fanotify: Fix the checks in fanotify_fsid_equal
[linux-2.6-microblaze.git] / block / blk-iocost.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * paramters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
50  * device-specific coefficients.
51  *
52  * 2. Control Strategy
53  *
54  * The device virtual time (vtime) is used as the primary control metric.
55  * The control strategy is composed of the following three parts.
56  *
57  * 2-1. Vtime Distribution
58  *
59  * When a cgroup becomes active in terms of IOs, its hierarchical share is
60  * calculated.  Please consider the following hierarchy where the numbers
61  * inside parentheses denote the configured weights.
62  *
63  *           root
64  *         /       \
65  *      A (w:100)  B (w:300)
66  *      /       \
67  *  A0 (w:100)  A1 (w:100)
68  *
69  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
70  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
71  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
72  * 12.5% each.  The distribution mechanism only cares about these flattened
73  * shares.  They're called hweights (hierarchical weights) and always add
74  * upto 1 (HWEIGHT_WHOLE).
75  *
76  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
77  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
78  * against the device vtime - an IO which takes 10ms on the underlying
79  * device is considered to take 80ms on A0.
80  *
81  * This constitutes the basis of IO capacity distribution.  Each cgroup's
82  * vtime is running at a rate determined by its hweight.  A cgroup tracks
83  * the vtime consumed by past IOs and can issue a new IO iff doing so
84  * wouldn't outrun the current device vtime.  Otherwise, the IO is
85  * suspended until the vtime has progressed enough to cover it.
86  *
87  * 2-2. Vrate Adjustment
88  *
89  * It's unrealistic to expect the cost model to be perfect.  There are too
90  * many devices and even on the same device the overall performance
91  * fluctuates depending on numerous factors such as IO mixture and device
92  * internal garbage collection.  The controller needs to adapt dynamically.
93  *
94  * This is achieved by adjusting the overall IO rate according to how busy
95  * the device is.  If the device becomes overloaded, we're sending down too
96  * many IOs and should generally slow down.  If there are waiting issuers
97  * but the device isn't saturated, we're issuing too few and should
98  * generally speed up.
99  *
100  * To slow down, we lower the vrate - the rate at which the device vtime
101  * passes compared to the wall clock.  For example, if the vtime is running
102  * at the vrate of 75%, all cgroups added up would only be able to issue
103  * 750ms worth of IOs per second, and vice-versa for speeding up.
104  *
105  * Device business is determined using two criteria - rq wait and
106  * completion latencies.
107  *
108  * When a device gets saturated, the on-device and then the request queues
109  * fill up and a bio which is ready to be issued has to wait for a request
110  * to become available.  When this delay becomes noticeable, it's a clear
111  * indication that the device is saturated and we lower the vrate.  This
112  * saturation signal is fairly conservative as it only triggers when both
113  * hardware and software queues are filled up, and is used as the default
114  * busy signal.
115  *
116  * As devices can have deep queues and be unfair in how the queued commands
117  * are executed, soley depending on rq wait may not result in satisfactory
118  * control quality.  For a better control quality, completion latency QoS
119  * parameters can be configured so that the device is considered saturated
120  * if N'th percentile completion latency rises above the set point.
121  *
122  * The completion latency requirements are a function of both the
123  * underlying device characteristics and the desired IO latency quality of
124  * service.  There is an inherent trade-off - the tighter the latency QoS,
125  * the higher the bandwidth lossage.  Latency QoS is disabled by default
126  * and can be set through /sys/fs/cgroup/io.cost.qos.
127  *
128  * 2-3. Work Conservation
129  *
130  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
131  * periodically while B is sending out enough parallel IOs to saturate the
132  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
133  * cost per second, i.e., 10% of the device capacity.  The naive
134  * distribution of half and half would lead to 60% utilization of the
135  * device, a significant reduction in the total amount of work done
136  * compared to free-for-all competition.  This is too high a cost to pay
137  * for IO control.
138  *
139  * To conserve the total amount of work done, we keep track of how much
140  * each active cgroup is actually using and yield part of its weight if
141  * there are other cgroups which can make use of it.  In the above case,
142  * A's weight will be lowered so that it hovers above the actual usage and
143  * B would be able to use the rest.
144  *
145  * As we don't want to penalize a cgroup for donating its weight, the
146  * surplus weight adjustment factors in a margin and has an immediate
147  * snapback mechanism in case the cgroup needs more IO vtime for itself.
148  *
149  * Note that adjusting down surplus weights has the same effects as
150  * accelerating vtime for other cgroups and work conservation can also be
151  * implemented by adjusting vrate dynamically.  However, squaring who can
152  * donate and should take back how much requires hweight propagations
153  * anyway making it easier to implement and understand as a separate
154  * mechanism.
155  *
156  * 3. Monitoring
157  *
158  * Instead of debugfs or other clumsy monitoring mechanisms, this
159  * controller uses a drgn based monitoring script -
160  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
161  * https://github.com/osandov/drgn.  The ouput looks like the following.
162  *
163  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
164  *                 active      weight      hweight% inflt% dbt  delay usages%
165  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
166  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
167  *
168  * - per        : Timer period
169  * - cur_per    : Internal wall and device vtime clock
170  * - vrate      : Device virtual time rate against wall clock
171  * - weight     : Surplus-adjusted and configured weights
172  * - hweight    : Surplus-adjusted and configured hierarchical weights
173  * - inflt      : The percentage of in-flight IO cost at the end of last period
174  * - del_ms     : Deferred issuer delay induction level and duration
175  * - usages     : Usage history
176  */
177
178 #include <linux/kernel.h>
179 #include <linux/module.h>
180 #include <linux/timer.h>
181 #include <linux/time64.h>
182 #include <linux/parser.h>
183 #include <linux/sched/signal.h>
184 #include <linux/blk-cgroup.h>
185 #include "blk-rq-qos.h"
186 #include "blk-stat.h"
187 #include "blk-wbt.h"
188
189 #ifdef CONFIG_TRACEPOINTS
190
191 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
192 #define TRACE_IOCG_PATH_LEN 1024
193 static DEFINE_SPINLOCK(trace_iocg_path_lock);
194 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
195
196 #define TRACE_IOCG_PATH(type, iocg, ...)                                        \
197         do {                                                                    \
198                 unsigned long flags;                                            \
199                 if (trace_iocost_##type##_enabled()) {                          \
200                         spin_lock_irqsave(&trace_iocg_path_lock, flags);        \
201                         cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,      \
202                                     trace_iocg_path, TRACE_IOCG_PATH_LEN);      \
203                         trace_iocost_##type(iocg, trace_iocg_path,              \
204                                               ##__VA_ARGS__);                   \
205                         spin_unlock_irqrestore(&trace_iocg_path_lock, flags);   \
206                 }                                                               \
207         } while (0)
208
209 #else   /* CONFIG_TRACE_POINTS */
210 #define TRACE_IOCG_PATH(type, iocg, ...)        do { } while (0)
211 #endif  /* CONFIG_TRACE_POINTS */
212
213 enum {
214         MILLION                 = 1000000,
215
216         /* timer period is calculated from latency requirements, bound it */
217         MIN_PERIOD              = USEC_PER_MSEC,
218         MAX_PERIOD              = USEC_PER_SEC,
219
220         /*
221          * A cgroup's vtime can run 50% behind the device vtime, which
222          * serves as its IO credit buffer.  Surplus weight adjustment is
223          * immediately canceled if the vtime margin runs below 10%.
224          */
225         MARGIN_PCT              = 50,
226         INUSE_MARGIN_PCT        = 10,
227
228         /* Have some play in waitq timer operations */
229         WAITQ_TIMER_MARGIN_PCT  = 5,
230
231         /*
232          * vtime can wrap well within a reasonable uptime when vrate is
233          * consistently raised.  Don't trust recorded cgroup vtime if the
234          * period counter indicates that it's older than 5mins.
235          */
236         VTIME_VALID_DUR         = 300 * USEC_PER_SEC,
237
238         /*
239          * Remember the past three non-zero usages and use the max for
240          * surplus calculation.  Three slots guarantee that we remember one
241          * full period usage from the last active stretch even after
242          * partial deactivation and re-activation periods.  Don't start
243          * giving away weight before collecting two data points to prevent
244          * hweight adjustments based on one partial activation period.
245          */
246         NR_USAGE_SLOTS          = 3,
247         MIN_VALID_USAGES        = 2,
248
249         /* 1/64k is granular enough and can easily be handled w/ u32 */
250         HWEIGHT_WHOLE           = 1 << 16,
251
252         /*
253          * As vtime is used to calculate the cost of each IO, it needs to
254          * be fairly high precision.  For example, it should be able to
255          * represent the cost of a single page worth of discard with
256          * suffificient accuracy.  At the same time, it should be able to
257          * represent reasonably long enough durations to be useful and
258          * convenient during operation.
259          *
260          * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
261          * granularity and days of wrap-around time even at extreme vrates.
262          */
263         VTIME_PER_SEC_SHIFT     = 37,
264         VTIME_PER_SEC           = 1LLU << VTIME_PER_SEC_SHIFT,
265         VTIME_PER_USEC          = VTIME_PER_SEC / USEC_PER_SEC,
266
267         /* bound vrate adjustments within two orders of magnitude */
268         VRATE_MIN_PPM           = 10000,        /* 1% */
269         VRATE_MAX_PPM           = 100000000,    /* 10000% */
270
271         VRATE_MIN               = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
272         VRATE_CLAMP_ADJ_PCT     = 4,
273
274         /* if IOs end up waiting for requests, issue less */
275         RQ_WAIT_BUSY_PCT        = 5,
276
277         /* unbusy hysterisis */
278         UNBUSY_THR_PCT          = 75,
279
280         /* don't let cmds which take a very long time pin lagging for too long */
281         MAX_LAGGING_PERIODS     = 10,
282
283         /*
284          * If usage% * 1.25 + 2% is lower than hweight% by more than 3%,
285          * donate the surplus.
286          */
287         SURPLUS_SCALE_PCT       = 125,                  /* * 125% */
288         SURPLUS_SCALE_ABS       = HWEIGHT_WHOLE / 50,   /* + 2% */
289         SURPLUS_MIN_ADJ_DELTA   = HWEIGHT_WHOLE / 33,   /* 3% */
290
291         /* switch iff the conditions are met for longer than this */
292         AUTOP_CYCLE_NSEC        = 10LLU * NSEC_PER_SEC,
293
294         /*
295          * Count IO size in 4k pages.  The 12bit shift helps keeping
296          * size-proportional components of cost calculation in closer
297          * numbers of digits to per-IO cost components.
