x86: kvm: style: Simplify bool comparison
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60
61 #include <trace/events/kvm.h>
62
63 #include <asm/debugreg.h>
64 #include <asm/msr.h>
65 #include <asm/desc.h>
66 #include <asm/mce.h>
67 #include <linux/kernel_stat.h>
68 #include <asm/fpu/internal.h> /* Ugh! */
69 #include <asm/pvclock.h>
70 #include <asm/div64.h>
71 #include <asm/irq_remapping.h>
72 #include <asm/mshyperv.h>
73 #include <asm/hypervisor.h>
74 #include <asm/tlbflush.h>
75 #include <asm/intel_pt.h>
76 #include <asm/emulate_prefix.h>
77 #include <clocksource/hyperv_timer.h>
78
79 #define CREATE_TRACE_POINTS
80 #include "trace.h"
81
82 #define MAX_IO_MSRS 256
83 #define KVM_MAX_MCE_BANKS 32
84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
86
87 #define emul_to_vcpu(ctxt) \
88         ((struct kvm_vcpu *)(ctxt)->vcpu)
89
90 /* EFER defaults:
91  * - enable syscall per default because its emulated by KVM
92  * - enable LME and LMA per default on 64 bit KVM
93  */
94 #ifdef CONFIG_X86_64
95 static
96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
97 #else
98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
99 #endif
100
101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
102
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void process_smi(struct kvm_vcpu *vcpu);
109 static void enter_smm(struct kvm_vcpu *vcpu);
110 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
111 static void store_regs(struct kvm_vcpu *vcpu);
112 static int sync_regs(struct kvm_vcpu *vcpu);
113
114 struct kvm_x86_ops kvm_x86_ops __read_mostly;
115 EXPORT_SYMBOL_GPL(kvm_x86_ops);
116
117 static bool __read_mostly ignore_msrs = 0;
118 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly report_ignored_msrs = true;
121 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
122
123 unsigned int min_timer_period_us = 200;
124 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
125
126 static bool __read_mostly kvmclock_periodic_sync = true;
127 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
128
129 bool __read_mostly kvm_has_tsc_control;
130 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
131 u32  __read_mostly kvm_max_guest_tsc_khz;
132 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
133 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
134 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
135 u64  __read_mostly kvm_max_tsc_scaling_ratio;
136 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
137 u64 __read_mostly kvm_default_tsc_scaling_ratio;
138 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
139
140 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
141 static u32 __read_mostly tsc_tolerance_ppm = 250;
142 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
143
144 /*
145  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
146  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
147  * advancement entirely.  Any other value is used as-is and disables adaptive
148  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
149  */
150 static int __read_mostly lapic_timer_advance_ns = -1;
151 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
152
153 static bool __read_mostly vector_hashing = true;
154 module_param(vector_hashing, bool, S_IRUGO);
155
156 bool __read_mostly enable_vmware_backdoor = false;
157 module_param(enable_vmware_backdoor, bool, S_IRUGO);
158 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
159
160 static bool __read_mostly force_emulation_prefix = false;
161 module_param(force_emulation_prefix, bool, S_IRUGO);
162
163 int __read_mostly pi_inject_timer = -1;
164 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
165
166 /*
167  * Restoring the host value for MSRs that are only consumed when running in
168  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
169  * returns to userspace, i.e. the kernel can run with the guest's value.
170  */
171 #define KVM_MAX_NR_USER_RETURN_MSRS 16
172
173 struct kvm_user_return_msrs_global {
174         int nr;
175         u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
176 };
177
178 struct kvm_user_return_msrs {
179         struct user_return_notifier urn;
180         bool registered;
181         struct kvm_user_return_msr_values {
182                 u64 host;
183                 u64 curr;
184         } values[KVM_MAX_NR_USER_RETURN_MSRS];
185 };
186
187 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
188 static struct kvm_user_return_msrs __percpu *user_return_msrs;
189
190 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
191                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
192                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
193                                 | XFEATURE_MASK_PKRU)
194
195 u64 __read_mostly host_efer;
196 EXPORT_SYMBOL_GPL(host_efer);
197
198 bool __read_mostly allow_smaller_maxphyaddr = 0;
199 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
200
201 u64 __read_mostly host_xss;
202 EXPORT_SYMBOL_GPL(host_xss);
203 u64 __read_mostly supported_xss;
204 EXPORT_SYMBOL_GPL(supported_xss);
205
206 struct kvm_stats_debugfs_item debugfs_entries[] = {
207         VCPU_STAT("pf_fixed", pf_fixed),
208         VCPU_STAT("pf_guest", pf_guest),
209         VCPU_STAT("tlb_flush", tlb_flush),
210         VCPU_STAT("invlpg", invlpg),
211         VCPU_STAT("exits", exits),
212         VCPU_STAT("io_exits", io_exits),
213         VCPU_STAT("mmio_exits", mmio_exits),
214         VCPU_STAT("signal_exits", signal_exits),
215         VCPU_STAT("irq_window", irq_window_exits),
216         VCPU_STAT("nmi_window", nmi_window_exits),
217         VCPU_STAT("halt_exits", halt_exits),
218         VCPU_STAT("halt_successful_poll", halt_successful_poll),
219         VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
220         VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
221         VCPU_STAT("halt_wakeup", halt_wakeup),
222         VCPU_STAT("hypercalls", hypercalls),
223         VCPU_STAT("request_irq", request_irq_exits),
224         VCPU_STAT("irq_exits", irq_exits),
225         VCPU_STAT("host_state_reload", host_state_reload),
226         VCPU_STAT("fpu_reload", fpu_reload),
227         VCPU_STAT("insn_emulation", insn_emulation),
228         VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
229         VCPU_STAT("irq_injections", irq_injections),
230         VCPU_STAT("nmi_injections", nmi_injections),
231         VCPU_STAT("req_event", req_event),
232         VCPU_STAT("l1d_flush", l1d_flush),
233         VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
234         VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
235         VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
236         VM_STAT("mmu_pte_write", mmu_pte_write),
237         VM_STAT("mmu_pte_updated", mmu_pte_updated),
238         VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
239         VM_STAT("mmu_flooded", mmu_flooded),
240         VM_STAT("mmu_recycled", mmu_recycled),
241         VM_STAT("mmu_cache_miss", mmu_cache_miss),
242         VM_STAT("mmu_unsync", mmu_unsync),
243         VM_STAT("remote_tlb_flush", remote_tlb_flush),
244         VM_STAT("largepages", lpages, .mode = 0444),
245         VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
246         VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
247         { NULL }
248 };
249
250 u64 __read_mostly host_xcr0;
251 u64 __read_mostly supported_xcr0;
252 EXPORT_SYMBOL_GPL(supported_xcr0);
253
254 static struct kmem_cache *x86_fpu_cache;
255
256 static struct kmem_cache *x86_emulator_cache;
257
258 /*
259  * When called, it means the previous get/set msr reached an invalid msr.
260  * Return true if we want to ignore/silent this failed msr access.
261  */
262 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
263                                   u64 data, bool write)
264 {
265         const char *op = write ? "wrmsr" : "rdmsr";
266
267         if (ignore_msrs) {
268                 if (report_ignored_msrs)
269                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
270                                       op, msr, data);
271                 /* Mask the error */
272                 return true;
273         } else {
274                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
275                                       op, msr, data);
276                 return false;
277         }
278 }
279
280 static struct kmem_cache *kvm_alloc_emulator_cache(void)
281 {
282         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
283         unsigned int size = sizeof(struct x86_emulate_ctxt);
284
285         return kmem_cache_create_usercopy("x86_emulator", size,
286                                           __alignof__(struct x86_emulate_ctxt),
287                                           SLAB_ACCOUNT, useroffset,
288                                           size - useroffset, NULL);
289 }
290
291 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
292
293 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
294 {
295         int i;
296         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
297                 vcpu->arch.apf.gfns[i] = ~0;
298 }
299
300 static void kvm_on_user_return(struct user_return_notifier *urn)
301 {
302         unsigned slot;
303         struct kvm_user_return_msrs *msrs
304                 = container_of(urn, struct kvm_user_return_msrs, urn);
305         struct kvm_user_return_msr_values *values;
306         unsigned long flags;
307
308         /*
309          * Disabling irqs at this point since the following code could be
310          * interrupted and executed through kvm_arch_hardware_disable()
311          */
312         local_irq_save(flags);
313         if (msrs->registered) {
314                 msrs->registered = false;
315                 user_return_notifier_unregister(urn);
316         }
317         local_irq_restore(flags);
318         for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
319                 values = &msrs->values[slot];
320                 if (values->host != values->curr) {
321                         wrmsrl(user_return_msrs_global.msrs[slot], values->host);
322                         values->curr = values->host;
323                 }
324         }
325 }
326
327 void kvm_define_user_return_msr(unsigned slot, u32 msr)
328 {
329         BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
330         user_return_msrs_global.msrs[slot] = msr;
331         if (slot >= user_return_msrs_global.nr)
332                 user_return_msrs_global.nr = slot + 1;
333 }
334 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
335
336 static void kvm_user_return_msr_cpu_online(void)
337 {
338         unsigned int cpu = smp_processor_id();
339         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
340         u64 value;
341         int i;
342
343         for (i = 0; i < user_return_msrs_global.nr; ++i) {
344                 rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
345                 msrs->values[i].host = value;
346                 msrs->values[i].curr = value;
347         }
348 }
349
350 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
351 {
352         unsigned int cpu = smp_processor_id();
353         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
354         int err;
355
356         value = (value & mask) | (msrs->values[slot].host & ~mask);
357         if (value == msrs->values[slot].curr)
358                 return 0;
359         err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
360         if (err)
361                 return 1;
362
363         msrs->values[slot].curr = value;
364         if (!msrs->registered) {
365                 msrs->urn.on_user_return = kvm_on_user_return;
366                 user_return_notifier_register(&msrs->urn);
367                 msrs->registered = true;
368         }
369         return 0;
370 }
371 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
372
373 static void drop_user_return_notifiers(void)
374 {
375         unsigned int cpu = smp_processor_id();
376         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
377
378         if (msrs->registered)
379                 kvm_on_user_return(&msrs->urn);
380 }
381
382 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
383 {
384         return vcpu->arch.apic_base;
385 }
386 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
387
388 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
389 {
390         return kvm_apic_mode(kvm_get_apic_base(vcpu));
391 }
392 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
393
394 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
395 {
396         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
397         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
398         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
399                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
400
401         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
402                 return 1;
403         if (!msr_info->host_initiated) {
404                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
405                         return 1;
406                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
407                         return 1;
408         }
409
410         kvm_lapic_set_base(vcpu, msr_info->data);
411         kvm_recalculate_apic_map(vcpu->kvm);
412         return 0;
413 }
414 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
415
416 asmlinkage __visible noinstr void kvm_spurious_fault(void)
417 {
418         /* Fault while not rebooting.  We want the trace. */
419         BUG_ON(!kvm_rebooting);
420 }
421 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
422
423 #define EXCPT_BENIGN            0
424 #define EXCPT_CONTRIBUTORY      1
425 #define EXCPT_PF                2
426
427 static int exception_class(int vector)
428 {
429         switch (vector) {
430         case PF_VECTOR:
431                 return EXCPT_PF;
432         case DE_VECTOR:
433         case TS_VECTOR:
434         case NP_VECTOR:
435         case SS_VECTOR:
436         case GP_VECTOR:
437                 return EXCPT_CONTRIBUTORY;
438         default:
439                 break;
440         }
441         return EXCPT_BENIGN;
442 }
443
444 #define EXCPT_FAULT             0
445 #define EXCPT_TRAP              1
446 #define EXCPT_ABORT             2
447 #define EXCPT_INTERRUPT         3
448
449 static int exception_type(int vector)
450 {
451         unsigned int mask;
452
453         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
454                 return EXCPT_INTERRUPT;
455
456         mask = 1 << vector;
457
458         /* #DB is trap, as instruction watchpoints are handled elsewhere */
459         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
460                 return EXCPT_TRAP;
461
462         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
463                 return EXCPT_ABORT;
464
465         /* Reserved exceptions will result in fault */
466         return EXCPT_FAULT;
467 }
468
469 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
470 {
471         unsigned nr = vcpu->arch.exception.nr;
472         bool has_payload = vcpu->arch.exception.has_payload;
473         unsigned long payload = vcpu->arch.exception.payload;
474
475         if (!has_payload)
476                 return;
477
478         switch (nr) {
479         case DB_VECTOR:
480                 /*
481                  * "Certain debug exceptions may clear bit 0-3.  The
482                  * remaining contents of the DR6 register are never
483                  * cleared by the processor".
484                  */
485                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
486                 /*
487                  * DR6.RTM is set by all #DB exceptions that don't clear it.
488                  */
489                 vcpu->arch.dr6 |= DR6_RTM;
490                 vcpu->arch.dr6 |= payload;
491                 /*
492                  * Bit 16 should be set in the payload whenever the #DB
493                  * exception should clear DR6.RTM. This makes the payload
494                  * compatible with the pending debug exceptions under VMX.
495                  * Though not currently documented in the SDM, this also
496                  * makes the payload compatible with the exit qualification
497                  * for #DB exceptions under VMX.
498                  */
499                 vcpu->arch.dr6 ^= payload & DR6_RTM;
500
501                 /*
502                  * The #DB payload is defined as compatible with the 'pending
503                  * debug exceptions' field under VMX, not DR6. While bit 12 is
504                  * defined in the 'pending debug exceptions' field (enabled
505                  * breakpoint), it is reserved and must be zero in DR6.
506                  */
507                 vcpu->arch.dr6 &= ~BIT(12);
508                 break;
509         case PF_VECTOR:
510                 vcpu->arch.cr2 = payload;
511                 break;
512         }
513
514         vcpu->arch.exception.has_payload = false;
515         vcpu->arch.exception.payload = 0;
516 }
517 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
518
519 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
520                 unsigned nr, bool has_error, u32 error_code,
521                 bool has_payload, unsigned long payload, bool reinject)
522 {
523         u32 prev_nr;
524         int class1, class2;
525
526         kvm_make_request(KVM_REQ_EVENT, vcpu);
527
528         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
529         queue:
530                 if (has_error && !is_protmode(vcpu))
531                         has_error = false;
532                 if (reinject) {
533                         /*
534                          * On vmentry, vcpu->arch.exception.pending is only
535                          * true if an event injection was blocked by
536                          * nested_run_pending.  In that case, however,
537                          * vcpu_enter_guest requests an immediate exit,
538                          * and the guest shouldn't proceed far enough to
539                          * need reinjection.
540                          */
541                         WARN_ON_ONCE(vcpu->arch.exception.pending);
542                         vcpu->arch.exception.injected = true;
543                         if (WARN_ON_ONCE(has_payload)) {
544                                 /*
545                                  * A reinjected event has already
546                                  * delivered its payload.
547                                  */
548                                 has_payload = false;
549                                 payload = 0;
550                         }
551                 } else {
552                         vcpu->arch.exception.pending = true;
553                         vcpu->arch.exception.injected = false;
554                 }
555                 vcpu->arch.exception.has_error_code = has_error;
556                 vcpu->arch.exception.nr = nr;
557                 vcpu->arch.exception.error_code = error_code;
558                 vcpu->arch.exception.has_payload = has_payload;
559                 vcpu->arch.exception.payload = payload;
560                 if (!is_guest_mode(vcpu))
561                         kvm_deliver_exception_payload(vcpu);
562                 return;
563         }
564
565         /* to check exception */
566         prev_nr = vcpu->arch.exception.nr;
567         if (prev_nr == DF_VECTOR) {
568                 /* triple fault -> shutdown */
569                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
570                 return;
571         }
572         class1 = exception_class(prev_nr);
573         class2 = exception_class(nr);
574         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
575                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
576                 /*
577                  * Generate double fault per SDM Table 5-5.  Set
578                  * exception.pending = true so that the double fault
579                  * can trigger a nested vmexit.
580                  */
581                 vcpu->arch.exception.pending = true;
582                 vcpu->arch.exception.injected = false;
583                 vcpu->arch.exception.has_error_code = true;
584                 vcpu->arch.exception.nr = DF_VECTOR;
585                 vcpu->arch.exception.error_code = 0;
586                 vcpu->arch.exception.has_payload = false;
587                 vcpu->arch.exception.payload = 0;
588         } else
589                 /* replace previous exception with a new one in a hope
590                    that instruction re-execution will regenerate lost
591                    exception */
592                 goto queue;
593 }
594
595 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
596 {
597         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
598 }
599 EXPORT_SYMBOL_GPL(kvm_queue_exception);
600
601 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
602 {
603         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
604 }
605 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
606
607 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
608                            unsigned long payload)
609 {
610         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
611 }
612 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
613
614 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
615                                     u32 error_code, unsigned long payload)
616 {
617         kvm_multiple_exception(vcpu, nr, true, error_code,
618                                true, payload, false);
619 }
620
621 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
622 {
623         if (err)
624                 kvm_inject_gp(vcpu, 0);
625         else
626                 return kvm_skip_emulated_instruction(vcpu);
627
628         return 1;
629 }
630 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
631
632 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
633 {
634         ++vcpu->stat.pf_guest;
635         vcpu->arch.exception.nested_apf =
636                 is_guest_mode(vcpu) && fault->async_page_fault;
637         if (vcpu->arch.exception.nested_apf) {
638                 vcpu->arch.apf.nested_apf_token = fault->address;
639                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
640         } else {
641                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
642                                         fault->address);
643         }
644 }
645 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
646
647 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
648                                     struct x86_exception *fault)
649 {
650         struct kvm_mmu *fault_mmu;
651         WARN_ON_ONCE(fault->vector != PF_VECTOR);
652
653         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
654                                                vcpu->arch.walk_mmu;
655
656         /*
657          * Invalidate the TLB entry for the faulting address, if it exists,
658          * else the access will fault indefinitely (and to emulate hardware).
659          */
660         if ((fault->error_code & PFERR_PRESENT_MASK) &&
661             !(fault->error_code & PFERR_RSVD_MASK))
662                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
663                                        fault_mmu->root_hpa);
664
665         fault_mmu->inject_page_fault(vcpu, fault);
666         return fault->nested_page_fault;
667 }
668 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
669
670 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
671 {
672         atomic_inc(&vcpu->arch.nmi_queued);
673         kvm_make_request(KVM_REQ_NMI, vcpu);
674 }
675 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
676
677 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
678 {
679         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
680 }
681 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
682
683 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
684 {
685         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
686 }
687 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
688
689 /*
690  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
691  * a #GP and return false.
692  */
693 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
694 {
695         if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
696                 return true;
697         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
698         return false;
699 }
700 EXPORT_SYMBOL_GPL(kvm_require_cpl);
701
702 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
703 {
704         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
705                 return true;
706
707         kvm_queue_exception(vcpu, UD_VECTOR);
708         return false;
709 }
710 EXPORT_SYMBOL_GPL(kvm_require_dr);
711
712 /*
713  * This function will be used to read from the physical memory of the currently
714  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
715  * can read from guest physical or from the guest's guest physical memory.
716  */
717 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
718                             gfn_t ngfn, void *data, int offset, int len,
719                             u32 access)
720 {
721         struct x86_exception exception;
722         gfn_t real_gfn;
723         gpa_t ngpa;
724
725         ngpa     = gfn_to_gpa(ngfn);
726         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
727         if (real_gfn == UNMAPPED_GVA)
728                 return -EFAULT;
729
730         real_gfn = gpa_to_gfn(real_gfn);
731
732         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
733 }
734 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
735
736 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
737                                void *data, int offset, int len, u32 access)
738 {
739         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
740                                        data, offset, len, access);
741 }
742
743 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
744 {
745         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
746                rsvd_bits(1, 2);
747 }
748
749 /*
750  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
751  */
752 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
753 {
754         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
755         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
756         int i;
757         int ret;
758         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
759
760         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
761                                       offset * sizeof(u64), sizeof(pdpte),
762                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
763         if (ret < 0) {
764                 ret = 0;
765                 goto out;
766         }
767         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
768                 if ((pdpte[i] & PT_PRESENT_MASK) &&
769                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
770                         ret = 0;
771                         goto out;
772                 }
773         }
774         ret = 1;
775
776         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
777         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
778
779 out:
780
781         return ret;
782 }
783 EXPORT_SYMBOL_GPL(load_pdptrs);
784
785 bool pdptrs_changed(struct kvm_vcpu *vcpu)
786 {
787         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
788         int offset;
789         gfn_t gfn;
790         int r;
791
792         if (!is_pae_paging(vcpu))
793                 return false;
794
795         if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
796                 return true;
797
798         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
799         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
800         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
801                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
802         if (r < 0)
803                 return true;
804
805         return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
806 }
807 EXPORT_SYMBOL_GPL(pdptrs_changed);
808
809 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
810 {
811         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
812
813         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
814                 kvm_clear_async_pf_completion_queue(vcpu);
815                 kvm_async_pf_hash_reset(vcpu);
816         }
817
818         if ((cr0 ^ old_cr0) & update_bits)
819                 kvm_mmu_reset_context(vcpu);
820
821         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
822             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
823             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
824                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
825 }
826 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
827
828 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
829 {
830         unsigned long old_cr0 = kvm_read_cr0(vcpu);
831         unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
832
833         cr0 |= X86_CR0_ET;
834
835 #ifdef CONFIG_X86_64
836         if (cr0 & 0xffffffff00000000UL)
837                 return 1;
838 #endif
839
840         cr0 &= ~CR0_RESERVED_BITS;
841
842         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
843                 return 1;
844
845         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
846                 return 1;
847
848 #ifdef CONFIG_X86_64
849         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
850             (cr0 & X86_CR0_PG)) {
851                 int cs_db, cs_l;
852
853                 if (!is_pae(vcpu))
854                         return 1;
855                 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
856                 if (cs_l)
857                         return 1;
858         }
859 #endif
860         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
861             is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
862             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
863                 return 1;
864
865         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
866                 return 1;
867
868         kvm_x86_ops.set_cr0(vcpu, cr0);
869
870         kvm_post_set_cr0(vcpu, old_cr0, cr0);
871
872         return 0;
873 }
874 EXPORT_SYMBOL_GPL(kvm_set_cr0);
875
876 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
877 {
878         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
879 }
880 EXPORT_SYMBOL_GPL(kvm_lmsw);
881
882 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
883 {
884         if (vcpu->arch.guest_state_protected)
885                 return;
886
887         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
888
889                 if (vcpu->arch.xcr0 != host_xcr0)
890                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
891
892                 if (vcpu->arch.xsaves_enabled &&
893                     vcpu->arch.ia32_xss != host_xss)
894                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
895         }
896
897         if (static_cpu_has(X86_FEATURE_PKU) &&
898             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
899              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
900             vcpu->arch.pkru != vcpu->arch.host_pkru)
901                 __write_pkru(vcpu->arch.pkru);
902 }
903 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
904
905 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
906 {
907         if (vcpu->arch.guest_state_protected)
908                 return;
909
910         if (static_cpu_has(X86_FEATURE_PKU) &&
911             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
912              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
913                 vcpu->arch.pkru = rdpkru();
914                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
915                         __write_pkru(vcpu->arch.host_pkru);
916         }
917
918         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
919
920                 if (vcpu->arch.xcr0 != host_xcr0)
921                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
922
923                 if (vcpu->arch.xsaves_enabled &&
924                     vcpu->arch.ia32_xss != host_xss)
925                         wrmsrl(MSR_IA32_XSS, host_xss);
926         }
927
928 }
929 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
930
931 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
932 {
933         u64 xcr0 = xcr;
934         u64 old_xcr0 = vcpu->arch.xcr0;
935         u64 valid_bits;
936
937         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
938         if (index != XCR_XFEATURE_ENABLED_MASK)
939                 return 1;
940         if (!(xcr0 & XFEATURE_MASK_FP))
941                 return 1;
942         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
943                 return 1;
944
945         /*
946          * Do not allow the guest to set bits that we do not support
947          * saving.  However, xcr0 bit 0 is always set, even if the
948          * emulated CPU does not support XSAVE (see fx_init).
949          */
950         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
951         if (xcr0 & ~valid_bits)
952                 return 1;
953
954         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
955             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
956                 return 1;
957
958         if (xcr0 & XFEATURE_MASK_AVX512) {
959                 if (!(xcr0 & XFEATURE_MASK_YMM))
960                         return 1;
961                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
962                         return 1;
963         }
964         vcpu->arch.xcr0 = xcr0;
965
966         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
967                 kvm_update_cpuid_runtime(vcpu);
968         return 0;
969 }
970
971 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
972 {
973         if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
974             __kvm_set_xcr(vcpu, index, xcr)) {
975                 kvm_inject_gp(vcpu, 0);
976                 return 1;
977         }
978         return 0;
979 }
980 EXPORT_SYMBOL_GPL(kvm_set_xcr);
981
982 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
983 {
984         if (cr4 & cr4_reserved_bits)
985                 return false;
986
987         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
988                 return false;
989
990         return kvm_x86_ops.is_valid_cr4(vcpu, cr4);
991 }
992 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
993
994 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
995 {
996         unsigned long mmu_role_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
997                                       X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
998
999         if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1000             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1001                 kvm_mmu_reset_context(vcpu);
1002 }
1003 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1004
1005 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1006 {
1007         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1008         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1009                                    X86_CR4_SMEP;
1010
1011         if (!kvm_is_valid_cr4(vcpu, cr4))
1012                 return 1;
1013
1014         if (is_long_mode(vcpu)) {
1015                 if (!(cr4 & X86_CR4_PAE))
1016                         return 1;
1017                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1018                         return 1;
1019         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1020                    && ((cr4 ^ old_cr4) & pdptr_bits)
1021                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1022                                    kvm_read_cr3(vcpu)))
1023                 return 1;
1024
1025         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1026                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1027                         return 1;
1028
1029                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1030                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1031                         return 1;
1032         }
1033
1034         kvm_x86_ops.set_cr4(vcpu, cr4);
1035
1036         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1037
1038         return 0;
1039 }
1040 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1041
1042 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1043 {
1044         bool skip_tlb_flush = false;
1045 #ifdef CONFIG_X86_64
1046         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1047
1048         if (pcid_enabled) {
1049                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1050                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1051         }
1052 #endif
1053
1054         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1055                 if (!skip_tlb_flush) {
1056                         kvm_mmu_sync_roots(vcpu);
1057                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1058                 }
1059                 return 0;
1060         }
1061
1062         if (is_long_mode(vcpu) &&
1063             (cr3 & vcpu->arch.cr3_lm_rsvd_bits))
1064                 return 1;
1065         else if (is_pae_paging(vcpu) &&
1066                  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1067                 return 1;
1068
1069         kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1070         vcpu->arch.cr3 = cr3;
1071         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1072
1073         return 0;
1074 }
1075 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1076
1077 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1078 {
1079         if (cr8 & CR8_RESERVED_BITS)
1080                 return 1;
1081         if (lapic_in_kernel(vcpu))
1082                 kvm_lapic_set_tpr(vcpu, cr8);
1083         else
1084                 vcpu->arch.cr8 = cr8;
1085         return 0;
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1088
1089 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1090 {
1091         if (lapic_in_kernel(vcpu))
1092                 return kvm_lapic_get_cr8(vcpu);
1093         else
1094                 return vcpu->arch.cr8;
1095 }
1096 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1097
1098 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1099 {
1100         int i;
1101
1102         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1103                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1104                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1105                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1106         }
1107 }
1108
1109 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1110 {
1111         unsigned long dr7;
1112
1113         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1114                 dr7 = vcpu->arch.guest_debug_dr7;
1115         else
1116                 dr7 = vcpu->arch.dr7;
1117         kvm_x86_ops.set_dr7(vcpu, dr7);
1118         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1119         if (dr7 & DR7_BP_EN_MASK)
1120                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1121 }
1122 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1123
1124 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1125 {
1126         u64 fixed = DR6_FIXED_1;
1127
1128         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1129                 fixed |= DR6_RTM;
1130         return fixed;
1131 }
1132
1133 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1134 {
1135         size_t size = ARRAY_SIZE(vcpu->arch.db);
1136
1137         switch (dr) {
1138         case 0 ... 3:
1139                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1140                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1141                         vcpu->arch.eff_db[dr] = val;
1142                 break;
1143         case 4:
1144         case 6:
1145                 if (!kvm_dr6_valid(val))
1146                         return -1; /* #GP */
1147                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1148                 break;
1149         case 5:
1150         default: /* 7 */
1151                 if (!kvm_dr7_valid(val))
1152                         return -1; /* #GP */
1153                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1154                 kvm_update_dr7(vcpu);
1155                 break;
1156         }
1157
1158         return 0;
1159 }
1160
1161 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1162 {
1163         if (__kvm_set_dr(vcpu, dr, val)) {
1164                 kvm_inject_gp(vcpu, 0);
1165                 return 1;
1166         }
1167         return 0;
1168 }
1169 EXPORT_SYMBOL_GPL(kvm_set_dr);
1170
1171 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1172 {
1173         size_t size = ARRAY_SIZE(vcpu->arch.db);
1174
1175         switch (dr) {
1176         case 0 ... 3:
1177                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1178                 break;
1179         case 4:
1180         case 6:
1181                 *val = vcpu->arch.dr6;
1182                 break;
1183         case 5:
1184         default: /* 7 */
1185                 *val = vcpu->arch.dr7;
1186                 break;
1187         }
1188         return 0;
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_get_dr);
1191
1192 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1193 {
1194         u32 ecx = kvm_rcx_read(vcpu);
1195         u64 data;
1196         int err;
1197
1198         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1199         if (err)
1200                 return err;
1201         kvm_rax_write(vcpu, (u32)data);
1202         kvm_rdx_write(vcpu, data >> 32);
1203         return err;
1204 }
1205 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1206
1207 /*
1208  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1209  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1210  *
1211  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1212  * extract the supported MSRs from the related const lists.
1213  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1214  * capabilities of the host cpu. This capabilities test skips MSRs that are
1215  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1216  * may depend on host virtualization features rather than host cpu features.
1217  */
1218
1219 static const u32 msrs_to_save_all[] = {
1220         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1221         MSR_STAR,
1222 #ifdef CONFIG_X86_64
1223         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1224 #endif
1225         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1226         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1227         MSR_IA32_SPEC_CTRL,
1228         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1229         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1230         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1231         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1232         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1233         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1234         MSR_IA32_UMWAIT_CONTROL,
1235
1236         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1237         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1238         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1239         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1240         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1241         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1242         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1243         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1244         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1245         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1246         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1247         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1248         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1249         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1250         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1251         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1252         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1253         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1254         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1255         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1256         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1257         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1258 };
1259
1260 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1261 static unsigned num_msrs_to_save;
1262
1263 static const u32 emulated_msrs_all[] = {
1264         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1265         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1266         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1267         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1268         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1269         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1270         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1271         HV_X64_MSR_RESET,
1272         HV_X64_MSR_VP_INDEX,
1273         HV_X64_MSR_VP_RUNTIME,
1274         HV_X64_MSR_SCONTROL,
1275         HV_X64_MSR_STIMER0_CONFIG,
1276         HV_X64_MSR_VP_ASSIST_PAGE,
1277         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1278         HV_X64_MSR_TSC_EMULATION_STATUS,
1279         HV_X64_MSR_SYNDBG_OPTIONS,
1280         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1281         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1282         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1283
1284         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1285         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1286
1287         MSR_IA32_TSC_ADJUST,
1288         MSR_IA32_TSCDEADLINE,
1289         MSR_IA32_ARCH_CAPABILITIES,
1290         MSR_IA32_PERF_CAPABILITIES,
1291         MSR_IA32_MISC_ENABLE,
1292         MSR_IA32_MCG_STATUS,
1293         MSR_IA32_MCG_CTL,
1294         MSR_IA32_MCG_EXT_CTL,
1295         MSR_IA32_SMBASE,
1296         MSR_SMI_COUNT,
1297         MSR_PLATFORM_INFO,
1298         MSR_MISC_FEATURES_ENABLES,
1299         MSR_AMD64_VIRT_SPEC_CTRL,
1300         MSR_IA32_POWER_CTL,
1301         MSR_IA32_UCODE_REV,
1302
1303         /*
1304          * The following list leaves out MSRs whose values are determined
1305          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1306          * We always support the "true" VMX control MSRs, even if the host
1307          * processor does not, so I am putting these registers here rather
1308          * than in msrs_to_save_all.
1309          */
1310         MSR_IA32_VMX_BASIC,
1311         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1312         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1313         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1314         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1315         MSR_IA32_VMX_MISC,
1316         MSR_IA32_VMX_CR0_FIXED0,
1317         MSR_IA32_VMX_CR4_FIXED0,
1318         MSR_IA32_VMX_VMCS_ENUM,
1319         MSR_IA32_VMX_PROCBASED_CTLS2,
1320         MSR_IA32_VMX_EPT_VPID_CAP,
1321         MSR_IA32_VMX_VMFUNC,
1322
1323         MSR_K7_HWCR,
1324         MSR_KVM_POLL_CONTROL,
1325 };
1326
1327 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1328 static unsigned num_emulated_msrs;
1329
1330 /*
1331  * List of msr numbers which are used to expose MSR-based features that
1332  * can be used by a hypervisor to validate requested CPU features.
