839
840 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
841 {
842         if (tag < tags->nr_tags) {
843                 prefetch(tags->rqs[tag]);
844                 return tags->rqs[tag];
845         }
846
847         return NULL;
848 }
849 EXPORT_SYMBOL(blk_mq_tag_to_rq);
850
851 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
852                                void *priv, bool reserved)
853 {
854         /*
855          * If we find a request that isn't idle and the queue matches,
856          * we know the queue is busy. Return false to stop the iteration.
857          */
858         if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
859                 bool *busy = priv;
860
861                 *busy = true;
862                 return false;
863         }
864
865         return true;
866 }
867
868 bool blk_mq_queue_inflight(struct request_queue *q)
869 {
870         bool busy = false;
871
872         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
873         return busy;
874 }
875 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
876
877 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
878 {
879         req->rq_flags |= RQF_TIMED_OUT;
880         if (req->q->mq_ops->timeout) {
881                 enum blk_eh_timer_return ret;
882
883                 ret = req->q->mq_ops->timeout(req, reserved);
884                 if (ret == BLK_EH_DONE)
885                         return;
886                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
887         }
888
889         blk_add_timer(req);
890 }
891
892 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
893 {
894         unsigned long deadline;
895
896         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
897                 return false;
898         if (rq->rq_flags & RQF_TIMED_OUT)
899                 return false;
900
901         deadline = READ_ONCE(rq->deadline);
902         if (time_after_eq(jiffies, deadline))
903                 return true;
904
905         if (*next == 0)
906                 *next = deadline;
907         else if (time_after(*next, deadline))
908                 *next = deadline;
909         return false;
910 }
911
912 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
913                 struct request *rq, void *priv, bool reserved)
914 {
915         unsigned long *next = priv;
916
917         /*
918          * Just do a quick check if it is expired before locking the request in
919          * so we're not unnecessarilly synchronizing across CPUs.
920          */
921         if (!blk_mq_req_expired(rq, next))
922                 return true;
923
924         /*
925          * We have reason to believe the request may be expired. Take a
926          * reference on the request to lock this request lifetime into its
927          * currently allocated context to prevent it from being reallocated in
928          * the event the completion by-passes this timeout handler.
929          *
930          * If the reference was already released, then the driver beat the
931          * timeout handler to posting a natural completion.
932          */
933         if (!refcount_inc_not_zero(&rq->ref))
934                 return true;
935
936         /*
937          * The request is now locked and cannot be reallocated underneath the
938          * timeout handler's processing. Re-verify this exact request is truly
939          * expired; if it is not expired, then the request was completed and
940          * reallocated as a new request.
941          */
942         if (blk_mq_req_expired(rq, next))
943                 blk_mq_rq_timed_out(rq, reserved);
944
945         if (is_flush_rq(rq, hctx))
946                 rq->end_io(rq, 0);
947         else if (refcount_dec_and_test(&rq->ref))
948                 __blk_mq_free_request(rq);
949
950         return true;
951 }
952
953 static void blk_mq_timeout_work(struct work_struct *work)
954 {
955         struct request_queue *q =
956                 container_of(work, struct request_queue, timeout_work);
957         unsigned long next = 0;
958         struct blk_mq_hw_ctx *hctx;
959         int i;
960
961         /* A deadlock might occur if a request is stuck requiring a
962          * timeout at the same time a queue freeze is waiting
963          * completion, since the timeout code would not be able to
964          * acquire the queue reference here.
965          *
966          * That's why we don't use blk_queue_enter here; instead, we use
967          * percpu_ref_tryget directly, because we need to be able to
968          * obtain a reference even in the short window between the queue
969          * starting to freeze, by dropping the first reference in
970          * blk_freeze_queue_start, and the moment the last request is
971          * consumed, marked by the instant q_usage_counter reaches
972          * zero.
973          */
974         if (!percpu_ref_tryget(&q->q_usage_counter))
975                 return;
976
977         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
978
979         if (next != 0) {
980                 mod_timer(&q->timeout, next);
981         } else {
982                 /*
983                  * Request timeouts are handled as a forward rolling timer. If
984                  * we end up here it means that no requests are pending and
985                  * also that no request has been pending for a while. Mark
986                  * each hctx as idle.
987                  */
988                 queue_for_each_hw_ctx(q, hctx, i) {
989                         /* the hctx may be unmapped, so check it here */
990                         if (blk_mq_hw_queue_mapped(hctx))
991                                 blk_mq_tag_idle(hctx);
992                 }
993         }
994         blk_queue_exit(q);
995 }
996
997 struct flush_busy_ctx_data {
998         struct blk_mq_hw_ctx *hctx;
999         struct list_head *list;
1000 };
1001
1002 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1003 {
1004         struct flush_busy_ctx_data *flush_data = data;
1005         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1006         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1007         enum hctx_type type = hctx->type;
1008
1009         spin_lock(&ctx->lock);
1010         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1011         sbitmap_clear_bit(sb, bitnr);
1012         spin_unlock(&ctx->lock);
1013         return true;
1014 }
1015
1016 /*
1017  * Process software queues that have been marked busy, splicing them
1018  * to the for-dispatch
1019  */
1020 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1021 {
1022         struct flush_busy_ctx_data data = {
1023                 .hctx = hctx,
1024                 .list = list,
1025         };
1026
1027         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1028 }
1029 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1030
1031 struct dispatch_rq_data {
1032         struct blk_mq_hw_ctx *hctx;
1033         struct request *rq;
1034 };
1035
1036 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1037                 void *data)
1038 {
1039         struct dispatch_rq_data *dispatch_data = data;
1040         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1041         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1042         enum hctx_type type = hctx->type;
1043
1044         spin_lock(&ctx->lock);
1045         if (!list_empty(&ctx->rq_lists[type])) {
1046                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1047                 list_del_init(&dispatch_data->rq->queuelist);
1048                 if (list_empty(&ctx->rq_lists[type]))
1049                         sbitmap_clear_bit(sb, bitnr);
1050         }
1051         spin_unlock(&ctx->lock);
1052
1053         return !dispatch_data->rq;
1054 }
1055
1056 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1057                                         struct blk_mq_ctx *start)
1058 {
1059         unsigned off = start ? start->index_hw[hctx->type] : 0;
1060         struct dispatch_rq_data data = {
1061                 .hctx = hctx,
1062                 .rq   = NULL,
1063         };
1064
1065         __sbitmap_for_each_set(&hctx->ctx_map, off,
1066                                dispatch_rq_from_ctx, &data);
1067
1068         return data.rq;
1069 }
1070
1071 static inline unsigned int queued_to_index(unsigned int queued)
1072 {
1073         if (!queued)
1074                 return 0;
1075
1076         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1077 }
1078
1079 static bool __blk_mq_get_driver_tag(struct request *rq)
1080 {
1081         struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1082         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1083         int tag;
1084
1085         blk_mq_tag_busy(rq->mq_hctx);
1086
1087         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1088                 bt = rq->mq_hctx->tags->breserved_tags;
1089                 tag_offset = 0;
1090         } else {
1091                 if (!hctx_may_queue(rq->mq_hctx, bt))
1092                         return false;
1093         }
1094
1095         tag = __sbitmap_queue_get(bt);
1096         if (tag == BLK_MQ_NO_TAG)
1097                 return false;
1098
1099         rq->tag = tag + tag_offset;
1100         return true;
1101 }
1102
1103 static bool blk_mq_get_driver_tag(struct request *rq)
1104 {
1105         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1106
1107         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1108                 return false;
1109
1110         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1111                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1112                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1113                 __blk_mq_inc_active_requests(hctx);
1114         }
1115         hctx->tags->rqs[rq->tag] = rq;
1116         return true;
1117 }
1118
1119 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1120                                 int flags, void *key)
1121 {
1122         struct blk_mq_hw_ctx *hctx;
1123
1124         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1125
1126         spin_lock(&hctx->dispatch_wait_lock);
1127         if (!list_empty(&wait->entry)) {
1128                 struct sbitmap_queue *sbq;
1129
1130                 list_del_init(&wait->entry);
1131                 sbq = hctx->tags->bitmap_tags;
1132                 atomic_dec(&sbq->ws_active);
1133         }
1134         spin_unlock(&hctx->dispatch_wait_lock);
1135
1136         blk_mq_run_hw_queue(hctx, true);
1137         return 1;
1138 }
1139
1140 /*
1141  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1142  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1143  * restart. For both cases, take care to check the condition again after
1144  * marking us as waiting.
1145  */
1146 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1147                                  struct request *rq)
1148 {
1149         struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1150         struct wait_queue_head *wq;
1151         wait_queue_entry_t *wait;
1152         bool ret;
1153
1154         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1155                 blk_mq_sched_mark_restart_hctx(hctx);
1156
1157                 /*
1158                  * It's possible that a tag was freed in the window between the
1159                  * allocation failure and adding the hardware queue to the wait
1160                  * queue.
1161                  *
1162                  * Don't clear RESTART here, someone else could have set it.
1163                  * At most this will cost an extra queue run.
1164                  */
1165                 return blk_mq_get_driver_tag(rq);
1166         }
1167
1168         wait = &hctx->dispatch_wait;
1169         if (!list_empty_careful(&wait->entry))
1170                 return false;
1171
1172         wq = &bt_wait_ptr(sbq, hctx)->wait;
1173
1174         spin_lock_irq(&wq->lock);
1175         spin_lock(&hctx->dispatch_wait_lock);
1176         if (!list_empty(&wait->entry)) {
1177                 spin_unlock(&hctx->dispatch_wait_lock);
1178                 spin_unlock_irq(&wq->lock);
1179                 return false;
1180         }
1181
1182         atomic_inc(&sbq->ws_active);
1183         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1184         __add_wait_queue(wq, wait);
1185
1186         /*
1187          * It's possible that a tag was freed in the window between the
1188          * allocation failure and adding the hardware queue to the wait
1189          * queue.
1190          */
1191         ret = blk_mq_get_driver_tag(rq);
1192         if (!ret) {
1193                 spin_unlock(&hctx->dispatch_wait_lock);
1194                 spin_unlock_irq(&wq->lock);
1195                 return false;
1196         }
1197
1198         /*
1199          * We got a tag, remove ourselves from the wait queue to ensure
1200          * someone else gets the wakeup.
1201          */
1202         list_del_init(&wait->entry);
1203         atomic_dec(&sbq->ws_active);
1204         spin_unlock(&hctx->dispatch_wait_lock);
1205         spin_unlock_irq(&wq->lock);
1206
1207         return true;
1208 }
1209
1210 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1211 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1212 /*
1213  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1214  * - EWMA is one simple way to compute running average value
1215  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1216  * - take 4 as factor for avoiding to get too small(0) result, and this
1217  *   factor doesn't matter because EWMA decreases exponentially
1218  */
1219 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1220 {
1221         unsigned int ewma;
1222
1223         if (hctx->queue->elevator)
1224                 return;
1225
1226         ewma = hctx->dispatch_busy;
1227
1228         if (!ewma && !busy)
1229                 return;
1230
1231         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1232         if (busy)
1233                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1234         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1235
1236         hctx->dispatch_busy = ewma;
1237 }
1238
1239 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1240
1241 static void blk_mq_handle_dev_resource(struct request *rq,
1242                                        struct list_head *list)
1243 {
1244         struct request *next =
1245                 list_first_entry_or_null(list, struct request, queuelist);
1246
1247         /*
1248          * If an I/O scheduler has been configured and we got a driver tag for
1249          * the next request already, free it.
