[PATCH] wire up oops_enter()/oops_exit()
[linux-2.6-microblaze.git] / arch / x86_64 / kernel / traps.c
1 /*
2  *  linux/arch/x86-64/traps.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
6  *
7  *  Pentium III FXSR, SSE support
8  *      Gareth Hughes <gareth@valinux.com>, May 2000
9  */
10
11 /*
12  * 'Traps.c' handles hardware traps and faults after we have saved some
13  * state in 'entry.S'.
14  */
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/string.h>
18 #include <linux/errno.h>
19 #include <linux/ptrace.h>
20 #include <linux/timer.h>
21 #include <linux/mm.h>
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/nmi.h>
29 #include <linux/kprobes.h>
30 #include <linux/kexec.h>
31 #include <linux/unwind.h>
32
33 #include <asm/system.h>
34 #include <asm/uaccess.h>
35 #include <asm/io.h>
36 #include <asm/atomic.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/i387.h>
40 #include <asm/kdebug.h>
41 #include <asm/processor.h>
42 #include <asm/unwind.h>
43 #include <asm/smp.h>
44 #include <asm/pgalloc.h>
45 #include <asm/pda.h>
46 #include <asm/proto.h>
47 #include <asm/nmi.h>
48 #include <asm/stacktrace.h>
49
50 asmlinkage void divide_error(void);
51 asmlinkage void debug(void);
52 asmlinkage void nmi(void);
53 asmlinkage void int3(void);
54 asmlinkage void overflow(void);
55 asmlinkage void bounds(void);
56 asmlinkage void invalid_op(void);
57 asmlinkage void device_not_available(void);
58 asmlinkage void double_fault(void);
59 asmlinkage void coprocessor_segment_overrun(void);
60 asmlinkage void invalid_TSS(void);
61 asmlinkage void segment_not_present(void);
62 asmlinkage void stack_segment(void);
63 asmlinkage void general_protection(void);
64 asmlinkage void page_fault(void);
65 asmlinkage void coprocessor_error(void);
66 asmlinkage void simd_coprocessor_error(void);
67 asmlinkage void reserved(void);
68 asmlinkage void alignment_check(void);
69 asmlinkage void machine_check(void);
70 asmlinkage void spurious_interrupt_bug(void);
71
72 ATOMIC_NOTIFIER_HEAD(die_chain);
73 EXPORT_SYMBOL(die_chain);
74
75 int register_die_notifier(struct notifier_block *nb)
76 {
77         vmalloc_sync_all();
78         return atomic_notifier_chain_register(&die_chain, nb);
79 }
80 EXPORT_SYMBOL(register_die_notifier); /* used modular by kdb */
81
82 int unregister_die_notifier(struct notifier_block *nb)
83 {
84         return atomic_notifier_chain_unregister(&die_chain, nb);
85 }
86 EXPORT_SYMBOL(unregister_die_notifier); /* used modular by kdb */
87
88 static inline void conditional_sti(struct pt_regs *regs)
89 {
90         if (regs->eflags & X86_EFLAGS_IF)
91                 local_irq_enable();
92 }
93
94 static inline void preempt_conditional_sti(struct pt_regs *regs)
95 {
96         preempt_disable();
97         if (regs->eflags & X86_EFLAGS_IF)
98                 local_irq_enable();
99 }
100
101 static inline void preempt_conditional_cli(struct pt_regs *regs)
102 {
103         if (regs->eflags & X86_EFLAGS_IF)
104                 local_irq_disable();
105         /* Make sure to not schedule here because we could be running
106            on an exception stack. */
107         preempt_enable_no_resched();
108 }
109
110 static int kstack_depth_to_print = 12;
111 #ifdef CONFIG_STACK_UNWIND
112 static int call_trace = 1;
113 #else
114 #define call_trace (-1)
115 #endif
116
117 #ifdef CONFIG_KALLSYMS
118 # include <linux/kallsyms.h>
119 void printk_address(unsigned long address)
120 {
121         unsigned long offset = 0, symsize;
122         const char *symname;
123         char *modname;
124         char *delim = ":";
125         char namebuf[128];
126
127         symname = kallsyms_lookup(address, &symsize, &offset,
128                                         &modname, namebuf);
129         if (!symname) {
130                 printk(" [<%016lx>]\n", address);
131                 return;
132         }
133         if (!modname)
134                 modname = delim = "";           
135         printk(" [<%016lx>] %s%s%s%s+0x%lx/0x%lx\n",
136                 address, delim, modname, delim, symname, offset, symsize);
137 }
138 #else
139 void printk_address(unsigned long address)
140 {
141         printk(" [<%016lx>]\n", address);
142 }
143 #endif
144
145 static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack,
146                                         unsigned *usedp, char **idp)
147 {
148         static char ids[][8] = {
149                 [DEBUG_STACK - 1] = "#DB",
150                 [NMI_STACK - 1] = "NMI",
151                 [DOUBLEFAULT_STACK - 1] = "#DF",
152                 [STACKFAULT_STACK - 1] = "#SS",
153                 [MCE_STACK - 1] = "#MC",
154 #if DEBUG_STKSZ > EXCEPTION_STKSZ
155                 [N_EXCEPTION_STACKS ... N_EXCEPTION_STACKS + DEBUG_STKSZ / EXCEPTION_STKSZ - 2] = "#DB[?]"