1333  */
1334 static const u32 msr_based_features_all[] = {
1335         MSR_IA32_VMX_BASIC,
1336         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1337         MSR_IA32_VMX_PINBASED_CTLS,
1338         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1339         MSR_IA32_VMX_PROCBASED_CTLS,
1340         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1341         MSR_IA32_VMX_EXIT_CTLS,
1342         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1343         MSR_IA32_VMX_ENTRY_CTLS,
1344         MSR_IA32_VMX_MISC,
1345         MSR_IA32_VMX_CR0_FIXED0,
1346         MSR_IA32_VMX_CR0_FIXED1,
1347         MSR_IA32_VMX_CR4_FIXED0,
1348         MSR_IA32_VMX_CR4_FIXED1,
1349         MSR_IA32_VMX_VMCS_ENUM,
1350         MSR_IA32_VMX_PROCBASED_CTLS2,
1351         MSR_IA32_VMX_EPT_VPID_CAP,
1352         MSR_IA32_VMX_VMFUNC,
1353
1354         MSR_F10H_DECFG,
1355         MSR_IA32_UCODE_REV,
1356         MSR_IA32_ARCH_CAPABILITIES,
1357         MSR_IA32_PERF_CAPABILITIES,
1358 };
1359
1360 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1361 static unsigned int num_msr_based_features;
1362
1363 static u64 kvm_get_arch_capabilities(void)
1364 {
1365         u64 data = 0;
1366
1367         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1368                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1369
1370         /*
1371          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1372          * the nested hypervisor runs with NX huge pages.  If it is not,
1373          * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1374          * L1 guests, so it need not worry about its own (L2) guests.
1375          */
1376         data |= ARCH_CAP_PSCHANGE_MC_NO;
1377
1378         /*
1379          * If we're doing cache flushes (either "always" or "cond")
1380          * we will do one whenever the guest does a vmlaunch/vmresume.
1381          * If an outer hypervisor is doing the cache flush for us
1382          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1383          * capability to the guest too, and if EPT is disabled we're not
1384          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1385          * require a nested hypervisor to do a flush of its own.
1386          */
1387         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1388                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1389
1390         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1391                 data |= ARCH_CAP_RDCL_NO;
1392         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1393                 data |= ARCH_CAP_SSB_NO;
1394         if (!boot_cpu_has_bug(X86_BUG_MDS))
1395                 data |= ARCH_CAP_MDS_NO;
1396
1397         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1398                 /*
1399                  * If RTM=0 because the kernel has disabled TSX, the host might
1400                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1401                  * and therefore knows that there cannot be TAA) but keep
1402                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1403                  * and we want to allow migrating those guests to tsx=off hosts.
1404                  */
1405                 data &= ~ARCH_CAP_TAA_NO;
1406         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1407                 data |= ARCH_CAP_TAA_NO;
1408         } else {
1409                 /*
1410                  * Nothing to do here; we emulate TSX_CTRL if present on the
1411                  * host so the guest can choose between disabling TSX or
1412                  * using VERW to clear CPU buffers.
1413                  */
1414         }
1415
1416         return data;
1417 }
1418
1419 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1420 {
1421         switch (msr->index) {
1422         case MSR_IA32_ARCH_CAPABILITIES:
1423                 msr->data = kvm_get_arch_capabilities();
1424                 break;
1425         case MSR_IA32_UCODE_REV:
1426                 rdmsrl_safe(msr->index, &msr->data);
1427                 break;
1428         default:
1429                 return kvm_x86_ops.get_msr_feature(msr);
1430         }
1431         return 0;
1432 }
1433
1434 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1435 {
1436         struct kvm_msr_entry msr;
1437         int r;
1438
1439         msr.index = index;
1440         r = kvm_get_msr_feature(&msr);
1441
1442         if (r == KVM_MSR_RET_INVALID) {
1443                 /* Unconditionally clear the output for simplicity */
1444                 *data = 0;
1445                 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1446                         r = 0;
1447         }
1448
1449         if (r)
1450                 return r;
1451
1452         *data = msr.data;
1453
1454         return 0;
1455 }
1456
1457 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1458 {
1459         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1460                 return false;
1461
1462         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1463                 return false;
1464
1465         if (efer & (EFER_LME | EFER_LMA) &&
1466             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1467                 return false;
1468
1469         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1470                 return false;
1471
1472         return true;
1473
1474 }
1475 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1476 {
1477         if (efer & efer_reserved_bits)
1478                 return false;
1479
1480         return __kvm_valid_efer(vcpu, efer);
1481 }
1482 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1483
1484 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1485 {
1486         u64 old_efer = vcpu->arch.efer;
1487         u64 efer = msr_info->data;
1488         int r;
1489
1490         if (efer & efer_reserved_bits)
1491                 return 1;
1492
1493         if (!msr_info->host_initiated) {
1494                 if (!__kvm_valid_efer(vcpu, efer))
1495                         return 1;
1496
1497                 if (is_paging(vcpu) &&
1498                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1499                         return 1;
1500         }
1501
1502         efer &= ~EFER_LMA;
1503         efer |= vcpu->arch.efer & EFER_LMA;
1504
1505         r = kvm_x86_ops.set_efer(vcpu, efer);
1506         if (r) {
1507                 WARN_ON(r > 0);
1508                 return r;
1509         }
1510
1511         /* Update reserved bits */
1512         if ((efer ^ old_efer) & EFER_NX)
1513                 kvm_mmu_reset_context(vcpu);
1514
1515         return 0;
1516 }
1517
1518 void kvm_enable_efer_bits(u64 mask)
1519 {
1520        efer_reserved_bits &= ~mask;
1521 }
1522 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1523
1524 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1525 {
1526         struct kvm *kvm = vcpu->kvm;
1527         struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
1528         u32 count = kvm->arch.msr_filter.count;
1529         u32 i;
1530         bool r = kvm->arch.msr_filter.default_allow;
1531         int idx;
1532
1533         /* MSR filtering not set up or x2APIC enabled, allow everything */
1534         if (!count || (index >= 0x800 && index <= 0x8ff))
1535                 return true;
1536
1537         /* Prevent collision with set_msr_filter */
1538         idx = srcu_read_lock(&kvm->srcu);
1539
1540         for (i = 0; i < count; i++) {
1541                 u32 start = ranges[i].base;
1542                 u32 end = start + ranges[i].nmsrs;
1543                 u32 flags = ranges[i].flags;
1544                 unsigned long *bitmap = ranges[i].bitmap;
1545
1546                 if ((index >= start) && (index < end) && (flags & type)) {
1547                         r = !!test_bit(index - start, bitmap);
1548                         break;
1549                 }
1550         }
1551
1552         srcu_read_unlock(&kvm->srcu, idx);
1553
1554         return r;
1555 }
1556 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1557
1558 /*
1559  * Write @data into the MSR specified by @index.  Select MSR specific fault
1560  * checks are bypassed if @host_initiated is %true.
1561  * Returns 0 on success, non-0 otherwise.
1562  * Assumes vcpu_load() was already called.
1563  */
1564 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1565                          bool host_initiated)
1566 {
1567         struct msr_data msr;
1568
1569         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1570                 return KVM_MSR_RET_FILTERED;
1571
1572         switch (index) {
1573         case MSR_FS_BASE:
1574         case MSR_GS_BASE:
1575         case MSR_KERNEL_GS_BASE:
1576         case MSR_CSTAR:
1577         case MSR_LSTAR:
1578                 if (is_noncanonical_address(data, vcpu))
1579                         return 1;
1580                 break;
1581         case MSR_IA32_SYSENTER_EIP:
1582         case MSR_IA32_SYSENTER_ESP:
1583                 /*
1584                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1585                  * non-canonical address is written on Intel but not on
1586                  * AMD (which ignores the top 32-bits, because it does
1587                  * not implement 64-bit SYSENTER).
1588                  *
1589                  * 64-bit code should hence be able to write a non-canonical
1590                  * value on AMD.  Making the address canonical ensures that
1591                  * vmentry does not fail on Intel after writing a non-canonical
1592                  * value, and that something deterministic happens if the guest
1593                  * invokes 64-bit SYSENTER.
1594                  */
1595                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1596         }
1597
1598         msr.data = data;
1599         msr.index = index;
1600         msr.host_initiated = host_initiated;
1601
1602         return kvm_x86_ops.set_msr(vcpu, &msr);
1603 }
1604
1605 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1606                                      u32 index, u64 data, bool host_initiated)
1607 {
1608         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1609
1610         if (ret == KVM_MSR_RET_INVALID)
1611                 if (kvm_msr_ignored_check(vcpu, index, data, true))
1612                         ret = 0;
1613
1614         return ret;
1615 }
1616
1617 /*
1618  * Read the MSR specified by @index into @data.  Select MSR specific fault
1619  * checks are bypassed if @host_initiated is %true.
1620  * Returns 0 on success, non-0 otherwise.
1621  * Assumes vcpu_load() was already called.
1622  */
1623 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1624                   bool host_initiated)
1625 {
1626         struct msr_data msr;
1627         int ret;
1628
1629         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1630                 return KVM_MSR_RET_FILTERED;
1631
1632         msr.index = index;
1633         msr.host_initiated = host_initiated;
1634
1635         ret = kvm_x86_ops.get_msr(vcpu, &msr);
1636         if (!ret)
1637                 *data = msr.data;
1638         return ret;
1639 }
1640
1641 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1642                                      u32 index, u64 *data, bool host_initiated)
1643 {
1644         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1645
1646         if (ret == KVM_MSR_RET_INVALID) {
1647                 /* Unconditionally clear *data for simplicity */
1648                 *data = 0;
1649                 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1650                         ret = 0;
1651         }
1652
1653         return ret;
1654 }
1655
1656 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1657 {
1658         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1659 }
1660 EXPORT_SYMBOL_GPL(kvm_get_msr);
1661
1662 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1663 {
1664         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1665 }
1666 EXPORT_SYMBOL_GPL(kvm_set_msr);
1667
1668 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1669 {
1670         int err = vcpu->run->msr.error;
1671         if (!err) {
1672                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1673                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1674         }
1675
1676         return kvm_x86_ops.complete_emulated_msr(vcpu, err);
1677 }
1678
1679 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1680 {
1681         return kvm_x86_ops.complete_emulated_msr(vcpu, vcpu->run->msr.error);
1682 }
1683
1684 static u64 kvm_msr_reason(int r)
1685 {
1686         switch (r) {
1687         case KVM_MSR_RET_INVALID:
1688                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1689         case KVM_MSR_RET_FILTERED:
1690                 return KVM_MSR_EXIT_REASON_FILTER;
1691         default:
1692                 return KVM_MSR_EXIT_REASON_INVAL;
1693         }
1694 }
1695
1696 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1697                               u32 exit_reason, u64 data,
1698                               int (*completion)(struct kvm_vcpu *vcpu),
1699                               int r)
1700 {
1701         u64 msr_reason = kvm_msr_reason(r);
1702
1703         /* Check if the user wanted to know about this MSR fault */
1704         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1705                 return 0;
1706
1707         vcpu->run->exit_reason = exit_reason;
1708         vcpu->run->msr.error = 0;
1709         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1710         vcpu->run->msr.reason = msr_reason;
1711         vcpu->run->msr.index = index;
1712         vcpu->run->msr.data = data;
1713         vcpu->arch.complete_userspace_io = completion;
1714
1715         return 1;
1716 }
1717
1718 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1719 {
1720         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1721                                    complete_emulated_rdmsr, r);
1722 }
1723
1724 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1725 {
1726         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1727                                    complete_emulated_wrmsr, r);
1728 }
1729
1730 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1731 {
1732         u32 ecx = kvm_rcx_read(vcpu);
1733         u64 data;
1734         int r;
1735
1736         r = kvm_get_msr(vcpu, ecx, &data);
1737
1738         /* MSR read failed? See if we should ask user space */
1739         if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1740                 /* Bounce to user space */
1741                 return 0;
1742         }
1743
1744         if (!r) {
1745                 trace_kvm_msr_read(ecx, data);
1746
1747                 kvm_rax_write(vcpu, data & -1u);
1748                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1749         } else {
1750                 trace_kvm_msr_read_ex(ecx);
1751         }
1752
1753         return kvm_x86_ops.complete_emulated_msr(vcpu, r);
1754 }
1755 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1756
1757 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1758 {
1759         u32 ecx = kvm_rcx_read(vcpu);
1760         u64 data = kvm_read_edx_eax(vcpu);
1761         int r;
1762
1763         r = kvm_set_msr(vcpu, ecx, data);
1764
1765         /* MSR write failed? See if we should ask user space */
1766         if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1767                 /* Bounce to user space */
1768                 return 0;
1769
1770         /* Signal all other negative errors to userspace */
1771         if (r < 0)
1772                 return r;
1773
1774         if (!r)
1775                 trace_kvm_msr_write(ecx, data);
1776         else
1777                 trace_kvm_msr_write_ex(ecx, data);
1778
1779         return kvm_x86_ops.complete_emulated_msr(vcpu, r);
1780 }
1781 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1782
1783 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1784 {
1785         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1786                 xfer_to_guest_mode_work_pending();
1787 }
1788 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1789
1790 /*
1791  * The fast path for frequent and performance sensitive wrmsr emulation,
1792  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1793  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1794  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1795  * other cases which must be called after interrupts are enabled on the host.
1796  */
1797 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1798 {
1799         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1800                 return 1;
1801
1802         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1803                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1804                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1805                 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1806
1807                 data &= ~(1 << 12);
1808                 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1809                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1810                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1811                 trace_kvm_apic_write(APIC_ICR, (u32)data);
1812                 return 0;
1813         }
1814
1815         return 1;
1816 }
1817
1818 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1819 {
1820         if (!kvm_can_use_hv_timer(vcpu))
1821                 return 1;
1822
1823         kvm_set_lapic_tscdeadline_msr(vcpu, data);
1824         return 0;
1825 }
1826
1827 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1828 {
1829         u32 msr = kvm_rcx_read(vcpu);
1830         u64 data;
1831         fastpath_t ret = EXIT_FASTPATH_NONE;
1832
1833         switch (msr) {
1834         case APIC_BASE_MSR + (APIC_ICR >> 4):
1835                 data = kvm_read_edx_eax(vcpu);
1836                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1837                         kvm_skip_emulated_instruction(vcpu);
1838                         ret = EXIT_FASTPATH_EXIT_HANDLED;
1839                 }
1840                 break;
1841         case MSR_IA32_TSCDEADLINE:
1842                 data = kvm_read_edx_eax(vcpu);
1843                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1844                         kvm_skip_emulated_instruction(vcpu);
1845                         ret = EXIT_FASTPATH_REENTER_GUEST;
1846                 }
1847                 break;
1848         default:
1849                 break;
1850         }
1851
1852         if (ret != EXIT_FASTPATH_NONE)
1853                 trace_kvm_msr_write(msr, data);
1854
1855         return ret;
1856 }
1857 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1858
1859 /*
1860  * Adapt set_msr() to msr_io()'s calling convention
1861  */
1862 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1863 {
1864         return kvm_get_msr_ignored_check(vcpu, index, data, true);
1865 }
1866
1867 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1868 {
1869         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1870 }
1871
1872 #ifdef CONFIG_X86_64
1873 struct pvclock_clock {
1874         int vclock_mode;
1875         u64 cycle_last;
1876         u64 mask;
1877         u32 mult;
1878         u32 shift;
1879         u64 base_cycles;
1880         u64 offset;
1881 };
1882
1883 struct pvclock_gtod_data {
1884         seqcount_t      seq;
1885
1886         struct pvclock_clock clock; /* extract of a clocksource struct */
1887         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1888
1889         ktime_t         offs_boot;
1890         u64             wall_time_sec;
1891 };
1892
1893 static struct pvclock_gtod_data pvclock_gtod_data;
1894
1895 static void update_pvclock_gtod(struct timekeeper *tk)
1896 {
1897         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1898
1899         write_seqcount_begin(&vdata->seq);
1900
1901         /* copy pvclock gtod data */
1902         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
1903         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1904         vdata->clock.mask               = tk->tkr_mono.mask;
1905         vdata->clock.mult               = tk->tkr_mono.mult;
1906         vdata->clock.shift              = tk->tkr_mono.shift;
1907         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
1908         vdata->clock.offset             = tk->tkr_mono.base;
1909
1910         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
1911         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
1912         vdata->raw_clock.mask           = tk->tkr_raw.mask;
1913         vdata->raw_clock.mult           = tk->tkr_raw.mult;
1914         vdata->raw_clock.shift          = tk->tkr_raw.shift;
1915         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
1916         vdata->raw_clock.offset         = tk->tkr_raw.base;
1917
1918         vdata->wall_time_sec            = tk->xtime_sec;
1919
1920         vdata->offs_boot                = tk->offs_boot;
1921
1922         write_seqcount_end(&vdata->seq);
1923 }
1924
1925 static s64 get_kvmclock_base_ns(void)
1926 {
1927         /* Count up from boot time, but with the frequency of the raw clock.  */
1928         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1929 }
1930 #else
1931 static s64 get_kvmclock_base_ns(void)
1932 {
1933         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1934         return ktime_get_boottime_ns();
1935 }
1936 #endif
1937
1938 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1939 {
1940         int version;
1941         int r;
1942         struct pvclock_wall_clock wc;
1943         u64 wall_nsec;
1944
1945         kvm->arch.wall_clock = wall_clock;
1946
1947         if (!wall_clock)
1948                 return;
1949
1950         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1951         if (r)
1952                 return;
1953
1954         if (version & 1)
1955                 ++version;  /* first time write, random junk */
1956
1957         ++version;
1958
1959         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1960                 return;
1961
1962         /*
1963          * The guest calculates current wall clock time by adding
1964          * system time (updated by kvm_guest_time_update below) to the
1965          * wall clock specified here.  We do the reverse here.
1966          */
1967         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1968
1969         wc.nsec = do_div(wall_nsec, 1000000000);
1970         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1971         wc.version = version;
1972
1973         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1974
1975         version++;
1976         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1977 }
1978
1979 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
1980                                   bool old_msr, bool host_initiated)
1981 {
1982         struct kvm_arch *ka = &vcpu->kvm->arch;
1983
1984         if (vcpu->vcpu_id == 0 && !host_initiated) {
1985                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
1986                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1987
1988                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
1989         }
1990
1991         vcpu->arch.time = system_time;
1992         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
1993
1994         /* we verify if the enable bit is set... */
1995         vcpu->arch.pv_time_enabled = false;
1996         if (!(system_time & 1))
1997                 return;
1998
1999         if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2000                                        &vcpu->arch.pv_time, system_time & ~1ULL,
2001                                        sizeof(struct pvclock_vcpu_time_info)))
2002                 vcpu->arch.pv_time_enabled = true;
2003
2004         return;
2005 }
2006
2007 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2008 {
2009         do_shl32_div32(dividend, divisor);
2010         return dividend;
2011 }
2012
2013 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2014                                s8 *pshift, u32 *pmultiplier)
2015 {
2016         uint64_t scaled64;
2017         int32_t  shift = 0;
2018         uint64_t tps64;
2019         uint32_t tps32;
2020
2021         tps64 = base_hz;
2022         scaled64 = scaled_hz;
2023         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2024                 tps64 >>= 1;
2025                 shift--;
2026         }
2027
2028         tps32 = (uint32_t)tps64;
2029         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2030                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2031                         scaled64 >>= 1;
2032                 else
2033                         tps32 <<= 1;
2034                 shift++;
2035         }
2036
2037         *pshift = shift;
2038         *pmultiplier = div_frac(scaled64, tps32);
2039 }
2040
2041 #ifdef CONFIG_X86_64
2042 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2043 #endif
2044
2045 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2046 static unsigned long max_tsc_khz;
2047
2048 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2049 {
2050         u64 v = (u64)khz * (1000000 + ppm);
2051         do_div(v, 1000000);
2052         return v;
2053 }
2054
2055 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2056 {
2057         u64 ratio;
2058
2059         /* Guest TSC same frequency as host TSC? */
2060         if (!scale) {
2061                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2062                 return 0;
2063         }
2064
2065         /* TSC scaling supported? */
2066         if (!kvm_has_tsc_control) {
2067                 if (user_tsc_khz > tsc_khz) {
2068                         vcpu->arch.tsc_catchup = 1;
2069                         vcpu->arch.tsc_always_catchup = 1;
2070                         return 0;
2071                 } else {
2072                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2073                         return -1;
2074                 }
2075         }
2076
2077         /* TSC scaling required  - calculate ratio */
2078         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2079                                 user_tsc_khz, tsc_khz);
2080
2081         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2082                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2083                                     user_tsc_khz);
2084                 return -1;
2085         }
2086
2087         vcpu->arch.tsc_scaling_ratio = ratio;
2088         return 0;
2089 }
2090
2091 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2092 {
2093         u32 thresh_lo, thresh_hi;
2094         int use_scaling = 0;
2095
2096         /* tsc_khz can be zero if TSC calibration fails */
2097         if (user_tsc_khz == 0) {
2098                 /* set tsc_scaling_ratio to a safe value */
2099                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2100                 return -1;
2101         }
2102
2103         /* Compute a scale to convert nanoseconds in TSC cycles */
2104         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2105                            &vcpu->arch.virtual_tsc_shift,
2106                            &vcpu->arch.virtual_tsc_mult);
2107         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2108
2109         /*
2110          * Compute the variation in TSC rate which is acceptable
2111          * within the range of tolerance and decide if the
2112          * rate being applied is within that bounds of the hardware
2113          * rate.  If so, no scaling or compensation need be done.
2114          */
2115         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2116         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2117         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2118                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2119                 use_scaling = 1;
2120         }
2121         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2122 }
2123
2124 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2125 {
2126         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2127                                       vcpu->arch.virtual_tsc_mult,
2128                                       vcpu->arch.virtual_tsc_shift);
2129         tsc += vcpu->arch.this_tsc_write;
2130         return tsc;
2131 }
2132
2133 static inline int gtod_is_based_on_tsc(int mode)
2134 {
2135         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2136 }
2137
2138 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2139 {
2140 #ifdef CONFIG_X86_64
2141         bool vcpus_matched;
2142         struct kvm_arch *ka = &vcpu->kvm->arch;
2143         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2144
2145         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2146                          atomic_read(&vcpu->kvm->online_vcpus));
2147
2148         /*
2149          * Once the masterclock is enabled, always perform request in
2150          * order to update it.
2151          *
2152          * In order to enable masterclock, the host clocksource must be TSC
2153          * and the vcpus need to have matched TSCs.  When that happens,
2154          * perform request to enable masterclock.
2155          */
2156         if (ka->use_master_clock ||
2157             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2158                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2159
2160         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2161                             atomic_read(&vcpu->kvm->online_vcpus),
2162                             ka->use_master_clock, gtod->clock.vclock_mode);
2163 #endif
2164 }
2165
2166 /*
2167  * Multiply tsc by a fixed point number represented by ratio.
2168  *
2169  * The most significant 64-N bits (mult) of ratio represent the
2170  * integral part of the fixed point number; the remaining N bits
2171  * (frac) represent the fractional part, ie. ratio represents a fixed
2172  * point number (mult + frac * 2^(-N)).
2173  *
2174  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2175  */
2176 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2177 {
2178         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2179 }
2180
2181 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2182 {
2183         u64 _tsc = tsc;
2184         u64 ratio = vcpu->arch.tsc_scaling_ratio;
2185
2186         if (ratio != kvm_default_tsc_scaling_ratio)
2187                 _tsc = __scale_tsc(ratio, tsc);
2188
2189         return _tsc;
2190 }
2191 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2192
2193 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2194 {
2195         u64 tsc;
2196
2197         tsc = kvm_scale_tsc(vcpu, rdtsc());
2198
2199         return target_tsc - tsc;
2200 }
2201
2202 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2203 {
2204         return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2205 }
2206 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2207
2208 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2209 {
2210         vcpu->arch.l1_tsc_offset = offset;
2211         vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
2212 }
2213
2214 static inline bool kvm_check_tsc_unstable(void)
2215 {
2216 #ifdef CONFIG_X86_64
2217         /*
2218          * TSC is marked unstable when we're running on Hyper-V,
2219          * 'TSC page' clocksource is good.
2220          */
2221         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2222                 return false;
2223 #endif
2224         return check_tsc_unstable();
2225 }
2226
2227 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2228 {
2229         struct kvm *kvm = vcpu->kvm;
2230         u64 offset, ns, elapsed;
2231         unsigned long flags;
2232         bool matched;
2233         bool already_matched;
2234         bool synchronizing = false;
2235
2236         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2237         offset = kvm_compute_tsc_offset(vcpu, data);
2238         ns = get_kvmclock_base_ns();
2239         elapsed = ns - kvm->arch.last_tsc_nsec;
2240
2241         if (vcpu->arch.virtual_tsc_khz) {
2242                 if (data == 0) {
2243                         /*
2244                          * detection of vcpu initialization -- need to sync
2245                          * with other vCPUs. This particularly helps to keep
2246                          * kvm_clock stable after CPU hotplug
2247                          */
2248                         synchronizing = true;
2249                 } else {
2250                         u64 tsc_exp = kvm->arch.last_tsc_write +
2251                                                 nsec_to_cycles(vcpu, elapsed);
2252                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2253                         /*
2254                          * Special case: TSC write with a small delta (1 second)
2255                          * of virtual cycle time against real time is
2256                          * interpreted as an attempt to synchronize the CPU.
2257                          */
2258                         synchronizing = data < tsc_exp + tsc_hz &&
2259                                         data + tsc_hz > tsc_exp;
2260                 }
2261         }
2262
2263         /*
2264          * For a reliable TSC, we can match TSC offsets, and for an unstable
2265          * TSC, we add elapsed time in this computation.  We could let the
2266          * compensation code attempt to catch up if we fall behind, but
2267          * it's better to try to match offsets from the beginning.
2268          */
2269         if (synchronizing &&
2270             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2271                 if (!kvm_check_tsc_unstable()) {
2272                         offset = kvm->arch.cur_tsc_offset;
2273                 } else {
2274                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2275                         data += delta;
2276                         offset = kvm_compute_tsc_offset(vcpu, data);
2277                 }
2278                 matched = true;
2279                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2280         } else {
2281                 /*
2282                  * We split periods of matched TSC writes into generations.
2283                  * For each generation, we track the original measured
2284                  * nanosecond time, offset, and write, so if TSCs are in
2285                  * sync, we can match exact offset, and if not, we can match
2286                  * exact software computation in compute_guest_tsc()
2287                  *
2288                  * These values are tracked in kvm->arch.cur_xxx variables.
2289                  */
2290                 kvm->arch.cur_tsc_generation++;
2291                 kvm->arch.cur_tsc_nsec = ns;
2292                 kvm->arch.cur_tsc_write = data;
2293                 kvm->arch.cur_tsc_offset = offset;
2294                 matched = false;
2295         }
2296
2297         /*
2298          * We also track th most recent recorded KHZ, write and time to
2299          * allow the matching interval to be extended at each write.
2300          */
2301         kvm->arch.last_tsc_nsec = ns;
2302         kvm->arch.last_tsc_write = data;
2303         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2304
2305         vcpu->arch.last_guest_tsc = data;
2306
2307         /* Keep track of which generation this VCPU has synchronized to */
2308         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2309         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2310         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2311
2312         kvm_vcpu_write_tsc_offset(vcpu, offset);
2313         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2314
2315         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2316         if (!matched) {
2317                 kvm->arch.nr_vcpus_matched_tsc = 0;
2318         } else if (!already_matched) {
2319                 kvm->arch.nr_vcpus_matched_tsc++;
2320         }
2321
2322         kvm_track_tsc_matching(vcpu);
2323         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2324 }
2325
2326 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2327                                            s64 adjustment)
2328 {
2329         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2330         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2331 }
2332
2333 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2334 {
2335         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2336                 WARN_ON(adjustment < 0);
2337         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2338         adjust_tsc_offset_guest(vcpu, adjustment);
2339 }
2340
2341 #ifdef CONFIG_X86_64
2342
2343 static u64 read_tsc(void)
2344 {
2345         u64 ret = (u64)rdtsc_ordered();
2346         u64 last = pvclock_gtod_data.clock.cycle_last;
2347
2348         if (likely(ret >= last))
2349                 return ret;
2350
2351         /*
2352          * GCC likes to generate cmov here, but this branch is extremely
2353          * predictable (it's just a function of time and the likely is
2354          * very likely) and there's a data dependence, so force GCC
2355          * to generate a branch instead.  I don't barrier() because
2356          * we don't actually need a barrier, and if this function
2357          * ever gets inlined it will generate worse code.
2358          */
2359         asm volatile ("");
2360         return last;
2361 }
2362
2363 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2364                           int *mode)
2365 {
2366         long v;
2367         u64 tsc_pg_val;
2368
2369         switch (clock->vclock_mode) {
2370         case VDSO_CLOCKMODE_HVCLOCK:
2371                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2372                                                   tsc_timestamp);
2373                 if (tsc_pg_val != U64_MAX) {
2374                         /* TSC page valid */
2375                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2376                         v = (tsc_pg_val - clock->cycle_last) &
2377                                 clock->mask;
2378                 } else {
2379                         /* TSC page invalid */
2380                         *mode = VDSO_CLOCKMODE_NONE;
2381                 }
2382                 break;
2383         case VDSO_CLOCKMODE_TSC:
2384                 *mode = VDSO_CLOCKMODE_TSC;
2385                 *tsc_timestamp = read_tsc();
2386                 v = (*tsc_timestamp - clock->cycle_last) &
2387                         clock->mask;
2388                 break;
2389         default:
2390                 *mode = VDSO_CLOCKMODE_NONE;
2391         }
2392
2393         if (*mode == VDSO_CLOCKMODE_NONE)
2394                 *tsc_timestamp = v = 0;
2395
2396         return v * clock->mult;
2397 }
2398
2399 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2400 {
2401         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2402         unsigned long seq;
2403         int mode;
2404         u64 ns;
2405
2406         do {
2407                 seq = read_seqcount_begin(&gtod->seq);
2408                 ns = gtod->raw_clock.base_cycles;
2409                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2410                 ns >>= gtod->raw_clock.shift;
2411                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2412         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2413         *t = ns;
2414
2415         return mode;
2416 }
2417
2418 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2419 {
2420         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2421         unsigned long seq;
2422         int mode;
2423         u64 ns;
2424
2425         do {
2426                 seq = read_seqcount_begin(&gtod->seq);
2427                 ts->tv_sec = gtod->wall_time_sec;
2428                 ns = gtod->clock.base_cycles;
2429                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2430                 ns >>= gtod->clock.shift;
2431         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2432
2433         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2434         ts->tv_nsec = ns;
2435
2436         return mode;
2437 }
2438
2439 /* returns true if host is using TSC based clocksource */
2440 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2441 {
2442         /* checked again under seqlock below */
2443         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2444                 return false;
2445
2446         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2447                                                       tsc_timestamp));
2448 }
2449
2450 /* returns true if host is using TSC based clocksource */
2451 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2452                                            u64 *tsc_timestamp)
2453 {
2454         /* checked again under seqlock below */
2455         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2456                 return false;
2457
2458         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2459 }
2460 #endif
2461
2462 /*
2463  *
2464  * Assuming a stable TSC across physical CPUS, and a stable TSC
2465  * across virtual CPUs, the following condition is possible.
2466  * Each numbered line represents an event visible to both
2467  * CPUs at the next numbered event.
2468  *
2469  * "timespecX" represents host monotonic time. "tscX" represents
2470  * RDTSC value.
2471  *
2472  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2473  *
2474  * 1.  read timespec0,tsc0
2475  * 2.                                   | timespec1 = timespec0 + N
2476  *                                      | tsc1 = tsc0 + M
2477  * 3. transition to guest               | transition to guest
2478  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2479  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2480  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2481  *
2482  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2483  *
2484  *      - ret0 < ret1
2485  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2486  *              ...
2487  *      - 0 < N - M => M < N
2488  *
2489  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2490  * always the case (the difference between two distinct xtime instances
2491  * might be smaller then the difference between corresponding TSC reads,
2492  * when updating guest vcpus pvclock areas).
2493  *
2494  * To avoid that problem, do not allow visibility of distinct
2495  * system_timestamp/tsc_timestamp values simultaneously: use a master
2496  * copy of host monotonic time values. Update that master copy
2497  * in lockstep.
