x86/mm: remove vmalloc faulting
[linux-2.6-microblaze.git] / arch / x86 / mm / tlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11
12 #include <asm/tlbflush.h>
13 #include <asm/mmu_context.h>
14 #include <asm/nospec-branch.h>
15 #include <asm/cache.h>
16 #include <asm/apic.h>
17 #include <asm/uv/uv.h>
18
19 #include "mm_internal.h"
20
21 /*
22  *      TLB flushing, formerly SMP-only
23  *              c/o Linus Torvalds.
24  *
25  *      These mean you can really definitely utterly forget about
26  *      writing to user space from interrupts. (Its not allowed anyway).
27  *
28  *      Optimizations Manfred Spraul <manfred@colorfullife.com>
29  *
30  *      More scalable flush, from Andi Kleen
31  *
32  *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
33  */
34
35 /*
36  * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
37  * stored in cpu_tlb_state.last_user_mm_ibpb.
38  */
39 #define LAST_USER_MM_IBPB       0x1UL
40
41 /*
42  * We get here when we do something requiring a TLB invalidation
43  * but could not go invalidate all of the contexts.  We do the
44  * necessary invalidation by clearing out the 'ctx_id' which
45  * forces a TLB flush when the context is loaded.
46  */
47 static void clear_asid_other(void)
48 {
49         u16 asid;
50
51         /*
52          * This is only expected to be set if we have disabled
53          * kernel _PAGE_GLOBAL pages.
54          */
55         if (!static_cpu_has(X86_FEATURE_PTI)) {
56                 WARN_ON_ONCE(1);
57                 return;
58         }
59
60         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
61                 /* Do not need to flush the current asid */
62                 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
63                         continue;
64                 /*
65                  * Make sure the next time we go to switch to
66                  * this asid, we do a flush:
67                  */
68                 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
69         }
70         this_cpu_write(cpu_tlbstate.invalidate_other, false);
71 }
72
73 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
74
75
76 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
77                             u16 *new_asid, bool *need_flush)
78 {
79         u16 asid;
80
81         if (!static_cpu_has(X86_FEATURE_PCID)) {
82                 *new_asid = 0;
83                 *need_flush = true;
84                 return;
85         }
86
87         if (this_cpu_read(cpu_tlbstate.invalidate_other))
88                 clear_asid_other();
89
90         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
91                 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
92                     next->context.ctx_id)
93                         continue;
94
95                 *new_asid = asid;
96                 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
97                                next_tlb_gen);
98                 return;
99         }
100
101         /*
102          * We don't currently own an ASID slot on this CPU.
103          * Allocate a slot.
104          */
105         *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
106         if (*new_asid >= TLB_NR_DYN_ASIDS) {
107                 *new_asid = 0;
108                 this_cpu_write(cpu_tlbstate.next_asid, 1);
109         }
110         *need_flush = true;
111 }
112
113 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
114 {
115         unsigned long new_mm_cr3;
116
117         if (need_flush) {
118                 invalidate_user_asid(new_asid);
119                 new_mm_cr3 = build_cr3(pgdir, new_asid);
120         } else {
121                 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
122         }
123
124         /*
125          * Caution: many callers of this function expect
126          * that load_cr3() is serializing and orders TLB
127          * fills with respect to the mm_cpumask writes.
128          */
129         write_cr3(new_mm_cr3);
130 }
131
132 void leave_mm(int cpu)
133 {
134         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
135
136         /*
137          * It's plausible that we're in lazy TLB mode while our mm is init_mm.
138          * If so, our callers still expect us to flush the TLB, but there
139          * aren't any user TLB entries in init_mm to worry about.
140          *
141          * This needs to happen before any other sanity checks due to
142          * intel_idle's shenanigans.