156 #endif
157         };
158         unsigned k;
159
160         /*
161          * Iterate over all exception stacks, and figure out whether
162          * 'stack' is in one of them:
163          */
164         for (k = 0; k < N_EXCEPTION_STACKS; k++) {
165                 unsigned long end;
166
167                 /*
168                  * set 'end' to the end of the exception stack.
169                  */
170                 switch (k + 1) {
171                 /*
172                  * TODO: this block is not needed i think, because
173                  * setup64.c:cpu_init() sets up t->ist[DEBUG_STACK]
174                  * properly too.
175                  */
176 #if DEBUG_STKSZ > EXCEPTION_STKSZ
177                 case DEBUG_STACK:
178                         end = cpu_pda(cpu)->debugstack + DEBUG_STKSZ;
179                         break;
180 #endif
181                 default:
182                         end = per_cpu(orig_ist, cpu).ist[k];
183                         break;
184                 }
185                 /*
186                  * Is 'stack' above this exception frame's end?
187                  * If yes then skip to the next frame.
188                  */
189                 if (stack >= end)
190                         continue;
191                 /*
192                  * Is 'stack' above this exception frame's start address?
193                  * If yes then we found the right frame.
194                  */
195                 if (stack >= end - EXCEPTION_STKSZ) {
196                         /*
197                          * Make sure we only iterate through an exception
198                          * stack once. If it comes up for the second time
199                          * then there's something wrong going on - just
200                          * break out and return NULL:
201                          */
202                         if (*usedp & (1U << k))
203                                 break;
204                         *usedp |= 1U << k;
205                         *idp = ids[k];
206                         return (unsigned long *)end;
207                 }
208                 /*
209                  * If this is a debug stack, and if it has a larger size than
210                  * the usual exception stacks, then 'stack' might still
211                  * be within the lower portion of the debug stack:
212                  */
213 #if DEBUG_STKSZ > EXCEPTION_STKSZ
214                 if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) {
215                         unsigned j = N_EXCEPTION_STACKS - 1;
216
217                         /*
218                          * Black magic. A large debug stack is composed of
219                          * multiple exception stack entries, which we
220                          * iterate through now. Dont look:
221                          */
222                         do {
223                                 ++j;
224                                 end -= EXCEPTION_STKSZ;
225                                 ids[j][4] = '1' + (j - N_EXCEPTION_STACKS);
226                         } while (stack < end - EXCEPTION_STKSZ);
227                         if (*usedp & (1U << j))
228                                 break;
229                         *usedp |= 1U << j;
230                         *idp = ids[j];
231                         return (unsigned long *)end;
232                 }
233 #endif
234         }
235         return NULL;
236 }
237
238 struct ops_and_data {
239         struct stacktrace_ops *ops;
240         void *data;
241 };
242
243 static int dump_trace_unwind(struct unwind_frame_info *info, void *context)
244 {
245         struct ops_and_data *oad = (struct ops_and_data *)context;
246         int n = 0;
247
248         while (unwind(info) == 0 && UNW_PC(info)) {
249                 n++;
250                 oad->ops->address(oad->data, UNW_PC(info));
251                 if (arch_unw_user_mode(info))
252                         break;
253         }
254         return n;
255 }
256
257 /*
258  * x86-64 can have upto three kernel stacks: 
259  * process stack
260  * interrupt stack
261  * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
262  */
263
264 void dump_trace(struct task_struct *tsk, struct pt_regs *regs, unsigned long * stack,
265                 struct stacktrace_ops *ops, void *data)
266 {
267         const unsigned cpu = safe_smp_processor_id();
268         unsigned long *irqstack_end = (unsigned long *)cpu_pda(cpu)->irqstackptr;
269         unsigned used = 0;
270
271         if (!tsk)
272                 tsk = current;
273
274         if (call_trace >= 0) {
275                 int unw_ret = 0;
276                 struct unwind_frame_info info;
277                 struct ops_and_data oad = { .ops = ops, .data = data };
278
279                 if (regs) {
280                         if (unwind_init_frame_info(&info, tsk, regs) == 0)
281                                 unw_ret = dump_trace_unwind(&info, &oad);
282                 } else if (tsk == current)
283                         unw_ret = unwind_init_running(&info, dump_trace_unwind, &oad);
284                 else {
285                         if (unwind_init_blocked(&info, tsk) == 0)
286                                 unw_ret = dump_trace_unwind(&info, &oad);
287                 }
288                 if (unw_ret > 0) {
289                         if (call_trace == 1 && !arch_unw_user_mode(&info)) {
290                                 ops->warning_symbol(data, "DWARF2 unwinder stuck at %s\n",
291                                              UNW_PC(&info));
292                                 if ((long)UNW_SP(&info) < 0) {
293                                         ops->warning(data, "Leftover inexact backtrace:\n");
294                                         stack = (unsigned long *)UNW_SP(&info);
295                                         if (!stack)
296                                                 return;
297                                 } else
298                                         ops->warning(data, "Full inexact backtrace again:\n");
299                         } else if (call_trace >= 1)
300                                 return;
301                         else
302                                 ops->warning(data, "Full inexact backtrace again:\n");
303                 } else
304                         ops->warning(data, "Inexact backtrace:\n");
305         }
306         if (!stack) {
307                 unsigned long dummy;
308                 stack = &dummy;
309                 if (tsk && tsk != current)
310                         stack = (unsigned long *)tsk->thread.rsp;
311         }
312
313         /*
314          * Print function call entries within a stack. 'cond' is the
315          * "end of stackframe" condition, that the 'stack++'
316          * iteration will eventually trigger.