2498  *
2499  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2500  *
2501  */
2502
2503 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2504 {
2505 #ifdef CONFIG_X86_64
2506         struct kvm_arch *ka = &kvm->arch;
2507         int vclock_mode;
2508         bool host_tsc_clocksource, vcpus_matched;
2509
2510         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2511                         atomic_read(&kvm->online_vcpus));
2512
2513         /*
2514          * If the host uses TSC clock, then passthrough TSC as stable
2515          * to the guest.
2516          */
2517         host_tsc_clocksource = kvm_get_time_and_clockread(
2518                                         &ka->master_kernel_ns,
2519                                         &ka->master_cycle_now);
2520
2521         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2522                                 && !ka->backwards_tsc_observed
2523                                 && !ka->boot_vcpu_runs_old_kvmclock;
2524
2525         if (ka->use_master_clock)
2526                 atomic_set(&kvm_guest_has_master_clock, 1);
2527
2528         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2529         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2530                                         vcpus_matched);
2531 #endif
2532 }
2533
2534 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2535 {
2536         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2537 }
2538
2539 static void kvm_gen_update_masterclock(struct kvm *kvm)
2540 {
2541 #ifdef CONFIG_X86_64
2542         int i;
2543         struct kvm_vcpu *vcpu;
2544         struct kvm_arch *ka = &kvm->arch;
2545
2546         spin_lock(&ka->pvclock_gtod_sync_lock);
2547         kvm_make_mclock_inprogress_request(kvm);
2548         /* no guest entries from this point */
2549         pvclock_update_vm_gtod_copy(kvm);
2550
2551         kvm_for_each_vcpu(i, vcpu, kvm)
2552                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2553
2554         /* guest entries allowed */
2555         kvm_for_each_vcpu(i, vcpu, kvm)
2556                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2557
2558         spin_unlock(&ka->pvclock_gtod_sync_lock);
2559 #endif
2560 }
2561
2562 u64 get_kvmclock_ns(struct kvm *kvm)
2563 {
2564         struct kvm_arch *ka = &kvm->arch;
2565         struct pvclock_vcpu_time_info hv_clock;
2566         u64 ret;
2567
2568         spin_lock(&ka->pvclock_gtod_sync_lock);
2569         if (!ka->use_master_clock) {
2570                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2571                 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2572         }
2573
2574         hv_clock.tsc_timestamp = ka->master_cycle_now;
2575         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2576         spin_unlock(&ka->pvclock_gtod_sync_lock);
2577
2578         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2579         get_cpu();
2580
2581         if (__this_cpu_read(cpu_tsc_khz)) {
2582                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2583                                    &hv_clock.tsc_shift,
2584                                    &hv_clock.tsc_to_system_mul);
2585                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2586         } else
2587                 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2588
2589         put_cpu();
2590
2591         return ret;
2592 }
2593
2594 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2595 {
2596         struct kvm_vcpu_arch *vcpu = &v->arch;
2597         struct pvclock_vcpu_time_info guest_hv_clock;
2598
2599         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2600                 &guest_hv_clock, sizeof(guest_hv_clock))))
2601                 return;
2602
2603         /* This VCPU is paused, but it's legal for a guest to read another
2604          * VCPU's kvmclock, so we really have to follow the specification where
2605          * it says that version is odd if data is being modified, and even after
2606          * it is consistent.
2607          *
2608          * Version field updates must be kept separate.  This is because
2609          * kvm_write_guest_cached might use a "rep movs" instruction, and
2610          * writes within a string instruction are weakly ordered.  So there
2611          * are three writes overall.
2612          *
2613          * As a small optimization, only write the version field in the first
2614          * and third write.  The vcpu->pv_time cache is still valid, because the
2615          * version field is the first in the struct.
2616          */
2617         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2618
2619         if (guest_hv_clock.version & 1)
2620                 ++guest_hv_clock.version;  /* first time write, random junk */
2621
2622         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2623         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2624                                 &vcpu->hv_clock,
2625                                 sizeof(vcpu->hv_clock.version));
2626
2627         smp_wmb();
2628
2629         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2630         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2631
2632         if (vcpu->pvclock_set_guest_stopped_request) {
2633                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2634                 vcpu->pvclock_set_guest_stopped_request = false;
2635         }
2636
2637         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2638
2639         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2640                                 &vcpu->hv_clock,
2641                                 sizeof(vcpu->hv_clock));
2642
2643         smp_wmb();
2644
2645         vcpu->hv_clock.version++;
2646         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2647                                 &vcpu->hv_clock,
2648                                 sizeof(vcpu->hv_clock.version));
2649 }
2650
2651 static int kvm_guest_time_update(struct kvm_vcpu *v)
2652 {
2653         unsigned long flags, tgt_tsc_khz;
2654         struct kvm_vcpu_arch *vcpu = &v->arch;
2655         struct kvm_arch *ka = &v->kvm->arch;
2656         s64 kernel_ns;
2657         u64 tsc_timestamp, host_tsc;
2658         u8 pvclock_flags;
2659         bool use_master_clock;
2660
2661         kernel_ns = 0;
2662         host_tsc = 0;
2663
2664         /*
2665          * If the host uses TSC clock, then passthrough TSC as stable
2666          * to the guest.
2667          */
2668         spin_lock(&ka->pvclock_gtod_sync_lock);
2669         use_master_clock = ka->use_master_clock;
2670         if (use_master_clock) {
2671                 host_tsc = ka->master_cycle_now;
2672                 kernel_ns = ka->master_kernel_ns;
2673         }
2674         spin_unlock(&ka->pvclock_gtod_sync_lock);
2675
2676         /* Keep irq disabled to prevent changes to the clock */
2677         local_irq_save(flags);
2678         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2679         if (unlikely(tgt_tsc_khz == 0)) {
2680                 local_irq_restore(flags);
2681                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2682                 return 1;
2683         }
2684         if (!use_master_clock) {
2685                 host_tsc = rdtsc();
2686                 kernel_ns = get_kvmclock_base_ns();
2687         }
2688
2689         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2690
2691         /*
2692          * We may have to catch up the TSC to match elapsed wall clock
2693          * time for two reasons, even if kvmclock is used.
2694          *   1) CPU could have been running below the maximum TSC rate
2695          *   2) Broken TSC compensation resets the base at each VCPU
2696          *      entry to avoid unknown leaps of TSC even when running
2697          *      again on the same CPU.  This may cause apparent elapsed
2698          *      time to disappear, and the guest to stand still or run
2699          *      very slowly.
2700          */
2701         if (vcpu->tsc_catchup) {
2702                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2703                 if (tsc > tsc_timestamp) {
2704                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2705                         tsc_timestamp = tsc;
2706                 }
2707         }
2708
2709         local_irq_restore(flags);
2710
2711         /* With all the info we got, fill in the values */
2712
2713         if (kvm_has_tsc_control)
2714                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2715
2716         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2717                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2718                                    &vcpu->hv_clock.tsc_shift,
2719                                    &vcpu->hv_clock.tsc_to_system_mul);
2720                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2721         }
2722
2723         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2724         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2725         vcpu->last_guest_tsc = tsc_timestamp;
2726
2727         /* If the host uses TSC clocksource, then it is stable */
2728         pvclock_flags = 0;
2729         if (use_master_clock)
2730                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2731
2732         vcpu->hv_clock.flags = pvclock_flags;
2733
2734         if (vcpu->pv_time_enabled)
2735                 kvm_setup_pvclock_page(v);
2736         if (v == kvm_get_vcpu(v->kvm, 0))
2737                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2738         return 0;
2739 }
2740
2741 /*
2742  * kvmclock updates which are isolated to a given vcpu, such as
2743  * vcpu->cpu migration, should not allow system_timestamp from
2744  * the rest of the vcpus to remain static. Otherwise ntp frequency
2745  * correction applies to one vcpu's system_timestamp but not
2746  * the others.
2747  *
2748  * So in those cases, request a kvmclock update for all vcpus.
2749  * We need to rate-limit these requests though, as they can
2750  * considerably slow guests that have a large number of vcpus.
2751  * The time for a remote vcpu to update its kvmclock is bound
2752  * by the delay we use to rate-limit the updates.
2753  */
2754
2755 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2756
2757 static void kvmclock_update_fn(struct work_struct *work)
2758 {
2759         int i;
2760         struct delayed_work *dwork = to_delayed_work(work);
2761         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2762                                            kvmclock_update_work);
2763         struct kvm *kvm = container_of(ka, struct kvm, arch);
2764         struct kvm_vcpu *vcpu;
2765
2766         kvm_for_each_vcpu(i, vcpu, kvm) {
2767                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2768                 kvm_vcpu_kick(vcpu);
2769         }
2770 }
2771
2772 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2773 {
2774         struct kvm *kvm = v->kvm;
2775
2776         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2777         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2778                                         KVMCLOCK_UPDATE_DELAY);
2779 }
2780
2781 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2782
2783 static void kvmclock_sync_fn(struct work_struct *work)
2784 {
2785         struct delayed_work *dwork = to_delayed_work(work);
2786         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2787                                            kvmclock_sync_work);
2788         struct kvm *kvm = container_of(ka, struct kvm, arch);
2789
2790         if (!kvmclock_periodic_sync)
2791                 return;
2792
2793         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2794         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2795                                         KVMCLOCK_SYNC_PERIOD);
2796 }
2797
2798 /*
2799  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2800  */
2801 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2802 {
2803         /* McStatusWrEn enabled? */
2804         if (guest_cpuid_is_amd_or_hygon(vcpu))
2805                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2806
2807         return false;
2808 }
2809
2810 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2811 {
2812         u64 mcg_cap = vcpu->arch.mcg_cap;
2813         unsigned bank_num = mcg_cap & 0xff;
2814         u32 msr = msr_info->index;
2815         u64 data = msr_info->data;
2816
2817         switch (msr) {
2818         case MSR_IA32_MCG_STATUS:
2819                 vcpu->arch.mcg_status = data;
2820                 break;
2821         case MSR_IA32_MCG_CTL:
2822                 if (!(mcg_cap & MCG_CTL_P) &&
2823                     (data || !msr_info->host_initiated))
2824                         return 1;
2825                 if (data != 0 && data != ~(u64)0)
2826                         return 1;
2827                 vcpu->arch.mcg_ctl = data;
2828                 break;
2829         default:
2830                 if (msr >= MSR_IA32_MC0_CTL &&
2831                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2832                         u32 offset = array_index_nospec(
2833                                 msr - MSR_IA32_MC0_CTL,
2834                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2835
2836                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2837                          * some Linux kernels though clear bit 10 in bank 4 to
2838                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2839                          * this to avoid an uncatched #GP in the guest
2840                          */
2841                         if ((offset & 0x3) == 0 &&
2842                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2843                                 return -1;
2844
2845                         /* MCi_STATUS */
2846                         if (!msr_info->host_initiated &&
2847                             (offset & 0x3) == 1 && data != 0) {
2848                                 if (!can_set_mci_status(vcpu))
2849                                         return -1;
2850                         }
2851
2852                         vcpu->arch.mce_banks[offset] = data;
2853                         break;
2854                 }
2855                 return 1;
2856         }
2857         return 0;
2858 }
2859
2860 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2861 {
2862         struct kvm *kvm = vcpu->kvm;
2863         int lm = is_long_mode(vcpu);
2864         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2865                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2866         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2867                 : kvm->arch.xen_hvm_config.blob_size_32;
2868         u32 page_num = data & ~PAGE_MASK;
2869         u64 page_addr = data & PAGE_MASK;
2870         u8 *page;
2871
2872         if (page_num >= blob_size)
2873                 return 1;
2874
2875         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2876         if (IS_ERR(page))
2877                 return PTR_ERR(page);
2878
2879         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
2880                 kfree(page);
2881                 return 1;
2882         }
2883         return 0;
2884 }
2885
2886 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2887 {
2888         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2889
2890         return (vcpu->arch.apf.msr_en_val & mask) == mask;
2891 }
2892
2893 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2894 {
2895         gpa_t gpa = data & ~0x3f;
2896
2897         /* Bits 4:5 are reserved, Should be zero */
2898         if (data & 0x30)
2899                 return 1;
2900
2901         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2902             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2903                 return 1;
2904
2905         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2906             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2907                 return 1;
2908
2909         if (!lapic_in_kernel(vcpu))
2910                 return data ? 1 : 0;
2911
2912         vcpu->arch.apf.msr_en_val = data;
2913
2914         if (!kvm_pv_async_pf_enabled(vcpu)) {
2915                 kvm_clear_async_pf_completion_queue(vcpu);
2916                 kvm_async_pf_hash_reset(vcpu);
2917                 return 0;
2918         }
2919
2920         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2921                                         sizeof(u64)))
2922                 return 1;
2923
2924         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2925         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2926
2927         kvm_async_pf_wakeup_all(vcpu);
2928
2929         return 0;
2930 }
2931
2932 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2933 {
2934         /* Bits 8-63 are reserved */
2935         if (data >> 8)
2936                 return 1;
2937
2938         if (!lapic_in_kernel(vcpu))
2939                 return 1;
2940
2941         vcpu->arch.apf.msr_int_val = data;
2942
2943         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2944
2945         return 0;
2946 }
2947
2948 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2949 {
2950         vcpu->arch.pv_time_enabled = false;
2951         vcpu->arch.time = 0;
2952 }
2953
2954 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2955 {
2956         ++vcpu->stat.tlb_flush;
2957         kvm_x86_ops.tlb_flush_all(vcpu);
2958 }
2959
2960 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2961 {
2962         ++vcpu->stat.tlb_flush;
2963         kvm_x86_ops.tlb_flush_guest(vcpu);
2964 }
2965
2966 static void record_steal_time(struct kvm_vcpu *vcpu)
2967 {
2968         struct kvm_host_map map;
2969         struct kvm_steal_time *st;
2970
2971         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2972                 return;
2973
2974         /* -EAGAIN is returned in atomic context so we can just return. */
2975         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2976                         &map, &vcpu->arch.st.cache, false))
2977                 return;
2978
2979         st = map.hva +
2980                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2981
2982         /*
2983          * Doing a TLB flush here, on the guest's behalf, can avoid
2984          * expensive IPIs.
2985          */
2986         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
2987                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2988                                        st->preempted & KVM_VCPU_FLUSH_TLB);
2989                 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2990                         kvm_vcpu_flush_tlb_guest(vcpu);
2991         }
2992
2993         vcpu->arch.st.preempted = 0;
2994
2995         if (st->version & 1)
2996                 st->version += 1;  /* first time write, random junk */
2997
2998         st->version += 1;
2999
3000         smp_wmb();
3001
3002         st->steal += current->sched_info.run_delay -
3003                 vcpu->arch.st.last_steal;
3004         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3005
3006         smp_wmb();
3007
3008         st->version += 1;
3009
3010         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3011 }
3012
3013 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3014 {
3015         bool pr = false;
3016         u32 msr = msr_info->index;
3017         u64 data = msr_info->data;
3018
3019         switch (msr) {
3020         case MSR_AMD64_NB_CFG:
3021         case MSR_IA32_UCODE_WRITE:
3022         case MSR_VM_HSAVE_PA:
3023         case MSR_AMD64_PATCH_LOADER:
3024         case MSR_AMD64_BU_CFG2:
3025         case MSR_AMD64_DC_CFG:
3026         case MSR_F15H_EX_CFG:
3027                 break;
3028
3029         case MSR_IA32_UCODE_REV:
3030                 if (msr_info->host_initiated)
3031                         vcpu->arch.microcode_version = data;
3032                 break;
3033         case MSR_IA32_ARCH_CAPABILITIES:
3034                 if (!msr_info->host_initiated)
3035                         return 1;
3036                 vcpu->arch.arch_capabilities = data;
3037                 break;
3038         case MSR_IA32_PERF_CAPABILITIES: {
3039                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3040
3041                 if (!msr_info->host_initiated)
3042                         return 1;
3043                 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3044                         return 1;
3045                 if (data & ~msr_ent.data)
3046                         return 1;
3047
3048                 vcpu->arch.perf_capabilities = data;
3049
3050                 return 0;
3051                 }
3052         case MSR_EFER:
3053                 return set_efer(vcpu, msr_info);
3054         case MSR_K7_HWCR:
3055                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3056                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3057                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3058
3059                 /* Handle McStatusWrEn */
3060                 if (data == BIT_ULL(18)) {
3061                         vcpu->arch.msr_hwcr = data;
3062                 } else if (data != 0) {
3063                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3064                                     data);
3065                         return 1;
3066                 }
3067                 break;
3068         case MSR_FAM10H_MMIO_CONF_BASE:
3069                 if (data != 0) {
3070                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3071                                     "0x%llx\n", data);
3072                         return 1;
3073                 }
3074                 break;
3075         case MSR_IA32_DEBUGCTLMSR:
3076                 if (!data) {
3077                         /* We support the non-activated case already */
3078                         break;
3079                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
3080                         /* Values other than LBR and BTF are vendor-specific,
3081                            thus reserved and should throw a #GP */
3082                         return 1;
3083                 } else if (report_ignored_msrs)
3084                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
3085                                     __func__, data);
3086                 break;
3087         case 0x200 ... 0x2ff:
3088                 return kvm_mtrr_set_msr(vcpu, msr, data);
3089         case MSR_IA32_APICBASE:
3090                 return kvm_set_apic_base(vcpu, msr_info);
3091         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3092                 return kvm_x2apic_msr_write(vcpu, msr, data);
3093         case MSR_IA32_TSCDEADLINE:
3094                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3095                 break;
3096         case MSR_IA32_TSC_ADJUST:
3097                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3098                         if (!msr_info->host_initiated) {
3099                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3100                                 adjust_tsc_offset_guest(vcpu, adj);
3101                         }
3102                         vcpu->arch.ia32_tsc_adjust_msr = data;
3103                 }
3104                 break;
3105         case MSR_IA32_MISC_ENABLE:
3106                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3107                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3108                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3109                                 return 1;
3110                         vcpu->arch.ia32_misc_enable_msr = data;
3111                         kvm_update_cpuid_runtime(vcpu);
3112                 } else {
3113                         vcpu->arch.ia32_misc_enable_msr = data;
3114                 }
3115                 break;
3116         case MSR_IA32_SMBASE:
3117                 if (!msr_info->host_initiated)
3118                         return 1;
3119                 vcpu->arch.smbase = data;
3120                 break;
3121         case MSR_IA32_POWER_CTL:
3122                 vcpu->arch.msr_ia32_power_ctl = data;
3123                 break;
3124         case MSR_IA32_TSC:
3125                 if (msr_info->host_initiated) {
3126                         kvm_synchronize_tsc(vcpu, data);
3127                 } else {
3128                         u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3129                         adjust_tsc_offset_guest(vcpu, adj);
3130                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3131                 }
3132                 break;
3133         case MSR_IA32_XSS:
3134                 if (!msr_info->host_initiated &&
3135                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3136                         return 1;
3137                 /*
3138                  * KVM supports exposing PT to the guest, but does not support
3139                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3140                  * XSAVES/XRSTORS to save/restore PT MSRs.
3141                  */
3142                 if (data & ~supported_xss)
3143                         return 1;
3144                 vcpu->arch.ia32_xss = data;
3145                 break;
3146         case MSR_SMI_COUNT:
3147                 if (!msr_info->host_initiated)
3148                         return 1;
3149                 vcpu->arch.smi_count = data;
3150                 break;
3151         case MSR_KVM_WALL_CLOCK_NEW:
3152                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3153                         return 1;
3154
3155                 kvm_write_wall_clock(vcpu->kvm, data);
3156                 break;
3157         case MSR_KVM_WALL_CLOCK:
3158                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3159                         return 1;
3160
3161                 kvm_write_wall_clock(vcpu->kvm, data);
3162                 break;
3163         case MSR_KVM_SYSTEM_TIME_NEW:
3164                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3165                         return 1;
3166
3167                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3168                 break;
3169         case MSR_KVM_SYSTEM_TIME:
3170                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3171                         return 1;
3172
3173                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3174                 break;
3175         case MSR_KVM_ASYNC_PF_EN:
3176                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3177                         return 1;
3178
3179                 if (kvm_pv_enable_async_pf(vcpu, data))
3180                         return 1;
3181                 break;
3182         case MSR_KVM_ASYNC_PF_INT:
3183                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3184                         return 1;
3185
3186                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3187                         return 1;
3188                 break;
3189         case MSR_KVM_ASYNC_PF_ACK:
3190                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3191                         return 1;
3192                 if (data & 0x1) {
3193                         vcpu->arch.apf.pageready_pending = false;
3194                         kvm_check_async_pf_completion(vcpu);
3195                 }
3196                 break;
3197         case MSR_KVM_STEAL_TIME:
3198                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3199                         return 1;
3200
3201                 if (unlikely(!sched_info_on()))
3202                         return 1;
3203
3204                 if (data & KVM_STEAL_RESERVED_MASK)
3205                         return 1;
3206
3207                 vcpu->arch.st.msr_val = data;
3208
3209                 if (!(data & KVM_MSR_ENABLED))
3210                         break;
3211
3212                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3213
3214                 break;
3215         case MSR_KVM_PV_EOI_EN:
3216                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3217                         return 1;
3218
3219                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3220                         return 1;
3221                 break;
3222
3223         case MSR_KVM_POLL_CONTROL:
3224                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3225                         return 1;
3226
3227                 /* only enable bit supported */
3228                 if (data & (-1ULL << 1))
3229                         return 1;
3230
3231                 vcpu->arch.msr_kvm_poll_control = data;
3232                 break;
3233
3234         case MSR_IA32_MCG_CTL:
3235         case MSR_IA32_MCG_STATUS:
3236         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3237                 return set_msr_mce(vcpu, msr_info);
3238
3239         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3240         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3241                 pr = true;
3242                 fallthrough;
3243         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3244         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3245                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3246                         return kvm_pmu_set_msr(vcpu, msr_info);
3247
3248                 if (pr || data != 0)
3249                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3250                                     "0x%x data 0x%llx\n", msr, data);
3251                 break;
3252         case MSR_K7_CLK_CTL:
3253                 /*
3254                  * Ignore all writes to this no longer documented MSR.
3255                  * Writes are only relevant for old K7 processors,
3256                  * all pre-dating SVM, but a recommended workaround from
3257                  * AMD for these chips. It is possible to specify the
3258                  * affected processor models on the command line, hence
3259                  * the need to ignore the workaround.
3260                  */
3261                 break;
3262         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3263         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3264         case HV_X64_MSR_SYNDBG_OPTIONS:
3265         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3266         case HV_X64_MSR_CRASH_CTL:
3267         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3268         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3269         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3270         case HV_X64_MSR_TSC_EMULATION_STATUS:
3271                 return kvm_hv_set_msr_common(vcpu, msr, data,
3272                                              msr_info->host_initiated);
3273         case MSR_IA32_BBL_CR_CTL3:
3274                 /* Drop writes to this legacy MSR -- see rdmsr
3275                  * counterpart for further detail.
3276                  */
3277                 if (report_ignored_msrs)
3278                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3279                                 msr, data);
3280                 break;
3281         case MSR_AMD64_OSVW_ID_LENGTH:
3282                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3283                         return 1;
3284                 vcpu->arch.osvw.length = data;
3285                 break;
3286         case MSR_AMD64_OSVW_STATUS:
3287                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3288                         return 1;
3289                 vcpu->arch.osvw.status = data;
3290                 break;
3291         case MSR_PLATFORM_INFO:
3292                 if (!msr_info->host_initiated ||
3293                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3294                      cpuid_fault_enabled(vcpu)))
3295                         return 1;
3296                 vcpu->arch.msr_platform_info = data;
3297                 break;
3298         case MSR_MISC_FEATURES_ENABLES:
3299                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3300                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3301                      !supports_cpuid_fault(vcpu)))
3302                         return 1;
3303                 vcpu->arch.msr_misc_features_enables = data;
3304                 break;
3305         default:
3306                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3307                         return xen_hvm_config(vcpu, data);
3308                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3309                         return kvm_pmu_set_msr(vcpu, msr_info);
3310                 return KVM_MSR_RET_INVALID;
3311         }
3312         return 0;
3313 }
3314 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3315
3316 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3317 {
3318         u64 data;
3319         u64 mcg_cap = vcpu->arch.mcg_cap;
3320         unsigned bank_num = mcg_cap & 0xff;
3321
3322         switch (msr) {
3323         case MSR_IA32_P5_MC_ADDR:
3324         case MSR_IA32_P5_MC_TYPE:
3325                 data = 0;
3326                 break;
3327         case MSR_IA32_MCG_CAP:
3328                 data = vcpu->arch.mcg_cap;
3329                 break;
3330         case MSR_IA32_MCG_CTL:
3331                 if (!(mcg_cap & MCG_CTL_P) && !host)
3332                         return 1;
3333                 data = vcpu->arch.mcg_ctl;
3334                 break;
3335         case MSR_IA32_MCG_STATUS:
3336                 data = vcpu->arch.mcg_status;
3337                 break;
3338         default:
3339                 if (msr >= MSR_IA32_MC0_CTL &&
3340                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3341                         u32 offset = array_index_nospec(
3342                                 msr - MSR_IA32_MC0_CTL,
3343                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3344
3345                         data = vcpu->arch.mce_banks[offset];
3346                         break;
3347                 }
3348                 return 1;
3349         }
3350         *pdata = data;
3351         return 0;
3352 }
3353
3354 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3355 {
3356         switch (msr_info->index) {
3357         case MSR_IA32_PLATFORM_ID:
3358         case MSR_IA32_EBL_CR_POWERON:
3359         case MSR_IA32_DEBUGCTLMSR:
3360         case MSR_IA32_LASTBRANCHFROMIP:
3361         case MSR_IA32_LASTBRANCHTOIP:
3362         case MSR_IA32_LASTINTFROMIP:
3363         case MSR_IA32_LASTINTTOIP:
3364         case MSR_K8_SYSCFG:
3365         case MSR_K8_TSEG_ADDR:
3366         case MSR_K8_TSEG_MASK:
3367         case MSR_VM_HSAVE_PA:
3368         case MSR_K8_INT_PENDING_MSG:
3369         case MSR_AMD64_NB_CFG:
3370         case MSR_FAM10H_MMIO_CONF_BASE:
3371         case MSR_AMD64_BU_CFG2:
3372         case MSR_IA32_PERF_CTL:
3373         case MSR_AMD64_DC_CFG:
3374         case MSR_F15H_EX_CFG:
3375         /*
3376          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3377          * limit) MSRs. Just return 0, as we do not want to expose the host
3378          * data here. Do not conditionalize this on CPUID, as KVM does not do
3379          * so for existing CPU-specific MSRs.
3380          */
3381         case MSR_RAPL_POWER_UNIT:
3382         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3383         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3384         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3385         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3386                 msr_info->data = 0;
3387                 break;
3388         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3389         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3390         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3391         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3392         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3393                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3394                         return kvm_pmu_get_msr(vcpu, msr_info);
3395                 msr_info->data = 0;
3396                 break;
3397         case MSR_IA32_UCODE_REV:
3398                 msr_info->data = vcpu->arch.microcode_version;
3399                 break;
3400         case MSR_IA32_ARCH_CAPABILITIES:
3401                 if (!msr_info->host_initiated &&
3402                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3403                         return 1;
3404                 msr_info->data = vcpu->arch.arch_capabilities;
3405                 break;
3406         case MSR_IA32_PERF_CAPABILITIES:
3407                 if (!msr_info->host_initiated &&
3408                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3409                         return 1;
3410                 msr_info->data = vcpu->arch.perf_capabilities;
3411                 break;
3412         case MSR_IA32_POWER_CTL:
3413                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3414                 break;
3415         case MSR_IA32_TSC: {
3416                 /*
3417                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3418                  * even when not intercepted. AMD manual doesn't explicitly
3419                  * state this but appears to behave the same.
3420                  *
3421                  * On userspace reads and writes, however, we unconditionally
3422                  * return L1's TSC value to ensure backwards-compatible
3423                  * behavior for migration.
3424                  */
3425                 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3426                                                             vcpu->arch.tsc_offset;
3427
3428                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3429                 break;
3430         }
3431         case MSR_MTRRcap:
3432         case 0x200 ... 0x2ff:
3433                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3434         case 0xcd: /* fsb frequency */
3435                 msr_info->data = 3;
3436                 break;
3437                 /*
3438                  * MSR_EBC_FREQUENCY_ID
3439                  * Conservative value valid for even the basic CPU models.
3440                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3441                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3442                  * and 266MHz for model 3, or 4. Set Core Clock
3443                  * Frequency to System Bus Frequency Ratio to 1 (bits
3444                  * 31:24) even though these are only valid for CPU
3445                  * models > 2, however guests may end up dividing or
3446                  * multiplying by zero otherwise.
3447                  */
3448         case MSR_EBC_FREQUENCY_ID:
3449                 msr_info->data = 1 << 24;
3450                 break;
3451         case MSR_IA32_APICBASE:
3452                 msr_info->data = kvm_get_apic_base(vcpu);
3453                 break;
3454         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3455                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3456         case MSR_IA32_TSCDEADLINE:
3457                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3458                 break;
3459         case MSR_IA32_TSC_ADJUST:
3460                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3461                 break;
3462         case MSR_IA32_MISC_ENABLE:
3463                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3464                 break;
3465         case MSR_IA32_SMBASE:
3466                 if (!msr_info->host_initiated)
3467                         return 1;
3468                 msr_info->data = vcpu->arch.smbase;
3469                 break;
3470         case MSR_SMI_COUNT:
3471                 msr_info->data = vcpu->arch.smi_count;
3472                 break;
3473         case MSR_IA32_PERF_STATUS:
3474                 /* TSC increment by tick */
3475                 msr_info->data = 1000ULL;
3476                 /* CPU multiplier */
3477                 msr_info->data |= (((uint64_t)4ULL) << 40);
3478                 break;
3479         case MSR_EFER:
3480                 msr_info->data = vcpu->arch.efer;
3481                 break;
3482         case MSR_KVM_WALL_CLOCK:
3483                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3484                         return 1;
3485
3486                 msr_info->data = vcpu->kvm->arch.wall_clock;
3487                 break;
3488         case MSR_KVM_WALL_CLOCK_NEW:
3489                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3490                         return 1;
3491
3492                 msr_info->data = vcpu->kvm->arch.wall_clock;
3493                 break;
3494         case MSR_KVM_SYSTEM_TIME:
3495                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3496                         return 1;
3497
3498                 msr_info->data = vcpu->arch.time;
3499                 break;
3500         case MSR_KVM_SYSTEM_TIME_NEW:
3501                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3502                         return 1;
3503
3504                 msr_info->data = vcpu->arch.time;
3505                 break;
3506         case MSR_KVM_ASYNC_PF_EN:
3507                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3508                         return 1;
3509
3510                 msr_info->data = vcpu->arch.apf.msr_en_val;
3511                 break;
3512         case MSR_KVM_ASYNC_PF_INT:
3513                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3514                         return 1;
3515
3516                 msr_info->data = vcpu->arch.apf.msr_int_val;
3517                 break;
3518         case MSR_KVM_ASYNC_PF_ACK:
3519                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3520                         return 1;
3521
3522                 msr_info->data = 0;
3523                 break;
3524         case MSR_KVM_STEAL_TIME:
3525                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3526                         return 1;
3527
3528                 msr_info->data = vcpu->arch.st.msr_val;
3529                 break;
3530         case MSR_KVM_PV_EOI_EN:
3531                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3532                         return 1;
3533
3534                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3535                 break;
3536         case MSR_KVM_POLL_CONTROL:
3537                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3538                         return 1;
3539
3540                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3541                 break;
3542         case MSR_IA32_P5_MC_ADDR:
3543         case MSR_IA32_P5_MC_TYPE:
3544         case MSR_IA32_MCG_CAP:
3545         case MSR_IA32_MCG_CTL:
3546         case MSR_IA32_MCG_STATUS:
3547         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3548                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3549                                    msr_info->host_initiated);
3550         case MSR_IA32_XSS:
3551                 if (!msr_info->host_initiated &&
3552                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3553                         return 1;
3554                 msr_info->data = vcpu->arch.ia32_xss;
3555                 break;
3556         case MSR_K7_CLK_CTL:
3557                 /*
3558                  * Provide expected ramp-up count for K7. All other
3559                  * are set to zero, indicating minimum divisors for
3560                  * every field.
3561                  *
3562                  * This prevents guest kernels on AMD host with CPU
3563                  * type 6, model 8 and higher from exploding due to
3564                  * the rdmsr failing.
