6e554041e86220a4ad1a8db31e7e25b430d98c16
[linux-2.6-microblaze.git] / arch / x86 / kvm / xen.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
4  * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5  *
6  * KVM Xen emulation
7  */
8
9 #include "x86.h"
10 #include "xen.h"
11 #include "hyperv.h"
12 #include "lapic.h"
13
14 #include <linux/eventfd.h>
15 #include <linux/kvm_host.h>
16 #include <linux/sched/stat.h>
17
18 #include <trace/events/kvm.h>
19 #include <xen/interface/xen.h>
20 #include <xen/interface/vcpu.h>
21 #include <xen/interface/version.h>
22 #include <xen/interface/event_channel.h>
23 #include <xen/interface/sched.h>
24
25 #include "trace.h"
26
27 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm);
28 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data);
29 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r);
30
31 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
32
33 static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn)
34 {
35         struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
36         struct pvclock_wall_clock *wc;
37         gpa_t gpa = gfn_to_gpa(gfn);
38         u32 *wc_sec_hi;
39         u32 wc_version;
40         u64 wall_nsec;
41         int ret = 0;
42         int idx = srcu_read_lock(&kvm->srcu);
43
44         if (gfn == GPA_INVALID) {
45                 kvm_gfn_to_pfn_cache_destroy(kvm, gpc);
46                 goto out;
47         }
48
49         do {
50                 ret = kvm_gfn_to_pfn_cache_init(kvm, gpc, NULL, KVM_HOST_USES_PFN,
51                                                 gpa, PAGE_SIZE);
52                 if (ret)
53                         goto out;
54
55                 /*
56                  * This code mirrors kvm_write_wall_clock() except that it writes
57                  * directly through the pfn cache and doesn't mark the page dirty.
58                  */
59                 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
60
61                 /* It could be invalid again already, so we need to check */
62                 read_lock_irq(&gpc->lock);
63
64                 if (gpc->valid)
65                         break;
66
67                 read_unlock_irq(&gpc->lock);
68         } while (1);
69
70         /* Paranoia checks on the 32-bit struct layout */
71         BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
72         BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
73         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
74
75 #ifdef CONFIG_X86_64
76         /* Paranoia checks on the 64-bit struct layout */
77         BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
78         BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
79
80         if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
81                 struct shared_info *shinfo = gpc->khva;
82
83                 wc_sec_hi = &shinfo->wc_sec_hi;
84                 wc = &shinfo->wc;
85         } else
86 #endif
87         {
88                 struct compat_shared_info *shinfo = gpc->khva;
89
90                 wc_sec_hi = &shinfo->arch.wc_sec_hi;
91                 wc = &shinfo->wc;
92         }
93
94         /* Increment and ensure an odd value */
95         wc_version = wc->version = (wc->version + 1) | 1;
96         smp_wmb();
97
98         wc->nsec = do_div(wall_nsec,  1000000000);
99         wc->sec = (u32)wall_nsec;
100         *wc_sec_hi = wall_nsec >> 32;
101         smp_wmb();
102
103         wc->version = wc_version + 1;
104         read_unlock_irq(&gpc->lock);
105
106         kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
107
108 out:
109         srcu_read_unlock(&kvm->srcu, idx);
110         return ret;
111 }
112
113 void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu)
114 {
115         if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) {
116                 struct kvm_xen_evtchn e;
117
118                 e.vcpu_id = vcpu->vcpu_id;
119                 e.vcpu_idx = vcpu->vcpu_idx;
120                 e.port = vcpu->arch.xen.timer_virq;
121                 e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
122
123                 kvm_xen_set_evtchn(&e, vcpu->kvm);
124
125                 vcpu->arch.xen.timer_expires = 0;
126                 atomic_set(&vcpu->arch.xen.timer_pending, 0);
127         }
128 }
129
130 static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer)
131 {
132         struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu,
133                                              arch.xen.timer);
134         if (atomic_read(&vcpu->arch.xen.timer_pending))
135                 return HRTIMER_NORESTART;
136
137         atomic_inc(&vcpu->arch.xen.timer_pending);
138         kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
139         kvm_vcpu_kick(vcpu);
140
141         return HRTIMER_NORESTART;
142 }
143
144 static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs, s64 delta_ns)
145 {
146         atomic_set(&vcpu->arch.xen.timer_pending, 0);
147         vcpu->arch.xen.timer_expires = guest_abs;
148
149         if (delta_ns <= 0) {
150                 xen_timer_callback(&vcpu->arch.xen.timer);
151         } else {
152                 ktime_t ktime_now = ktime_get();
153                 hrtimer_start(&vcpu->arch.xen.timer,
154                               ktime_add_ns(ktime_now, delta_ns),
155                               HRTIMER_MODE_ABS_HARD);
156         }
157 }
158
159 static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu)
160 {
161         hrtimer_cancel(&vcpu->arch.xen.timer);
162         vcpu->arch.xen.timer_expires = 0;
163         atomic_set(&vcpu->arch.xen.timer_pending, 0);
164 }
165
166 static void kvm_xen_init_timer(struct kvm_vcpu *vcpu)
167 {
168         hrtimer_init(&vcpu->arch.xen.timer, CLOCK_MONOTONIC,
169                      HRTIMER_MODE_ABS_HARD);
170         vcpu->arch.xen.timer.function = xen_timer_callback;
171 }
172
173 static void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
174 {
175         struct kvm_vcpu_xen *vx = &v->arch.xen;
176         u64 now = get_kvmclock_ns(v->kvm);
177         u64 delta_ns = now - vx->runstate_entry_time;
178         u64 run_delay = current->sched_info.run_delay;
179
180         if (unlikely(!vx->runstate_entry_time))
181                 vx->current_runstate = RUNSTATE_offline;
182
183         /*
184          * Time waiting for the scheduler isn't "stolen" if the
185          * vCPU wasn't running anyway.
186          */
187         if (vx->current_runstate == RUNSTATE_running) {
188                 u64 steal_ns = run_delay - vx->last_steal;
189
190                 delta_ns -= steal_ns;
191
192                 vx->runstate_times[RUNSTATE_runnable] += steal_ns;
193         }
194         vx->last_steal = run_delay;
195
196         vx->runstate_times[vx->current_runstate] += delta_ns;
197         vx->current_runstate = state;
198         vx->runstate_entry_time = now;
199 }
200
201 void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, int state)
202 {
203         struct kvm_vcpu_xen *vx = &v->arch.xen;
204         struct gfn_to_pfn_cache *gpc = &vx->runstate_cache;
205         uint64_t *user_times;
206         unsigned long flags;
207         size_t user_len;
208         int *user_state;
209
210         kvm_xen_update_runstate(v, state);
211
212         if (!vx->runstate_cache.active)
213                 return;
214
215         if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode)
216                 user_len = sizeof(struct vcpu_runstate_info);
217         else
218                 user_len = sizeof(struct compat_vcpu_runstate_info);
219
220         read_lock_irqsave(&gpc->lock, flags);
221         while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
222                                            user_len)) {
223                 read_unlock_irqrestore(&gpc->lock, flags);
224
225                 /* When invoked from kvm_sched_out() we cannot sleep */
226                 if (state == RUNSTATE_runnable)
227                         return;
228
229                 if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa, user_len))
230                         return;
231
232                 read_lock_irqsave(&gpc->lock, flags);
233         }
234
235         /*
236          * The only difference between 32-bit and 64-bit versions of the
237          * runstate struct us the alignment of uint64_t in 32-bit, which
238          * means that the 64-bit version has an additional 4 bytes of
239          * padding after the first field 'state'.
