Merge tag 'nds32-for-linus-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / x86 / xen / enlighten.c
1 #ifdef CONFIG_XEN_BALLOON_MEMORY_HOTPLUG
2 #include <linux/bootmem.h>
3 #endif
4 #include <linux/cpu.h>
5 #include <linux/kexec.h>
6
7 #include <xen/features.h>
8 #include <xen/page.h>
9 #include <xen/interface/memory.h>
10
11 #include <asm/xen/hypercall.h>
12 #include <asm/xen/hypervisor.h>
13 #include <asm/cpu.h>
14 #include <asm/e820/api.h> 
15
16 #include "xen-ops.h"
17 #include "smp.h"
18 #include "pmu.h"
19
20 EXPORT_SYMBOL_GPL(hypercall_page);
21
22 /*
23  * Pointer to the xen_vcpu_info structure or
24  * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
25  * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
26  * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
27  * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
28  * acknowledge pending events.
29  * Also more subtly it is used by the patched version of irq enable/disable
30  * e.g. xen_irq_enable_direct and xen_iret in PV mode.
31  *
32  * The desire to be able to do those mask/unmask operations as a single
33  * instruction by using the per-cpu offset held in %gs is the real reason
34  * vcpu info is in a per-cpu pointer and the original reason for this
35  * hypercall.
36  *
37  */
38 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
39
40 /*
41  * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
42  * hypercall. This can be used both in PV and PVHVM mode. The structure
43  * overrides the default per_cpu(xen_vcpu, cpu) value.
44  */
45 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
46
47 /* Linux <-> Xen vCPU id mapping */
48 DEFINE_PER_CPU(uint32_t, xen_vcpu_id);
49 EXPORT_PER_CPU_SYMBOL(xen_vcpu_id);
50
51 enum xen_domain_type xen_domain_type = XEN_NATIVE;
52 EXPORT_SYMBOL_GPL(xen_domain_type);
53
54 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
55 EXPORT_SYMBOL(machine_to_phys_mapping);
56 unsigned long  machine_to_phys_nr;
57 EXPORT_SYMBOL(machine_to_phys_nr);
58
59 struct start_info *xen_start_info;
60 EXPORT_SYMBOL_GPL(xen_start_info);
61
62 struct shared_info xen_dummy_shared_info;
63
64 __read_mostly int xen_have_vector_callback;
65 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
66
67 /*
68  * NB: needs to live in .data because it's used by xen_prepare_pvh which runs
69  * before clearing the bss.
70  */
71 uint32_t xen_start_flags __attribute__((section(".data"))) = 0;
72 EXPORT_SYMBOL(xen_start_flags);
73
74 /*
75  * Point at some empty memory to start with. We map the real shared_info
76  * page as soon as fixmap is up and running.
77  */
78 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
79
80 /*
81  * Flag to determine whether vcpu info placement is available on all
82  * VCPUs.  We assume it is to start with, and then set it to zero on
83  * the first failure.  This is because it can succeed on some VCPUs
84  * and not others, since it can involve hypervisor memory allocation,
85  * or because the guest failed to guarantee all the appropriate
86  * constraints on all VCPUs (ie buffer can't cross a page boundary).
87  *
88  * Note that any particular CPU may be using a placed vcpu structure,
89  * but we can only optimise if the all are.
90  *
91  * 0: not available, 1: available
92  */
93 int xen_have_vcpu_info_placement = 1;
94
95 static int xen_cpu_up_online(unsigned int cpu)
96 {
97         xen_init_lock_cpu(cpu);
98         return 0;
99 }
100
101 int xen_cpuhp_setup(int (*cpu_up_prepare_cb)(unsigned int),
102                     int (*cpu_dead_cb)(unsigned int))
103 {
104         int rc;
105
106         rc = cpuhp_setup_state_nocalls(CPUHP_XEN_PREPARE,
107                                        "x86/xen/guest:prepare",
108                                        cpu_up_prepare_cb, cpu_dead_cb);
109         if (rc >= 0) {
110                 rc = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
111                                                "x86/xen/guest:online",
112                                                xen_cpu_up_online, NULL);
113                 if (rc < 0)
114                         cpuhp_remove_state_nocalls(CPUHP_XEN_PREPARE);
115         }
116
117         return rc >= 0 ? 0 : rc;
118 }
119
120 static int xen_vcpu_setup_restore(int cpu)
121 {
122         int rc = 0;
123
124         /* Any per_cpu(xen_vcpu) is stale, so reset it */
125         xen_vcpu_info_reset(cpu);
126
127         /*
128          * For PVH and PVHVM, setup online VCPUs only. The rest will
129          * be handled by hotplug.
130          */
131         if (xen_pv_domain() ||
132             (xen_hvm_domain() && cpu_online(cpu))) {
133                 rc = xen_vcpu_setup(cpu);
134         }
135
136         return rc;
137 }
138
139 /*
140  * On restore, set the vcpu placement up again.