3565                  */
3566                 msr_info->data = 0x20000000;
3567                 break;
3568         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3569         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3570         case HV_X64_MSR_SYNDBG_OPTIONS:
3571         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3572         case HV_X64_MSR_CRASH_CTL:
3573         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3574         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3575         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3576         case HV_X64_MSR_TSC_EMULATION_STATUS:
3577                 return kvm_hv_get_msr_common(vcpu,
3578                                              msr_info->index, &msr_info->data,
3579                                              msr_info->host_initiated);
3580         case MSR_IA32_BBL_CR_CTL3:
3581                 /* This legacy MSR exists but isn't fully documented in current
3582                  * silicon.  It is however accessed by winxp in very narrow
3583                  * scenarios where it sets bit #19, itself documented as
3584                  * a "reserved" bit.  Best effort attempt to source coherent
3585                  * read data here should the balance of the register be
3586                  * interpreted by the guest:
3587                  *
3588                  * L2 cache control register 3: 64GB range, 256KB size,
3589                  * enabled, latency 0x1, configured
3590                  */
3591                 msr_info->data = 0xbe702111;
3592                 break;
3593         case MSR_AMD64_OSVW_ID_LENGTH:
3594                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3595                         return 1;
3596                 msr_info->data = vcpu->arch.osvw.length;
3597                 break;
3598         case MSR_AMD64_OSVW_STATUS:
3599                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3600                         return 1;
3601                 msr_info->data = vcpu->arch.osvw.status;
3602                 break;
3603         case MSR_PLATFORM_INFO:
3604                 if (!msr_info->host_initiated &&
3605                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3606                         return 1;
3607                 msr_info->data = vcpu->arch.msr_platform_info;
3608                 break;
3609         case MSR_MISC_FEATURES_ENABLES:
3610                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3611                 break;
3612         case MSR_K7_HWCR:
3613                 msr_info->data = vcpu->arch.msr_hwcr;
3614                 break;
3615         default:
3616                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3617                         return kvm_pmu_get_msr(vcpu, msr_info);
3618                 return KVM_MSR_RET_INVALID;
3619         }
3620         return 0;
3621 }
3622 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3623
3624 /*
3625  * Read or write a bunch of msrs. All parameters are kernel addresses.
3626  *
3627  * @return number of msrs set successfully.
3628  */
3629 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3630                     struct kvm_msr_entry *entries,
3631                     int (*do_msr)(struct kvm_vcpu *vcpu,
3632                                   unsigned index, u64 *data))
3633 {
3634         int i;
3635
3636         for (i = 0; i < msrs->nmsrs; ++i)
3637                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3638                         break;
3639
3640         return i;
3641 }
3642
3643 /*
3644  * Read or write a bunch of msrs. Parameters are user addresses.
3645  *
3646  * @return number of msrs set successfully.
3647  */
3648 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3649                   int (*do_msr)(struct kvm_vcpu *vcpu,
3650                                 unsigned index, u64 *data),
3651                   int writeback)
3652 {
3653         struct kvm_msrs msrs;
3654         struct kvm_msr_entry *entries;
3655         int r, n;
3656         unsigned size;
3657
3658         r = -EFAULT;
3659         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3660                 goto out;
3661
3662         r = -E2BIG;
3663         if (msrs.nmsrs >= MAX_IO_MSRS)
3664                 goto out;
3665
3666         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3667         entries = memdup_user(user_msrs->entries, size);
3668         if (IS_ERR(entries)) {
3669                 r = PTR_ERR(entries);
3670                 goto out;
3671         }
3672
3673         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3674         if (r < 0)
3675                 goto out_free;
3676
3677         r = -EFAULT;
3678         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3679                 goto out_free;
3680
3681         r = n;
3682
3683 out_free:
3684         kfree(entries);
3685 out:
3686         return r;
3687 }
3688
3689 static inline bool kvm_can_mwait_in_guest(void)
3690 {
3691         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3692                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3693                 boot_cpu_has(X86_FEATURE_ARAT);
3694 }
3695
3696 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3697                                             struct kvm_cpuid2 __user *cpuid_arg)
3698 {
3699         struct kvm_cpuid2 cpuid;
3700         int r;
3701
3702         r = -EFAULT;
3703         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3704                 return r;
3705
3706         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3707         if (r)
3708                 return r;
3709
3710         r = -EFAULT;
3711         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3712                 return r;
3713
3714         return 0;
3715 }
3716
3717 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3718 {
3719         int r = 0;
3720
3721         switch (ext) {
3722         case KVM_CAP_IRQCHIP:
3723         case KVM_CAP_HLT:
3724         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3725         case KVM_CAP_SET_TSS_ADDR:
3726         case KVM_CAP_EXT_CPUID:
3727         case KVM_CAP_EXT_EMUL_CPUID:
3728         case KVM_CAP_CLOCKSOURCE:
3729         case KVM_CAP_PIT:
3730         case KVM_CAP_NOP_IO_DELAY:
3731         case KVM_CAP_MP_STATE:
3732         case KVM_CAP_SYNC_MMU:
3733         case KVM_CAP_USER_NMI:
3734         case KVM_CAP_REINJECT_CONTROL:
3735         case KVM_CAP_IRQ_INJECT_STATUS:
3736         case KVM_CAP_IOEVENTFD:
3737         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3738         case KVM_CAP_PIT2:
3739         case KVM_CAP_PIT_STATE2:
3740         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3741         case KVM_CAP_XEN_HVM:
3742         case KVM_CAP_VCPU_EVENTS:
3743         case KVM_CAP_HYPERV:
3744         case KVM_CAP_HYPERV_VAPIC:
3745         case KVM_CAP_HYPERV_SPIN:
3746         case KVM_CAP_HYPERV_SYNIC:
3747         case KVM_CAP_HYPERV_SYNIC2:
3748         case KVM_CAP_HYPERV_VP_INDEX:
3749         case KVM_CAP_HYPERV_EVENTFD:
3750         case KVM_CAP_HYPERV_TLBFLUSH:
3751         case KVM_CAP_HYPERV_SEND_IPI:
3752         case KVM_CAP_HYPERV_CPUID:
3753         case KVM_CAP_SYS_HYPERV_CPUID:
3754         case KVM_CAP_PCI_SEGMENT:
3755         case KVM_CAP_DEBUGREGS:
3756         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3757         case KVM_CAP_XSAVE:
3758         case KVM_CAP_ASYNC_PF:
3759         case KVM_CAP_ASYNC_PF_INT:
3760         case KVM_CAP_GET_TSC_KHZ:
3761         case KVM_CAP_KVMCLOCK_CTRL:
3762         case KVM_CAP_READONLY_MEM:
3763         case KVM_CAP_HYPERV_TIME:
3764         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3765         case KVM_CAP_TSC_DEADLINE_TIMER:
3766         case KVM_CAP_DISABLE_QUIRKS:
3767         case KVM_CAP_SET_BOOT_CPU_ID:
3768         case KVM_CAP_SPLIT_IRQCHIP:
3769         case KVM_CAP_IMMEDIATE_EXIT:
3770         case KVM_CAP_PMU_EVENT_FILTER:
3771         case KVM_CAP_GET_MSR_FEATURES:
3772         case KVM_CAP_MSR_PLATFORM_INFO:
3773         case KVM_CAP_EXCEPTION_PAYLOAD:
3774         case KVM_CAP_SET_GUEST_DEBUG:
3775         case KVM_CAP_LAST_CPU:
3776         case KVM_CAP_X86_USER_SPACE_MSR:
3777         case KVM_CAP_X86_MSR_FILTER:
3778         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3779                 r = 1;
3780                 break;
3781         case KVM_CAP_SYNC_REGS:
3782                 r = KVM_SYNC_X86_VALID_FIELDS;
3783                 break;
3784         case KVM_CAP_ADJUST_CLOCK:
3785                 r = KVM_CLOCK_TSC_STABLE;
3786                 break;
3787         case KVM_CAP_X86_DISABLE_EXITS:
3788                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3789                       KVM_X86_DISABLE_EXITS_CSTATE;
3790                 if(kvm_can_mwait_in_guest())
3791                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3792                 break;
3793         case KVM_CAP_X86_SMM:
3794                 /* SMBASE is usually relocated above 1M on modern chipsets,
3795                  * and SMM handlers might indeed rely on 4G segment limits,
3796                  * so do not report SMM to be available if real mode is
3797                  * emulated via vm86 mode.  Still, do not go to great lengths
3798                  * to avoid userspace's usage of the feature, because it is a
3799                  * fringe case that is not enabled except via specific settings
3800                  * of the module parameters.
3801                  */
3802                 r = kvm_x86_ops.has_emulated_msr(kvm, MSR_IA32_SMBASE);
3803                 break;
3804         case KVM_CAP_VAPIC:
3805                 r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3806                 break;
3807         case KVM_CAP_NR_VCPUS:
3808                 r = KVM_SOFT_MAX_VCPUS;
3809                 break;
3810         case KVM_CAP_MAX_VCPUS:
3811                 r = KVM_MAX_VCPUS;
3812                 break;
3813         case KVM_CAP_MAX_VCPU_ID:
3814                 r = KVM_MAX_VCPU_ID;
3815                 break;
3816         case KVM_CAP_PV_MMU:    /* obsolete */
3817                 r = 0;
3818                 break;
3819         case KVM_CAP_MCE:
3820                 r = KVM_MAX_MCE_BANKS;
3821                 break;
3822         case KVM_CAP_XCRS:
3823                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3824                 break;
3825         case KVM_CAP_TSC_CONTROL:
3826                 r = kvm_has_tsc_control;
3827                 break;
3828         case KVM_CAP_X2APIC_API:
3829                 r = KVM_X2APIC_API_VALID_FLAGS;
3830                 break;
3831         case KVM_CAP_NESTED_STATE:
3832                 r = kvm_x86_ops.nested_ops->get_state ?
3833                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3834                 break;
3835         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3836                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3837                 break;
3838         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3839                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3840                 break;
3841         case KVM_CAP_SMALLER_MAXPHYADDR:
3842                 r = (int) allow_smaller_maxphyaddr;
3843                 break;
3844         case KVM_CAP_STEAL_TIME:
3845                 r = sched_info_on();
3846                 break;
3847         default:
3848                 break;
3849         }
3850         return r;
3851
3852 }
3853
3854 long kvm_arch_dev_ioctl(struct file *filp,
3855                         unsigned int ioctl, unsigned long arg)
3856 {
3857         void __user *argp = (void __user *)arg;
3858         long r;
3859
3860         switch (ioctl) {
3861         case KVM_GET_MSR_INDEX_LIST: {
3862                 struct kvm_msr_list __user *user_msr_list = argp;
3863                 struct kvm_msr_list msr_list;
3864                 unsigned n;
3865
3866                 r = -EFAULT;
3867                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3868                         goto out;
3869                 n = msr_list.nmsrs;
3870                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3871                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3872                         goto out;
3873                 r = -E2BIG;
3874                 if (n < msr_list.nmsrs)
3875                         goto out;
3876                 r = -EFAULT;
3877                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3878                                  num_msrs_to_save * sizeof(u32)))
3879                         goto out;
3880                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3881                                  &emulated_msrs,
3882                                  num_emulated_msrs * sizeof(u32)))
3883                         goto out;
3884                 r = 0;
3885                 break;
3886         }
3887         case KVM_GET_SUPPORTED_CPUID:
3888         case KVM_GET_EMULATED_CPUID: {
3889                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3890                 struct kvm_cpuid2 cpuid;
3891
3892                 r = -EFAULT;
3893                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3894                         goto out;
3895
3896                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3897                                             ioctl);
3898                 if (r)
3899                         goto out;
3900
3901                 r = -EFAULT;
3902                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3903                         goto out;
3904                 r = 0;
3905                 break;
3906         }
3907         case KVM_X86_GET_MCE_CAP_SUPPORTED:
3908                 r = -EFAULT;
3909                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3910                                  sizeof(kvm_mce_cap_supported)))
3911                         goto out;
3912                 r = 0;
3913                 break;
3914         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3915                 struct kvm_msr_list __user *user_msr_list = argp;
3916                 struct kvm_msr_list msr_list;
3917                 unsigned int n;
3918
3919                 r = -EFAULT;
3920                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3921                         goto out;
3922                 n = msr_list.nmsrs;
3923                 msr_list.nmsrs = num_msr_based_features;
3924                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3925                         goto out;
3926                 r = -E2BIG;
3927                 if (n < msr_list.nmsrs)
3928                         goto out;
3929                 r = -EFAULT;
3930                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3931                                  num_msr_based_features * sizeof(u32)))
3932                         goto out;
3933                 r = 0;
3934                 break;
3935         }
3936         case KVM_GET_MSRS:
3937                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3938                 break;
3939         case KVM_GET_SUPPORTED_HV_CPUID:
3940                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
3941                 break;
3942         default:
3943                 r = -EINVAL;
3944                 break;
3945         }
3946 out:
3947         return r;
3948 }
3949
3950 static void wbinvd_ipi(void *garbage)
3951 {
3952         wbinvd();
3953 }
3954
3955 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3956 {
3957         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3958 }
3959
3960 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3961 {
3962         /* Address WBINVD may be executed by guest */
3963         if (need_emulate_wbinvd(vcpu)) {
3964                 if (kvm_x86_ops.has_wbinvd_exit())
3965                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3966                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3967                         smp_call_function_single(vcpu->cpu,
3968                                         wbinvd_ipi, NULL, 1);
3969         }
3970
3971         kvm_x86_ops.vcpu_load(vcpu, cpu);
3972
3973         /* Save host pkru register if supported */
3974         vcpu->arch.host_pkru = read_pkru();
3975
3976         /* Apply any externally detected TSC adjustments (due to suspend) */
3977         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3978                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3979                 vcpu->arch.tsc_offset_adjustment = 0;
3980                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3981         }
3982
3983         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3984                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3985                                 rdtsc() - vcpu->arch.last_host_tsc;
3986                 if (tsc_delta < 0)
3987                         mark_tsc_unstable("KVM discovered backwards TSC");
3988
3989                 if (kvm_check_tsc_unstable()) {
3990                         u64 offset = kvm_compute_tsc_offset(vcpu,
3991                                                 vcpu->arch.last_guest_tsc);
3992                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3993                         vcpu->arch.tsc_catchup = 1;
3994                 }
3995
3996                 if (kvm_lapic_hv_timer_in_use(vcpu))
3997                         kvm_lapic_restart_hv_timer(vcpu);
3998
3999                 /*
4000                  * On a host with synchronized TSC, there is no need to update
4001                  * kvmclock on vcpu->cpu migration
4002                  */
4003                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4004                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4005                 if (vcpu->cpu != cpu)
4006                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4007                 vcpu->cpu = cpu;
4008         }
4009
4010         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4011 }
4012
4013 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4014 {
4015         struct kvm_host_map map;
4016         struct kvm_steal_time *st;
4017         int idx;
4018
4019         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4020                 return;
4021
4022         if (vcpu->arch.st.preempted)
4023                 return;
4024
4025         /*
4026          * Take the srcu lock as memslots will be accessed to check the gfn
4027          * cache generation against the memslots generation.
4028          */
4029         idx = srcu_read_lock(&vcpu->kvm->srcu);
4030
4031         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4032                         &vcpu->arch.st.cache, true))
4033                 goto out;
4034
4035         st = map.hva +
4036                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4037
4038         st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4039
4040         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4041
4042 out:
4043         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4044 }
4045
4046 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4047 {
4048         if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4049                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
4050
4051         kvm_steal_time_set_preempted(vcpu);
4052         kvm_x86_ops.vcpu_put(vcpu);
4053         vcpu->arch.last_host_tsc = rdtsc();
4054         /*
4055          * If userspace has set any breakpoints or watchpoints, dr6 is restored
4056          * on every vmexit, but if not, we might have a stale dr6 from the
4057          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4058          */
4059         set_debugreg(0, 6);
4060 }
4061
4062 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4063                                     struct kvm_lapic_state *s)
4064 {
4065         if (vcpu->arch.apicv_active)
4066                 kvm_x86_ops.sync_pir_to_irr(vcpu);
4067
4068         return kvm_apic_get_state(vcpu, s);
4069 }
4070
4071 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4072                                     struct kvm_lapic_state *s)
4073 {
4074         int r;
4075
4076         r = kvm_apic_set_state(vcpu, s);
4077         if (r)
4078                 return r;
4079         update_cr8_intercept(vcpu);
4080
4081         return 0;
4082 }
4083
4084 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4085 {
4086         /*
4087          * We can accept userspace's request for interrupt injection
4088          * as long as we have a place to store the interrupt number.
4089          * The actual injection will happen when the CPU is able to
4090          * deliver the interrupt.
4091          */
4092         if (kvm_cpu_has_extint(vcpu))
4093                 return false;
4094
4095         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4096         return (!lapic_in_kernel(vcpu) ||
4097                 kvm_apic_accept_pic_intr(vcpu));
4098 }
4099
4100 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4101 {
4102         return kvm_arch_interrupt_allowed(vcpu) &&
4103                 kvm_cpu_accept_dm_intr(vcpu);
4104 }
4105
4106 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4107                                     struct kvm_interrupt *irq)
4108 {
4109         if (irq->irq >= KVM_NR_INTERRUPTS)
4110                 return -EINVAL;
4111
4112         if (!irqchip_in_kernel(vcpu->kvm)) {
4113                 kvm_queue_interrupt(vcpu, irq->irq, false);
4114                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4115                 return 0;
4116         }
4117
4118         /*
4119          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4120          * fail for in-kernel 8259.
4121          */
4122         if (pic_in_kernel(vcpu->kvm))
4123                 return -ENXIO;
4124
4125         if (vcpu->arch.pending_external_vector != -1)
4126                 return -EEXIST;
4127
4128         vcpu->arch.pending_external_vector = irq->irq;
4129         kvm_make_request(KVM_REQ_EVENT, vcpu);
4130         return 0;
4131 }
4132
4133 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4134 {
4135         kvm_inject_nmi(vcpu);
4136
4137         return 0;
4138 }
4139
4140 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4141 {
4142         kvm_make_request(KVM_REQ_SMI, vcpu);
4143
4144         return 0;
4145 }
4146
4147 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4148                                            struct kvm_tpr_access_ctl *tac)
4149 {
4150         if (tac->flags)
4151                 return -EINVAL;
4152         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4153         return 0;
4154 }
4155
4156 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4157                                         u64 mcg_cap)
4158 {
4159         int r;
4160         unsigned bank_num = mcg_cap & 0xff, bank;
4161
4162         r = -EINVAL;
4163         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4164                 goto out;
4165         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4166                 goto out;
4167         r = 0;
4168         vcpu->arch.mcg_cap = mcg_cap;
4169         /* Init IA32_MCG_CTL to all 1s */
4170         if (mcg_cap & MCG_CTL_P)
4171                 vcpu->arch.mcg_ctl = ~(u64)0;
4172         /* Init IA32_MCi_CTL to all 1s */
4173         for (bank = 0; bank < bank_num; bank++)
4174                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4175
4176         kvm_x86_ops.setup_mce(vcpu);
4177 out:
4178         return r;
4179 }
4180
4181 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4182                                       struct kvm_x86_mce *mce)
4183 {
4184         u64 mcg_cap = vcpu->arch.mcg_cap;
4185         unsigned bank_num = mcg_cap & 0xff;
4186         u64 *banks = vcpu->arch.mce_banks;
4187
4188         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4189                 return -EINVAL;
4190         /*
4191          * if IA32_MCG_CTL is not all 1s, the uncorrected error
4192          * reporting is disabled
4193          */
4194         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4195             vcpu->arch.mcg_ctl != ~(u64)0)
4196                 return 0;
4197         banks += 4 * mce->bank;
4198         /*
4199          * if IA32_MCi_CTL is not all 1s, the uncorrected error
4200          * reporting is disabled for the bank
4201          */
4202         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4203                 return 0;
4204         if (mce->status & MCI_STATUS_UC) {
4205                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4206                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4207                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4208                         return 0;
4209                 }
4210                 if (banks[1] & MCI_STATUS_VAL)
4211                         mce->status |= MCI_STATUS_OVER;
4212                 banks[2] = mce->addr;
4213                 banks[3] = mce->misc;
4214                 vcpu->arch.mcg_status = mce->mcg_status;
4215                 banks[1] = mce->status;
4216                 kvm_queue_exception(vcpu, MC_VECTOR);
4217         } else if (!(banks[1] & MCI_STATUS_VAL)
4218                    || !(banks[1] & MCI_STATUS_UC)) {
4219                 if (banks[1] & MCI_STATUS_VAL)
4220                         mce->status |= MCI_STATUS_OVER;
4221                 banks[2] = mce->addr;
4222                 banks[3] = mce->misc;
4223                 banks[1] = mce->status;
4224         } else
4225                 banks[1] |= MCI_STATUS_OVER;
4226         return 0;
4227 }
4228
4229 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4230                                                struct kvm_vcpu_events *events)
4231 {
4232         process_nmi(vcpu);
4233
4234         if (kvm_check_request(KVM_REQ_SMI, vcpu))
4235                 process_smi(vcpu);
4236
4237         /*
4238          * In guest mode, payload delivery should be deferred,
4239          * so that the L1 hypervisor can intercept #PF before
4240          * CR2 is modified (or intercept #DB before DR6 is
4241          * modified under nVMX). Unless the per-VM capability,
4242          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4243          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4244          * opportunistically defer the exception payload, deliver it if the
4245          * capability hasn't been requested before processing a
4246          * KVM_GET_VCPU_EVENTS.
4247          */
4248         if (!vcpu->kvm->arch.exception_payload_enabled &&
4249             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4250                 kvm_deliver_exception_payload(vcpu);
4251
4252         /*
4253          * The API doesn't provide the instruction length for software
4254          * exceptions, so don't report them. As long as the guest RIP
4255          * isn't advanced, we should expect to encounter the exception
4256          * again.
4257          */
4258         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4259                 events->exception.injected = 0;
4260                 events->exception.pending = 0;
4261         } else {
4262                 events->exception.injected = vcpu->arch.exception.injected;
4263                 events->exception.pending = vcpu->arch.exception.pending;
4264                 /*
4265                  * For ABI compatibility, deliberately conflate
4266                  * pending and injected exceptions when
4267                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4268                  */
4269                 if (!vcpu->kvm->arch.exception_payload_enabled)
4270                         events->exception.injected |=
4271                                 vcpu->arch.exception.pending;
4272         }
4273         events->exception.nr = vcpu->arch.exception.nr;
4274         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4275         events->exception.error_code = vcpu->arch.exception.error_code;
4276         events->exception_has_payload = vcpu->arch.exception.has_payload;
4277         events->exception_payload = vcpu->arch.exception.payload;
4278
4279         events->interrupt.injected =
4280                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4281         events->interrupt.nr = vcpu->arch.interrupt.nr;
4282         events->interrupt.soft = 0;
4283         events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
4284
4285         events->nmi.injected = vcpu->arch.nmi_injected;
4286         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4287         events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
4288         events->nmi.pad = 0;
4289
4290         events->sipi_vector = 0; /* never valid when reporting to user space */
4291
4292         events->smi.smm = is_smm(vcpu);
4293         events->smi.pending = vcpu->arch.smi_pending;
4294         events->smi.smm_inside_nmi =
4295                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4296         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4297
4298         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4299                          | KVM_VCPUEVENT_VALID_SHADOW
4300                          | KVM_VCPUEVENT_VALID_SMM);
4301         if (vcpu->kvm->arch.exception_payload_enabled)
4302                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4303
4304         memset(&events->reserved, 0, sizeof(events->reserved));
4305 }
4306
4307 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4308
4309 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4310                                               struct kvm_vcpu_events *events)
4311 {
4312         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4313                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4314                               | KVM_VCPUEVENT_VALID_SHADOW
4315                               | KVM_VCPUEVENT_VALID_SMM
4316                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4317                 return -EINVAL;
4318
4319         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4320                 if (!vcpu->kvm->arch.exception_payload_enabled)
4321                         return -EINVAL;
4322                 if (events->exception.pending)
4323                         events->exception.injected = 0;
4324                 else
4325                         events->exception_has_payload = 0;
4326         } else {
4327                 events->exception.pending = 0;
4328                 events->exception_has_payload = 0;
4329         }
4330
4331         if ((events->exception.injected || events->exception.pending) &&
4332             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4333                 return -EINVAL;
4334
4335         /* INITs are latched while in SMM */
4336         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4337             (events->smi.smm || events->smi.pending) &&
4338             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4339                 return -EINVAL;
4340
4341         process_nmi(vcpu);
4342         vcpu->arch.exception.injected = events->exception.injected;
4343         vcpu->arch.exception.pending = events->exception.pending;
4344         vcpu->arch.exception.nr = events->exception.nr;
4345         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4346         vcpu->arch.exception.error_code = events->exception.error_code;
4347         vcpu->arch.exception.has_payload = events->exception_has_payload;
4348         vcpu->arch.exception.payload = events->exception_payload;
4349
4350         vcpu->arch.interrupt.injected = events->interrupt.injected;
4351         vcpu->arch.interrupt.nr = events->interrupt.nr;
4352         vcpu->arch.interrupt.soft = events->interrupt.soft;
4353         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4354                 kvm_x86_ops.set_interrupt_shadow(vcpu,
4355                                                   events->interrupt.shadow);
4356
4357         vcpu->arch.nmi_injected = events->nmi.injected;
4358         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4359                 vcpu->arch.nmi_pending = events->nmi.pending;
4360         kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4361
4362         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4363             lapic_in_kernel(vcpu))
4364                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4365
4366         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4367                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4368                         if (events->smi.smm)
4369                                 vcpu->arch.hflags |= HF_SMM_MASK;
4370                         else
4371                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
4372                         kvm_smm_changed(vcpu);
4373                 }
4374
4375                 vcpu->arch.smi_pending = events->smi.pending;
4376
4377                 if (events->smi.smm) {
4378                         if (events->smi.smm_inside_nmi)
4379                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4380                         else
4381                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4382                 }
4383
4384                 if (lapic_in_kernel(vcpu)) {
4385                         if (events->smi.latched_init)
4386                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4387                         else
4388                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4389                 }
4390         }
4391
4392         kvm_make_request(KVM_REQ_EVENT, vcpu);
4393
4394         return 0;
4395 }
4396
4397 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4398                                              struct kvm_debugregs *dbgregs)
4399 {
4400         unsigned long val;
4401
4402         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4403         kvm_get_dr(vcpu, 6, &val);
4404         dbgregs->dr6 = val;
4405         dbgregs->dr7 = vcpu->arch.dr7;
4406         dbgregs->flags = 0;
4407         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4408 }
4409
4410 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4411                                             struct kvm_debugregs *dbgregs)
4412 {
4413         if (dbgregs->flags)
4414                 return -EINVAL;
4415
4416         if (dbgregs->dr6 & ~0xffffffffull)
4417                 return -EINVAL;
4418         if (dbgregs->dr7 & ~0xffffffffull)
4419                 return -EINVAL;
4420
4421         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4422         kvm_update_dr0123(vcpu);
4423         vcpu->arch.dr6 = dbgregs->dr6;
4424         vcpu->arch.dr7 = dbgregs->dr7;
4425         kvm_update_dr7(vcpu);
4426
4427         return 0;
4428 }
4429
4430 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4431
4432 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4433 {
4434         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4435         u64 xstate_bv = xsave->header.xfeatures;
4436         u64 valid;
4437
4438         /*
4439          * Copy legacy XSAVE area, to avoid complications with CPUID
4440          * leaves 0 and 1 in the loop below.
4441          */
4442         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4443
4444         /* Set XSTATE_BV */
4445         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4446         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4447
4448         /*
4449          * Copy each region from the possibly compacted offset to the
4450          * non-compacted offset.
4451          */
4452         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4453         while (valid) {
4454                 u64 xfeature_mask = valid & -valid;
4455                 int xfeature_nr = fls64(xfeature_mask) - 1;
4456                 void *src = get_xsave_addr(xsave, xfeature_nr);
4457
4458                 if (src) {
4459                         u32 size, offset, ecx, edx;
4460                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4461                                     &size, &offset, &ecx, &edx);
4462                         if (xfeature_nr == XFEATURE_PKRU)
4463                                 memcpy(dest + offset, &vcpu->arch.pkru,
4464                                        sizeof(vcpu->arch.pkru));
4465                         else
4466                                 memcpy(dest + offset, src, size);
4467
4468                 }
4469
4470                 valid -= xfeature_mask;
4471         }
4472 }
4473
4474 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4475 {
4476         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4477         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4478         u64 valid;
4479
4480         /*
4481          * Copy legacy XSAVE area, to avoid complications with CPUID
4482          * leaves 0 and 1 in the loop below.
4483          */
4484         memcpy(xsave, src, XSAVE_HDR_OFFSET);
4485
4486         /* Set XSTATE_BV and possibly XCOMP_BV.  */
4487         xsave->header.xfeatures = xstate_bv;
4488         if (boot_cpu_has(X86_FEATURE_XSAVES))
4489                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4490
4491         /*
4492          * Copy each region from the non-compacted offset to the
4493          * possibly compacted offset.
4494          */
4495         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4496         while (valid) {
4497                 u64 xfeature_mask = valid & -valid;
4498                 int xfeature_nr = fls64(xfeature_mask) - 1;
4499                 void *dest = get_xsave_addr(xsave, xfeature_nr);
4500
4501                 if (dest) {
4502                         u32 size, offset, ecx, edx;
4503                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4504                                     &size, &offset, &ecx, &edx);
4505                         if (xfeature_nr == XFEATURE_PKRU)
4506                                 memcpy(&vcpu->arch.pkru, src + offset,
4507                                        sizeof(vcpu->arch.pkru));
4508                         else
4509                                 memcpy(dest, src + offset, size);
4510                 }
4511
4512                 valid -= xfeature_mask;
4513         }
4514 }
4515
4516 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4517                                          struct kvm_xsave *guest_xsave)
4518 {
4519         if (!vcpu->arch.guest_fpu)
4520                 return;
4521
4522         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4523                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4524                 fill_xsave((u8 *) guest_xsave->region, vcpu);
4525         } else {
4526                 memcpy(guest_xsave->region,
4527                         &vcpu->arch.guest_fpu->state.fxsave,
4528                         sizeof(struct fxregs_state));
4529                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4530                         XFEATURE_MASK_FPSSE;
4531         }
4532 }
4533
4534 #define XSAVE_MXCSR_OFFSET 24
4535
4536 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4537                                         struct kvm_xsave *guest_xsave)
4538 {
4539         u64 xstate_bv;
4540         u32 mxcsr;
4541
4542         if (!vcpu->arch.guest_fpu)
4543                 return 0;
4544
4545         xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4546         mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4547
4548         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4549                 /*
4550                  * Here we allow setting states that are not present in
4551                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4552                  * with old userspace.
4553                  */
4554                 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4555                         return -EINVAL;
4556                 load_xsave(vcpu, (u8 *)guest_xsave->region);
4557         } else {
4558                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4559                         mxcsr & ~mxcsr_feature_mask)
4560                         return -EINVAL;
4561                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4562                         guest_xsave->region, sizeof(struct fxregs_state));
4563         }
4564         return 0;
4565 }
4566
4567 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4568                                         struct kvm_xcrs *guest_xcrs)
4569 {
4570         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4571                 guest_xcrs->nr_xcrs = 0;
4572                 return;
4573         }
4574
4575         guest_xcrs->nr_xcrs = 1;
4576         guest_xcrs->flags = 0;
4577         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4578         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4579 }
4580
4581 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4582                                        struct kvm_xcrs *guest_xcrs)
4583 {
4584         int i, r = 0;
4585
4586         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4587                 return -EINVAL;
4588
4589         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4590                 return -EINVAL;
4591
4592         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4593                 /* Only support XCR0 currently */
4594                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4595                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4596                                 guest_xcrs->xcrs[i].value);
4597                         break;
4598                 }
4599         if (r)
4600                 r = -EINVAL;
4601         return r;
4602 }
4603
4604 /*
4605  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4606  * stopped by the hypervisor.  This function will be called from the host only.
4607  * EINVAL is returned when the host attempts to set the flag for a guest that
4608  * does not support pv clocks.
