Merge tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / arch / x86 / mm / mem_encrypt_identity.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2016 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  */
9
10 #define DISABLE_BRANCH_PROFILING
11
12 /*
13  * Since we're dealing with identity mappings, physical and virtual
14  * addresses are the same, so override these defines which are ultimately
15  * used by the headers in misc.h.
16  */
17 #define __pa(x)  ((unsigned long)(x))
18 #define __va(x)  ((void *)((unsigned long)(x)))
19
20 /*
21  * Special hack: we have to be careful, because no indirections are
22  * allowed here, and paravirt_ops is a kind of one. As it will only run in
23  * baremetal anyway, we just keep it from happening. (This list needs to
24  * be extended when new paravirt and debugging variants are added.)
25  */
26 #undef CONFIG_PARAVIRT
27 #undef CONFIG_PARAVIRT_XXL
28 #undef CONFIG_PARAVIRT_SPINLOCKS
29
30 /*
31  * This code runs before CPU feature bits are set. By default, the
32  * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if
33  * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5
34  * is provided to handle this situation and, instead, use a variable that
35  * has been set by the early boot code.
36  */
37 #define USE_EARLY_PGTABLE_L5
38
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/mem_encrypt.h>
42 #include <linux/cc_platform.h>
43
44 #include <asm/init.h>
45 #include <asm/setup.h>
46 #include <asm/sections.h>
47 #include <asm/coco.h>
48 #include <asm/sev.h>
49
50 #include "mm_internal.h"
51
52 #define PGD_FLAGS               _KERNPG_TABLE_NOENC
53 #define P4D_FLAGS               _KERNPG_TABLE_NOENC
54 #define PUD_FLAGS               _KERNPG_TABLE_NOENC
55 #define PMD_FLAGS               _KERNPG_TABLE_NOENC
56
57 #define PMD_FLAGS_LARGE         (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
58
59 #define PMD_FLAGS_DEC           PMD_FLAGS_LARGE
60 #define PMD_FLAGS_DEC_WP        ((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \
61                                  (_PAGE_PAT_LARGE | _PAGE_PWT))
62
63 #define PMD_FLAGS_ENC           (PMD_FLAGS_LARGE | _PAGE_ENC)
64
65 #define PTE_FLAGS               (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
66
67 #define PTE_FLAGS_DEC           PTE_FLAGS
68 #define PTE_FLAGS_DEC_WP        ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
69                                  (_PAGE_PAT | _PAGE_PWT))
70
71 #define PTE_FLAGS_ENC           (PTE_FLAGS | _PAGE_ENC)
72
73 struct sme_populate_pgd_data {
74         void    *pgtable_area;
75         pgd_t   *pgd;
76
77         pmdval_t pmd_flags;
78         pteval_t pte_flags;
79         unsigned long paddr;
80
81         unsigned long vaddr;
82         unsigned long vaddr_end;
83 };
84
85 /*
86  * This work area lives in the .init.scratch section, which lives outside of
87  * the kernel proper. It is sized to hold the intermediate copy buffer and
88  * more than enough pagetable pages.
89  *
90  * By using this section, the kernel can be encrypted in place and it
91  * avoids any possibility of boot parameters or initramfs images being
92  * placed such that the in-place encryption logic overwrites them.  This
93  * section is 2MB aligned to allow for simple pagetable setup using only
94  * PMD entries (see vmlinux.lds.S).