317          */
318 #define HANDLE_STACK(cond) \
319         do while (cond) { \
320                 unsigned long addr = *stack++; \
321                 if (kernel_text_address(addr)) { \
322                         /* \
323                          * If the address is either in the text segment of the \
324                          * kernel, or in the region which contains vmalloc'ed \
325                          * memory, it *may* be the address of a calling \
326                          * routine; if so, print it so that someone tracing \
327                          * down the cause of the crash will be able to figure \
328                          * out the call path that was taken. \
329                          */ \
330                         ops->address(data, addr);   \
331                 } \
332         } while (0)
333
334         /*
335          * Print function call entries in all stacks, starting at the
336          * current stack address. If the stacks consist of nested
337          * exceptions
338          */
339         for (;;) {
340                 char *id;
341                 unsigned long *estack_end;
342                 estack_end = in_exception_stack(cpu, (unsigned long)stack,
343                                                 &used, &id);
344
345                 if (estack_end) {
346                         if (ops->stack(data, id) < 0)
347                                 break;
348                         HANDLE_STACK (stack < estack_end);
349                         ops->stack(data, "<EOE>");
350                         /*
351                          * We link to the next stack via the
352                          * second-to-last pointer (index -2 to end) in the
353                          * exception stack:
354                          */
355                         stack = (unsigned long *) estack_end[-2];
356                         continue;
357                 }
358                 if (irqstack_end) {
359                         unsigned long *irqstack;
360                         irqstack = irqstack_end -
361                                 (IRQSTACKSIZE - 64) / sizeof(*irqstack);
362
363                         if (stack >= irqstack && stack < irqstack_end) {
364                                 if (ops->stack(data, "IRQ") < 0)
365                                         break;
366                                 HANDLE_STACK (stack < irqstack_end);
367                                 /*
368                                  * We link to the next stack (which would be
369                                  * the process stack normally) the last
370                                  * pointer (index -1 to end) in the IRQ stack:
371                                  */
372                                 stack = (unsigned long *) (irqstack_end[-1]);
373                                 irqstack_end = NULL;
374                                 ops->stack(data, "EOI");
375                                 continue;
376                         }
377                 }
378                 break;
379         }
380
381         /*
382          * This handles the process stack:
383          */
384         HANDLE_STACK (((long) stack & (THREAD_SIZE-1)) != 0);
385 #undef HANDLE_STACK
386 }
387 EXPORT_SYMBOL(dump_trace);
388
389 static void
390 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
391 {
392         print_symbol(msg, symbol);
393         printk("\n");
394 }
395
396 static void print_trace_warning(void *data, char *msg)
397 {
398         printk("%s\n", msg);
399 }
400
401 static int print_trace_stack(void *data, char *name)
402 {
403         printk(" <%s> ", name);
404         return 0;
405 }
406
407 static void print_trace_address(void *data, unsigned long addr)
408 {
409         printk_address(addr);
410 }
411
412 static struct stacktrace_ops print_trace_ops = {
413         .warning = print_trace_warning,
414         .warning_symbol = print_trace_warning_symbol,
415         .stack = print_trace_stack,
416         .address = print_trace_address,
417 };
418
419 void
420 show_trace(struct task_struct *tsk, struct pt_regs *regs, unsigned long *stack)
421 {
422         printk("\nCall Trace:\n");
423         dump_trace(tsk, regs, stack, &print_trace_ops, NULL);
424         printk("\n");
425 }
426
427 static void
428 _show_stack(struct task_struct *tsk, struct pt_regs *regs, unsigned long *rsp)
429 {
430         unsigned long *stack;
431         int i;
432         const int cpu = safe_smp_processor_id();
433         unsigned long *irqstack_end = (unsigned long *) (cpu_pda(cpu)->irqstackptr);
434         unsigned long *irqstack = (unsigned long *) (cpu_pda(cpu)->irqstackptr - IRQSTACKSIZE);
435
436         // debugging aid: "show_stack(NULL, NULL);" prints the
437         // back trace for this cpu.