4609  */
4610 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4611 {
4612         if (!vcpu->arch.pv_time_enabled)
4613                 return -EINVAL;
4614         vcpu->arch.pvclock_set_guest_stopped_request = true;
4615         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4616         return 0;
4617 }
4618
4619 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4620                                      struct kvm_enable_cap *cap)
4621 {
4622         int r;
4623         uint16_t vmcs_version;
4624         void __user *user_ptr;
4625
4626         if (cap->flags)
4627                 return -EINVAL;
4628
4629         switch (cap->cap) {
4630         case KVM_CAP_HYPERV_SYNIC2:
4631                 if (cap->args[0])
4632                         return -EINVAL;
4633                 fallthrough;
4634
4635         case KVM_CAP_HYPERV_SYNIC:
4636                 if (!irqchip_in_kernel(vcpu->kvm))
4637                         return -EINVAL;
4638                 return kvm_hv_activate_synic(vcpu, cap->cap ==
4639                                              KVM_CAP_HYPERV_SYNIC2);
4640         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4641                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4642                         return -ENOTTY;
4643                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4644                 if (!r) {
4645                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
4646                         if (copy_to_user(user_ptr, &vmcs_version,
4647                                          sizeof(vmcs_version)))
4648                                 r = -EFAULT;
4649                 }
4650                 return r;
4651         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4652                 if (!kvm_x86_ops.enable_direct_tlbflush)
4653                         return -ENOTTY;
4654
4655                 return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4656
4657         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4658                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4659                 if (vcpu->arch.pv_cpuid.enforce)
4660                         kvm_update_pv_runtime(vcpu);
4661
4662                 return 0;
4663
4664         default:
4665                 return -EINVAL;
4666         }
4667 }
4668
4669 long kvm_arch_vcpu_ioctl(struct file *filp,
4670                          unsigned int ioctl, unsigned long arg)
4671 {
4672         struct kvm_vcpu *vcpu = filp->private_data;
4673         void __user *argp = (void __user *)arg;
4674         int r;
4675         union {
4676                 struct kvm_lapic_state *lapic;
4677                 struct kvm_xsave *xsave;
4678                 struct kvm_xcrs *xcrs;
4679                 void *buffer;
4680         } u;
4681
4682         vcpu_load(vcpu);
4683
4684         u.buffer = NULL;
4685         switch (ioctl) {
4686         case KVM_GET_LAPIC: {
4687                 r = -EINVAL;
4688                 if (!lapic_in_kernel(vcpu))
4689                         goto out;
4690                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4691                                 GFP_KERNEL_ACCOUNT);
4692
4693                 r = -ENOMEM;
4694                 if (!u.lapic)
4695                         goto out;
4696                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4697                 if (r)
4698                         goto out;
4699                 r = -EFAULT;
4700                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4701                         goto out;
4702                 r = 0;
4703                 break;
4704         }
4705         case KVM_SET_LAPIC: {
4706                 r = -EINVAL;
4707                 if (!lapic_in_kernel(vcpu))
4708                         goto out;
4709                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4710                 if (IS_ERR(u.lapic)) {
4711                         r = PTR_ERR(u.lapic);
4712                         goto out_nofree;
4713                 }
4714
4715                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4716                 break;
4717         }
4718         case KVM_INTERRUPT: {
4719                 struct kvm_interrupt irq;
4720
4721                 r = -EFAULT;
4722                 if (copy_from_user(&irq, argp, sizeof(irq)))
4723                         goto out;
4724                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4725                 break;
4726         }
4727         case KVM_NMI: {
4728                 r = kvm_vcpu_ioctl_nmi(vcpu);
4729                 break;
4730         }
4731         case KVM_SMI: {
4732                 r = kvm_vcpu_ioctl_smi(vcpu);
4733                 break;
4734         }
4735         case KVM_SET_CPUID: {
4736                 struct kvm_cpuid __user *cpuid_arg = argp;
4737                 struct kvm_cpuid cpuid;
4738
4739                 r = -EFAULT;
4740                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4741                         goto out;
4742                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4743                 break;
4744         }
4745         case KVM_SET_CPUID2: {
4746                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4747                 struct kvm_cpuid2 cpuid;
4748
4749                 r = -EFAULT;
4750                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4751                         goto out;
4752                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4753                                               cpuid_arg->entries);
4754                 break;
4755         }
4756         case KVM_GET_CPUID2: {
4757                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4758                 struct kvm_cpuid2 cpuid;
4759
4760                 r = -EFAULT;
4761                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4762                         goto out;
4763                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4764                                               cpuid_arg->entries);
4765                 if (r)
4766                         goto out;
4767                 r = -EFAULT;
4768                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4769                         goto out;
4770                 r = 0;
4771                 break;
4772         }
4773         case KVM_GET_MSRS: {
4774                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4775                 r = msr_io(vcpu, argp, do_get_msr, 1);
4776                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4777                 break;
4778         }
4779         case KVM_SET_MSRS: {
4780                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4781                 r = msr_io(vcpu, argp, do_set_msr, 0);
4782                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4783                 break;
4784         }
4785         case KVM_TPR_ACCESS_REPORTING: {
4786                 struct kvm_tpr_access_ctl tac;
4787
4788                 r = -EFAULT;
4789                 if (copy_from_user(&tac, argp, sizeof(tac)))
4790                         goto out;
4791                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4792                 if (r)
4793                         goto out;
4794                 r = -EFAULT;
4795                 if (copy_to_user(argp, &tac, sizeof(tac)))
4796                         goto out;
4797                 r = 0;
4798                 break;
4799         };
4800         case KVM_SET_VAPIC_ADDR: {
4801                 struct kvm_vapic_addr va;
4802                 int idx;
4803
4804                 r = -EINVAL;
4805                 if (!lapic_in_kernel(vcpu))
4806                         goto out;
4807                 r = -EFAULT;
4808                 if (copy_from_user(&va, argp, sizeof(va)))
4809                         goto out;
4810                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4811                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4812                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4813                 break;
4814         }
4815         case KVM_X86_SETUP_MCE: {
4816                 u64 mcg_cap;
4817
4818                 r = -EFAULT;
4819                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4820                         goto out;
4821                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4822                 break;
4823         }
4824         case KVM_X86_SET_MCE: {
4825                 struct kvm_x86_mce mce;
4826
4827                 r = -EFAULT;
4828                 if (copy_from_user(&mce, argp, sizeof(mce)))
4829                         goto out;
4830                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4831                 break;
4832         }
4833         case KVM_GET_VCPU_EVENTS: {
4834                 struct kvm_vcpu_events events;
4835
4836                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4837
4838                 r = -EFAULT;
4839                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4840                         break;
4841                 r = 0;
4842                 break;
4843         }
4844         case KVM_SET_VCPU_EVENTS: {
4845                 struct kvm_vcpu_events events;
4846
4847                 r = -EFAULT;
4848                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4849                         break;
4850
4851                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4852                 break;
4853         }
4854         case KVM_GET_DEBUGREGS: {
4855                 struct kvm_debugregs dbgregs;
4856
4857                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4858
4859                 r = -EFAULT;
4860                 if (copy_to_user(argp, &dbgregs,
4861                                  sizeof(struct kvm_debugregs)))
4862                         break;
4863                 r = 0;
4864                 break;
4865         }
4866         case KVM_SET_DEBUGREGS: {
4867                 struct kvm_debugregs dbgregs;
4868
4869                 r = -EFAULT;
4870                 if (copy_from_user(&dbgregs, argp,
4871                                    sizeof(struct kvm_debugregs)))
4872                         break;
4873
4874                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4875                 break;
4876         }
4877         case KVM_GET_XSAVE: {
4878                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4879                 r = -ENOMEM;
4880                 if (!u.xsave)
4881                         break;
4882
4883                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4884
4885                 r = -EFAULT;
4886                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4887                         break;
4888                 r = 0;
4889                 break;
4890         }
4891         case KVM_SET_XSAVE: {
4892                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4893                 if (IS_ERR(u.xsave)) {
4894                         r = PTR_ERR(u.xsave);
4895                         goto out_nofree;
4896                 }
4897
4898                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4899                 break;
4900         }
4901         case KVM_GET_XCRS: {
4902                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4903                 r = -ENOMEM;
4904                 if (!u.xcrs)
4905                         break;
4906
4907                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4908
4909                 r = -EFAULT;
4910                 if (copy_to_user(argp, u.xcrs,
4911                                  sizeof(struct kvm_xcrs)))
4912                         break;
4913                 r = 0;
4914                 break;
4915         }
4916         case KVM_SET_XCRS: {
4917                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4918                 if (IS_ERR(u.xcrs)) {
4919                         r = PTR_ERR(u.xcrs);
4920                         goto out_nofree;
4921                 }
4922
4923                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4924                 break;
4925         }
4926         case KVM_SET_TSC_KHZ: {
4927                 u32 user_tsc_khz;
4928
4929                 r = -EINVAL;
4930                 user_tsc_khz = (u32)arg;
4931
4932                 if (kvm_has_tsc_control &&
4933                     user_tsc_khz >= kvm_max_guest_tsc_khz)
4934                         goto out;
4935
4936                 if (user_tsc_khz == 0)
4937                         user_tsc_khz = tsc_khz;
4938
4939                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4940                         r = 0;
4941
4942                 goto out;
4943         }
4944         case KVM_GET_TSC_KHZ: {
4945                 r = vcpu->arch.virtual_tsc_khz;
4946                 goto out;
4947         }
4948         case KVM_KVMCLOCK_CTRL: {
4949                 r = kvm_set_guest_paused(vcpu);
4950                 goto out;
4951         }
4952         case KVM_ENABLE_CAP: {
4953                 struct kvm_enable_cap cap;
4954
4955                 r = -EFAULT;
4956                 if (copy_from_user(&cap, argp, sizeof(cap)))
4957                         goto out;
4958                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4959                 break;
4960         }
4961         case KVM_GET_NESTED_STATE: {
4962                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4963                 u32 user_data_size;
4964
4965                 r = -EINVAL;
4966                 if (!kvm_x86_ops.nested_ops->get_state)
4967                         break;
4968
4969                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4970                 r = -EFAULT;
4971                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4972                         break;
4973
4974                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4975                                                      user_data_size);
4976                 if (r < 0)
4977                         break;
4978
4979                 if (r > user_data_size) {
4980                         if (put_user(r, &user_kvm_nested_state->size))
4981                                 r = -EFAULT;
4982                         else
4983                                 r = -E2BIG;
4984                         break;
4985                 }
4986
4987                 r = 0;
4988                 break;
4989         }
4990         case KVM_SET_NESTED_STATE: {
4991                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4992                 struct kvm_nested_state kvm_state;
4993                 int idx;
4994
4995                 r = -EINVAL;
4996                 if (!kvm_x86_ops.nested_ops->set_state)
4997                         break;
4998
4999                 r = -EFAULT;
5000                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5001                         break;
5002
5003                 r = -EINVAL;
5004                 if (kvm_state.size < sizeof(kvm_state))
5005                         break;
5006
5007                 if (kvm_state.flags &
5008                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5009                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5010                       | KVM_STATE_NESTED_GIF_SET))
5011                         break;
5012
5013                 /* nested_run_pending implies guest_mode.  */
5014                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5015                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5016                         break;
5017
5018                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5019                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5020                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5021                 break;
5022         }
5023         case KVM_GET_SUPPORTED_HV_CPUID:
5024                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5025                 break;
5026         default:
5027                 r = -EINVAL;
5028         }
5029 out:
5030         kfree(u.buffer);
5031 out_nofree:
5032         vcpu_put(vcpu);
5033         return r;
5034 }
5035
5036 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5037 {
5038         return VM_FAULT_SIGBUS;
5039 }
5040
5041 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5042 {
5043         int ret;
5044
5045         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5046                 return -EINVAL;
5047         ret = kvm_x86_ops.set_tss_addr(kvm, addr);
5048         return ret;
5049 }
5050
5051 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5052                                               u64 ident_addr)
5053 {
5054         return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
5055 }
5056
5057 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5058                                          unsigned long kvm_nr_mmu_pages)
5059 {
5060         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5061                 return -EINVAL;
5062
5063         mutex_lock(&kvm->slots_lock);
5064
5065         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5066         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5067
5068         mutex_unlock(&kvm->slots_lock);
5069         return 0;
5070 }
5071
5072 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5073 {
5074         return kvm->arch.n_max_mmu_pages;
5075 }
5076
5077 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5078 {
5079         struct kvm_pic *pic = kvm->arch.vpic;
5080         int r;
5081
5082         r = 0;
5083         switch (chip->chip_id) {
5084         case KVM_IRQCHIP_PIC_MASTER:
5085                 memcpy(&chip->chip.pic, &pic->pics[0],
5086                         sizeof(struct kvm_pic_state));
5087                 break;
5088         case KVM_IRQCHIP_PIC_SLAVE:
5089                 memcpy(&chip->chip.pic, &pic->pics[1],
5090                         sizeof(struct kvm_pic_state));
5091                 break;
5092         case KVM_IRQCHIP_IOAPIC:
5093                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5094                 break;
5095         default:
5096                 r = -EINVAL;
5097                 break;
5098         }
5099         return r;
5100 }
5101
5102 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5103 {
5104         struct kvm_pic *pic = kvm->arch.vpic;
5105         int r;
5106
5107         r = 0;
5108         switch (chip->chip_id) {
5109         case KVM_IRQCHIP_PIC_MASTER:
5110                 spin_lock(&pic->lock);
5111                 memcpy(&pic->pics[0], &chip->chip.pic,
5112                         sizeof(struct kvm_pic_state));
5113                 spin_unlock(&pic->lock);
5114                 break;
5115         case KVM_IRQCHIP_PIC_SLAVE:
5116                 spin_lock(&pic->lock);
5117                 memcpy(&pic->pics[1], &chip->chip.pic,
5118                         sizeof(struct kvm_pic_state));
5119                 spin_unlock(&pic->lock);
5120                 break;
5121         case KVM_IRQCHIP_IOAPIC:
5122                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5123                 break;
5124         default:
5125                 r = -EINVAL;
5126                 break;
5127         }
5128         kvm_pic_update_irq(pic);
5129         return r;
5130 }
5131
5132 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5133 {
5134         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5135
5136         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5137
5138         mutex_lock(&kps->lock);
5139         memcpy(ps, &kps->channels, sizeof(*ps));
5140         mutex_unlock(&kps->lock);
5141         return 0;
5142 }
5143
5144 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5145 {
5146         int i;
5147         struct kvm_pit *pit = kvm->arch.vpit;
5148
5149         mutex_lock(&pit->pit_state.lock);
5150         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5151         for (i = 0; i < 3; i++)
5152                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5153         mutex_unlock(&pit->pit_state.lock);
5154         return 0;
5155 }
5156
5157 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5158 {
5159         mutex_lock(&kvm->arch.vpit->pit_state.lock);
5160         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5161                 sizeof(ps->channels));
5162         ps->flags = kvm->arch.vpit->pit_state.flags;
5163         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5164         memset(&ps->reserved, 0, sizeof(ps->reserved));
5165         return 0;
5166 }
5167
5168 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5169 {
5170         int start = 0;
5171         int i;
5172         u32 prev_legacy, cur_legacy;
5173         struct kvm_pit *pit = kvm->arch.vpit;
5174
5175         mutex_lock(&pit->pit_state.lock);
5176         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5177         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5178         if (!prev_legacy && cur_legacy)
5179                 start = 1;
5180         memcpy(&pit->pit_state.channels, &ps->channels,
5181                sizeof(pit->pit_state.channels));
5182         pit->pit_state.flags = ps->flags;
5183         for (i = 0; i < 3; i++)
5184                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5185                                    start && i == 0);
5186         mutex_unlock(&pit->pit_state.lock);
5187         return 0;
5188 }
5189
5190 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5191                                  struct kvm_reinject_control *control)
5192 {
5193         struct kvm_pit *pit = kvm->arch.vpit;
5194
5195         /* pit->pit_state.lock was overloaded to prevent userspace from getting
5196          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5197          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5198          */
5199         mutex_lock(&pit->pit_state.lock);
5200         kvm_pit_set_reinject(pit, control->pit_reinject);
5201         mutex_unlock(&pit->pit_state.lock);
5202
5203         return 0;
5204 }
5205
5206 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5207 {
5208         /*
5209          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
5210          */
5211         if (kvm_x86_ops.flush_log_dirty)
5212                 kvm_x86_ops.flush_log_dirty(kvm);
5213 }
5214
5215 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5216                         bool line_status)
5217 {
5218         if (!irqchip_in_kernel(kvm))
5219                 return -ENXIO;
5220
5221         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5222                                         irq_event->irq, irq_event->level,
5223                                         line_status);
5224         return 0;
5225 }
5226
5227 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5228                             struct kvm_enable_cap *cap)
5229 {
5230         int r;
5231
5232         if (cap->flags)
5233                 return -EINVAL;
5234
5235         switch (cap->cap) {
5236         case KVM_CAP_DISABLE_QUIRKS:
5237                 kvm->arch.disabled_quirks = cap->args[0];
5238                 r = 0;
5239                 break;
5240         case KVM_CAP_SPLIT_IRQCHIP: {
5241                 mutex_lock(&kvm->lock);
5242                 r = -EINVAL;
5243                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5244                         goto split_irqchip_unlock;
5245                 r = -EEXIST;
5246                 if (irqchip_in_kernel(kvm))
5247                         goto split_irqchip_unlock;
5248                 if (kvm->created_vcpus)
5249                         goto split_irqchip_unlock;
5250                 r = kvm_setup_empty_irq_routing(kvm);
5251                 if (r)
5252                         goto split_irqchip_unlock;
5253                 /* Pairs with irqchip_in_kernel. */
5254                 smp_wmb();
5255                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5256                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5257                 r = 0;
5258 split_irqchip_unlock:
5259                 mutex_unlock(&kvm->lock);
5260                 break;
5261         }
5262         case KVM_CAP_X2APIC_API:
5263                 r = -EINVAL;
5264                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5265                         break;
5266
5267                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5268                         kvm->arch.x2apic_format = true;
5269                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5270                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
5271
5272                 r = 0;
5273                 break;
5274         case KVM_CAP_X86_DISABLE_EXITS:
5275                 r = -EINVAL;
5276                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5277                         break;
5278
5279                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5280                         kvm_can_mwait_in_guest())
5281                         kvm->arch.mwait_in_guest = true;
5282                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5283                         kvm->arch.hlt_in_guest = true;
5284                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5285                         kvm->arch.pause_in_guest = true;
5286                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5287                         kvm->arch.cstate_in_guest = true;
5288                 r = 0;
5289                 break;
5290         case KVM_CAP_MSR_PLATFORM_INFO:
5291                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5292                 r = 0;
5293                 break;
5294         case KVM_CAP_EXCEPTION_PAYLOAD:
5295                 kvm->arch.exception_payload_enabled = cap->args[0];
5296                 r = 0;
5297                 break;
5298         case KVM_CAP_X86_USER_SPACE_MSR:
5299                 kvm->arch.user_space_msr_mask = cap->args[0];
5300                 r = 0;
5301                 break;
5302         default:
5303                 r = -EINVAL;
5304                 break;
5305         }
5306         return r;
5307 }
5308
5309 static void kvm_clear_msr_filter(struct kvm *kvm)
5310 {
5311         u32 i;
5312         u32 count = kvm->arch.msr_filter.count;
5313         struct msr_bitmap_range ranges[16];
5314
5315         mutex_lock(&kvm->lock);
5316         kvm->arch.msr_filter.count = 0;
5317         memcpy(ranges, kvm->arch.msr_filter.ranges, count * sizeof(ranges[0]));
5318         mutex_unlock(&kvm->lock);
5319         synchronize_srcu(&kvm->srcu);
5320
5321         for (i = 0; i < count; i++)
5322                 kfree(ranges[i].bitmap);
5323 }
5324
5325 static int kvm_add_msr_filter(struct kvm *kvm, struct kvm_msr_filter_range *user_range)
5326 {
5327         struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
5328         struct msr_bitmap_range range;
5329         unsigned long *bitmap = NULL;
5330         size_t bitmap_size;
5331         int r;
5332
5333         if (!user_range->nmsrs)
5334                 return 0;
5335
5336         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5337         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5338                 return -EINVAL;
5339
5340         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5341         if (IS_ERR(bitmap))
5342                 return PTR_ERR(bitmap);
5343
5344         range = (struct msr_bitmap_range) {
5345                 .flags = user_range->flags,
5346                 .base = user_range->base,
5347                 .nmsrs = user_range->nmsrs,
5348                 .bitmap = bitmap,
5349         };
5350
5351         if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5352                 r = -EINVAL;
5353                 goto err;
5354         }
5355
5356         if (!range.flags) {
5357                 r = -EINVAL;
5358                 goto err;
5359         }
5360
5361         /* Everything ok, add this range identifier to our global pool */
5362         ranges[kvm->arch.msr_filter.count] = range;
5363         /* Make sure we filled the array before we tell anyone to walk it */
5364         smp_wmb();
5365         kvm->arch.msr_filter.count++;
5366
5367         return 0;
5368 err:
5369         kfree(bitmap);
5370         return r;
5371 }
5372
5373 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5374 {
5375         struct kvm_msr_filter __user *user_msr_filter = argp;
5376         struct kvm_msr_filter filter;
5377         bool default_allow;
5378         int r = 0;
5379         bool empty = true;
5380         u32 i;
5381
5382         if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5383                 return -EFAULT;
5384
5385         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5386                 empty &= !filter.ranges[i].nmsrs;
5387
5388         default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5389         if (empty && !default_allow)
5390                 return -EINVAL;
5391
5392         kvm_clear_msr_filter(kvm);
5393
5394         kvm->arch.msr_filter.default_allow = default_allow;
5395
5396         /*
5397          * Protect from concurrent calls to this function that could trigger
5398          * a TOCTOU violation on kvm->arch.msr_filter.count.
5399          */
5400         mutex_lock(&kvm->lock);
5401         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5402                 r = kvm_add_msr_filter(kvm, &filter.ranges[i]);
5403                 if (r)
5404                         break;
5405         }
5406
5407         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5408         mutex_unlock(&kvm->lock);
5409
5410         return r;
5411 }
5412
5413 long kvm_arch_vm_ioctl(struct file *filp,
5414                        unsigned int ioctl, unsigned long arg)
5415 {
5416         struct kvm *kvm = filp->private_data;
5417         void __user *argp = (void __user *)arg;
5418         int r = -ENOTTY;
5419         /*
5420          * This union makes it completely explicit to gcc-3.x
5421          * that these two variables' stack usage should be
5422          * combined, not added together.
5423          */
5424         union {
5425                 struct kvm_pit_state ps;
5426                 struct kvm_pit_state2 ps2;
5427                 struct kvm_pit_config pit_config;
5428         } u;
5429
5430         switch (ioctl) {
5431         case KVM_SET_TSS_ADDR:
5432                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5433                 break;
5434         case KVM_SET_IDENTITY_MAP_ADDR: {
5435                 u64 ident_addr;
5436
5437                 mutex_lock(&kvm->lock);
5438                 r = -EINVAL;
5439                 if (kvm->created_vcpus)
5440                         goto set_identity_unlock;
5441                 r = -EFAULT;
5442                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5443                         goto set_identity_unlock;
5444                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5445 set_identity_unlock:
5446                 mutex_unlock(&kvm->lock);
5447                 break;
5448         }
5449         case KVM_SET_NR_MMU_PAGES:
5450                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5451                 break;
5452         case KVM_GET_NR_MMU_PAGES:
5453                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5454                 break;
5455         case KVM_CREATE_IRQCHIP: {
5456                 mutex_lock(&kvm->lock);
5457
5458                 r = -EEXIST;
5459                 if (irqchip_in_kernel(kvm))
5460                         goto create_irqchip_unlock;
5461
5462                 r = -EINVAL;
5463                 if (kvm->created_vcpus)
5464                         goto create_irqchip_unlock;
5465
5466                 r = kvm_pic_init(kvm);
5467                 if (r)
5468                         goto create_irqchip_unlock;
5469
5470                 r = kvm_ioapic_init(kvm);
5471                 if (r) {
5472                         kvm_pic_destroy(kvm);
5473                         goto create_irqchip_unlock;
5474                 }
5475
5476                 r = kvm_setup_default_irq_routing(kvm);
5477                 if (r) {
5478                         kvm_ioapic_destroy(kvm);
5479                         kvm_pic_destroy(kvm);
5480                         goto create_irqchip_unlock;
5481                 }
5482                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5483                 smp_wmb();
5484                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5485         create_irqchip_unlock:
5486                 mutex_unlock(&kvm->lock);
5487                 break;
5488         }
5489         case KVM_CREATE_PIT:
5490                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5491                 goto create_pit;
5492         case KVM_CREATE_PIT2:
5493                 r = -EFAULT;
5494                 if (copy_from_user(&u.pit_config, argp,
5495                                    sizeof(struct kvm_pit_config)))
5496                         goto out;
5497         create_pit:
5498                 mutex_lock(&kvm->lock);
5499                 r = -EEXIST;
5500                 if (kvm->arch.vpit)
5501                         goto create_pit_unlock;
5502                 r = -ENOMEM;
5503                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5504                 if (kvm->arch.vpit)
5505                         r = 0;
5506         create_pit_unlock:
5507                 mutex_unlock(&kvm->lock);
5508                 break;
5509         case KVM_GET_IRQCHIP: {
5510                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5511                 struct kvm_irqchip *chip;
5512
5513                 chip = memdup_user(argp, sizeof(*chip));
5514                 if (IS_ERR(chip)) {
5515                         r = PTR_ERR(chip);
5516                         goto out;
5517                 }
5518
5519                 r = -ENXIO;
5520                 if (!irqchip_kernel(kvm))
5521                         goto get_irqchip_out;
5522                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5523                 if (r)
5524                         goto get_irqchip_out;
5525                 r = -EFAULT;
5526                 if (copy_to_user(argp, chip, sizeof(*chip)))
5527                         goto get_irqchip_out;
5528                 r = 0;
5529         get_irqchip_out:
5530                 kfree(chip);
5531                 break;
5532         }
5533         case KVM_SET_IRQCHIP: {
5534                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5535                 struct kvm_irqchip *chip;
5536
5537                 chip = memdup_user(argp, sizeof(*chip));
5538                 if (IS_ERR(chip)) {
5539                         r = PTR_ERR(chip);
5540                         goto out;
5541                 }
5542
5543                 r = -ENXIO;
5544                 if (!irqchip_kernel(kvm))
5545                         goto set_irqchip_out;
5546                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5547         set_irqchip_out:
5548                 kfree(chip);
5549                 break;
5550         }
5551         case KVM_GET_PIT: {
5552                 r = -EFAULT;
5553                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5554                         goto out;
5555                 r = -ENXIO;
5556                 if (!kvm->arch.vpit)
5557                         goto out;
5558                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5559                 if (r)
5560                         goto out;
5561                 r = -EFAULT;
5562                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5563                         goto out;
5564                 r = 0;
5565                 break;
5566         }
5567         case KVM_SET_PIT: {
5568                 r = -EFAULT;
5569                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5570                         goto out;
5571                 mutex_lock(&kvm->lock);
5572                 r = -ENXIO;
5573                 if (!kvm->arch.vpit)
5574                         goto set_pit_out;
5575                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5576 set_pit_out:
5577                 mutex_unlock(&kvm->lock);
5578                 break;
5579         }
5580         case KVM_GET_PIT2: {
5581                 r = -ENXIO;
5582                 if (!kvm->arch.vpit)
5583                         goto out;
5584                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5585                 if (r)
5586                         goto out;
5587                 r = -EFAULT;
5588                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5589                         goto out;
5590                 r = 0;
5591                 break;
5592         }
5593         case KVM_SET_PIT2: {
5594                 r = -EFAULT;
5595                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5596                         goto out;
5597                 mutex_lock(&kvm->lock);
5598                 r = -ENXIO;
5599                 if (!kvm->arch.vpit)
5600                         goto set_pit2_out;
5601                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5602 set_pit2_out:
5603                 mutex_unlock(&kvm->lock);
5604                 break;
5605         }
5606         case KVM_REINJECT_CONTROL: {
5607                 struct kvm_reinject_control control;
5608                 r =  -EFAULT;
5609                 if (copy_from_user(&control, argp, sizeof(control)))
5610                         goto out;
5611                 r = -ENXIO;
5612                 if (!kvm->arch.vpit)
5613                         goto out;
5614                 r = kvm_vm_ioctl_reinject(kvm, &control);
5615                 break;
5616         }
5617         case KVM_SET_BOOT_CPU_ID:
5618                 r = 0;
5619                 mutex_lock(&kvm->lock);
5620                 if (kvm->created_vcpus)
5621                         r = -EBUSY;
5622                 else
5623                         kvm->arch.bsp_vcpu_id = arg;
5624                 mutex_unlock(&kvm->lock);
5625                 break;
5626         case KVM_XEN_HVM_CONFIG: {
5627                 struct kvm_xen_hvm_config xhc;
5628                 r = -EFAULT;
5629                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5630                         goto out;
5631                 r = -EINVAL;
5632                 if (xhc.flags)
5633                         goto out;
5634                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5635                 r = 0;
5636                 break;
5637         }
5638         case KVM_SET_CLOCK: {
5639                 struct kvm_clock_data user_ns;
5640                 u64 now_ns;
5641
5642                 r = -EFAULT;
5643                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5644                         goto out;
5645
5646                 r = -EINVAL;
5647                 if (user_ns.flags)
5648                         goto out;
5649
5650                 r = 0;
5651                 /*
5652                  * TODO: userspace has to take care of races with VCPU_RUN, so
5653                  * kvm_gen_update_masterclock() can be cut down to locked
5654                  * pvclock_update_vm_gtod_copy().
5655                  */
5656                 kvm_gen_update_masterclock(kvm);
5657                 now_ns = get_kvmclock_ns(kvm);
5658                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5659                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5660                 break;
5661         }
5662         case KVM_GET_CLOCK: {
5663                 struct kvm_clock_data user_ns;
5664                 u64 now_ns;
5665
5666                 now_ns = get_kvmclock_ns(kvm);
5667                 user_ns.clock = now_ns;
5668                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5669                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5670
5671                 r = -EFAULT;
5672                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5673                         goto out;
5674                 r = 0;
5675                 break;
5676         }
5677         case KVM_MEMORY_ENCRYPT_OP: {
5678                 r = -ENOTTY;
5679                 if (kvm_x86_ops.mem_enc_op)
5680                         r = kvm_x86_ops.mem_enc_op(kvm, argp);
5681                 break;
5682         }
5683         case KVM_MEMORY_ENCRYPT_REG_REGION: {
5684                 struct kvm_enc_region region;
5685
5686                 r = -EFAULT;
5687                 if (copy_from_user(&region, argp, sizeof(region)))
5688                         goto out;
5689
5690                 r = -ENOTTY;
5691                 if (kvm_x86_ops.mem_enc_reg_region)
5692                         r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5693                 break;
5694         }
5695         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5696                 struct kvm_enc_region region;
5697
5698                 r = -EFAULT;
5699                 if (copy_from_user(&region, argp, sizeof(region)))
5700                         goto out;
5701
5702                 r = -ENOTTY;
5703                 if (kvm_x86_ops.mem_enc_unreg_region)
5704                         r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5705                 break;
5706         }
5707         case KVM_HYPERV_EVENTFD: {
5708                 struct kvm_hyperv_eventfd hvevfd;
5709
5710                 r = -EFAULT;
5711                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5712                         goto out;
5713                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5714                 break;
5715         }
5716         case KVM_SET_PMU_EVENT_FILTER:
5717                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5718                 break;
5719         case KVM_X86_SET_MSR_FILTER:
5720                 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5721                 break;
5722         default:
5723                 r = -ENOTTY;
5724         }
5725 out:
5726         return r;
5727 }
5728
5729 static void kvm_init_msr_list(void)
5730 {
5731         struct x86_pmu_capability x86_pmu;
5732         u32 dummy[2];
5733         unsigned i;
5734
5735         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5736                          "Please update the fixed PMCs in msrs_to_saved_all[]");
5737
5738         perf_get_x86_pmu_capability(&x86_pmu);
5739
5740         num_msrs_to_save = 0;
5741         num_emulated_msrs = 0;
5742         num_msr_based_features = 0;
5743
5744         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5745                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5746                         continue;
5747
5748                 /*
5749                  * Even MSRs that are valid in the host may not be exposed
5750                  * to the guests in some cases.