298          */
299         IOC_PAGE_SHIFT          = 12,
300         IOC_PAGE_SIZE           = 1 << IOC_PAGE_SHIFT,
301         IOC_SECT_TO_PAGE_SHIFT  = IOC_PAGE_SHIFT - SECTOR_SHIFT,
302
303         /* if apart further than 16M, consider randio for linear model */
304         LCOEF_RANDIO_PAGES      = 4096,
305 };
306
307 enum ioc_running {
308         IOC_IDLE,
309         IOC_RUNNING,
310         IOC_STOP,
311 };
312
313 /* io.cost.qos controls including per-dev enable of the whole controller */
314 enum {
315         QOS_ENABLE,
316         QOS_CTRL,
317         NR_QOS_CTRL_PARAMS,
318 };
319
320 /* io.cost.qos params */
321 enum {
322         QOS_RPPM,
323         QOS_RLAT,
324         QOS_WPPM,
325         QOS_WLAT,
326         QOS_MIN,
327         QOS_MAX,
328         NR_QOS_PARAMS,
329 };
330
331 /* io.cost.model controls */
332 enum {
333         COST_CTRL,
334         COST_MODEL,
335         NR_COST_CTRL_PARAMS,
336 };
337
338 /* builtin linear cost model coefficients */
339 enum {
340         I_LCOEF_RBPS,
341         I_LCOEF_RSEQIOPS,
342         I_LCOEF_RRANDIOPS,
343         I_LCOEF_WBPS,
344         I_LCOEF_WSEQIOPS,
345         I_LCOEF_WRANDIOPS,
346         NR_I_LCOEFS,
347 };
348
349 enum {
350         LCOEF_RPAGE,
351         LCOEF_RSEQIO,
352         LCOEF_RRANDIO,
353         LCOEF_WPAGE,
354         LCOEF_WSEQIO,
355         LCOEF_WRANDIO,
356         NR_LCOEFS,
357 };
358
359 enum {
360         AUTOP_INVALID,
361         AUTOP_HDD,
362         AUTOP_SSD_QD1,
363         AUTOP_SSD_DFL,
364         AUTOP_SSD_FAST,
365 };
366
367 struct ioc_gq;
368
369 struct ioc_params {
370         u32                             qos[NR_QOS_PARAMS];
371         u64                             i_lcoefs[NR_I_LCOEFS];
372         u64                             lcoefs[NR_LCOEFS];
373         u32                             too_fast_vrate_pct;
374         u32                             too_slow_vrate_pct;
375 };
376
377 struct ioc_missed {
378         u32                             nr_met;
379         u32                             nr_missed;
380         u32                             last_met;
381         u32                             last_missed;
382 };
383
384 struct ioc_pcpu_stat {
385         struct ioc_missed               missed[2];
386
387         u64                             rq_wait_ns;
388         u64                             last_rq_wait_ns;
389 };
390
391 /* per device */
392 struct ioc {
393         struct rq_qos                   rqos;
394
395         bool                            enabled;
396
397         struct ioc_params               params;
398         u32                             period_us;
399         u32                             margin_us;
400         u64                             vrate_min;
401         u64                             vrate_max;
402
403         spinlock_t                      lock;
404         struct timer_list               timer;
405         struct list_head                active_iocgs;   /* active cgroups */
406         struct ioc_pcpu_stat __percpu   *pcpu_stat;
407
408         enum ioc_running                running;
409         atomic64_t                      vtime_rate;
410
411         seqcount_t                      period_seqcount;
412         u32                             period_at;      /* wallclock starttime */
413         u64                             period_at_vtime; /* vtime starttime */
414
415         atomic64_t                      cur_period;     /* inc'd each period */
416         int                             busy_level;     /* saturation history */
417
418         u64                             inuse_margin_vtime;
419         bool                            weights_updated;
420         atomic_t                        hweight_gen;    /* for lazy hweights */
421
422         u64                             autop_too_fast_at;
423         u64                             autop_too_slow_at;
424         int                             autop_idx;
425         bool                            user_qos_params:1;
426         bool                            user_cost_model:1;
427 };
428
429 /* per device-cgroup pair */
430 struct ioc_gq {
431         struct blkg_policy_data         pd;
432         struct ioc                      *ioc;
433
434         /*
435          * A iocg can get its weight from two sources - an explicit
436          * per-device-cgroup configuration or the default weight of the
437          * cgroup.  `cfg_weight` is the explicit per-device-cgroup
438          * configuration.  `weight` is the effective considering both
439          * sources.
440          *
441          * When an idle cgroup becomes active its `active` goes from 0 to
442          * `weight`.  `inuse` is the surplus adjusted active weight.
443          * `active` and `inuse` are used to calculate `hweight_active` and
444          * `hweight_inuse`.
445          *
446          * `last_inuse` remembers `inuse` while an iocg is idle to persist
447          * surplus adjustments.
448          */
449         u32                             cfg_weight;
450         u32                             weight;
451         u32                             active;
452         u32                             inuse;
453         u32                             last_inuse;
454
455         sector_t                        cursor;         /* to detect randio */
456
457         /*
458          * `vtime` is this iocg's vtime cursor which progresses as IOs are
459          * issued.  If lagging behind device vtime, the delta represents
460          * the currently available IO budget.  If runnning ahead, the
461          * overage.
462          *
463          * `vtime_done` is the same but progressed on completion rather
464          * than issue.  The delta behind `vtime` represents the cost of
465          * currently in-flight IOs.
466          *
467          * `last_vtime` is used to remember `vtime` at the end of the last
468          * period to calculate utilization.
469          */
470         atomic64_t                      vtime;
471         atomic64_t                      done_vtime;
472         atomic64_t                      abs_vdebt;
473         u64                             last_vtime;
474
475         /*
476          * The period this iocg was last active in.  Used for deactivation
477          * and invalidating `vtime`.
478          */
479         atomic64_t                      active_period;
480         struct list_head                active_list;
481
482         /* see __propagate_active_weight() and current_hweight() for details */
483         u64                             child_active_sum;
484         u64                             child_inuse_sum;
485         int                             hweight_gen;
486         u32                             hweight_active;
487         u32                             hweight_inuse;
488         bool                            has_surplus;
489
490         struct wait_queue_head          waitq;
491         struct hrtimer                  waitq_timer;
492         struct hrtimer                  delay_timer;
493
494         /* usage is recorded as fractions of HWEIGHT_WHOLE */
495         int                             usage_idx;
496         u32                             usages[NR_USAGE_SLOTS];
497
498         /* this iocg's depth in the hierarchy and ancestors including self */
499         int                             level;
500         struct ioc_gq                   *ancestors[];
501 };
502
503 /* per cgroup */
504 struct ioc_cgrp {
505         struct blkcg_policy_data        cpd;
506         unsigned int                    dfl_weight;
507 };
508
509 struct ioc_now {
510         u64                             now_ns;
511         u32                             now;
512         u64                             vnow;
513         u64                             vrate;
514 };
515
516 struct iocg_wait {
517         struct wait_queue_entry         wait;
518         struct bio                      *bio;
519         u64                             abs_cost;
520         bool                            committed;
521 };
522
523 struct iocg_wake_ctx {
524         struct ioc_gq                   *iocg;
525         u32                             hw_inuse;
526         s64                             vbudget;
527 };
528
529 static const struct ioc_params autop[] = {
530         [AUTOP_HDD] = {
531                 .qos                            = {
532                         [QOS_RLAT]              =        250000, /* 250ms */
533                         [QOS_WLAT]              =        250000,
534                         [QOS_MIN]               = VRATE_MIN_PPM,
535                         [QOS_MAX]               = VRATE_MAX_PPM,
536                 },
537                 .i_lcoefs                       = {
538                         [I_LCOEF_RBPS]          =     174019176,
539                         [I_LCOEF_RSEQIOPS]      =         41708,
540                         [I_LCOEF_RRANDIOPS]     =           370,
541                         [I_LCOEF_WBPS]          =     178075866,
542                         [I_LCOEF_WSEQIOPS]      =         42705,
543                         [I_LCOEF_WRANDIOPS]     =           378,
544                 },
545         },
546         [AUTOP_SSD_QD1] = {
547                 .qos                            = {
548                         [QOS_RLAT]              =         25000, /* 25ms */
549                         [QOS_WLAT]              =         25000,
550                         [QOS_MIN]               = VRATE_MIN_PPM,
551                         [QOS_MAX]               = VRATE_MAX_PPM,
552                 },
553                 .i_lcoefs                       = {
554                         [I_LCOEF_RBPS]          =     245855193,
555                         [I_LCOEF_RSEQIOPS]      =         61575,
556                         [I_LCOEF_RRANDIOPS]     =          6946,
557                         [I_LCOEF_WBPS]          =     141365009,
558                         [I_LCOEF_WSEQIOPS]      =         33716,
559                         [I_LCOEF_WRANDIOPS]     =         26796,
560                 },
561         },
562         [AUTOP_SSD_DFL] = {
563                 .qos                            = {
564                         [QOS_RLAT]              =         25000, /* 25ms */
565                         [QOS_WLAT]              =         25000,
566                         [QOS_MIN]               = VRATE_MIN_PPM,
567                         [QOS_MAX]               = VRATE_MAX_PPM,
568                 },
569                 .i_lcoefs                       = {
570                         [I_LCOEF_RBPS]          =     488636629,
571                         [I_LCOEF_RSEQIOPS]      =          8932,
572                         [I_LCOEF_RRANDIOPS]     =          8518,
573                         [I_LCOEF_WBPS]          =     427891549,
574                         [I_LCOEF_WSEQIOPS]      =         28755,
575                         [I_LCOEF_WRANDIOPS]     =         21940,
576                 },
577                 .too_fast_vrate_pct             =           500,
578         },
579         [AUTOP_SSD_FAST] = {
580                 .qos                            = {
581                         [QOS_RLAT]              =          5000, /* 5ms */
582                         [QOS_WLAT]              =          5000,
583                         [QOS_MIN]               = VRATE_MIN_PPM,
584                         [QOS_MAX]               = VRATE_MAX_PPM,
585                 },
586                 .i_lcoefs                       = {
587                         [I_LCOEF_RBPS]          =    3102524156LLU,
588                         [I_LCOEF_RSEQIOPS]      =        724816,
589                         [I_LCOEF_RRANDIOPS]     =        778122,
590                         [I_LCOEF_WBPS]          =    1742780862LLU,
591                         [I_LCOEF_WSEQIOPS]      =        425702,
592                         [I_LCOEF_WRANDIOPS]     =        443193,
593                 },
594                 .too_slow_vrate_pct             =            10,
595         },
596 };
597
598 /*
599  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
600  * vtime credit shortage and down on device saturation.