240          *
241          * So we use 'int __user *user_state' to point to the state field,
242          * and 'uint64_t __user *user_times' for runstate_entry_time. So
243          * the actual array of time[] in each state starts at user_times[1].
244          */
245         BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0);
246         BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0);
247         BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
248 #ifdef CONFIG_X86_64
249         BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
250                      offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
251         BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
252                      offsetof(struct compat_vcpu_runstate_info, time) + 4);
253 #endif
254
255         user_state = gpc->khva;
256
257         if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode)
258                 user_times = gpc->khva + offsetof(struct vcpu_runstate_info,
259                                                   state_entry_time);
260         else
261                 user_times = gpc->khva + offsetof(struct compat_vcpu_runstate_info,
262                                                   state_entry_time);
263
264         /*
265          * First write the updated state_entry_time at the appropriate
266          * location determined by 'offset'.
267          */
268         BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
269                      sizeof(user_times[0]));
270         BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
271                      sizeof(user_times[0]));
272
273         user_times[0] = vx->runstate_entry_time | XEN_RUNSTATE_UPDATE;
274         smp_wmb();
275
276         /*
277          * Next, write the new runstate. This is in the *same* place
278          * for 32-bit and 64-bit guests, asserted here for paranoia.
279          */
280         BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
281                      offsetof(struct compat_vcpu_runstate_info, state));
282         BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
283                      sizeof(vx->current_runstate));
284         BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
285                      sizeof(vx->current_runstate));
286
287         *user_state = vx->current_runstate;
288
289         /*
290          * Write the actual runstate times immediately after the
291          * runstate_entry_time.
292          */
293         BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
294                      offsetof(struct vcpu_runstate_info, time) - sizeof(u64));
295         BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
296                      offsetof(struct compat_vcpu_runstate_info, time) - sizeof(u64));
297         BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
298                      sizeof_field(struct compat_vcpu_runstate_info, time));
299         BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
300                      sizeof(vx->runstate_times));
301
302         memcpy(user_times + 1, vx->runstate_times, sizeof(vx->runstate_times));
303         smp_wmb();
304
305         /*
306          * Finally, clear the XEN_RUNSTATE_UPDATE bit in the guest's
307          * runstate_entry_time field.
308          */
309         user_times[0] &= ~XEN_RUNSTATE_UPDATE;
310         smp_wmb();
311
312         read_unlock_irqrestore(&gpc->lock, flags);
313
314         mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
315 }
316
317 static void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v)
318 {
319         struct kvm_lapic_irq irq = { };
320         int r;
321
322         irq.dest_id = v->vcpu_id;
323         irq.vector = v->arch.xen.upcall_vector;
324         irq.dest_mode = APIC_DEST_PHYSICAL;
325         irq.shorthand = APIC_DEST_NOSHORT;
326         irq.delivery_mode = APIC_DM_FIXED;
327         irq.level = 1;
328
329         /* The fast version will always work for physical unicast */
330         WARN_ON_ONCE(!kvm_irq_delivery_to_apic_fast(v->kvm, NULL, &irq, &r, NULL));
331 }
332
333 /*
334  * On event channel delivery, the vcpu_info may not have been accessible.
335  * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which
336  * need to be marked into the vcpu_info (and evtchn_upcall_pending set).
337  * Do so now that we can sleep in the context of the vCPU to bring the
338  * page in, and refresh the pfn cache for it.
339  */
340 void kvm_xen_inject_pending_events(struct kvm_vcpu *v)
341 {
342         unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
343         struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
344         unsigned long flags;
345
346         if (!evtchn_pending_sel)
347                 return;
348
349         /*
350          * Yes, this is an open-coded loop. But that's just what put_user()
351          * does anyway. Page it in and retry the instruction. We're just a
352          * little more honest about it.
353          */
354         read_lock_irqsave(&gpc->lock, flags);
355         while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
356                                            sizeof(struct vcpu_info))) {
357                 read_unlock_irqrestore(&gpc->lock, flags);
358
359                 if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa,
360                                                  sizeof(struct vcpu_info)))
361                         return;
362
363                 read_lock_irqsave(&gpc->lock, flags);
364         }
365
366         /* Now gpc->khva is a valid kernel address for the vcpu_info */
367         if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
368                 struct vcpu_info *vi = gpc->khva;
369
370                 asm volatile(LOCK_PREFIX "orq %0, %1\n"
371                              "notq %0\n"
372                              LOCK_PREFIX "andq %0, %2\n"
373                              : "=r" (evtchn_pending_sel),
374                                "+m" (vi->evtchn_pending_sel),
375                                "+m" (v->arch.xen.evtchn_pending_sel)
376                              : "0" (evtchn_pending_sel));
377                 WRITE_ONCE(vi->evtchn_upcall_pending, 1);
378         } else {
379                 u32 evtchn_pending_sel32 = evtchn_pending_sel;
380                 struct compat_vcpu_info *vi = gpc->khva;
381
382                 asm volatile(LOCK_PREFIX "orl %0, %1\n"
383                              "notl %0\n"
384                              LOCK_PREFIX "andl %0, %2\n"
385                              : "=r" (evtchn_pending_sel32),
386                                "+m" (vi->evtchn_pending_sel),
387                                "+m" (v->arch.xen.evtchn_pending_sel)
388                              : "0" (evtchn_pending_sel32));
389                 WRITE_ONCE(vi->evtchn_upcall_pending, 1);
390         }
391         read_unlock_irqrestore(&gpc->lock, flags);
392
393         /* For the per-vCPU lapic vector, deliver it as MSI. */
394         if (v->arch.xen.upcall_vector)
395                 kvm_xen_inject_vcpu_vector(v);
396
397         mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
398 }
399
400 int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
401 {
402         struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
403         unsigned long flags;
404         u8 rc = 0;
405
406         /*
407          * If the global upcall vector (HVMIRQ_callback_vector) is set and
408          * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
409          */
410
411         /* No need for compat handling here */
412         BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
413                      offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
414         BUILD_BUG_ON(sizeof(rc) !=
415                      sizeof_field(struct vcpu_info, evtchn_upcall_pending));
416         BUILD_BUG_ON(sizeof(rc) !=
417                      sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
418
419         read_lock_irqsave(&gpc->lock, flags);
420         while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
421                                            sizeof(struct vcpu_info))) {
422                 read_unlock_irqrestore(&gpc->lock, flags);
423
424                 /*
425                  * This function gets called from kvm_vcpu_block() after setting the
426                  * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
427                  * from a HLT. So we really mustn't sleep. If the page ended up absent
428                  * at that point, just return 1 in order to trigger an immediate wake,
429                  * and we'll end up getting called again from a context where we *can*
430                  * fault in the page and wait for it.
431                  */
432                 if (in_atomic() || !task_is_running(current))
433                         return 1;
434
435                 if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa,
436                                                  sizeof(struct vcpu_info))) {
437                         /*
438                          * If this failed, userspace has screwed up the
439                          * vcpu_info mapping. No interrupts for you.