143          */
144         if (loaded_mm == &init_mm)
145                 return;
146
147         /* Warn if we're not lazy. */
148         WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
149
150         switch_mm(NULL, &init_mm, NULL);
151 }
152 EXPORT_SYMBOL_GPL(leave_mm);
153
154 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
155                struct task_struct *tsk)
156 {
157         unsigned long flags;
158
159         local_irq_save(flags);
160         switch_mm_irqs_off(prev, next, tsk);
161         local_irq_restore(flags);
162 }
163
164 static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
165 {
166         unsigned long next_tif = task_thread_info(next)->flags;
167         unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
168
169         return (unsigned long)next->mm | ibpb;
170 }
171
172 static void cond_ibpb(struct task_struct *next)
173 {
174         if (!next || !next->mm)
175                 return;
176
177         /*
178          * Both, the conditional and the always IBPB mode use the mm
179          * pointer to avoid the IBPB when switching between tasks of the
180          * same process. Using the mm pointer instead of mm->context.ctx_id
181          * opens a hypothetical hole vs. mm_struct reuse, which is more or
182          * less impossible to control by an attacker. Aside of that it
183          * would only affect the first schedule so the theoretically
184          * exposed data is not really interesting.
185          */
186         if (static_branch_likely(&switch_mm_cond_ibpb)) {
187                 unsigned long prev_mm, next_mm;
188
189                 /*
190                  * This is a bit more complex than the always mode because
191                  * it has to handle two cases:
192                  *
193                  * 1) Switch from a user space task (potential attacker)
194                  *    which has TIF_SPEC_IB set to a user space task
195                  *    (potential victim) which has TIF_SPEC_IB not set.
196                  *
197                  * 2) Switch from a user space task (potential attacker)
198                  *    which has TIF_SPEC_IB not set to a user space task
199                  *    (potential victim) which has TIF_SPEC_IB set.
200                  *
201                  * This could be done by unconditionally issuing IBPB when
202                  * a task which has TIF_SPEC_IB set is either scheduled in
203                  * or out. Though that results in two flushes when:
204                  *
205                  * - the same user space task is scheduled out and later
206                  *   scheduled in again and only a kernel thread ran in
207                  *   between.
208                  *
209                  * - a user space task belonging to the same process is
210                  *   scheduled in after a kernel thread ran in between
211                  *
212                  * - a user space task belonging to the same process is
213                  *   scheduled in immediately.
214                  *
215                  * Optimize this with reasonably small overhead for the
216                  * above cases. Mangle the TIF_SPEC_IB bit into the mm
217                  * pointer of the incoming task which is stored in
218                  * cpu_tlbstate.last_user_mm_ibpb for comparison.
219                  */
220                 next_mm = mm_mangle_tif_spec_ib(next);
221                 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
222
223                 /*
224                  * Issue IBPB only if the mm's are different and one or
225                  * both have the IBPB bit set.
226                  */
227                 if (next_mm != prev_mm &&
228                     (next_mm | prev_mm) & LAST_USER_MM_IBPB)
229                         indirect_branch_prediction_barrier();
230
231                 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
232         }
233
234         if (static_branch_unlikely(&switch_mm_always_ibpb)) {
235                 /*
236                  * Only flush when switching to a user space task with a
237                  * different context than the user space task which ran
238                  * last on this CPU.
239                  */
240                 if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
241                         indirect_branch_prediction_barrier();
242                         this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
243                 }
244         }
245 }
246
247 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
248                         struct task_struct *tsk)
249 {
250         struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
251         u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
252         bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
253         unsigned cpu = smp_processor_id();
254         u64 next_tlb_gen;
255         bool need_flush;
256         u16 new_asid;
257
258         /*
259          * NB: The scheduler will call us with prev == next when switching
260          * from lazy TLB mode to normal mode if active_mm isn't changing.
261          * When this happens, we don't assume that CR3 (and hence
262          * cpu_tlbstate.loaded_mm) matches next.