1250          */
1251         if (next)
1252                 blk_mq_put_driver_tag(next);
1253
1254         list_add(&rq->queuelist, list);
1255         __blk_mq_requeue_request(rq);
1256 }
1257
1258 static void blk_mq_handle_zone_resource(struct request *rq,
1259                                         struct list_head *zone_list)
1260 {
1261         /*
1262          * If we end up here it is because we cannot dispatch a request to a
1263          * specific zone due to LLD level zone-write locking or other zone
1264          * related resource not being available. In this case, set the request
1265          * aside in zone_list for retrying it later.
1266          */
1267         list_add(&rq->queuelist, zone_list);
1268         __blk_mq_requeue_request(rq);
1269 }
1270
1271 enum prep_dispatch {
1272         PREP_DISPATCH_OK,
1273         PREP_DISPATCH_NO_TAG,
1274         PREP_DISPATCH_NO_BUDGET,
1275 };
1276
1277 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1278                                                   bool need_budget)
1279 {
1280         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1281         int budget_token = -1;
1282
1283         if (need_budget) {
1284                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1285                 if (budget_token < 0) {
1286                         blk_mq_put_driver_tag(rq);
1287                         return PREP_DISPATCH_NO_BUDGET;
1288                 }
1289                 blk_mq_set_rq_budget_token(rq, budget_token);
1290         }
1291
1292         if (!blk_mq_get_driver_tag(rq)) {
1293                 /*
1294                  * The initial allocation attempt failed, so we need to
1295                  * rerun the hardware queue when a tag is freed. The
1296                  * waitqueue takes care of that. If the queue is run
1297                  * before we add this entry back on the dispatch list,
1298                  * we'll re-run it below.
1299                  */
1300                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1301                         /*
1302                          * All budgets not got from this function will be put
1303                          * together during handling partial dispatch
1304                          */
1305                         if (need_budget)
1306                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1307                         return PREP_DISPATCH_NO_TAG;
1308                 }
1309         }
1310
1311         return PREP_DISPATCH_OK;
1312 }
1313
1314 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1315 static void blk_mq_release_budgets(struct request_queue *q,
1316                 struct list_head *list)
1317 {
1318         struct request *rq;
1319
1320         list_for_each_entry(rq, list, queuelist) {
1321                 int budget_token = blk_mq_get_rq_budget_token(rq);
1322
1323                 if (budget_token >= 0)
1324                         blk_mq_put_dispatch_budget(q, budget_token);
1325         }
1326 }
1327
1328 /*
1329  * Returns true if we did some work AND can potentially do more.
1330  */
1331 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1332                              unsigned int nr_budgets)
1333 {
1334         enum prep_dispatch prep;
1335         struct request_queue *q = hctx->queue;
1336         struct request *rq, *nxt;
1337         int errors, queued;
1338         blk_status_t ret = BLK_STS_OK;
1339         LIST_HEAD(zone_list);
1340
1341         if (list_empty(list))
1342                 return false;
1343
1344         /*
1345          * Now process all the entries, sending them to the driver.
1346          */
1347         errors = queued = 0;
1348         do {
1349                 struct blk_mq_queue_data bd;
1350
1351                 rq = list_first_entry(list, struct request, queuelist);
1352
1353                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1354                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1355                 if (prep != PREP_DISPATCH_OK)
1356                         break;
1357
1358                 list_del_init(&rq->queuelist);
1359
1360                 bd.rq = rq;
1361
1362                 /*
1363                  * Flag last if we have no more requests, or if we have more
1364                  * but can't assign a driver tag to it.
1365                  */
1366                 if (list_empty(list))
1367                         bd.last = true;
1368                 else {
1369                         nxt = list_first_entry(list, struct request, queuelist);
1370                         bd.last = !blk_mq_get_driver_tag(nxt);
1371                 }
1372
1373                 /*
1374                  * once the request is queued to lld, no need to cover the
1375                  * budget any more
1376                  */
1377                 if (nr_budgets)
1378                         nr_budgets--;
1379                 ret = q->mq_ops->queue_rq(hctx, &bd);
1380                 switch (ret) {
1381                 case BLK_STS_OK:
1382                         queued++;
1383                         break;
1384                 case BLK_STS_RESOURCE:
1385                 case BLK_STS_DEV_RESOURCE:
1386                         blk_mq_handle_dev_resource(rq, list);
1387                         goto out;
1388                 case BLK_STS_ZONE_RESOURCE:
1389                         /*
1390                          * Move the request to zone_list and keep going through
1391                          * the dispatch list to find more requests the drive can
1392                          * accept.
1393                          */
1394                         blk_mq_handle_zone_resource(rq, &zone_list);
1395                         break;
1396                 default:
1397                         errors++;
1398                         blk_mq_end_request(rq, ret);
1399                 }
1400         } while (!list_empty(list));
1401 out:
1402         if (!list_empty(&zone_list))
1403                 list_splice_tail_init(&zone_list, list);
1404
1405         hctx->dispatched[queued_to_index(queued)]++;
1406
1407         /* If we didn't flush the entire list, we could have told the driver
1408          * there was more coming, but that turned out to be a lie.
1409          */
1410         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1411                 q->mq_ops->commit_rqs(hctx);
1412         /*
1413          * Any items that need requeuing? Stuff them into hctx->dispatch,
1414          * that is where we will continue on next queue run.
1415          */
1416         if (!list_empty(list)) {
1417                 bool needs_restart;
1418                 /* For non-shared tags, the RESTART check will suffice */
1419                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1420                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1421                 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1422
1423                 if (nr_budgets)
1424                         blk_mq_release_budgets(q, list);
1425
1426                 spin_lock(&hctx->lock);
1427                 list_splice_tail_init(list, &hctx->dispatch);
1428                 spin_unlock(&hctx->lock);
1429
1430                 /*
1431                  * Order adding requests to hctx->dispatch and checking
1432                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1433                  * in blk_mq_sched_restart(). Avoid restart code path to
1434                  * miss the new added requests to hctx->dispatch, meantime
1435                  * SCHED_RESTART is observed here.
1436                  */
1437                 smp_mb();
1438
1439                 /*
1440                  * If SCHED_RESTART was set by the caller of this function and
1441                  * it is no longer set that means that it was cleared by another
1442                  * thread and hence that a queue rerun is needed.
1443                  *
1444                  * If 'no_tag' is set, that means that we failed getting
1445                  * a driver tag with an I/O scheduler attached. If our dispatch
1446                  * waitqueue is no longer active, ensure that we run the queue
1447                  * AFTER adding our entries back to the list.
1448                  *
1449                  * If no I/O scheduler has been configured it is possible that
1450                  * the hardware queue got stopped and restarted before requests
1451                  * were pushed back onto the dispatch list. Rerun the queue to
1452                  * avoid starvation. Notes:
1453                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1454                  *   been stopped before rerunning a queue.
1455                  * - Some but not all block drivers stop a queue before
1456                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1457                  *   and dm-rq.
1458                  *
1459                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1460                  * bit is set, run queue after a delay to avoid IO stalls
1461                  * that could otherwise occur if the queue is idle.  We'll do
1462                  * similar if we couldn't get budget and SCHED_RESTART is set.
1463                  */
1464                 needs_restart = blk_mq_sched_needs_restart(hctx);
1465                 if (!needs_restart ||
1466                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1467                         blk_mq_run_hw_queue(hctx, true);
1468                 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1469                                            no_budget_avail))
1470                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1471
1472                 blk_mq_update_dispatch_busy(hctx, true);
1473                 return false;
1474         } else
1475                 blk_mq_update_dispatch_busy(hctx, false);
1476
1477         return (queued + errors) != 0;
1478 }
1479
1480 /**
1481  * __blk_mq_run_hw_queue - Run a hardware queue.
1482  * @hctx: Pointer to the hardware queue to run.
1483  *
1484  * Send pending requests to the hardware.
1485  */
1486 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1487 {
1488         int srcu_idx;
1489
1490         /*
1491          * We can't run the queue inline with ints disabled. Ensure that
1492          * we catch bad users of this early.
1493          */
1494         WARN_ON_ONCE(in_interrupt());
1495
1496         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1497
1498         hctx_lock(hctx, &srcu_idx);
1499         blk_mq_sched_dispatch_requests(hctx);
1500         hctx_unlock(hctx, srcu_idx);
1501 }
1502
1503 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1504 {
1505         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1506
1507         if (cpu >= nr_cpu_ids)
1508                 cpu = cpumask_first(hctx->cpumask);
1509         return cpu;
1510 }
1511
1512 /*
1513  * It'd be great if the workqueue API had a way to pass
1514  * in a mask and had some smarts for more clever placement.
1515  * For now we just round-robin here, switching for every
1516  * BLK_MQ_CPU_WORK_BATCH queued items.
1517  */
1518 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1519 {
1520         bool tried = false;
1521         int next_cpu = hctx->next_cpu;
1522
1523         if (hctx->queue->nr_hw_queues == 1)
1524                 return WORK_CPU_UNBOUND;
1525
1526         if (--hctx->next_cpu_batch <= 0) {
1527 select_cpu:
1528                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1529                                 cpu_online_mask);
1530                 if (next_cpu >= nr_cpu_ids)
1531                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1532                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1533         }
1534
1535         /*
1536          * Do unbound schedule if we can't find a online CPU for this hctx,
1537          * and it should only happen in the path of handling CPU DEAD.
1538          */
1539         if (!cpu_online(next_cpu)) {
1540                 if (!tried) {
1541                         tried = true;
1542                         goto select_cpu;
1543                 }
1544
1545                 /*
1546                  * Make sure to re-select CPU next time once after CPUs
1547                  * in hctx->cpumask become online again.
1548                  */
1549                 hctx->next_cpu = next_cpu;
1550                 hctx->next_cpu_batch = 1;
1551                 return WORK_CPU_UNBOUND;
1552         }
1553
1554         hctx->next_cpu = next_cpu;
1555         return next_cpu;
1556 }
1557
1558 /**
1559  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1560  * @hctx: Pointer to the hardware queue to run.
1561  * @async: If we want to run the queue asynchronously.
1562  * @msecs: Milliseconds of delay to wait before running the queue.
1563  *
1564  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1565  * with a delay of @msecs.
1566  */
1567 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1568                                         unsigned long msecs)
1569 {
1570         if (unlikely(blk_mq_hctx_stopped(hctx)))
1571                 return;
1572
1573         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1574                 int cpu = get_cpu();
1575                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1576                         __blk_mq_run_hw_queue(hctx);
1577                         put_cpu();
1578                         return;
1579                 }
1580
1581                 put_cpu();
1582         }
1583
1584         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1585                                     msecs_to_jiffies(msecs));
1586 }
1587
1588 /**
1589  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1590  * @hctx: Pointer to the hardware queue to run.
1591  * @msecs: Milliseconds of delay to wait before running the queue.
1592  *
1593  * Run a hardware queue asynchronously with a delay of @msecs.
1594  */
1595 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1596 {
1597         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1598 }
1599 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1600
1601 /**
1602  * blk_mq_run_hw_queue - Start to run a hardware queue.
1603  * @hctx: Pointer to the hardware queue to run.
1604  * @async: If we want to run the queue asynchronously.
1605  *
1606  * Check if the request queue is not in a quiesced state and if there are
1607  * pending requests to be sent. If this is true, run the queue to send requests
1608  * to hardware.
1609  */
1610 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1611 {
1612         int srcu_idx;
1613         bool need_run;
1614
1615         /*
1616          * When queue is quiesced, we may be switching io scheduler, or
1617          * updating nr_hw_queues, or other things, and we can't run queue
1618          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1619          *
1620          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1621          * quiesced.
