Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-microblaze.git] / block / blk-iocost.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * parameters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (WEIGHT_ONE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO if doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, soley depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The output looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per        : Timer period
166  * - cur_per    : Internal wall and device vtime clock
167  * - vrate      : Device virtual time rate against wall clock
168  * - weight     : Surplus-adjusted and configured weights
169  * - hweight    : Surplus-adjusted and configured hierarchical weights
170  * - inflt      : The percentage of in-flight IO cost at the end of last period
171  * - del_ms     : Deferred issuer delay induction level and duration
172  * - usages     : Usage history
173  */
174
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <linux/blk-cgroup.h>
182 #include <asm/local.h>
183 #include <asm/local64.h>
184 #include "blk-rq-qos.h"
185 #include "blk-stat.h"
186 #include "blk-wbt.h"
187
188 #ifdef CONFIG_TRACEPOINTS
189
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195 #define TRACE_IOCG_PATH(type, iocg, ...)                                        \
196         do {                                                                    \
197                 unsigned long flags;                                            \
198                 if (trace_iocost_##type##_enabled()) {                          \
199                         spin_lock_irqsave(&trace_iocg_path_lock, flags);        \
200                         cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,      \
201                                     trace_iocg_path, TRACE_IOCG_PATH_LEN);      \
202                         trace_iocost_##type(iocg, trace_iocg_path,              \
203                                               ##__VA_ARGS__);                   \
204                         spin_unlock_irqrestore(&trace_iocg_path_lock, flags);   \
205                 }                                                               \
206         } while (0)
207
208 #else   /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)        do { } while (0)
210 #endif  /* CONFIG_TRACE_POINTS */
211
212 enum {
213         MILLION                 = 1000000,
214
215         /* timer period is calculated from latency requirements, bound it */
216         MIN_PERIOD              = USEC_PER_MSEC,
217         MAX_PERIOD              = USEC_PER_SEC,
218
219         /*
220          * iocg->vtime is targeted at 50% behind the device vtime, which
221          * serves as its IO credit buffer.  Surplus weight adjustment is
222          * immediately canceled if the vtime margin runs below 10%.
223          */
224         MARGIN_MIN_PCT          = 10,
225         MARGIN_LOW_PCT          = 20,
226         MARGIN_TARGET_PCT       = 50,
227
228         INUSE_ADJ_STEP_PCT      = 25,
229
230         /* Have some play in timer operations */
231         TIMER_SLACK_PCT         = 1,
232
233         /* 1/64k is granular enough and can easily be handled w/ u32 */
234         WEIGHT_ONE              = 1 << 16,
235
236         /*
237          * As vtime is used to calculate the cost of each IO, it needs to
238          * be fairly high precision.  For example, it should be able to
239          * represent the cost of a single page worth of discard with
240          * suffificient accuracy.  At the same time, it should be able to
241          * represent reasonably long enough durations to be useful and
242          * convenient during operation.
243          *
244          * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
245          * granularity and days of wrap-around time even at extreme vrates.
246          */
247         VTIME_PER_SEC_SHIFT     = 37,
248         VTIME_PER_SEC           = 1LLU << VTIME_PER_SEC_SHIFT,
249         VTIME_PER_USEC          = VTIME_PER_SEC / USEC_PER_SEC,
250         VTIME_PER_NSEC          = VTIME_PER_SEC / NSEC_PER_SEC,
251
252         /* bound vrate adjustments within two orders of magnitude */
253         VRATE_MIN_PPM           = 10000,        /* 1% */
254         VRATE_MAX_PPM           = 100000000,    /* 10000% */
255
256         VRATE_MIN               = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
257         VRATE_CLAMP_ADJ_PCT     = 4,
258
259         /* if IOs end up waiting for requests, issue less */
260         RQ_WAIT_BUSY_PCT        = 5,
261
262         /* unbusy hysterisis */
263         UNBUSY_THR_PCT          = 75,
264
265         /*
266          * The effect of delay is indirect and non-linear and a huge amount of
267          * future debt can accumulate abruptly while unthrottled. Linearly scale
268          * up delay as debt is going up and then let it decay exponentially.
269          * This gives us quick ramp ups while delay is accumulating and long
270          * tails which can help reducing the frequency of debt explosions on
271          * unthrottle. The parameters are experimentally determined.
272          *
273          * The delay mechanism provides adequate protection and behavior in many
274          * cases. However, this is far from ideal and falls shorts on both
275          * fronts. The debtors are often throttled too harshly costing a
276          * significant level of fairness and possibly total work while the
277          * protection against their impacts on the system can be choppy and
278          * unreliable.
279          *
280          * The shortcoming primarily stems from the fact that, unlike for page
281          * cache, the kernel doesn't have well-defined back-pressure propagation
282          * mechanism and policies for anonymous memory. Fully addressing this
283          * issue will likely require substantial improvements in the area.
284          */
285         MIN_DELAY_THR_PCT       = 500,
286         MAX_DELAY_THR_PCT       = 25000,
287         MIN_DELAY               = 250,
288         MAX_DELAY               = 250 * USEC_PER_MSEC,
289
290         /* halve debts if avg usage over 100ms is under 50% */
291         DFGV_USAGE_PCT          = 50,
292         DFGV_PERIOD             = 100 * USEC_PER_MSEC,
293
294         /* don't let cmds which take a very long time pin lagging for too long */
295         MAX_LAGGING_PERIODS     = 10,
296
297         /* switch iff the conditions are met for longer than this */
298         AUTOP_CYCLE_NSEC        = 10LLU * NSEC_PER_SEC,
299
300         /*
301          * Count IO size in 4k pages.  The 12bit shift helps keeping
302          * size-proportional components of cost calculation in closer
303          * numbers of digits to per-IO cost components.
304          */
305         IOC_PAGE_SHIFT          = 12,
306         IOC_PAGE_SIZE           = 1 << IOC_PAGE_SHIFT,
307         IOC_SECT_TO_PAGE_SHIFT  = IOC_PAGE_SHIFT - SECTOR_SHIFT,
308
309         /* if apart further than 16M, consider randio for linear model */
310         LCOEF_RANDIO_PAGES      = 4096,
311 };
312
313 enum ioc_running {
314         IOC_IDLE,
315         IOC_RUNNING,
316         IOC_STOP,
317 };
318
319 /* io.cost.qos controls including per-dev enable of the whole controller */
320 enum {
321         QOS_ENABLE,
322         QOS_CTRL,
323         NR_QOS_CTRL_PARAMS,
324 };
325
326 /* io.cost.qos params */
327 enum {
328         QOS_RPPM,
329         QOS_RLAT,
330         QOS_WPPM,
331         QOS_WLAT,
332         QOS_MIN,
333         QOS_MAX,
334         NR_QOS_PARAMS,
335 };
336
337 /* io.cost.model controls */
338 enum {
339         COST_CTRL,
340         COST_MODEL,
341         NR_COST_CTRL_PARAMS,
342 };
343
344 /* builtin linear cost model coefficients */
345 enum {
346         I_LCOEF_RBPS,
347         I_LCOEF_RSEQIOPS,
348         I_LCOEF_RRANDIOPS,
349         I_LCOEF_WBPS,
350         I_LCOEF_WSEQIOPS,
351         I_LCOEF_WRANDIOPS,
352         NR_I_LCOEFS,
353 };
354
355 enum {
356         LCOEF_RPAGE,
357         LCOEF_RSEQIO,
358         LCOEF_RRANDIO,
359         LCOEF_WPAGE,
360         LCOEF_WSEQIO,
361         LCOEF_WRANDIO,
362         NR_LCOEFS,
363 };
364
365 enum {
366         AUTOP_INVALID,
367         AUTOP_HDD,
368         AUTOP_SSD_QD1,
369         AUTOP_SSD_DFL,
370         AUTOP_SSD_FAST,
371 };
372
373 struct ioc_params {
374         u32                             qos[NR_QOS_PARAMS];
375         u64                             i_lcoefs[NR_I_LCOEFS];
376         u64                             lcoefs[NR_LCOEFS];
377         u32                             too_fast_vrate_pct;
378         u32                             too_slow_vrate_pct;
379 };
380
381 struct ioc_margins {
382         s64                             min;
383         s64                             low;
384         s64                             target;
385 };
386
387 struct ioc_missed {
388         local_t                         nr_met;
389         local_t                         nr_missed;
390         u32                             last_met;
391         u32                             last_missed;
392 };
393
394 struct ioc_pcpu_stat {
395         struct ioc_missed               missed[2];
396
397         local64_t                       rq_wait_ns;
398         u64                             last_rq_wait_ns;
399 };
400
401 /* per device */
402 struct ioc {
403         struct rq_qos                   rqos;
404
405         bool                            enabled;
406
407         struct ioc_params               params;
408         struct ioc_margins              margins;
409         u32                             period_us;
410         u32                             timer_slack_ns;
411         u64                             vrate_min;
412         u64                             vrate_max;
413
414         spinlock_t                      lock;
415         struct timer_list               timer;
416         struct list_head                active_iocgs;   /* active cgroups */
417         struct ioc_pcpu_stat __percpu   *pcpu_stat;
418
419         enum ioc_running                running;
420         atomic64_t                      vtime_rate;
421         u64                             vtime_base_rate;
422         s64                             vtime_err;
423
424         seqcount_spinlock_t             period_seqcount;
425         u64                             period_at;      /* wallclock starttime */
426         u64                             period_at_vtime; /* vtime starttime */
427
428         atomic64_t                      cur_period;     /* inc'd each period */
429         int                             busy_level;     /* saturation history */
430
431         bool                            weights_updated;
432         atomic_t                        hweight_gen;    /* for lazy hweights */
433
434         /* debt forgivness */
435         u64                             dfgv_period_at;
436         u64                             dfgv_period_rem;
437         u64                             dfgv_usage_us_sum;
438
439         u64                             autop_too_fast_at;
440         u64                             autop_too_slow_at;
441         int                             autop_idx;
442         bool                            user_qos_params:1;
443         bool                            user_cost_model:1;
444 };
445
446 struct iocg_pcpu_stat {
447         local64_t                       abs_vusage;
448 };
449
450 struct iocg_stat {
451         u64                             usage_us;
452         u64                             wait_us;
453         u64                             indebt_us;
454         u64                             indelay_us;
455 };
456
457 /* per device-cgroup pair */
458 struct ioc_gq {
459         struct blkg_policy_data         pd;
460         struct ioc                      *ioc;
461
462         /*
463          * A iocg can get its weight from two sources - an explicit
464          * per-device-cgroup configuration or the default weight of the
465          * cgroup.  `cfg_weight` is the explicit per-device-cgroup
466          * configuration.  `weight` is the effective considering both
467          * sources.
468          *
469          * When an idle cgroup becomes active its `active` goes from 0 to
470          * `weight`.  `inuse` is the surplus adjusted active weight.
471          * `active` and `inuse` are used to calculate `hweight_active` and
472          * `hweight_inuse`.
473          *
474          * `last_inuse` remembers `inuse` while an iocg is idle to persist
475          * surplus adjustments.
476          *
477          * `inuse` may be adjusted dynamically during period. `saved_*` are used
478          * to determine and track adjustments.
479          */
480         u32                             cfg_weight;
481         u32                             weight;
482         u32                             active;
483         u32                             inuse;
484
485         u32                             last_inuse;
486         s64                             saved_margin;
487
488         sector_t                        cursor;         /* to detect randio */
489
490         /*
491          * `vtime` is this iocg's vtime cursor which progresses as IOs are
492          * issued.  If lagging behind device vtime, the delta represents
493          * the currently available IO budget.  If running ahead, the
494          * overage.
495          *
496          * `vtime_done` is the same but progressed on completion rather
497          * than issue.  The delta behind `vtime` represents the cost of
498          * currently in-flight IOs.
499          */
500         atomic64_t                      vtime;
501         atomic64_t                      done_vtime;
502         u64                             abs_vdebt;
503
504         /* current delay in effect and when it started */
505         u64                             delay;
506         u64                             delay_at;
507
508         /*
509          * The period this iocg was last active in.  Used for deactivation
510          * and invalidating `vtime`.