5751                  */
5752                 switch (msrs_to_save_all[i]) {
5753                 case MSR_IA32_BNDCFGS:
5754                         if (!kvm_mpx_supported())
5755                                 continue;
5756                         break;
5757                 case MSR_TSC_AUX:
5758                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5759                                 continue;
5760                         break;
5761                 case MSR_IA32_UMWAIT_CONTROL:
5762                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5763                                 continue;
5764                         break;
5765                 case MSR_IA32_RTIT_CTL:
5766                 case MSR_IA32_RTIT_STATUS:
5767                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5768                                 continue;
5769                         break;
5770                 case MSR_IA32_RTIT_CR3_MATCH:
5771                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5772                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5773                                 continue;
5774                         break;
5775                 case MSR_IA32_RTIT_OUTPUT_BASE:
5776                 case MSR_IA32_RTIT_OUTPUT_MASK:
5777                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5778                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5779                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5780                                 continue;
5781                         break;
5782                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5783                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5784                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5785                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5786                                 continue;
5787                         break;
5788                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5789                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5790                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5791                                 continue;
5792                         break;
5793                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5794                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5795                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5796                                 continue;
5797                         break;
5798                 default:
5799                         break;
5800                 }
5801
5802                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5803         }
5804
5805         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5806                 if (!kvm_x86_ops.has_emulated_msr(NULL, emulated_msrs_all[i]))
5807                         continue;
5808
5809                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5810         }
5811
5812         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5813                 struct kvm_msr_entry msr;
5814
5815                 msr.index = msr_based_features_all[i];
5816                 if (kvm_get_msr_feature(&msr))
5817                         continue;
5818
5819                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5820         }
5821 }
5822
5823 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5824                            const void *v)
5825 {
5826         int handled = 0;
5827         int n;
5828
5829         do {
5830                 n = min(len, 8);
5831                 if (!(lapic_in_kernel(vcpu) &&
5832                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5833                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5834                         break;
5835                 handled += n;
5836                 addr += n;
5837                 len -= n;
5838                 v += n;
5839         } while (len);
5840
5841         return handled;
5842 }
5843
5844 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5845 {
5846         int handled = 0;
5847         int n;
5848
5849         do {
5850                 n = min(len, 8);
5851                 if (!(lapic_in_kernel(vcpu) &&
5852                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5853                                          addr, n, v))
5854                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5855                         break;
5856                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5857                 handled += n;
5858                 addr += n;
5859                 len -= n;
5860                 v += n;
5861         } while (len);
5862
5863         return handled;
5864 }
5865
5866 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5867                         struct kvm_segment *var, int seg)
5868 {
5869         kvm_x86_ops.set_segment(vcpu, var, seg);
5870 }
5871
5872 void kvm_get_segment(struct kvm_vcpu *vcpu,
5873                      struct kvm_segment *var, int seg)
5874 {
5875         kvm_x86_ops.get_segment(vcpu, var, seg);
5876 }
5877
5878 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5879                            struct x86_exception *exception)
5880 {
5881         gpa_t t_gpa;
5882
5883         BUG_ON(!mmu_is_nested(vcpu));
5884
5885         /* NPT walks are always user-walks */
5886         access |= PFERR_USER_MASK;
5887         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5888
5889         return t_gpa;
5890 }
5891
5892 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5893                               struct x86_exception *exception)
5894 {
5895         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5896         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5897 }
5898
5899  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5900                                 struct x86_exception *exception)
5901 {
5902         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5903         access |= PFERR_FETCH_MASK;
5904         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5905 }
5906
5907 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5908                                struct x86_exception *exception)
5909 {
5910         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5911         access |= PFERR_WRITE_MASK;
5912         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5913 }
5914
5915 /* uses this to access any guest's mapped memory without checking CPL */
5916 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5917                                 struct x86_exception *exception)
5918 {
5919         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5920 }
5921
5922 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5923                                       struct kvm_vcpu *vcpu, u32 access,
5924                                       struct x86_exception *exception)
5925 {
5926         void *data = val;
5927         int r = X86EMUL_CONTINUE;
5928
5929         while (bytes) {
5930                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5931                                                             exception);
5932                 unsigned offset = addr & (PAGE_SIZE-1);
5933                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5934                 int ret;
5935
5936                 if (gpa == UNMAPPED_GVA)
5937                         return X86EMUL_PROPAGATE_FAULT;
5938                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5939                                                offset, toread);
5940                 if (ret < 0) {
5941                         r = X86EMUL_IO_NEEDED;
5942                         goto out;
5943                 }
5944
5945                 bytes -= toread;
5946                 data += toread;
5947                 addr += toread;
5948         }
5949 out:
5950         return r;
5951 }
5952
5953 /* used for instruction fetching */
5954 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5955                                 gva_t addr, void *val, unsigned int bytes,
5956                                 struct x86_exception *exception)
5957 {
5958         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5959         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5960         unsigned offset;
5961         int ret;
5962
5963         /* Inline kvm_read_guest_virt_helper for speed.  */
5964         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5965                                                     exception);
5966         if (unlikely(gpa == UNMAPPED_GVA))
5967                 return X86EMUL_PROPAGATE_FAULT;
5968
5969         offset = addr & (PAGE_SIZE-1);
5970         if (WARN_ON(offset + bytes > PAGE_SIZE))
5971                 bytes = (unsigned)PAGE_SIZE - offset;
5972         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5973                                        offset, bytes);
5974         if (unlikely(ret < 0))
5975                 return X86EMUL_IO_NEEDED;
5976
5977         return X86EMUL_CONTINUE;
5978 }
5979
5980 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5981                                gva_t addr, void *val, unsigned int bytes,
5982                                struct x86_exception *exception)
5983 {
5984         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5985
5986         /*
5987          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5988          * is returned, but our callers are not ready for that and they blindly
5989          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5990          * uninitialized kernel stack memory into cr2 and error code.
5991          */
5992         memset(exception, 0, sizeof(*exception));
5993         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5994                                           exception);
5995 }
5996 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5997
5998 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5999                              gva_t addr, void *val, unsigned int bytes,
6000                              struct x86_exception *exception, bool system)
6001 {
6002         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6003         u32 access = 0;
6004
6005         if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6006                 access |= PFERR_USER_MASK;
6007
6008         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6009 }
6010
6011 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6012                 unsigned long addr, void *val, unsigned int bytes)
6013 {
6014         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6015         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6016
6017         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6018 }
6019
6020 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6021                                       struct kvm_vcpu *vcpu, u32 access,
6022                                       struct x86_exception *exception)
6023 {
6024         void *data = val;
6025         int r = X86EMUL_CONTINUE;
6026
6027         while (bytes) {
6028                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6029                                                              access,
6030                                                              exception);
6031                 unsigned offset = addr & (PAGE_SIZE-1);
6032                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6033                 int ret;
6034
6035                 if (gpa == UNMAPPED_GVA)
6036                         return X86EMUL_PROPAGATE_FAULT;
6037                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6038                 if (ret < 0) {
6039                         r = X86EMUL_IO_NEEDED;
6040                         goto out;
6041                 }
6042
6043                 bytes -= towrite;
6044                 data += towrite;
6045                 addr += towrite;
6046         }
6047 out:
6048         return r;
6049 }
6050
6051 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6052                               unsigned int bytes, struct x86_exception *exception,
6053                               bool system)
6054 {
6055         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6056         u32 access = PFERR_WRITE_MASK;
6057
6058         if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6059                 access |= PFERR_USER_MASK;
6060
6061         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6062                                            access, exception);
6063 }
6064
6065 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6066                                 unsigned int bytes, struct x86_exception *exception)
6067 {
6068         /* kvm_write_guest_virt_system can pull in tons of pages. */
6069         vcpu->arch.l1tf_flush_l1d = true;
6070
6071         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6072                                            PFERR_WRITE_MASK, exception);
6073 }
6074 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6075
6076 int handle_ud(struct kvm_vcpu *vcpu)
6077 {
6078         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6079         int emul_type = EMULTYPE_TRAP_UD;
6080         char sig[5]; /* ud2; .ascii "kvm" */
6081         struct x86_exception e;
6082
6083         if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0)))
6084                 return 1;
6085
6086         if (force_emulation_prefix &&
6087             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6088                                 sig, sizeof(sig), &e) == 0 &&
6089             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6090                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6091                 emul_type = EMULTYPE_TRAP_UD_FORCED;
6092         }
6093
6094         return kvm_emulate_instruction(vcpu, emul_type);
6095 }
6096 EXPORT_SYMBOL_GPL(handle_ud);
6097
6098 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6099                             gpa_t gpa, bool write)
6100 {
6101         /* For APIC access vmexit */
6102         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6103                 return 1;
6104
6105         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6106                 trace_vcpu_match_mmio(gva, gpa, write, true);
6107                 return 1;
6108         }
6109
6110         return 0;
6111 }
6112
6113 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6114                                 gpa_t *gpa, struct x86_exception *exception,
6115                                 bool write)
6116 {
6117         u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
6118                 | (write ? PFERR_WRITE_MASK : 0);
6119
6120         /*
6121          * currently PKRU is only applied to ept enabled guest so
6122          * there is no pkey in EPT page table for L1 guest or EPT
6123          * shadow page table for L2 guest.
6124          */
6125         if (vcpu_match_mmio_gva(vcpu, gva)
6126             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6127                                  vcpu->arch.mmio_access, 0, access)) {
6128                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6129                                         (gva & (PAGE_SIZE - 1));
6130                 trace_vcpu_match_mmio(gva, *gpa, write, false);
6131                 return 1;
6132         }
6133
6134         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6135
6136         if (*gpa == UNMAPPED_GVA)
6137                 return -1;
6138
6139         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6140 }
6141
6142 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6143                         const void *val, int bytes)
6144 {
6145         int ret;
6146
6147         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6148         if (ret < 0)
6149                 return 0;
6150         kvm_page_track_write(vcpu, gpa, val, bytes);
6151         return 1;
6152 }
6153
6154 struct read_write_emulator_ops {
6155         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6156                                   int bytes);
6157         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6158                                   void *val, int bytes);
6159         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6160                                int bytes, void *val);
6161         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6162                                     void *val, int bytes);
6163         bool write;
6164 };
6165
6166 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6167 {
6168         if (vcpu->mmio_read_completed) {
6169                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6170                                vcpu->mmio_fragments[0].gpa, val);
6171                 vcpu->mmio_read_completed = 0;
6172                 return 1;
6173         }
6174
6175         return 0;
6176 }
6177
6178 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6179                         void *val, int bytes)
6180 {
6181         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6182 }
6183
6184 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6185                          void *val, int bytes)
6186 {
6187         return emulator_write_phys(vcpu, gpa, val, bytes);
6188 }
6189
6190 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6191 {
6192         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6193         return vcpu_mmio_write(vcpu, gpa, bytes, val);
6194 }
6195
6196 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6197                           void *val, int bytes)
6198 {
6199         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6200         return X86EMUL_IO_NEEDED;
6201 }
6202
6203 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6204                            void *val, int bytes)
6205 {
6206         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6207
6208         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6209         return X86EMUL_CONTINUE;
6210 }
6211
6212 static const struct read_write_emulator_ops read_emultor = {
6213         .read_write_prepare = read_prepare,
6214         .read_write_emulate = read_emulate,
6215         .read_write_mmio = vcpu_mmio_read,
6216         .read_write_exit_mmio = read_exit_mmio,
6217 };
6218
6219 static const struct read_write_emulator_ops write_emultor = {
6220         .read_write_emulate = write_emulate,
6221         .read_write_mmio = write_mmio,
6222         .read_write_exit_mmio = write_exit_mmio,
6223         .write = true,
6224 };
6225
6226 static int emulator_read_write_onepage(unsigned long addr, void *val,
6227                                        unsigned int bytes,
6228                                        struct x86_exception *exception,
6229                                        struct kvm_vcpu *vcpu,
6230                                        const struct read_write_emulator_ops *ops)
6231 {
6232         gpa_t gpa;
6233         int handled, ret;
6234         bool write = ops->write;
6235         struct kvm_mmio_fragment *frag;
6236         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6237
6238         /*
6239          * If the exit was due to a NPF we may already have a GPA.
6240          * If the GPA is present, use it to avoid the GVA to GPA table walk.
6241          * Note, this cannot be used on string operations since string
6242          * operation using rep will only have the initial GPA from the NPF
6243          * occurred.
6244          */
6245         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6246             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6247                 gpa = ctxt->gpa_val;
6248                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6249         } else {
6250                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6251                 if (ret < 0)
6252                         return X86EMUL_PROPAGATE_FAULT;
6253         }
6254
6255         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6256                 return X86EMUL_CONTINUE;
6257
6258         /*
6259          * Is this MMIO handled locally?
6260          */
6261         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6262         if (handled == bytes)
6263                 return X86EMUL_CONTINUE;
6264
6265         gpa += handled;
6266         bytes -= handled;
6267         val += handled;
6268
6269         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6270         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6271         frag->gpa = gpa;
6272         frag->data = val;
6273         frag->len = bytes;
6274         return X86EMUL_CONTINUE;
6275 }
6276
6277 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6278                         unsigned long addr,
6279                         void *val, unsigned int bytes,
6280                         struct x86_exception *exception,
6281                         const struct read_write_emulator_ops *ops)
6282 {
6283         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6284         gpa_t gpa;
6285         int rc;
6286
6287         if (ops->read_write_prepare &&
6288                   ops->read_write_prepare(vcpu, val, bytes))
6289                 return X86EMUL_CONTINUE;
6290
6291         vcpu->mmio_nr_fragments = 0;
6292
6293         /* Crossing a page boundary? */
6294         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6295                 int now;
6296
6297                 now = -addr & ~PAGE_MASK;
6298                 rc = emulator_read_write_onepage(addr, val, now, exception,
6299                                                  vcpu, ops);
6300
6301                 if (rc != X86EMUL_CONTINUE)
6302                         return rc;
6303                 addr += now;
6304                 if (ctxt->mode != X86EMUL_MODE_PROT64)
6305                         addr = (u32)addr;
6306                 val += now;
6307                 bytes -= now;
6308         }
6309
6310         rc = emulator_read_write_onepage(addr, val, bytes, exception,
6311                                          vcpu, ops);
6312         if (rc != X86EMUL_CONTINUE)
6313                 return rc;
6314
6315         if (!vcpu->mmio_nr_fragments)
6316                 return rc;
6317
6318         gpa = vcpu->mmio_fragments[0].gpa;
6319
6320         vcpu->mmio_needed = 1;
6321         vcpu->mmio_cur_fragment = 0;
6322
6323         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6324         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6325         vcpu->run->exit_reason = KVM_EXIT_MMIO;
6326         vcpu->run->mmio.phys_addr = gpa;
6327
6328         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6329 }
6330
6331 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6332                                   unsigned long addr,
6333                                   void *val,
6334                                   unsigned int bytes,
6335                                   struct x86_exception *exception)
6336 {
6337         return emulator_read_write(ctxt, addr, val, bytes,
6338                                    exception, &read_emultor);
6339 }
6340
6341 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6342                             unsigned long addr,
6343                             const void *val,
6344                             unsigned int bytes,
6345                             struct x86_exception *exception)
6346 {
6347         return emulator_read_write(ctxt, addr, (void *)val, bytes,
6348                                    exception, &write_emultor);
6349 }
6350
6351 #define CMPXCHG_TYPE(t, ptr, old, new) \
6352         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6353
6354 #ifdef CONFIG_X86_64
6355 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6356 #else
6357 #  define CMPXCHG64(ptr, old, new) \
6358         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6359 #endif
6360
6361 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6362                                      unsigned long addr,
6363                                      const void *old,
6364                                      const void *new,
6365                                      unsigned int bytes,
6366                                      struct x86_exception *exception)
6367 {
6368         struct kvm_host_map map;
6369         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6370         u64 page_line_mask;
6371         gpa_t gpa;
6372         char *kaddr;
6373         bool exchanged;
6374
6375         /* guests cmpxchg8b have to be emulated atomically */
6376         if (bytes > 8 || (bytes & (bytes - 1)))
6377                 goto emul_write;
6378
6379         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6380
6381         if (gpa == UNMAPPED_GVA ||
6382             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6383                 goto emul_write;
6384
6385         /*
6386          * Emulate the atomic as a straight write to avoid #AC if SLD is
6387          * enabled in the host and the access splits a cache line.
6388          */
6389         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6390                 page_line_mask = ~(cache_line_size() - 1);
6391         else
6392                 page_line_mask = PAGE_MASK;
6393
6394         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6395                 goto emul_write;
6396
6397         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6398                 goto emul_write;
6399
6400         kaddr = map.hva + offset_in_page(gpa);
6401
6402         switch (bytes) {
6403         case 1:
6404                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6405                 break;
6406         case 2:
6407                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6408                 break;
6409         case 4:
6410                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6411                 break;
6412         case 8:
6413                 exchanged = CMPXCHG64(kaddr, old, new);
6414                 break;
6415         default:
6416                 BUG();
6417         }
6418
6419         kvm_vcpu_unmap(vcpu, &map, true);
6420
6421         if (!exchanged)
6422                 return X86EMUL_CMPXCHG_FAILED;
6423
6424         kvm_page_track_write(vcpu, gpa, new, bytes);
6425
6426         return X86EMUL_CONTINUE;
6427
6428 emul_write:
6429         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6430
6431         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6432 }
6433
6434 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6435 {
6436         int r = 0, i;
6437
6438         for (i = 0; i < vcpu->arch.pio.count; i++) {
6439                 if (vcpu->arch.pio.in)
6440                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6441                                             vcpu->arch.pio.size, pd);
6442                 else
6443                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6444                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
6445                                              pd);
6446                 if (r)
6447                         break;
6448                 pd += vcpu->arch.pio.size;
6449         }
6450         return r;
6451 }
6452
6453 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6454                                unsigned short port, void *val,
6455                                unsigned int count, bool in)
6456 {
6457         vcpu->arch.pio.port = port;
6458         vcpu->arch.pio.in = in;
6459         vcpu->arch.pio.count  = count;
6460         vcpu->arch.pio.size = size;
6461
6462         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6463                 vcpu->arch.pio.count = 0;
6464                 return 1;
6465         }
6466
6467         vcpu->run->exit_reason = KVM_EXIT_IO;
6468         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6469         vcpu->run->io.size = size;
6470         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6471         vcpu->run->io.count = count;
6472         vcpu->run->io.port = port;
6473
6474         return 0;
6475 }
6476
6477 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6478                            unsigned short port, void *val, unsigned int count)
6479 {
6480         int ret;
6481
6482         if (vcpu->arch.pio.count)
6483                 goto data_avail;
6484
6485         memset(vcpu->arch.pio_data, 0, size * count);
6486
6487         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6488         if (ret) {
6489 data_avail:
6490                 memcpy(val, vcpu->arch.pio_data, size * count);
6491                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6492                 vcpu->arch.pio.count = 0;
6493                 return 1;
6494         }
6495
6496         return 0;
6497 }
6498
6499 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6500                                     int size, unsigned short port, void *val,
6501                                     unsigned int count)
6502 {
6503         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6504
6505 }
6506
6507 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6508                             unsigned short port, const void *val,
6509                             unsigned int count)
6510 {
6511         memcpy(vcpu->arch.pio_data, val, size * count);
6512         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6513         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6514 }
6515
6516 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6517                                      int size, unsigned short port,
6518                                      const void *val, unsigned int count)
6519 {
6520         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6521 }
6522
6523 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6524 {
6525         return kvm_x86_ops.get_segment_base(vcpu, seg);
6526 }
6527
6528 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6529 {
6530         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6531 }
6532
6533 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6534 {
6535         if (!need_emulate_wbinvd(vcpu))
6536                 return X86EMUL_CONTINUE;
6537
6538         if (kvm_x86_ops.has_wbinvd_exit()) {
6539                 int cpu = get_cpu();
6540
6541                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6542                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6543                                 wbinvd_ipi, NULL, 1);
6544                 put_cpu();
6545                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6546         } else
6547                 wbinvd();
6548         return X86EMUL_CONTINUE;
6549 }
6550
6551 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6552 {
6553         kvm_emulate_wbinvd_noskip(vcpu);
6554         return kvm_skip_emulated_instruction(vcpu);
6555 }
6556 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6557
6558
6559
6560 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6561 {
6562         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6563 }
6564
6565 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6566                            unsigned long *dest)
6567 {
6568         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6569 }
6570
6571 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6572                            unsigned long value)
6573 {
6574
6575         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6576 }
6577
6578 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6579 {
6580         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6581 }
6582
6583 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6584 {
6585         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6586         unsigned long value;
6587
6588         switch (cr) {
6589         case 0:
6590                 value = kvm_read_cr0(vcpu);
6591                 break;
6592         case 2:
6593                 value = vcpu->arch.cr2;
6594                 break;
6595         case 3:
6596                 value = kvm_read_cr3(vcpu);
6597                 break;
6598         case 4:
6599                 value = kvm_read_cr4(vcpu);
6600                 break;
6601         case 8:
6602                 value = kvm_get_cr8(vcpu);
6603                 break;
6604         default:
6605                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6606                 return 0;
6607         }
6608
6609         return value;
6610 }
6611
6612 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6613 {
6614         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6615         int res = 0;
6616
6617         switch (cr) {
6618         case 0:
6619                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6620                 break;
6621         case 2:
6622                 vcpu->arch.cr2 = val;
6623                 break;
6624         case 3:
6625                 res = kvm_set_cr3(vcpu, val);
6626                 break;
6627         case 4:
6628                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6629                 break;
6630         case 8:
6631                 res = kvm_set_cr8(vcpu, val);
6632                 break;
6633         default:
6634                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6635                 res = -1;
6636         }
6637
6638         return res;
6639 }
6640
6641 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6642 {
6643         return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6644 }
6645
6646 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6647 {
6648         kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6649 }
6650
6651 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6652 {
6653         kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6654 }
6655
6656 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6657 {
6658         kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6659 }
6660
6661 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6662 {
6663         kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6664 }
6665
6666 static unsigned long emulator_get_cached_segment_base(
6667         struct x86_emulate_ctxt *ctxt, int seg)
6668 {
6669         return get_segment_base(emul_to_vcpu(ctxt), seg);
6670 }
6671
6672 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6673                                  struct desc_struct *desc, u32 *base3,
6674                                  int seg)
6675 {
6676         struct kvm_segment var;
6677
6678         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6679         *selector = var.selector;
6680
6681         if (var.unusable) {
6682                 memset(desc, 0, sizeof(*desc));
6683                 if (base3)
6684                         *base3 = 0;
6685                 return false;
6686         }
6687
6688         if (var.g)
6689                 var.limit >>= 12;
6690         set_desc_limit(desc, var.limit);
6691         set_desc_base(desc, (unsigned long)var.base);
6692 #ifdef CONFIG_X86_64
6693         if (base3)
6694                 *base3 = var.base >> 32;
6695 #endif
6696         desc->type = var.type;
6697         desc->s = var.s;
6698         desc->dpl = var.dpl;
6699         desc->p = var.present;
6700         desc->avl = var.avl;
6701         desc->l = var.l;
6702         desc->d = var.db;
6703         desc->g = var.g;
6704
6705         return true;
6706 }
6707
6708 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6709                                  struct desc_struct *desc, u32 base3,
6710                                  int seg)
6711 {
6712         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6713         struct kvm_segment var;
6714
6715         var.selector = selector;
6716         var.base = get_desc_base(desc);
6717 #ifdef CONFIG_X86_64
6718         var.base |= ((u64)base3) << 32;
6719 #endif
6720         var.limit = get_desc_limit(desc);
6721         if (desc->g)
6722                 var.limit = (var.limit << 12) | 0xfff;
6723         var.type = desc->type;
6724         var.dpl = desc->dpl;
6725         var.db = desc->d;
6726         var.s = desc->s;
6727         var.l = desc->l;
6728         var.g = desc->g;
6729         var.avl = desc->avl;
6730         var.present = desc->p;
6731         var.unusable = !var.present;
6732         var.padding = 0;
6733
6734         kvm_set_segment(vcpu, &var, seg);
6735         return;
6736 }
6737
6738 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6739                             u32 msr_index, u64 *pdata)
6740 {
6741         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6742         int r;
6743
6744         r = kvm_get_msr(vcpu, msr_index, pdata);
6745
6746         if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6747                 /* Bounce to user space */
6748                 return X86EMUL_IO_NEEDED;
6749         }
6750
6751         return r;
6752 }
6753
6754 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6755                             u32 msr_index, u64 data)
6756 {
6757         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6758         int r;
6759
6760         r = kvm_set_msr(vcpu, msr_index, data);
6761
6762         if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6763                 /* Bounce to user space */
6764                 return X86EMUL_IO_NEEDED;
6765         }
6766
6767         return r;
6768 }
6769
6770 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6771 {
6772         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6773
6774         return vcpu->arch.smbase;
6775 }
6776
6777 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6778 {
6779         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6780
6781         vcpu->arch.smbase = smbase;
6782 }
6783
6784 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6785                               u32 pmc)
6786 {
6787         return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6788 }
6789
6790 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6791                              u32 pmc, u64 *pdata)
6792 {
6793         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6794 }
6795
6796 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6797 {
6798         emul_to_vcpu(ctxt)->arch.halt_request = 1;
6799 }
6800
6801 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6802                               struct x86_instruction_info *info,
6803                               enum x86_intercept_stage stage)
6804 {
6805         return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6806                                             &ctxt->exception);
6807 }
6808
6809 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6810                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6811                               bool exact_only)
6812 {
6813         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6814 }
6815
6816 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6817 {
6818         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6819 }
6820
6821 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6822 {
6823         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6824 }
6825
6826 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6827 {
6828         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6829 }
6830
6831 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6832 {
6833         return kvm_register_read(emul_to_vcpu(ctxt), reg);
6834 }
6835
6836 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6837 {
6838         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6839 }
6840
6841 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6842 {
6843         kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6844 }
6845
6846 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6847 {
6848         return emul_to_vcpu(ctxt)->arch.hflags;
6849 }
6850
6851 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6852 {
6853         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6854 }
6855
6856 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6857                                   const char *smstate)
6858 {
6859         return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6860 }
6861
6862 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6863 {
6864         kvm_smm_changed(emul_to_vcpu(ctxt));
6865 }
6866
6867 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6868 {
6869         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6870 }
6871
6872 static const struct x86_emulate_ops emulate_ops = {
6873         .read_gpr            = emulator_read_gpr,
6874         .write_gpr           = emulator_write_gpr,
6875         .read_std            = emulator_read_std,
6876         .write_std           = emulator_write_std,
6877         .read_phys           = kvm_read_guest_phys_system,
6878         .fetch               = kvm_fetch_guest_virt,
6879         .read_emulated       = emulator_read_emulated,
6880         .write_emulated      = emulator_write_emulated,
6881         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6882         .invlpg              = emulator_invlpg,
6883         .pio_in_emulated     = emulator_pio_in_emulated,
6884         .pio_out_emulated    = emulator_pio_out_emulated,
6885         .get_segment         = emulator_get_segment,
6886         .set_segment         = emulator_set_segment,
6887         .get_cached_segment_base = emulator_get_cached_segment_base,
6888         .get_gdt             = emulator_get_gdt,
6889         .get_idt             = emulator_get_idt,
6890         .set_gdt             = emulator_set_gdt,
6891         .set_idt             = emulator_set_idt,
6892         .get_cr              = emulator_get_cr,
6893         .set_cr              = emulator_set_cr,
6894         .cpl                 = emulator_get_cpl,
6895         .get_dr              = emulator_get_dr,
6896         .set_dr              = emulator_set_dr,
6897         .get_smbase          = emulator_get_smbase,
6898         .set_smbase          = emulator_set_smbase,
6899         .set_msr             = emulator_set_msr,
6900         .get_msr             = emulator_get_msr,
6901         .check_pmc           = emulator_check_pmc,
6902         .read_pmc            = emulator_read_pmc,
6903         .halt                = emulator_halt,
6904         .wbinvd              = emulator_wbinvd,
6905         .fix_hypercall       = emulator_fix_hypercall,
6906         .intercept           = emulator_intercept,
6907         .get_cpuid           = emulator_get_cpuid,
6908         .guest_has_long_mode = emulator_guest_has_long_mode,
6909         .guest_has_movbe     = emulator_guest_has_movbe,
6910         .guest_has_fxsr      = emulator_guest_has_fxsr,
6911         .set_nmi_mask        = emulator_set_nmi_mask,
6912         .get_hflags          = emulator_get_hflags,
6913         .set_hflags          = emulator_set_hflags,
6914         .pre_leave_smm       = emulator_pre_leave_smm,
6915         .post_leave_smm      = emulator_post_leave_smm,
6916         .set_xcr             = emulator_set_xcr,
6917 };
6918
6919 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6920 {
6921         u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6922         /*
6923          * an sti; sti; sequence only disable interrupts for the first
6924          * instruction. So, if the last instruction, be it emulated or
6925          * not, left the system with the INT_STI flag enabled, it
6926          * means that the last instruction is an sti. We should not
6927          * leave the flag on in this case. The same goes for mov ss
6928          */
6929         if (int_shadow & mask)
6930                 mask = 0;
6931         if (unlikely(int_shadow || mask)) {
6932                 kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6933                 if (!mask)
6934                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6935         }
6936 }
6937
6938 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6939 {
6940         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6941         if (ctxt->exception.vector == PF_VECTOR)
6942                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
6943
6944         if (ctxt->exception.error_code_valid)
6945                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6946                                       ctxt->exception.error_code);
6947         else
6948                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6949         return false;
6950 }
6951
6952 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6953 {
6954         struct x86_emulate_ctxt *ctxt;
6955
6956         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6957         if (!ctxt) {
6958                 pr_err("kvm: failed to allocate vcpu's emulator\n");
6959                 return NULL;
6960         }
6961
6962         ctxt->vcpu = vcpu;
6963         ctxt->ops = &emulate_ops;
6964         vcpu->arch.emulate_ctxt = ctxt;
6965
6966         return ctxt;
6967 }
6968
6969 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6970 {
6971         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6972         int cs_db, cs_l;
6973
6974         kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6975
6976         ctxt->gpa_available = false;
6977         ctxt->eflags = kvm_get_rflags(vcpu);
6978         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6979
6980         ctxt->eip = kvm_rip_read(vcpu);
6981         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6982                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6983                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6984                      cs_db                              ? X86EMUL_MODE_PROT32 :
6985                                                           X86EMUL_MODE_PROT16;
6986         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6987         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6988         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6989
6990         init_decode_cache(ctxt);
6991         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6992 }
6993
6994 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6995 {
6996         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6997         int ret;
6998
6999         init_emulate_ctxt(vcpu);
7000
7001         ctxt->op_bytes = 2;
7002         ctxt->ad_bytes = 2;
7003         ctxt->_eip = ctxt->eip + inc_eip;
7004         ret = emulate_int_real(ctxt, irq);
7005
7006         if (ret != X86EMUL_CONTINUE) {
7007                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7008         } else {
7009                 ctxt->eip = ctxt->_eip;
7010                 kvm_rip_write(vcpu, ctxt->eip);
7011                 kvm_set_rflags(vcpu, ctxt->eflags);
7012         }
7013 }
7014 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7015
7016 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7017 {
7018         ++vcpu->stat.insn_emulation_fail;
7019         trace_kvm_emulate_insn_failed(vcpu);
7020
7021         if (emulation_type & EMULTYPE_VMWARE_GP) {
7022                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7023                 return 1;
7024         }
7025
7026         if (emulation_type & EMULTYPE_SKIP) {
7027                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7028                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7029                 vcpu->run->internal.ndata = 0;
7030                 return 0;
7031         }
7032
7033         kvm_queue_exception(vcpu, UD_VECTOR);
7034
7035         if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
7036                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7037                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7038                 vcpu->run->internal.ndata = 0;
7039                 return 0;
7040         }
7041
7042         return 1;
7043 }
7044
7045 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7046                                   bool write_fault_to_shadow_pgtable,
7047                                   int emulation_type)
7048 {
7049         gpa_t gpa = cr2_or_gpa;
7050         kvm_pfn_t pfn;
7051
7052         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7053                 return false;
7054
7055         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7056             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7057                 return false;
7058
7059         if (!vcpu->arch.mmu->direct_map) {
7060                 /*
7061                  * Write permission should be allowed since only
7062                  * write access need to be emulated.
7063                  */
7064                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7065
7066                 /*
7067                  * If the mapping is invalid in guest, let cpu retry
7068                  * it to generate fault.
7069                  */
7070                 if (gpa == UNMAPPED_GVA)
7071                         return true;
7072         }
7073
7074         /*
7075          * Do not retry the unhandleable instruction if it faults on the
7076          * readonly host memory, otherwise it will goto a infinite loop:
7077          * retry instruction -> write #PF -> emulation fail -> retry
7078          * instruction -> ...
7079          */
7080         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7081
7082         /*
7083          * If the instruction failed on the error pfn, it can not be fixed,
7084          * report the error to userspace.
7085          */
7086         if (is_error_noslot_pfn(pfn))
7087                 return false;
7088
7089         kvm_release_pfn_clean(pfn);
7090
7091         /* The instructions are well-emulated on direct mmu. */
7092         if (vcpu->arch.mmu->direct_map) {
7093                 unsigned int indirect_shadow_pages;
7094
7095                 spin_lock(&vcpu->kvm->mmu_lock);
7096                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7097                 spin_unlock(&vcpu->kvm->mmu_lock);
7098
7099                 if (indirect_shadow_pages)
7100                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7101
7102                 return true;
7103         }
7104
7105         /*
7106          * if emulation was due to access to shadowed page table
7107          * and it failed try to unshadow page and re-enter the
7108          * guest to let CPU execute the instruction.
7109          */
7110         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7111
7112         /*
7113          * If the access faults on its page table, it can not
7114          * be fixed by unprotecting shadow page and it should
7115          * be reported to userspace.