1622          */
1623         hctx_lock(hctx, &srcu_idx);
1624         need_run = !blk_queue_quiesced(hctx->queue) &&
1625                 blk_mq_hctx_has_pending(hctx);
1626         hctx_unlock(hctx, srcu_idx);
1627
1628         if (need_run)
1629                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1630 }
1631 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1632
1633 /*
1634  * Is the request queue handled by an IO scheduler that does not respect
1635  * hardware queues when dispatching?
1636  */
1637 static bool blk_mq_has_sqsched(struct request_queue *q)
1638 {
1639         struct elevator_queue *e = q->elevator;
1640
1641         if (e && e->type->ops.dispatch_request &&
1642             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1643                 return true;
1644         return false;
1645 }
1646
1647 /*
1648  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1649  * scheduler.
1650  */
1651 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1652 {
1653         struct blk_mq_hw_ctx *hctx;
1654
1655         /*
1656          * If the IO scheduler does not respect hardware queues when
1657          * dispatching, we just don't bother with multiple HW queues and
1658          * dispatch from hctx for the current CPU since running multiple queues
1659          * just causes lock contention inside the scheduler and pointless cache
1660          * bouncing.
1661          */
1662         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1663                                      raw_smp_processor_id());
1664         if (!blk_mq_hctx_stopped(hctx))
1665                 return hctx;
1666         return NULL;
1667 }
1668
1669 /**
1670  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1671  * @q: Pointer to the request queue to run.
1672  * @async: If we want to run the queue asynchronously.
1673  */
1674 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1675 {
1676         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1677         int i;
1678
1679         sq_hctx = NULL;
1680         if (blk_mq_has_sqsched(q))
1681                 sq_hctx = blk_mq_get_sq_hctx(q);
1682         queue_for_each_hw_ctx(q, hctx, i) {
1683                 if (blk_mq_hctx_stopped(hctx))
1684                         continue;
1685                 /*
1686                  * Dispatch from this hctx either if there's no hctx preferred
1687                  * by IO scheduler or if it has requests that bypass the
1688                  * scheduler.
1689                  */
1690                 if (!sq_hctx || sq_hctx == hctx ||
1691                     !list_empty_careful(&hctx->dispatch))
1692                         blk_mq_run_hw_queue(hctx, async);
1693         }
1694 }
1695 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1696
1697 /**
1698  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1699  * @q: Pointer to the request queue to run.
1700  * @msecs: Milliseconds of delay to wait before running the queues.
1701  */
1702 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1703 {
1704         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1705         int i;
1706
1707         sq_hctx = NULL;
1708         if (blk_mq_has_sqsched(q))
1709                 sq_hctx = blk_mq_get_sq_hctx(q);
1710         queue_for_each_hw_ctx(q, hctx, i) {
1711                 if (blk_mq_hctx_stopped(hctx))
1712                         continue;
1713                 /*
1714                  * Dispatch from this hctx either if there's no hctx preferred
1715                  * by IO scheduler or if it has requests that bypass the
1716                  * scheduler.
1717                  */
1718                 if (!sq_hctx || sq_hctx == hctx ||
1719                     !list_empty_careful(&hctx->dispatch))
1720                         blk_mq_delay_run_hw_queue(hctx, msecs);
1721         }
1722 }
1723 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1724
1725 /**
1726  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1727  * @q: request queue.
1728  *
1729  * The caller is responsible for serializing this function against
1730  * blk_mq_{start,stop}_hw_queue().
1731  */
1732 bool blk_mq_queue_stopped(struct request_queue *q)
1733 {
1734         struct blk_mq_hw_ctx *hctx;
1735         int i;
1736
1737         queue_for_each_hw_ctx(q, hctx, i)
1738                 if (blk_mq_hctx_stopped(hctx))
1739                         return true;
1740
1741         return false;
1742 }
1743 EXPORT_SYMBOL(blk_mq_queue_stopped);
1744
1745 /*
1746  * This function is often used for pausing .queue_rq() by driver when
1747  * there isn't enough resource or some conditions aren't satisfied, and
1748  * BLK_STS_RESOURCE is usually returned.
1749  *
1750  * We do not guarantee that dispatch can be drained or blocked
1751  * after blk_mq_stop_hw_queue() returns. Please use
1752  * blk_mq_quiesce_queue() for that requirement.
1753  */
1754 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1755 {
1756         cancel_delayed_work(&hctx->run_work);
1757
1758         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1759 }
1760 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1761
1762 /*
1763  * This function is often used for pausing .queue_rq() by driver when
1764  * there isn't enough resource or some conditions aren't satisfied, and
1765  * BLK_STS_RESOURCE is usually returned.
1766  *
1767  * We do not guarantee that dispatch can be drained or blocked
1768  * after blk_mq_stop_hw_queues() returns. Please use
1769  * blk_mq_quiesce_queue() for that requirement.
1770  */
1771 void blk_mq_stop_hw_queues(struct request_queue *q)
1772 {
1773         struct blk_mq_hw_ctx *hctx;
1774         int i;
1775
1776         queue_for_each_hw_ctx(q, hctx, i)
1777                 blk_mq_stop_hw_queue(hctx);
1778 }
1779 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1780
1781 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1782 {
1783         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1784
1785         blk_mq_run_hw_queue(hctx, false);
1786 }
1787 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1788
1789 void blk_mq_start_hw_queues(struct request_queue *q)
1790 {
1791         struct blk_mq_hw_ctx *hctx;
1792         int i;
1793
1794         queue_for_each_hw_ctx(q, hctx, i)
1795                 blk_mq_start_hw_queue(hctx);
1796 }
1797 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1798
1799 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1800 {
1801         if (!blk_mq_hctx_stopped(hctx))
1802                 return;
1803
1804         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1805         blk_mq_run_hw_queue(hctx, async);
1806 }
1807 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1808
1809 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1810 {
1811         struct blk_mq_hw_ctx *hctx;
1812         int i;
1813
1814         queue_for_each_hw_ctx(q, hctx, i)
1815                 blk_mq_start_stopped_hw_queue(hctx, async);
1816 }
1817 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1818
1819 static void blk_mq_run_work_fn(struct work_struct *work)
1820 {
1821         struct blk_mq_hw_ctx *hctx;
1822
1823         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1824
1825         /*
1826          * If we are stopped, don't run the queue.
1827          */
1828         if (blk_mq_hctx_stopped(hctx))
1829                 return;
1830
1831         __blk_mq_run_hw_queue(hctx);
1832 }
1833
1834 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1835                                             struct request *rq,
1836                                             bool at_head)
1837 {
1838         struct blk_mq_ctx *ctx = rq->mq_ctx;
1839         enum hctx_type type = hctx->type;
1840
1841         lockdep_assert_held(&ctx->lock);
1842
1843         trace_block_rq_insert(rq);
1844
1845         if (at_head)
1846                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1847         else
1848                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1849 }
1850
1851 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1852                              bool at_head)
1853 {
1854         struct blk_mq_ctx *ctx = rq->mq_ctx;
1855
1856         lockdep_assert_held(&ctx->lock);
1857
1858         __blk_mq_insert_req_list(hctx, rq, at_head);
1859         blk_mq_hctx_mark_pending(hctx, ctx);
1860 }
1861
1862 /**
1863  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1864  * @rq: Pointer to request to be inserted.
1865  * @at_head: true if the request should be inserted at the head of the list.
1866  * @run_queue: If we should run the hardware queue after inserting the request.
1867  *
1868  * Should only be used carefully, when the caller knows we want to
1869  * bypass a potential IO scheduler on the target device.
1870  */
1871 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1872                                   bool run_queue)
1873 {
1874         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1875
1876         spin_lock(&hctx->lock);
1877         if (at_head)
1878                 list_add(&rq->queuelist, &hctx->dispatch);
1879         else
1880                 list_add_tail(&rq->queuelist, &hctx->dispatch);
1881         spin_unlock(&hctx->lock);
1882
1883         if (run_queue)
1884                 blk_mq_run_hw_queue(hctx, false);
1885 }
1886
1887 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1888                             struct list_head *list)
1889
1890 {
1891         struct request *rq;
1892         enum hctx_type type = hctx->type;
1893
1894         /*
1895          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1896          * offline now
1897          */
1898         list_for_each_entry(rq, list, queuelist) {
1899                 BUG_ON(rq->mq_ctx != ctx);
1900                 trace_block_rq_insert(rq);
1901         }
1902
1903         spin_lock(&ctx->lock);
1904         list_splice_tail_init(list, &ctx->rq_lists[type]);
1905         blk_mq_hctx_mark_pending(hctx, ctx);
1906         spin_unlock(&ctx->lock);
1907 }
1908
1909 static int plug_rq_cmp(void *priv, const struct list_head *a,
1910                        const struct list_head *b)
1911 {
1912         struct request *rqa = container_of(a, struct request, queuelist);
1913         struct request *rqb = container_of(b, struct request, queuelist);
1914
1915         if (rqa->mq_ctx != rqb->mq_ctx)
1916                 return rqa->mq_ctx > rqb->mq_ctx;
1917         if (rqa->mq_hctx != rqb->mq_hctx)
1918                 return rqa->mq_hctx > rqb->mq_hctx;
1919
1920         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1921 }
1922
1923 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1924 {
1925         LIST_HEAD(list);
1926
1927         if (list_empty(&plug->mq_list))
1928                 return;
1929         list_splice_init(&plug->mq_list, &list);
1930
1931         if (plug->rq_count > 2 && plug->multiple_queues)
1932                 list_sort(NULL, &list, plug_rq_cmp);
1933
1934         plug->rq_count = 0;
1935
1936         do {
1937                 struct list_head rq_list;
1938                 struct request *rq, *head_rq = list_entry_rq(list.next);
1939                 struct list_head *pos = &head_rq->queuelist; /* skip first */
1940                 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1941                 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1942                 unsigned int depth = 1;
1943
1944                 list_for_each_continue(pos, &list) {
1945                         rq = list_entry_rq(pos);
1946                         BUG_ON(!rq->q);
1947                         if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1948                                 break;
1949                         depth++;
1950                 }
1951
1952                 list_cut_before(&rq_list, &list, pos);
1953                 trace_block_unplug(head_rq->q, depth, !from_schedule);
1954                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1955                                                 from_schedule);
1956         } while(!list_empty(&list));
1957 }
1958
1959 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1960                 unsigned int nr_segs)
1961 {
1962         int err;
1963
1964         if (bio->bi_opf & REQ_RAHEAD)
1965                 rq->cmd_flags |= REQ_FAILFAST_MASK;
1966
1967         rq->__sector = bio->bi_iter.bi_sector;
1968         rq->write_hint = bio->bi_write_hint;
1969         blk_rq_bio_prep(rq, bio, nr_segs);
1970
1971         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1972         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1973         WARN_ON_ONCE(err);
1974
1975         blk_account_io_start(rq);
1976 }
1977
1978 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1979                                             struct request *rq,
1980                                             blk_qc_t *cookie, bool last)
1981 {
1982         struct request_queue *q = rq->q;
1983         struct blk_mq_queue_data bd = {
1984                 .rq = rq,
1985                 .last = last,
1986         };
1987         blk_qc_t new_cookie;
1988         blk_status_t ret;
1989
1990         new_cookie = request_to_qc_t(hctx, rq);
1991
1992         /*
1993          * For OK queue, we are done. For error, caller may kill it.
1994          * Any other error (busy), just add it to our list as we
1995          * previously would have done.