511          */
512         atomic64_t                      active_period;
513         struct list_head                active_list;
514
515         /* see __propagate_weights() and current_hweight() for details */
516         u64                             child_active_sum;
517         u64                             child_inuse_sum;
518         u64                             child_adjusted_sum;
519         int                             hweight_gen;
520         u32                             hweight_active;
521         u32                             hweight_inuse;
522         u32                             hweight_donating;
523         u32                             hweight_after_donation;
524
525         struct list_head                walk_list;
526         struct list_head                surplus_list;
527
528         struct wait_queue_head          waitq;
529         struct hrtimer                  waitq_timer;
530
531         /* timestamp at the latest activation */
532         u64                             activated_at;
533
534         /* statistics */
535         struct iocg_pcpu_stat __percpu  *pcpu_stat;
536         struct iocg_stat                local_stat;
537         struct iocg_stat                desc_stat;
538         struct iocg_stat                last_stat;
539         u64                             last_stat_abs_vusage;
540         u64                             usage_delta_us;
541         u64                             wait_since;
542         u64                             indebt_since;
543         u64                             indelay_since;
544
545         /* this iocg's depth in the hierarchy and ancestors including self */
546         int                             level;
547         struct ioc_gq                   *ancestors[];
548 };
549
550 /* per cgroup */
551 struct ioc_cgrp {
552         struct blkcg_policy_data        cpd;
553         unsigned int                    dfl_weight;
554 };
555
556 struct ioc_now {
557         u64                             now_ns;
558         u64                             now;
559         u64                             vnow;
560         u64                             vrate;
561 };
562
563 struct iocg_wait {
564         struct wait_queue_entry         wait;
565         struct bio                      *bio;
566         u64                             abs_cost;
567         bool                            committed;
568 };
569
570 struct iocg_wake_ctx {
571         struct ioc_gq                   *iocg;
572         u32                             hw_inuse;
573         s64                             vbudget;
574 };
575
576 static const struct ioc_params autop[] = {
577         [AUTOP_HDD] = {
578                 .qos                            = {
579                         [QOS_RLAT]              =        250000, /* 250ms */
580                         [QOS_WLAT]              =        250000,
581                         [QOS_MIN]               = VRATE_MIN_PPM,
582                         [QOS_MAX]               = VRATE_MAX_PPM,
583                 },
584                 .i_lcoefs                       = {
585                         [I_LCOEF_RBPS]          =     174019176,
586                         [I_LCOEF_RSEQIOPS]      =         41708,
587                         [I_LCOEF_RRANDIOPS]     =           370,
588                         [I_LCOEF_WBPS]          =     178075866,
589                         [I_LCOEF_WSEQIOPS]      =         42705,
590                         [I_LCOEF_WRANDIOPS]     =           378,
591                 },
592         },
593         [AUTOP_SSD_QD1] = {
594                 .qos                            = {
595                         [QOS_RLAT]              =         25000, /* 25ms */
596                         [QOS_WLAT]              =         25000,
597                         [QOS_MIN]               = VRATE_MIN_PPM,
598                         [QOS_MAX]               = VRATE_MAX_PPM,
599                 },
600                 .i_lcoefs                       = {
601                         [I_LCOEF_RBPS]          =     245855193,
602                         [I_LCOEF_RSEQIOPS]      =         61575,
603                         [I_LCOEF_RRANDIOPS]     =          6946,
604                         [I_LCOEF_WBPS]          =     141365009,
605                         [I_LCOEF_WSEQIOPS]      =         33716,
606                         [I_LCOEF_WRANDIOPS]     =         26796,
607                 },
608         },
609         [AUTOP_SSD_DFL] = {
610                 .qos                            = {
611                         [QOS_RLAT]              =         25000, /* 25ms */
612                         [QOS_WLAT]              =         25000,
613                         [QOS_MIN]               = VRATE_MIN_PPM,
614                         [QOS_MAX]               = VRATE_MAX_PPM,
615                 },
616                 .i_lcoefs                       = {
617                         [I_LCOEF_RBPS]          =     488636629,
618                         [I_LCOEF_RSEQIOPS]      =          8932,
619                         [I_LCOEF_RRANDIOPS]     =          8518,
620                         [I_LCOEF_WBPS]          =     427891549,
621                         [I_LCOEF_WSEQIOPS]      =         28755,
622                         [I_LCOEF_WRANDIOPS]     =         21940,
623                 },
624                 .too_fast_vrate_pct             =           500,
625         },
626         [AUTOP_SSD_FAST] = {
627                 .qos                            = {
628                         [QOS_RLAT]              =          5000, /* 5ms */
629                         [QOS_WLAT]              =          5000,
630                         [QOS_MIN]               = VRATE_MIN_PPM,
631                         [QOS_MAX]               = VRATE_MAX_PPM,
632                 },
633                 .i_lcoefs                       = {
634                         [I_LCOEF_RBPS]          =    3102524156LLU,
635                         [I_LCOEF_RSEQIOPS]      =        724816,
636                         [I_LCOEF_RRANDIOPS]     =        778122,
637                         [I_LCOEF_WBPS]          =    1742780862LLU,
638                         [I_LCOEF_WSEQIOPS]      =        425702,
639                         [I_LCOEF_WRANDIOPS]     =        443193,
640                 },
641                 .too_slow_vrate_pct             =            10,
642         },
643 };
644
645 /*
646  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
647  * vtime credit shortage and down on device saturation.
648  */
649 static u32 vrate_adj_pct[] =
650         { 0, 0, 0, 0,
651           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
652           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
653           4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
654
655 static struct blkcg_policy blkcg_policy_iocost;
656
657 /* accessors and helpers */
658 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
659 {
660         return container_of(rqos, struct ioc, rqos);
661 }
662
663 static struct ioc *q_to_ioc(struct request_queue *q)
664 {
665         return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
666 }
667
668 static const char *q_name(struct request_queue *q)
669 {
670         if (blk_queue_registered(q))
671                 return kobject_name(q->kobj.parent);
672         else
673                 return "<unknown>";
674 }
675
676 static const char __maybe_unused *ioc_name(struct ioc *ioc)
677 {
678         return q_name(ioc->rqos.q);
679 }
680
681 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
682 {
683         return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
684 }
685
686 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
687 {
688         return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
689 }
690
691 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
692 {
693         return pd_to_blkg(&iocg->pd);
694 }
695
696 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
697 {
698         return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
699                             struct ioc_cgrp, cpd);
700 }
701
702 /*
703  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
704  * weight, the more expensive each IO.  Must round up.
705  */
706 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
707 {
708         return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
709 }
710
711 /*
712  * The inverse of abs_cost_to_cost().  Must round up.
713  */
714 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
715 {
716         return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
717 }
718
719 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
720                             u64 abs_cost, u64 cost)
721 {
722         struct iocg_pcpu_stat *gcs;
723
724         bio->bi_iocost_cost = cost;
725         atomic64_add(cost, &iocg->vtime);
726
727         gcs = get_cpu_ptr(iocg->pcpu_stat);
728         local64_add(abs_cost, &gcs->abs_vusage);
729         put_cpu_ptr(gcs);
730 }
731
732 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
733 {
734         if (lock_ioc) {
735                 spin_lock_irqsave(&iocg->ioc->lock, *flags);
736                 spin_lock(&iocg->waitq.lock);
737         } else {
738                 spin_lock_irqsave(&iocg->waitq.lock, *flags);
739         }
740 }
741
742 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
743 {
744         if (unlock_ioc) {
745                 spin_unlock(&iocg->waitq.lock);
746                 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
747         } else {
748                 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
749         }
750 }
751
752 #define CREATE_TRACE_POINTS
753 #include <trace/events/iocost.h>
754
755 static void ioc_refresh_margins(struct ioc *ioc)
756 {
757         struct ioc_margins *margins = &ioc->margins;
758         u32 period_us = ioc->period_us;
759         u64 vrate = ioc->vtime_base_rate;
760
761         margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
762         margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
763         margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
764 }
765
766 /* latency Qos params changed, update period_us and all the dependent params */
767 static void ioc_refresh_period_us(struct ioc *ioc)
768 {
769         u32 ppm, lat, multi, period_us;
770
771         lockdep_assert_held(&ioc->lock);
772
773         /* pick the higher latency target */
774         if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
775                 ppm = ioc->params.qos[QOS_RPPM];
776                 lat = ioc->params.qos[QOS_RLAT];
777         } else {
778                 ppm = ioc->params.qos[QOS_WPPM];
779                 lat = ioc->params.qos[QOS_WLAT];
780         }
781
782         /*
783          * We want the period to be long enough to contain a healthy number
784          * of IOs while short enough for granular control.  Define it as a
785          * multiple of the latency target.  Ideally, the multiplier should
786          * be scaled according to the percentile so that it would nominally
787          * contain a certain number of requests.  Let's be simpler and
788          * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
789          */
790         if (ppm)
791                 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
792         else
793                 multi = 2;
794         period_us = multi * lat;
795         period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
796
797         /* calculate dependent params */
798         ioc->period_us = period_us;
799         ioc->timer_slack_ns = div64_u64(
800                 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
801                 100);
802         ioc_refresh_margins(ioc);
803 }
804
805 static int ioc_autop_idx(struct ioc *ioc)
806 {
807         int idx = ioc->autop_idx;
808         const struct ioc_params *p = &autop[idx];
809         u32 vrate_pct;
810         u64 now_ns;
811
812         /* rotational? */
813         if (!blk_queue_nonrot(ioc->rqos.q))
814                 return AUTOP_HDD;
815
816         /* handle SATA SSDs w/ broken NCQ */
817         if (blk_queue_depth(ioc->rqos.q) == 1)
818                 return AUTOP_SSD_QD1;
819
820         /* use one of the normal ssd sets */
821         if (idx < AUTOP_SSD_DFL)
822                 return AUTOP_SSD_DFL;
823
824         /* if user is overriding anything, maintain what was there */
825         if (ioc->user_qos_params || ioc->user_cost_model)
826                 return idx;
827
828         /* step up/down based on the vrate */
829         vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
830         now_ns = ktime_get_ns();
831
832         if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
833                 if (!ioc->autop_too_fast_at)
834                         ioc->autop_too_fast_at = now_ns;
835                 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
836                         return idx + 1;
837         } else {
838                 ioc->autop_too_fast_at = 0;
839         }
840
841         if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
842                 if (!ioc->autop_too_slow_at)
843                         ioc->autop_too_slow_at = now_ns;
844                 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
845                         return idx - 1;
846         } else {
847                 ioc->autop_too_slow_at = 0;
848         }
849
850         return idx;
851 }
852
853 /*
854  * Take the followings as input
855  *
856  *  @bps        maximum sequential throughput
857  *  @seqiops    maximum sequential 4k iops
858  *  @randiops   maximum random 4k iops
859  *
860  * and calculate the linear model cost coefficients.
861  *
862  *  *@page      per-page cost           1s / (@bps / 4096)
863  *  *@seqio     base cost of a seq IO   max((1s / @seqiops) - *@page, 0)
864  *  @randiops   base cost of a rand IO  max((1s / @randiops) - *@page, 0)
865  */
866 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
867                         u64 *page, u64 *seqio, u64 *randio)
868 {
869         u64 v;
870
871         *page = *seqio = *randio = 0;
872
873         if (bps)
874                 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
875                                            DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
876
877         if (seqiops) {
878                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
879                 if (v > *page)
880                         *seqio = v - *page;
881         }
882
883         if (randiops) {
884                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
885                 if (v > *page)
886                         *randio = v - *page;
887         }
888 }
889
890 static void ioc_refresh_lcoefs(struct ioc *ioc)
891 {
892         u64 *u = ioc->params.i_lcoefs;
893         u64 *c = ioc->params.lcoefs;
894
895         calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
896                     &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
897         calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
898                     &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
899 }
900
901 static bool ioc_refresh_params(struct ioc *ioc, bool force)
902 {
903         const struct ioc_params *p;
904         int idx;
905
906         lockdep_assert_held(&ioc->lock);
907
908         idx = ioc_autop_idx(ioc);
909         p = &autop[idx];
910
911         if (idx == ioc->autop_idx && !force)
912                 return false;
913
914         if (idx != ioc->autop_idx)
915                 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
916
917         ioc->autop_idx = idx;
918         ioc->autop_too_fast_at = 0;
919         ioc->autop_too_slow_at = 0;
920
921         if (!ioc->user_qos_params)
922                 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
923         if (!ioc->user_cost_model)
924                 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
925
926         ioc_refresh_period_us(ioc);
927         ioc_refresh_lcoefs(ioc);
928
929         ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
930                                             VTIME_PER_USEC, MILLION);
931         ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
932                                    VTIME_PER_USEC, MILLION);
933
934         return true;
935 }
936
937 /*
938  * When an iocg accumulates too much vtime or gets deactivated, we throw away
939  * some vtime, which lowers the overall device utilization. As the exact amount
940  * which is being thrown away is known, we can compensate by accelerating the
941  * vrate accordingly so that the extra vtime generated in the current period
942  * matches what got lost.
943  */
944 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
945 {
946         s64 pleft = ioc->period_at + ioc->period_us - now->now;
947         s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
948         s64 vcomp, vcomp_min, vcomp_max;
949
950         lockdep_assert_held(&ioc->lock);
951
952         /* we need some time left in this period */
953         if (pleft <= 0)
954                 goto done;
955
956         /*
957          * Calculate how much vrate should be adjusted to offset the error.
958          * Limit the amount of adjustment and deduct the adjusted amount from
959          * the error.
960          */
961         vcomp = -div64_s64(ioc->vtime_err, pleft);
962         vcomp_min = -(ioc->vtime_base_rate >> 1);
963         vcomp_max = ioc->vtime_base_rate;
964         vcomp = clamp(vcomp, vcomp_min, vcomp_max);
965
966         ioc->vtime_err += vcomp * pleft;
967
968         atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
969 done:
970         /* bound how much error can accumulate */
971         ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
972 }
973
974 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
975                                   int nr_lagging, int nr_shortages,
976                                   int prev_busy_level, u32 *missed_ppm)
977 {
978         u64 vrate = ioc->vtime_base_rate;
979         u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
980
981         if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
982                 if (ioc->busy_level != prev_busy_level || nr_lagging)
983                         trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
984                                                    missed_ppm, rq_wait_pct,
985                                                    nr_lagging, nr_shortages);
986
987                 return;
988         }
989
990         /*
991          * If vrate is out of bounds, apply clamp gradually as the
992          * bounds can change abruptly.  Otherwise, apply busy_level
993          * based adjustment.