440                          */
441                         return 0;
442                 }
443                 read_lock_irqsave(&gpc->lock, flags);
444         }
445
446         rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending;
447         read_unlock_irqrestore(&gpc->lock, flags);
448         return rc;
449 }
450
451 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
452 {
453         int r = -ENOENT;
454
455
456         switch (data->type) {
457         case KVM_XEN_ATTR_TYPE_LONG_MODE:
458                 if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
459                         r = -EINVAL;
460                 } else {
461                         mutex_lock(&kvm->lock);
462                         kvm->arch.xen.long_mode = !!data->u.long_mode;
463                         mutex_unlock(&kvm->lock);
464                         r = 0;
465                 }
466                 break;
467
468         case KVM_XEN_ATTR_TYPE_SHARED_INFO:
469                 mutex_lock(&kvm->lock);
470                 r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn);
471                 mutex_unlock(&kvm->lock);
472                 break;
473
474         case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
475                 if (data->u.vector && data->u.vector < 0x10)
476                         r = -EINVAL;
477                 else {
478                         mutex_lock(&kvm->lock);
479                         kvm->arch.xen.upcall_vector = data->u.vector;
480                         mutex_unlock(&kvm->lock);
481                         r = 0;
482                 }
483                 break;
484
485         case KVM_XEN_ATTR_TYPE_EVTCHN:
486                 r = kvm_xen_setattr_evtchn(kvm, data);
487                 break;
488
489         case KVM_XEN_ATTR_TYPE_XEN_VERSION:
490                 mutex_lock(&kvm->lock);
491                 kvm->arch.xen.xen_version = data->u.xen_version;
492                 mutex_unlock(&kvm->lock);
493                 r = 0;
494                 break;
495
496         default:
497                 break;
498         }
499
500         return r;
501 }
502
503 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
504 {
505         int r = -ENOENT;
506
507         mutex_lock(&kvm->lock);
508
509         switch (data->type) {
510         case KVM_XEN_ATTR_TYPE_LONG_MODE:
511                 data->u.long_mode = kvm->arch.xen.long_mode;
512                 r = 0;
513                 break;
514
515         case KVM_XEN_ATTR_TYPE_SHARED_INFO:
516                 if (kvm->arch.xen.shinfo_cache.active)
517                         data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa);
518                 else
519                         data->u.shared_info.gfn = GPA_INVALID;
520                 r = 0;
521                 break;
522
523         case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
524                 data->u.vector = kvm->arch.xen.upcall_vector;
525                 r = 0;
526                 break;
527
528         case KVM_XEN_ATTR_TYPE_XEN_VERSION:
529                 data->u.xen_version = kvm->arch.xen.xen_version;
530                 r = 0;
531                 break;
532
533         default:
534                 break;
535         }
536
537         mutex_unlock(&kvm->lock);
538         return r;
539 }
540
541 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
542 {
543         int idx, r = -ENOENT;
544
545         mutex_lock(&vcpu->kvm->lock);
546         idx = srcu_read_lock(&vcpu->kvm->srcu);
547
548         switch (data->type) {
549         case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
550                 /* No compat necessary here. */
551                 BUILD_BUG_ON(sizeof(struct vcpu_info) !=
552                              sizeof(struct compat_vcpu_info));
553                 BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
554                              offsetof(struct compat_vcpu_info, time));
555
556                 if (data->u.gpa == GPA_INVALID) {
557                         kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.xen.vcpu_info_cache);
558                         r = 0;
559                         break;
560                 }
561
562                 r = kvm_gfn_to_pfn_cache_init(vcpu->kvm,
563                                               &vcpu->arch.xen.vcpu_info_cache,
564                                               NULL, KVM_HOST_USES_PFN, data->u.gpa,
565                                               sizeof(struct vcpu_info));
566                 if (!r)
567                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
568
569                 break;
570
571         case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
572                 if (data->u.gpa == GPA_INVALID) {
573                         kvm_gfn_to_pfn_cache_destroy(vcpu->kvm,
574                                                      &vcpu->arch.xen.vcpu_time_info_cache);
575                         r = 0;
576                         break;
577                 }
578
579                 r = kvm_gfn_to_pfn_cache_init(vcpu->kvm,
580                                               &vcpu->arch.xen.vcpu_time_info_cache,
581                                               NULL, KVM_HOST_USES_PFN, data->u.gpa,
582                                               sizeof(struct pvclock_vcpu_time_info));
583                 if (!r)
584                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
585                 break;
586
587         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
588                 if (!sched_info_on()) {
589                         r = -EOPNOTSUPP;
590                         break;
591                 }
592                 if (data->u.gpa == GPA_INVALID) {
593                         kvm_gfn_to_pfn_cache_destroy(vcpu->kvm,
594                                                      &vcpu->arch.xen.runstate_cache);
595                         r = 0;
596                         break;
597                 }
598
599                 r = kvm_gfn_to_pfn_cache_init(vcpu->kvm,
600                                               &vcpu->arch.xen.runstate_cache,
601                                               NULL, KVM_HOST_USES_PFN, data->u.gpa,
602                                               sizeof(struct vcpu_runstate_info));
603                 break;
604
605         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
606                 if (!sched_info_on()) {
607                         r = -EOPNOTSUPP;
608                         break;
609                 }
610                 if (data->u.runstate.state > RUNSTATE_offline) {
611                         r = -EINVAL;
612                         break;
613                 }
614
615                 kvm_xen_update_runstate(vcpu, data->u.runstate.state);
616                 r = 0;
617                 break;
618
619         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
620                 if (!sched_info_on()) {
621                         r = -EOPNOTSUPP;
622                         break;
623                 }
624                 if (data->u.runstate.state > RUNSTATE_offline) {
625                         r = -EINVAL;
626                         break;
627                 }
628                 if (data->u.runstate.state_entry_time !=
629                     (data->u.runstate.time_running +
630                      data->u.runstate.time_runnable +
631                      data->u.runstate.time_blocked +
632                      data->u.runstate.time_offline)) {
633                         r = -EINVAL;
634                         break;
635                 }
636                 if (get_kvmclock_ns(vcpu->kvm) <
637                     data->u.runstate.state_entry_time) {
638                         r = -EINVAL;
639                         break;
640                 }
641
642                 vcpu->arch.xen.current_runstate = data->u.runstate.state;
643                 vcpu->arch.xen.runstate_entry_time =
644                         data->u.runstate.state_entry_time;
645                 vcpu->arch.xen.runstate_times[RUNSTATE_running] =
646                         data->u.runstate.time_running;
647                 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
648                         data->u.runstate.time_runnable;
649                 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
650                         data->u.runstate.time_blocked;
651                 vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
652                         data->u.runstate.time_offline;
653                 vcpu->arch.xen.last_steal = current->sched_info.run_delay;
654                 r = 0;
655                 break;
656
657         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
658                 if (!sched_info_on()) {
659                         r = -EOPNOTSUPP;
660                         break;
661                 }
662                 if (data->u.runstate.state > RUNSTATE_offline &&
663                     data->u.runstate.state != (u64)-1) {
664                         r = -EINVAL;
665                         break;
666                 }
667                 /* The adjustment must add up */
668                 if (data->u.runstate.state_entry_time !=
669                     (data->u.runstate.time_running +
670                      data->u.runstate.time_runnable +
671                      data->u.runstate.time_blocked +
672                      data->u.runstate.time_offline)) {
673                         r = -EINVAL;
674                         break;
675                 }
676
677                 if (get_kvmclock_ns(vcpu->kvm) <
678                     (vcpu->arch.xen.runstate_entry_time +
679                      data->u.runstate.state_entry_time)) {
680                         r = -EINVAL;
681                         break;
682                 }
683
684                 vcpu->arch.xen.runstate_entry_time +=