1996          */
1997         ret = q->mq_ops->queue_rq(hctx, &bd);
1998         switch (ret) {
1999         case BLK_STS_OK:
2000                 blk_mq_update_dispatch_busy(hctx, false);
2001                 *cookie = new_cookie;
2002                 break;
2003         case BLK_STS_RESOURCE:
2004         case BLK_STS_DEV_RESOURCE:
2005                 blk_mq_update_dispatch_busy(hctx, true);
2006                 __blk_mq_requeue_request(rq);
2007                 break;
2008         default:
2009                 blk_mq_update_dispatch_busy(hctx, false);
2010                 *cookie = BLK_QC_T_NONE;
2011                 break;
2012         }
2013
2014         return ret;
2015 }
2016
2017 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2018                                                 struct request *rq,
2019                                                 blk_qc_t *cookie,
2020                                                 bool bypass_insert, bool last)
2021 {
2022         struct request_queue *q = rq->q;
2023         bool run_queue = true;
2024         int budget_token;
2025
2026         /*
2027          * RCU or SRCU read lock is needed before checking quiesced flag.
2028          *
2029          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2030          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2031          * and avoid driver to try to dispatch again.
2032          */
2033         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2034                 run_queue = false;
2035                 bypass_insert = false;
2036                 goto insert;
2037         }
2038
2039         if (q->elevator && !bypass_insert)
2040                 goto insert;
2041
2042         budget_token = blk_mq_get_dispatch_budget(q);
2043         if (budget_token < 0)
2044                 goto insert;
2045
2046         blk_mq_set_rq_budget_token(rq, budget_token);
2047
2048         if (!blk_mq_get_driver_tag(rq)) {
2049                 blk_mq_put_dispatch_budget(q, budget_token);
2050                 goto insert;
2051         }
2052
2053         return __blk_mq_issue_directly(hctx, rq, cookie, last);
2054 insert:
2055         if (bypass_insert)
2056                 return BLK_STS_RESOURCE;
2057
2058         blk_mq_sched_insert_request(rq, false, run_queue, false);
2059
2060         return BLK_STS_OK;
2061 }
2062
2063 /**
2064  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2065  * @hctx: Pointer of the associated hardware queue.
2066  * @rq: Pointer to request to be sent.
2067  * @cookie: Request queue cookie.
2068  *
2069  * If the device has enough resources to accept a new request now, send the
2070  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2071  * we can try send it another time in the future. Requests inserted at this
2072  * queue have higher priority.
2073  */
2074 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2075                 struct request *rq, blk_qc_t *cookie)
2076 {
2077         blk_status_t ret;
2078         int srcu_idx;
2079
2080         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2081
2082         hctx_lock(hctx, &srcu_idx);
2083
2084         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2085         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2086                 blk_mq_request_bypass_insert(rq, false, true);
2087         else if (ret != BLK_STS_OK)
2088                 blk_mq_end_request(rq, ret);
2089
2090         hctx_unlock(hctx, srcu_idx);
2091 }
2092
2093 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2094 {
2095         blk_status_t ret;
2096         int srcu_idx;
2097         blk_qc_t unused_cookie;
2098         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2099
2100         hctx_lock(hctx, &srcu_idx);
2101         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2102         hctx_unlock(hctx, srcu_idx);
2103
2104         return ret;
2105 }
2106
2107 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2108                 struct list_head *list)
2109 {
2110         int queued = 0;
2111         int errors = 0;
2112
2113         while (!list_empty(list)) {
2114                 blk_status_t ret;
2115                 struct request *rq = list_first_entry(list, struct request,
2116                                 queuelist);
2117
2118                 list_del_init(&rq->queuelist);
2119                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2120                 if (ret != BLK_STS_OK) {
2121                         if (ret == BLK_STS_RESOURCE ||
2122                                         ret == BLK_STS_DEV_RESOURCE) {
2123                                 blk_mq_request_bypass_insert(rq, false,
2124                                                         list_empty(list));
2125                                 break;
2126                         }
2127                         blk_mq_end_request(rq, ret);
2128                         errors++;
2129                 } else
2130                         queued++;
2131         }
2132
2133         /*
2134          * If we didn't flush the entire list, we could have told
2135          * the driver there was more coming, but that turned out to
2136          * be a lie.
2137          */
2138         if ((!list_empty(list) || errors) &&
2139              hctx->queue->mq_ops->commit_rqs && queued)
2140                 hctx->queue->mq_ops->commit_rqs(hctx);
2141 }
2142
2143 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2144 {
2145         list_add_tail(&rq->queuelist, &plug->mq_list);
2146         plug->rq_count++;
2147         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2148                 struct request *tmp;
2149
2150                 tmp = list_first_entry(&plug->mq_list, struct request,
2151                                                 queuelist);
2152                 if (tmp->q != rq->q)
2153                         plug->multiple_queues = true;
2154         }
2155 }
2156
2157 /**
2158  * blk_mq_submit_bio - Create and send a request to block device.
2159  * @bio: Bio pointer.
2160  *
2161  * Builds up a request structure from @q and @bio and send to the device. The
2162  * request may not be queued directly to hardware if:
2163  * * This request can be merged with another one
2164  * * We want to place request at plug queue for possible future merging
2165  * * There is an IO scheduler active at this queue
2166  *
2167  * It will not queue the request if there is an error with the bio, or at the
2168  * request creation.
2169  *
2170  * Returns: Request queue cookie.
2171  */
2172 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2173 {
2174         struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2175         const int is_sync = op_is_sync(bio->bi_opf);
2176         const int is_flush_fua = op_is_flush(bio->bi_opf);
2177         struct blk_mq_alloc_data data = {
2178                 .q              = q,
2179         };
2180         struct request *rq;
2181         struct blk_plug *plug;
2182         struct request *same_queue_rq = NULL;
2183         unsigned int nr_segs;
2184         blk_qc_t cookie;
2185         blk_status_t ret;
2186         bool hipri;
2187
2188         blk_queue_bounce(q, &bio);
2189         __blk_queue_split(&bio, &nr_segs);
2190
2191         if (!bio_integrity_prep(bio))
2192                 goto queue_exit;
2193
2194         if (!is_flush_fua && !blk_queue_nomerges(q) &&
2195             blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2196                 goto queue_exit;
2197
2198         if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2199                 goto queue_exit;
2200
2201         rq_qos_throttle(q, bio);
2202
2203         hipri = bio->bi_opf & REQ_HIPRI;
2204
2205         data.cmd_flags = bio->bi_opf;
2206         rq = __blk_mq_alloc_request(&data);
2207         if (unlikely(!rq)) {
2208                 rq_qos_cleanup(q, bio);
2209                 if (bio->bi_opf & REQ_NOWAIT)
2210                         bio_wouldblock_error(bio);
2211                 goto queue_exit;
2212         }
2213
2214         trace_block_getrq(bio);
2215
2216         rq_qos_track(q, rq, bio);
2217
2218         cookie = request_to_qc_t(data.hctx, rq);
2219
2220         blk_mq_bio_to_request(rq, bio, nr_segs);
2221
2222         ret = blk_crypto_init_request(rq);
2223         if (ret != BLK_STS_OK) {
2224                 bio->bi_status = ret;
2225                 bio_endio(bio);
2226                 blk_mq_free_request(rq);
2227                 return BLK_QC_T_NONE;
2228         }
2229
2230         plug = blk_mq_plug(q, bio);
2231         if (unlikely(is_flush_fua)) {
2232                 /* Bypass scheduler for flush requests */
2233                 blk_insert_flush(rq);
2234                 blk_mq_run_hw_queue(data.hctx, true);
2235         } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2236                                 !blk_queue_nonrot(q))) {
2237                 /*
2238                  * Use plugging if we have a ->commit_rqs() hook as well, as
2239                  * we know the driver uses bd->last in a smart fashion.
2240                  *
2241                  * Use normal plugging if this disk is slow HDD, as sequential
2242                  * IO may benefit a lot from plug merging.
2243                  */
2244                 unsigned int request_count = plug->rq_count;
2245                 struct request *last = NULL;
2246
2247                 if (!request_count)
2248                         trace_block_plug(q);
2249                 else
2250                         last = list_entry_rq(plug->mq_list.prev);
2251
2252                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2253                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2254                         blk_flush_plug_list(plug, false);
2255                         trace_block_plug(q);
2256                 }
2257
2258                 blk_add_rq_to_plug(plug, rq);
2259         } else if (q->elevator) {
2260                 /* Insert the request at the IO scheduler queue */
2261                 blk_mq_sched_insert_request(rq, false, true, true);
2262         } else if (plug && !blk_queue_nomerges(q)) {
2263                 /*
2264                  * We do limited plugging. If the bio can be merged, do that.
2265                  * Otherwise the existing request in the plug list will be
2266                  * issued. So the plug list will have one request at most
2267                  * The plug list might get flushed before this. If that happens,
2268                  * the plug list is empty, and same_queue_rq is invalid.
2269                  */
2270                 if (list_empty(&plug->mq_list))
2271                         same_queue_rq = NULL;
2272                 if (same_queue_rq) {
2273                         list_del_init(&same_queue_rq->queuelist);
2274                         plug->rq_count--;
2275                 }
2276                 blk_add_rq_to_plug(plug, rq);
2277                 trace_block_plug(q);
2278
2279                 if (same_queue_rq) {
2280                         data.hctx = same_queue_rq->mq_hctx;
2281                         trace_block_unplug(q, 1, true);
2282                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2283                                         &cookie);
2284                 }
2285         } else if ((q->nr_hw_queues > 1 && is_sync) ||
2286                         !data.hctx->dispatch_busy) {
2287                 /*
2288                  * There is no scheduler and we can try to send directly
2289                  * to the hardware.
2290                  */
2291                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2292         } else {
2293                 /* Default case. */
2294                 blk_mq_sched_insert_request(rq, false, true, true);
2295         }
2296
2297         if (!hipri)
2298                 return BLK_QC_T_NONE;
2299         return cookie;
2300 queue_exit:
2301         blk_queue_exit(q);
2302         return BLK_QC_T_NONE;
2303 }
2304
2305 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2306                      unsigned int hctx_idx)
2307 {
2308         struct page *page;
2309
2310         if (tags->rqs && set->ops->exit_request) {
2311                 int i;
2312
2313                 for (i = 0; i < tags->nr_tags; i++) {
2314                         struct request *rq = tags->static_rqs[i];
2315
2316                         if (!rq)
2317                                 continue;
2318                         set->ops->exit_request(set, rq, hctx_idx);
2319                         tags->static_rqs[i] = NULL;
2320                 }
2321         }
2322
2323         while (!list_empty(&tags->page_list)) {
2324                 page = list_first_entry(&tags->page_list, struct page, lru);
2325                 list_del_init(&page->lru);
2326                 /*
2327                  * Remove kmemleak object previously allocated in
2328                  * blk_mq_alloc_rqs().