994          */
995         if (vrate < vrate_min) {
996                 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
997                 vrate = min(vrate, vrate_min);
998         } else if (vrate > vrate_max) {
999                 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
1000                 vrate = max(vrate, vrate_max);
1001         } else {
1002                 int idx = min_t(int, abs(ioc->busy_level),
1003                                 ARRAY_SIZE(vrate_adj_pct) - 1);
1004                 u32 adj_pct = vrate_adj_pct[idx];
1005
1006                 if (ioc->busy_level > 0)
1007                         adj_pct = 100 - adj_pct;
1008                 else
1009                         adj_pct = 100 + adj_pct;
1010
1011                 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1012                               vrate_min, vrate_max);
1013         }
1014
1015         trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1016                                    nr_lagging, nr_shortages);
1017
1018         ioc->vtime_base_rate = vrate;
1019         ioc_refresh_margins(ioc);
1020 }
1021
1022 /* take a snapshot of the current [v]time and vrate */
1023 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1024 {
1025         unsigned seq;
1026
1027         now->now_ns = ktime_get();
1028         now->now = ktime_to_us(now->now_ns);
1029         now->vrate = atomic64_read(&ioc->vtime_rate);
1030
1031         /*
1032          * The current vtime is
1033          *
1034          *   vtime at period start + (wallclock time since the start) * vrate
1035          *
1036          * As a consistent snapshot of `period_at_vtime` and `period_at` is
1037          * needed, they're seqcount protected.
1038          */
1039         do {
1040                 seq = read_seqcount_begin(&ioc->period_seqcount);
1041                 now->vnow = ioc->period_at_vtime +
1042                         (now->now - ioc->period_at) * now->vrate;
1043         } while (read_seqcount_retry(&ioc->period_seqcount, seq));
1044 }
1045
1046 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1047 {
1048         WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1049
1050         write_seqcount_begin(&ioc->period_seqcount);
1051         ioc->period_at = now->now;
1052         ioc->period_at_vtime = now->vnow;
1053         write_seqcount_end(&ioc->period_seqcount);
1054
1055         ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1056         add_timer(&ioc->timer);
1057 }
1058
1059 /*
1060  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1061  * weight sums and propagate upwards accordingly. If @save, the current margin
1062  * is saved to be used as reference for later inuse in-period adjustments.
1063  */
1064 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1065                                 bool save, struct ioc_now *now)
1066 {
1067         struct ioc *ioc = iocg->ioc;
1068         int lvl;
1069
1070         lockdep_assert_held(&ioc->lock);
1071
1072         /*
1073          * For an active leaf node, its inuse shouldn't be zero or exceed
1074          * @active. An active internal node's inuse is solely determined by the
1075          * inuse to active ratio of its children regardless of @inuse.
1076          */
1077         if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1078                 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1079                                            iocg->child_active_sum);
1080         } else {
1081                 inuse = clamp_t(u32, inuse, 1, active);
1082         }
1083
1084         iocg->last_inuse = iocg->inuse;
1085         if (save)
1086                 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1087
1088         if (active == iocg->active && inuse == iocg->inuse)
1089                 return;
1090
1091         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1092                 struct ioc_gq *parent = iocg->ancestors[lvl];
1093                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1094                 u32 parent_active = 0, parent_inuse = 0;
1095
1096                 /* update the level sums */
1097                 parent->child_active_sum += (s32)(active - child->active);
1098                 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1099                 /* apply the updates */
1100                 child->active = active;
1101                 child->inuse = inuse;
1102
1103                 /*
1104                  * The delta between inuse and active sums indicates that
1105                  * much of weight is being given away.  Parent's inuse
1106                  * and active should reflect the ratio.
1107                  */
1108                 if (parent->child_active_sum) {
1109                         parent_active = parent->weight;
1110                         parent_inuse = DIV64_U64_ROUND_UP(
1111                                 parent_active * parent->child_inuse_sum,
1112                                 parent->child_active_sum);
1113                 }
1114
1115                 /* do we need to keep walking up? */
1116                 if (parent_active == parent->active &&
1117                     parent_inuse == parent->inuse)
1118                         break;
1119
1120                 active = parent_active;
1121                 inuse = parent_inuse;
1122         }
1123
1124         ioc->weights_updated = true;
1125 }
1126
1127 static void commit_weights(struct ioc *ioc)
1128 {
1129         lockdep_assert_held(&ioc->lock);
1130
1131         if (ioc->weights_updated) {
1132                 /* paired with rmb in current_hweight(), see there */
1133                 smp_wmb();
1134                 atomic_inc(&ioc->hweight_gen);
1135                 ioc->weights_updated = false;
1136         }
1137 }
1138
1139 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1140                               bool save, struct ioc_now *now)
1141 {
1142         __propagate_weights(iocg, active, inuse, save, now);
1143         commit_weights(iocg->ioc);
1144 }
1145
1146 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1147 {
1148         struct ioc *ioc = iocg->ioc;
1149         int lvl;
1150         u32 hwa, hwi;
1151         int ioc_gen;
1152
1153         /* hot path - if uptodate, use cached */
1154         ioc_gen = atomic_read(&ioc->hweight_gen);
1155         if (ioc_gen == iocg->hweight_gen)
1156                 goto out;
1157
1158         /*
1159          * Paired with wmb in commit_weights(). If we saw the updated
1160          * hweight_gen, all the weight updates from __propagate_weights() are
1161          * visible too.
1162          *
1163          * We can race with weight updates during calculation and get it
1164          * wrong.  However, hweight_gen would have changed and a future
1165          * reader will recalculate and we're guaranteed to discard the
1166          * wrong result soon.
1167          */
1168         smp_rmb();
1169
1170         hwa = hwi = WEIGHT_ONE;
1171         for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1172                 struct ioc_gq *parent = iocg->ancestors[lvl];
1173                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1174                 u64 active_sum = READ_ONCE(parent->child_active_sum);
1175                 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1176                 u32 active = READ_ONCE(child->active);
1177                 u32 inuse = READ_ONCE(child->inuse);
1178
1179                 /* we can race with deactivations and either may read as zero */
1180                 if (!active_sum || !inuse_sum)
1181                         continue;
1182
1183                 active_sum = max_t(u64, active, active_sum);
1184                 hwa = div64_u64((u64)hwa * active, active_sum);
1185
1186                 inuse_sum = max_t(u64, inuse, inuse_sum);
1187                 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1188         }
1189
1190         iocg->hweight_active = max_t(u32, hwa, 1);
1191         iocg->hweight_inuse = max_t(u32, hwi, 1);
1192         iocg->hweight_gen = ioc_gen;
1193 out:
1194         if (hw_activep)
1195                 *hw_activep = iocg->hweight_active;
1196         if (hw_inusep)
1197                 *hw_inusep = iocg->hweight_inuse;
1198 }
1199
1200 /*
1201  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1202  * other weights stay unchanged.
1203  */
1204 static u32 current_hweight_max(struct ioc_gq *iocg)
1205 {
1206         u32 hwm = WEIGHT_ONE;
1207         u32 inuse = iocg->active;
1208         u64 child_inuse_sum;
1209         int lvl;
1210
1211         lockdep_assert_held(&iocg->ioc->lock);
1212
1213         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1214                 struct ioc_gq *parent = iocg->ancestors[lvl];
1215                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1216
1217                 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1218                 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1219                 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1220                                            parent->child_active_sum);
1221         }
1222
1223         return max_t(u32, hwm, 1);
1224 }
1225
1226 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1227 {
1228         struct ioc *ioc = iocg->ioc;
1229         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1230         struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1231         u32 weight;
1232
1233         lockdep_assert_held(&ioc->lock);
1234
1235         weight = iocg->cfg_weight ?: iocc->dfl_weight;
1236         if (weight != iocg->weight && iocg->active)
1237                 propagate_weights(iocg, weight, iocg->inuse, true, now);
1238         iocg->weight = weight;
1239 }
1240
1241 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1242 {
1243         struct ioc *ioc = iocg->ioc;
1244         u64 last_period, cur_period;
1245         u64 vtime, vtarget;
1246         int i;
1247
1248         /*
1249          * If seem to be already active, just update the stamp to tell the
1250          * timer that we're still active.  We don't mind occassional races.
1251          */
1252         if (!list_empty(&iocg->active_list)) {
1253                 ioc_now(ioc, now);
1254                 cur_period = atomic64_read(&ioc->cur_period);
1255                 if (atomic64_read(&iocg->active_period) != cur_period)
1256                         atomic64_set(&iocg->active_period, cur_period);
1257                 return true;
1258         }
1259
1260         /* racy check on internal node IOs, treat as root level IOs */
1261         if (iocg->child_active_sum)
1262                 return false;
1263
1264         spin_lock_irq(&ioc->lock);
1265
1266         ioc_now(ioc, now);
1267
1268         /* update period */
1269         cur_period = atomic64_read(&ioc->cur_period);
1270         last_period = atomic64_read(&iocg->active_period);
1271         atomic64_set(&iocg->active_period, cur_period);
1272
1273         /* already activated or breaking leaf-only constraint? */
1274         if (!list_empty(&iocg->active_list))
1275                 goto succeed_unlock;
1276         for (i = iocg->level - 1; i > 0; i--)
1277                 if (!list_empty(&iocg->ancestors[i]->active_list))
1278                         goto fail_unlock;
1279
1280         if (iocg->child_active_sum)
1281                 goto fail_unlock;
1282
1283         /*
1284          * Always start with the target budget. On deactivation, we throw away
1285          * anything above it.
1286          */
1287         vtarget = now->vnow - ioc->margins.target;
1288         vtime = atomic64_read(&iocg->vtime);
1289
1290         atomic64_add(vtarget - vtime, &iocg->vtime);
1291         atomic64_add(vtarget - vtime, &iocg->done_vtime);
1292         vtime = vtarget;
1293
1294         /*
1295          * Activate, propagate weight and start period timer if not
1296          * running.  Reset hweight_gen to avoid accidental match from
1297          * wrapping.
1298          */
1299         iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1300         list_add(&iocg->active_list, &ioc->active_iocgs);
1301
1302         propagate_weights(iocg, iocg->weight,
1303                           iocg->last_inuse ?: iocg->weight, true, now);
1304
1305         TRACE_IOCG_PATH(iocg_activate, iocg, now,
1306                         last_period, cur_period, vtime);
1307
1308         iocg->activated_at = now->now;
1309
1310         if (ioc->running == IOC_IDLE) {
1311                 ioc->running = IOC_RUNNING;
1312                 ioc->dfgv_period_at = now->now;
1313                 ioc->dfgv_period_rem = 0;
1314                 ioc_start_period(ioc, now);
1315         }
1316
1317 succeed_unlock:
1318         spin_unlock_irq(&ioc->lock);
1319         return true;
1320
1321 fail_unlock:
1322         spin_unlock_irq(&ioc->lock);
1323         return false;
1324 }
1325
1326 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1327 {
1328         struct ioc *ioc = iocg->ioc;
1329         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1330         u64 tdelta, delay, new_delay;
1331         s64 vover, vover_pct;
1332         u32 hwa;
1333
1334         lockdep_assert_held(&iocg->waitq.lock);
1335
1336         /* calculate the current delay in effect - 1/2 every second */
1337         tdelta = now->now - iocg->delay_at;
1338         if (iocg->delay)
1339                 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1340         else
1341                 delay = 0;
1342
1343         /* calculate the new delay from the debt amount */
1344         current_hweight(iocg, &hwa, NULL);
1345         vover = atomic64_read(&iocg->vtime) +
1346                 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1347         vover_pct = div64_s64(100 * vover,
1348                               ioc->period_us * ioc->vtime_base_rate);
1349
1350         if (vover_pct <= MIN_DELAY_THR_PCT)
1351                 new_delay = 0;
1352         else if (vover_pct >= MAX_DELAY_THR_PCT)
1353                 new_delay = MAX_DELAY;
1354         else
1355                 new_delay = MIN_DELAY +
1356                         div_u64((MAX_DELAY - MIN_DELAY) *
1357                                 (vover_pct - MIN_DELAY_THR_PCT),
1358                                 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1359
1360         /* pick the higher one and apply */
1361         if (new_delay > delay) {
1362                 iocg->delay = new_delay;
1363                 iocg->delay_at = now->now;
1364                 delay = new_delay;
1365         }
1366
1367         if (delay >= MIN_DELAY) {
1368                 if (!iocg->indelay_since)
1369                         iocg->indelay_since = now->now;
1370                 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1371                 return true;
1372         } else {
1373                 if (iocg->indelay_since) {
1374                         iocg->local_stat.indelay_us += now->now - iocg->indelay_since;
1375                         iocg->indelay_since = 0;
1376                 }
1377                 iocg->delay = 0;
1378                 blkcg_clear_delay(blkg);
1379                 return false;
1380         }
1381 }
1382
1383 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1384                             struct ioc_now *now)
1385 {
1386         struct iocg_pcpu_stat *gcs;
1387
1388         lockdep_assert_held(&iocg->ioc->lock);
1389         lockdep_assert_held(&iocg->waitq.lock);
1390         WARN_ON_ONCE(list_empty(&iocg->active_list));
1391
1392         /*
1393          * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1394          * inuse donating all of it share to others until its debt is paid off.