438
439         if (rsp == NULL) {
440                 if (tsk)
441                         rsp = (unsigned long *)tsk->thread.rsp;
442                 else
443                         rsp = (unsigned long *)&rsp;
444         }
445
446         stack = rsp;
447         for(i=0; i < kstack_depth_to_print; i++) {
448                 if (stack >= irqstack && stack <= irqstack_end) {
449                         if (stack == irqstack_end) {
450                                 stack = (unsigned long *) (irqstack_end[-1]);
451                                 printk(" <EOI> ");
452                         }
453                 } else {
454                 if (((long) stack & (THREAD_SIZE-1)) == 0)
455                         break;
456                 }
457                 if (i && ((i % 4) == 0))
458                         printk("\n");
459                 printk(" %016lx", *stack++);
460                 touch_nmi_watchdog();
461         }
462         show_trace(tsk, regs, rsp);
463 }
464
465 void show_stack(struct task_struct *tsk, unsigned long * rsp)
466 {
467         _show_stack(tsk, NULL, rsp);
468 }
469
470 /*
471  * The architecture-independent dump_stack generator
472  */
473 void dump_stack(void)
474 {
475         unsigned long dummy;
476         show_trace(NULL, NULL, &dummy);
477 }
478
479 EXPORT_SYMBOL(dump_stack);
480
481 void show_registers(struct pt_regs *regs)
482 {
483         int i;
484         int in_kernel = !user_mode(regs);
485         unsigned long rsp;
486         const int cpu = safe_smp_processor_id(); 
487         struct task_struct *cur = cpu_pda(cpu)->pcurrent;
488
489                 rsp = regs->rsp;
490
491         printk("CPU %d ", cpu);
492         __show_regs(regs);
493         printk("Process %s (pid: %d, threadinfo %p, task %p)\n",
494                 cur->comm, cur->pid, task_thread_info(cur), cur);
495
496         /*
497          * When in-kernel, we also print out the stack and code at the
498          * time of the fault..
499          */
500         if (in_kernel) {
501
502                 printk("Stack: ");
503                 _show_stack(NULL, regs, (unsigned long*)rsp);
504
505                 printk("\nCode: ");
506                 if (regs->rip < PAGE_OFFSET)
507                         goto bad;
508
509                 for (i=0; i<20; i++) {
510                         unsigned char c;
511                         if (__get_user(c, &((unsigned char*)regs->rip)[i])) {
512 bad:
513                                 printk(" Bad RIP value.");
514                                 break;
515                         }
516                         printk("%02x ", c);
517                 }
518         }
519         printk("\n");
520 }       
521
522 void handle_BUG(struct pt_regs *regs)
523
524         struct bug_frame f;
525         long len;
526         const char *prefix = "";
527
528         if (user_mode(regs))
529                 return; 
530         if (__copy_from_user(&f, (const void __user *) regs->rip,
531                              sizeof(struct bug_frame)))
532                 return; 
533         if (f.filename >= 0 ||
534             f.ud2[0] != 0x0f || f.ud2[1] != 0x0b) 
535                 return;
536         len = __strnlen_user((char *)(long)f.filename, PATH_MAX) - 1;
537         if (len < 0 || len >= PATH_MAX)
538                 f.filename = (int)(long)"unmapped filename";
539         else if (len > 50) {
540                 f.filename += len - 50;
541                 prefix = "...";
542         }
543         printk("----------- [cut here ] --------- [please bite here ] ---------\n");
544         printk(KERN_ALERT "Kernel BUG at %s%.50s:%d\n", prefix, (char *)(long)f.filename, f.line);
545
546
547 #ifdef CONFIG_BUG
548 void out_of_line_bug(void)
549
550         BUG(); 
551
552 EXPORT_SYMBOL(out_of_line_bug);
553 #endif
554
555 static DEFINE_SPINLOCK(die_lock);
556 static int die_owner = -1;
557 static unsigned int die_nest_count;
558
559 unsigned __kprobes long oops_begin(void)
560 {
561         int cpu = safe_smp_processor_id();
562         unsigned long flags;
563
564         oops_enter();
565
566         /* racy, but better than risking deadlock. */
567         local_irq_save(flags);
568         if (!spin_trylock(&die_lock)) { 
569                 if (cpu == die_owner) 
570                         /* nested oops. should stop eventually */;
571                 else
572                         spin_lock(&die_lock);
573         }
574         die_nest_count++;
575         die_owner = cpu;
576         console_verbose();
577         bust_spinlocks(1);
578         return flags;
579 }
580
581 void __kprobes oops_end(unsigned long flags)
582
583         die_owner = -1;
584         bust_spinlocks(0);
585         die_nest_count--;
586         if (die_nest_count)
587                 /* We still own the lock */
588                 local_irq_restore(flags);
589         else
590                 /* Nest count reaches zero, release the lock. */
591                 spin_unlock_irqrestore(&die_lock, flags);
592         if (panic_on_oops)
593                 panic("Fatal exception");
594         oops_exit();
595 }
596
597 void __kprobes __die(const char * str, struct pt_regs * regs, long err)
598 {
599         static int die_counter;
600         printk(KERN_EMERG "%s: %04lx [%u] ", str, err & 0xffff,++die_counter);
601 #ifdef CONFIG_PREEMPT
602         printk("PREEMPT ");
603 #endif
604 #ifdef CONFIG_SMP
605         printk("SMP ");
606 #endif
607 #ifdef CONFIG_DEBUG_PAGEALLOC
608         printk("DEBUG_PAGEALLOC");
609 #endif
610         printk("\n");
611         notify_die(DIE_OOPS, str, regs, err, current->thread.trap_no, SIGSEGV);
612         show_registers(regs);
613         /* Executive summary in case the oops scrolled away */
614         printk(KERN_ALERT "RIP ");
615         printk_address(regs->rip); 
616         printk(" RSP <%016lx>\n", regs->rsp); 
617         if (kexec_should_crash(current))
618                 crash_kexec(regs);
619 }
620
621 void die(const char * str, struct pt_regs * regs, long err)
622 {
623         unsigned long flags = oops_begin();
624
625         handle_BUG(regs);
626         __die(str, regs, err);
627         oops_end(flags);
628         do_exit(SIGSEGV); 
629 }
630
631 void __kprobes die_nmi(char *str, struct pt_regs *regs, int do_panic)
632 {
633         unsigned long flags = oops_begin();
634
635         /*
636          * We are in trouble anyway, lets at least try
637          * to get a message out.