685                         data->u.runstate.state_entry_time;
686                 vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
687                         data->u.runstate.time_running;
688                 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
689                         data->u.runstate.time_runnable;
690                 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
691                         data->u.runstate.time_blocked;
692                 vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
693                         data->u.runstate.time_offline;
694
695                 if (data->u.runstate.state <= RUNSTATE_offline)
696                         kvm_xen_update_runstate(vcpu, data->u.runstate.state);
697                 r = 0;
698                 break;
699
700         case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
701                 if (data->u.vcpu_id >= KVM_MAX_VCPUS)
702                         r = -EINVAL;
703                 else {
704                         vcpu->arch.xen.vcpu_id = data->u.vcpu_id;
705                         r = 0;
706                 }
707                 break;
708
709         case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
710                 if (data->u.timer.port) {
711                         if (data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) {
712                                 r = -EINVAL;
713                                 break;
714                         }
715                         vcpu->arch.xen.timer_virq = data->u.timer.port;
716
717                         if (!vcpu->arch.xen.timer.function)
718                                 kvm_xen_init_timer(vcpu);
719
720                         /* Restart the timer if it's set */
721                         if (data->u.timer.expires_ns)
722                                 kvm_xen_start_timer(vcpu, data->u.timer.expires_ns,
723                                                     data->u.timer.expires_ns -
724                                                     get_kvmclock_ns(vcpu->kvm));
725                 } else if (kvm_xen_timer_enabled(vcpu)) {
726                         kvm_xen_stop_timer(vcpu);
727                         vcpu->arch.xen.timer_virq = 0;
728                 }
729
730                 r = 0;
731                 break;
732
733         case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
734                 if (data->u.vector && data->u.vector < 0x10)
735                         r = -EINVAL;
736                 else {
737                         vcpu->arch.xen.upcall_vector = data->u.vector;
738                         r = 0;
739                 }
740                 break;
741
742         default:
743                 break;
744         }
745
746         srcu_read_unlock(&vcpu->kvm->srcu, idx);
747         mutex_unlock(&vcpu->kvm->lock);
748         return r;
749 }
750
751 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
752 {
753         int r = -ENOENT;
754
755         mutex_lock(&vcpu->kvm->lock);
756
757         switch (data->type) {
758         case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
759                 if (vcpu->arch.xen.vcpu_info_cache.active)
760                         data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
761                 else
762                         data->u.gpa = GPA_INVALID;
763                 r = 0;
764                 break;
765
766         case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
767                 if (vcpu->arch.xen.vcpu_time_info_cache.active)
768                         data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
769                 else
770                         data->u.gpa = GPA_INVALID;
771                 r = 0;
772                 break;
773
774         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
775                 if (!sched_info_on()) {
776                         r = -EOPNOTSUPP;
777                         break;
778                 }
779                 if (vcpu->arch.xen.runstate_cache.active) {
780                         data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
781                         r = 0;
782                 }
783                 break;
784
785         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
786                 if (!sched_info_on()) {
787                         r = -EOPNOTSUPP;
788                         break;
789                 }
790                 data->u.runstate.state = vcpu->arch.xen.current_runstate;
791                 r = 0;
792                 break;
793
794         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
795                 if (!sched_info_on()) {
796                         r = -EOPNOTSUPP;
797                         break;
798                 }
799                 data->u.runstate.state = vcpu->arch.xen.current_runstate;
800                 data->u.runstate.state_entry_time =
801                         vcpu->arch.xen.runstate_entry_time;
802                 data->u.runstate.time_running =
803                         vcpu->arch.xen.runstate_times[RUNSTATE_running];
804                 data->u.runstate.time_runnable =
805                         vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
806                 data->u.runstate.time_blocked =
807                         vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
808                 data->u.runstate.time_offline =
809                         vcpu->arch.xen.runstate_times[RUNSTATE_offline];
810                 r = 0;
811                 break;
812
813         case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
814                 r = -EINVAL;
815                 break;
816
817         case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
818                 data->u.vcpu_id = vcpu->arch.xen.vcpu_id;
819                 r = 0;
820                 break;
821
822         case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
823                 data->u.timer.port = vcpu->arch.xen.timer_virq;
824                 data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
825                 data->u.timer.expires_ns = vcpu->arch.xen.timer_expires;
826                 r = 0;
827                 break;
828
829         case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
830                 data->u.vector = vcpu->arch.xen.upcall_vector;
831                 r = 0;
832                 break;
833
834         default:
835                 break;
836         }
837
838         mutex_unlock(&vcpu->kvm->lock);
839         return r;
840 }
841
842 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
843 {
844         struct kvm *kvm = vcpu->kvm;
845         u32 page_num = data & ~PAGE_MASK;
846         u64 page_addr = data & PAGE_MASK;
847         bool lm = is_long_mode(vcpu);
848
849         /* Latch long_mode for shared_info pages etc. */
850         vcpu->kvm->arch.xen.long_mode = lm;
851
852         /*
853          * If Xen hypercall intercept is enabled, fill the hypercall
854          * page with VMCALL/VMMCALL instructions since that's what
855          * we catch. Else the VMM has provided the hypercall pages
856          * with instructions of its own choosing, so use those.
857          */
858         if (kvm_xen_hypercall_enabled(kvm)) {
859                 u8 instructions[32];
860                 int i;
861
862                 if (page_num)
863                         return 1;
864
865                 /* mov imm32, %eax */
866                 instructions[0] = 0xb8;
867
868                 /* vmcall / vmmcall */
869                 static_call(kvm_x86_patch_hypercall)(vcpu, instructions + 5);
870
871                 /* ret */
872                 instructions[8] = 0xc3;
873
874                 /* int3 to pad */
875                 memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
876
877                 for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
878                         *(u32 *)&instructions[1] = i;
879                         if (kvm_vcpu_write_guest(vcpu,
880                                                  page_addr + (i * sizeof(instructions)),
881                                                  instructions, sizeof(instructions)))
882                                 return 1;
883                 }
884         } else {
885                 /*
886                  * Note, truncation is a non-issue as 'lm' is guaranteed to be
887                  * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
888                  */
889                 hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
890                                      : kvm->arch.xen_hvm_config.blob_addr_32;
891                 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
892                                   : kvm->arch.xen_hvm_config.blob_size_32;
893                 u8 *page;
894
895                 if (page_num >= blob_size)
896                         return 1;
897
898                 blob_addr += page_num * PAGE_SIZE;
899
900                 page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
901                 if (IS_ERR(page))
902                         return PTR_ERR(page);
903
904                 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
905                         kfree(page);
906                         return 1;
907                 }
908         }
909         return 0;
910 }
911
912 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
913 {
914         /* Only some feature flags need to be *enabled* by userspace */
915         u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
916                 KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
917
918         if (xhc->flags & ~permitted_flags)
919                 return -EINVAL;
920
921         /*
922          * With hypercall interception the kernel generates its own
923          * hypercall page so it must not be provided.