1395          */
1396         if (!iocg->abs_vdebt && abs_cost) {
1397                 iocg->indebt_since = now->now;
1398                 propagate_weights(iocg, iocg->active, 0, false, now);
1399         }
1400
1401         iocg->abs_vdebt += abs_cost;
1402
1403         gcs = get_cpu_ptr(iocg->pcpu_stat);
1404         local64_add(abs_cost, &gcs->abs_vusage);
1405         put_cpu_ptr(gcs);
1406 }
1407
1408 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1409                           struct ioc_now *now)
1410 {
1411         lockdep_assert_held(&iocg->ioc->lock);
1412         lockdep_assert_held(&iocg->waitq.lock);
1413
1414         /* make sure that nobody messed with @iocg */
1415         WARN_ON_ONCE(list_empty(&iocg->active_list));
1416         WARN_ON_ONCE(iocg->inuse > 1);
1417
1418         iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1419
1420         /* if debt is paid in full, restore inuse */
1421         if (!iocg->abs_vdebt) {
1422                 iocg->local_stat.indebt_us += now->now - iocg->indebt_since;
1423                 iocg->indebt_since = 0;
1424
1425                 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1426                                   false, now);
1427         }
1428 }
1429
1430 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1431                         int flags, void *key)
1432 {
1433         struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1434         struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1435         u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1436
1437         ctx->vbudget -= cost;
1438
1439         if (ctx->vbudget < 0)
1440                 return -1;
1441
1442         iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1443
1444         /*
1445          * autoremove_wake_function() removes the wait entry only when it
1446          * actually changed the task state.  We want the wait always
1447          * removed.  Remove explicitly and use default_wake_function().
1448          */
1449         list_del_init(&wq_entry->entry);
1450         wait->committed = true;
1451
1452         default_wake_function(wq_entry, mode, flags, key);
1453         return 0;
1454 }
1455
1456 /*
1457  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1458  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1459  * addition to iocg->waitq.lock.
1460  */
1461 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1462                             struct ioc_now *now)
1463 {
1464         struct ioc *ioc = iocg->ioc;
1465         struct iocg_wake_ctx ctx = { .iocg = iocg };
1466         u64 vshortage, expires, oexpires;
1467         s64 vbudget;
1468         u32 hwa;
1469
1470         lockdep_assert_held(&iocg->waitq.lock);
1471
1472         current_hweight(iocg, &hwa, NULL);
1473         vbudget = now->vnow - atomic64_read(&iocg->vtime);
1474
1475         /* pay off debt */
1476         if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1477                 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1478                 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1479                 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1480
1481                 lockdep_assert_held(&ioc->lock);
1482
1483                 atomic64_add(vpay, &iocg->vtime);
1484                 atomic64_add(vpay, &iocg->done_vtime);
1485                 iocg_pay_debt(iocg, abs_vpay, now);
1486                 vbudget -= vpay;
1487         }
1488
1489         if (iocg->abs_vdebt || iocg->delay)
1490                 iocg_kick_delay(iocg, now);
1491
1492         /*
1493          * Debt can still be outstanding if we haven't paid all yet or the
1494          * caller raced and called without @pay_debt. Shouldn't wake up waiters
1495          * under debt. Make sure @vbudget reflects the outstanding amount and is
1496          * not positive.
1497          */
1498         if (iocg->abs_vdebt) {
1499                 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1500                 vbudget = min_t(s64, 0, vbudget - vdebt);
1501         }
1502
1503         /*
1504          * Wake up the ones which are due and see how much vtime we'll need for
1505          * the next one. As paying off debt restores hw_inuse, it must be read
1506          * after the above debt payment.
1507          */
1508         ctx.vbudget = vbudget;
1509         current_hweight(iocg, NULL, &ctx.hw_inuse);
1510
1511         __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1512
1513         if (!waitqueue_active(&iocg->waitq)) {
1514                 if (iocg->wait_since) {
1515                         iocg->local_stat.wait_us += now->now - iocg->wait_since;
1516                         iocg->wait_since = 0;
1517                 }
1518                 return;
1519         }
1520
1521         if (!iocg->wait_since)
1522                 iocg->wait_since = now->now;
1523
1524         if (WARN_ON_ONCE(ctx.vbudget >= 0))
1525                 return;
1526
1527         /* determine next wakeup, add a timer margin to guarantee chunking */
1528         vshortage = -ctx.vbudget;
1529         expires = now->now_ns +
1530                 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1531                 NSEC_PER_USEC;
1532         expires += ioc->timer_slack_ns;
1533
1534         /* if already active and close enough, don't bother */
1535         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1536         if (hrtimer_is_queued(&iocg->waitq_timer) &&
1537             abs(oexpires - expires) <= ioc->timer_slack_ns)
1538                 return;
1539
1540         hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1541                                ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1542 }
1543
1544 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1545 {
1546         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1547         bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1548         struct ioc_now now;
1549         unsigned long flags;
1550
1551         ioc_now(iocg->ioc, &now);
1552
1553         iocg_lock(iocg, pay_debt, &flags);
1554         iocg_kick_waitq(iocg, pay_debt, &now);
1555         iocg_unlock(iocg, pay_debt, &flags);
1556
1557         return HRTIMER_NORESTART;
1558 }
1559
1560 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1561 {
1562         u32 nr_met[2] = { };
1563         u32 nr_missed[2] = { };
1564         u64 rq_wait_ns = 0;
1565         int cpu, rw;
1566
1567         for_each_online_cpu(cpu) {
1568                 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1569                 u64 this_rq_wait_ns;
1570
1571                 for (rw = READ; rw <= WRITE; rw++) {
1572                         u32 this_met = local_read(&stat->missed[rw].nr_met);
1573                         u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1574
1575                         nr_met[rw] += this_met - stat->missed[rw].last_met;
1576                         nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1577                         stat->missed[rw].last_met = this_met;
1578                         stat->missed[rw].last_missed = this_missed;
1579                 }
1580
1581                 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1582                 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1583                 stat->last_rq_wait_ns = this_rq_wait_ns;
1584         }
1585
1586         for (rw = READ; rw <= WRITE; rw++) {
1587                 if (nr_met[rw] + nr_missed[rw])
1588                         missed_ppm_ar[rw] =
1589                                 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1590                                                    nr_met[rw] + nr_missed[rw]);
1591                 else
1592                         missed_ppm_ar[rw] = 0;
1593         }
1594
1595         *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1596                                    ioc->period_us * NSEC_PER_USEC);
1597 }
1598
1599 /* was iocg idle this period? */
1600 static bool iocg_is_idle(struct ioc_gq *iocg)
1601 {
1602         struct ioc *ioc = iocg->ioc;
1603
1604         /* did something get issued this period? */
1605         if (atomic64_read(&iocg->active_period) ==
1606             atomic64_read(&ioc->cur_period))
1607                 return false;
1608
1609         /* is something in flight? */
1610         if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1611                 return false;
1612
1613         return true;
1614 }
1615
1616 /*
1617  * Call this function on the target leaf @iocg's to build pre-order traversal
1618  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1619  * ->walk_list and the caller is responsible for dissolving the list after use.
1620  */
1621 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1622                                   struct list_head *inner_walk)
1623 {
1624         int lvl;
1625
1626         WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1627
1628         /* find the first ancestor which hasn't been visited yet */
1629         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1630                 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1631                         break;
1632         }
1633
1634         /* walk down and visit the inner nodes to get pre-order traversal */
1635         while (++lvl <= iocg->level - 1) {
1636                 struct ioc_gq *inner = iocg->ancestors[lvl];
1637
1638                 /* record traversal order */
1639                 list_add_tail(&inner->walk_list, inner_walk);
1640         }
1641 }
1642
1643 /* collect per-cpu counters and propagate the deltas to the parent */
1644 static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now)
1645 {
1646         struct ioc *ioc = iocg->ioc;
1647         struct iocg_stat new_stat;
1648         u64 abs_vusage = 0;
1649         u64 vusage_delta;
1650         int cpu;
1651
1652         lockdep_assert_held(&iocg->ioc->lock);
1653
1654         /* collect per-cpu counters */
1655         for_each_possible_cpu(cpu) {
1656                 abs_vusage += local64_read(
1657                                 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1658         }
1659         vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1660         iocg->last_stat_abs_vusage = abs_vusage;
1661
1662         iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1663         iocg->local_stat.usage_us += iocg->usage_delta_us;
1664
1665         /* propagate upwards */
1666         new_stat.usage_us =
1667                 iocg->local_stat.usage_us + iocg->desc_stat.usage_us;
1668         new_stat.wait_us =
1669                 iocg->local_stat.wait_us + iocg->desc_stat.wait_us;
1670         new_stat.indebt_us =
1671                 iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us;
1672         new_stat.indelay_us =
1673                 iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us;
1674
1675         /* propagate the deltas to the parent */
1676         if (iocg->level > 0) {
1677                 struct iocg_stat *parent_stat =
1678                         &iocg->ancestors[iocg->level - 1]->desc_stat;
1679
1680                 parent_stat->usage_us +=
1681                         new_stat.usage_us - iocg->last_stat.usage_us;
1682                 parent_stat->wait_us +=
1683                         new_stat.wait_us - iocg->last_stat.wait_us;
1684                 parent_stat->indebt_us +=
1685                         new_stat.indebt_us - iocg->last_stat.indebt_us;
1686                 parent_stat->indelay_us +=
1687                         new_stat.indelay_us - iocg->last_stat.indelay_us;
1688         }
1689
1690         iocg->last_stat = new_stat;
1691 }
1692
1693 /* get stat counters ready for reading on all active iocgs */
1694 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1695 {
1696         LIST_HEAD(inner_walk);
1697         struct ioc_gq *iocg, *tiocg;
1698
1699         /* flush leaves and build inner node walk list */
1700         list_for_each_entry(iocg, target_iocgs, active_list) {
1701                 iocg_flush_stat_one(iocg, now);
1702                 iocg_build_inner_walk(iocg, &inner_walk);
1703         }
1704
1705         /* keep flushing upwards by walking the inner list backwards */
1706         list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1707                 iocg_flush_stat_one(iocg, now);
1708                 list_del_init(&iocg->walk_list);
1709         }
1710 }
1711
1712 /*
1713  * Determine what @iocg's hweight_inuse should be after donating unused
1714  * capacity. @hwm is the upper bound and used to signal no donation. This
1715  * function also throws away @iocg's excess budget.
1716  */
1717 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1718                                   u32 usage, struct ioc_now *now)
1719 {
1720         struct ioc *ioc = iocg->ioc;
1721         u64 vtime = atomic64_read(&iocg->vtime);
1722         s64 excess, delta, target, new_hwi;
1723
1724         /* debt handling owns inuse for debtors */
1725         if (iocg->abs_vdebt)
1726                 return 1;
1727
1728         /* see whether minimum margin requirement is met */
1729         if (waitqueue_active(&iocg->waitq) ||
1730             time_after64(vtime, now->vnow - ioc->margins.min))
1731                 return hwm;
1732
1733         /* throw away excess above target */
1734         excess = now->vnow - vtime - ioc->margins.target;
1735         if (excess > 0) {
1736                 atomic64_add(excess, &iocg->vtime);
1737                 atomic64_add(excess, &iocg->done_vtime);
1738                 vtime += excess;
1739                 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1740         }
1741
1742         /*
1743          * Let's say the distance between iocg's and device's vtimes as a
1744          * fraction of period duration is delta. Assuming that the iocg will
1745          * consume the usage determined above, we want to determine new_hwi so
1746          * that delta equals MARGIN_TARGET at the end of the next period.
1747          *
1748          * We need to execute usage worth of IOs while spending the sum of the
1749          * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1750          * (delta):
1751          *
1752          *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1753          *
1754          * Therefore, the new_hwi is:
1755          *
1756          *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1757          */
1758         delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1759                           now->vnow - ioc->period_at_vtime);
1760         target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1761         new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1762
1763         return clamp_t(s64, new_hwi, 1, hwm);
1764 }
1765
1766 /*
1767  * For work-conservation, an iocg which isn't using all of its share should
1768  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1769  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1770  *
1771  * #1 is mathematically simpler but has the drawback of requiring synchronous
1772  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1773  * change due to donation snapbacks as it has the possibility of grossly
1774  * overshooting what's allowed by the model and vrate.
1775  *
1776  * #2 is inherently safe with local operations. The donating iocg can easily
1777  * snap back to higher weights when needed without worrying about impacts on
1778  * other nodes as the impacts will be inherently correct. This also makes idle
1779  * iocg activations safe. The only effect activations have is decreasing
1780  * hweight_inuse of others, the right solution to which is for those iocgs to
1781  * snap back to higher weights.
1782  *
1783  * So, we go with #2. The challenge is calculating how each donating iocg's
1784  * inuse should be adjusted to achieve the target donation amounts. This is done
1785  * using Andy's method described in the following pdf.
1786  *
1787  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1788  *
1789  * Given the weights and target after-donation hweight_inuse values, Andy's
1790  * method determines how the proportional distribution should look like at each
1791  * sibling level to maintain the relative relationship between all non-donating
1792  * pairs. To roughly summarize, it divides the tree into donating and
1793  * non-donating parts, calculates global donation rate which is used to
1794  * determine the target hweight_inuse for each node, and then derives per-level
1795  * proportions.
1796  *
1797  * The following pdf shows that global distribution calculated this way can be
1798  * achieved by scaling inuse weights of donating leaves and propagating the
1799  * adjustments upwards proportionally.
1800  *
1801  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1802  *
1803  * Combining the above two, we can determine how each leaf iocg's inuse should
1804  * be adjusted to achieve the target donation.
1805  *
1806  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1807  *
1808  * The inline comments use symbols from the last pdf.
1809  *
1810  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1811  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1812  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1813  *   w is the weight of the node. w = w_f + w_t
1814  *   w_f is the non-donating portion of w. w_f = w * f / b
1815  *   w_b is the donating portion of w. w_t = w * t / b
1816  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1817  *   s_f and s_t are the non-donating and donating portions of s.
1818  *
1819  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1820  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1821  * after adjustments. Subscript r denotes the root node's values.