638          */
639         printk(str, safe_smp_processor_id());
640         show_registers(regs);
641         if (kexec_should_crash(current))
642                 crash_kexec(regs);
643         if (do_panic || panic_on_oops)
644                 panic("Non maskable interrupt");
645         oops_end(flags);
646         nmi_exit();
647         local_irq_enable();
648         do_exit(SIGSEGV);
649 }
650
651 static void __kprobes do_trap(int trapnr, int signr, char *str,
652                               struct pt_regs * regs, long error_code,
653                               siginfo_t *info)
654 {
655         struct task_struct *tsk = current;
656
657         tsk->thread.error_code = error_code;
658         tsk->thread.trap_no = trapnr;
659
660         if (user_mode(regs)) {
661                 if (exception_trace && unhandled_signal(tsk, signr))
662                         printk(KERN_INFO
663                                "%s[%d] trap %s rip:%lx rsp:%lx error:%lx\n",
664                                tsk->comm, tsk->pid, str,
665                                regs->rip, regs->rsp, error_code); 
666
667                 if (info)
668                         force_sig_info(signr, info, tsk);
669                 else
670                         force_sig(signr, tsk);
671                 return;
672         }
673
674
675         /* kernel trap */ 
676         {            
677                 const struct exception_table_entry *fixup;
678                 fixup = search_exception_tables(regs->rip);
679                 if (fixup)
680                         regs->rip = fixup->fixup;
681                 else    
682                         die(str, regs, error_code);
683                 return;
684         }
685 }
686
687 #define DO_ERROR(trapnr, signr, str, name) \
688 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
689 { \
690         if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
691                                                         == NOTIFY_STOP) \
692                 return; \
693         conditional_sti(regs);                                          \
694         do_trap(trapnr, signr, str, regs, error_code, NULL); \
695 }
696
697 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
698 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
699 { \
700         siginfo_t info; \
701         info.si_signo = signr; \
702         info.si_errno = 0; \
703         info.si_code = sicode; \
704         info.si_addr = (void __user *)siaddr; \
705         if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
706                                                         == NOTIFY_STOP) \
707                 return; \
708         conditional_sti(regs);                                          \
709         do_trap(trapnr, signr, str, regs, error_code, &info); \
710 }
711
712 DO_ERROR_INFO( 0, SIGFPE,  "divide error", divide_error, FPE_INTDIV, regs->rip)
713 DO_ERROR( 4, SIGSEGV, "overflow", overflow)
714 DO_ERROR( 5, SIGSEGV, "bounds", bounds)
715 DO_ERROR_INFO( 6, SIGILL,  "invalid opcode", invalid_op, ILL_ILLOPN, regs->rip)
716 DO_ERROR( 7, SIGSEGV, "device not available", device_not_available)
717 DO_ERROR( 9, SIGFPE,  "coprocessor segment overrun", coprocessor_segment_overrun)
718 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
719 DO_ERROR(11, SIGBUS,  "segment not present", segment_not_present)
720 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
721 DO_ERROR(18, SIGSEGV, "reserved", reserved)
722
723 /* Runs on IST stack */
724 asmlinkage void do_stack_segment(struct pt_regs *regs, long error_code)
725 {
726         if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
727                         12, SIGBUS) == NOTIFY_STOP)
728                 return;
729         preempt_conditional_sti(regs);
730         do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
731         preempt_conditional_cli(regs);
732 }
733
734 asmlinkage void do_double_fault(struct pt_regs * regs, long error_code)
735 {
736         static const char str[] = "double fault";
737         struct task_struct *tsk = current;
738
739         /* Return not checked because double check cannot be ignored */
740         notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
741
742         tsk->thread.error_code = error_code;
743         tsk->thread.trap_no = 8;
744
745         /* This is always a kernel trap and never fixable (and thus must
746            never return). */
747         for (;;)
748                 die(str, regs, error_code);
749 }
750
751 asmlinkage void __kprobes do_general_protection(struct pt_regs * regs,
752                                                 long error_code)
753 {
754         struct task_struct *tsk = current;
755
756         conditional_sti(regs);
757
758         tsk->thread.error_code = error_code;
759         tsk->thread.trap_no = 13;
760
761         if (user_mode(regs)) {
762                 if (exception_trace && unhandled_signal(tsk, SIGSEGV))
763                         printk(KERN_INFO
764                        "%s[%d] general protection rip:%lx rsp:%lx error:%lx\n",
765                                tsk->comm, tsk->pid,
766                                regs->rip, regs->rsp, error_code); 
767
768                 force_sig(SIGSEGV, tsk);
769                 return;
770         } 
771
772         /* kernel gp */
773         {
774                 const struct exception_table_entry *fixup;
775                 fixup = search_exception_tables(regs->rip);
776                 if (fixup) {
777                         regs->rip = fixup->fixup;
778                         return;
779                 }
780                 if (notify_die(DIE_GPF, "general protection fault", regs,
781                                         error_code, 13, SIGSEGV) == NOTIFY_STOP)
782                         return;