95  */
96 static char sme_workarea[2 * PMD_SIZE] __section(".init.scratch");
97
98 static void __head sme_clear_pgd(struct sme_populate_pgd_data *ppd)
99 {
100         unsigned long pgd_start, pgd_end, pgd_size;
101         pgd_t *pgd_p;
102
103         pgd_start = ppd->vaddr & PGDIR_MASK;
104         pgd_end = ppd->vaddr_end & PGDIR_MASK;
105
106         pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
107
108         pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
109
110         memset(pgd_p, 0, pgd_size);
111 }
112
113 static pud_t __head *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
114 {
115         pgd_t *pgd;
116         p4d_t *p4d;
117         pud_t *pud;
118         pmd_t *pmd;
119
120         pgd = ppd->pgd + pgd_index(ppd->vaddr);
121         if (pgd_none(*pgd)) {
122                 p4d = ppd->pgtable_area;
123                 memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
124                 ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
125                 set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
126         }
127
128         p4d = p4d_offset(pgd, ppd->vaddr);
129         if (p4d_none(*p4d)) {
130                 pud = ppd->pgtable_area;
131                 memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
132                 ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
133                 set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
134         }
135
136         pud = pud_offset(p4d, ppd->vaddr);
137         if (pud_none(*pud)) {
138                 pmd = ppd->pgtable_area;
139                 memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
140                 ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
141                 set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
142         }
143
144         if (pud_leaf(*pud))
145                 return NULL;
146
147         return pud;
148 }
149
150 static void __head sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
151 {
152         pud_t *pud;
153         pmd_t *pmd;
154
155         pud = sme_prepare_pgd(ppd);
156         if (!pud)
157                 return;
158
159         pmd = pmd_offset(pud, ppd->vaddr);
160         if (pmd_leaf(*pmd))
161                 return;
162
163         set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
164 }
165
166 static void __head sme_populate_pgd(struct sme_populate_pgd_data *ppd)
167 {
168         pud_t *pud;
169         pmd_t *pmd;
170         pte_t *pte;
171
172         pud = sme_prepare_pgd(ppd);
173         if (!pud)
174                 return;
175
176         pmd = pmd_offset(pud, ppd->vaddr);
177         if (pmd_none(*pmd)) {
178                 pte = ppd->pgtable_area;
179                 memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE);
180                 ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE;
181                 set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
182         }
183
184         if (pmd_leaf(*pmd))
185                 return;
186
187         pte = pte_offset_kernel(pmd, ppd->vaddr);
188         if (pte_none(*pte))
189                 set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
190 }
191
192 static void __head __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
193 {
194         while (ppd->vaddr < ppd->vaddr_end) {
195                 sme_populate_pgd_large(ppd);
196
197                 ppd->vaddr += PMD_SIZE;
198                 ppd->paddr += PMD_SIZE;
199         }
200 }
201
202 static void __head __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
203 {
204         while (ppd->vaddr < ppd->vaddr_end) {
205                 sme_populate_pgd(ppd);
206
207                 ppd->vaddr += PAGE_SIZE;
208                 ppd->paddr += PAGE_SIZE;
209         }
210 }
211
212 static void __head __sme_map_range(struct sme_populate_pgd_data *ppd,
213                                    pmdval_t pmd_flags, pteval_t pte_flags)
214 {
215         unsigned long vaddr_end;
216
217         ppd->pmd_flags = pmd_flags;
218         ppd->pte_flags = pte_flags;
219
220         /* Save original end value since we modify the struct value */
221         vaddr_end = ppd->vaddr_end;
222
223         /* If start is not 2MB aligned, create PTE entries */
224         ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_SIZE);
225         __sme_map_range_pte(ppd);
226
227         /* Create PMD entries */
228         ppd->vaddr_end = vaddr_end & PMD_MASK;
229         __sme_map_range_pmd(ppd);
230
231         /* If end is not 2MB aligned, create PTE entries */
232         ppd->vaddr_end = vaddr_end;
233         __sme_map_range_pte(ppd);
234 }
235
236 static void __head sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
237 {
238         __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
239 }
240
241 static void __head sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
242 {
243         __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
244 }
245
246 static void __head sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
247 {
248         __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
249 }
250
251 static unsigned long __head sme_pgtable_calc(unsigned long len)
252 {
253         unsigned long entries = 0, tables = 0;
254
255         /*
256          * Perform a relatively simplistic calculation of the pagetable
257          * entries that are needed. Those mappings will be covered mostly
258          * by 2MB PMD entries so we can conservatively calculate the required
259          * number of P4D, PUD and PMD structures needed to perform the
260          * mappings.  For mappings that are not 2MB aligned, PTE mappings
261          * would be needed for the start and end portion of the address range
262          * that fall outside of the 2MB alignment.  This results in, at most,
263          * two extra pages to hold PTE entries for each range that is mapped.