1822  */
1823 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1824 {
1825         LIST_HEAD(over_hwa);
1826         LIST_HEAD(inner_walk);
1827         struct ioc_gq *iocg, *tiocg, *root_iocg;
1828         u32 after_sum, over_sum, over_target, gamma;
1829
1830         /*
1831          * It's pretty unlikely but possible for the total sum of
1832          * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1833          * confuse the following calculations. If such condition is detected,
1834          * scale down everyone over its full share equally to keep the sum below
1835          * WEIGHT_ONE.
1836          */
1837         after_sum = 0;
1838         over_sum = 0;
1839         list_for_each_entry(iocg, surpluses, surplus_list) {
1840                 u32 hwa;
1841
1842                 current_hweight(iocg, &hwa, NULL);
1843                 after_sum += iocg->hweight_after_donation;
1844
1845                 if (iocg->hweight_after_donation > hwa) {
1846                         over_sum += iocg->hweight_after_donation;
1847                         list_add(&iocg->walk_list, &over_hwa);
1848                 }
1849         }
1850
1851         if (after_sum >= WEIGHT_ONE) {
1852                 /*
1853                  * The delta should be deducted from the over_sum, calculate
1854                  * target over_sum value.
1855                  */
1856                 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1857                 WARN_ON_ONCE(over_sum <= over_delta);
1858                 over_target = over_sum - over_delta;
1859         } else {
1860                 over_target = 0;
1861         }
1862
1863         list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1864                 if (over_target)
1865                         iocg->hweight_after_donation =
1866                                 div_u64((u64)iocg->hweight_after_donation *
1867                                         over_target, over_sum);
1868                 list_del_init(&iocg->walk_list);
1869         }
1870
1871         /*
1872          * Build pre-order inner node walk list and prepare for donation
1873          * adjustment calculations.
1874          */
1875         list_for_each_entry(iocg, surpluses, surplus_list) {
1876                 iocg_build_inner_walk(iocg, &inner_walk);
1877         }
1878
1879         root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1880         WARN_ON_ONCE(root_iocg->level > 0);
1881
1882         list_for_each_entry(iocg, &inner_walk, walk_list) {
1883                 iocg->child_adjusted_sum = 0;
1884                 iocg->hweight_donating = 0;
1885                 iocg->hweight_after_donation = 0;
1886         }
1887
1888         /*
1889          * Propagate the donating budget (b_t) and after donation budget (b'_t)
1890          * up the hierarchy.
1891          */
1892         list_for_each_entry(iocg, surpluses, surplus_list) {
1893                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1894
1895                 parent->hweight_donating += iocg->hweight_donating;
1896                 parent->hweight_after_donation += iocg->hweight_after_donation;
1897         }
1898
1899         list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1900                 if (iocg->level > 0) {
1901                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1902
1903                         parent->hweight_donating += iocg->hweight_donating;
1904                         parent->hweight_after_donation += iocg->hweight_after_donation;
1905                 }
1906         }
1907
1908         /*
1909          * Calculate inner hwa's (b) and make sure the donation values are
1910          * within the accepted ranges as we're doing low res calculations with
1911          * roundups.
1912          */
1913         list_for_each_entry(iocg, &inner_walk, walk_list) {
1914                 if (iocg->level) {
1915                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1916
1917                         iocg->hweight_active = DIV64_U64_ROUND_UP(
1918                                 (u64)parent->hweight_active * iocg->active,
1919                                 parent->child_active_sum);
1920
1921                 }
1922
1923                 iocg->hweight_donating = min(iocg->hweight_donating,
1924                                              iocg->hweight_active);
1925                 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1926                                                    iocg->hweight_donating - 1);
1927                 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1928                                  iocg->hweight_donating <= 1 ||
1929                                  iocg->hweight_after_donation == 0)) {
1930                         pr_warn("iocg: invalid donation weights in ");
1931                         pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1932                         pr_cont(": active=%u donating=%u after=%u\n",
1933                                 iocg->hweight_active, iocg->hweight_donating,
1934                                 iocg->hweight_after_donation);
1935                 }
1936         }
1937
1938         /*
1939          * Calculate the global donation rate (gamma) - the rate to adjust
1940          * non-donating budgets by.
1941          *
1942          * No need to use 64bit multiplication here as the first operand is
1943          * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1944          *
1945          * We know that there are beneficiary nodes and the sum of the donating
1946          * hweights can't be whole; however, due to the round-ups during hweight
1947          * calculations, root_iocg->hweight_donating might still end up equal to
1948          * or greater than whole. Limit the range when calculating the divider.
1949          *
1950          * gamma = (1 - t_r') / (1 - t_r)
1951          */
1952         gamma = DIV_ROUND_UP(
1953                 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1954                 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1955
1956         /*
1957          * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1958          * nodes.
1959          */
1960         list_for_each_entry(iocg, &inner_walk, walk_list) {
1961                 struct ioc_gq *parent;
1962                 u32 inuse, wpt, wptp;
1963                 u64 st, sf;
1964
1965                 if (iocg->level == 0) {
1966                         /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1967                         iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1968                                 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1969                                 WEIGHT_ONE - iocg->hweight_after_donation);
1970                         continue;
1971                 }
1972
1973                 parent = iocg->ancestors[iocg->level - 1];
1974
1975                 /* b' = gamma * b_f + b_t' */
1976                 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1977                         (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1978                         WEIGHT_ONE) + iocg->hweight_after_donation;
1979
1980                 /* w' = s' * b' / b'_p */
1981                 inuse = DIV64_U64_ROUND_UP(
1982                         (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1983                         parent->hweight_inuse);
1984
1985                 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1986                 st = DIV64_U64_ROUND_UP(
1987                         iocg->child_active_sum * iocg->hweight_donating,
1988                         iocg->hweight_active);
1989                 sf = iocg->child_active_sum - st;
1990                 wpt = DIV64_U64_ROUND_UP(
1991                         (u64)iocg->active * iocg->hweight_donating,
1992                         iocg->hweight_active);
1993                 wptp = DIV64_U64_ROUND_UP(
1994                         (u64)inuse * iocg->hweight_after_donation,
1995                         iocg->hweight_inuse);
1996
1997                 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1998         }
1999
2000         /*
2001          * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
2002          * we can finally determine leaf adjustments.
2003          */
2004         list_for_each_entry(iocg, surpluses, surplus_list) {
2005                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
2006                 u32 inuse;
2007
2008                 /*
2009                  * In-debt iocgs participated in the donation calculation with
2010                  * the minimum target hweight_inuse. Configuring inuse
2011                  * accordingly would work fine but debt handling expects
2012                  * @iocg->inuse stay at the minimum and we don't wanna
2013                  * interfere.
2014                  */
2015                 if (iocg->abs_vdebt) {
2016                         WARN_ON_ONCE(iocg->inuse > 1);
2017                         continue;
2018                 }
2019
2020                 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2021                 inuse = DIV64_U64_ROUND_UP(
2022                         parent->child_adjusted_sum * iocg->hweight_after_donation,
2023                         parent->hweight_inuse);
2024
2025                 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2026                                 iocg->inuse, inuse,
2027                                 iocg->hweight_inuse,
2028                                 iocg->hweight_after_donation);
2029
2030                 __propagate_weights(iocg, iocg->active, inuse, true, now);
2031         }
2032
2033         /* walk list should be dissolved after use */
2034         list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2035                 list_del_init(&iocg->walk_list);
2036 }
2037
2038 /*
2039  * A low weight iocg can amass a large amount of debt, for example, when
2040  * anonymous memory gets reclaimed aggressively. If the system has a lot of
2041  * memory paired with a slow IO device, the debt can span multiple seconds or
2042  * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2043  * up blocked paying its debt while the IO device is idle.
2044  *
2045  * The following protects against such cases. If the device has been
2046  * sufficiently idle for a while, the debts are halved and delays are
2047  * recalculated.
2048  */
2049 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2050                               struct ioc_now *now)
2051 {
2052         struct ioc_gq *iocg;
2053         u64 dur, usage_pct, nr_cycles;
2054
2055         /* if no debtor, reset the cycle */
2056         if (!nr_debtors) {
2057                 ioc->dfgv_period_at = now->now;
2058                 ioc->dfgv_period_rem = 0;
2059                 ioc->dfgv_usage_us_sum = 0;
2060                 return;
2061         }
2062
2063         /*
2064          * Debtors can pass through a lot of writes choking the device and we
2065          * don't want to be forgiving debts while the device is struggling from
2066          * write bursts. If we're missing latency targets, consider the device
2067          * fully utilized.
2068          */
2069         if (ioc->busy_level > 0)
2070                 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2071
2072         ioc->dfgv_usage_us_sum += usage_us_sum;
2073         if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2074                 return;
2075
2076         /*
2077          * At least DFGV_PERIOD has passed since the last period. Calculate the
2078          * average usage and reset the period counters.
2079          */
2080         dur = now->now - ioc->dfgv_period_at;
2081         usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2082
2083         ioc->dfgv_period_at = now->now;
2084         ioc->dfgv_usage_us_sum = 0;
2085
2086         /* if was too busy, reset everything */
2087         if (usage_pct > DFGV_USAGE_PCT) {
2088                 ioc->dfgv_period_rem = 0;
2089                 return;
2090         }
2091
2092         /*
2093          * Usage is lower than threshold. Let's forgive some debts. Debt
2094          * forgiveness runs off of the usual ioc timer but its period usually
2095          * doesn't match ioc's. Compensate the difference by performing the
2096          * reduction as many times as would fit in the duration since the last
2097          * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2098          * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2099          * reductions is doubled.
2100          */
2101         nr_cycles = dur + ioc->dfgv_period_rem;
2102         ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2103
2104         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2105                 u64 __maybe_unused old_debt, __maybe_unused old_delay;
2106
2107                 if (!iocg->abs_vdebt && !iocg->delay)
2108                         continue;
2109
2110                 spin_lock(&iocg->waitq.lock);
2111
2112                 old_debt = iocg->abs_vdebt;
2113                 old_delay = iocg->delay;
2114
2115                 if (iocg->abs_vdebt)
2116                         iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2117                 if (iocg->delay)
2118                         iocg->delay = iocg->delay >> nr_cycles ?: 1;
2119
2120                 iocg_kick_waitq(iocg, true, now);
2121
2122                 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2123                                 old_debt, iocg->abs_vdebt,
2124                                 old_delay, iocg->delay);
2125
2126                 spin_unlock(&iocg->waitq.lock);
2127         }
2128 }
2129
2130 /*
2131  * Check the active iocgs' state to avoid oversleeping and deactive
2132  * idle iocgs.
2133  *
2134  * Since waiters determine the sleep durations based on the vrate
2135  * they saw at the time of sleep, if vrate has increased, some
2136  * waiters could be sleeping for too long. Wake up tardy waiters
2137  * which should have woken up in the last period and expire idle
2138  * iocgs.
2139  */
2140 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2141 {
2142         int nr_debtors = 0;
2143         struct ioc_gq *iocg, *tiocg;
2144
2145         list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2146                 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2147                     !iocg->delay && !iocg_is_idle(iocg))
2148                         continue;
2149
2150                 spin_lock(&iocg->waitq.lock);
2151
2152                 /* flush wait and indebt stat deltas */
2153                 if (iocg->wait_since) {
2154                         iocg->local_stat.wait_us += now->now - iocg->wait_since;
2155                         iocg->wait_since = now->now;
2156                 }
2157                 if (iocg->indebt_since) {
2158                         iocg->local_stat.indebt_us +=
2159                                 now->now - iocg->indebt_since;
2160                         iocg->indebt_since = now->now;
2161                 }
2162                 if (iocg->indelay_since) {
2163                         iocg->local_stat.indelay_us +=
2164                                 now->now - iocg->indelay_since;
2165                         iocg->indelay_since = now->now;
2166                 }
2167
2168                 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2169                     iocg->delay) {
2170                         /* might be oversleeping vtime / hweight changes, kick */
2171                         iocg_kick_waitq(iocg, true, now);
2172                         if (iocg->abs_vdebt || iocg->delay)
2173                                 nr_debtors++;
2174                 } else if (iocg_is_idle(iocg)) {
2175                         /* no waiter and idle, deactivate */
2176                         u64 vtime = atomic64_read(&iocg->vtime);
2177                         s64 excess;
2178
2179                         /*
2180                          * @iocg has been inactive for a full duration and will
2181                          * have a high budget. Account anything above target as
2182                          * error and throw away. On reactivation, it'll start
2183                          * with the target budget.
2184                          */
2185                         excess = now->vnow - vtime - ioc->margins.target;
2186                         if (excess > 0) {
2187                                 u32 old_hwi;
2188
2189                                 current_hweight(iocg, NULL, &old_hwi);
2190                                 ioc->vtime_err -= div64_u64(excess * old_hwi,
2191                                                             WEIGHT_ONE);
2192                         }
2193
2194                         TRACE_IOCG_PATH(iocg_idle, iocg, now,
2195                                         atomic64_read(&iocg->active_period),
2196                                         atomic64_read(&ioc->cur_period), vtime);
2197                         __propagate_weights(iocg, 0, 0, false, now);
2198                         list_del_init(&iocg->active_list);
2199                 }
2200
2201                 spin_unlock(&iocg->waitq.lock);
2202         }
2203
2204         commit_weights(ioc);
2205         return nr_debtors;
2206 }
2207
2208 static void ioc_timer_fn(struct timer_list *timer)
2209 {
2210         struct ioc *ioc = container_of(timer, struct ioc, timer);
2211         struct ioc_gq *iocg, *tiocg;
2212         struct ioc_now now;
2213         LIST_HEAD(surpluses);
2214         int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2215         u64 usage_us_sum = 0;
2216         u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2217         u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2218         u32 missed_ppm[2], rq_wait_pct;
2219         u64 period_vtime;
2220         int prev_busy_level;
2221
2222         /* how were the latencies during the period? */
2223         ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2224
2225         /* take care of active iocgs */
2226         spin_lock_irq(&ioc->lock);
2227
2228         ioc_now(ioc, &now);
2229
2230         period_vtime = now.vnow - ioc->period_at_vtime;
2231         if (WARN_ON_ONCE(!period_vtime)) {
2232                 spin_unlock_irq(&ioc->lock);
2233                 return;
2234         }
2235
2236         nr_debtors = ioc_check_iocgs(ioc, &now);
2237
2238         /*
2239          * Wait and indebt stat are flushed above and the donation calculation
2240          * below needs updated usage stat. Let's bring stat up-to-date.