2329                  */
2330                 kmemleak_free(page_address(page));
2331                 __free_pages(page, page->private);
2332         }
2333 }
2334
2335 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2336 {
2337         kfree(tags->rqs);
2338         tags->rqs = NULL;
2339         kfree(tags->static_rqs);
2340         tags->static_rqs = NULL;
2341
2342         blk_mq_free_tags(tags, flags);
2343 }
2344
2345 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2346                                         unsigned int hctx_idx,
2347                                         unsigned int nr_tags,
2348                                         unsigned int reserved_tags,
2349                                         unsigned int flags)
2350 {
2351         struct blk_mq_tags *tags;
2352         int node;
2353
2354         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2355         if (node == NUMA_NO_NODE)
2356                 node = set->numa_node;
2357
2358         tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2359         if (!tags)
2360                 return NULL;
2361
2362         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2363                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2364                                  node);
2365         if (!tags->rqs) {
2366                 blk_mq_free_tags(tags, flags);
2367                 return NULL;
2368         }
2369
2370         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2371                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2372                                         node);
2373         if (!tags->static_rqs) {
2374                 kfree(tags->rqs);
2375                 blk_mq_free_tags(tags, flags);
2376                 return NULL;
2377         }
2378
2379         return tags;
2380 }
2381
2382 static size_t order_to_size(unsigned int order)
2383 {
2384         return (size_t)PAGE_SIZE << order;
2385 }
2386
2387 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2388                                unsigned int hctx_idx, int node)
2389 {
2390         int ret;
2391
2392         if (set->ops->init_request) {
2393                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2394                 if (ret)
2395                         return ret;
2396         }
2397
2398         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2399         return 0;
2400 }
2401
2402 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2403                      unsigned int hctx_idx, unsigned int depth)
2404 {
2405         unsigned int i, j, entries_per_page, max_order = 4;
2406         size_t rq_size, left;
2407         int node;
2408
2409         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2410         if (node == NUMA_NO_NODE)
2411                 node = set->numa_node;
2412
2413         INIT_LIST_HEAD(&tags->page_list);
2414
2415         /*
2416          * rq_size is the size of the request plus driver payload, rounded
2417          * to the cacheline size
2418          */
2419         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2420                                 cache_line_size());
2421         left = rq_size * depth;
2422
2423         for (i = 0; i < depth; ) {
2424                 int this_order = max_order;
2425                 struct page *page;
2426                 int to_do;
2427                 void *p;
2428
2429                 while (this_order && left < order_to_size(this_order - 1))
2430                         this_order--;
2431
2432                 do {
2433                         page = alloc_pages_node(node,
2434                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2435                                 this_order);
2436                         if (page)
2437                                 break;
2438                         if (!this_order--)
2439                                 break;
2440                         if (order_to_size(this_order) < rq_size)
2441                                 break;
2442                 } while (1);
2443
2444                 if (!page)
2445                         goto fail;
2446
2447                 page->private = this_order;
2448                 list_add_tail(&page->lru, &tags->page_list);
2449
2450                 p = page_address(page);
2451                 /*
2452                  * Allow kmemleak to scan these pages as they contain pointers
2453                  * to additional allocations like via ops->init_request().
2454                  */
2455                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2456                 entries_per_page = order_to_size(this_order) / rq_size;
2457                 to_do = min(entries_per_page, depth - i);
2458                 left -= to_do * rq_size;
2459                 for (j = 0; j < to_do; j++) {
2460                         struct request *rq = p;
2461
2462                         tags->static_rqs[i] = rq;
2463                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2464                                 tags->static_rqs[i] = NULL;
2465                                 goto fail;
2466                         }
2467
2468                         p += rq_size;
2469                         i++;
2470                 }
2471         }
2472         return 0;
2473
2474 fail:
2475         blk_mq_free_rqs(set, tags, hctx_idx);
2476         return -ENOMEM;
2477 }
2478
2479 struct rq_iter_data {
2480         struct blk_mq_hw_ctx *hctx;
2481         bool has_rq;
2482 };
2483
2484 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2485 {
2486         struct rq_iter_data *iter_data = data;
2487
2488         if (rq->mq_hctx != iter_data->hctx)
2489                 return true;
2490         iter_data->has_rq = true;
2491         return false;
2492 }
2493
2494 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2495 {
2496         struct blk_mq_tags *tags = hctx->sched_tags ?
2497                         hctx->sched_tags : hctx->tags;
2498         struct rq_iter_data data = {
2499                 .hctx   = hctx,
2500         };
2501
2502         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2503         return data.has_rq;
2504 }
2505
2506 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2507                 struct blk_mq_hw_ctx *hctx)
2508 {
2509         if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2510                 return false;
2511         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2512                 return false;
2513         return true;
2514 }
2515
2516 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2517 {
2518         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2519                         struct blk_mq_hw_ctx, cpuhp_online);
2520
2521         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2522             !blk_mq_last_cpu_in_hctx(cpu, hctx))
2523                 return 0;
2524
2525         /*
2526          * Prevent new request from being allocated on the current hctx.
2527          *
2528          * The smp_mb__after_atomic() Pairs with the implied barrier in
2529          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2530          * seen once we return from the tag allocator.
2531          */
2532         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2533         smp_mb__after_atomic();
2534
2535         /*
2536          * Try to grab a reference to the queue and wait for any outstanding
2537          * requests.  If we could not grab a reference the queue has been
2538          * frozen and there are no requests.
2539          */
2540         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2541                 while (blk_mq_hctx_has_requests(hctx))
2542                         msleep(5);
2543                 percpu_ref_put(&hctx->queue->q_usage_counter);
2544         }
2545
2546         return 0;
2547 }
2548
2549 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2550 {
2551         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2552                         struct blk_mq_hw_ctx, cpuhp_online);
2553
2554         if (cpumask_test_cpu(cpu, hctx->cpumask))
2555                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2556         return 0;
2557 }
2558
2559 /*
2560  * 'cpu' is going away. splice any existing rq_list entries from this
2561  * software queue to the hw queue dispatch list, and ensure that it
2562  * gets run.
2563  */
2564 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2565 {
2566         struct blk_mq_hw_ctx *hctx;
2567         struct blk_mq_ctx *ctx;
2568         LIST_HEAD(tmp);
2569         enum hctx_type type;
2570
2571         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2572         if (!cpumask_test_cpu(cpu, hctx->cpumask))
2573                 return 0;
2574
2575         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2576         type = hctx->type;
2577
2578         spin_lock(&ctx->lock);
2579         if (!list_empty(&ctx->rq_lists[type])) {
2580                 list_splice_init(&ctx->rq_lists[type], &tmp);
2581                 blk_mq_hctx_clear_pending(hctx, ctx);
2582         }
2583         spin_unlock(&ctx->lock);
2584
2585         if (list_empty(&tmp))
2586                 return 0;
2587
2588         spin_lock(&hctx->lock);
2589         list_splice_tail_init(&tmp, &hctx->dispatch);
2590         spin_unlock(&hctx->lock);
2591
2592         blk_mq_run_hw_queue(hctx, true);
2593         return 0;
2594 }
2595
2596 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2597 {
2598         if (!(hctx->flags & BLK_MQ_F_STACKING))
2599                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2600                                                     &hctx->cpuhp_online);
2601         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2602                                             &hctx->cpuhp_dead);
2603 }
2604
2605 /* hctx->ctxs will be freed in queue's release handler */
2606 static void blk_mq_exit_hctx(struct request_queue *q,
2607                 struct blk_mq_tag_set *set,
2608                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2609 {
2610         if (blk_mq_hw_queue_mapped(hctx))
2611                 blk_mq_tag_idle(hctx);
2612
2613         if (set->ops->exit_request)
2614                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2615
2616         if (set->ops->exit_hctx)
2617                 set->ops->exit_hctx(hctx, hctx_idx);
2618
2619         blk_mq_remove_cpuhp(hctx);
2620
2621         spin_lock(&q->unused_hctx_lock);
2622         list_add(&hctx->hctx_list, &q->unused_hctx_list);
2623         spin_unlock(&q->unused_hctx_lock);
2624 }
2625
2626 static void blk_mq_exit_hw_queues(struct request_queue *q,
2627                 struct blk_mq_tag_set *set, int nr_queue)
2628 {
2629         struct blk_mq_hw_ctx *hctx;
2630         unsigned int i;
2631
2632         queue_for_each_hw_ctx(q, hctx, i) {
2633                 if (i == nr_queue)
2634                         break;
2635                 blk_mq_debugfs_unregister_hctx(hctx);
2636                 blk_mq_exit_hctx(q, set, hctx, i);
2637         }
2638 }
2639
2640 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2641 {
2642         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2643
2644         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2645                            __alignof__(struct blk_mq_hw_ctx)) !=
2646                      sizeof(struct blk_mq_hw_ctx));
2647
2648         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2649                 hw_ctx_size += sizeof(struct srcu_struct);
2650
2651         return hw_ctx_size;
2652 }
2653
2654 static int blk_mq_init_hctx(struct request_queue *q,
2655                 struct blk_mq_tag_set *set,
2656                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2657 {
2658         hctx->queue_num = hctx_idx;
2659
2660         if (!(hctx->flags & BLK_MQ_F_STACKING))
2661                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2662                                 &hctx->cpuhp_online);
2663         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2664
2665         hctx->tags = set->tags[hctx_idx];
2666
2667         if (set->ops->init_hctx &&
2668             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2669                 goto unregister_cpu_notifier;
2670
2671         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2672                                 hctx->numa_node))
2673                 goto exit_hctx;
2674         return 0;
2675
2676  exit_hctx:
2677         if (set->ops->exit_hctx)
2678                 set->ops->exit_hctx(hctx, hctx_idx);
2679  unregister_cpu_notifier:
2680         blk_mq_remove_cpuhp(hctx);
2681         return -1;
2682 }
2683
2684 static struct blk_mq_hw_ctx *
2685 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2686                 int node)
2687 {
2688         struct blk_mq_hw_ctx *hctx;
2689         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2690
2691         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2692         if (!hctx)
2693                 goto fail_alloc_hctx;
2694
2695         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2696                 goto free_hctx;
2697
2698         atomic_set(&hctx->nr_active, 0);
2699         if (node == NUMA_NO_NODE)
2700                 node = set->numa_node;
2701         hctx->numa_node = node;
2702
2703         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2704         spin_lock_init(&hctx->lock);
2705         INIT_LIST_HEAD(&hctx->dispatch);
2706         hctx->queue = q;
2707         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2708
2709         INIT_LIST_HEAD(&hctx->hctx_list);
2710
2711         /*
2712          * Allocate space for all possible cpus to avoid allocation at
2713          * runtime
2714          */
2715         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2716                         gfp, node);
2717         if (!hctx->ctxs)
2718                 goto free_cpumask;
2719
2720         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2721                                 gfp, node, false, false))
2722                 goto free_ctxs;
2723         hctx->nr_ctx = 0;
2724
2725         spin_lock_init(&hctx->dispatch_wait_lock);
2726         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2727         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2728
2729         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2730         if (!hctx->fq)
2731                 goto free_bitmap;
2732
2733         if (hctx->flags & BLK_MQ_F_BLOCKING)
2734                 init_srcu_struct(hctx->srcu);
2735         blk_mq_hctx_kobj_init(hctx);
2736
2737         return hctx;
2738
2739  free_bitmap:
2740         sbitmap_free(&hctx->ctx_map);
2741  free_ctxs:
2742         kfree(hctx->ctxs);
2743  free_cpumask:
2744         free_cpumask_var(hctx->cpumask);
2745  free_hctx:
2746         kfree(hctx);
2747  fail_alloc_hctx:
2748         return NULL;
2749 }
2750
2751 static void blk_mq_init_cpu_queues(struct request_queue *q,
2752                                    unsigned int nr_hw_queues)
2753 {
2754         struct blk_mq_tag_set *set = q->tag_set;
2755         unsigned int i, j;
2756
2757         for_each_possible_cpu(i) {
2758                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2759                 struct blk_mq_hw_ctx *hctx;
2760                 int k;
2761
2762                 __ctx->cpu = i;
2763                 spin_lock_init(&__ctx->lock);
2764                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2765                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2766
2767                 __ctx->queue = q;
2768
2769                 /*
2770                  * Set local node, IFF we have more than one hw queue. If
2771                  * not, we remain on the home node of the device
2772                  */
2773                 for (j = 0; j < set->nr_maps; j++) {
2774                         hctx = blk_mq_map_queue_type(q, j, i);
2775                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2776                                 hctx->numa_node = cpu_to_node(i);
2777                 }
2778         }
2779 }
2780
2781 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2782                                         int hctx_idx)
2783 {
2784         unsigned int flags = set->flags;
2785         int ret = 0;
2786
2787         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2788                                         set->queue_depth, set->reserved_tags, flags);
2789         if (!set->tags[hctx_idx])
2790                 return false;
2791
2792         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2793                                 set->queue_depth);
2794         if (!ret)
2795                 return true;
2796
2797         blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2798         set->tags[hctx_idx] = NULL;
2799         return false;
2800 }
2801
2802 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2803                                          unsigned int hctx_idx)
2804 {
2805         unsigned int flags = set->flags;
2806
2807         if (set->tags && set->tags[hctx_idx]) {
2808                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2809                 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2810                 set->tags[hctx_idx] = NULL;
2811         }
2812 }
2813
2814 static void blk_mq_map_swqueue(struct request_queue *q)
2815 {
2816         unsigned int i, j, hctx_idx;
2817         struct blk_mq_hw_ctx *hctx;
2818         struct blk_mq_ctx *ctx;
2819         struct blk_mq_tag_set *set = q->tag_set;
2820
2821         queue_for_each_hw_ctx(q, hctx, i) {
2822                 cpumask_clear(hctx->cpumask);
2823                 hctx->nr_ctx = 0;
2824                 hctx->dispatch_from = NULL;
2825         }
2826
2827         /*
2828          * Map software to hardware queues.