601  */
602 static u32 vrate_adj_pct[] =
603         { 0, 0, 0, 0,
604           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
605           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
606           4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
607
608 static struct blkcg_policy blkcg_policy_iocost;
609
610 /* accessors and helpers */
611 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
612 {
613         return container_of(rqos, struct ioc, rqos);
614 }
615
616 static struct ioc *q_to_ioc(struct request_queue *q)
617 {
618         return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
619 }
620
621 static const char *q_name(struct request_queue *q)
622 {
623         if (test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
624                 return kobject_name(q->kobj.parent);
625         else
626                 return "<unknown>";
627 }
628
629 static const char __maybe_unused *ioc_name(struct ioc *ioc)
630 {
631         return q_name(ioc->rqos.q);
632 }
633
634 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
635 {
636         return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
637 }
638
639 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
640 {
641         return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
642 }
643
644 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
645 {
646         return pd_to_blkg(&iocg->pd);
647 }
648
649 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
650 {
651         return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
652                             struct ioc_cgrp, cpd);
653 }
654
655 /*
656  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
657  * weight, the more expensive each IO.  Must round up.
658  */
659 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
660 {
661         return DIV64_U64_ROUND_UP(abs_cost * HWEIGHT_WHOLE, hw_inuse);
662 }
663
664 /*
665  * The inverse of abs_cost_to_cost().  Must round up.
666  */
667 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
668 {
669         return DIV64_U64_ROUND_UP(cost * hw_inuse, HWEIGHT_WHOLE);
670 }
671
672 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, u64 cost)
673 {
674         bio->bi_iocost_cost = cost;
675         atomic64_add(cost, &iocg->vtime);
676 }
677
678 #define CREATE_TRACE_POINTS
679 #include <trace/events/iocost.h>
680
681 /* latency Qos params changed, update period_us and all the dependent params */
682 static void ioc_refresh_period_us(struct ioc *ioc)
683 {
684         u32 ppm, lat, multi, period_us;
685
686         lockdep_assert_held(&ioc->lock);
687
688         /* pick the higher latency target */
689         if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
690                 ppm = ioc->params.qos[QOS_RPPM];
691                 lat = ioc->params.qos[QOS_RLAT];
692         } else {
693                 ppm = ioc->params.qos[QOS_WPPM];
694                 lat = ioc->params.qos[QOS_WLAT];
695         }
696
697         /*
698          * We want the period to be long enough to contain a healthy number
699          * of IOs while short enough for granular control.  Define it as a
700          * multiple of the latency target.  Ideally, the multiplier should
701          * be scaled according to the percentile so that it would nominally
702          * contain a certain number of requests.  Let's be simpler and
703          * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
704          */
705         if (ppm)
706                 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
707         else
708                 multi = 2;
709         period_us = multi * lat;
710         period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
711
712         /* calculate dependent params */
713         ioc->period_us = period_us;
714         ioc->margin_us = period_us * MARGIN_PCT / 100;
715         ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP(
716                         period_us * VTIME_PER_USEC * INUSE_MARGIN_PCT, 100);
717 }
718
719 static int ioc_autop_idx(struct ioc *ioc)
720 {
721         int idx = ioc->autop_idx;
722         const struct ioc_params *p = &autop[idx];
723         u32 vrate_pct;
724         u64 now_ns;
725
726         /* rotational? */
727         if (!blk_queue_nonrot(ioc->rqos.q))
728                 return AUTOP_HDD;
729
730         /* handle SATA SSDs w/ broken NCQ */
731         if (blk_queue_depth(ioc->rqos.q) == 1)
732                 return AUTOP_SSD_QD1;
733
734         /* use one of the normal ssd sets */
735         if (idx < AUTOP_SSD_DFL)
736                 return AUTOP_SSD_DFL;
737
738         /* if user is overriding anything, maintain what was there */
739         if (ioc->user_qos_params || ioc->user_cost_model)
740                 return idx;
741
742         /* step up/down based on the vrate */
743         vrate_pct = div64_u64(atomic64_read(&ioc->vtime_rate) * 100,
744                               VTIME_PER_USEC);
745         now_ns = ktime_get_ns();
746
747         if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
748                 if (!ioc->autop_too_fast_at)
749                         ioc->autop_too_fast_at = now_ns;
750                 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
751                         return idx + 1;
752         } else {
753                 ioc->autop_too_fast_at = 0;
754         }
755
756         if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
757                 if (!ioc->autop_too_slow_at)
758                         ioc->autop_too_slow_at = now_ns;
759                 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
760                         return idx - 1;
761         } else {
762                 ioc->autop_too_slow_at = 0;
763         }
764
765         return idx;
766 }
767
768 /*
769  * Take the followings as input
770  *
771  *  @bps        maximum sequential throughput
772  *  @seqiops    maximum sequential 4k iops
773  *  @randiops   maximum random 4k iops
774  *
775  * and calculate the linear model cost coefficients.
776  *
777  *  *@page      per-page cost           1s / (@bps / 4096)
778  *  *@seqio     base cost of a seq IO   max((1s / @seqiops) - *@page, 0)
779  *  @randiops   base cost of a rand IO  max((1s / @randiops) - *@page, 0)
780  */
781 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
782                         u64 *page, u64 *seqio, u64 *randio)
783 {
784         u64 v;
785
786         *page = *seqio = *randio = 0;
787
788         if (bps)
789                 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
790                                            DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
791
792         if (seqiops) {
793                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
794                 if (v > *page)
795                         *seqio = v - *page;
796         }
797
798         if (randiops) {
799                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
800                 if (v > *page)
801                         *randio = v - *page;
802         }
803 }
804
805 static void ioc_refresh_lcoefs(struct ioc *ioc)
806 {
807         u64 *u = ioc->params.i_lcoefs;
808         u64 *c = ioc->params.lcoefs;
809
810         calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
811                     &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
812         calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
813                     &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
814 }
815
816 static bool ioc_refresh_params(struct ioc *ioc, bool force)
817 {
818         const struct ioc_params *p;
819         int idx;
820
821         lockdep_assert_held(&ioc->lock);
822
823         idx = ioc_autop_idx(ioc);
824         p = &autop[idx];
825
826         if (idx == ioc->autop_idx && !force)
827                 return false;
828
829         if (idx != ioc->autop_idx)
830                 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
831
832         ioc->autop_idx = idx;
833         ioc->autop_too_fast_at = 0;
834         ioc->autop_too_slow_at = 0;
835
836         if (!ioc->user_qos_params)
837                 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
838         if (!ioc->user_cost_model)
839                 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
840
841         ioc_refresh_period_us(ioc);
842         ioc_refresh_lcoefs(ioc);
843
844         ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
845                                             VTIME_PER_USEC, MILLION);
846         ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
847                                    VTIME_PER_USEC, MILLION);
848
849         return true;
850 }
851
852 /* take a snapshot of the current [v]time and vrate */
853 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
854 {
855         unsigned seq;
856
857         now->now_ns = ktime_get();
858         now->now = ktime_to_us(now->now_ns);
859         now->vrate = atomic64_read(&ioc->vtime_rate);
860
861         /*
862          * The current vtime is
863          *
864          *   vtime at period start + (wallclock time since the start) * vrate
865          *
866          * As a consistent snapshot of `period_at_vtime` and `period_at` is
867          * needed, they're seqcount protected.
868          */
869         do {
870                 seq = read_seqcount_begin(&ioc->period_seqcount);
871                 now->vnow = ioc->period_at_vtime +
872                         (now->now - ioc->period_at) * now->vrate;
873         } while (read_seqcount_retry(&ioc->period_seqcount, seq));
874 }
875
876 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
877 {
878         lockdep_assert_held(&ioc->lock);
879         WARN_ON_ONCE(ioc->running != IOC_RUNNING);
880
881         write_seqcount_begin(&ioc->period_seqcount);
882         ioc->period_at = now->now;
883         ioc->period_at_vtime = now->vnow;
884         write_seqcount_end(&ioc->period_seqcount);
885
886         ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
887         add_timer(&ioc->timer);
888 }
889
890 /*
891  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
892  * weight sums and propagate upwards accordingly.
893  */
894 static void __propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse)
895 {
896         struct ioc *ioc = iocg->ioc;
897         int lvl;
898
899         lockdep_assert_held(&ioc->lock);
900
901         inuse = min(active, inuse);
902
903         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
904                 struct ioc_gq *parent = iocg->ancestors[lvl];
905                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
906                 u32 parent_active = 0, parent_inuse = 0;
907
908                 /* update the level sums */
909                 parent->child_active_sum += (s32)(active - child->active);
910                 parent->child_inuse_sum += (s32)(inuse - child->inuse);
911                 /* apply the udpates */
912                 child->active = active;
913                 child->inuse = inuse;
914
915                 /*
916                  * The delta between inuse and active sums indicates that
917                  * that much of weight is being given away.  Parent's inuse
918                  * and active should reflect the ratio.
919                  */
920                 if (parent->child_active_sum) {
921                         parent_active = parent->weight;
922                         parent_inuse = DIV64_U64_ROUND_UP(
923                                 parent_active * parent->child_inuse_sum,
924                                 parent->child_active_sum);
925                 }
926
927                 /* do we need to keep walking up? */
928                 if (parent_active == parent->active &&
929                     parent_inuse == parent->inuse)
930                         break;
931
932                 active = parent_active;
933                 inuse = parent_inuse;
934         }
935
936         ioc->weights_updated = true;
937 }
938
939 static void commit_active_weights(struct ioc *ioc)
940 {
941         lockdep_assert_held(&ioc->lock);
942
943         if (ioc->weights_updated) {
944                 /* paired with rmb in current_hweight(), see there */
945                 smp_wmb();
946                 atomic_inc(&ioc->hweight_gen);
947                 ioc->weights_updated = false;
948         }
949 }
950
951 static void propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse)
952 {
953         __propagate_active_weight(iocg, active, inuse);
954         commit_active_weights(iocg->ioc);
955 }
956
957 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
958 {
959         struct ioc *ioc = iocg->ioc;
960         int lvl;
961         u32 hwa, hwi;
962         int ioc_gen;
963
964         /* hot path - if uptodate, use cached */
965         ioc_gen = atomic_read(&ioc->hweight_gen);
966         if (ioc_gen == iocg->hweight_gen)
967                 goto out;
968
969         /*
970          * Paired with wmb in commit_active_weights().  If we saw the
971          * updated hweight_gen, all the weight updates from
972          * __propagate_active_weight() are visible too.
973          *
974          * We can race with weight updates during calculation and get it
975          * wrong.  However, hweight_gen would have changed and a future
976          * reader will recalculate and we're guaranteed to discard the
977          * wrong result soon.