2241          */
2242         iocg_flush_stat(&ioc->active_iocgs, &now);
2243
2244         /* calc usage and see whether some weights need to be moved around */
2245         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2246                 u64 vdone, vtime, usage_us;
2247                 u32 hw_active, hw_inuse;
2248
2249                 /*
2250                  * Collect unused and wind vtime closer to vnow to prevent
2251                  * iocgs from accumulating a large amount of budget.
2252                  */
2253                 vdone = atomic64_read(&iocg->done_vtime);
2254                 vtime = atomic64_read(&iocg->vtime);
2255                 current_hweight(iocg, &hw_active, &hw_inuse);
2256
2257                 /*
2258                  * Latency QoS detection doesn't account for IOs which are
2259                  * in-flight for longer than a period.  Detect them by
2260                  * comparing vdone against period start.  If lagging behind
2261                  * IOs from past periods, don't increase vrate.
2262                  */
2263                 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2264                     !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2265                     time_after64(vtime, vdone) &&
2266                     time_after64(vtime, now.vnow -
2267                                  MAX_LAGGING_PERIODS * period_vtime) &&
2268                     time_before64(vdone, now.vnow - period_vtime))
2269                         nr_lagging++;
2270
2271                 /*
2272                  * Determine absolute usage factoring in in-flight IOs to avoid
2273                  * high-latency completions appearing as idle.
2274                  */
2275                 usage_us = iocg->usage_delta_us;
2276                 usage_us_sum += usage_us;
2277
2278                 /* see whether there's surplus vtime */
2279                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2280                 if (hw_inuse < hw_active ||
2281                     (!waitqueue_active(&iocg->waitq) &&
2282                      time_before64(vtime, now.vnow - ioc->margins.low))) {
2283                         u32 hwa, old_hwi, hwm, new_hwi, usage;
2284                         u64 usage_dur;
2285
2286                         if (vdone != vtime) {
2287                                 u64 inflight_us = DIV64_U64_ROUND_UP(
2288                                         cost_to_abs_cost(vtime - vdone, hw_inuse),
2289                                         ioc->vtime_base_rate);
2290
2291                                 usage_us = max(usage_us, inflight_us);
2292                         }
2293
2294                         /* convert to hweight based usage ratio */
2295                         if (time_after64(iocg->activated_at, ioc->period_at))
2296                                 usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2297                         else
2298                                 usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2299
2300                         usage = clamp_t(u32,
2301                                 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2302                                                    usage_dur),
2303                                 1, WEIGHT_ONE);
2304
2305                         /*
2306                          * Already donating or accumulated enough to start.
2307                          * Determine the donation amount.
2308                          */
2309                         current_hweight(iocg, &hwa, &old_hwi);
2310                         hwm = current_hweight_max(iocg);
2311                         new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2312                                                          usage, &now);
2313                         if (new_hwi < hwm) {
2314                                 iocg->hweight_donating = hwa;
2315                                 iocg->hweight_after_donation = new_hwi;
2316                                 list_add(&iocg->surplus_list, &surpluses);
2317                         } else {
2318                                 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2319                                                 iocg->inuse, iocg->active,
2320                                                 iocg->hweight_inuse, new_hwi);
2321
2322                                 __propagate_weights(iocg, iocg->active,
2323                                                     iocg->active, true, &now);
2324                                 nr_shortages++;
2325                         }
2326                 } else {
2327                         /* genuinely short on vtime */
2328                         nr_shortages++;
2329                 }
2330         }
2331
2332         if (!list_empty(&surpluses) && nr_shortages)
2333                 transfer_surpluses(&surpluses, &now);
2334
2335         commit_weights(ioc);
2336
2337         /* surplus list should be dissolved after use */
2338         list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2339                 list_del_init(&iocg->surplus_list);
2340
2341         /*
2342          * If q is getting clogged or we're missing too much, we're issuing
2343          * too much IO and should lower vtime rate.  If we're not missing
2344          * and experiencing shortages but not surpluses, we're too stingy
2345          * and should increase vtime rate.
2346          */
2347         prev_busy_level = ioc->busy_level;
2348         if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2349             missed_ppm[READ] > ppm_rthr ||
2350             missed_ppm[WRITE] > ppm_wthr) {
2351                 /* clearly missing QoS targets, slow down vrate */
2352                 ioc->busy_level = max(ioc->busy_level, 0);
2353                 ioc->busy_level++;
2354         } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2355                    missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2356                    missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2357                 /* QoS targets are being met with >25% margin */
2358                 if (nr_shortages) {
2359                         /*
2360                          * We're throttling while the device has spare
2361                          * capacity.  If vrate was being slowed down, stop.
2362                          */
2363                         ioc->busy_level = min(ioc->busy_level, 0);
2364
2365                         /*
2366                          * If there are IOs spanning multiple periods, wait
2367                          * them out before pushing the device harder.
2368                          */
2369                         if (!nr_lagging)
2370                                 ioc->busy_level--;
2371                 } else {
2372                         /*
2373                          * Nobody is being throttled and the users aren't
2374                          * issuing enough IOs to saturate the device.  We
2375                          * simply don't know how close the device is to
2376                          * saturation.  Coast.
2377                          */
2378                         ioc->busy_level = 0;
2379                 }
2380         } else {
2381                 /* inside the hysterisis margin, we're good */
2382                 ioc->busy_level = 0;
2383         }
2384
2385         ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2386
2387         ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2388                               prev_busy_level, missed_ppm);
2389
2390         ioc_refresh_params(ioc, false);
2391
2392         ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2393
2394         /*
2395          * This period is done.  Move onto the next one.  If nothing's
2396          * going on with the device, stop the timer.
2397          */
2398         atomic64_inc(&ioc->cur_period);
2399
2400         if (ioc->running != IOC_STOP) {
2401                 if (!list_empty(&ioc->active_iocgs)) {
2402                         ioc_start_period(ioc, &now);
2403                 } else {
2404                         ioc->busy_level = 0;
2405                         ioc->vtime_err = 0;
2406                         ioc->running = IOC_IDLE;
2407                 }
2408
2409                 ioc_refresh_vrate(ioc, &now);
2410         }
2411
2412         spin_unlock_irq(&ioc->lock);
2413 }
2414
2415 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2416                                       u64 abs_cost, struct ioc_now *now)
2417 {
2418         struct ioc *ioc = iocg->ioc;
2419         struct ioc_margins *margins = &ioc->margins;
2420         u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2421         u32 hwi, adj_step;
2422         s64 margin;
2423         u64 cost, new_inuse;
2424
2425         current_hweight(iocg, NULL, &hwi);
2426         old_hwi = hwi;
2427         cost = abs_cost_to_cost(abs_cost, hwi);
2428         margin = now->vnow - vtime - cost;
2429
2430         /* debt handling owns inuse for debtors */
2431         if (iocg->abs_vdebt)
2432                 return cost;
2433
2434         /*
2435          * We only increase inuse during period and do so if the margin has
2436          * deteriorated since the previous adjustment.
2437          */
2438         if (margin >= iocg->saved_margin || margin >= margins->low ||
2439             iocg->inuse == iocg->active)
2440                 return cost;
2441
2442         spin_lock_irq(&ioc->lock);
2443
2444         /* we own inuse only when @iocg is in the normal active state */
2445         if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2446                 spin_unlock_irq(&ioc->lock);
2447                 return cost;
2448         }
2449
2450         /*
2451          * Bump up inuse till @abs_cost fits in the existing budget.
2452          * adj_step must be determined after acquiring ioc->lock - we might
2453          * have raced and lost to another thread for activation and could
2454          * be reading 0 iocg->active before ioc->lock which will lead to
2455          * infinite loop.
2456          */
2457         new_inuse = iocg->inuse;
2458         adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2459         do {
2460                 new_inuse = new_inuse + adj_step;
2461                 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2462                 current_hweight(iocg, NULL, &hwi);
2463                 cost = abs_cost_to_cost(abs_cost, hwi);
2464         } while (time_after64(vtime + cost, now->vnow) &&
2465                  iocg->inuse != iocg->active);
2466
2467         spin_unlock_irq(&ioc->lock);
2468
2469         TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2470                         old_inuse, iocg->inuse, old_hwi, hwi);
2471
2472         return cost;
2473 }
2474
2475 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2476                                     bool is_merge, u64 *costp)
2477 {
2478         struct ioc *ioc = iocg->ioc;
2479         u64 coef_seqio, coef_randio, coef_page;
2480         u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2481         u64 seek_pages = 0;
2482         u64 cost = 0;
2483
2484         switch (bio_op(bio)) {
2485         case REQ_OP_READ:
2486                 coef_seqio      = ioc->params.lcoefs[LCOEF_RSEQIO];
2487                 coef_randio     = ioc->params.lcoefs[LCOEF_RRANDIO];
2488                 coef_page       = ioc->params.lcoefs[LCOEF_RPAGE];
2489                 break;
2490         case REQ_OP_WRITE:
2491                 coef_seqio      = ioc->params.lcoefs[LCOEF_WSEQIO];
2492                 coef_randio     = ioc->params.lcoefs[LCOEF_WRANDIO];
2493                 coef_page       = ioc->params.lcoefs[LCOEF_WPAGE];
2494                 break;
2495         default:
2496                 goto out;
2497         }
2498
2499         if (iocg->cursor) {
2500                 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2501                 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2502         }
2503
2504         if (!is_merge) {
2505                 if (seek_pages > LCOEF_RANDIO_PAGES) {
2506                         cost += coef_randio;
2507                 } else {
2508                         cost += coef_seqio;
2509                 }
2510         }
2511         cost += pages * coef_page;
2512 out:
2513         *costp = cost;
2514 }
2515
2516 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2517 {
2518         u64 cost;
2519
2520         calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2521         return cost;
2522 }
2523
2524 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2525                                          u64 *costp)
2526 {
2527         unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2528
2529         switch (req_op(rq)) {
2530         case REQ_OP_READ:
2531                 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2532                 break;
2533         case REQ_OP_WRITE:
2534                 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2535                 break;
2536         default:
2537                 *costp = 0;
2538         }
2539 }
2540
2541 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2542 {
2543         u64 cost;
2544
2545         calc_size_vtime_cost_builtin(rq, ioc, &cost);
2546         return cost;
2547 }
2548
2549 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2550 {
2551         struct blkcg_gq *blkg = bio->bi_blkg;
2552         struct ioc *ioc = rqos_to_ioc(rqos);
2553         struct ioc_gq *iocg = blkg_to_iocg(blkg);
2554         struct ioc_now now;
2555         struct iocg_wait wait;
2556         u64 abs_cost, cost, vtime;
2557         bool use_debt, ioc_locked;
2558         unsigned long flags;
2559
2560         /* bypass IOs if disabled, still initializing, or for root cgroup */
2561         if (!ioc->enabled || !iocg || !iocg->level)
2562                 return;
2563
2564         /* calculate the absolute vtime cost */
2565         abs_cost = calc_vtime_cost(bio, iocg, false);
2566         if (!abs_cost)
2567                 return;
2568
2569         if (!iocg_activate(iocg, &now))
2570                 return;
2571
2572         iocg->cursor = bio_end_sector(bio);
2573         vtime = atomic64_read(&iocg->vtime);
2574         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2575
2576         /*
2577          * If no one's waiting and within budget, issue right away.  The
2578          * tests are racy but the races aren't systemic - we only miss once
2579          * in a while which is fine.
2580          */
2581         if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2582             time_before_eq64(vtime + cost, now.vnow)) {
2583                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2584                 return;
2585         }
2586
2587         /*
2588          * We're over budget. This can be handled in two ways. IOs which may
2589          * cause priority inversions are punted to @ioc->aux_iocg and charged as
2590          * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2591          * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2592          * whether debt handling is needed and acquire locks accordingly.
2593          */
2594         use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2595         ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2596 retry_lock:
2597         iocg_lock(iocg, ioc_locked, &flags);
2598
2599         /*
2600          * @iocg must stay activated for debt and waitq handling. Deactivation
2601          * is synchronized against both ioc->lock and waitq.lock and we won't
2602          * get deactivated as long as we're waiting or has debt, so we're good
2603          * if we're activated here. In the unlikely cases that we aren't, just
2604          * issue the IO.
2605          */
2606         if (unlikely(list_empty(&iocg->active_list))) {
2607                 iocg_unlock(iocg, ioc_locked, &flags);
2608                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2609                 return;
2610         }
2611
2612         /*
2613          * We're over budget. If @bio has to be issued regardless, remember
2614          * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2615          * off the debt before waking more IOs.
2616          *
2617          * This way, the debt is continuously paid off each period with the
2618          * actual budget available to the cgroup. If we just wound vtime, we
2619          * would incorrectly use the current hw_inuse for the entire amount
2620          * which, for example, can lead to the cgroup staying blocked for a
2621          * long time even with substantially raised hw_inuse.