2829          *
2830          * If the cpu isn't present, the cpu is mapped to first hctx.
2831          */
2832         for_each_possible_cpu(i) {
2833
2834                 ctx = per_cpu_ptr(q->queue_ctx, i);
2835                 for (j = 0; j < set->nr_maps; j++) {
2836                         if (!set->map[j].nr_queues) {
2837                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2838                                                 HCTX_TYPE_DEFAULT, i);
2839                                 continue;
2840                         }
2841                         hctx_idx = set->map[j].mq_map[i];
2842                         /* unmapped hw queue can be remapped after CPU topo changed */
2843                         if (!set->tags[hctx_idx] &&
2844                             !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2845                                 /*
2846                                  * If tags initialization fail for some hctx,
2847                                  * that hctx won't be brought online.  In this
2848                                  * case, remap the current ctx to hctx[0] which
2849                                  * is guaranteed to always have tags allocated
2850                                  */
2851                                 set->map[j].mq_map[i] = 0;
2852                         }
2853
2854                         hctx = blk_mq_map_queue_type(q, j, i);
2855                         ctx->hctxs[j] = hctx;
2856                         /*
2857                          * If the CPU is already set in the mask, then we've
2858                          * mapped this one already. This can happen if
2859                          * devices share queues across queue maps.
2860                          */
2861                         if (cpumask_test_cpu(i, hctx->cpumask))
2862                                 continue;
2863
2864                         cpumask_set_cpu(i, hctx->cpumask);
2865                         hctx->type = j;
2866                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2867                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2868
2869                         /*
2870                          * If the nr_ctx type overflows, we have exceeded the
2871                          * amount of sw queues we can support.
2872                          */
2873                         BUG_ON(!hctx->nr_ctx);
2874                 }
2875
2876                 for (; j < HCTX_MAX_TYPES; j++)
2877                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2878                                         HCTX_TYPE_DEFAULT, i);
2879         }
2880
2881         queue_for_each_hw_ctx(q, hctx, i) {
2882                 /*
2883                  * If no software queues are mapped to this hardware queue,
2884                  * disable it and free the request entries.
2885                  */
2886                 if (!hctx->nr_ctx) {
2887                         /* Never unmap queue 0.  We need it as a
2888                          * fallback in case of a new remap fails
2889                          * allocation
2890                          */
2891                         if (i && set->tags[i])
2892                                 blk_mq_free_map_and_requests(set, i);
2893
2894                         hctx->tags = NULL;
2895                         continue;
2896                 }
2897
2898                 hctx->tags = set->tags[i];
2899                 WARN_ON(!hctx->tags);
2900
2901                 /*
2902                  * Set the map size to the number of mapped software queues.
2903                  * This is more accurate and more efficient than looping
2904                  * over all possibly mapped software queues.
2905                  */
2906                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2907
2908                 /*
2909                  * Initialize batch roundrobin counts
2910                  */
2911                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2912                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2913         }
2914 }
2915
2916 /*
2917  * Caller needs to ensure that we're either frozen/quiesced, or that
2918  * the queue isn't live yet.
2919  */
2920 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2921 {
2922         struct blk_mq_hw_ctx *hctx;
2923         int i;
2924
2925         queue_for_each_hw_ctx(q, hctx, i) {
2926                 if (shared)
2927                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2928                 else
2929                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2930         }
2931 }
2932
2933 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2934                                          bool shared)
2935 {
2936         struct request_queue *q;
2937
2938         lockdep_assert_held(&set->tag_list_lock);
2939
2940         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2941                 blk_mq_freeze_queue(q);
2942                 queue_set_hctx_shared(q, shared);
2943                 blk_mq_unfreeze_queue(q);
2944         }
2945 }
2946
2947 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2948 {
2949         struct blk_mq_tag_set *set = q->tag_set;
2950
2951         mutex_lock(&set->tag_list_lock);
2952         list_del(&q->tag_set_list);
2953         if (list_is_singular(&set->tag_list)) {
2954                 /* just transitioned to unshared */
2955                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2956                 /* update existing queue */
2957                 blk_mq_update_tag_set_shared(set, false);
2958         }
2959         mutex_unlock(&set->tag_list_lock);
2960         INIT_LIST_HEAD(&q->tag_set_list);
2961 }
2962
2963 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2964                                      struct request_queue *q)
2965 {
2966         mutex_lock(&set->tag_list_lock);
2967
2968         /*
2969          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2970          */
2971         if (!list_empty(&set->tag_list) &&
2972             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2973                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2974                 /* update existing queue */
2975                 blk_mq_update_tag_set_shared(set, true);
2976         }
2977         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2978                 queue_set_hctx_shared(q, true);
2979         list_add_tail(&q->tag_set_list, &set->tag_list);
2980
2981         mutex_unlock(&set->tag_list_lock);
2982 }
2983
2984 /* All allocations will be freed in release handler of q->mq_kobj */
2985 static int blk_mq_alloc_ctxs(struct request_queue *q)
2986 {
2987         struct blk_mq_ctxs *ctxs;
2988         int cpu;
2989
2990         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2991         if (!ctxs)
2992                 return -ENOMEM;
2993
2994         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2995         if (!ctxs->queue_ctx)
2996                 goto fail;
2997
2998         for_each_possible_cpu(cpu) {
2999                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3000                 ctx->ctxs = ctxs;
3001         }
3002
3003         q->mq_kobj = &ctxs->kobj;
3004         q->queue_ctx = ctxs->queue_ctx;
3005
3006         return 0;
3007  fail:
3008         kfree(ctxs);
3009         return -ENOMEM;
3010 }
3011
3012 /*
3013  * It is the actual release handler for mq, but we do it from
3014  * request queue's release handler for avoiding use-after-free
3015  * and headache because q->mq_kobj shouldn't have been introduced,
3016  * but we can't group ctx/kctx kobj without it.
3017  */
3018 void blk_mq_release(struct request_queue *q)
3019 {
3020         struct blk_mq_hw_ctx *hctx, *next;
3021         int i;
3022
3023         queue_for_each_hw_ctx(q, hctx, i)
3024                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3025
3026         /* all hctx are in .unused_hctx_list now */
3027         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3028                 list_del_init(&hctx->hctx_list);
3029                 kobject_put(&hctx->kobj);
3030         }
3031
3032         kfree(q->queue_hw_ctx);
3033
3034         /*
3035          * release .mq_kobj and sw queue's kobject now because
3036          * both share lifetime with request queue.
3037          */
3038         blk_mq_sysfs_deinit(q);
3039 }
3040
3041 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3042                 void *queuedata)
3043 {
3044         struct request_queue *uninit_q, *q;
3045
3046         uninit_q = blk_alloc_queue(set->numa_node);
3047         if (!uninit_q)
3048                 return ERR_PTR(-ENOMEM);
3049         uninit_q->queuedata = queuedata;
3050
3051         /*
3052          * Initialize the queue without an elevator. device_add_disk() will do
3053          * the initialization.
3054          */
3055         q = blk_mq_init_allocated_queue(set, uninit_q, false);
3056         if (IS_ERR(q))
3057                 blk_cleanup_queue(uninit_q);
3058
3059         return q;
3060 }
3061 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3062
3063 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3064 {
3065         return blk_mq_init_queue_data(set, NULL);
3066 }
3067 EXPORT_SYMBOL(blk_mq_init_queue);
3068
3069 /*
3070  * Helper for setting up a queue with mq ops, given queue depth, and
3071  * the passed in mq ops flags.
3072  */
3073 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3074                                            const struct blk_mq_ops *ops,
3075                                            unsigned int queue_depth,
3076                                            unsigned int set_flags)
3077 {
3078         struct request_queue *q;
3079         int ret;
3080
3081         memset(set, 0, sizeof(*set));
3082         set->ops = ops;
3083         set->nr_hw_queues = 1;
3084         set->nr_maps = 1;
3085         set->queue_depth = queue_depth;
3086         set->numa_node = NUMA_NO_NODE;
3087         set->flags = set_flags;
3088
3089         ret = blk_mq_alloc_tag_set(set);
3090         if (ret)
3091                 return ERR_PTR(ret);
3092
3093         q = blk_mq_init_queue(set);
3094         if (IS_ERR(q)) {
3095                 blk_mq_free_tag_set(set);
3096                 return q;
3097         }
3098
3099         return q;
3100 }
3101 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3102
3103 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3104                 struct blk_mq_tag_set *set, struct request_queue *q,
3105                 int hctx_idx, int node)
3106 {
3107         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3108
3109         /* reuse dead hctx first */
3110         spin_lock(&q->unused_hctx_lock);
3111         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3112                 if (tmp->numa_node == node) {
3113                         hctx = tmp;
3114                         break;
3115                 }
3116         }
3117         if (hctx)
3118                 list_del_init(&hctx->hctx_list);
3119         spin_unlock(&q->unused_hctx_lock);
3120
3121         if (!hctx)
3122                 hctx = blk_mq_alloc_hctx(q, set, node);
3123         if (!hctx)
3124                 goto fail;
3125
3126         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3127                 goto free_hctx;
3128
3129         return hctx;
3130
3131  free_hctx:
3132         kobject_put(&hctx->kobj);
3133  fail:
3134         return NULL;
3135 }
3136
3137 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3138                                                 struct request_queue *q)
3139 {
3140         int i, j, end;
3141         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3142
3143         if (q->nr_hw_queues < set->nr_hw_queues) {
3144                 struct blk_mq_hw_ctx **new_hctxs;
3145
3146                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3147                                        sizeof(*new_hctxs), GFP_KERNEL,
3148                                        set->numa_node);
3149                 if (!new_hctxs)
3150                         return;
3151                 if (hctxs)
3152                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3153                                sizeof(*hctxs));
3154                 q->queue_hw_ctx = new_hctxs;
3155                 kfree(hctxs);
3156                 hctxs = new_hctxs;
3157         }
3158
3159         /* protect against switching io scheduler  */
3160         mutex_lock(&q->sysfs_lock);
3161         for (i = 0; i < set->nr_hw_queues; i++) {
3162                 int node;
3163                 struct blk_mq_hw_ctx *hctx;
3164
3165                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3166                 /*
3167                  * If the hw queue has been mapped to another numa node,
3168                  * we need to realloc the hctx. If allocation fails, fallback
3169                  * to use the previous one.
3170                  */
3171                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3172                         continue;
3173
3174                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3175                 if (hctx) {
3176                         if (hctxs[i])
3177                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3178                         hctxs[i] = hctx;
3179                 } else {
3180                         if (hctxs[i])
3181                                 pr_warn("Allocate new hctx on node %d fails,\
3182                                                 fallback to previous one on node %d\n",
3183                                                 node, hctxs[i]->numa_node);
3184                         else
3185                                 break;
3186                 }
3187         }
3188         /*
3189          * Increasing nr_hw_queues fails. Free the newly allocated
3190          * hctxs and keep the previous q->nr_hw_queues.