264          * Incrementing the count for each covers the case where the addresses
265          * cross entries.
266          */
267
268         /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
269         if (PTRS_PER_P4D > 1)
270                 entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
271         entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
272         entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
273         entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
274
275         /*
276          * Now calculate the added pagetable structures needed to populate
277          * the new pagetables.
278          */
279
280         if (PTRS_PER_P4D > 1)
281                 tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
282         tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
283         tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
284
285         return entries + tables;
286 }
287
288 void __head sme_encrypt_kernel(struct boot_params *bp)
289 {
290         unsigned long workarea_start, workarea_end, workarea_len;
291         unsigned long execute_start, execute_end, execute_len;
292         unsigned long kernel_start, kernel_end, kernel_len;
293         unsigned long initrd_start, initrd_end, initrd_len;
294         struct sme_populate_pgd_data ppd;
295         unsigned long pgtable_area_len;
296         unsigned long decrypted_base;
297
298         /*
299          * This is early code, use an open coded check for SME instead of
300          * using cc_platform_has(). This eliminates worries about removing
301          * instrumentation or checking boot_cpu_data in the cc_platform_has()
302          * function.
303          */
304         if (!sme_get_me_mask() ||
305             RIP_REL_REF(sev_status) & MSR_AMD64_SEV_ENABLED)
306                 return;
307
308         /*
309          * Prepare for encrypting the kernel and initrd by building new
310          * pagetables with the necessary attributes needed to encrypt the
311          * kernel in place.
312          *
313          *   One range of virtual addresses will map the memory occupied
314          *   by the kernel and initrd as encrypted.
315          *
316          *   Another range of virtual addresses will map the memory occupied
317          *   by the kernel and initrd as decrypted and write-protected.
318          *
319          *     The use of write-protect attribute will prevent any of the
320          *     memory from being cached.
321          */
322
323         kernel_start = (unsigned long)RIP_REL_REF(_text);
324         kernel_end = ALIGN((unsigned long)RIP_REL_REF(_end), PMD_SIZE);
325         kernel_len = kernel_end - kernel_start;
326
327         initrd_start = 0;
328         initrd_end = 0;
329         initrd_len = 0;
330 #ifdef CONFIG_BLK_DEV_INITRD
331         initrd_len = (unsigned long)bp->hdr.ramdisk_size |
332                      ((unsigned long)bp->ext_ramdisk_size << 32);
333         if (initrd_len) {
334                 initrd_start = (unsigned long)bp->hdr.ramdisk_image |
335                                ((unsigned long)bp->ext_ramdisk_image << 32);
336                 initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
337                 initrd_len = initrd_end - initrd_start;
338         }
339 #endif
340
341         /*
342          * Calculate required number of workarea bytes needed:
343          *   executable encryption area size:
344          *     stack page (PAGE_SIZE)
345          *     encryption routine page (PAGE_SIZE)
346          *     intermediate copy buffer (PMD_SIZE)
347          *   pagetable structures for the encryption of the kernel
348          *   pagetable structures for workarea (in case not currently mapped)
349          */
350         execute_start = workarea_start = (unsigned long)RIP_REL_REF(sme_workarea);
351         execute_end = execute_start + (PAGE_SIZE * 2) + PMD_SIZE;
352         execute_len = execute_end - execute_start;
353
354         /*
355          * One PGD for both encrypted and decrypted mappings and a set of
356          * PUDs and PMDs for each of the encrypted and decrypted mappings.