783                 die("general protection fault", regs, error_code);
784         }
785 }
786
787 static __kprobes void
788 mem_parity_error(unsigned char reason, struct pt_regs * regs)
789 {
790         printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
791                 reason);
792         printk(KERN_EMERG "You probably have a hardware problem with your "
793                 "RAM chips\n");
794
795         if (panic_on_unrecovered_nmi)
796                 panic("NMI: Not continuing");
797
798         printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
799
800         /* Clear and disable the memory parity error line. */
801         reason = (reason & 0xf) | 4;
802         outb(reason, 0x61);
803 }
804
805 static __kprobes void
806 io_check_error(unsigned char reason, struct pt_regs * regs)
807 {
808         printk("NMI: IOCK error (debug interrupt?)\n");
809         show_registers(regs);
810
811         /* Re-enable the IOCK line, wait for a few seconds */
812         reason = (reason & 0xf) | 8;
813         outb(reason, 0x61);
814         mdelay(2000);
815         reason &= ~8;
816         outb(reason, 0x61);
817 }
818
819 static __kprobes void
820 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
821 {
822         printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
823                 reason);
824         printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
825
826         if (panic_on_unrecovered_nmi)
827                 panic("NMI: Not continuing");
828
829         printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
830 }
831
832 /* Runs on IST stack. This code must keep interrupts off all the time.
833    Nested NMIs are prevented by the CPU. */
834 asmlinkage __kprobes void default_do_nmi(struct pt_regs *regs)
835 {
836         unsigned char reason = 0;
837         int cpu;
838
839         cpu = smp_processor_id();
840
841         /* Only the BSP gets external NMIs from the system.  */
842         if (!cpu)
843                 reason = get_nmi_reason();
844
845         if (!(reason & 0xc0)) {
846                 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
847                                                                 == NOTIFY_STOP)
848                         return;
849                 /*
850                  * Ok, so this is none of the documented NMI sources,
851                  * so it must be the NMI watchdog.
852                  */
853                 if (nmi_watchdog_tick(regs,reason))
854                         return;
855                 if (!do_nmi_callback(regs,cpu))
856                         unknown_nmi_error(reason, regs);
857
858                 return;
859         }
860         if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
861                 return; 
862
863         /* AK: following checks seem to be broken on modern chipsets. FIXME */
864
865         if (reason & 0x80)
866                 mem_parity_error(reason, regs);
867         if (reason & 0x40)
868                 io_check_error(reason, regs);
869 }
870
871 /* runs on IST stack. */
872 asmlinkage void __kprobes do_int3(struct pt_regs * regs, long error_code)
873 {
874         if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) == NOTIFY_STOP) {
875                 return;
876         }
877         preempt_conditional_sti(regs);
878         do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
879         preempt_conditional_cli(regs);
880 }
881
882 /* Help handler running on IST stack to switch back to user stack
883    for scheduling or signal handling. The actual stack switch is done in
884    entry.S */
885 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
886 {
887         struct pt_regs *regs = eregs;
888         /* Did already sync */
889         if (eregs == (struct pt_regs *)eregs->rsp)
890                 ;
891         /* Exception from user space */
892         else if (user_mode(eregs))
893                 regs = task_pt_regs(current);
894         /* Exception from kernel and interrupts are enabled. Move to
895            kernel process stack. */
896         else if (eregs->eflags & X86_EFLAGS_IF)
897                 regs = (struct pt_regs *)(eregs->rsp -= sizeof(struct pt_regs));
898         if (eregs != regs)
899                 *regs = *eregs;
900         return regs;
901 }
902
903 /* runs on IST stack. */
904 asmlinkage void __kprobes do_debug(struct pt_regs * regs,
905                                    unsigned long error_code)
906 {
907         unsigned long condition;
908         struct task_struct *tsk = current;
909         siginfo_t info;
910
911         get_debugreg(condition, 6);
912
913         if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
914                                                 SIGTRAP) == NOTIFY_STOP)
915                 return;
916
917         preempt_conditional_sti(regs);
918
919         /* Mask out spurious debug traps due to lazy DR7 setting */
920         if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
921                 if (!tsk->thread.debugreg7) { 
922                         goto clear_dr7;
923                 }
924         }
925
926         tsk->thread.debugreg6 = condition;
927
928         /* Mask out spurious TF errors due to lazy TF clearing */
929         if (condition & DR_STEP) {
930                 /*
931                  * The TF error should be masked out only if the current
932                  * process is not traced and if the TRAP flag has been set
933                  * previously by a tracing process (condition detected by
934                  * the PT_DTRACE flag); remember that the i386 TRAP flag
935                  * can be modified by the process itself in user mode,
936                  * allowing programs to debug themselves without the ptrace()
937                  * interface.