3191          */
3192         if (i != set->nr_hw_queues) {
3193                 j = q->nr_hw_queues;
3194                 end = i;
3195         } else {
3196                 j = i;
3197                 end = q->nr_hw_queues;
3198                 q->nr_hw_queues = set->nr_hw_queues;
3199         }
3200
3201         for (; j < end; j++) {
3202                 struct blk_mq_hw_ctx *hctx = hctxs[j];
3203
3204                 if (hctx) {
3205                         if (hctx->tags)
3206                                 blk_mq_free_map_and_requests(set, j);
3207                         blk_mq_exit_hctx(q, set, hctx, j);
3208                         hctxs[j] = NULL;
3209                 }
3210         }
3211         mutex_unlock(&q->sysfs_lock);
3212 }
3213
3214 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3215                                                   struct request_queue *q,
3216                                                   bool elevator_init)
3217 {
3218         /* mark the queue as mq asap */
3219         q->mq_ops = set->ops;
3220
3221         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3222                                              blk_mq_poll_stats_bkt,
3223                                              BLK_MQ_POLL_STATS_BKTS, q);
3224         if (!q->poll_cb)
3225                 goto err_exit;
3226
3227         if (blk_mq_alloc_ctxs(q))
3228                 goto err_poll;
3229
3230         /* init q->mq_kobj and sw queues' kobjects */
3231         blk_mq_sysfs_init(q);
3232
3233         INIT_LIST_HEAD(&q->unused_hctx_list);
3234         spin_lock_init(&q->unused_hctx_lock);
3235
3236         blk_mq_realloc_hw_ctxs(set, q);
3237         if (!q->nr_hw_queues)
3238                 goto err_hctxs;
3239
3240         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3241         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3242
3243         q->tag_set = set;
3244
3245         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3246         if (set->nr_maps > HCTX_TYPE_POLL &&
3247             set->map[HCTX_TYPE_POLL].nr_queues)
3248                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3249
3250         q->sg_reserved_size = INT_MAX;
3251
3252         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3253         INIT_LIST_HEAD(&q->requeue_list);
3254         spin_lock_init(&q->requeue_lock);
3255
3256         q->nr_requests = set->queue_depth;
3257
3258         /*
3259          * Default to classic polling
3260          */
3261         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3262
3263         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3264         blk_mq_add_queue_tag_set(set, q);
3265         blk_mq_map_swqueue(q);
3266
3267         if (elevator_init)
3268                 elevator_init_mq(q);
3269
3270         return q;
3271
3272 err_hctxs:
3273         kfree(q->queue_hw_ctx);
3274         q->nr_hw_queues = 0;
3275         blk_mq_sysfs_deinit(q);
3276 err_poll:
3277         blk_stat_free_callback(q->poll_cb);
3278         q->poll_cb = NULL;
3279 err_exit:
3280         q->mq_ops = NULL;
3281         return ERR_PTR(-ENOMEM);
3282 }
3283 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3284
3285 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3286 void blk_mq_exit_queue(struct request_queue *q)
3287 {
3288         struct blk_mq_tag_set   *set = q->tag_set;
3289
3290         blk_mq_del_queue_tag_set(q);
3291         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3292 }
3293
3294 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3295 {
3296         int i;
3297
3298         for (i = 0; i < set->nr_hw_queues; i++) {
3299                 if (!__blk_mq_alloc_map_and_request(set, i))
3300                         goto out_unwind;
3301                 cond_resched();
3302         }
3303
3304         return 0;
3305
3306 out_unwind:
3307         while (--i >= 0)
3308                 blk_mq_free_map_and_requests(set, i);
3309
3310         return -ENOMEM;
3311 }
3312
3313 /*
3314  * Allocate the request maps associated with this tag_set. Note that this
3315  * may reduce the depth asked for, if memory is tight. set->queue_depth
3316  * will be updated to reflect the allocated depth.
3317  */
3318 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3319 {
3320         unsigned int depth;
3321         int err;
3322
3323         depth = set->queue_depth;
3324         do {
3325                 err = __blk_mq_alloc_rq_maps(set);
3326                 if (!err)
3327                         break;
3328
3329                 set->queue_depth >>= 1;
3330                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3331                         err = -ENOMEM;
3332                         break;
3333                 }
3334         } while (set->queue_depth);
3335
3336         if (!set->queue_depth || err) {
3337                 pr_err("blk-mq: failed to allocate request map\n");
3338                 return -ENOMEM;
3339         }
3340
3341         if (depth != set->queue_depth)
3342                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3343                                                 depth, set->queue_depth);
3344
3345         return 0;
3346 }
3347
3348 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3349 {
3350         /*
3351          * blk_mq_map_queues() and multiple .map_queues() implementations
3352          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3353          * number of hardware queues.
3354          */
3355         if (set->nr_maps == 1)
3356                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3357
3358         if (set->ops->map_queues && !is_kdump_kernel()) {
3359                 int i;
3360
3361                 /*
3362                  * transport .map_queues is usually done in the following
3363                  * way:
3364                  *
3365                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3366                  *      mask = get_cpu_mask(queue)
3367                  *      for_each_cpu(cpu, mask)
3368                  *              set->map[x].mq_map[cpu] = queue;
3369                  * }
3370                  *
3371                  * When we need to remap, the table has to be cleared for
3372                  * killing stale mapping since one CPU may not be mapped
3373                  * to any hw queue.
3374                  */
3375                 for (i = 0; i < set->nr_maps; i++)
3376                         blk_mq_clear_mq_map(&set->map[i]);
3377
3378                 return set->ops->map_queues(set);
3379         } else {
3380                 BUG_ON(set->nr_maps > 1);
3381                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3382         }
3383 }
3384
3385 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3386                                   int cur_nr_hw_queues, int new_nr_hw_queues)
3387 {
3388         struct blk_mq_tags **new_tags;
3389
3390         if (cur_nr_hw_queues >= new_nr_hw_queues)
3391                 return 0;
3392
3393         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3394                                 GFP_KERNEL, set->numa_node);
3395         if (!new_tags)
3396                 return -ENOMEM;
3397
3398         if (set->tags)
3399                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3400                        sizeof(*set->tags));
3401         kfree(set->tags);
3402         set->tags = new_tags;
3403         set->nr_hw_queues = new_nr_hw_queues;
3404
3405         return 0;
3406 }
3407
3408 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3409                                 int new_nr_hw_queues)
3410 {
3411         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3412 }
3413
3414 /*
3415  * Alloc a tag set to be associated with one or more request queues.
3416  * May fail with EINVAL for various error conditions. May adjust the
3417  * requested depth down, if it's too large. In that case, the set
3418  * value will be stored in set->queue_depth.
3419  */
3420 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3421 {
3422         int i, ret;
3423
3424         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3425
3426         if (!set->nr_hw_queues)
3427                 return -EINVAL;
3428         if (!set->queue_depth)
3429                 return -EINVAL;
3430         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3431                 return -EINVAL;
3432
3433         if (!set->ops->queue_rq)
3434                 return -EINVAL;
3435
3436         if (!set->ops->get_budget ^ !set->ops->put_budget)
3437                 return -EINVAL;
3438
3439         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3440                 pr_info("blk-mq: reduced tag depth to %u\n",
3441                         BLK_MQ_MAX_DEPTH);
3442                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3443         }
3444
3445         if (!set->nr_maps)
3446                 set->nr_maps = 1;
3447         else if (set->nr_maps > HCTX_MAX_TYPES)
3448                 return -EINVAL;
3449
3450         /*
3451          * If a crashdump is active, then we are potentially in a very
3452          * memory constrained environment. Limit us to 1 queue and
3453          * 64 tags to prevent using too much memory.
3454          */
3455         if (is_kdump_kernel()) {
3456                 set->nr_hw_queues = 1;
3457                 set->nr_maps = 1;
3458                 set->queue_depth = min(64U, set->queue_depth);
3459         }
3460         /*
3461          * There is no use for more h/w queues than cpus if we just have
3462          * a single map
3463          */
3464         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3465                 set->nr_hw_queues = nr_cpu_ids;
3466
3467         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3468                 return -ENOMEM;
3469
3470         ret = -ENOMEM;
3471         for (i = 0; i < set->nr_maps; i++) {
3472                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3473                                                   sizeof(set->map[i].mq_map[0]),
3474                                                   GFP_KERNEL, set->numa_node);
3475                 if (!set->map[i].mq_map)
3476                         goto out_free_mq_map;
3477                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3478         }
3479
3480         ret = blk_mq_update_queue_map(set);
3481         if (ret)
3482                 goto out_free_mq_map;
3483
3484         ret = blk_mq_alloc_map_and_requests(set);
3485         if (ret)
3486                 goto out_free_mq_map;
3487
3488         if (blk_mq_is_sbitmap_shared(set->flags)) {
3489                 atomic_set(&set->active_queues_shared_sbitmap, 0);
3490
3491                 if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3492                         ret = -ENOMEM;
3493                         goto out_free_mq_rq_maps;
3494                 }
3495         }
3496
3497         mutex_init(&set->tag_list_lock);
3498         INIT_LIST_HEAD(&set->tag_list);
3499
3500         return 0;
3501
3502 out_free_mq_rq_maps:
3503         for (i = 0; i < set->nr_hw_queues; i++)
3504                 blk_mq_free_map_and_requests(set, i);
3505 out_free_mq_map:
3506         for (i = 0; i < set->nr_maps; i++) {
3507                 kfree(set->map[i].mq_map);
3508                 set->map[i].mq_map = NULL;
3509         }
3510         kfree(set->tags);
3511         set->tags = NULL;
3512         return ret;
3513 }
3514 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3515
3516 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3517 {
3518         int i, j;
3519
3520         for (i = 0; i < set->nr_hw_queues; i++)
3521                 blk_mq_free_map_and_requests(set, i);
3522
3523         if (blk_mq_is_sbitmap_shared(set->flags))
3524                 blk_mq_exit_shared_sbitmap(set);
3525
3526         for (j = 0; j < set->nr_maps; j++) {
3527                 kfree(set->map[j].mq_map);
3528                 set->map[j].mq_map = NULL;
3529         }
3530
3531         kfree(set->tags);
3532         set->tags = NULL;
3533 }
3534 EXPORT_SYMBOL(blk_mq_free_tag_set);
3535
3536 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3537 {
3538         struct blk_mq_tag_set *set = q->tag_set;
3539         struct blk_mq_hw_ctx *hctx;
3540         int i, ret;
3541
3542         if (!set)
3543                 return -EINVAL;
3544
3545         if (q->nr_requests == nr)
3546                 return 0;
3547
3548         blk_mq_freeze_queue(q);
3549         blk_mq_quiesce_queue(q);
3550
3551         ret = 0;
3552         queue_for_each_hw_ctx(q, hctx, i) {
3553                 if (!hctx->tags)
3554                         continue;
3555                 /*
3556                  * If we're using an MQ scheduler, just update the scheduler
3557                  * queue depth. This is similar to what the old code would do.
3558                  */
3559                 if (!hctx->sched_tags) {
3560                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3561                                                         false);
3562                         if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3563                                 blk_mq_tag_resize_shared_sbitmap(set, nr);
3564                 } else {
3565                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3566                                                         nr, true);
3567                 }
3568                 if (ret)
3569                         break;
3570                 if (q->elevator && q->elevator->type->ops.depth_updated)
3571                         q->elevator->type->ops.depth_updated(hctx);
3572         }
3573
3574         if (!ret)
3575                 q->nr_requests = nr;
3576
3577         blk_mq_unquiesce_queue(q);
3578         blk_mq_unfreeze_queue(q);
3579
3580         return ret;
3581 }
3582
3583 /*
3584  * request_queue and elevator_type pair.