357          */
358         pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
359         pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
360         if (initrd_len)
361                 pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
362
363         /* PUDs and PMDs needed in the current pagetables for the workarea */
364         pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
365
366         /*
367          * The total workarea includes the executable encryption area and
368          * the pagetable area. The start of the workarea is already 2MB
369          * aligned, align the end of the workarea on a 2MB boundary so that
370          * we don't try to create/allocate PTE entries from the workarea
371          * before it is mapped.
372          */
373         workarea_len = execute_len + pgtable_area_len;
374         workarea_end = ALIGN(workarea_start + workarea_len, PMD_SIZE);
375
376         /*
377          * Set the address to the start of where newly created pagetable
378          * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
379          * structures are created when the workarea is added to the current
380          * pagetables and when the new encrypted and decrypted kernel
381          * mappings are populated.
382          */
383         ppd.pgtable_area = (void *)execute_end;
384
385         /*
386          * Make sure the current pagetable structure has entries for
387          * addressing the workarea.
388          */
389         ppd.pgd = (pgd_t *)native_read_cr3_pa();
390         ppd.paddr = workarea_start;
391         ppd.vaddr = workarea_start;
392         ppd.vaddr_end = workarea_end;
393         sme_map_range_decrypted(&ppd);
394
395         /* Flush the TLB - no globals so cr3 is enough */
396         native_write_cr3(__native_read_cr3());
397
398         /*
399          * A new pagetable structure is being built to allow for the kernel
400          * and initrd to be encrypted. It starts with an empty PGD that will
401          * then be populated with new PUDs and PMDs as the encrypted and
402          * decrypted kernel mappings are created.
403          */
404         ppd.pgd = ppd.pgtable_area;
405         memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
406         ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
407
408         /*
409          * A different PGD index/entry must be used to get different
410          * pagetable entries for the decrypted mapping. Choose the next
411          * PGD index and convert it to a virtual address to be used as
412          * the base of the mapping.
413          */
414         decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
415         if (initrd_len) {
416                 unsigned long check_base;
417
418                 check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
419                 decrypted_base = max(decrypted_base, check_base);
420         }
421         decrypted_base <<= PGDIR_SHIFT;
422
423         /* Add encrypted kernel (identity) mappings */
424         ppd.paddr = kernel_start;
425         ppd.vaddr = kernel_start;
426         ppd.vaddr_end = kernel_end;
427         sme_map_range_encrypted(&ppd);
428
429         /* Add decrypted, write-protected kernel (non-identity) mappings */
430         ppd.paddr = kernel_start;
431         ppd.vaddr = kernel_start + decrypted_base;
432         ppd.vaddr_end = kernel_end + decrypted_base;
433         sme_map_range_decrypted_wp(&ppd);
434
435         if (initrd_len) {
436                 /* Add encrypted initrd (identity) mappings */
437                 ppd.paddr = initrd_start;
438                 ppd.vaddr = initrd_start;
439                 ppd.vaddr_end = initrd_end;
440                 sme_map_range_encrypted(&ppd);
441                 /*
442                  * Add decrypted, write-protected initrd (non-identity) mappings
443                  */
444                 ppd.paddr = initrd_start;
445                 ppd.vaddr = initrd_start + decrypted_base;
446                 ppd.vaddr_end = initrd_end + decrypted_base;
447                 sme_map_range_decrypted_wp(&ppd);
448         }
449
450         /* Add decrypted workarea mappings to both kernel mappings */
451         ppd.paddr = workarea_start;
452         ppd.vaddr = workarea_start;
453         ppd.vaddr_end = workarea_end;
454         sme_map_range_decrypted(&ppd);
455
456         ppd.paddr = workarea_start;
457         ppd.vaddr = workarea_start + decrypted_base;
458         ppd.vaddr_end = workarea_end + decrypted_base;
459         sme_map_range_decrypted(&ppd);
460
461         /* Perform the encryption */
462         sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
463                             kernel_len, workarea_start, (unsigned long)ppd.pgd);
464
465         if (initrd_len)
466                 sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
467                                     initrd_len, workarea_start,
468                                     (unsigned long)ppd.pgd);
469
470         /*
471          * At this point we are running encrypted.  Remove the mappings for
472          * the decrypted areas - all that is needed for this is to remove
473          * the PGD entry/entries.