978          */
979         smp_rmb();
980
981         hwa = hwi = HWEIGHT_WHOLE;
982         for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
983                 struct ioc_gq *parent = iocg->ancestors[lvl];
984                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
985                 u32 active_sum = READ_ONCE(parent->child_active_sum);
986                 u32 inuse_sum = READ_ONCE(parent->child_inuse_sum);
987                 u32 active = READ_ONCE(child->active);
988                 u32 inuse = READ_ONCE(child->inuse);
989
990                 /* we can race with deactivations and either may read as zero */
991                 if (!active_sum || !inuse_sum)
992                         continue;
993
994                 active_sum = max(active, active_sum);
995                 hwa = hwa * active / active_sum;        /* max 16bits * 10000 */
996
997                 inuse_sum = max(inuse, inuse_sum);
998                 hwi = hwi * inuse / inuse_sum;          /* max 16bits * 10000 */
999         }
1000
1001         iocg->hweight_active = max_t(u32, hwa, 1);
1002         iocg->hweight_inuse = max_t(u32, hwi, 1);
1003         iocg->hweight_gen = ioc_gen;
1004 out:
1005         if (hw_activep)
1006                 *hw_activep = iocg->hweight_active;
1007         if (hw_inusep)
1008                 *hw_inusep = iocg->hweight_inuse;
1009 }
1010
1011 static void weight_updated(struct ioc_gq *iocg)
1012 {
1013         struct ioc *ioc = iocg->ioc;
1014         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1015         struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1016         u32 weight;
1017
1018         lockdep_assert_held(&ioc->lock);
1019
1020         weight = iocg->cfg_weight ?: iocc->dfl_weight;
1021         if (weight != iocg->weight && iocg->active)
1022                 propagate_active_weight(iocg, weight,
1023                         DIV64_U64_ROUND_UP(iocg->inuse * weight, iocg->weight));
1024         iocg->weight = weight;
1025 }
1026
1027 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1028 {
1029         struct ioc *ioc = iocg->ioc;
1030         u64 last_period, cur_period, max_period_delta;
1031         u64 vtime, vmargin, vmin;
1032         int i;
1033
1034         /*
1035          * If seem to be already active, just update the stamp to tell the
1036          * timer that we're still active.  We don't mind occassional races.
1037          */
1038         if (!list_empty(&iocg->active_list)) {
1039                 ioc_now(ioc, now);
1040                 cur_period = atomic64_read(&ioc->cur_period);
1041                 if (atomic64_read(&iocg->active_period) != cur_period)
1042                         atomic64_set(&iocg->active_period, cur_period);
1043                 return true;
1044         }
1045
1046         /* racy check on internal node IOs, treat as root level IOs */
1047         if (iocg->child_active_sum)
1048                 return false;
1049
1050         spin_lock_irq(&ioc->lock);
1051
1052         ioc_now(ioc, now);
1053
1054         /* update period */
1055         cur_period = atomic64_read(&ioc->cur_period);
1056         last_period = atomic64_read(&iocg->active_period);
1057         atomic64_set(&iocg->active_period, cur_period);
1058
1059         /* already activated or breaking leaf-only constraint? */
1060         if (!list_empty(&iocg->active_list))
1061                 goto succeed_unlock;
1062         for (i = iocg->level - 1; i > 0; i--)
1063                 if (!list_empty(&iocg->ancestors[i]->active_list))
1064                         goto fail_unlock;
1065
1066         if (iocg->child_active_sum)
1067                 goto fail_unlock;
1068
1069         /*
1070          * vtime may wrap when vrate is raised substantially due to
1071          * underestimated IO costs.  Look at the period and ignore its
1072          * vtime if the iocg has been idle for too long.  Also, cap the
1073          * budget it can start with to the margin.
1074          */
1075         max_period_delta = DIV64_U64_ROUND_UP(VTIME_VALID_DUR, ioc->period_us);
1076         vtime = atomic64_read(&iocg->vtime);
1077         vmargin = ioc->margin_us * now->vrate;
1078         vmin = now->vnow - vmargin;
1079
1080         if (last_period + max_period_delta < cur_period ||
1081             time_before64(vtime, vmin)) {
1082                 atomic64_add(vmin - vtime, &iocg->vtime);
1083                 atomic64_add(vmin - vtime, &iocg->done_vtime);
1084                 vtime = vmin;
1085         }
1086
1087         /*
1088          * Activate, propagate weight and start period timer if not
1089          * running.  Reset hweight_gen to avoid accidental match from
1090          * wrapping.
1091          */
1092         iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1093         list_add(&iocg->active_list, &ioc->active_iocgs);
1094         propagate_active_weight(iocg, iocg->weight,
1095                                 iocg->last_inuse ?: iocg->weight);
1096
1097         TRACE_IOCG_PATH(iocg_activate, iocg, now,
1098                         last_period, cur_period, vtime);
1099
1100         iocg->last_vtime = vtime;
1101
1102         if (ioc->running == IOC_IDLE) {
1103                 ioc->running = IOC_RUNNING;
1104                 ioc_start_period(ioc, now);
1105         }
1106
1107 succeed_unlock:
1108         spin_unlock_irq(&ioc->lock);
1109         return true;
1110
1111 fail_unlock:
1112         spin_unlock_irq(&ioc->lock);
1113         return false;
1114 }
1115
1116 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1117                         int flags, void *key)
1118 {
1119         struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1120         struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1121         u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1122
1123         ctx->vbudget -= cost;
1124
1125         if (ctx->vbudget < 0)
1126                 return -1;
1127
1128         iocg_commit_bio(ctx->iocg, wait->bio, cost);
1129
1130         /*
1131          * autoremove_wake_function() removes the wait entry only when it
1132          * actually changed the task state.  We want the wait always
1133          * removed.  Remove explicitly and use default_wake_function().
1134          */
1135         list_del_init(&wq_entry->entry);
1136         wait->committed = true;
1137
1138         default_wake_function(wq_entry, mode, flags, key);
1139         return 0;
1140 }
1141
1142 static void iocg_kick_waitq(struct ioc_gq *iocg, struct ioc_now *now)
1143 {
1144         struct ioc *ioc = iocg->ioc;
1145         struct iocg_wake_ctx ctx = { .iocg = iocg };
1146         u64 margin_ns = (u64)(ioc->period_us *
1147                               WAITQ_TIMER_MARGIN_PCT / 100) * NSEC_PER_USEC;
1148         u64 abs_vdebt, vdebt, vshortage, expires, oexpires;
1149         s64 vbudget;
1150         u32 hw_inuse;
1151
1152         lockdep_assert_held(&iocg->waitq.lock);
1153
1154         current_hweight(iocg, NULL, &hw_inuse);
1155         vbudget = now->vnow - atomic64_read(&iocg->vtime);
1156
1157         /* pay off debt */
1158         abs_vdebt = atomic64_read(&iocg->abs_vdebt);
1159         vdebt = abs_cost_to_cost(abs_vdebt, hw_inuse);
1160         if (vdebt && vbudget > 0) {
1161                 u64 delta = min_t(u64, vbudget, vdebt);
1162                 u64 abs_delta = min(cost_to_abs_cost(delta, hw_inuse),
1163                                     abs_vdebt);
1164
1165                 atomic64_add(delta, &iocg->vtime);
1166                 atomic64_add(delta, &iocg->done_vtime);
1167                 atomic64_sub(abs_delta, &iocg->abs_vdebt);
1168                 if (WARN_ON_ONCE(atomic64_read(&iocg->abs_vdebt) < 0))
1169                         atomic64_set(&iocg->abs_vdebt, 0);
1170         }
1171
1172         /*
1173          * Wake up the ones which are due and see how much vtime we'll need
1174          * for the next one.
1175          */
1176         ctx.hw_inuse = hw_inuse;
1177         ctx.vbudget = vbudget - vdebt;
1178         __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1179         if (!waitqueue_active(&iocg->waitq))
1180                 return;
1181         if (WARN_ON_ONCE(ctx.vbudget >= 0))
1182                 return;
1183
1184         /* determine next wakeup, add a quarter margin to guarantee chunking */
1185         vshortage = -ctx.vbudget;
1186         expires = now->now_ns +
1187                 DIV64_U64_ROUND_UP(vshortage, now->vrate) * NSEC_PER_USEC;
1188         expires += margin_ns / 4;
1189
1190         /* if already active and close enough, don't bother */
1191         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1192         if (hrtimer_is_queued(&iocg->waitq_timer) &&
1193             abs(oexpires - expires) <= margin_ns / 4)
1194                 return;
1195
1196         hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1197                                margin_ns / 4, HRTIMER_MODE_ABS);
1198 }
1199
1200 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1201 {
1202         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1203         struct ioc_now now;
1204         unsigned long flags;
1205
1206         ioc_now(iocg->ioc, &now);
1207
1208         spin_lock_irqsave(&iocg->waitq.lock, flags);
1209         iocg_kick_waitq(iocg, &now);
1210         spin_unlock_irqrestore(&iocg->waitq.lock, flags);
1211
1212         return HRTIMER_NORESTART;
1213 }
1214
1215 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now, u64 cost)
1216 {
1217         struct ioc *ioc = iocg->ioc;
1218         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1219         u64 vtime = atomic64_read(&iocg->vtime);
1220         u64 vmargin = ioc->margin_us * now->vrate;
1221         u64 margin_ns = ioc->margin_us * NSEC_PER_USEC;
1222         u64 expires, oexpires;
1223         u32 hw_inuse;
1224
1225         /* debt-adjust vtime */
1226         current_hweight(iocg, NULL, &hw_inuse);
1227         vtime += abs_cost_to_cost(atomic64_read(&iocg->abs_vdebt), hw_inuse);
1228
1229         /* clear or maintain depending on the overage */
1230         if (time_before_eq64(vtime, now->vnow)) {
1231                 blkcg_clear_delay(blkg);
1232                 return false;
1233         }
1234         if (!atomic_read(&blkg->use_delay) &&
1235             time_before_eq64(vtime, now->vnow + vmargin))
1236                 return false;
1237
1238         /* use delay */
1239         if (cost) {
1240                 u64 cost_ns = DIV64_U64_ROUND_UP(cost * NSEC_PER_USEC,
1241                                                  now->vrate);
1242                 blkcg_add_delay(blkg, now->now_ns, cost_ns);
1243         }
1244         blkcg_use_delay(blkg);
1245
1246         expires = now->now_ns + DIV64_U64_ROUND_UP(vtime - now->vnow,
1247                                                    now->vrate) * NSEC_PER_USEC;
1248
1249         /* if already active and close enough, don't bother */
1250         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->delay_timer));
1251         if (hrtimer_is_queued(&iocg->delay_timer) &&
1252             abs(oexpires - expires) <= margin_ns / 4)
1253                 return true;
1254
1255         hrtimer_start_range_ns(&iocg->delay_timer, ns_to_ktime(expires),
1256                                margin_ns / 4, HRTIMER_MODE_ABS);
1257         return true;
1258 }
1259
1260 static enum hrtimer_restart iocg_delay_timer_fn(struct hrtimer *timer)
1261 {
1262         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, delay_timer);
1263         struct ioc_now now;
1264
1265         ioc_now(iocg->ioc, &now);
1266         iocg_kick_delay(iocg, &now, 0);
1267
1268         return HRTIMER_NORESTART;
1269 }
1270
1271 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1272 {
1273         u32 nr_met[2] = { };
1274         u32 nr_missed[2] = { };
1275         u64 rq_wait_ns = 0;
1276         int cpu, rw;
1277
1278         for_each_online_cpu(cpu) {
1279                 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1280                 u64 this_rq_wait_ns;