7116          */
7117         return !write_fault_to_shadow_pgtable;
7118 }
7119
7120 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7121                               gpa_t cr2_or_gpa,  int emulation_type)
7122 {
7123         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7124         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7125
7126         last_retry_eip = vcpu->arch.last_retry_eip;
7127         last_retry_addr = vcpu->arch.last_retry_addr;
7128
7129         /*
7130          * If the emulation is caused by #PF and it is non-page_table
7131          * writing instruction, it means the VM-EXIT is caused by shadow
7132          * page protected, we can zap the shadow page and retry this
7133          * instruction directly.
7134          *
7135          * Note: if the guest uses a non-page-table modifying instruction
7136          * on the PDE that points to the instruction, then we will unmap
7137          * the instruction and go to an infinite loop. So, we cache the
7138          * last retried eip and the last fault address, if we meet the eip
7139          * and the address again, we can break out of the potential infinite
7140          * loop.
7141          */
7142         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7143
7144         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7145                 return false;
7146
7147         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7148             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7149                 return false;
7150
7151         if (x86_page_table_writing_insn(ctxt))
7152                 return false;
7153
7154         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7155                 return false;
7156
7157         vcpu->arch.last_retry_eip = ctxt->eip;
7158         vcpu->arch.last_retry_addr = cr2_or_gpa;
7159
7160         if (!vcpu->arch.mmu->direct_map)
7161                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7162
7163         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7164
7165         return true;
7166 }
7167
7168 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7169 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7170
7171 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7172 {
7173         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7174                 /* This is a good place to trace that we are exiting SMM.  */
7175                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7176
7177                 /* Process a latched INIT or SMI, if any.  */
7178                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7179         }
7180
7181         kvm_mmu_reset_context(vcpu);
7182 }
7183
7184 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7185                                 unsigned long *db)
7186 {
7187         u32 dr6 = 0;
7188         int i;
7189         u32 enable, rwlen;
7190
7191         enable = dr7;
7192         rwlen = dr7 >> 16;
7193         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7194                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7195                         dr6 |= (1 << i);
7196         return dr6;
7197 }
7198
7199 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7200 {
7201         struct kvm_run *kvm_run = vcpu->run;
7202
7203         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7204                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
7205                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7206                 kvm_run->debug.arch.exception = DB_VECTOR;
7207                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7208                 return 0;
7209         }
7210         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7211         return 1;
7212 }
7213
7214 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7215 {
7216         unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7217         int r;
7218
7219         r = kvm_x86_ops.skip_emulated_instruction(vcpu);
7220         if (unlikely(!r))
7221                 return 0;
7222
7223         /*
7224          * rflags is the old, "raw" value of the flags.  The new value has
7225          * not been saved yet.
7226          *
7227          * This is correct even for TF set by the guest, because "the
7228          * processor will not generate this exception after the instruction
7229          * that sets the TF flag".
7230          */
7231         if (unlikely(rflags & X86_EFLAGS_TF))
7232                 r = kvm_vcpu_do_singlestep(vcpu);
7233         return r;
7234 }
7235 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7236
7237 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7238 {
7239         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7240             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7241                 struct kvm_run *kvm_run = vcpu->run;
7242                 unsigned long eip = kvm_get_linear_rip(vcpu);
7243                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7244                                            vcpu->arch.guest_debug_dr7,
7245                                            vcpu->arch.eff_db);
7246
7247                 if (dr6 != 0) {
7248                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
7249                         kvm_run->debug.arch.pc = eip;
7250                         kvm_run->debug.arch.exception = DB_VECTOR;
7251                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
7252                         *r = 0;
7253                         return true;
7254                 }
7255         }
7256
7257         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7258             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7259                 unsigned long eip = kvm_get_linear_rip(vcpu);
7260                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7261                                            vcpu->arch.dr7,
7262                                            vcpu->arch.db);
7263
7264                 if (dr6 != 0) {
7265                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7266                         *r = 1;
7267                         return true;
7268                 }
7269         }
7270
7271         return false;
7272 }
7273
7274 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7275 {
7276         switch (ctxt->opcode_len) {
7277         case 1:
7278                 switch (ctxt->b) {
7279                 case 0xe4:      /* IN */
7280                 case 0xe5:
7281                 case 0xec:
7282                 case 0xed:
7283                 case 0xe6:      /* OUT */
7284                 case 0xe7:
7285                 case 0xee:
7286                 case 0xef:
7287                 case 0x6c:      /* INS */
7288                 case 0x6d:
7289                 case 0x6e:      /* OUTS */
7290                 case 0x6f:
7291                         return true;
7292                 }
7293                 break;
7294         case 2:
7295                 switch (ctxt->b) {
7296                 case 0x33:      /* RDPMC */
7297                         return true;
7298                 }
7299                 break;
7300         }
7301
7302         return false;
7303 }
7304
7305 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7306                             int emulation_type, void *insn, int insn_len)
7307 {
7308         int r;
7309         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7310         bool writeback = true;
7311         bool write_fault_to_spt;
7312
7313         if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len)))
7314                 return 1;
7315
7316         vcpu->arch.l1tf_flush_l1d = true;
7317
7318         /*
7319          * Clear write_fault_to_shadow_pgtable here to ensure it is
7320          * never reused.
7321          */
7322         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7323         vcpu->arch.write_fault_to_shadow_pgtable = false;
7324         kvm_clear_exception_queue(vcpu);
7325
7326         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7327                 init_emulate_ctxt(vcpu);
7328
7329                 /*
7330                  * We will reenter on the same instruction since
7331                  * we do not set complete_userspace_io.  This does not
7332                  * handle watchpoints yet, those would be handled in
7333                  * the emulate_ops.
7334                  */
7335                 if (!(emulation_type & EMULTYPE_SKIP) &&
7336                     kvm_vcpu_check_breakpoint(vcpu, &r))
7337                         return r;
7338
7339                 ctxt->interruptibility = 0;
7340                 ctxt->have_exception = false;
7341                 ctxt->exception.vector = -1;
7342                 ctxt->perm_ok = false;
7343
7344                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7345
7346                 r = x86_decode_insn(ctxt, insn, insn_len);
7347
7348                 trace_kvm_emulate_insn_start(vcpu);
7349                 ++vcpu->stat.insn_emulation;
7350                 if (r != EMULATION_OK)  {
7351                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
7352                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7353                                 kvm_queue_exception(vcpu, UD_VECTOR);
7354                                 return 1;
7355                         }
7356                         if (reexecute_instruction(vcpu, cr2_or_gpa,
7357                                                   write_fault_to_spt,
7358                                                   emulation_type))
7359                                 return 1;
7360                         if (ctxt->have_exception) {
7361                                 /*
7362                                  * #UD should result in just EMULATION_FAILED, and trap-like
7363                                  * exception should not be encountered during decode.
7364                                  */
7365                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7366                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7367                                 inject_emulated_exception(vcpu);
7368                                 return 1;
7369                         }
7370                         return handle_emulation_failure(vcpu, emulation_type);
7371                 }
7372         }
7373
7374         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7375             !is_vmware_backdoor_opcode(ctxt)) {
7376                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7377                 return 1;
7378         }
7379
7380         /*
7381          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7382          * for kvm_skip_emulated_instruction().  The caller is responsible for
7383          * updating interruptibility state and injecting single-step #DBs.
7384          */
7385         if (emulation_type & EMULTYPE_SKIP) {
7386                 kvm_rip_write(vcpu, ctxt->_eip);
7387                 if (ctxt->eflags & X86_EFLAGS_RF)
7388                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7389                 return 1;
7390         }
7391
7392         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7393                 return 1;
7394
7395         /* this is needed for vmware backdoor interface to work since it
7396            changes registers values  during IO operation */
7397         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7398                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7399                 emulator_invalidate_register_cache(ctxt);
7400         }
7401
7402 restart:
7403         if (emulation_type & EMULTYPE_PF) {
7404                 /* Save the faulting GPA (cr2) in the address field */
7405                 ctxt->exception.address = cr2_or_gpa;
7406
7407                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7408                 if (vcpu->arch.mmu->direct_map) {
7409                         ctxt->gpa_available = true;
7410                         ctxt->gpa_val = cr2_or_gpa;
7411                 }
7412         } else {
7413                 /* Sanitize the address out of an abundance of paranoia. */
7414                 ctxt->exception.address = 0;
7415         }
7416
7417         r = x86_emulate_insn(ctxt);
7418
7419         if (r == EMULATION_INTERCEPTED)
7420                 return 1;
7421
7422         if (r == EMULATION_FAILED) {
7423                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7424                                         emulation_type))
7425                         return 1;
7426
7427                 return handle_emulation_failure(vcpu, emulation_type);
7428         }
7429
7430         if (ctxt->have_exception) {
7431                 r = 1;
7432                 if (inject_emulated_exception(vcpu))
7433                         return r;
7434         } else if (vcpu->arch.pio.count) {
7435                 if (!vcpu->arch.pio.in) {
7436                         /* FIXME: return into emulator if single-stepping.  */
7437                         vcpu->arch.pio.count = 0;
7438                 } else {
7439                         writeback = false;
7440                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
7441                 }
7442                 r = 0;
7443         } else if (vcpu->mmio_needed) {
7444                 ++vcpu->stat.mmio_exits;
7445
7446                 if (!vcpu->mmio_is_write)
7447                         writeback = false;
7448                 r = 0;
7449                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7450         } else if (r == EMULATION_RESTART)
7451                 goto restart;
7452         else
7453                 r = 1;
7454
7455         if (writeback) {
7456                 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7457                 toggle_interruptibility(vcpu, ctxt->interruptibility);
7458                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7459                 if (!ctxt->have_exception ||
7460                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7461                         kvm_rip_write(vcpu, ctxt->eip);
7462                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7463                                 r = kvm_vcpu_do_singlestep(vcpu);
7464                         if (kvm_x86_ops.update_emulated_instruction)
7465                                 kvm_x86_ops.update_emulated_instruction(vcpu);
7466                         __kvm_set_rflags(vcpu, ctxt->eflags);
7467                 }
7468
7469                 /*
7470                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7471                  * do nothing, and it will be requested again as soon as
7472                  * the shadow expires.  But we still need to check here,
7473                  * because POPF has no interrupt shadow.
7474                  */
7475                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7476                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7477         } else
7478                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7479
7480         return r;
7481 }
7482
7483 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7484 {
7485         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7486 }
7487 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7488
7489 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7490                                         void *insn, int insn_len)
7491 {
7492         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7493 }
7494 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7495
7496 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7497 {
7498         vcpu->arch.pio.count = 0;
7499         return 1;
7500 }
7501
7502 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7503 {
7504         vcpu->arch.pio.count = 0;
7505
7506         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7507                 return 1;
7508
7509         return kvm_skip_emulated_instruction(vcpu);
7510 }
7511
7512 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7513                             unsigned short port)
7514 {
7515         unsigned long val = kvm_rax_read(vcpu);
7516         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7517
7518         if (ret)
7519                 return ret;
7520
7521         /*
7522          * Workaround userspace that relies on old KVM behavior of %rip being
7523          * incremented prior to exiting to userspace to handle "OUT 0x7e".
7524          */
7525         if (port == 0x7e &&
7526             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7527                 vcpu->arch.complete_userspace_io =
7528                         complete_fast_pio_out_port_0x7e;
7529                 kvm_skip_emulated_instruction(vcpu);
7530         } else {
7531                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7532                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7533         }
7534         return 0;
7535 }
7536
7537 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7538 {
7539         unsigned long val;
7540
7541         /* We should only ever be called with arch.pio.count equal to 1 */
7542         BUG_ON(vcpu->arch.pio.count != 1);
7543
7544         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7545                 vcpu->arch.pio.count = 0;
7546                 return 1;
7547         }
7548
7549         /* For size less than 4 we merge, else we zero extend */
7550         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7551
7552         /*
7553          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7554          * the copy and tracing
7555          */
7556         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7557         kvm_rax_write(vcpu, val);
7558
7559         return kvm_skip_emulated_instruction(vcpu);
7560 }
7561
7562 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7563                            unsigned short port)
7564 {
7565         unsigned long val;
7566         int ret;
7567
7568         /* For size less than 4 we merge, else we zero extend */
7569         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7570
7571         ret = emulator_pio_in(vcpu, size, port, &val, 1);
7572         if (ret) {
7573                 kvm_rax_write(vcpu, val);
7574                 return ret;
7575         }
7576
7577         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7578         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7579
7580         return 0;
7581 }
7582
7583 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7584 {
7585         int ret;
7586
7587         if (in)
7588                 ret = kvm_fast_pio_in(vcpu, size, port);
7589         else
7590                 ret = kvm_fast_pio_out(vcpu, size, port);
7591         return ret && kvm_skip_emulated_instruction(vcpu);
7592 }
7593 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7594
7595 static int kvmclock_cpu_down_prep(unsigned int cpu)
7596 {
7597         __this_cpu_write(cpu_tsc_khz, 0);
7598         return 0;
7599 }
7600
7601 static void tsc_khz_changed(void *data)
7602 {
7603         struct cpufreq_freqs *freq = data;
7604         unsigned long khz = 0;
7605
7606         if (data)
7607                 khz = freq->new;
7608         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7609                 khz = cpufreq_quick_get(raw_smp_processor_id());
7610         if (!khz)
7611                 khz = tsc_khz;
7612         __this_cpu_write(cpu_tsc_khz, khz);
7613 }
7614
7615 #ifdef CONFIG_X86_64
7616 static void kvm_hyperv_tsc_notifier(void)
7617 {
7618         struct kvm *kvm;
7619         struct kvm_vcpu *vcpu;
7620         int cpu;
7621
7622         mutex_lock(&kvm_lock);
7623         list_for_each_entry(kvm, &vm_list, vm_list)
7624                 kvm_make_mclock_inprogress_request(kvm);
7625
7626         hyperv_stop_tsc_emulation();
7627
7628         /* TSC frequency always matches when on Hyper-V */
7629         for_each_present_cpu(cpu)
7630                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7631         kvm_max_guest_tsc_khz = tsc_khz;
7632
7633         list_for_each_entry(kvm, &vm_list, vm_list) {
7634                 struct kvm_arch *ka = &kvm->arch;
7635
7636                 spin_lock(&ka->pvclock_gtod_sync_lock);
7637
7638                 pvclock_update_vm_gtod_copy(kvm);
7639
7640                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7641                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7642
7643                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7644                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7645
7646                 spin_unlock(&ka->pvclock_gtod_sync_lock);
7647         }
7648         mutex_unlock(&kvm_lock);
7649 }
7650 #endif
7651
7652 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7653 {
7654         struct kvm *kvm;
7655         struct kvm_vcpu *vcpu;
7656         int i, send_ipi = 0;
7657
7658         /*
7659          * We allow guests to temporarily run on slowing clocks,
7660          * provided we notify them after, or to run on accelerating
7661          * clocks, provided we notify them before.  Thus time never
7662          * goes backwards.
7663          *
7664          * However, we have a problem.  We can't atomically update
7665          * the frequency of a given CPU from this function; it is
7666          * merely a notifier, which can be called from any CPU.
7667          * Changing the TSC frequency at arbitrary points in time
7668          * requires a recomputation of local variables related to
7669          * the TSC for each VCPU.  We must flag these local variables
7670          * to be updated and be sure the update takes place with the
7671          * new frequency before any guests proceed.
7672          *
7673          * Unfortunately, the combination of hotplug CPU and frequency
7674          * change creates an intractable locking scenario; the order
7675          * of when these callouts happen is undefined with respect to
7676          * CPU hotplug, and they can race with each other.  As such,
7677          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7678          * undefined; you can actually have a CPU frequency change take
7679          * place in between the computation of X and the setting of the
7680          * variable.  To protect against this problem, all updates of
7681          * the per_cpu tsc_khz variable are done in an interrupt
7682          * protected IPI, and all callers wishing to update the value
7683          * must wait for a synchronous IPI to complete (which is trivial
7684          * if the caller is on the CPU already).  This establishes the
7685          * necessary total order on variable updates.
7686          *
7687          * Note that because a guest time update may take place
7688          * anytime after the setting of the VCPU's request bit, the
7689          * correct TSC value must be set before the request.  However,
7690          * to ensure the update actually makes it to any guest which
7691          * starts running in hardware virtualization between the set
7692          * and the acquisition of the spinlock, we must also ping the
7693          * CPU after setting the request bit.
7694          *
7695          */
7696
7697         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7698
7699         mutex_lock(&kvm_lock);
7700         list_for_each_entry(kvm, &vm_list, vm_list) {
7701                 kvm_for_each_vcpu(i, vcpu, kvm) {
7702                         if (vcpu->cpu != cpu)
7703                                 continue;
7704                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7705                         if (vcpu->cpu != raw_smp_processor_id())
7706                                 send_ipi = 1;
7707                 }
7708         }
7709         mutex_unlock(&kvm_lock);
7710
7711         if (freq->old < freq->new && send_ipi) {
7712                 /*
7713                  * We upscale the frequency.  Must make the guest
7714                  * doesn't see old kvmclock values while running with
7715                  * the new frequency, otherwise we risk the guest sees
7716                  * time go backwards.
7717                  *
7718                  * In case we update the frequency for another cpu
7719                  * (which might be in guest context) send an interrupt
7720                  * to kick the cpu out of guest context.  Next time
7721                  * guest context is entered kvmclock will be updated,
7722                  * so the guest will not see stale values.
7723                  */
7724                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7725         }
7726 }
7727
7728 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7729                                      void *data)
7730 {
7731         struct cpufreq_freqs *freq = data;
7732         int cpu;
7733
7734         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7735                 return 0;
7736         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7737                 return 0;
7738
7739         for_each_cpu(cpu, freq->policy->cpus)
7740                 __kvmclock_cpufreq_notifier(freq, cpu);
7741
7742         return 0;
7743 }
7744
7745 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7746         .notifier_call  = kvmclock_cpufreq_notifier
7747 };
7748
7749 static int kvmclock_cpu_online(unsigned int cpu)
7750 {
7751         tsc_khz_changed(NULL);
7752         return 0;
7753 }
7754
7755 static void kvm_timer_init(void)
7756 {
7757         max_tsc_khz = tsc_khz;
7758
7759         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7760 #ifdef CONFIG_CPU_FREQ
7761                 struct cpufreq_policy *policy;
7762                 int cpu;
7763
7764                 cpu = get_cpu();
7765                 policy = cpufreq_cpu_get(cpu);
7766                 if (policy) {
7767                         if (policy->cpuinfo.max_freq)
7768                                 max_tsc_khz = policy->cpuinfo.max_freq;
7769                         cpufreq_cpu_put(policy);
7770                 }
7771                 put_cpu();
7772 #endif
7773                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7774                                           CPUFREQ_TRANSITION_NOTIFIER);
7775         }
7776
7777         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7778                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
7779 }
7780
7781 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7782 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7783
7784 int kvm_is_in_guest(void)
7785 {
7786         return __this_cpu_read(current_vcpu) != NULL;
7787 }
7788
7789 static int kvm_is_user_mode(void)
7790 {
7791         int user_mode = 3;
7792
7793         if (__this_cpu_read(current_vcpu))
7794                 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7795
7796         return user_mode != 0;
7797 }
7798
7799 static unsigned long kvm_get_guest_ip(void)
7800 {
7801         unsigned long ip = 0;
7802
7803         if (__this_cpu_read(current_vcpu))
7804                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7805
7806         return ip;
7807 }
7808
7809 static void kvm_handle_intel_pt_intr(void)
7810 {
7811         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7812
7813         kvm_make_request(KVM_REQ_PMI, vcpu);
7814         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7815                         (unsigned long *)&vcpu->arch.pmu.global_status);
7816 }
7817
7818 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7819         .is_in_guest            = kvm_is_in_guest,
7820         .is_user_mode           = kvm_is_user_mode,
7821         .get_guest_ip           = kvm_get_guest_ip,
7822         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
7823 };
7824
7825 #ifdef CONFIG_X86_64
7826 static void pvclock_gtod_update_fn(struct work_struct *work)
7827 {
7828         struct kvm *kvm;
7829
7830         struct kvm_vcpu *vcpu;
7831         int i;
7832
7833         mutex_lock(&kvm_lock);
7834         list_for_each_entry(kvm, &vm_list, vm_list)
7835                 kvm_for_each_vcpu(i, vcpu, kvm)
7836                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7837         atomic_set(&kvm_guest_has_master_clock, 0);
7838         mutex_unlock(&kvm_lock);
7839 }
7840
7841 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7842
7843 /*
7844  * Notification about pvclock gtod data update.
7845  */
7846 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7847                                void *priv)
7848 {
7849         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7850         struct timekeeper *tk = priv;
7851
7852         update_pvclock_gtod(tk);
7853
7854         /* disable master clock if host does not trust, or does not
7855          * use, TSC based clocksource.
7856          */
7857         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7858             atomic_read(&kvm_guest_has_master_clock) != 0)
7859                 queue_work(system_long_wq, &pvclock_gtod_work);
7860
7861         return 0;
7862 }
7863
7864 static struct notifier_block pvclock_gtod_notifier = {
7865         .notifier_call = pvclock_gtod_notify,
7866 };
7867 #endif
7868
7869 int kvm_arch_init(void *opaque)
7870 {
7871         struct kvm_x86_init_ops *ops = opaque;
7872         int r;
7873
7874         if (kvm_x86_ops.hardware_enable) {
7875                 printk(KERN_ERR "kvm: already loaded the other module\n");
7876                 r = -EEXIST;
7877                 goto out;
7878         }
7879
7880         if (!ops->cpu_has_kvm_support()) {
7881                 pr_err_ratelimited("kvm: no hardware support\n");
7882                 r = -EOPNOTSUPP;
7883                 goto out;
7884         }
7885         if (ops->disabled_by_bios()) {
7886                 pr_err_ratelimited("kvm: disabled by bios\n");
7887                 r = -EOPNOTSUPP;
7888                 goto out;
7889         }
7890
7891         /*
7892          * KVM explicitly assumes that the guest has an FPU and
7893          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7894          * vCPU's FPU state as a fxregs_state struct.
7895          */
7896         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7897                 printk(KERN_ERR "kvm: inadequate fpu\n");
7898                 r = -EOPNOTSUPP;
7899                 goto out;
7900         }
7901
7902         r = -ENOMEM;
7903         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7904                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7905                                           NULL);
7906         if (!x86_fpu_cache) {
7907                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7908                 goto out;
7909         }
7910
7911         x86_emulator_cache = kvm_alloc_emulator_cache();
7912         if (!x86_emulator_cache) {
7913                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
7914                 goto out_free_x86_fpu_cache;
7915         }
7916
7917         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
7918         if (!user_return_msrs) {
7919                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
7920                 goto out_free_x86_emulator_cache;
7921         }
7922
7923         r = kvm_mmu_module_init();
7924         if (r)
7925                 goto out_free_percpu;
7926
7927         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7928                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7929                         PT_PRESENT_MASK, 0, sme_me_mask);
7930         kvm_timer_init();
7931
7932         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7933
7934         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7935                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7936                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7937         }
7938
7939         kvm_lapic_init();
7940         if (pi_inject_timer == -1)
7941                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7942 #ifdef CONFIG_X86_64
7943         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7944
7945         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7946                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7947 #endif
7948
7949         return 0;
7950
7951 out_free_percpu:
7952         free_percpu(user_return_msrs);
7953 out_free_x86_emulator_cache:
7954         kmem_cache_destroy(x86_emulator_cache);
7955 out_free_x86_fpu_cache:
7956         kmem_cache_destroy(x86_fpu_cache);
7957 out:
7958         return r;
7959 }
7960
7961 void kvm_arch_exit(void)
7962 {
7963 #ifdef CONFIG_X86_64
7964         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7965                 clear_hv_tscchange_cb();
7966 #endif
7967         kvm_lapic_exit();
7968         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7969
7970         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7971                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7972                                             CPUFREQ_TRANSITION_NOTIFIER);
7973         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7974 #ifdef CONFIG_X86_64
7975         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7976 #endif
7977         kvm_x86_ops.hardware_enable = NULL;
7978         kvm_mmu_module_exit();
7979         free_percpu(user_return_msrs);
7980         kmem_cache_destroy(x86_fpu_cache);
7981 }
7982
7983 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
7984 {
7985         ++vcpu->stat.halt_exits;
7986         if (lapic_in_kernel(vcpu)) {
7987                 vcpu->arch.mp_state = state;
7988                 return 1;
7989         } else {
7990                 vcpu->run->exit_reason = reason;
7991                 return 0;
7992         }
7993 }
7994
7995 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7996 {
7997         return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
7998 }
7999 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8000
8001 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8002 {
8003         int ret = kvm_skip_emulated_instruction(vcpu);
8004         /*
8005          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8006          * KVM_EXIT_DEBUG here.
8007          */
8008         return kvm_vcpu_halt(vcpu) && ret;
8009 }
8010 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8011
8012 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8013 {
8014         int ret = kvm_skip_emulated_instruction(vcpu);
8015
8016         return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8017 }
8018 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8019
8020 #ifdef CONFIG_X86_64
8021 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8022                                 unsigned long clock_type)
8023 {
8024         struct kvm_clock_pairing clock_pairing;
8025         struct timespec64 ts;
8026         u64 cycle;
8027         int ret;
8028
8029         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8030                 return -KVM_EOPNOTSUPP;
8031
8032         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8033                 return -KVM_EOPNOTSUPP;
8034
8035         clock_pairing.sec = ts.tv_sec;
8036         clock_pairing.nsec = ts.tv_nsec;
8037         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8038         clock_pairing.flags = 0;
8039         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8040
8041         ret = 0;
8042         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8043                             sizeof(struct kvm_clock_pairing)))
8044                 ret = -KVM_EFAULT;
8045
8046         return ret;
8047 }
8048 #endif
8049
8050 /*
8051  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8052  *
8053  * @apicid - apicid of vcpu to be kicked.
8054  */
8055 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8056 {
8057         struct kvm_lapic_irq lapic_irq;
8058
8059         lapic_irq.shorthand = APIC_DEST_NOSHORT;
8060         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8061         lapic_irq.level = 0;
8062         lapic_irq.dest_id = apicid;
8063         lapic_irq.msi_redir_hint = false;
8064
8065         lapic_irq.delivery_mode = APIC_DM_REMRD;
8066         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8067 }
8068
8069 bool kvm_apicv_activated(struct kvm *kvm)
8070 {
8071         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8072 }
8073 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8074
8075 void kvm_apicv_init(struct kvm *kvm, bool enable)
8076 {
8077         if (enable)
8078                 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8079                           &kvm->arch.apicv_inhibit_reasons);
8080         else
8081                 set_bit(APICV_INHIBIT_REASON_DISABLE,
8082                         &kvm->arch.apicv_inhibit_reasons);
8083 }
8084 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8085
8086 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8087 {
8088         struct kvm_vcpu *target = NULL;
8089         struct kvm_apic_map *map;
8090
8091         rcu_read_lock();
8092         map = rcu_dereference(kvm->arch.apic_map);
8093
8094         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8095                 target = map->phys_map[dest_id]->vcpu;
8096
8097         rcu_read_unlock();
8098
8099         if (target && READ_ONCE(target->ready))
8100                 kvm_vcpu_yield_to(target);
8101 }
8102
8103 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8104 {
8105         unsigned long nr, a0, a1, a2, a3, ret;
8106         int op_64_bit;
8107
8108         if (kvm_hv_hypercall_enabled(vcpu->kvm))
8109                 return kvm_hv_hypercall(vcpu);
8110
8111         nr = kvm_rax_read(vcpu);
8112         a0 = kvm_rbx_read(vcpu);
8113         a1 = kvm_rcx_read(vcpu);
8114         a2 = kvm_rdx_read(vcpu);
8115         a3 = kvm_rsi_read(vcpu);
8116
8117         trace_kvm_hypercall(nr, a0, a1, a2, a3);
8118
8119         op_64_bit = is_64_bit_mode(vcpu);
8120         if (!op_64_bit) {
8121                 nr &= 0xFFFFFFFF;
8122                 a0 &= 0xFFFFFFFF;
8123                 a1 &= 0xFFFFFFFF;
8124                 a2 &= 0xFFFFFFFF;
8125                 a3 &= 0xFFFFFFFF;
8126         }
8127
8128         if (kvm_x86_ops.get_cpl(vcpu) != 0) {
8129                 ret = -KVM_EPERM;
8130                 goto out;
8131         }
8132
8133         ret = -KVM_ENOSYS;
8134
8135         switch (nr) {
8136         case KVM_HC_VAPIC_POLL_IRQ:
8137                 ret = 0;
8138                 break;
8139         case KVM_HC_KICK_CPU:
8140                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8141                         break;
8142
8143                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8144                 kvm_sched_yield(vcpu->kvm, a1);
8145                 ret = 0;
8146                 break;
8147 #ifdef CONFIG_X86_64
8148         case KVM_HC_CLOCK_PAIRING:
8149                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8150                 break;
8151 #endif
8152         case KVM_HC_SEND_IPI:
8153                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8154                         break;
8155
8156                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8157                 break;
8158         case KVM_HC_SCHED_YIELD:
8159                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8160                         break;
8161
8162                 kvm_sched_yield(vcpu->kvm, a0);
8163                 ret = 0;
8164                 break;
8165         default:
8166                 ret = -KVM_ENOSYS;
8167                 break;
8168         }
8169 out:
8170         if (!op_64_bit)
8171                 ret = (u32)ret;
8172         kvm_rax_write(vcpu, ret);
8173
8174         ++vcpu->stat.hypercalls;
8175         return kvm_skip_emulated_instruction(vcpu);
8176 }
8177 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8178
8179 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8180 {
8181         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8182         char instruction[3];
8183         unsigned long rip = kvm_rip_read(vcpu);
8184
8185         kvm_x86_ops.patch_hypercall(vcpu, instruction);
8186
8187         return emulator_write_emulated(ctxt, rip, instruction, 3,
8188                 &ctxt->exception);
8189 }
8190
8191 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8192 {
8193         return vcpu->run->request_interrupt_window &&
8194                 likely(!pic_in_kernel(vcpu->kvm));
8195 }
8196
8197 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8198 {
8199         struct kvm_run *kvm_run = vcpu->run;
8200
8201         /*
8202          * if_flag is obsolete and useless, so do not bother
8203          * setting it for SEV-ES guests.  Userspace can just
8204          * use kvm_run->ready_for_interrupt_injection.
8205          */
8206         kvm_run->if_flag = !vcpu->arch.guest_state_protected
8207                 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8208
8209         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
8210         kvm_run->cr8 = kvm_get_cr8(vcpu);
8211         kvm_run->apic_base = kvm_get_apic_base(vcpu);
8212         kvm_run->ready_for_interrupt_injection =
8213                 pic_in_kernel(vcpu->kvm) ||
8214                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8215 }
8216
8217 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8218 {
8219         int max_irr, tpr;
8220
8221         if (!kvm_x86_ops.update_cr8_intercept)
8222                 return;
8223
8224         if (!lapic_in_kernel(vcpu))
8225                 return;
8226
8227         if (vcpu->arch.apicv_active)
8228                 return;
8229
8230         if (!vcpu->arch.apic->vapic_addr)
8231                 max_irr = kvm_lapic_find_highest_irr(vcpu);
8232         else
8233                 max_irr = -1;
8234
8235         if (max_irr != -1)
8236                 max_irr >>= 4;
8237
8238         tpr = kvm_lapic_get_cr8(vcpu);
8239
8240         kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
8241 }
8242
8243 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8244 {
8245         int r;
8246         bool can_inject = true;
8247
8248         /* try to reinject previous events if any */
8249
8250         if (vcpu->arch.exception.injected) {
8251                 kvm_x86_ops.queue_exception(vcpu);
8252                 can_inject = false;
8253         }
8254         /*
8255          * Do not inject an NMI or interrupt if there is a pending
8256          * exception.  Exceptions and interrupts are recognized at
8257          * instruction boundaries, i.e. the start of an instruction.
8258          * Trap-like exceptions, e.g. #DB, have higher priority than
8259          * NMIs and interrupts, i.e. traps are recognized before an
8260          * NMI/interrupt that's pending on the same instruction.
8261          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8262          * priority, but are only generated (pended) during instruction
8263          * execution, i.e. a pending fault-like exception means the
8264          * fault occurred on the *previous* instruction and must be
8265          * serviced prior to recognizing any new events in order to
8266          * fully complete the previous instruction.
8267          */
8268         else if (!vcpu->arch.exception.pending) {
8269                 if (vcpu->arch.nmi_injected) {
8270                         kvm_x86_ops.set_nmi(vcpu);
8271                         can_inject = false;
8272                 } else if (vcpu->arch.interrupt.injected) {
8273                         kvm_x86_ops.set_irq(vcpu);
8274                         can_inject = false;
8275                 }
8276         }
8277
8278         WARN_ON_ONCE(vcpu->arch.exception.injected &&
8279                      vcpu->arch.exception.pending);
8280
8281         /*
8282          * Call check_nested_events() even if we reinjected a previous event
8283          * in order for caller to determine if it should require immediate-exit
8284          * from L2 to L1 due to pending L1 events which require exit
8285          * from L2 to L1.