474          */
475         ppd.vaddr = kernel_start + decrypted_base;
476         ppd.vaddr_end = kernel_end + decrypted_base;
477         sme_clear_pgd(&ppd);
478
479         if (initrd_len) {
480                 ppd.vaddr = initrd_start + decrypted_base;
481                 ppd.vaddr_end = initrd_end + decrypted_base;
482                 sme_clear_pgd(&ppd);
483         }
484
485         ppd.vaddr = workarea_start + decrypted_base;
486         ppd.vaddr_end = workarea_end + decrypted_base;
487         sme_clear_pgd(&ppd);
488
489         /* Flush the TLB - no globals so cr3 is enough */
490         native_write_cr3(__native_read_cr3());
491 }
492
493 void __head sme_enable(struct boot_params *bp)
494 {
495         unsigned int eax, ebx, ecx, edx;
496         unsigned long feature_mask;
497         unsigned long me_mask;
498         bool snp;
499         u64 msr;
500
501         snp = snp_init(bp);
502
503         /* Check for the SME/SEV support leaf */
504         eax = 0x80000000;
505         ecx = 0;
506         native_cpuid(&eax, &ebx, &ecx, &edx);
507         if (eax < 0x8000001f)
508                 return;
509
510 #define AMD_SME_BIT     BIT(0)
511 #define AMD_SEV_BIT     BIT(1)
512
513         /*
514          * Check for the SME/SEV feature:
515          *   CPUID Fn8000_001F[EAX]
516          *   - Bit 0 - Secure Memory Encryption support
517          *   - Bit 1 - Secure Encrypted Virtualization support
518          *   CPUID Fn8000_001F[EBX]
519          *   - Bits 5:0 - Pagetable bit position used to indicate encryption
520          */
521         eax = 0x8000001f;
522         ecx = 0;
523         native_cpuid(&eax, &ebx, &ecx, &edx);
524         /* Check whether SEV or SME is supported */
525         if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT)))
526                 return;
527
528         me_mask = 1UL << (ebx & 0x3f);
529
530         /* Check the SEV MSR whether SEV or SME is enabled */
531         RIP_REL_REF(sev_status) = msr = __rdmsr(MSR_AMD64_SEV);
532         feature_mask = (msr & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT;
533
534         /* The SEV-SNP CC blob should never be present unless SEV-SNP is enabled. */
535         if (snp && !(msr & MSR_AMD64_SEV_SNP_ENABLED))
536                 snp_abort();
537
538         /* Check if memory encryption is enabled */
539         if (feature_mask == AMD_SME_BIT) {
540                 if (!(bp->hdr.xloadflags & XLF_MEM_ENCRYPTION))
541                         return;
542
543                 /*
544                  * No SME if Hypervisor bit is set. This check is here to
545                  * prevent a guest from trying to enable SME. For running as a
546                  * KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there
547                  * might be other hypervisors which emulate that MSR as non-zero
548                  * or even pass it through to the guest.
549                  * A malicious hypervisor can still trick a guest into this
550                  * path, but there is no way to protect against that.
551                  */
552                 eax = 1;
553                 ecx = 0;
554                 native_cpuid(&eax, &ebx, &ecx, &edx);
555                 if (ecx & BIT(31))
556                         return;
557
558                 /* For SME, check the SYSCFG MSR */
559                 msr = __rdmsr(MSR_AMD64_SYSCFG);
560                 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
561                         return;
562         }
563
564         RIP_REL_REF(sme_me_mask) = me_mask;
565         physical_mask &= ~me_mask;
566         cc_vendor = CC_VENDOR_AMD;
567         cc_set_mask(me_mask);
568 }