938                  */
939                 if (!user_mode(regs))
940                        goto clear_TF_reenable;
941                 /*
942                  * Was the TF flag set by a debugger? If so, clear it now,
943                  * so that register information is correct.
944                  */
945                 if (tsk->ptrace & PT_DTRACE) {
946                         regs->eflags &= ~TF_MASK;
947                         tsk->ptrace &= ~PT_DTRACE;
948                 }
949         }
950
951         /* Ok, finally something we can handle */
952         tsk->thread.trap_no = 1;
953         tsk->thread.error_code = error_code;
954         info.si_signo = SIGTRAP;
955         info.si_errno = 0;
956         info.si_code = TRAP_BRKPT;
957         info.si_addr = user_mode(regs) ? (void __user *)regs->rip : NULL;
958         force_sig_info(SIGTRAP, &info, tsk);
959
960 clear_dr7:
961         set_debugreg(0UL, 7);
962         preempt_conditional_cli(regs);
963         return;
964
965 clear_TF_reenable:
966         set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
967         regs->eflags &= ~TF_MASK;
968         preempt_conditional_cli(regs);
969 }
970
971 static int kernel_math_error(struct pt_regs *regs, const char *str, int trapnr)
972 {
973         const struct exception_table_entry *fixup;
974         fixup = search_exception_tables(regs->rip);
975         if (fixup) {
976                 regs->rip = fixup->fixup;
977                 return 1;
978         }
979         notify_die(DIE_GPF, str, regs, 0, trapnr, SIGFPE);
980         /* Illegal floating point operation in the kernel */
981         current->thread.trap_no = trapnr;
982         die(str, regs, 0);
983         return 0;
984 }
985
986 /*
987  * Note that we play around with the 'TS' bit in an attempt to get
988  * the correct behaviour even in the presence of the asynchronous
989  * IRQ13 behaviour
990  */
991 asmlinkage void do_coprocessor_error(struct pt_regs *regs)
992 {
993         void __user *rip = (void __user *)(regs->rip);
994         struct task_struct * task;
995         siginfo_t info;
996         unsigned short cwd, swd;
997
998         conditional_sti(regs);
999         if (!user_mode(regs) &&
1000             kernel_math_error(regs, "kernel x87 math error", 16))
1001                 return;
1002
1003         /*
1004          * Save the info for the exception handler and clear the error.
1005          */
1006         task = current;
1007         save_init_fpu(task);
1008         task->thread.trap_no = 16;
1009         task->thread.error_code = 0;
1010         info.si_signo = SIGFPE;
1011         info.si_errno = 0;
1012         info.si_code = __SI_FAULT;
1013         info.si_addr = rip;
1014         /*
1015          * (~cwd & swd) will mask out exceptions that are not set to unmasked
1016          * status.  0x3f is the exception bits in these regs, 0x200 is the
1017          * C1 reg you need in case of a stack fault, 0x040 is the stack
1018          * fault bit.  We should only be taking one exception at a time,
1019          * so if this combination doesn't produce any single exception,
1020          * then we have a bad program that isn't synchronizing its FPU usage
1021          * and it will suffer the consequences since we won't be able to
1022          * fully reproduce the context of the exception
1023          */
1024         cwd = get_fpu_cwd(task);
1025         swd = get_fpu_swd(task);
1026         switch (swd & ~cwd & 0x3f) {
1027                 case 0x000:
1028                 default:
1029                         break;
1030                 case 0x001: /* Invalid Op */
1031                         /*
1032                          * swd & 0x240 == 0x040: Stack Underflow
1033                          * swd & 0x240 == 0x240: Stack Overflow
1034                          * User must clear the SF bit (0x40) if set
1035                          */
1036                         info.si_code = FPE_FLTINV;
1037                         break;
1038                 case 0x002: /* Denormalize */
1039                 case 0x010: /* Underflow */
1040                         info.si_code = FPE_FLTUND;
1041                         break;
1042                 case 0x004: /* Zero Divide */
1043                         info.si_code = FPE_FLTDIV;
1044                         break;
1045                 case 0x008: /* Overflow */
1046                         info.si_code = FPE_FLTOVF;
1047                         break;
1048                 case 0x020: /* Precision */
1049                         info.si_code = FPE_FLTRES;
1050                         break;
1051         }
1052         force_sig_info(SIGFPE, &info, task);
1053 }
1054
1055 asmlinkage void bad_intr(void)
1056 {
1057         printk("bad interrupt"); 
1058 }
1059
1060 asmlinkage void do_simd_coprocessor_error(struct pt_regs *regs)
1061 {
1062         void __user *rip = (void __user *)(regs->rip);
1063         struct task_struct * task;
1064         siginfo_t info;
1065         unsigned short mxcsr;
1066
1067         conditional_sti(regs);
1068         if (!user_mode(regs) &&
1069                 kernel_math_error(regs, "kernel simd math error", 19))
1070                 return;
1071
1072         /*
1073          * Save the info for the exception handler and clear the error.