263          *
264          * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
265          */
266
267         /* We don't want flush_tlb_func_* to run concurrently with us. */
268         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
269                 WARN_ON_ONCE(!irqs_disabled());
270
271         /*
272          * Verify that CR3 is what we think it is.  This will catch
273          * hypothetical buggy code that directly switches to swapper_pg_dir
274          * without going through leave_mm() / switch_mm_irqs_off() or that
275          * does something like write_cr3(read_cr3_pa()).
276          *
277          * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
278          * isn't free.
279          */
280 #ifdef CONFIG_DEBUG_VM
281         if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
282                 /*
283                  * If we were to BUG here, we'd be very likely to kill
284                  * the system so hard that we don't see the call trace.
285                  * Try to recover instead by ignoring the error and doing
286                  * a global flush to minimize the chance of corruption.
287                  *
288                  * (This is far from being a fully correct recovery.
289                  *  Architecturally, the CPU could prefetch something
290                  *  back into an incorrect ASID slot and leave it there
291                  *  to cause trouble down the road.  It's better than
292                  *  nothing, though.)
293                  */
294                 __flush_tlb_all();
295         }
296 #endif
297         this_cpu_write(cpu_tlbstate.is_lazy, false);
298
299         /*
300          * The membarrier system call requires a full memory barrier and
301          * core serialization before returning to user-space, after
302          * storing to rq->curr. Writing to CR3 provides that full
303          * memory barrier and core serializing instruction.
304          */
305         if (real_prev == next) {
306                 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
307                            next->context.ctx_id);
308
309                 /*
310                  * Even in lazy TLB mode, the CPU should stay set in the
311                  * mm_cpumask. The TLB shootdown code can figure out from
312                  * from cpu_tlbstate.is_lazy whether or not to send an IPI.
313                  */
314                 if (WARN_ON_ONCE(real_prev != &init_mm &&
315                                  !cpumask_test_cpu(cpu, mm_cpumask(next))))
316                         cpumask_set_cpu(cpu, mm_cpumask(next));
317
318                 /*
319                  * If the CPU is not in lazy TLB mode, we are just switching
320                  * from one thread in a process to another thread in the same
321                  * process. No TLB flush required.
322                  */
323                 if (!was_lazy)
324                         return;
325
326                 /*
327                  * Read the tlb_gen to check whether a flush is needed.
328                  * If the TLB is up to date, just use it.
329                  * The barrier synchronizes with the tlb_gen increment in
330                  * the TLB shootdown code.
331                  */
332                 smp_mb();
333                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
334                 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
335                                 next_tlb_gen)
336                         return;
337
338                 /*
339                  * TLB contents went out of date while we were in lazy
340                  * mode. Fall through to the TLB switching code below.
341                  */
342                 new_asid = prev_asid;
343                 need_flush = true;
344         } else {
345                 /*
346                  * Avoid user/user BTB poisoning by flushing the branch
347                  * predictor when switching between processes. This stops
348                  * one process from doing Spectre-v2 attacks on another.
349                  */
350                 cond_ibpb(tsk);
351
352                 /*
353                  * Stop remote flushes for the previous mm.
354                  * Skip kernel threads; we never send init_mm TLB flushing IPIs,
355                  * but the bitmap manipulation can cause cache line contention.
356                  */
357                 if (real_prev != &init_mm) {
358                         VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
359                                                 mm_cpumask(real_prev)));
360                         cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
361                 }
362
363                 /*
364                  * Start remote flushes and then read tlb_gen.
365                  */
366                 if (next != &init_mm)
367                         cpumask_set_cpu(cpu, mm_cpumask(next));
368                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
369
370                 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
371
372                 /* Let nmi_uaccess_okay() know that we're changing CR3. */
373                 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
374                 barrier();
375         }
376
377         if (need_flush) {
378                 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
379                 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
380                 load_new_mm_cr3(next->pgd, new_asid, true);
381
382                 /*
383                  * NB: This gets called via leave_mm() in the idle path
384                  * where RCU functions differently.  Tracing normally
385                  * uses RCU, so we need to use the _rcuidle variant.