2622          *
2623          * An iocg with vdebt should stay online so that the timer can keep
2624          * deducting its vdebt and [de]activate use_delay mechanism
2625          * accordingly. We don't want to race against the timer trying to
2626          * clear them and leave @iocg inactive w/ dangling use_delay heavily
2627          * penalizing the cgroup and its descendants.
2628          */
2629         if (use_debt) {
2630                 iocg_incur_debt(iocg, abs_cost, &now);
2631                 if (iocg_kick_delay(iocg, &now))
2632                         blkcg_schedule_throttle(rqos->q,
2633                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2634                 iocg_unlock(iocg, ioc_locked, &flags);
2635                 return;
2636         }
2637
2638         /* guarantee that iocgs w/ waiters have maximum inuse */
2639         if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2640                 if (!ioc_locked) {
2641                         iocg_unlock(iocg, false, &flags);
2642                         ioc_locked = true;
2643                         goto retry_lock;
2644                 }
2645                 propagate_weights(iocg, iocg->active, iocg->active, true,
2646                                   &now);
2647         }
2648
2649         /*
2650          * Append self to the waitq and schedule the wakeup timer if we're
2651          * the first waiter.  The timer duration is calculated based on the
2652          * current vrate.  vtime and hweight changes can make it too short
2653          * or too long.  Each wait entry records the absolute cost it's
2654          * waiting for to allow re-evaluation using a custom wait entry.
2655          *
2656          * If too short, the timer simply reschedules itself.  If too long,
2657          * the period timer will notice and trigger wakeups.
2658          *
2659          * All waiters are on iocg->waitq and the wait states are
2660          * synchronized using waitq.lock.
2661          */
2662         init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2663         wait.wait.private = current;
2664         wait.bio = bio;
2665         wait.abs_cost = abs_cost;
2666         wait.committed = false; /* will be set true by waker */
2667
2668         __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2669         iocg_kick_waitq(iocg, ioc_locked, &now);
2670
2671         iocg_unlock(iocg, ioc_locked, &flags);
2672
2673         while (true) {
2674                 set_current_state(TASK_UNINTERRUPTIBLE);
2675                 if (wait.committed)
2676                         break;
2677                 io_schedule();
2678         }
2679
2680         /* waker already committed us, proceed */
2681         finish_wait(&iocg->waitq, &wait.wait);
2682 }
2683
2684 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2685                            struct bio *bio)
2686 {
2687         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2688         struct ioc *ioc = rqos_to_ioc(rqos);
2689         sector_t bio_end = bio_end_sector(bio);
2690         struct ioc_now now;
2691         u64 vtime, abs_cost, cost;
2692         unsigned long flags;
2693
2694         /* bypass if disabled, still initializing, or for root cgroup */
2695         if (!ioc->enabled || !iocg || !iocg->level)
2696                 return;
2697
2698         abs_cost = calc_vtime_cost(bio, iocg, true);
2699         if (!abs_cost)
2700                 return;
2701
2702         ioc_now(ioc, &now);
2703
2704         vtime = atomic64_read(&iocg->vtime);
2705         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2706
2707         /* update cursor if backmerging into the request at the cursor */
2708         if (blk_rq_pos(rq) < bio_end &&
2709             blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2710                 iocg->cursor = bio_end;
2711
2712         /*
2713          * Charge if there's enough vtime budget and the existing request has
2714          * cost assigned.
2715          */
2716         if (rq->bio && rq->bio->bi_iocost_cost &&
2717             time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2718                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2719                 return;
2720         }
2721
2722         /*
2723          * Otherwise, account it as debt if @iocg is online, which it should
2724          * be for the vast majority of cases. See debt handling in
2725          * ioc_rqos_throttle() for details.
2726          */
2727         spin_lock_irqsave(&ioc->lock, flags);
2728         spin_lock(&iocg->waitq.lock);
2729
2730         if (likely(!list_empty(&iocg->active_list))) {
2731                 iocg_incur_debt(iocg, abs_cost, &now);
2732                 if (iocg_kick_delay(iocg, &now))
2733                         blkcg_schedule_throttle(rqos->q,
2734                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2735         } else {
2736                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2737         }
2738
2739         spin_unlock(&iocg->waitq.lock);
2740         spin_unlock_irqrestore(&ioc->lock, flags);
2741 }
2742
2743 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2744 {
2745         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2746
2747         if (iocg && bio->bi_iocost_cost)
2748                 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2749 }
2750
2751 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2752 {
2753         struct ioc *ioc = rqos_to_ioc(rqos);
2754         struct ioc_pcpu_stat *ccs;
2755         u64 on_q_ns, rq_wait_ns, size_nsec;
2756         int pidx, rw;
2757
2758         if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2759                 return;
2760
2761         switch (req_op(rq) & REQ_OP_MASK) {
2762         case REQ_OP_READ:
2763                 pidx = QOS_RLAT;
2764                 rw = READ;
2765                 break;
2766         case REQ_OP_WRITE:
2767                 pidx = QOS_WLAT;
2768                 rw = WRITE;
2769                 break;
2770         default:
2771                 return;
2772         }
2773
2774         on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2775         rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2776         size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2777
2778         ccs = get_cpu_ptr(ioc->pcpu_stat);
2779
2780         if (on_q_ns <= size_nsec ||
2781             on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2782                 local_inc(&ccs->missed[rw].nr_met);
2783         else
2784                 local_inc(&ccs->missed[rw].nr_missed);
2785
2786         local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2787
2788         put_cpu_ptr(ccs);
2789 }
2790
2791 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2792 {
2793         struct ioc *ioc = rqos_to_ioc(rqos);
2794
2795         spin_lock_irq(&ioc->lock);
2796         ioc_refresh_params(ioc, false);
2797         spin_unlock_irq(&ioc->lock);
2798 }
2799
2800 static void ioc_rqos_exit(struct rq_qos *rqos)
2801 {
2802         struct ioc *ioc = rqos_to_ioc(rqos);
2803
2804         blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2805
2806         spin_lock_irq(&ioc->lock);
2807         ioc->running = IOC_STOP;
2808         spin_unlock_irq(&ioc->lock);
2809
2810         del_timer_sync(&ioc->timer);
2811         free_percpu(ioc->pcpu_stat);
2812         kfree(ioc);
2813 }
2814
2815 static struct rq_qos_ops ioc_rqos_ops = {
2816         .throttle = ioc_rqos_throttle,
2817         .merge = ioc_rqos_merge,
2818         .done_bio = ioc_rqos_done_bio,
2819         .done = ioc_rqos_done,
2820         .queue_depth_changed = ioc_rqos_queue_depth_changed,
2821         .exit = ioc_rqos_exit,
2822 };
2823
2824 static int blk_iocost_init(struct request_queue *q)
2825 {
2826         struct ioc *ioc;
2827         struct rq_qos *rqos;
2828         int i, cpu, ret;
2829
2830         ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2831         if (!ioc)
2832                 return -ENOMEM;
2833
2834         ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2835         if (!ioc->pcpu_stat) {
2836                 kfree(ioc);
2837                 return -ENOMEM;
2838         }
2839
2840         for_each_possible_cpu(cpu) {
2841                 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2842
2843                 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2844                         local_set(&ccs->missed[i].nr_met, 0);
2845                         local_set(&ccs->missed[i].nr_missed, 0);
2846                 }
2847                 local64_set(&ccs->rq_wait_ns, 0);
2848         }
2849
2850         rqos = &ioc->rqos;
2851         rqos->id = RQ_QOS_COST;
2852         rqos->ops = &ioc_rqos_ops;
2853         rqos->q = q;
2854
2855         spin_lock_init(&ioc->lock);
2856         timer_setup(&ioc->timer, ioc_timer_fn, 0);
2857         INIT_LIST_HEAD(&ioc->active_iocgs);
2858
2859         ioc->running = IOC_IDLE;
2860         ioc->vtime_base_rate = VTIME_PER_USEC;
2861         atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2862         seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2863         ioc->period_at = ktime_to_us(ktime_get());
2864         atomic64_set(&ioc->cur_period, 0);
2865         atomic_set(&ioc->hweight_gen, 0);
2866
2867         spin_lock_irq(&ioc->lock);
2868         ioc->autop_idx = AUTOP_INVALID;
2869         ioc_refresh_params(ioc, true);
2870         spin_unlock_irq(&ioc->lock);
2871
2872         /*
2873          * rqos must be added before activation to allow iocg_pd_init() to
2874          * lookup the ioc from q. This means that the rqos methods may get
2875          * called before policy activation completion, can't assume that the
2876          * target bio has an iocg associated and need to test for NULL iocg.
2877          */
2878         rq_qos_add(q, rqos);
2879         ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2880         if (ret) {
2881                 rq_qos_del(q, rqos);
2882                 free_percpu(ioc->pcpu_stat);
2883                 kfree(ioc);
2884                 return ret;
2885         }
2886         return 0;
2887 }
2888
2889 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2890 {
2891         struct ioc_cgrp *iocc;
2892
2893         iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2894         if (!iocc)
2895                 return NULL;
2896
2897         iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2898         return &iocc->cpd;
2899 }
2900
2901 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2902 {
2903         kfree(container_of(cpd, struct ioc_cgrp, cpd));
2904 }
2905
2906 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2907                                              struct blkcg *blkcg)
2908 {
2909         int levels = blkcg->css.cgroup->level + 1;
2910         struct ioc_gq *iocg;
2911
2912         iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2913         if (!iocg)
2914                 return NULL;
2915
2916         iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2917         if (!iocg->pcpu_stat) {
2918                 kfree(iocg);
2919                 return NULL;
2920         }
2921
2922         return &iocg->pd;
2923 }
2924
2925 static void ioc_pd_init(struct blkg_policy_data *pd)
2926 {
2927         struct ioc_gq *iocg = pd_to_iocg(pd);
2928         struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2929         struct ioc *ioc = q_to_ioc(blkg->q);
2930         struct ioc_now now;
2931         struct blkcg_gq *tblkg;
2932         unsigned long flags;
2933
2934         ioc_now(ioc, &now);
2935
2936         iocg->ioc = ioc;
2937         atomic64_set(&iocg->vtime, now.vnow);
2938         atomic64_set(&iocg->done_vtime, now.vnow);
2939         atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2940         INIT_LIST_HEAD(&iocg->active_list);
2941         INIT_LIST_HEAD(&iocg->walk_list);
2942         INIT_LIST_HEAD(&iocg->surplus_list);
2943         iocg->hweight_active = WEIGHT_ONE;
2944         iocg->hweight_inuse = WEIGHT_ONE;
2945
2946         init_waitqueue_head(&iocg->waitq);
2947         hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2948         iocg->waitq_timer.function = iocg_waitq_timer_fn;
2949
2950         iocg->level = blkg->blkcg->css.cgroup->level;
2951
2952         for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2953                 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2954                 iocg->ancestors[tiocg->level] = tiocg;
2955         }
2956
2957         spin_lock_irqsave(&ioc->lock, flags);
2958         weight_updated(iocg, &now);
2959         spin_unlock_irqrestore(&ioc->lock, flags);
2960 }
2961
2962 static void ioc_pd_free(struct blkg_policy_data *pd)
2963 {
2964         struct ioc_gq *iocg = pd_to_iocg(pd);
2965         struct ioc *ioc = iocg->ioc;
2966         unsigned long flags;
2967
2968         if (ioc) {
2969                 spin_lock_irqsave(&ioc->lock, flags);
2970
2971                 if (!list_empty(&iocg->active_list)) {
2972                         struct ioc_now now;
2973
2974                         ioc_now(ioc, &now);
2975                         propagate_weights(iocg, 0, 0, false, &now);
2976                         list_del_init(&iocg->active_list);
2977                 }
2978
2979                 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
2980                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2981
2982                 spin_unlock_irqrestore(&ioc->lock, flags);
2983
2984                 hrtimer_cancel(&iocg->waitq_timer);
2985         }
2986         free_percpu(iocg->pcpu_stat);
2987         kfree(iocg);
2988 }
2989
2990 static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size)
2991 {
2992         struct ioc_gq *iocg = pd_to_iocg(pd);
2993         struct ioc *ioc = iocg->ioc;
2994         size_t pos = 0;
2995
2996         if (!ioc->enabled)
2997                 return 0;
2998
2999         if (iocg->level == 0) {
3000                 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3001                         ioc->vtime_base_rate * 10000,
3002                         VTIME_PER_USEC);
3003                 pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u",
3004                                   vp10k / 100, vp10k % 100);
3005         }
3006
3007         pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu",
3008                          iocg->last_stat.usage_us);
3009
3010         if (blkcg_debug_stats)
3011                 pos += scnprintf(buf + pos, size - pos,
3012                                  " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3013                                  iocg->last_stat.wait_us,
3014                                  iocg->last_stat.indebt_us,
3015                                  iocg->last_stat.indelay_us);
3016
3017         return pos;
3018 }
3019
3020 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3021                              int off)
3022 {
3023         const char *dname = blkg_dev_name(pd->blkg);
3024         struct ioc_gq *iocg = pd_to_iocg(pd);
3025
3026         if (dname && iocg->cfg_weight)
3027                 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3028         return 0;
3029 }
3030
3031
3032 static int ioc_weight_show(struct seq_file *sf, void *v)
3033 {
3034         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3035         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3036