1281
1282                 for (rw = READ; rw <= WRITE; rw++) {
1283                         u32 this_met = READ_ONCE(stat->missed[rw].nr_met);
1284                         u32 this_missed = READ_ONCE(stat->missed[rw].nr_missed);
1285
1286                         nr_met[rw] += this_met - stat->missed[rw].last_met;
1287                         nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1288                         stat->missed[rw].last_met = this_met;
1289                         stat->missed[rw].last_missed = this_missed;
1290                 }
1291
1292                 this_rq_wait_ns = READ_ONCE(stat->rq_wait_ns);
1293                 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1294                 stat->last_rq_wait_ns = this_rq_wait_ns;
1295         }
1296
1297         for (rw = READ; rw <= WRITE; rw++) {
1298                 if (nr_met[rw] + nr_missed[rw])
1299                         missed_ppm_ar[rw] =
1300                                 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1301                                                    nr_met[rw] + nr_missed[rw]);
1302                 else
1303                         missed_ppm_ar[rw] = 0;
1304         }
1305
1306         *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1307                                    ioc->period_us * NSEC_PER_USEC);
1308 }
1309
1310 /* was iocg idle this period? */
1311 static bool iocg_is_idle(struct ioc_gq *iocg)
1312 {
1313         struct ioc *ioc = iocg->ioc;
1314
1315         /* did something get issued this period? */
1316         if (atomic64_read(&iocg->active_period) ==
1317             atomic64_read(&ioc->cur_period))
1318                 return false;
1319
1320         /* is something in flight? */
1321         if (atomic64_read(&iocg->done_vtime) < atomic64_read(&iocg->vtime))
1322                 return false;
1323
1324         return true;
1325 }
1326
1327 /* returns usage with margin added if surplus is large enough */
1328 static u32 surplus_adjusted_hweight_inuse(u32 usage, u32 hw_inuse)
1329 {
1330         /* add margin */
1331         usage = DIV_ROUND_UP(usage * SURPLUS_SCALE_PCT, 100);
1332         usage += SURPLUS_SCALE_ABS;
1333
1334         /* don't bother if the surplus is too small */
1335         if (usage + SURPLUS_MIN_ADJ_DELTA > hw_inuse)
1336                 return 0;
1337
1338         return usage;
1339 }
1340
1341 static void ioc_timer_fn(struct timer_list *timer)
1342 {
1343         struct ioc *ioc = container_of(timer, struct ioc, timer);
1344         struct ioc_gq *iocg, *tiocg;
1345         struct ioc_now now;
1346         int nr_surpluses = 0, nr_shortages = 0, nr_lagging = 0;
1347         u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
1348         u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
1349         u32 missed_ppm[2], rq_wait_pct;
1350         u64 period_vtime;
1351         int prev_busy_level, i;
1352
1353         /* how were the latencies during the period? */
1354         ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
1355
1356         /* take care of active iocgs */
1357         spin_lock_irq(&ioc->lock);
1358
1359         ioc_now(ioc, &now);
1360
1361         period_vtime = now.vnow - ioc->period_at_vtime;
1362         if (WARN_ON_ONCE(!period_vtime)) {
1363                 spin_unlock_irq(&ioc->lock);
1364                 return;
1365         }
1366
1367         /*
1368          * Waiters determine the sleep durations based on the vrate they
1369          * saw at the time of sleep.  If vrate has increased, some waiters
1370          * could be sleeping for too long.  Wake up tardy waiters which
1371          * should have woken up in the last period and expire idle iocgs.
1372          */
1373         list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
1374                 if (!waitqueue_active(&iocg->waitq) &&
1375                     !atomic64_read(&iocg->abs_vdebt) && !iocg_is_idle(iocg))
1376                         continue;
1377
1378                 spin_lock(&iocg->waitq.lock);
1379
1380                 if (waitqueue_active(&iocg->waitq) ||
1381                     atomic64_read(&iocg->abs_vdebt)) {
1382                         /* might be oversleeping vtime / hweight changes, kick */
1383                         iocg_kick_waitq(iocg, &now);
1384                         iocg_kick_delay(iocg, &now, 0);
1385                 } else if (iocg_is_idle(iocg)) {
1386                         /* no waiter and idle, deactivate */
1387                         iocg->last_inuse = iocg->inuse;
1388                         __propagate_active_weight(iocg, 0, 0);
1389                         list_del_init(&iocg->active_list);
1390                 }
1391
1392                 spin_unlock(&iocg->waitq.lock);
1393         }
1394         commit_active_weights(ioc);
1395
1396         /* calc usages and see whether some weights need to be moved around */
1397         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1398                 u64 vdone, vtime, vusage, vmargin, vmin;
1399                 u32 hw_active, hw_inuse, usage;
1400
1401                 /*
1402                  * Collect unused and wind vtime closer to vnow to prevent
1403                  * iocgs from accumulating a large amount of budget.
1404                  */
1405                 vdone = atomic64_read(&iocg->done_vtime);
1406                 vtime = atomic64_read(&iocg->vtime);
1407                 current_hweight(iocg, &hw_active, &hw_inuse);
1408
1409                 /*
1410                  * Latency QoS detection doesn't account for IOs which are
1411                  * in-flight for longer than a period.  Detect them by
1412                  * comparing vdone against period start.  If lagging behind
1413                  * IOs from past periods, don't increase vrate.
1414                  */
1415                 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
1416                     !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
1417                     time_after64(vtime, vdone) &&
1418                     time_after64(vtime, now.vnow -
1419                                  MAX_LAGGING_PERIODS * period_vtime) &&
1420                     time_before64(vdone, now.vnow - period_vtime))
1421                         nr_lagging++;
1422
1423                 if (waitqueue_active(&iocg->waitq))
1424                         vusage = now.vnow - iocg->last_vtime;
1425                 else if (time_before64(iocg->last_vtime, vtime))
1426                         vusage = vtime - iocg->last_vtime;
1427                 else
1428                         vusage = 0;
1429
1430                 iocg->last_vtime += vusage;
1431                 /*
1432                  * Factor in in-flight vtime into vusage to avoid
1433                  * high-latency completions appearing as idle.  This should
1434                  * be done after the above ->last_time adjustment.
1435                  */
1436                 vusage = max(vusage, vtime - vdone);
1437
1438                 /* calculate hweight based usage ratio and record */
1439                 if (vusage) {
1440                         usage = DIV64_U64_ROUND_UP(vusage * hw_inuse,
1441                                                    period_vtime);
1442                         iocg->usage_idx = (iocg->usage_idx + 1) % NR_USAGE_SLOTS;
1443                         iocg->usages[iocg->usage_idx] = usage;
1444                 } else {
1445                         usage = 0;
1446                 }
1447
1448                 /* see whether there's surplus vtime */
1449                 vmargin = ioc->margin_us * now.vrate;
1450                 vmin = now.vnow - vmargin;
1451
1452                 iocg->has_surplus = false;
1453
1454                 if (!waitqueue_active(&iocg->waitq) &&
1455                     time_before64(vtime, vmin)) {
1456                         u64 delta = vmin - vtime;
1457
1458                         /* throw away surplus vtime */
1459                         atomic64_add(delta, &iocg->vtime);
1460                         atomic64_add(delta, &iocg->done_vtime);
1461                         iocg->last_vtime += delta;
1462                         /* if usage is sufficiently low, maybe it can donate */
1463                         if (surplus_adjusted_hweight_inuse(usage, hw_inuse)) {
1464                                 iocg->has_surplus = true;
1465                                 nr_surpluses++;
1466                         }
1467                 } else if (hw_inuse < hw_active) {
1468                         u32 new_hwi, new_inuse;
1469
1470                         /* was donating but might need to take back some */
1471                         if (waitqueue_active(&iocg->waitq)) {
1472                                 new_hwi = hw_active;
1473                         } else {
1474                                 new_hwi = max(hw_inuse,
1475                                               usage * SURPLUS_SCALE_PCT / 100 +
1476                                               SURPLUS_SCALE_ABS);
1477                         }
1478
1479                         new_inuse = div64_u64((u64)iocg->inuse * new_hwi,
1480                                               hw_inuse);
1481                         new_inuse = clamp_t(u32, new_inuse, 1, iocg->active);
1482
1483                         if (new_inuse > iocg->inuse) {
1484                                 TRACE_IOCG_PATH(inuse_takeback, iocg, &now,
1485                                                 iocg->inuse, new_inuse,
1486                                                 hw_inuse, new_hwi);
1487                                 __propagate_active_weight(iocg, iocg->weight,
1488                                                           new_inuse);
1489                         }
1490                 } else {
1491                         /* genuninely out of vtime */
1492                         nr_shortages++;
1493                 }
1494         }
1495
1496         if (!nr_shortages || !nr_surpluses)
1497                 goto skip_surplus_transfers;
1498
1499         /* there are both shortages and surpluses, transfer surpluses */
1500         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1501                 u32 usage, hw_active, hw_inuse, new_hwi, new_inuse;
1502                 int nr_valid = 0;
1503
1504                 if (!iocg->has_surplus)
1505                         continue;
1506
1507                 /* base the decision on max historical usage */
1508                 for (i = 0, usage = 0; i < NR_USAGE_SLOTS; i++) {
1509                         if (iocg->usages[i]) {
1510                                 usage = max(usage, iocg->usages[i]);
1511                                 nr_valid++;
1512                         }
1513                 }
1514                 if (nr_valid < MIN_VALID_USAGES)
1515                         continue;
1516
1517                 current_hweight(iocg, &hw_active, &hw_inuse);
1518                 new_hwi = surplus_adjusted_hweight_inuse(usage, hw_inuse);
1519                 if (!new_hwi)
1520                         continue;
1521
1522                 new_inuse = DIV64_U64_ROUND_UP((u64)iocg->inuse * new_hwi,
1523                                                hw_inuse);
1524                 if (new_inuse < iocg->inuse) {
1525                         TRACE_IOCG_PATH(inuse_giveaway, iocg, &now,
1526                                         iocg->inuse, new_inuse,
1527                                         hw_inuse, new_hwi);
1528                         __propagate_active_weight(iocg, iocg->weight, new_inuse);
1529                 }
1530         }
1531 skip_surplus_transfers:
1532         commit_active_weights(ioc);
1533
1534         /*
1535          * If q is getting clogged or we're missing too much, we're issuing
1536          * too much IO and should lower vtime rate.  If we're not missing
1537          * and experiencing shortages but not surpluses, we're too stingy
1538          * and should increase vtime rate.