386                  *
387                  * (There is no good reason for this.  The idle code should
388                  *  be rearranged to call this before rcu_idle_enter().)
389                  */
390                 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
391         } else {
392                 /* The new ASID is already up to date. */
393                 load_new_mm_cr3(next->pgd, new_asid, false);
394
395                 /* See above wrt _rcuidle. */
396                 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
397         }
398
399         /* Make sure we write CR3 before loaded_mm. */
400         barrier();
401
402         this_cpu_write(cpu_tlbstate.loaded_mm, next);
403         this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
404
405         if (next != real_prev) {
406                 load_mm_cr4_irqsoff(next);
407                 switch_ldt(real_prev, next);
408         }
409 }
410
411 /*
412  * Please ignore the name of this function.  It should be called
413  * switch_to_kernel_thread().
414  *
415  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
416  * kernel thread or other context without an mm.  Acceptable implementations
417  * include doing nothing whatsoever, switching to init_mm, or various clever
418  * lazy tricks to try to minimize TLB flushes.
419  *
420  * The scheduler reserves the right to call enter_lazy_tlb() several times
421  * in a row.  It will notify us that we're going back to a real mm by
422  * calling switch_mm_irqs_off().
423  */
424 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
425 {
426         if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
427                 return;
428
429         this_cpu_write(cpu_tlbstate.is_lazy, true);
430 }
431
432 /*
433  * Call this when reinitializing a CPU.  It fixes the following potential
434  * problems:
435  *
436  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
437  *   because the CPU was taken down and came back up with CR3's PCID
438  *   bits clear.  CPU hotplug can do this.
439  *
440  * - The TLB contains junk in slots corresponding to inactive ASIDs.
441  *
442  * - The CPU went so far out to lunch that it may have missed a TLB
443  *   flush.
444  */
445 void initialize_tlbstate_and_flush(void)
446 {
447         int i;
448         struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
449         u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
450         unsigned long cr3 = __read_cr3();
451
452         /* Assert that CR3 already references the right mm. */
453         WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
454
455         /*
456          * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
457          * doesn't work like other CR4 bits because it can only be set from
458          * long mode.)
459          */
460         WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
461                 !(cr4_read_shadow() & X86_CR4_PCIDE));
462
463         /* Force ASID 0 and force a TLB flush. */
464         write_cr3(build_cr3(mm->pgd, 0));
465
466         /* Reinitialize tlbstate. */
467         this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
468         this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
469         this_cpu_write(cpu_tlbstate.next_asid, 1);
470         this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
471         this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
472
473         for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
474                 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
475 }
476
477 /*
478  * flush_tlb_func_common()'s memory ordering requirement is that any
479  * TLB fills that happen after we flush the TLB are ordered after we
480  * read active_mm's tlb_gen.  We don't need any explicit barriers
481  * because all x86 flush operations are serializing and the
482  * atomic64_read operation won't be reordered by the compiler.
483  */
484 static void flush_tlb_func_common(const struct flush_tlb_info *f,
485                                   bool local, enum tlb_flush_reason reason)
486 {
487         /*
488          * We have three different tlb_gen values in here.  They are:
489          *
490          * - mm_tlb_gen:     the latest generation.
491          * - local_tlb_gen:  the generation that this CPU has already caught
492          *                   up to.
493          * - f->new_tlb_gen: the generation that the requester of the flush
494          *                   wants us to catch up to.
495          */
496         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
497         u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
498         u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
499         u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
500
501         /* This code cannot presently handle being reentered. */
502         VM_WARN_ON(!irqs_disabled());
503
504         if (unlikely(loaded_mm == &init_mm))
505                 return;
506
507         VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
508                    loaded_mm->context.ctx_id);
509
510         if (this_cpu_read(cpu_tlbstate.is_lazy)) {
511                 /*
512                  * We're in lazy mode.  We need to at least flush our
513                  * paging-structure cache to avoid speculatively reading
514                  * garbage into our TLB.  Since switching to init_mm is barely
515                  * slower than a minimal flush, just switch to init_mm.