924          */
925         if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
926             (xhc->blob_addr_32 || xhc->blob_addr_64 ||
927              xhc->blob_size_32 || xhc->blob_size_64))
928                 return -EINVAL;
929
930         mutex_lock(&kvm->lock);
931
932         if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
933                 static_branch_inc(&kvm_xen_enabled.key);
934         else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
935                 static_branch_slow_dec_deferred(&kvm_xen_enabled);
936
937         memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
938
939         mutex_unlock(&kvm->lock);
940         return 0;
941 }
942
943 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
944 {
945         kvm_rax_write(vcpu, result);
946         return kvm_skip_emulated_instruction(vcpu);
947 }
948
949 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
950 {
951         struct kvm_run *run = vcpu->run;
952
953         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
954                 return 1;
955
956         return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
957 }
958
959 static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports,
960                                evtchn_port_t *ports)
961 {
962         struct kvm *kvm = vcpu->kvm;
963         struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
964         unsigned long *pending_bits;
965         unsigned long flags;
966         bool ret = true;
967         int idx, i;
968
969         read_lock_irqsave(&gpc->lock, flags);
970         idx = srcu_read_lock(&kvm->srcu);
971         if (!kvm_gfn_to_pfn_cache_check(kvm, gpc, gpc->gpa, PAGE_SIZE))
972                 goto out_rcu;
973
974         ret = false;
975         if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
976                 struct shared_info *shinfo = gpc->khva;
977                 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
978         } else {
979                 struct compat_shared_info *shinfo = gpc->khva;
980                 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
981         }
982
983         for (i = 0; i < nr_ports; i++) {
984                 if (test_bit(ports[i], pending_bits)) {
985                         ret = true;
986                         break;
987                 }
988         }
989
990  out_rcu:
991         srcu_read_unlock(&kvm->srcu, idx);
992         read_unlock_irqrestore(&gpc->lock, flags);
993
994         return ret;
995 }
996
997 static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode,
998                                  u64 param, u64 *r)
999 {
1000         int idx, i;
1001         struct sched_poll sched_poll;
1002         evtchn_port_t port, *ports;
1003         gpa_t gpa;
1004
1005         if (!longmode || !lapic_in_kernel(vcpu) ||
1006             !(vcpu->kvm->arch.xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND))
1007                 return false;
1008
1009         idx = srcu_read_lock(&vcpu->kvm->srcu);
1010         gpa = kvm_mmu_gva_to_gpa_system(vcpu, param, NULL);
1011         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1012
1013         if (!gpa || kvm_vcpu_read_guest(vcpu, gpa, &sched_poll,
1014                                         sizeof(sched_poll))) {
1015                 *r = -EFAULT;
1016                 return true;
1017         }
1018
1019         if (unlikely(sched_poll.nr_ports > 1)) {
1020                 /* Xen (unofficially) limits number of pollers to 128 */
1021                 if (sched_poll.nr_ports > 128) {
1022                         *r = -EINVAL;
1023                         return true;
1024                 }
1025
1026                 ports = kmalloc_array(sched_poll.nr_ports,
1027                                       sizeof(*ports), GFP_KERNEL);
1028                 if (!ports) {
1029                         *r = -ENOMEM;
1030                         return true;
1031                 }
1032         } else
1033                 ports = &port;
1034
1035         for (i = 0; i < sched_poll.nr_ports; i++) {
1036                 idx = srcu_read_lock(&vcpu->kvm->srcu);
1037                 gpa = kvm_mmu_gva_to_gpa_system(vcpu,
1038                                                 (gva_t)(sched_poll.ports + i),
1039                                                 NULL);
1040                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1041
1042                 if (!gpa || kvm_vcpu_read_guest(vcpu, gpa,
1043                                                 &ports[i], sizeof(port))) {
1044                         *r = -EFAULT;
1045                         goto out;
1046                 }
1047         }
1048
1049         if (sched_poll.nr_ports == 1)
1050                 vcpu->arch.xen.poll_evtchn = port;
1051         else
1052                 vcpu->arch.xen.poll_evtchn = -1;
1053
1054         set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1055
1056         if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) {
1057                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
1058
1059                 if (sched_poll.timeout)
1060                         mod_timer(&vcpu->arch.xen.poll_timer,
1061                                   jiffies + nsecs_to_jiffies(sched_poll.timeout));
1062
1063                 kvm_vcpu_halt(vcpu);
1064
1065                 if (sched_poll.timeout)
1066                         del_timer(&vcpu->arch.xen.poll_timer);
1067
1068                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1069                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
1070         }
1071
1072         vcpu->arch.xen.poll_evtchn = 0;
1073         *r = 0;
1074 out:
1075         /* Really, this is only needed in case of timeout */
1076         clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1077
1078         if (unlikely(sched_poll.nr_ports > 1))
1079                 kfree(ports);
1080         return true;
1081 }
1082
1083 static void cancel_evtchn_poll(struct timer_list *t)
1084 {
1085         struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.xen.poll_timer);
1086
1087         kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1088         kvm_vcpu_kick(vcpu);
1089 }
1090
1091 static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode,
1092                                    int cmd, u64 param, u64 *r)
1093 {
1094         switch (cmd) {
1095         case SCHEDOP_poll:
1096                 if (kvm_xen_schedop_poll(vcpu, longmode, param, r))
1097                         return true;
1098                 fallthrough;
1099         case SCHEDOP_yield:
1100                 kvm_vcpu_on_spin(vcpu, true);
1101                 *r = 0;
1102                 return true;
1103         default:
1104                 break;
1105         }
1106
1107         return false;
1108 }
1109
1110 struct compat_vcpu_set_singleshot_timer {
1111     uint64_t timeout_abs_ns;
1112     uint32_t flags;
1113 } __attribute__((packed));
1114
1115 static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd,
1116                                   int vcpu_id, u64 param, u64 *r)
1117 {
1118         struct vcpu_set_singleshot_timer oneshot;
1119         s64 delta;
1120         gpa_t gpa;
1121         int idx;
1122
1123         if (!kvm_xen_timer_enabled(vcpu))
1124                 return false;
1125
1126         switch (cmd) {
1127         case VCPUOP_set_singleshot_timer:
1128                 if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1129                         *r = -EINVAL;
1130                         return true;
1131                 }
1132                 idx = srcu_read_lock(&vcpu->kvm->srcu);
1133                 gpa = kvm_mmu_gva_to_gpa_system(vcpu, param, NULL);
1134                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1135
1136                 /*
1137                  * The only difference for 32-bit compat is the 4 bytes of
1138                  * padding after the interesting part of the structure. So
1139                  * for a faithful emulation of Xen we have to *try* to copy
1140                  * the padding and return -EFAULT if we can't. Otherwise we
1141                  * might as well just have copied the 12-byte 32-bit struct.
1142                  */
1143                 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1144                              offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1145                 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1146                              sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1147                 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) !=
1148                              offsetof(struct vcpu_set_singleshot_timer, flags));
1149                 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) !=
1150                              sizeof_field(struct vcpu_set_singleshot_timer, flags));
1151
1152                 if (!gpa ||
1153                     kvm_vcpu_read_guest(vcpu, gpa, &oneshot, longmode ? sizeof(oneshot) :
1154                                         sizeof(struct compat_vcpu_set_singleshot_timer))) {
1155                         *r = -EFAULT;
1156                         return true;
1157                 }
1158
1159                 delta = oneshot.timeout_abs_ns - get_kvmclock_ns(vcpu->kvm);
1160                 if ((oneshot.flags & VCPU_SSHOTTMR_future) && delta < 0) {
1161                         *r = -ETIME;
1162                         return true;
1163                 }
1164
1165                 kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, delta);
1166                 *r = 0;
1167                 return true;
1168
1169         case VCPUOP_stop_singleshot_timer:
1170                 if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1171                         *r = -EINVAL;
1172                         return true;
1173                 }
1174                 kvm_xen_stop_timer(vcpu);
1175                 *r = 0;
1176                 return true;
1177         }
1178
1179         return false;
1180 }
1181
1182 static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout,
1183                                        u64 *r)
1184 {
1185         if (!kvm_xen_timer_enabled(vcpu))
1186                 return false;
1187
1188         if (timeout) {
1189                 uint64_t guest_now = get_kvmclock_ns(vcpu->kvm);
1190                 int64_t delta = timeout - guest_now;
1191
1192                 /* Xen has a 'Linux workaround' in do_set_timer_op() which
1193                  * checks for negative absolute timeout values (caused by
1194                  * integer overflow), and for values about 13 days in the
1195                  * future (2^50ns) which would be caused by jiffies
1196                  * overflow. For those cases, it sets the timeout 100ms in
1197                  * the future (not *too* soon, since if a guest really did
1198                  * set a long timeout on purpose we don't want to keep
1199                  * churning CPU time by waking it up).