1074          */
1075         task = current;
1076         save_init_fpu(task);
1077         task->thread.trap_no = 19;
1078         task->thread.error_code = 0;
1079         info.si_signo = SIGFPE;
1080         info.si_errno = 0;
1081         info.si_code = __SI_FAULT;
1082         info.si_addr = rip;
1083         /*
1084          * The SIMD FPU exceptions are handled a little differently, as there
1085          * is only a single status/control register.  Thus, to determine which
1086          * unmasked exception was caught we must mask the exception mask bits
1087          * at 0x1f80, and then use these to mask the exception bits at 0x3f.
1088          */
1089         mxcsr = get_fpu_mxcsr(task);
1090         switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
1091                 case 0x000:
1092                 default:
1093                         break;
1094                 case 0x001: /* Invalid Op */
1095                         info.si_code = FPE_FLTINV;
1096                         break;
1097                 case 0x002: /* Denormalize */
1098                 case 0x010: /* Underflow */
1099                         info.si_code = FPE_FLTUND;
1100                         break;
1101                 case 0x004: /* Zero Divide */
1102                         info.si_code = FPE_FLTDIV;
1103                         break;
1104                 case 0x008: /* Overflow */
1105                         info.si_code = FPE_FLTOVF;
1106                         break;
1107                 case 0x020: /* Precision */
1108                         info.si_code = FPE_FLTRES;
1109                         break;
1110         }
1111         force_sig_info(SIGFPE, &info, task);
1112 }
1113
1114 asmlinkage void do_spurious_interrupt_bug(struct pt_regs * regs)
1115 {
1116 }
1117
1118 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
1119 {
1120 }
1121
1122 asmlinkage void __attribute__((weak)) mce_threshold_interrupt(void)
1123 {
1124 }
1125
1126 /*
1127  *  'math_state_restore()' saves the current math information in the
1128  * old math state array, and gets the new ones from the current task
1129  *
1130  * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1131  * Don't touch unless you *really* know how it works.
1132  */
1133 asmlinkage void math_state_restore(void)
1134 {
1135         struct task_struct *me = current;
1136         clts();                 /* Allow maths ops (or we recurse) */
1137
1138         if (!used_math())
1139                 init_fpu(me);
1140         restore_fpu_checking(&me->thread.i387.fxsave);
1141         task_thread_info(me)->status |= TS_USEDFPU;
1142         me->fpu_counter++;
1143 }
1144
1145 void __init trap_init(void)
1146 {
1147         set_intr_gate(0,&divide_error);
1148         set_intr_gate_ist(1,&debug,DEBUG_STACK);
1149         set_intr_gate_ist(2,&nmi,NMI_STACK);
1150         set_system_gate_ist(3,&int3,DEBUG_STACK); /* int3 can be called from all */
1151         set_system_gate(4,&overflow);   /* int4 can be called from all */
1152         set_intr_gate(5,&bounds);
1153         set_intr_gate(6,&invalid_op);
1154         set_intr_gate(7,&device_not_available);
1155         set_intr_gate_ist(8,&double_fault, DOUBLEFAULT_STACK);
1156         set_intr_gate(9,&coprocessor_segment_overrun);
1157         set_intr_gate(10,&invalid_TSS);
1158         set_intr_gate(11,&segment_not_present);
1159         set_intr_gate_ist(12,&stack_segment,STACKFAULT_STACK);
1160         set_intr_gate(13,&general_protection);
1161         set_intr_gate(14,&page_fault);
1162         set_intr_gate(15,&spurious_interrupt_bug);
1163         set_intr_gate(16,&coprocessor_error);
1164         set_intr_gate(17,&alignment_check);
1165 #ifdef CONFIG_X86_MCE
1166         set_intr_gate_ist(18,&machine_check, MCE_STACK); 
1167 #endif
1168         set_intr_gate(19,&simd_coprocessor_error);
1169
1170 #ifdef CONFIG_IA32_EMULATION
1171         set_system_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
1172 #endif
1173        
1174         /*
1175          * Should be a barrier for any external CPU state.
1176          */
1177         cpu_init();
1178 }
1179
1180
1181 static int __init oops_setup(char *s)
1182
1183         if (!s)
1184                 return -EINVAL;
1185         if (!strcmp(s, "panic"))
1186                 panic_on_oops = 1;
1187         return 0;
1188
1189 early_param("oops", oops_setup);
1190
1191 static int __init kstack_setup(char *s)
1192 {
1193         if (!s)
1194                 return -EINVAL;
1195         kstack_depth_to_print = simple_strtoul(s,NULL,0);
1196         return 0;
1197 }
1198 early_param("kstack", kstack_setup);
1199
1200 #ifdef CONFIG_STACK_UNWIND
1201 static int __init call_trace_setup(char *s)
1202 {
1203         if (!s)
1204                 return -EINVAL;
1205         if (strcmp(s, "old") == 0)
1206                 call_trace = -1;
1207         else if (strcmp(s, "both") == 0)
1208                 call_trace = 0;
1209         else if (strcmp(s, "newfallback") == 0)
1210                 call_trace = 1;
1211         else if (strcmp(s, "new") == 0)
1212                 call_trace = 2;
1213         return 0;
1214 }
1215 early_param("call_trace", call_trace_setup);
1216 #endif