3585  * It is just used by __blk_mq_update_nr_hw_queues to cache
3586  * the elevator_type associated with a request_queue.
3587  */
3588 struct blk_mq_qe_pair {
3589         struct list_head node;
3590         struct request_queue *q;
3591         struct elevator_type *type;
3592 };
3593
3594 /*
3595  * Cache the elevator_type in qe pair list and switch the
3596  * io scheduler to 'none'
3597  */
3598 static bool blk_mq_elv_switch_none(struct list_head *head,
3599                 struct request_queue *q)
3600 {
3601         struct blk_mq_qe_pair *qe;
3602
3603         if (!q->elevator)
3604                 return true;
3605
3606         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3607         if (!qe)
3608                 return false;
3609
3610         INIT_LIST_HEAD(&qe->node);
3611         qe->q = q;
3612         qe->type = q->elevator->type;
3613         list_add(&qe->node, head);
3614
3615         mutex_lock(&q->sysfs_lock);
3616         /*
3617          * After elevator_switch_mq, the previous elevator_queue will be
3618          * released by elevator_release. The reference of the io scheduler
3619          * module get by elevator_get will also be put. So we need to get
3620          * a reference of the io scheduler module here to prevent it to be
3621          * removed.
3622          */
3623         __module_get(qe->type->elevator_owner);
3624         elevator_switch_mq(q, NULL);
3625         mutex_unlock(&q->sysfs_lock);
3626
3627         return true;
3628 }
3629
3630 static void blk_mq_elv_switch_back(struct list_head *head,
3631                 struct request_queue *q)
3632 {
3633         struct blk_mq_qe_pair *qe;
3634         struct elevator_type *t = NULL;
3635
3636         list_for_each_entry(qe, head, node)
3637                 if (qe->q == q) {
3638                         t = qe->type;
3639                         break;
3640                 }
3641
3642         if (!t)
3643                 return;
3644
3645         list_del(&qe->node);
3646         kfree(qe);
3647
3648         mutex_lock(&q->sysfs_lock);
3649         elevator_switch_mq(q, t);
3650         mutex_unlock(&q->sysfs_lock);
3651 }
3652
3653 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3654                                                         int nr_hw_queues)
3655 {
3656         struct request_queue *q;
3657         LIST_HEAD(head);
3658         int prev_nr_hw_queues;
3659
3660         lockdep_assert_held(&set->tag_list_lock);
3661
3662         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3663                 nr_hw_queues = nr_cpu_ids;
3664         if (nr_hw_queues < 1)
3665                 return;
3666         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3667                 return;
3668
3669         list_for_each_entry(q, &set->tag_list, tag_set_list)
3670                 blk_mq_freeze_queue(q);
3671         /*
3672          * Switch IO scheduler to 'none', cleaning up the data associated
3673          * with the previous scheduler. We will switch back once we are done
3674          * updating the new sw to hw queue mappings.
3675          */
3676         list_for_each_entry(q, &set->tag_list, tag_set_list)
3677                 if (!blk_mq_elv_switch_none(&head, q))
3678                         goto switch_back;
3679
3680         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3681                 blk_mq_debugfs_unregister_hctxs(q);
3682                 blk_mq_sysfs_unregister(q);
3683         }
3684
3685         prev_nr_hw_queues = set->nr_hw_queues;
3686         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3687             0)
3688                 goto reregister;
3689
3690         set->nr_hw_queues = nr_hw_queues;
3691 fallback:
3692         blk_mq_update_queue_map(set);
3693         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3694                 blk_mq_realloc_hw_ctxs(set, q);
3695                 if (q->nr_hw_queues != set->nr_hw_queues) {
3696                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3697                                         nr_hw_queues, prev_nr_hw_queues);
3698                         set->nr_hw_queues = prev_nr_hw_queues;
3699                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3700                         goto fallback;
3701                 }
3702                 blk_mq_map_swqueue(q);
3703         }
3704
3705 reregister:
3706         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3707                 blk_mq_sysfs_register(q);
3708                 blk_mq_debugfs_register_hctxs(q);
3709         }
3710
3711 switch_back:
3712         list_for_each_entry(q, &set->tag_list, tag_set_list)
3713                 blk_mq_elv_switch_back(&head, q);
3714
3715         list_for_each_entry(q, &set->tag_list, tag_set_list)
3716                 blk_mq_unfreeze_queue(q);
3717 }
3718
3719 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3720 {
3721         mutex_lock(&set->tag_list_lock);
3722         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3723         mutex_unlock(&set->tag_list_lock);
3724 }
3725 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3726
3727 /* Enable polling stats and return whether they were already enabled. */
3728 static bool blk_poll_stats_enable(struct request_queue *q)
3729 {
3730         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3731             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3732                 return true;
3733         blk_stat_add_callback(q, q->poll_cb);
3734         return false;
3735 }
3736
3737 static void blk_mq_poll_stats_start(struct request_queue *q)
3738 {
3739         /*
3740          * We don't arm the callback if polling stats are not enabled or the
3741          * callback is already active.
3742          */
3743         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3744             blk_stat_is_active(q->poll_cb))
3745                 return;
3746
3747         blk_stat_activate_msecs(q->poll_cb, 100);
3748 }
3749
3750 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3751 {
3752         struct request_queue *q = cb->data;
3753         int bucket;
3754
3755         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3756                 if (cb->stat[bucket].nr_samples)
3757                         q->poll_stat[bucket] = cb->stat[bucket];
3758         }
3759 }
3760
3761 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3762                                        struct request *rq)
3763 {
3764         unsigned long ret = 0;
3765         int bucket;
3766
3767         /*
3768          * If stats collection isn't on, don't sleep but turn it on for
3769          * future users
3770          */
3771         if (!blk_poll_stats_enable(q))
3772                 return 0;
3773
3774         /*
3775          * As an optimistic guess, use half of the mean service time
3776          * for this type of request. We can (and should) make this smarter.
3777          * For instance, if the completion latencies are tight, we can
3778          * get closer than just half the mean. This is especially
3779          * important on devices where the completion latencies are longer
3780          * than ~10 usec. We do use the stats for the relevant IO size
3781          * if available which does lead to better estimates.
3782          */
3783         bucket = blk_mq_poll_stats_bkt(rq);
3784         if (bucket < 0)
3785                 return ret;
3786
3787         if (q->poll_stat[bucket].nr_samples)
3788                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3789
3790         return ret;
3791 }
3792
3793 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3794                                      struct request *rq)
3795 {
3796         struct hrtimer_sleeper hs;
3797         enum hrtimer_mode mode;
3798         unsigned int nsecs;
3799         ktime_t kt;
3800
3801         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3802                 return false;
3803
3804         /*
3805          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3806          *
3807          *  0:  use half of prev avg
3808          * >0:  use this specific value
3809          */
3810         if (q->poll_nsec > 0)
3811                 nsecs = q->poll_nsec;
3812         else
3813                 nsecs = blk_mq_poll_nsecs(q, rq);
3814
3815         if (!nsecs)
3816                 return false;
3817
3818         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3819
3820         /*
3821          * This will be replaced with the stats tracking code, using
3822          * 'avg_completion_time / 2' as the pre-sleep target.
3823          */
3824         kt = nsecs;
3825
3826         mode = HRTIMER_MODE_REL;
3827         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3828         hrtimer_set_expires(&hs.timer, kt);
3829
3830         do {
3831                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3832                         break;
3833                 set_current_state(TASK_UNINTERRUPTIBLE);
3834                 hrtimer_sleeper_start_expires(&hs, mode);
3835                 if (hs.task)
3836                         io_schedule();
3837                 hrtimer_cancel(&hs.timer);
3838                 mode = HRTIMER_MODE_ABS;
3839         } while (hs.task && !signal_pending(current));
3840
3841         __set_current_state(TASK_RUNNING);
3842         destroy_hrtimer_on_stack(&hs.timer);
3843         return true;
3844 }
3845
3846 static bool blk_mq_poll_hybrid(struct request_queue *q,
3847                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3848 {
3849         struct request *rq;
3850
3851         if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3852                 return false;
3853
3854         if (!blk_qc_t_is_internal(cookie))
3855                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3856         else {
3857                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3858                 /*
3859                  * With scheduling, if the request has completed, we'll
3860                  * get a NULL return here, as we clear the sched tag when
3861                  * that happens. The request still remains valid, like always,
3862                  * so we should be safe with just the NULL check.
3863                  */
3864                 if (!rq)
3865                         return false;
3866         }
3867
3868         return blk_mq_poll_hybrid_sleep(q, rq);
3869 }
3870
3871 /**
3872  * blk_poll - poll for IO completions
3873  * @q:  the queue
3874  * @cookie: cookie passed back at IO submission time
3875  * @spin: whether to spin for completions
3876  *
3877  * Description:
3878  *    Poll for completions on the passed in queue. Returns number of
3879  *    completed entries found. If @spin is true, then blk_poll will continue
3880  *    looping until at least one completion is found, unless the task is
3881  *    otherwise marked running (or we need to reschedule).
3882  */
3883 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3884 {
3885         struct blk_mq_hw_ctx *hctx;
3886         long state;
3887
3888         if (!blk_qc_t_valid(cookie) ||
3889             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3890                 return 0;
3891
3892         if (current->plug)
3893                 blk_flush_plug_list(current->plug, false);
3894
3895         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3896
3897         /*
3898          * If we sleep, have the caller restart the poll loop to reset
3899          * the state. Like for the other success return cases, the
3900          * caller is responsible for checking if the IO completed. If
3901          * the IO isn't complete, we'll get called again and will go
3902          * straight to the busy poll loop. If specified not to spin,
3903          * we also should not sleep.
3904          */
3905         if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3906                 return 1;
3907
3908         hctx->poll_considered++;
3909
3910         state = current->state;
3911         do {
3912                 int ret;
3913
3914                 hctx->poll_invoked++;
3915
3916                 ret = q->mq_ops->poll(hctx);
3917                 if (ret > 0) {
3918                         hctx->poll_success++;
3919                         __set_current_state(TASK_RUNNING);
3920                         return ret;
3921                 }
3922
3923                 if (signal_pending_state(state, current))
3924                         __set_current_state(TASK_RUNNING);
3925
3926                 if (current->state == TASK_RUNNING)
3927                         return 1;
3928                 if (ret < 0 || !spin)
3929                         break;
3930                 cpu_relax();
3931         } while (!need_resched());
3932
3933         __set_current_state(TASK_RUNNING);
3934         return 0;
3935 }
3936 EXPORT_SYMBOL_GPL(blk_poll);
3937
3938 unsigned int blk_mq_rq_cpu(struct request *rq)
3939 {
3940         return rq->mq_ctx->cpu;
3941 }
3942 EXPORT_SYMBOL(blk_mq_rq_cpu);
3943
3944 static int __init blk_mq_init(void)
3945 {
3946         int i;
3947
3948         for_each_possible_cpu(i)
3949                 init_llist_head(&per_cpu(blk_cpu_done, i));
3950         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3951
3952         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3953                                   "block/softirq:dead", NULL,
3954                                   blk_softirq_cpu_dead);
3955         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3956                                 blk_mq_hctx_notify_dead);
3957         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3958                                 blk_mq_hctx_notify_online,
3959                                 blk_mq_hctx_notify_offline);
3960         return 0;
3961 }
3962 subsys_initcall(blk_mq_init);