1539          */
1540         prev_busy_level = ioc->busy_level;
1541         if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
1542             missed_ppm[READ] > ppm_rthr ||
1543             missed_ppm[WRITE] > ppm_wthr) {
1544                 ioc->busy_level = max(ioc->busy_level, 0);
1545                 ioc->busy_level++;
1546         } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
1547                    missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
1548                    missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
1549                 /* take action iff there is contention */
1550                 if (nr_shortages && !nr_lagging) {
1551                         ioc->busy_level = min(ioc->busy_level, 0);
1552                         /* redistribute surpluses first */
1553                         if (!nr_surpluses)
1554                                 ioc->busy_level--;
1555                 }
1556         } else {
1557                 ioc->busy_level = 0;
1558         }
1559
1560         ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
1561
1562         if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) {
1563                 u64 vrate = atomic64_read(&ioc->vtime_rate);
1564                 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
1565
1566                 /* rq_wait signal is always reliable, ignore user vrate_min */
1567                 if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
1568                         vrate_min = VRATE_MIN;
1569
1570                 /*
1571                  * If vrate is out of bounds, apply clamp gradually as the
1572                  * bounds can change abruptly.  Otherwise, apply busy_level
1573                  * based adjustment.
1574                  */
1575                 if (vrate < vrate_min) {
1576                         vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
1577                                           100);
1578                         vrate = min(vrate, vrate_min);
1579                 } else if (vrate > vrate_max) {
1580                         vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
1581                                           100);
1582                         vrate = max(vrate, vrate_max);
1583                 } else {
1584                         int idx = min_t(int, abs(ioc->busy_level),
1585                                         ARRAY_SIZE(vrate_adj_pct) - 1);
1586                         u32 adj_pct = vrate_adj_pct[idx];
1587
1588                         if (ioc->busy_level > 0)
1589                                 adj_pct = 100 - adj_pct;
1590                         else
1591                                 adj_pct = 100 + adj_pct;
1592
1593                         vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1594                                       vrate_min, vrate_max);
1595                 }
1596
1597                 trace_iocost_ioc_vrate_adj(ioc, vrate, &missed_ppm, rq_wait_pct,
1598                                            nr_lagging, nr_shortages,
1599                                            nr_surpluses);
1600
1601                 atomic64_set(&ioc->vtime_rate, vrate);
1602                 ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP(
1603                         ioc->period_us * vrate * INUSE_MARGIN_PCT, 100);
1604         } else if (ioc->busy_level != prev_busy_level || nr_lagging) {
1605                 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
1606                                            &missed_ppm, rq_wait_pct, nr_lagging,
1607                                            nr_shortages, nr_surpluses);
1608         }
1609
1610         ioc_refresh_params(ioc, false);
1611
1612         /*
1613          * This period is done.  Move onto the next one.  If nothing's
1614          * going on with the device, stop the timer.
1615          */
1616         atomic64_inc(&ioc->cur_period);
1617
1618         if (ioc->running != IOC_STOP) {
1619                 if (!list_empty(&ioc->active_iocgs)) {
1620                         ioc_start_period(ioc, &now);
1621                 } else {
1622                         ioc->busy_level = 0;
1623                         ioc->running = IOC_IDLE;
1624                 }
1625         }
1626
1627         spin_unlock_irq(&ioc->lock);
1628 }
1629
1630 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
1631                                     bool is_merge, u64 *costp)
1632 {
1633         struct ioc *ioc = iocg->ioc;
1634         u64 coef_seqio, coef_randio, coef_page;
1635         u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
1636         u64 seek_pages = 0;
1637         u64 cost = 0;
1638
1639         switch (bio_op(bio)) {
1640         case REQ_OP_READ:
1641                 coef_seqio      = ioc->params.lcoefs[LCOEF_RSEQIO];
1642                 coef_randio     = ioc->params.lcoefs[LCOEF_RRANDIO];
1643                 coef_page       = ioc->params.lcoefs[LCOEF_RPAGE];
1644                 break;
1645         case REQ_OP_WRITE:
1646                 coef_seqio      = ioc->params.lcoefs[LCOEF_WSEQIO];
1647                 coef_randio     = ioc->params.lcoefs[LCOEF_WRANDIO];
1648                 coef_page       = ioc->params.lcoefs[LCOEF_WPAGE];
1649                 break;
1650         default:
1651                 goto out;
1652         }
1653
1654         if (iocg->cursor) {
1655                 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
1656                 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
1657         }
1658
1659         if (!is_merge) {
1660                 if (seek_pages > LCOEF_RANDIO_PAGES) {
1661                         cost += coef_randio;
1662                 } else {
1663                         cost += coef_seqio;
1664                 }
1665         }
1666         cost += pages * coef_page;
1667 out:
1668         *costp = cost;
1669 }
1670
1671 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
1672 {
1673         u64 cost;
1674
1675         calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
1676         return cost;
1677 }
1678
1679 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
1680 {
1681         struct blkcg_gq *blkg = bio->bi_blkg;
1682         struct ioc *ioc = rqos_to_ioc(rqos);
1683         struct ioc_gq *iocg = blkg_to_iocg(blkg);
1684         struct ioc_now now;
1685         struct iocg_wait wait;
1686         u32 hw_active, hw_inuse;
1687         u64 abs_cost, cost, vtime;
1688
1689         /* bypass IOs if disabled or for root cgroup */
1690         if (!ioc->enabled || !iocg->level)
1691                 return;
1692
1693         /* always activate so that even 0 cost IOs get protected to some level */
1694         if (!iocg_activate(iocg, &now))
1695                 return;
1696
1697         /* calculate the absolute vtime cost */
1698         abs_cost = calc_vtime_cost(bio, iocg, false);
1699         if (!abs_cost)
1700                 return;
1701
1702         iocg->cursor = bio_end_sector(bio);
1703
1704         vtime = atomic64_read(&iocg->vtime);
1705         current_hweight(iocg, &hw_active, &hw_inuse);
1706
1707         if (hw_inuse < hw_active &&
1708             time_after_eq64(vtime + ioc->inuse_margin_vtime, now.vnow)) {
1709                 TRACE_IOCG_PATH(inuse_reset, iocg, &now,
1710                                 iocg->inuse, iocg->weight, hw_inuse, hw_active);
1711                 spin_lock_irq(&ioc->lock);
1712                 propagate_active_weight(iocg, iocg->weight, iocg->weight);
1713                 spin_unlock_irq(&ioc->lock);
1714                 current_hweight(iocg, &hw_active, &hw_inuse);
1715         }
1716
1717         cost = abs_cost_to_cost(abs_cost, hw_inuse);
1718
1719         /*
1720          * If no one's waiting and within budget, issue right away.  The
1721          * tests are racy but the races aren't systemic - we only miss once
1722          * in a while which is fine.
1723          */
1724         if (!waitqueue_active(&iocg->waitq) &&
1725             !atomic64_read(&iocg->abs_vdebt) &&
1726             time_before_eq64(vtime + cost, now.vnow)) {
1727                 iocg_commit_bio(iocg, bio, cost);
1728                 return;
1729         }
1730
1731         /*
1732          * We're over budget.  If @bio has to be issued regardless,
1733          * remember the abs_cost instead of advancing vtime.
1734          * iocg_kick_waitq() will pay off the debt before waking more IOs.
1735          * This way, the debt is continuously paid off each period with the
1736          * actual budget available to the cgroup.  If we just wound vtime,
1737          * we would incorrectly use the current hw_inuse for the entire
1738          * amount which, for example, can lead to the cgroup staying
1739          * blocked for a long time even with substantially raised hw_inuse.
1740          */
1741         if (bio_issue_as_root_blkg(bio) || fatal_signal_pending(current)) {
1742                 atomic64_add(abs_cost, &iocg->abs_vdebt);
1743                 if (iocg_kick_delay(iocg, &now, cost))
1744                         blkcg_schedule_throttle(rqos->q,
1745                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
1746                 return;
1747         }
1748
1749         /*
1750          * Append self to the waitq and schedule the wakeup timer if we're
1751          * the first waiter.  The timer duration is calculated based on the
1752          * current vrate.  vtime and hweight changes can make it too short
1753          * or too long.  Each wait entry records the absolute cost it's
1754          * waiting for to allow re-evaluation using a custom wait entry.
1755          *
1756          * If too short, the timer simply reschedules itself.  If too long,
1757          * the period timer will notice and trigger wakeups.
1758          *
1759          * All waiters are on iocg->waitq and the wait states are
1760          * synchronized using waitq.lock.
1761          */
1762         spin_lock_irq(&iocg->waitq.lock);
1763
1764         /*
1765          * We activated above but w/o any synchronization.  Deactivation is
1766          * synchronized with waitq.lock and we won't get deactivated as
1767          * long as we're waiting, so we're good if we're activated here.
1768          * In the unlikely case that we are deactivated, just issue the IO.
1769          */
1770         if (unlikely(list_empty(&iocg->active_list))) {
1771                 spin_unlock_irq(&iocg->waitq.lock);
1772                 iocg_commit_bio(iocg, bio, cost);
1773                 return;
1774         }
1775
1776         init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
1777         wait.wait.private = current;
1778         wait.bio = bio;
1779         wait.abs_cost = abs_cost;
1780         wait.committed = false; /* will be set true by waker */
1781
1782         __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
1783         iocg_kick_waitq(iocg, &now);
1784
1785         spin_unlock_irq(&iocg->waitq.lock);
1786
1787         while (true) {
1788                 set_current_state(TASK_UNINTERRUPTIBLE);
1789                 if (wait.committed)
1790                         break;
1791                 io_schedule();
1792         }
1793
1794         /* waker already committed us, proceed */
1795         finish_wait(&iocg->waitq, &wait.wait);
1796 }
1797
1798 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
1799                            struct bio *bio)
1800 {
1801         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
1802         struct ioc *ioc = iocg->ioc;
1803         sector_t bio_end = bio_end_sector(bio);
1804         struct ioc_now now;
1805         u32 hw_inuse;
1806         u64 abs_cost, cost;
1807
1808         /* bypass if disabled or for root cgroup */
1809         if (!ioc->enabled || !iocg->level)
1810                 return;
1811
1812         abs_cost = calc_vtime_cost(bio, iocg, true);
1813         if (!abs_cost)
1814                 return;
1815
1816         ioc_now(ioc, &now);
1817         current_hweight(iocg, NULL, &hw_inuse);
1818         cost = abs_cost_to_cost(abs_cost, hw_inuse);
1819
1820         /* update cursor if backmerging into the request at the cursor */
1821         if (blk_rq_pos(rq) < bio_end &&
1822             blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
1823                 iocg->cursor = bio_end;
1824
1825         /*
1826          * Charge if there's enough vtime budget and the existing request
1827          * has cost assigned.  Otherwise, account it as debt.  See debt
1828          * handling in ioc_rqos_throttle() for details.