1200                  */
1201                 if (unlikely((int64_t)timeout < 0 ||
1202                              (delta > 0 && (uint32_t) (delta >> 50) != 0))) {
1203                         delta = 100 * NSEC_PER_MSEC;
1204                         timeout = guest_now + delta;
1205                 }
1206
1207                 kvm_xen_start_timer(vcpu, timeout, delta);
1208         } else {
1209                 kvm_xen_stop_timer(vcpu);
1210         }
1211
1212         *r = 0;
1213         return true;
1214 }
1215
1216 int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
1217 {
1218         bool longmode;
1219         u64 input, params[6], r = -ENOSYS;
1220         bool handled = false;
1221
1222         input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
1223
1224         /* Hyper-V hypercalls get bit 31 set in EAX */
1225         if ((input & 0x80000000) &&
1226             kvm_hv_hypercall_enabled(vcpu))
1227                 return kvm_hv_hypercall(vcpu);
1228
1229         longmode = is_64_bit_hypercall(vcpu);
1230         if (!longmode) {
1231                 params[0] = (u32)kvm_rbx_read(vcpu);
1232                 params[1] = (u32)kvm_rcx_read(vcpu);
1233                 params[2] = (u32)kvm_rdx_read(vcpu);
1234                 params[3] = (u32)kvm_rsi_read(vcpu);
1235                 params[4] = (u32)kvm_rdi_read(vcpu);
1236                 params[5] = (u32)kvm_rbp_read(vcpu);
1237         }
1238 #ifdef CONFIG_X86_64
1239         else {
1240                 params[0] = (u64)kvm_rdi_read(vcpu);
1241                 params[1] = (u64)kvm_rsi_read(vcpu);
1242                 params[2] = (u64)kvm_rdx_read(vcpu);
1243                 params[3] = (u64)kvm_r10_read(vcpu);
1244                 params[4] = (u64)kvm_r8_read(vcpu);
1245                 params[5] = (u64)kvm_r9_read(vcpu);
1246         }
1247 #endif
1248         trace_kvm_xen_hypercall(input, params[0], params[1], params[2],
1249                                 params[3], params[4], params[5]);
1250
1251         switch (input) {
1252         case __HYPERVISOR_xen_version:
1253                 if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) {
1254                         r = vcpu->kvm->arch.xen.xen_version;
1255                         handled = true;
1256                 }
1257                 break;
1258         case __HYPERVISOR_event_channel_op:
1259                 if (params[0] == EVTCHNOP_send)
1260                         handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r);
1261                 break;
1262         case __HYPERVISOR_sched_op:
1263                 handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0],
1264                                                  params[1], &r);
1265                 break;
1266         case __HYPERVISOR_vcpu_op:
1267                 handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1],
1268                                                 params[2], &r);
1269                 break;
1270         case __HYPERVISOR_set_timer_op: {
1271                 u64 timeout = params[0];
1272                 /* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */
1273                 if (!longmode)
1274                         timeout |= params[1] << 32;
1275                 handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r);
1276                 break;
1277         }
1278         default:
1279                 break;
1280         }
1281
1282         if (handled)
1283                 return kvm_xen_hypercall_set_result(vcpu, r);
1284
1285         vcpu->run->exit_reason = KVM_EXIT_XEN;
1286         vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
1287         vcpu->run->xen.u.hcall.longmode = longmode;
1288         vcpu->run->xen.u.hcall.cpl = static_call(kvm_x86_get_cpl)(vcpu);
1289         vcpu->run->xen.u.hcall.input = input;
1290         vcpu->run->xen.u.hcall.params[0] = params[0];
1291         vcpu->run->xen.u.hcall.params[1] = params[1];
1292         vcpu->run->xen.u.hcall.params[2] = params[2];
1293         vcpu->run->xen.u.hcall.params[3] = params[3];
1294         vcpu->run->xen.u.hcall.params[4] = params[4];
1295         vcpu->run->xen.u.hcall.params[5] = params[5];
1296         vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
1297         vcpu->arch.complete_userspace_io =
1298                 kvm_xen_hypercall_complete_userspace;
1299
1300         return 0;
1301 }
1302
1303 static inline int max_evtchn_port(struct kvm *kvm)
1304 {
1305         if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
1306                 return EVTCHN_2L_NR_CHANNELS;
1307         else
1308                 return COMPAT_EVTCHN_2L_NR_CHANNELS;
1309 }
1310
1311 static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port)
1312 {
1313         int poll_evtchn = vcpu->arch.xen.poll_evtchn;
1314
1315         if ((poll_evtchn == port || poll_evtchn == -1) &&
1316             test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) {
1317                 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1318                 kvm_vcpu_kick(vcpu);
1319         }
1320 }
1321
1322 /*
1323  * The return value from this function is propagated to kvm_set_irq() API,
1324  * so it returns:
1325  *  < 0   Interrupt was ignored (masked or not delivered for other reasons)
1326  *  = 0   Interrupt was coalesced (previous irq is still pending)
1327  *  > 0   Number of CPUs interrupt was delivered to
1328  *
1329  * It is also called directly from kvm_arch_set_irq_inatomic(), where the
1330  * only check on its return value is a comparison with -EWOULDBLOCK'.
1331  */
1332 int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1333 {
1334         struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1335         struct kvm_vcpu *vcpu;
1336         unsigned long *pending_bits, *mask_bits;
1337         unsigned long flags;
1338         int port_word_bit;
1339         bool kick_vcpu = false;
1340         int vcpu_idx, idx, rc;
1341
1342         vcpu_idx = READ_ONCE(xe->vcpu_idx);
1343         if (vcpu_idx >= 0)
1344                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1345         else {
1346                 vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id);
1347                 if (!vcpu)
1348                         return -EINVAL;
1349                 WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx);
1350         }
1351
1352         if (!vcpu->arch.xen.vcpu_info_cache.active)
1353                 return -EINVAL;
1354
1355         if (xe->port >= max_evtchn_port(kvm))
1356                 return -EINVAL;
1357
1358         rc = -EWOULDBLOCK;
1359
1360         idx = srcu_read_lock(&kvm->srcu);
1361
1362         read_lock_irqsave(&gpc->lock, flags);
1363         if (!kvm_gfn_to_pfn_cache_check(kvm, gpc, gpc->gpa, PAGE_SIZE))
1364                 goto out_rcu;
1365
1366         if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1367                 struct shared_info *shinfo = gpc->khva;
1368                 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1369                 mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1370                 port_word_bit = xe->port / 64;
1371         } else {
1372                 struct compat_shared_info *shinfo = gpc->khva;
1373                 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1374                 mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1375                 port_word_bit = xe->port / 32;
1376         }
1377
1378         /*
1379          * If this port wasn't already set, and if it isn't masked, then
1380          * we try to set the corresponding bit in the in-kernel shadow of
1381          * evtchn_pending_sel for the target vCPU. And if *that* wasn't
1382          * already set, then we kick the vCPU in question to write to the
1383          * *real* evtchn_pending_sel in its own guest vcpu_info struct.
1384          */
1385         if (test_and_set_bit(xe->port, pending_bits)) {
1386                 rc = 0; /* It was already raised */
1387         } else if (test_bit(xe->port, mask_bits)) {
1388                 rc = -ENOTCONN; /* Masked */
1389                 kvm_xen_check_poller(vcpu, xe->port);
1390         } else {
1391                 rc = 1; /* Delivered to the bitmap in shared_info. */
1392                 /* Now switch to the vCPU's vcpu_info to set the index and pending_sel */
1393                 read_unlock_irqrestore(&gpc->lock, flags);
1394                 gpc = &vcpu->arch.xen.vcpu_info_cache;
1395
1396                 read_lock_irqsave(&gpc->lock, flags);
1397                 if (!kvm_gfn_to_pfn_cache_check(kvm, gpc, gpc->gpa, sizeof(struct vcpu_info))) {
1398                         /*
1399                          * Could not access the vcpu_info. Set the bit in-kernel
1400                          * and prod the vCPU to deliver it for itself.