516                  *
517                  * This should be rare, with native_flush_tlb_others skipping
518                  * IPIs to lazy TLB mode CPUs.
519                  */
520                 switch_mm_irqs_off(NULL, &init_mm, NULL);
521                 return;
522         }
523
524         if (unlikely(local_tlb_gen == mm_tlb_gen)) {
525                 /*
526                  * There's nothing to do: we're already up to date.  This can
527                  * happen if two concurrent flushes happen -- the first flush to
528                  * be handled can catch us all the way up, leaving no work for
529                  * the second flush.
530                  */
531                 trace_tlb_flush(reason, 0);
532                 return;
533         }
534
535         WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
536         WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
537
538         /*
539          * If we get to this point, we know that our TLB is out of date.
540          * This does not strictly imply that we need to flush (it's
541          * possible that f->new_tlb_gen <= local_tlb_gen), but we're
542          * going to need to flush in the very near future, so we might
543          * as well get it over with.
544          *
545          * The only question is whether to do a full or partial flush.
546          *
547          * We do a partial flush if requested and two extra conditions
548          * are met:
549          *
550          * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
551          *    we've always done all needed flushes to catch up to
552          *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
553          *    f->new_tlb_gen == 3, then we know that the flush needed to bring
554          *    us up to date for tlb_gen 3 is the partial flush we're
555          *    processing.
556          *
557          *    As an example of why this check is needed, suppose that there
558          *    are two concurrent flushes.  The first is a full flush that
559          *    changes context.tlb_gen from 1 to 2.  The second is a partial
560          *    flush that changes context.tlb_gen from 2 to 3.  If they get
561          *    processed on this CPU in reverse order, we'll see
562          *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
563          *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
564          *    3, we'd be break the invariant: we'd update local_tlb_gen above
565          *    1 without the full flush that's needed for tlb_gen 2.
566          *
567          * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
568          *    Partial TLB flushes are not all that much cheaper than full TLB
569          *    flushes, so it seems unlikely that it would be a performance win
570          *    to do a partial flush if that won't bring our TLB fully up to
571          *    date.  By doing a full flush instead, we can increase
572          *    local_tlb_gen all the way to mm_tlb_gen and we can probably
573          *    avoid another flush in the very near future.
574          */
575         if (f->end != TLB_FLUSH_ALL &&
576             f->new_tlb_gen == local_tlb_gen + 1 &&
577             f->new_tlb_gen == mm_tlb_gen) {
578                 /* Partial flush */
579                 unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
580                 unsigned long addr = f->start;
581
582                 while (addr < f->end) {
583                         __flush_tlb_one_user(addr);
584                         addr += 1UL << f->stride_shift;
585                 }
586                 if (local)
587                         count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
588                 trace_tlb_flush(reason, nr_invalidate);
589         } else {
590                 /* Full flush. */
591                 local_flush_tlb();
592                 if (local)
593                         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
594                 trace_tlb_flush(reason, TLB_FLUSH_ALL);
595         }
596
597         /* Both paths above update our state to mm_tlb_gen. */
598         this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
599 }
600
601 static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason)
602 {
603         const struct flush_tlb_info *f = info;
604
605         flush_tlb_func_common(f, true, reason);
606 }
607
608 static void flush_tlb_func_remote(void *info)
609 {
610         const struct flush_tlb_info *f = info;
611
612         inc_irq_stat(irq_tlb_count);
613
614         if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
615                 return;
616
617         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
618         flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
619 }
620
621 static bool tlb_is_not_lazy(int cpu, void *data)
622 {
623         return !per_cpu(cpu_tlbstate.is_lazy, cpu);
624 }
625
626 void native_flush_tlb_others(const struct cpumask *cpumask,
627                              const struct flush_tlb_info *info)
628 {
629         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
630         if (info->end == TLB_FLUSH_ALL)
631                 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
632         else
633                 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
634                                 (info->end - info->start) >> PAGE_SHIFT);
635
636         if (is_uv_system()) {
637                 /*
638                  * This whole special case is confused.  UV has a "Broadcast
639                  * Assist Unit", which seems to be a fancy way to send IPIs.