1829          */
1830         if (rq->bio && rq->bio->bi_iocost_cost &&
1831             time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow))
1832                 iocg_commit_bio(iocg, bio, cost);
1833         else
1834                 atomic64_add(abs_cost, &iocg->abs_vdebt);
1835 }
1836
1837 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
1838 {
1839         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
1840
1841         if (iocg && bio->bi_iocost_cost)
1842                 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
1843 }
1844
1845 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
1846 {
1847         struct ioc *ioc = rqos_to_ioc(rqos);
1848         u64 on_q_ns, rq_wait_ns;
1849         int pidx, rw;
1850
1851         if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
1852                 return;
1853
1854         switch (req_op(rq) & REQ_OP_MASK) {
1855         case REQ_OP_READ:
1856                 pidx = QOS_RLAT;
1857                 rw = READ;
1858                 break;
1859         case REQ_OP_WRITE:
1860                 pidx = QOS_WLAT;
1861                 rw = WRITE;
1862                 break;
1863         default:
1864                 return;
1865         }
1866
1867         on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
1868         rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
1869
1870         if (on_q_ns <= ioc->params.qos[pidx] * NSEC_PER_USEC)
1871                 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_met);
1872         else
1873                 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_missed);
1874
1875         this_cpu_add(ioc->pcpu_stat->rq_wait_ns, rq_wait_ns);
1876 }
1877
1878 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
1879 {
1880         struct ioc *ioc = rqos_to_ioc(rqos);
1881
1882         spin_lock_irq(&ioc->lock);
1883         ioc_refresh_params(ioc, false);
1884         spin_unlock_irq(&ioc->lock);
1885 }
1886
1887 static void ioc_rqos_exit(struct rq_qos *rqos)
1888 {
1889         struct ioc *ioc = rqos_to_ioc(rqos);
1890
1891         blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
1892
1893         spin_lock_irq(&ioc->lock);
1894         ioc->running = IOC_STOP;
1895         spin_unlock_irq(&ioc->lock);
1896
1897         del_timer_sync(&ioc->timer);
1898         free_percpu(ioc->pcpu_stat);
1899         kfree(ioc);
1900 }
1901
1902 static struct rq_qos_ops ioc_rqos_ops = {
1903         .throttle = ioc_rqos_throttle,
1904         .merge = ioc_rqos_merge,
1905         .done_bio = ioc_rqos_done_bio,
1906         .done = ioc_rqos_done,
1907         .queue_depth_changed = ioc_rqos_queue_depth_changed,
1908         .exit = ioc_rqos_exit,
1909 };
1910
1911 static int blk_iocost_init(struct request_queue *q)
1912 {
1913         struct ioc *ioc;
1914         struct rq_qos *rqos;
1915         int ret;
1916
1917         ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
1918         if (!ioc)
1919                 return -ENOMEM;
1920
1921         ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
1922         if (!ioc->pcpu_stat) {
1923                 kfree(ioc);
1924                 return -ENOMEM;
1925         }
1926
1927         rqos = &ioc->rqos;
1928         rqos->id = RQ_QOS_COST;
1929         rqos->ops = &ioc_rqos_ops;
1930         rqos->q = q;
1931
1932         spin_lock_init(&ioc->lock);
1933         timer_setup(&ioc->timer, ioc_timer_fn, 0);
1934         INIT_LIST_HEAD(&ioc->active_iocgs);
1935
1936         ioc->running = IOC_IDLE;
1937         atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
1938         seqcount_init(&ioc->period_seqcount);
1939         ioc->period_at = ktime_to_us(ktime_get());
1940         atomic64_set(&ioc->cur_period, 0);
1941         atomic_set(&ioc->hweight_gen, 0);
1942
1943         spin_lock_irq(&ioc->lock);
1944         ioc->autop_idx = AUTOP_INVALID;
1945         ioc_refresh_params(ioc, true);
1946         spin_unlock_irq(&ioc->lock);
1947
1948         rq_qos_add(q, rqos);
1949         ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
1950         if (ret) {
1951                 rq_qos_del(q, rqos);
1952                 free_percpu(ioc->pcpu_stat);
1953                 kfree(ioc);
1954                 return ret;
1955         }
1956         return 0;
1957 }
1958
1959 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
1960 {
1961         struct ioc_cgrp *iocc;
1962
1963         iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
1964         if (!iocc)
1965                 return NULL;
1966
1967         iocc->dfl_weight = CGROUP_WEIGHT_DFL;
1968         return &iocc->cpd;
1969 }
1970
1971 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
1972 {
1973         kfree(container_of(cpd, struct ioc_cgrp, cpd));
1974 }
1975
1976 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
1977                                              struct blkcg *blkcg)
1978 {
1979         int levels = blkcg->css.cgroup->level + 1;
1980         struct ioc_gq *iocg;
1981
1982         iocg = kzalloc_node(sizeof(*iocg) + levels * sizeof(iocg->ancestors[0]),
1983                             gfp, q->node);
1984         if (!iocg)
1985                 return NULL;
1986
1987         return &iocg->pd;
1988 }
1989
1990 static void ioc_pd_init(struct blkg_policy_data *pd)
1991 {
1992         struct ioc_gq *iocg = pd_to_iocg(pd);
1993         struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
1994         struct ioc *ioc = q_to_ioc(blkg->q);
1995         struct ioc_now now;
1996         struct blkcg_gq *tblkg;
1997         unsigned long flags;
1998
1999         ioc_now(ioc, &now);
2000
2001         iocg->ioc = ioc;
2002         atomic64_set(&iocg->vtime, now.vnow);
2003         atomic64_set(&iocg->done_vtime, now.vnow);
2004         atomic64_set(&iocg->abs_vdebt, 0);
2005         atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2006         INIT_LIST_HEAD(&iocg->active_list);
2007         iocg->hweight_active = HWEIGHT_WHOLE;
2008         iocg->hweight_inuse = HWEIGHT_WHOLE;
2009
2010         init_waitqueue_head(&iocg->waitq);
2011         hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2012         iocg->waitq_timer.function = iocg_waitq_timer_fn;
2013         hrtimer_init(&iocg->delay_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2014         iocg->delay_timer.function = iocg_delay_timer_fn;
2015
2016         iocg->level = blkg->blkcg->css.cgroup->level;
2017
2018         for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2019                 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2020                 iocg->ancestors[tiocg->level] = tiocg;
2021         }
2022
2023         spin_lock_irqsave(&ioc->lock, flags);
2024         weight_updated(iocg);
2025         spin_unlock_irqrestore(&ioc->lock, flags);
2026 }
2027
2028 static void ioc_pd_free(struct blkg_policy_data *pd)
2029 {
2030         struct ioc_gq *iocg = pd_to_iocg(pd);
2031         struct ioc *ioc = iocg->ioc;
2032
2033         if (ioc) {
2034                 spin_lock(&ioc->lock);
2035                 if (!list_empty(&iocg->active_list)) {
2036                         propagate_active_weight(iocg, 0, 0);
2037                         list_del_init(&iocg->active_list);
2038                 }
2039                 spin_unlock(&ioc->lock);
2040
2041                 hrtimer_cancel(&iocg->waitq_timer);
2042                 hrtimer_cancel(&iocg->delay_timer);
2043         }
2044         kfree(iocg);
2045 }
2046
2047 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2048                              int off)
2049 {
2050         const char *dname = blkg_dev_name(pd->blkg);
2051         struct ioc_gq *iocg = pd_to_iocg(pd);
2052
2053         if (dname && iocg->cfg_weight)
2054                 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight);
2055         return 0;
2056 }
2057
2058
2059 static int ioc_weight_show(struct seq_file *sf, void *v)
2060 {
2061         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2062         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2063
2064         seq_printf(sf, "default %u\n", iocc->dfl_weight);
2065         blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
2066                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
2067         return 0;
2068 }
2069
2070 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
2071                                 size_t nbytes, loff_t off)
2072 {
2073         struct blkcg *blkcg = css_to_blkcg(of_css(of));
2074         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2075         struct blkg_conf_ctx ctx;
2076         struct ioc_gq *iocg;
2077         u32 v;
2078         int ret;
2079
2080         if (!strchr(buf, ':')) {
2081                 struct blkcg_gq *blkg;
2082
2083                 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
2084                         return -EINVAL;
2085
2086                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2087                         return -EINVAL;
2088
2089                 spin_lock(&blkcg->lock);
2090                 iocc->dfl_weight = v;
2091                 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
2092                         struct ioc_gq *iocg = blkg_to_iocg(blkg);
2093
2094                         if (iocg) {
2095                                 spin_lock_irq(&iocg->ioc->lock);
2096                                 weight_updated(iocg);
2097                                 spin_unlock_irq(&iocg->ioc->lock);
2098                         }
2099                 }
2100                 spin_unlock(&blkcg->lock);
2101
2102                 return nbytes;
2103         }
2104
2105         ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
2106         if (ret)
2107                 return ret;
2108
2109         iocg = blkg_to_iocg(ctx.blkg);
2110
2111         if (!strncmp(ctx.body, "default", 7)) {
2112                 v = 0;
2113         } else {
2114                 if (!sscanf(ctx.body, "%u", &v))
2115                         goto einval;
2116                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2117                         goto einval;
2118         }
2119
2120         spin_lock(&iocg->ioc->lock);
2121         iocg->cfg_weight = v;
2122         weight_updated(iocg);
2123         spin_unlock(&iocg->ioc->lock);
2124
2125         blkg_conf_finish(&ctx);
2126         return nbytes;
2127
2128 einval:
2129         blkg_conf_finish(&ctx);
2130         return -EINVAL;
2131 }
2132
2133 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2134                           int off)
2135 {
2136         const char *dname = blkg_dev_name(pd->blkg);
2137         struct ioc *ioc = pd_to_iocg(pd)->ioc;
2138
2139         if (!dname)
2140                 return 0;
2141
2142         seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
2143                    dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
2144                    ioc->params.qos[QOS_RPPM] / 10000,
2145                    ioc->params.qos[QOS_RPPM] % 10000 / 100,
2146                    ioc->params.qos[QOS_RLAT],
2147                    ioc->params.qos[QOS_WPPM] / 10000,
2148                    ioc->params.qos[QOS_WPPM] % 10000 / 100,
2149                    ioc->params.qos[QOS_WLAT],
2150                    ioc->params.qos[QOS_MIN] / 10000,
2151                    ioc->params.qos[QOS_MIN] % 10000 / 100,
2152                    ioc->params.qos[QOS_MAX] / 10000,
2153                    ioc->params.qos[QOS_MAX] % 10000 / 100);
2154         return 0;
2155 }
2156