141  * If it fails, then we're in a bad state, since
142  * we can't back out from using it...
143  */
144 void xen_vcpu_restore(void)
145 {
146         int cpu, rc;
147
148         for_each_possible_cpu(cpu) {
149                 bool other_cpu = (cpu != smp_processor_id());
150                 bool is_up;
151
152                 if (xen_vcpu_nr(cpu) == XEN_VCPU_ID_INVALID)
153                         continue;
154
155                 /* Only Xen 4.5 and higher support this. */
156                 is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up,
157                                            xen_vcpu_nr(cpu), NULL) > 0;
158
159                 if (other_cpu && is_up &&
160                     HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL))
161                         BUG();
162
163                 if (xen_pv_domain() || xen_feature(XENFEAT_hvm_safe_pvclock))
164                         xen_setup_runstate_info(cpu);
165
166                 rc = xen_vcpu_setup_restore(cpu);
167                 if (rc)
168                         pr_emerg_once("vcpu restore failed for cpu=%d err=%d. "
169                                         "System will hang.\n", cpu, rc);
170                 /*
171                  * In case xen_vcpu_setup_restore() fails, do not bring up the
172                  * VCPU. This helps us avoid the resulting OOPS when the VCPU
173                  * accesses pvclock_vcpu_time via xen_vcpu (which is NULL.)
174                  * Note that this does not improve the situation much -- now the
175                  * VM hangs instead of OOPSing -- with the VCPUs that did not
176                  * fail, spinning in stop_machine(), waiting for the failed
177                  * VCPUs to come up.
178                  */
179                 if (other_cpu && is_up && (rc == 0) &&
180                     HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL))
181                         BUG();
182         }
183 }
184
185 void xen_vcpu_info_reset(int cpu)
186 {
187         if (xen_vcpu_nr(cpu) < MAX_VIRT_CPUS) {
188                 per_cpu(xen_vcpu, cpu) =
189                         &HYPERVISOR_shared_info->vcpu_info[xen_vcpu_nr(cpu)];
190         } else {
191                 /* Set to NULL so that if somebody accesses it we get an OOPS */
192                 per_cpu(xen_vcpu, cpu) = NULL;
193         }
194 }
195
196 int xen_vcpu_setup(int cpu)
197 {
198         struct vcpu_register_vcpu_info info;
199         int err;
200         struct vcpu_info *vcpup;
201
202         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
203
204         /*
205          * This path is called on PVHVM at bootup (xen_hvm_smp_prepare_boot_cpu)
206          * and at restore (xen_vcpu_restore). Also called for hotplugged
207          * VCPUs (cpu_init -> xen_hvm_cpu_prepare_hvm).
208          * However, the hypercall can only be done once (see below) so if a VCPU
209          * is offlined and comes back online then let's not redo the hypercall.
210          *
211          * For PV it is called during restore (xen_vcpu_restore) and bootup
212          * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
213          * use this function.
214          */
215         if (xen_hvm_domain()) {
216                 if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
217                         return 0;
218         }
219
220         if (xen_have_vcpu_info_placement) {
221                 vcpup = &per_cpu(xen_vcpu_info, cpu);
222                 info.mfn = arbitrary_virt_to_mfn(vcpup);
223                 info.offset = offset_in_page(vcpup);
224
225                 /*
226                  * Check to see if the hypervisor will put the vcpu_info
227                  * structure where we want it, which allows direct access via
228                  * a percpu-variable.
229                  * N.B. This hypercall can _only_ be called once per CPU.
230                  * Subsequent calls will error out with -EINVAL. This is due to
231                  * the fact that hypervisor has no unregister variant and this
232                  * hypercall does not allow to over-write info.mfn and
233                  * info.offset.
234                  */
235                 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info,
236                                          xen_vcpu_nr(cpu), &info);
237
238                 if (err) {
239                         pr_warn_once("register_vcpu_info failed: cpu=%d err=%d\n",
240                                      cpu, err);
241                         xen_have_vcpu_info_placement = 0;
242                 } else {
243                         /*
244                          * This cpu is using the registered vcpu info, even if
245                          * later ones fail to.