1401                          */
1402                         if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel))
1403                                 kick_vcpu = true;
1404                         goto out_rcu;
1405                 }
1406
1407                 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1408                         struct vcpu_info *vcpu_info = gpc->khva;
1409                         if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) {
1410                                 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1411                                 kick_vcpu = true;
1412                         }
1413                 } else {
1414                         struct compat_vcpu_info *vcpu_info = gpc->khva;
1415                         if (!test_and_set_bit(port_word_bit,
1416                                               (unsigned long *)&vcpu_info->evtchn_pending_sel)) {
1417                                 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1418                                 kick_vcpu = true;
1419                         }
1420                 }
1421
1422                 /* For the per-vCPU lapic vector, deliver it as MSI. */
1423                 if (kick_vcpu && vcpu->arch.xen.upcall_vector) {
1424                         kvm_xen_inject_vcpu_vector(vcpu);
1425                         kick_vcpu = false;
1426                 }
1427         }
1428
1429  out_rcu:
1430         read_unlock_irqrestore(&gpc->lock, flags);
1431         srcu_read_unlock(&kvm->srcu, idx);
1432
1433         if (kick_vcpu) {
1434                 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1435                 kvm_vcpu_kick(vcpu);
1436         }
1437
1438         return rc;
1439 }
1440
1441 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1442 {
1443         bool mm_borrowed = false;
1444         int rc;
1445
1446         rc = kvm_xen_set_evtchn_fast(xe, kvm);
1447         if (rc != -EWOULDBLOCK)
1448                 return rc;
1449
1450         if (current->mm != kvm->mm) {
1451                 /*
1452                  * If not on a thread which already belongs to this KVM,
1453                  * we'd better be in the irqfd workqueue.
1454                  */
1455                 if (WARN_ON_ONCE(current->mm))
1456                         return -EINVAL;
1457
1458                 kthread_use_mm(kvm->mm);
1459                 mm_borrowed = true;
1460         }
1461
1462         /*
1463          * For the irqfd workqueue, using the main kvm->lock mutex is
1464          * fine since this function is invoked from kvm_set_irq() with
1465          * no other lock held, no srcu. In future if it will be called
1466          * directly from a vCPU thread (e.g. on hypercall for an IPI)
1467          * then it may need to switch to using a leaf-node mutex for
1468          * serializing the shared_info mapping.
1469          */
1470         mutex_lock(&kvm->lock);
1471
1472         /*
1473          * It is theoretically possible for the page to be unmapped
1474          * and the MMU notifier to invalidate the shared_info before
1475          * we even get to use it. In that case, this looks like an
1476          * infinite loop. It was tempting to do it via the userspace
1477          * HVA instead... but that just *hides* the fact that it's
1478          * an infinite loop, because if a fault occurs and it waits
1479          * for the page to come back, it can *still* immediately
1480          * fault and have to wait again, repeatedly.
1481          *
1482          * Conversely, the page could also have been reinstated by
1483          * another thread before we even obtain the mutex above, so
1484          * check again *first* before remapping it.
1485          */
1486         do {
1487                 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1488                 int idx;
1489
1490                 rc = kvm_xen_set_evtchn_fast(xe, kvm);
1491                 if (rc != -EWOULDBLOCK)
1492                         break;
1493
1494                 idx = srcu_read_lock(&kvm->srcu);
1495                 rc = kvm_gfn_to_pfn_cache_refresh(kvm, gpc, gpc->gpa, PAGE_SIZE);
1496                 srcu_read_unlock(&kvm->srcu, idx);
1497         } while(!rc);
1498
1499         mutex_unlock(&kvm->lock);
1500
1501         if (mm_borrowed)
1502                 kthread_unuse_mm(kvm->mm);
1503
1504         return rc;
1505 }
1506
1507 /* This is the version called from kvm_set_irq() as the .set function */
1508 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
1509                          int irq_source_id, int level, bool line_status)
1510 {
1511         if (!level)
1512                 return -EINVAL;
1513
1514         return kvm_xen_set_evtchn(&e->xen_evtchn, kvm);
1515 }
1516
1517 /*
1518  * Set up an event channel interrupt from the KVM IRQ routing table.
1519  * Used for e.g. PIRQ from passed through physical devices.
1520  */
1521 int kvm_xen_setup_evtchn(struct kvm *kvm,
1522                          struct kvm_kernel_irq_routing_entry *e,
1523                          const struct kvm_irq_routing_entry *ue)
1524
1525 {
1526         struct kvm_vcpu *vcpu;
1527
1528         if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
1529                 return -EINVAL;
1530
1531         /* We only support 2 level event channels for now */
1532         if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1533                 return -EINVAL;
1534
1535         /*
1536          * Xen gives us interesting mappings from vCPU index to APIC ID,
1537          * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs
1538          * to find it. Do that once at setup time, instead of every time.
1539          * But beware that on live update / live migration, the routing
1540          * table might be reinstated before the vCPU threads have finished
1541          * recreating their vCPUs.
1542          */
1543         vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu);
1544         if (vcpu)
1545                 e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx;
1546         else
1547                 e->xen_evtchn.vcpu_idx = -1;
1548
1549         e->xen_evtchn.port = ue->u.xen_evtchn.port;
1550         e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu;
1551         e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
1552         e->set = evtchn_set_fn;
1553
1554         return 0;
1555 }
1556
1557 /*
1558  * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl.
1559  */
1560 int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe)
1561 {
1562         struct kvm_xen_evtchn e;
1563         int ret;
1564
1565         if (!uxe->port || uxe->port >= max_evtchn_port(kvm))
1566                 return -EINVAL;
1567
1568         /* We only support 2 level event channels for now */
1569         if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1570                 return -EINVAL;
1571
1572         e.port = uxe->port;
1573         e.vcpu_id = uxe->vcpu;
1574         e.vcpu_idx = -1;
1575         e.priority = uxe->priority;
1576
1577         ret = kvm_xen_set_evtchn(&e, kvm);
1578
1579         /*
1580          * None of that 'return 1 if it actually got delivered' nonsense.
1581          * We don't care if it was masked (-ENOTCONN) either.
1582          */
1583         if (ret > 0 || ret == -ENOTCONN)
1584                 ret = 0;
1585
1586         return ret;
1587 }
1588
1589 /*
1590  * Support for *outbound* event channel events via the EVTCHNOP_send hypercall.
1591  */
1592 struct evtchnfd {
1593         u32 send_port;
1594         u32 type;
1595         union {
1596                 struct kvm_xen_evtchn port;
1597                 struct {
1598                         u32 port; /* zero */
1599                         struct eventfd_ctx *ctx;
1600                 } eventfd;
1601         } deliver;
1602 };
1603
1604 /*
1605  * Update target vCPU or priority for a registered sending channel.
1606  */
1607 static int kvm_xen_eventfd_update(struct kvm *kvm,
1608                                   struct kvm_xen_hvm_attr *data)
1609 {
1610         u32 port = data->u.evtchn.send_port;
1611         struct evtchnfd *evtchnfd;
1612
1613         if (!port || port >= max_evtchn_port(kvm))
1614                 return -EINVAL;
1615
1616         mutex_lock(&kvm->lock);
1617         evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port);
1618         mutex_unlock(&kvm->lock);
1619
1620         if (!evtchnfd)
1621                 return -ENOENT;
1622
1623         /* For an UPDATE, nothing may change except the priority/vcpu */
1624         if (evtchnfd->type != data->u.evtchn.type)
1625                 return -EINVAL;
1626
1627         /*
1628          * Port cannot change, and if it's zero that was an eventfd
1629          * which can't be changed either.