2157 static int ioc_qos_show(struct seq_file *sf, void *v)
2158 {
2159         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2160
2161         blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
2162                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
2163         return 0;
2164 }
2165
2166 static const match_table_t qos_ctrl_tokens = {
2167         { QOS_ENABLE,           "enable=%u"     },
2168         { QOS_CTRL,             "ctrl=%s"       },
2169         { NR_QOS_CTRL_PARAMS,   NULL            },
2170 };
2171
2172 static const match_table_t qos_tokens = {
2173         { QOS_RPPM,             "rpct=%s"       },
2174         { QOS_RLAT,             "rlat=%u"       },
2175         { QOS_WPPM,             "wpct=%s"       },
2176         { QOS_WLAT,             "wlat=%u"       },
2177         { QOS_MIN,              "min=%s"        },
2178         { QOS_MAX,              "max=%s"        },
2179         { NR_QOS_PARAMS,        NULL            },
2180 };
2181
2182 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
2183                              size_t nbytes, loff_t off)
2184 {
2185         struct gendisk *disk;
2186         struct ioc *ioc;
2187         u32 qos[NR_QOS_PARAMS];
2188         bool enable, user;
2189         char *p;
2190         int ret;
2191
2192         disk = blkcg_conf_get_disk(&input);
2193         if (IS_ERR(disk))
2194                 return PTR_ERR(disk);
2195
2196         ioc = q_to_ioc(disk->queue);
2197         if (!ioc) {
2198                 ret = blk_iocost_init(disk->queue);
2199                 if (ret)
2200                         goto err;
2201                 ioc = q_to_ioc(disk->queue);
2202         }
2203
2204         spin_lock_irq(&ioc->lock);
2205         memcpy(qos, ioc->params.qos, sizeof(qos));
2206         enable = ioc->enabled;
2207         user = ioc->user_qos_params;
2208         spin_unlock_irq(&ioc->lock);
2209
2210         while ((p = strsep(&input, " \t\n"))) {
2211                 substring_t args[MAX_OPT_ARGS];
2212                 char buf[32];
2213                 int tok;
2214                 s64 v;
2215
2216                 if (!*p)
2217                         continue;
2218
2219                 switch (match_token(p, qos_ctrl_tokens, args)) {
2220                 case QOS_ENABLE:
2221                         match_u64(&args[0], &v);
2222                         enable = v;
2223                         continue;
2224                 case QOS_CTRL:
2225                         match_strlcpy(buf, &args[0], sizeof(buf));
2226                         if (!strcmp(buf, "auto"))
2227                                 user = false;
2228                         else if (!strcmp(buf, "user"))
2229                                 user = true;
2230                         else
2231                                 goto einval;
2232                         continue;
2233                 }
2234
2235                 tok = match_token(p, qos_tokens, args);
2236                 switch (tok) {
2237                 case QOS_RPPM:
2238                 case QOS_WPPM:
2239                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2240                             sizeof(buf))
2241                                 goto einval;
2242                         if (cgroup_parse_float(buf, 2, &v))
2243                                 goto einval;
2244                         if (v < 0 || v > 10000)
2245                                 goto einval;
2246                         qos[tok] = v * 100;
2247                         break;
2248                 case QOS_RLAT:
2249                 case QOS_WLAT:
2250                         if (match_u64(&args[0], &v))
2251                                 goto einval;
2252                         qos[tok] = v;
2253                         break;
2254                 case QOS_MIN:
2255                 case QOS_MAX:
2256                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2257                             sizeof(buf))
2258                                 goto einval;
2259                         if (cgroup_parse_float(buf, 2, &v))
2260                                 goto einval;
2261                         if (v < 0)
2262                                 goto einval;
2263                         qos[tok] = clamp_t(s64, v * 100,
2264                                            VRATE_MIN_PPM, VRATE_MAX_PPM);
2265                         break;
2266                 default:
2267                         goto einval;
2268                 }
2269                 user = true;
2270         }
2271
2272         if (qos[QOS_MIN] > qos[QOS_MAX])
2273                 goto einval;
2274
2275         spin_lock_irq(&ioc->lock);
2276
2277         if (enable) {
2278                 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2279                 ioc->enabled = true;
2280         } else {
2281                 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2282                 ioc->enabled = false;
2283         }
2284
2285         if (user) {
2286                 memcpy(ioc->params.qos, qos, sizeof(qos));
2287                 ioc->user_qos_params = true;
2288         } else {
2289                 ioc->user_qos_params = false;
2290         }
2291
2292         ioc_refresh_params(ioc, true);
2293         spin_unlock_irq(&ioc->lock);
2294
2295         put_disk_and_module(disk);
2296         return nbytes;
2297 einval:
2298         ret = -EINVAL;
2299 err:
2300         put_disk_and_module(disk);
2301         return ret;
2302 }
2303
2304 static u64 ioc_cost_model_prfill(struct seq_file *sf,
2305                                  struct blkg_policy_data *pd, int off)
2306 {
2307         const char *dname = blkg_dev_name(pd->blkg);
2308         struct ioc *ioc = pd_to_iocg(pd)->ioc;
2309         u64 *u = ioc->params.i_lcoefs;
2310
2311         if (!dname)
2312                 return 0;
2313
2314         seq_printf(sf, "%s ctrl=%s model=linear "
2315                    "rbps=%llu rseqiops=%llu rrandiops=%llu "
2316                    "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
2317                    dname, ioc->user_cost_model ? "user" : "auto",
2318                    u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
2319                    u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
2320         return 0;
2321 }
2322
2323 static int ioc_cost_model_show(struct seq_file *sf, void *v)
2324 {
2325         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2326
2327         blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
2328                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
2329         return 0;
2330 }
2331
2332 static const match_table_t cost_ctrl_tokens = {
2333         { COST_CTRL,            "ctrl=%s"       },
2334         { COST_MODEL,           "model=%s"      },
2335         { NR_COST_CTRL_PARAMS,  NULL            },
2336 };
2337
2338 static const match_table_t i_lcoef_tokens = {
2339         { I_LCOEF_RBPS,         "rbps=%u"       },
2340         { I_LCOEF_RSEQIOPS,     "rseqiops=%u"   },
2341         { I_LCOEF_RRANDIOPS,    "rrandiops=%u"  },
2342         { I_LCOEF_WBPS,         "wbps=%u"       },
2343         { I_LCOEF_WSEQIOPS,     "wseqiops=%u"   },
2344         { I_LCOEF_WRANDIOPS,    "wrandiops=%u"  },
2345         { NR_I_LCOEFS,          NULL            },
2346 };
2347
2348 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
2349                                     size_t nbytes, loff_t off)
2350 {
2351         struct gendisk *disk;
2352         struct ioc *ioc;
2353         u64 u[NR_I_LCOEFS];
2354         bool user;
2355         char *p;
2356         int ret;
2357
2358         disk = blkcg_conf_get_disk(&input);
2359         if (IS_ERR(disk))
2360                 return PTR_ERR(disk);
2361
2362         ioc = q_to_ioc(disk->queue);
2363         if (!ioc) {
2364                 ret = blk_iocost_init(disk->queue);
2365                 if (ret)
2366                         goto err;
2367                 ioc = q_to_ioc(disk->queue);
2368         }
2369
2370         spin_lock_irq(&ioc->lock);
2371         memcpy(u, ioc->params.i_lcoefs, sizeof(u));
2372         user = ioc->user_cost_model;
2373         spin_unlock_irq(&ioc->lock);
2374
2375         while ((p = strsep(&input, " \t\n"))) {
2376                 substring_t args[MAX_OPT_ARGS];
2377                 char buf[32];
2378                 int tok;
2379                 u64 v;
2380
2381                 if (!*p)
2382                         continue;
2383
2384                 switch (match_token(p, cost_ctrl_tokens, args)) {
2385                 case COST_CTRL:
2386                         match_strlcpy(buf, &args[0], sizeof(buf));
2387                         if (!strcmp(buf, "auto"))
2388                                 user = false;
2389                         else if (!strcmp(buf, "user"))
2390                                 user = true;
2391                         else
2392                                 goto einval;
2393                         continue;
2394                 case COST_MODEL:
2395                         match_strlcpy(buf, &args[0], sizeof(buf));
2396                         if (strcmp(buf, "linear"))
2397                                 goto einval;
2398                         continue;
2399                 }
2400
2401                 tok = match_token(p, i_lcoef_tokens, args);
2402                 if (tok == NR_I_LCOEFS)
2403                         goto einval;
2404                 if (match_u64(&args[0], &v))
2405                         goto einval;
2406                 u[tok] = v;
2407                 user = true;
2408         }
2409
2410         spin_lock_irq(&ioc->lock);
2411         if (user) {
2412                 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
2413                 ioc->user_cost_model = true;
2414         } else {
2415                 ioc->user_cost_model = false;
2416         }
2417         ioc_refresh_params(ioc, true);
2418         spin_unlock_irq(&ioc->lock);
2419
2420         put_disk_and_module(disk);
2421         return nbytes;
2422
2423 einval:
2424         ret = -EINVAL;
2425 err:
2426         put_disk_and_module(disk);
2427         return ret;
2428 }
2429
2430 static struct cftype ioc_files[] = {
2431         {
2432                 .name = "weight",
2433                 .flags = CFTYPE_NOT_ON_ROOT,
2434                 .seq_show = ioc_weight_show,
2435                 .write = ioc_weight_write,
2436         },
2437         {
2438                 .name = "cost.qos",
2439                 .flags = CFTYPE_ONLY_ON_ROOT,
2440                 .seq_show = ioc_qos_show,
2441                 .write = ioc_qos_write,
2442         },
2443         {
2444                 .name = "cost.model",
2445                 .flags = CFTYPE_ONLY_ON_ROOT,
2446                 .seq_show = ioc_cost_model_show,
2447                 .write = ioc_cost_model_write,
2448         },
2449         {}
2450 };
2451
2452 static struct blkcg_policy blkcg_policy_iocost = {
2453         .dfl_cftypes    = ioc_files,
2454         .cpd_alloc_fn   = ioc_cpd_alloc,
2455         .cpd_free_fn    = ioc_cpd_free,
2456         .pd_alloc_fn    = ioc_pd_alloc,
2457         .pd_init_fn     = ioc_pd_init,
2458         .pd_free_fn     = ioc_pd_free,
2459 };
2460
2461 static int __init ioc_init(void)
2462 {
2463         return blkcg_policy_register(&blkcg_policy_iocost);
2464 }
2465
2466 static void __exit ioc_exit(void)
2467 {
2468         return blkcg_policy_unregister(&blkcg_policy_iocost);
2469 }
2470
2471 module_init(ioc_init);
2472 module_exit(ioc_exit);