246                          */
247                         per_cpu(xen_vcpu, cpu) = vcpup;
248                 }
249         }
250
251         if (!xen_have_vcpu_info_placement)
252                 xen_vcpu_info_reset(cpu);
253
254         return ((per_cpu(xen_vcpu, cpu) == NULL) ? -ENODEV : 0);
255 }
256
257 void xen_reboot(int reason)
258 {
259         struct sched_shutdown r = { .reason = reason };
260         int cpu;
261
262         for_each_online_cpu(cpu)
263                 xen_pmu_finish(cpu);
264
265         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
266                 BUG();
267 }
268
269 void xen_emergency_restart(void)
270 {
271         xen_reboot(SHUTDOWN_reboot);
272 }
273
274 static int
275 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
276 {
277         if (!kexec_crash_loaded())
278                 xen_reboot(SHUTDOWN_crash);
279         return NOTIFY_DONE;
280 }
281
282 static struct notifier_block xen_panic_block = {
283         .notifier_call = xen_panic_event,
284         .priority = INT_MIN
285 };
286
287 int xen_panic_handler_init(void)
288 {
289         atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
290         return 0;
291 }
292
293 void xen_pin_vcpu(int cpu)
294 {
295         static bool disable_pinning;
296         struct sched_pin_override pin_override;
297         int ret;
298
299         if (disable_pinning)
300                 return;
301
302         pin_override.pcpu = cpu;
303         ret = HYPERVISOR_sched_op(SCHEDOP_pin_override, &pin_override);
304
305         /* Ignore errors when removing override. */
306         if (cpu < 0)
307                 return;
308
309         switch (ret) {
310         case -ENOSYS:
311                 pr_warn("Unable to pin on physical cpu %d. In case of problems consider vcpu pinning.\n",
312                         cpu);
313                 disable_pinning = true;
314                 break;
315         case -EPERM:
316                 WARN(1, "Trying to pin vcpu without having privilege to do so\n");
317                 disable_pinning = true;
318                 break;
319         case -EINVAL:
320         case -EBUSY:
321                 pr_warn("Physical cpu %d not available for pinning. Check Xen cpu configuration.\n",
322                         cpu);
323                 break;
324         case 0:
325                 break;
326         default:
327                 WARN(1, "rc %d while trying to pin vcpu\n", ret);
328                 disable_pinning = true;
329         }
330 }
331
332 #ifdef CONFIG_HOTPLUG_CPU
333 void xen_arch_register_cpu(int num)
334 {
335         arch_register_cpu(num);
336 }
337 EXPORT_SYMBOL(xen_arch_register_cpu);
338
339 void xen_arch_unregister_cpu(int num)
340 {
341         arch_unregister_cpu(num);
342 }
343 EXPORT_SYMBOL(xen_arch_unregister_cpu);
344 #endif
345
346 #ifdef CONFIG_XEN_BALLOON_MEMORY_HOTPLUG
347 void __init arch_xen_balloon_init(struct resource *hostmem_resource)
348 {
349         struct xen_memory_map memmap;
350         int rc;
351         unsigned int i, last_guest_ram;
352         phys_addr_t max_addr = PFN_PHYS(max_pfn);
353         struct e820_table *xen_e820_table;
354         const struct e820_entry *entry;
355         struct resource *res;
356
357         if (!xen_initial_domain())
358                 return;
359
360         xen_e820_table = kmalloc(sizeof(*xen_e820_table), GFP_KERNEL);
361         if (!xen_e820_table)
362                 return;
363
364         memmap.nr_entries = ARRAY_SIZE(xen_e820_table->entries);
365         set_xen_guest_handle(memmap.buffer, xen_e820_table->entries);
366         rc = HYPERVISOR_memory_op(XENMEM_machine_memory_map, &memmap);
367         if (rc) {
368                 pr_warn("%s: Can't read host e820 (%d)\n", __func__, rc);
369                 goto out;
370         }
371
372         last_guest_ram = 0;
373         for (i = 0; i < memmap.nr_entries; i++) {
374                 if (xen_e820_table->entries[i].addr >= max_addr)
375                         break;
376                 if (xen_e820_table->entries[i].type == E820_TYPE_RAM)
377                         last_guest_ram = i;
378         }
379
380         entry = &xen_e820_table->entries[last_guest_ram];
381         if (max_addr >= entry->addr + entry->size)
382                 goto out; /* No unallocated host RAM. */
383
384         hostmem_resource->start = max_addr;
385         hostmem_resource->end = entry->addr + entry->size;
386
387         /*
388          * Mark non-RAM regions between the end of dom0 RAM and end of host RAM
389          * as unavailable. The rest of that region can be used for hotplug-based
390          * ballooning.
391          */
392         for (; i < memmap.nr_entries; i++) {
393                 entry = &xen_e820_table->entries[i];
394
395                 if (entry->type == E820_TYPE_RAM)
396                         continue;
397
398                 if (entry->addr >= hostmem_resource->end)
399                         break;
400
401                 res = kzalloc(sizeof(*res), GFP_KERNEL);
402                 if (!res)
403                         goto out;
404
405                 res->name = "Unavailable host RAM";
406                 res->start = entry->addr;
407                 res->end = (entry->addr + entry->size < hostmem_resource->end) ?
408                             entry->addr + entry->size : hostmem_resource->end;
409                 rc = insert_resource(hostmem_resource, res);
410                 if (rc) {
411                         pr_warn("%s: Can't insert [%llx - %llx) (%d)\n",
412                                 __func__, res->start, res->end, rc);
413                         kfree(res);
414                         goto  out;
415                 }
416         }
417
418  out:
419         kfree(xen_e820_table);
420 }
421 #endif /* CONFIG_XEN_BALLOON_MEMORY_HOTPLUG */