1630          */
1631         if (!evtchnfd->deliver.port.port ||
1632             evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port)
1633                 return -EINVAL;
1634
1635         /* We only support 2 level event channels for now */
1636         if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1637                 return -EINVAL;
1638
1639         mutex_lock(&kvm->lock);
1640         evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
1641         if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) {
1642                 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
1643                 evtchnfd->deliver.port.vcpu_idx = -1;
1644         }
1645         mutex_unlock(&kvm->lock);
1646         return 0;
1647 }
1648
1649 /*
1650  * Configure the target (eventfd or local port delivery) for sending on
1651  * a given event channel.
1652  */
1653 static int kvm_xen_eventfd_assign(struct kvm *kvm,
1654                                   struct kvm_xen_hvm_attr *data)
1655 {
1656         u32 port = data->u.evtchn.send_port;
1657         struct eventfd_ctx *eventfd = NULL;
1658         struct evtchnfd *evtchnfd = NULL;
1659         int ret = -EINVAL;
1660
1661         if (!port || port >= max_evtchn_port(kvm))
1662                 return -EINVAL;
1663
1664         evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL);
1665         if (!evtchnfd)
1666                 return -ENOMEM;
1667
1668         switch(data->u.evtchn.type) {
1669         case EVTCHNSTAT_ipi:
1670                 /* IPI  must map back to the same port# */
1671                 if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port)
1672                         goto out; /* -EINVAL */
1673                 break;
1674
1675         case EVTCHNSTAT_interdomain:
1676                 if (data->u.evtchn.deliver.port.port) {
1677                         if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm))
1678                                 goto out; /* -EINVAL */
1679                 } else {
1680                         eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd);
1681                         if (IS_ERR(eventfd)) {
1682                                 ret = PTR_ERR(eventfd);
1683                                 goto out;
1684                         }
1685                 }
1686                 break;
1687
1688         case EVTCHNSTAT_virq:
1689         case EVTCHNSTAT_closed:
1690         case EVTCHNSTAT_unbound:
1691         case EVTCHNSTAT_pirq:
1692         default: /* Unknown event channel type */
1693                 goto out; /* -EINVAL */
1694         }
1695
1696         evtchnfd->send_port = data->u.evtchn.send_port;
1697         evtchnfd->type = data->u.evtchn.type;
1698         if (eventfd) {
1699                 evtchnfd->deliver.eventfd.ctx = eventfd;
1700         } else {
1701                 /* We only support 2 level event channels for now */
1702                 if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1703                         goto out; /* -EINVAL; */
1704
1705                 evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port;
1706                 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
1707                 evtchnfd->deliver.port.vcpu_idx = -1;
1708                 evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
1709         }
1710
1711         mutex_lock(&kvm->lock);
1712         ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1,
1713                         GFP_KERNEL);
1714         mutex_unlock(&kvm->lock);
1715         if (ret >= 0)
1716                 return 0;
1717
1718         if (ret == -ENOSPC)
1719                 ret = -EEXIST;
1720 out:
1721         if (eventfd)
1722                 eventfd_ctx_put(eventfd);
1723         kfree(evtchnfd);
1724         return ret;
1725 }
1726
1727 static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port)
1728 {
1729         struct evtchnfd *evtchnfd;
1730
1731         mutex_lock(&kvm->lock);
1732         evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port);
1733         mutex_unlock(&kvm->lock);
1734
1735         if (!evtchnfd)
1736                 return -ENOENT;
1737
1738         if (kvm)
1739                 synchronize_srcu(&kvm->srcu);
1740         if (!evtchnfd->deliver.port.port)
1741                 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
1742         kfree(evtchnfd);
1743         return 0;
1744 }
1745
1746 static int kvm_xen_eventfd_reset(struct kvm *kvm)
1747 {
1748         struct evtchnfd *evtchnfd;
1749         int i;
1750
1751         mutex_lock(&kvm->lock);
1752         idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
1753                 idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port);
1754                 synchronize_srcu(&kvm->srcu);
1755                 if (!evtchnfd->deliver.port.port)
1756                         eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
1757                 kfree(evtchnfd);
1758         }
1759         mutex_unlock(&kvm->lock);
1760
1761         return 0;
1762 }
1763
1764 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
1765 {
1766         u32 port = data->u.evtchn.send_port;
1767
1768         if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET)
1769                 return kvm_xen_eventfd_reset(kvm);
1770
1771         if (!port || port >= max_evtchn_port(kvm))
1772                 return -EINVAL;
1773
1774         if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN)
1775                 return kvm_xen_eventfd_deassign(kvm, port);
1776         if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE)
1777                 return kvm_xen_eventfd_update(kvm, data);
1778         if (data->u.evtchn.flags)
1779                 return -EINVAL;
1780
1781         return kvm_xen_eventfd_assign(kvm, data);
1782 }
1783
1784 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r)
1785 {
1786         struct evtchnfd *evtchnfd;
1787         struct evtchn_send send;
1788         gpa_t gpa;
1789         int idx;
1790
1791         idx = srcu_read_lock(&vcpu->kvm->srcu);
1792         gpa = kvm_mmu_gva_to_gpa_system(vcpu, param, NULL);
1793         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1794
1795         if (!gpa || kvm_vcpu_read_guest(vcpu, gpa, &send, sizeof(send))) {
1796                 *r = -EFAULT;
1797                 return true;
1798         }
1799
1800         /* The evtchn_ports idr is protected by vcpu->kvm->srcu */
1801         evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port);
1802         if (!evtchnfd)
1803                 return false;
1804
1805         if (evtchnfd->deliver.port.port) {
1806                 int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm);
1807                 if (ret < 0 && ret != -ENOTCONN)
1808                         return false;
1809         } else {
1810                 eventfd_signal(evtchnfd->deliver.eventfd.ctx, 1);
1811         }
1812
1813         *r = 0;
1814         return true;
1815 }
1816
1817 void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu)
1818 {
1819         vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx;
1820         vcpu->arch.xen.poll_evtchn = 0;
1821         timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0);
1822 }
1823
1824 void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu)
1825 {
1826         if (kvm_xen_timer_enabled(vcpu))
1827                 kvm_xen_stop_timer(vcpu);
1828
1829         kvm_gfn_to_pfn_cache_destroy(vcpu->kvm,
1830                                      &vcpu->arch.xen.runstate_cache);
1831         kvm_gfn_to_pfn_cache_destroy(vcpu->kvm,
1832                                      &vcpu->arch.xen.vcpu_info_cache);
1833         kvm_gfn_to_pfn_cache_destroy(vcpu->kvm,
1834                                      &vcpu->arch.xen.vcpu_time_info_cache);
1835         del_timer_sync(&vcpu->arch.xen.poll_timer);
1836 }
1837
1838 void kvm_xen_init_vm(struct kvm *kvm)
1839 {
1840         idr_init(&kvm->arch.xen.evtchn_ports);
1841 }
1842
1843 void kvm_xen_destroy_vm(struct kvm *kvm)
1844 {
1845         struct evtchnfd *evtchnfd;
1846         int i;
1847
1848         kvm_gfn_to_pfn_cache_destroy(kvm, &kvm->arch.xen.shinfo_cache);
1849
1850         idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
1851                 if (!evtchnfd->deliver.port.port)
1852                         eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
1853                 kfree(evtchnfd);
1854         }
1855         idr_destroy(&kvm->arch.xen.evtchn_ports);
1856
1857         if (kvm->arch.xen_hvm_config.msr)
1858                 static_branch_slow_dec_deferred(&kvm_xen_enabled);
1859 }