640                  * Back when x86 used an explicit TLB flush IPI, UV was
641                  * optimized to use its own mechanism.  These days, x86 uses
642                  * smp_call_function_many(), but UV still uses a manual IPI,
643                  * and that IPI's action is out of date -- it does a manual
644                  * flush instead of calling flush_tlb_func_remote().  This
645                  * means that the percpu tlb_gen variables won't be updated
646                  * and we'll do pointless flushes on future context switches.
647                  *
648                  * Rather than hooking native_flush_tlb_others() here, I think
649                  * that UV should be updated so that smp_call_function_many(),
650                  * etc, are optimal on UV.
651                  */
652                 cpumask = uv_flush_tlb_others(cpumask, info);
653                 if (cpumask)
654                         smp_call_function_many(cpumask, flush_tlb_func_remote,
655                                                (void *)info, 1);
656                 return;
657         }
658
659         /*
660          * If no page tables were freed, we can skip sending IPIs to
661          * CPUs in lazy TLB mode. They will flush the CPU themselves
662          * at the next context switch.
663          *
664          * However, if page tables are getting freed, we need to send the
665          * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
666          * up on the new contents of what used to be page tables, while
667          * doing a speculative memory access.
668          */
669         if (info->freed_tables)
670                 smp_call_function_many(cpumask, flush_tlb_func_remote,
671                                (void *)info, 1);
672         else
673                 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
674                                 (void *)info, 1, cpumask);
675 }
676
677 /*
678  * See Documentation/x86/tlb.rst for details.  We choose 33
679  * because it is large enough to cover the vast majority (at
680  * least 95%) of allocations, and is small enough that we are
681  * confident it will not cause too much overhead.  Each single
682  * flush is about 100 ns, so this caps the maximum overhead at
683  * _about_ 3,000 ns.
684  *
685  * This is in units of pages.
686  */
687 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
688
689 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
690
691 #ifdef CONFIG_DEBUG_VM
692 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
693 #endif
694
695 static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
696                         unsigned long start, unsigned long end,
697                         unsigned int stride_shift, bool freed_tables,
698                         u64 new_tlb_gen)
699 {
700         struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
701
702 #ifdef CONFIG_DEBUG_VM
703         /*
704          * Ensure that the following code is non-reentrant and flush_tlb_info
705          * is not overwritten. This means no TLB flushing is initiated by
706          * interrupt handlers and machine-check exception handlers.