3037         seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3038         blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3039                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3040         return 0;
3041 }
3042
3043 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3044                                 size_t nbytes, loff_t off)
3045 {
3046         struct blkcg *blkcg = css_to_blkcg(of_css(of));
3047         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3048         struct blkg_conf_ctx ctx;
3049         struct ioc_now now;
3050         struct ioc_gq *iocg;
3051         u32 v;
3052         int ret;
3053
3054         if (!strchr(buf, ':')) {
3055                 struct blkcg_gq *blkg;
3056
3057                 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3058                         return -EINVAL;
3059
3060                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3061                         return -EINVAL;
3062
3063                 spin_lock(&blkcg->lock);
3064                 iocc->dfl_weight = v * WEIGHT_ONE;
3065                 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3066                         struct ioc_gq *iocg = blkg_to_iocg(blkg);
3067
3068                         if (iocg) {
3069                                 spin_lock_irq(&iocg->ioc->lock);
3070                                 ioc_now(iocg->ioc, &now);
3071                                 weight_updated(iocg, &now);
3072                                 spin_unlock_irq(&iocg->ioc->lock);
3073                         }
3074                 }
3075                 spin_unlock(&blkcg->lock);
3076
3077                 return nbytes;
3078         }
3079
3080         ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3081         if (ret)
3082                 return ret;
3083
3084         iocg = blkg_to_iocg(ctx.blkg);
3085
3086         if (!strncmp(ctx.body, "default", 7)) {
3087                 v = 0;
3088         } else {
3089                 if (!sscanf(ctx.body, "%u", &v))
3090                         goto einval;
3091                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3092                         goto einval;
3093         }
3094
3095         spin_lock(&iocg->ioc->lock);
3096         iocg->cfg_weight = v * WEIGHT_ONE;
3097         ioc_now(iocg->ioc, &now);
3098         weight_updated(iocg, &now);
3099         spin_unlock(&iocg->ioc->lock);
3100
3101         blkg_conf_finish(&ctx);
3102         return nbytes;
3103
3104 einval:
3105         blkg_conf_finish(&ctx);
3106         return -EINVAL;
3107 }
3108
3109 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3110                           int off)
3111 {
3112         const char *dname = blkg_dev_name(pd->blkg);
3113         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3114
3115         if (!dname)
3116                 return 0;
3117
3118         seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3119                    dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3120                    ioc->params.qos[QOS_RPPM] / 10000,
3121                    ioc->params.qos[QOS_RPPM] % 10000 / 100,
3122                    ioc->params.qos[QOS_RLAT],
3123                    ioc->params.qos[QOS_WPPM] / 10000,
3124                    ioc->params.qos[QOS_WPPM] % 10000 / 100,
3125                    ioc->params.qos[QOS_WLAT],
3126                    ioc->params.qos[QOS_MIN] / 10000,
3127                    ioc->params.qos[QOS_MIN] % 10000 / 100,
3128                    ioc->params.qos[QOS_MAX] / 10000,
3129                    ioc->params.qos[QOS_MAX] % 10000 / 100);
3130         return 0;
3131 }
3132
3133 static int ioc_qos_show(struct seq_file *sf, void *v)
3134 {
3135         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3136
3137         blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3138                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3139         return 0;
3140 }
3141
3142 static const match_table_t qos_ctrl_tokens = {
3143         { QOS_ENABLE,           "enable=%u"     },
3144         { QOS_CTRL,             "ctrl=%s"       },
3145         { NR_QOS_CTRL_PARAMS,   NULL            },
3146 };
3147
3148 static const match_table_t qos_tokens = {
3149         { QOS_RPPM,             "rpct=%s"       },
3150         { QOS_RLAT,             "rlat=%u"       },
3151         { QOS_WPPM,             "wpct=%s"       },
3152         { QOS_WLAT,             "wlat=%u"       },
3153         { QOS_MIN,              "min=%s"        },
3154         { QOS_MAX,              "max=%s"        },
3155         { NR_QOS_PARAMS,        NULL            },
3156 };
3157
3158 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3159                              size_t nbytes, loff_t off)
3160 {
3161         struct block_device *bdev;
3162         struct ioc *ioc;
3163         u32 qos[NR_QOS_PARAMS];
3164         bool enable, user;
3165         char *p;
3166         int ret;
3167
3168         bdev = blkcg_conf_open_bdev(&input);
3169         if (IS_ERR(bdev))
3170                 return PTR_ERR(bdev);
3171
3172         ioc = q_to_ioc(bdev->bd_disk->queue);
3173         if (!ioc) {
3174                 ret = blk_iocost_init(bdev->bd_disk->queue);
3175                 if (ret)
3176                         goto err;
3177                 ioc = q_to_ioc(bdev->bd_disk->queue);
3178         }
3179
3180         spin_lock_irq(&ioc->lock);
3181         memcpy(qos, ioc->params.qos, sizeof(qos));
3182         enable = ioc->enabled;
3183         user = ioc->user_qos_params;
3184         spin_unlock_irq(&ioc->lock);
3185
3186         while ((p = strsep(&input, " \t\n"))) {
3187                 substring_t args[MAX_OPT_ARGS];
3188                 char buf[32];
3189                 int tok;
3190                 s64 v;
3191
3192                 if (!*p)
3193                         continue;
3194
3195                 switch (match_token(p, qos_ctrl_tokens, args)) {
3196                 case QOS_ENABLE:
3197                         match_u64(&args[0], &v);
3198                         enable = v;
3199                         continue;
3200                 case QOS_CTRL:
3201                         match_strlcpy(buf, &args[0], sizeof(buf));
3202                         if (!strcmp(buf, "auto"))
3203                                 user = false;
3204                         else if (!strcmp(buf, "user"))
3205                                 user = true;
3206                         else
3207                                 goto einval;
3208                         continue;
3209                 }
3210
3211                 tok = match_token(p, qos_tokens, args);
3212                 switch (tok) {
3213                 case QOS_RPPM:
3214                 case QOS_WPPM:
3215                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3216                             sizeof(buf))
3217                                 goto einval;
3218                         if (cgroup_parse_float(buf, 2, &v))
3219                                 goto einval;
3220                         if (v < 0 || v > 10000)
3221                                 goto einval;
3222                         qos[tok] = v * 100;
3223                         break;
3224                 case QOS_RLAT:
3225                 case QOS_WLAT:
3226                         if (match_u64(&args[0], &v))
3227                                 goto einval;
3228                         qos[tok] = v;
3229                         break;
3230                 case QOS_MIN:
3231                 case QOS_MAX:
3232                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3233                             sizeof(buf))
3234                                 goto einval;
3235                         if (cgroup_parse_float(buf, 2, &v))
3236                                 goto einval;
3237                         if (v < 0)
3238                                 goto einval;
3239                         qos[tok] = clamp_t(s64, v * 100,
3240                                            VRATE_MIN_PPM, VRATE_MAX_PPM);
3241                         break;
3242                 default:
3243                         goto einval;
3244                 }
3245                 user = true;
3246         }
3247
3248         if (qos[QOS_MIN] > qos[QOS_MAX])
3249                 goto einval;
3250
3251         spin_lock_irq(&ioc->lock);
3252
3253         if (enable) {
3254                 blk_stat_enable_accounting(ioc->rqos.q);
3255                 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3256                 ioc->enabled = true;
3257         } else {
3258                 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3259                 ioc->enabled = false;
3260         }
3261
3262         if (user) {
3263                 memcpy(ioc->params.qos, qos, sizeof(qos));
3264                 ioc->user_qos_params = true;
3265         } else {
3266                 ioc->user_qos_params = false;
3267         }
3268
3269         ioc_refresh_params(ioc, true);
3270         spin_unlock_irq(&ioc->lock);
3271
3272         blkdev_put_no_open(bdev);
3273         return nbytes;
3274 einval:
3275         ret = -EINVAL;
3276 err:
3277         blkdev_put_no_open(bdev);
3278         return ret;
3279 }
3280
3281 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3282                                  struct blkg_policy_data *pd, int off)
3283 {
3284         const char *dname = blkg_dev_name(pd->blkg);
3285         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3286         u64 *u = ioc->params.i_lcoefs;
3287
3288         if (!dname)
3289                 return 0;
3290
3291         seq_printf(sf, "%s ctrl=%s model=linear "
3292                    "rbps=%llu rseqiops=%llu rrandiops=%llu "
3293                    "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3294                    dname, ioc->user_cost_model ? "user" : "auto",
3295                    u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3296                    u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3297         return 0;
3298 }
3299
3300 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3301 {
3302         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3303
3304         blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3305                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3306         return 0;
3307 }
3308
3309 static const match_table_t cost_ctrl_tokens = {
3310         { COST_CTRL,            "ctrl=%s"       },
3311         { COST_MODEL,           "model=%s"      },
3312         { NR_COST_CTRL_PARAMS,  NULL            },
3313 };
3314
3315 static const match_table_t i_lcoef_tokens = {
3316         { I_LCOEF_RBPS,         "rbps=%u"       },
3317         { I_LCOEF_RSEQIOPS,     "rseqiops=%u"   },
3318         { I_LCOEF_RRANDIOPS,    "rrandiops=%u"  },
3319         { I_LCOEF_WBPS,         "wbps=%u"       },
3320         { I_LCOEF_WSEQIOPS,     "wseqiops=%u"   },
3321         { I_LCOEF_WRANDIOPS,    "wrandiops=%u"  },
3322         { NR_I_LCOEFS,          NULL            },
3323 };
3324
3325 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3326                                     size_t nbytes, loff_t off)
3327 {
3328         struct block_device *bdev;
3329         struct ioc *ioc;
3330         u64 u[NR_I_LCOEFS];
3331         bool user;
3332         char *p;
3333         int ret;
3334
3335         bdev = blkcg_conf_open_bdev(&input);
3336         if (IS_ERR(bdev))
3337                 return PTR_ERR(bdev);
3338
3339         ioc = q_to_ioc(bdev->bd_disk->queue);
3340         if (!ioc) {
3341                 ret = blk_iocost_init(bdev->bd_disk->queue);
3342                 if (ret)
3343                         goto err;
3344                 ioc = q_to_ioc(bdev->bd_disk->queue);
3345         }
3346
3347         spin_lock_irq(&ioc->lock);
3348         memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3349         user = ioc->user_cost_model;
3350         spin_unlock_irq(&ioc->lock);
3351
3352         while ((p = strsep(&input, " \t\n"))) {
3353                 substring_t args[MAX_OPT_ARGS];
3354                 char buf[32];
3355                 int tok;
3356                 u64 v;
3357
3358                 if (!*p)
3359                         continue;
3360
3361                 switch (match_token(p, cost_ctrl_tokens, args)) {
3362                 case COST_CTRL:
3363                         match_strlcpy(buf, &args[0], sizeof(buf));
3364                         if (!strcmp(buf, "auto"))
3365                                 user = false;
3366                         else if (!strcmp(buf, "user"))
3367                                 user = true;
3368                         else
3369                                 goto einval;
3370                         continue;
3371                 case COST_MODEL:
3372                         match_strlcpy(buf, &args[0], sizeof(buf));
3373                         if (strcmp(buf, "linear"))
3374                                 goto einval;
3375                         continue;
3376                 }
3377
3378                 tok = match_token(p, i_lcoef_tokens, args);
3379                 if (tok == NR_I_LCOEFS)
3380                         goto einval;
3381                 if (match_u64(&args[0], &v))
3382                         goto einval;
3383                 u[tok] = v;
3384                 user = true;
3385         }
3386
3387         spin_lock_irq(&ioc->lock);
3388         if (user) {
3389                 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3390                 ioc->user_cost_model = true;
3391         } else {
3392                 ioc->user_cost_model = false;
3393         }
3394         ioc_refresh_params(ioc, true);
3395         spin_unlock_irq(&ioc->lock);
3396
3397         blkdev_put_no_open(bdev);
3398         return nbytes;
3399
3400 einval:
3401         ret = -EINVAL;
3402 err:
3403         blkdev_put_no_open(bdev);
3404         return ret;
3405 }
3406
3407 static struct cftype ioc_files[] = {
3408         {
3409                 .name = "weight",
3410                 .flags = CFTYPE_NOT_ON_ROOT,
3411                 .seq_show = ioc_weight_show,
3412                 .write = ioc_weight_write,
3413         },
3414         {
3415                 .name = "cost.qos",
3416                 .flags = CFTYPE_ONLY_ON_ROOT,
3417                 .seq_show = ioc_qos_show,
3418                 .write = ioc_qos_write,
3419         },
3420         {
3421                 .name = "cost.model",
3422                 .flags = CFTYPE_ONLY_ON_ROOT,
3423                 .seq_show = ioc_cost_model_show,
3424                 .write = ioc_cost_model_write,
3425         },
3426         {}
3427 };
3428
3429 static struct blkcg_policy blkcg_policy_iocost = {
3430         .dfl_cftypes    = ioc_files,
3431         .cpd_alloc_fn   = ioc_cpd_alloc,
3432         .cpd_free_fn    = ioc_cpd_free,
3433         .pd_alloc_fn    = ioc_pd_alloc,
3434         .pd_init_fn     = ioc_pd_init,
3435         .pd_free_fn     = ioc_pd_free,
3436         .pd_stat_fn     = ioc_pd_stat,
3437 };
3438
3439 static int __init ioc_init(void)
3440 {
3441         return blkcg_policy_register(&blkcg_policy_iocost);
3442 }
3443
3444 static void __exit ioc_exit(void)
3445 {
3446         blkcg_policy_unregister(&blkcg_policy_iocost);
3447 }
3448
3449 module_init(ioc_init);
3450 module_exit(ioc_exit);