707          */
708         BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
709 #endif
710
711         info->start             = start;
712         info->end               = end;
713         info->mm                = mm;
714         info->stride_shift      = stride_shift;
715         info->freed_tables      = freed_tables;
716         info->new_tlb_gen       = new_tlb_gen;
717
718         return info;
719 }
720
721 static inline void put_flush_tlb_info(void)
722 {
723 #ifdef CONFIG_DEBUG_VM
724         /* Complete reentrency prevention checks */
725         barrier();
726         this_cpu_dec(flush_tlb_info_idx);
727 #endif
728 }
729
730 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
731                                 unsigned long end, unsigned int stride_shift,
732                                 bool freed_tables)
733 {
734         struct flush_tlb_info *info;
735         u64 new_tlb_gen;
736         int cpu;
737
738         cpu = get_cpu();
739
740         /* Should we flush just the requested range? */
741         if ((end == TLB_FLUSH_ALL) ||
742             ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
743                 start = 0;
744                 end = TLB_FLUSH_ALL;
745         }
746
747         /* This is also a barrier that synchronizes with switch_mm(). */
748         new_tlb_gen = inc_mm_tlb_gen(mm);
749
750         info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
751                                   new_tlb_gen);
752
753         if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
754                 lockdep_assert_irqs_enabled();
755                 local_irq_disable();
756                 flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN);
757                 local_irq_enable();
758         }
759
760         if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
761                 flush_tlb_others(mm_cpumask(mm), info);
762
763         put_flush_tlb_info();
764         put_cpu();
765 }
766
767
768 static void do_flush_tlb_all(void *info)
769 {
770         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
771         __flush_tlb_all();
772 }
773
774 void flush_tlb_all(void)
775 {
776         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
777         on_each_cpu(do_flush_tlb_all, NULL, 1);
778 }
779
780 static void do_kernel_range_flush(void *info)
781 {
782         struct flush_tlb_info *f = info;
783         unsigned long addr;
784
785         /* flush range by one by one 'invlpg' */
786         for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
787                 __flush_tlb_one_kernel(addr);
788 }
789
790 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
791 {
792         /* Balance as user space task's flush, a bit conservative */
793         if (end == TLB_FLUSH_ALL ||
794             (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
795                 on_each_cpu(do_flush_tlb_all, NULL, 1);
796         } else {
797                 struct flush_tlb_info *info;
798
799                 preempt_disable();
800                 info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
801
802                 on_each_cpu(do_kernel_range_flush, info, 1);
803
804                 put_flush_tlb_info();
805                 preempt_enable();
806         }
807 }
808
809 /*
810  * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm.
811  * This means that the 'struct flush_tlb_info' that describes which mappings to
812  * flush is actually fixed. We therefore set a single fixed struct and use it in
813  * arch_tlbbatch_flush().
814  */
815 static const struct flush_tlb_info full_flush_tlb_info = {
816         .mm = NULL,
817         .start = 0,
818         .end = TLB_FLUSH_ALL,
819 };
820
821 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
822 {
823         int cpu = get_cpu();
824
825         if (cpumask_test_cpu(cpu, &batch->cpumask)) {
826                 lockdep_assert_irqs_enabled();
827                 local_irq_disable();
828                 flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN);
829                 local_irq_enable();
830         }
831
832         if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
833                 flush_tlb_others(&batch->cpumask, &full_flush_tlb_info);
834
835         cpumask_clear(&batch->cpumask);
836
837         put_cpu();
838 }
839
840 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
841                              size_t count, loff_t *ppos)
842 {
843         char buf[32];
844         unsigned int len;
845
846         len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
847         return simple_read_from_buffer(user_buf, count, ppos, buf, len);
848 }
849
850 static ssize_t tlbflush_write_file(struct file *file,
851                  const char __user *user_buf, size_t count, loff_t *ppos)
852 {
853         char buf[32];
854         ssize_t len;
855         int ceiling;
856
857         len = min(count, sizeof(buf) - 1);
858         if (copy_from_user(buf, user_buf, len))
859                 return -EFAULT;
860
861         buf[len] = '\0';
862         if (kstrtoint(buf, 0, &ceiling))
863                 return -EINVAL;
864
865         if (ceiling < 0)
866                 return -EINVAL;
867
868         tlb_single_page_flush_ceiling = ceiling;
869         return count;
870 }
871
872 static const struct file_operations fops_tlbflush = {
873         .read = tlbflush_read_file,
874         .write = tlbflush_write_file,
875         .llseek = default_llseek,
876 };
877
878 static int __init create_tlb_single_page_flush_ceiling(void)
879 {
880         debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
881                             arch_debugfs_dir, NULL, &fops_tlbflush);
882         return 0;
883 }
884 late_initcall(create_tlb_single_page_flush_ceiling);