8286          */
8287         if (is_guest_mode(vcpu)) {
8288                 r = kvm_x86_ops.nested_ops->check_events(vcpu);
8289                 if (r < 0)
8290                         goto busy;
8291         }
8292
8293         /* try to inject new event if pending */
8294         if (vcpu->arch.exception.pending) {
8295                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8296                                         vcpu->arch.exception.has_error_code,
8297                                         vcpu->arch.exception.error_code);
8298
8299                 vcpu->arch.exception.pending = false;
8300                 vcpu->arch.exception.injected = true;
8301
8302                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8303                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8304                                              X86_EFLAGS_RF);
8305
8306                 if (vcpu->arch.exception.nr == DB_VECTOR) {
8307                         kvm_deliver_exception_payload(vcpu);
8308                         if (vcpu->arch.dr7 & DR7_GD) {
8309                                 vcpu->arch.dr7 &= ~DR7_GD;
8310                                 kvm_update_dr7(vcpu);
8311                         }
8312                 }
8313
8314                 kvm_x86_ops.queue_exception(vcpu);
8315                 can_inject = false;
8316         }
8317
8318         /*
8319          * Finally, inject interrupt events.  If an event cannot be injected
8320          * due to architectural conditions (e.g. IF=0) a window-open exit
8321          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8322          * and can architecturally be injected, but we cannot do it right now:
8323          * an interrupt could have arrived just now and we have to inject it
8324          * as a vmexit, or there could already an event in the queue, which is
8325          * indicated by can_inject.  In that case we request an immediate exit
8326          * in order to make progress and get back here for another iteration.
8327          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8328          */
8329         if (vcpu->arch.smi_pending) {
8330                 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
8331                 if (r < 0)
8332                         goto busy;
8333                 if (r) {
8334                         vcpu->arch.smi_pending = false;
8335                         ++vcpu->arch.smi_count;
8336                         enter_smm(vcpu);
8337                         can_inject = false;
8338                 } else
8339                         kvm_x86_ops.enable_smi_window(vcpu);
8340         }
8341
8342         if (vcpu->arch.nmi_pending) {
8343                 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
8344                 if (r < 0)
8345                         goto busy;
8346                 if (r) {
8347                         --vcpu->arch.nmi_pending;
8348                         vcpu->arch.nmi_injected = true;
8349                         kvm_x86_ops.set_nmi(vcpu);
8350                         can_inject = false;
8351                         WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
8352                 }
8353                 if (vcpu->arch.nmi_pending)
8354                         kvm_x86_ops.enable_nmi_window(vcpu);
8355         }
8356
8357         if (kvm_cpu_has_injectable_intr(vcpu)) {
8358                 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
8359                 if (r < 0)
8360                         goto busy;
8361                 if (r) {
8362                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8363                         kvm_x86_ops.set_irq(vcpu);
8364                         WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
8365                 }
8366                 if (kvm_cpu_has_injectable_intr(vcpu))
8367                         kvm_x86_ops.enable_irq_window(vcpu);
8368         }
8369
8370         if (is_guest_mode(vcpu) &&
8371             kvm_x86_ops.nested_ops->hv_timer_pending &&
8372             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8373                 *req_immediate_exit = true;
8374
8375         WARN_ON(vcpu->arch.exception.pending);
8376         return;
8377
8378 busy:
8379         *req_immediate_exit = true;
8380         return;
8381 }
8382
8383 static void process_nmi(struct kvm_vcpu *vcpu)
8384 {
8385         unsigned limit = 2;
8386
8387         /*
8388          * x86 is limited to one NMI running, and one NMI pending after it.
8389          * If an NMI is already in progress, limit further NMIs to just one.
8390          * Otherwise, allow two (and we'll inject the first one immediately).
8391          */
8392         if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
8393                 limit = 1;
8394
8395         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8396         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8397         kvm_make_request(KVM_REQ_EVENT, vcpu);
8398 }
8399
8400 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8401 {
8402         u32 flags = 0;
8403         flags |= seg->g       << 23;
8404         flags |= seg->db      << 22;
8405         flags |= seg->l       << 21;
8406         flags |= seg->avl     << 20;
8407         flags |= seg->present << 15;
8408         flags |= seg->dpl     << 13;
8409         flags |= seg->s       << 12;
8410         flags |= seg->type    << 8;
8411         return flags;
8412 }
8413
8414 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8415 {
8416         struct kvm_segment seg;
8417         int offset;
8418
8419         kvm_get_segment(vcpu, &seg, n);
8420         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8421
8422         if (n < 3)
8423                 offset = 0x7f84 + n * 12;
8424         else
8425                 offset = 0x7f2c + (n - 3) * 12;
8426
8427         put_smstate(u32, buf, offset + 8, seg.base);
8428         put_smstate(u32, buf, offset + 4, seg.limit);
8429         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8430 }
8431
8432 #ifdef CONFIG_X86_64
8433 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8434 {
8435         struct kvm_segment seg;
8436         int offset;
8437         u16 flags;
8438
8439         kvm_get_segment(vcpu, &seg, n);
8440         offset = 0x7e00 + n * 16;
8441
8442         flags = enter_smm_get_segment_flags(&seg) >> 8;
8443         put_smstate(u16, buf, offset, seg.selector);
8444         put_smstate(u16, buf, offset + 2, flags);
8445         put_smstate(u32, buf, offset + 4, seg.limit);
8446         put_smstate(u64, buf, offset + 8, seg.base);
8447 }
8448 #endif
8449
8450 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8451 {
8452         struct desc_ptr dt;
8453         struct kvm_segment seg;
8454         unsigned long val;
8455         int i;
8456
8457         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8458         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8459         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8460         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8461
8462         for (i = 0; i < 8; i++)
8463                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8464
8465         kvm_get_dr(vcpu, 6, &val);
8466         put_smstate(u32, buf, 0x7fcc, (u32)val);
8467         kvm_get_dr(vcpu, 7, &val);
8468         put_smstate(u32, buf, 0x7fc8, (u32)val);
8469
8470         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8471         put_smstate(u32, buf, 0x7fc4, seg.selector);
8472         put_smstate(u32, buf, 0x7f64, seg.base);
8473         put_smstate(u32, buf, 0x7f60, seg.limit);
8474         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8475
8476         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8477         put_smstate(u32, buf, 0x7fc0, seg.selector);
8478         put_smstate(u32, buf, 0x7f80, seg.base);
8479         put_smstate(u32, buf, 0x7f7c, seg.limit);
8480         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8481
8482         kvm_x86_ops.get_gdt(vcpu, &dt);
8483         put_smstate(u32, buf, 0x7f74, dt.address);
8484         put_smstate(u32, buf, 0x7f70, dt.size);
8485
8486         kvm_x86_ops.get_idt(vcpu, &dt);
8487         put_smstate(u32, buf, 0x7f58, dt.address);
8488         put_smstate(u32, buf, 0x7f54, dt.size);
8489
8490         for (i = 0; i < 6; i++)
8491                 enter_smm_save_seg_32(vcpu, buf, i);
8492
8493         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8494
8495         /* revision id */
8496         put_smstate(u32, buf, 0x7efc, 0x00020000);
8497         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8498 }
8499
8500 #ifdef CONFIG_X86_64
8501 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8502 {
8503         struct desc_ptr dt;
8504         struct kvm_segment seg;
8505         unsigned long val;
8506         int i;
8507
8508         for (i = 0; i < 16; i++)
8509                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8510
8511         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8512         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8513
8514         kvm_get_dr(vcpu, 6, &val);
8515         put_smstate(u64, buf, 0x7f68, val);
8516         kvm_get_dr(vcpu, 7, &val);
8517         put_smstate(u64, buf, 0x7f60, val);
8518
8519         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8520         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8521         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8522
8523         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8524
8525         /* revision id */
8526         put_smstate(u32, buf, 0x7efc, 0x00020064);
8527
8528         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8529
8530         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8531         put_smstate(u16, buf, 0x7e90, seg.selector);
8532         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8533         put_smstate(u32, buf, 0x7e94, seg.limit);
8534         put_smstate(u64, buf, 0x7e98, seg.base);
8535
8536         kvm_x86_ops.get_idt(vcpu, &dt);
8537         put_smstate(u32, buf, 0x7e84, dt.size);
8538         put_smstate(u64, buf, 0x7e88, dt.address);
8539
8540         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8541         put_smstate(u16, buf, 0x7e70, seg.selector);
8542         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8543         put_smstate(u32, buf, 0x7e74, seg.limit);
8544         put_smstate(u64, buf, 0x7e78, seg.base);
8545
8546         kvm_x86_ops.get_gdt(vcpu, &dt);
8547         put_smstate(u32, buf, 0x7e64, dt.size);
8548         put_smstate(u64, buf, 0x7e68, dt.address);
8549
8550         for (i = 0; i < 6; i++)
8551                 enter_smm_save_seg_64(vcpu, buf, i);
8552 }
8553 #endif
8554
8555 static void enter_smm(struct kvm_vcpu *vcpu)
8556 {
8557         struct kvm_segment cs, ds;
8558         struct desc_ptr dt;
8559         char buf[512];
8560         u32 cr0;
8561
8562         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8563         memset(buf, 0, 512);
8564 #ifdef CONFIG_X86_64
8565         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8566                 enter_smm_save_state_64(vcpu, buf);
8567         else
8568 #endif
8569                 enter_smm_save_state_32(vcpu, buf);
8570
8571         /*
8572          * Give pre_enter_smm() a chance to make ISA-specific changes to the
8573          * vCPU state (e.g. leave guest mode) after we've saved the state into
8574          * the SMM state-save area.
8575          */
8576         kvm_x86_ops.pre_enter_smm(vcpu, buf);
8577
8578         vcpu->arch.hflags |= HF_SMM_MASK;
8579         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8580
8581         if (kvm_x86_ops.get_nmi_mask(vcpu))
8582                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8583         else
8584                 kvm_x86_ops.set_nmi_mask(vcpu, true);
8585
8586         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8587         kvm_rip_write(vcpu, 0x8000);
8588
8589         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8590         kvm_x86_ops.set_cr0(vcpu, cr0);
8591         vcpu->arch.cr0 = cr0;
8592
8593         kvm_x86_ops.set_cr4(vcpu, 0);
8594
8595         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
8596         dt.address = dt.size = 0;
8597         kvm_x86_ops.set_idt(vcpu, &dt);
8598
8599         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8600
8601         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8602         cs.base = vcpu->arch.smbase;
8603
8604         ds.selector = 0;
8605         ds.base = 0;
8606
8607         cs.limit    = ds.limit = 0xffffffff;
8608         cs.type     = ds.type = 0x3;
8609         cs.dpl      = ds.dpl = 0;
8610         cs.db       = ds.db = 0;
8611         cs.s        = ds.s = 1;
8612         cs.l        = ds.l = 0;
8613         cs.g        = ds.g = 1;
8614         cs.avl      = ds.avl = 0;
8615         cs.present  = ds.present = 1;
8616         cs.unusable = ds.unusable = 0;
8617         cs.padding  = ds.padding = 0;
8618
8619         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8620         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8621         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8622         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8623         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8624         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8625
8626 #ifdef CONFIG_X86_64
8627         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8628                 kvm_x86_ops.set_efer(vcpu, 0);
8629 #endif
8630
8631         kvm_update_cpuid_runtime(vcpu);
8632         kvm_mmu_reset_context(vcpu);
8633 }
8634
8635 static void process_smi(struct kvm_vcpu *vcpu)
8636 {
8637         vcpu->arch.smi_pending = true;
8638         kvm_make_request(KVM_REQ_EVENT, vcpu);
8639 }
8640
8641 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8642                                        unsigned long *vcpu_bitmap)
8643 {
8644         cpumask_var_t cpus;
8645
8646         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8647
8648         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8649                                     NULL, vcpu_bitmap, cpus);
8650
8651         free_cpumask_var(cpus);
8652 }
8653
8654 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8655 {
8656         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8657 }
8658
8659 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8660 {
8661         if (!lapic_in_kernel(vcpu))
8662                 return;
8663
8664         vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8665         kvm_apic_update_apicv(vcpu);
8666         kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8667 }
8668 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8669
8670 /*
8671  * NOTE: Do not hold any lock prior to calling this.
8672  *
8673  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8674  * locked, because it calls __x86_set_memory_region() which does
8675  * synchronize_srcu(&kvm->srcu).
8676  */
8677 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8678 {
8679         struct kvm_vcpu *except;
8680         unsigned long old, new, expected;
8681
8682         if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8683             !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8684                 return;
8685
8686         old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8687         do {
8688                 expected = new = old;
8689                 if (activate)
8690                         __clear_bit(bit, &new);
8691                 else
8692                         __set_bit(bit, &new);
8693                 if (new == old)
8694                         break;
8695                 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8696         } while (old != expected);
8697
8698         if (!!old == !!new)
8699                 return;
8700
8701         trace_kvm_apicv_update_request(activate, bit);
8702         if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8703                 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8704
8705         /*
8706          * Sending request to update APICV for all other vcpus,
8707          * while update the calling vcpu immediately instead of
8708          * waiting for another #VMEXIT to handle the request.
8709          */
8710         except = kvm_get_running_vcpu();
8711         kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8712                                          except);
8713         if (except)
8714                 kvm_vcpu_update_apicv(except);
8715 }
8716 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8717
8718 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8719 {
8720         if (!kvm_apic_present(vcpu))
8721                 return;
8722
8723         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8724
8725         if (irqchip_split(vcpu->kvm))
8726                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8727         else {
8728                 if (vcpu->arch.apicv_active)
8729                         kvm_x86_ops.sync_pir_to_irr(vcpu);
8730                 if (ioapic_in_kernel(vcpu->kvm))
8731                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8732         }
8733
8734         if (is_guest_mode(vcpu))
8735                 vcpu->arch.load_eoi_exitmap_pending = true;
8736         else
8737                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8738 }
8739
8740 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8741 {
8742         u64 eoi_exit_bitmap[4];
8743
8744         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8745                 return;
8746
8747         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8748                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
8749         kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8750 }
8751
8752 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8753                                             unsigned long start, unsigned long end)
8754 {
8755         unsigned long apic_address;
8756
8757         /*
8758          * The physical address of apic access page is stored in the VMCS.
8759          * Update it when it becomes invalid.
8760          */
8761         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8762         if (start <= apic_address && apic_address < end)
8763                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8764 }
8765
8766 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8767 {
8768         if (!lapic_in_kernel(vcpu))
8769                 return;
8770
8771         if (!kvm_x86_ops.set_apic_access_page_addr)
8772                 return;
8773
8774         kvm_x86_ops.set_apic_access_page_addr(vcpu);
8775 }
8776
8777 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8778 {
8779         smp_send_reschedule(vcpu->cpu);
8780 }
8781 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8782
8783 /*
8784  * Returns 1 to let vcpu_run() continue the guest execution loop without
8785  * exiting to the userspace.  Otherwise, the value will be returned to the
8786  * userspace.
8787  */
8788 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8789 {
8790         int r;
8791         bool req_int_win =
8792                 dm_request_for_irq_injection(vcpu) &&
8793                 kvm_cpu_accept_dm_intr(vcpu);
8794         fastpath_t exit_fastpath;
8795
8796         bool req_immediate_exit = false;
8797
8798         /* Forbid vmenter if vcpu dirty ring is soft-full */
8799         if (unlikely(vcpu->kvm->dirty_ring_size &&
8800                      kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
8801                 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
8802                 trace_kvm_dirty_ring_exit(vcpu);
8803                 r = 0;
8804                 goto out;
8805         }
8806
8807         if (kvm_request_pending(vcpu)) {
8808                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
8809                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
8810                                 r = 0;
8811                                 goto out;
8812                         }
8813                 }
8814                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8815                         kvm_mmu_unload(vcpu);
8816                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8817                         __kvm_migrate_timers(vcpu);
8818                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8819                         kvm_gen_update_masterclock(vcpu->kvm);
8820                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8821                         kvm_gen_kvmclock_update(vcpu);
8822                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8823                         r = kvm_guest_time_update(vcpu);
8824                         if (unlikely(r))
8825                                 goto out;
8826                 }
8827                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8828                         kvm_mmu_sync_roots(vcpu);
8829                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8830                         kvm_mmu_load_pgd(vcpu);
8831                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8832                         kvm_vcpu_flush_tlb_all(vcpu);
8833
8834                         /* Flushing all ASIDs flushes the current ASID... */
8835                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8836                 }
8837                 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8838                         kvm_vcpu_flush_tlb_current(vcpu);
8839                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8840                         kvm_vcpu_flush_tlb_guest(vcpu);
8841
8842                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8843                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8844                         r = 0;
8845                         goto out;
8846                 }
8847                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8848                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8849                         vcpu->mmio_needed = 0;
8850                         r = 0;
8851                         goto out;
8852                 }
8853                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8854                         /* Page is swapped out. Do synthetic halt */
8855                         vcpu->arch.apf.halted = true;
8856                         r = 1;
8857                         goto out;
8858                 }
8859                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8860                         record_steal_time(vcpu);
8861                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8862                         process_smi(vcpu);
8863                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8864                         process_nmi(vcpu);
8865                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8866                         kvm_pmu_handle_event(vcpu);
8867                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8868                         kvm_pmu_deliver_pmi(vcpu);
8869                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8870                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8871                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
8872                                      vcpu->arch.ioapic_handled_vectors)) {
8873                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8874                                 vcpu->run->eoi.vector =
8875                                                 vcpu->arch.pending_ioapic_eoi;
8876                                 r = 0;
8877                                 goto out;
8878                         }
8879                 }
8880                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8881                         vcpu_scan_ioapic(vcpu);
8882                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8883                         vcpu_load_eoi_exitmap(vcpu);
8884                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8885                         kvm_vcpu_reload_apic_access_page(vcpu);
8886                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8887                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8888                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8889                         r = 0;
8890                         goto out;
8891                 }
8892                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8893                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8894                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8895                         r = 0;
8896                         goto out;
8897                 }
8898                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8899                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8900                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8901                         r = 0;
8902                         goto out;
8903                 }
8904
8905                 /*
8906                  * KVM_REQ_HV_STIMER has to be processed after
8907                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8908                  * depend on the guest clock being up-to-date
8909                  */
8910                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8911                         kvm_hv_process_stimers(vcpu);
8912                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8913                         kvm_vcpu_update_apicv(vcpu);
8914                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8915                         kvm_check_async_pf_completion(vcpu);
8916                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
8917                         kvm_x86_ops.msr_filter_changed(vcpu);
8918         }
8919
8920         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8921                 ++vcpu->stat.req_event;
8922                 kvm_apic_accept_events(vcpu);
8923                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8924                         r = 1;
8925                         goto out;
8926                 }
8927
8928                 inject_pending_event(vcpu, &req_immediate_exit);
8929                 if (req_int_win)
8930                         kvm_x86_ops.enable_irq_window(vcpu);
8931
8932                 if (kvm_lapic_enabled(vcpu)) {
8933                         update_cr8_intercept(vcpu);
8934                         kvm_lapic_sync_to_vapic(vcpu);
8935                 }
8936         }
8937
8938         r = kvm_mmu_reload(vcpu);
8939         if (unlikely(r)) {
8940                 goto cancel_injection;
8941         }
8942
8943         preempt_disable();
8944
8945         kvm_x86_ops.prepare_guest_switch(vcpu);
8946
8947         /*
8948          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8949          * IPI are then delayed after guest entry, which ensures that they
8950          * result in virtual interrupt delivery.
8951          */
8952         local_irq_disable();
8953         vcpu->mode = IN_GUEST_MODE;
8954
8955         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8956
8957         /*
8958          * 1) We should set ->mode before checking ->requests.  Please see
8959          * the comment in kvm_vcpu_exiting_guest_mode().
8960          *
8961          * 2) For APICv, we should set ->mode before checking PID.ON. This
8962          * pairs with the memory barrier implicit in pi_test_and_set_on
8963          * (see vmx_deliver_posted_interrupt).
8964          *
8965          * 3) This also orders the write to mode from any reads to the page
8966          * tables done while the VCPU is running.  Please see the comment
8967          * in kvm_flush_remote_tlbs.
8968          */
8969         smp_mb__after_srcu_read_unlock();
8970
8971         /*
8972          * This handles the case where a posted interrupt was
8973          * notified with kvm_vcpu_kick.
8974          */
8975         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8976                 kvm_x86_ops.sync_pir_to_irr(vcpu);
8977
8978         if (kvm_vcpu_exit_request(vcpu)) {
8979                 vcpu->mode = OUTSIDE_GUEST_MODE;
8980                 smp_wmb();
8981                 local_irq_enable();
8982                 preempt_enable();
8983                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8984                 r = 1;
8985                 goto cancel_injection;
8986         }
8987
8988         if (req_immediate_exit) {
8989                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8990                 kvm_x86_ops.request_immediate_exit(vcpu);
8991         }
8992
8993         fpregs_assert_state_consistent();
8994         if (test_thread_flag(TIF_NEED_FPU_LOAD))
8995                 switch_fpu_return();
8996
8997         if (unlikely(vcpu->arch.switch_db_regs)) {
8998                 set_debugreg(0, 7);
8999                 set_debugreg(vcpu->arch.eff_db[0], 0);
9000                 set_debugreg(vcpu->arch.eff_db[1], 1);
9001                 set_debugreg(vcpu->arch.eff_db[2], 2);
9002                 set_debugreg(vcpu->arch.eff_db[3], 3);
9003                 set_debugreg(vcpu->arch.dr6, 6);
9004                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9005         }
9006
9007         exit_fastpath = kvm_x86_ops.run(vcpu);
9008
9009         /*
9010          * Do this here before restoring debug registers on the host.  And
9011          * since we do this before handling the vmexit, a DR access vmexit
9012          * can (a) read the correct value of the debug registers, (b) set
9013          * KVM_DEBUGREG_WONT_EXIT again.
9014          */
9015         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9016                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9017                 kvm_x86_ops.sync_dirty_debug_regs(vcpu);
9018                 kvm_update_dr0123(vcpu);
9019                 kvm_update_dr7(vcpu);
9020                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9021         }
9022
9023         /*
9024          * If the guest has used debug registers, at least dr7
9025          * will be disabled while returning to the host.
9026          * If we don't have active breakpoints in the host, we don't
9027          * care about the messed up debug address registers. But if
9028          * we have some of them active, restore the old state.
9029          */
9030         if (hw_breakpoint_active())
9031                 hw_breakpoint_restore();
9032
9033         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9034         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9035
9036         vcpu->mode = OUTSIDE_GUEST_MODE;
9037         smp_wmb();
9038
9039         kvm_x86_ops.handle_exit_irqoff(vcpu);
9040
9041         /*
9042          * Consume any pending interrupts, including the possible source of
9043          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9044          * An instruction is required after local_irq_enable() to fully unblock
9045          * interrupts on processors that implement an interrupt shadow, the
9046          * stat.exits increment will do nicely.
9047          */
9048         kvm_before_interrupt(vcpu);
9049         local_irq_enable();
9050         ++vcpu->stat.exits;
9051         local_irq_disable();
9052         kvm_after_interrupt(vcpu);
9053
9054         if (lapic_in_kernel(vcpu)) {
9055                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9056                 if (delta != S64_MIN) {
9057                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9058                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9059                 }
9060         }
9061
9062         local_irq_enable();
9063         preempt_enable();
9064
9065         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9066
9067         /*
9068          * Profile KVM exit RIPs:
9069          */
9070         if (unlikely(prof_on == KVM_PROFILING)) {
9071                 unsigned long rip = kvm_rip_read(vcpu);
9072                 profile_hit(KVM_PROFILING, (void *)rip);
9073         }
9074
9075         if (unlikely(vcpu->arch.tsc_always_catchup))
9076                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9077
9078         if (vcpu->arch.apic_attention)
9079                 kvm_lapic_sync_from_vapic(vcpu);
9080
9081         r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
9082         return r;
9083
9084 cancel_injection:
9085         if (req_immediate_exit)
9086                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9087         kvm_x86_ops.cancel_injection(vcpu);
9088         if (unlikely(vcpu->arch.apic_attention))
9089                 kvm_lapic_sync_from_vapic(vcpu);
9090 out:
9091         return r;
9092 }
9093
9094 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9095 {
9096         if (!kvm_arch_vcpu_runnable(vcpu) &&
9097             (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
9098                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9099                 kvm_vcpu_block(vcpu);
9100                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9101
9102                 if (kvm_x86_ops.post_block)
9103                         kvm_x86_ops.post_block(vcpu);
9104
9105                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9106                         return 1;
9107         }
9108
9109         kvm_apic_accept_events(vcpu);
9110         switch(vcpu->arch.mp_state) {
9111         case KVM_MP_STATE_HALTED:
9112         case KVM_MP_STATE_AP_RESET_HOLD:
9113                 vcpu->arch.pv.pv_unhalted = false;
9114                 vcpu->arch.mp_state =
9115                         KVM_MP_STATE_RUNNABLE;
9116                 fallthrough;
9117         case KVM_MP_STATE_RUNNABLE:
9118                 vcpu->arch.apf.halted = false;
9119                 break;
9120         case KVM_MP_STATE_INIT_RECEIVED:
9121                 break;
9122         default:
9123                 return -EINTR;
9124         }
9125         return 1;
9126 }
9127
9128 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9129 {
9130         if (is_guest_mode(vcpu))
9131                 kvm_x86_ops.nested_ops->check_events(vcpu);
9132
9133         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9134                 !vcpu->arch.apf.halted);
9135 }
9136
9137 static int vcpu_run(struct kvm_vcpu *vcpu)
9138 {
9139         int r;
9140         struct kvm *kvm = vcpu->kvm;
9141
9142         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9143         vcpu->arch.l1tf_flush_l1d = true;
9144
9145         for (;;) {
9146                 if (kvm_vcpu_running(vcpu)) {
9147                         r = vcpu_enter_guest(vcpu);
9148                 } else {
9149                         r = vcpu_block(kvm, vcpu);
9150                 }
9151
9152                 if (r <= 0)
9153                         break;
9154
9155                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9156                 if (kvm_cpu_has_pending_timer(vcpu))
9157                         kvm_inject_pending_timer_irqs(vcpu);
9158
9159                 if (dm_request_for_irq_injection(vcpu) &&
9160                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9161                         r = 0;
9162                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9163                         ++vcpu->stat.request_irq_exits;
9164                         break;
9165                 }
9166
9167                 if (__xfer_to_guest_mode_work_pending()) {
9168                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9169                         r = xfer_to_guest_mode_handle_work(vcpu);
9170                         if (r)
9171                                 return r;
9172                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9173                 }
9174         }
9175
9176         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9177
9178         return r;
9179 }
9180
9181 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9182 {
9183         int r;
9184
9185         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9186         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9187         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9188         return r;
9189 }
9190
9191 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9192 {
9193         BUG_ON(!vcpu->arch.pio.count);
9194
9195         return complete_emulated_io(vcpu);
9196 }
9197
9198 /*
9199  * Implements the following, as a state machine:
9200  *
9201  * read:
9202  *   for each fragment
9203  *     for each mmio piece in the fragment
9204  *       write gpa, len
9205  *       exit
9206  *       copy data
9207  *   execute insn
9208  *
9209  * write:
9210  *   for each fragment
9211  *     for each mmio piece in the fragment
9212  *       write gpa, len
9213  *       copy data
9214  *       exit
9215  */
9216 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9217 {
9218         struct kvm_run *run = vcpu->run;
9219         struct kvm_mmio_fragment *frag;
9220         unsigned len;
9221
9222         BUG_ON(!vcpu->mmio_needed);
9223
9224         /* Complete previous fragment */
9225         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9226         len = min(8u, frag->len);
9227         if (!vcpu->mmio_is_write)
9228                 memcpy(frag->data, run->mmio.data, len);
9229
9230         if (frag->len <= 8) {
9231                 /* Switch to the next fragment. */
9232                 frag++;
9233                 vcpu->mmio_cur_fragment++;
9234         } else {
9235                 /* Go forward to the next mmio piece. */
9236                 frag->data += len;
9237                 frag->gpa += len;
9238                 frag->len -= len;
9239         }
9240
9241         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9242                 vcpu->mmio_needed = 0;
9243
9244                 /* FIXME: return into emulator if single-stepping.  */
9245                 if (vcpu->mmio_is_write)
9246                         return 1;
9247                 vcpu->mmio_read_completed = 1;
9248                 return complete_emulated_io(vcpu);
9249         }
9250
9251         run->exit_reason = KVM_EXIT_MMIO;
9252         run->mmio.phys_addr = frag->gpa;
9253         if (vcpu->mmio_is_write)
9254                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9255         run->mmio.len = min(8u, frag->len);
9256         run->mmio.is_write = vcpu->mmio_is_write;
9257         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9258         return 0;
9259 }
9260
9261 static void kvm_save_current_fpu(struct fpu *fpu)
9262 {
9263         /*
9264          * If the target FPU state is not resident in the CPU registers, just
9265          * memcpy() from current, else save CPU state directly to the target.
9266          */
9267         if (test_thread_flag(TIF_NEED_FPU_LOAD))
9268                 memcpy(&fpu->state, &current->thread.fpu.state,
9269                        fpu_kernel_xstate_size);
9270         else
9271                 copy_fpregs_to_fpstate(fpu);
9272 }
9273
9274 /* Swap (qemu) user FPU context for the guest FPU context. */
9275 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9276 {
9277         fpregs_lock();
9278
9279         kvm_save_current_fpu(vcpu->arch.user_fpu);
9280
9281         /*
9282          * Guests with protected state can't have it set by the hypervisor,
9283          * so skip trying to set it.
9284          */
9285         if (vcpu->arch.guest_fpu)
9286                 /* PKRU is separately restored in kvm_x86_ops.run. */
9287                 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9288                                         ~XFEATURE_MASK_PKRU);
9289
9290         fpregs_mark_activate();
9291         fpregs_unlock();
9292
9293         trace_kvm_fpu(1);
9294 }
9295
9296 /* When vcpu_run ends, restore user space FPU context. */
9297 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9298 {
9299         fpregs_lock();
9300
9301         /*
9302          * Guests with protected state can't have it read by the hypervisor,
9303          * so skip trying to save it.
9304          */
9305         if (vcpu->arch.guest_fpu)
9306                 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9307
9308         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9309
9310         fpregs_mark_activate();
9311         fpregs_unlock();
9312
9313         ++vcpu->stat.fpu_reload;
9314         trace_kvm_fpu(0);
9315 }
9316
9317 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9318 {
9319         struct kvm_run *kvm_run = vcpu->run;
9320         int r;
9321
9322         vcpu_load(vcpu);
9323         kvm_sigset_activate(vcpu);
9324         kvm_load_guest_fpu(vcpu);
9325
9326         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9327                 if (kvm_run->immediate_exit) {
9328                         r = -EINTR;
9329                         goto out;
9330                 }
9331                 kvm_vcpu_block(vcpu);
9332                 kvm_apic_accept_events(vcpu);
9333                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9334                 r = -EAGAIN;
9335                 if (signal_pending(current)) {
9336                         r = -EINTR;
9337                         kvm_run->exit_reason = KVM_EXIT_INTR;
9338                         ++vcpu->stat.signal_exits;
9339                 }
9340                 goto out;
9341         }
9342
9343         if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9344                 r = -EINVAL;
9345                 goto out;
9346         }
9347
9348         if (kvm_run->kvm_dirty_regs) {
9349                 r = sync_regs(vcpu);
9350                 if (r != 0)
9351                         goto out;
9352         }
9353
9354         /* re-sync apic's tpr */
9355         if (!lapic_in_kernel(vcpu)) {
9356                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9357                         r = -EINVAL;
9358                         goto out;
9359                 }
9360         }
9361
9362         if (unlikely(vcpu->arch.complete_userspace_io)) {
9363                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9364                 vcpu->arch.complete_userspace_io = NULL;
9365                 r = cui(vcpu);
9366                 if (r <= 0)
9367                         goto out;
9368         } else
9369                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9370
9371         if (kvm_run->immediate_exit)
9372                 r = -EINTR;
9373         else
9374                 r = vcpu_run(vcpu);
9375
9376 out:
9377         kvm_put_guest_fpu(vcpu);
9378         if (kvm_run->kvm_valid_regs)
9379                 store_regs(vcpu);
9380         post_kvm_run_save(vcpu);
9381         kvm_sigset_deactivate(vcpu);
9382
9383         vcpu_put(vcpu);
9384         return r;
9385 }
9386
9387 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9388 {
9389         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9390                 /*
9391                  * We are here if userspace calls get_regs() in the middle of
9392                  * instruction emulation. Registers state needs to be copied
9393                  * back from emulation context to vcpu. Userspace shouldn't do
9394                  * that usually, but some bad designed PV devices (vmware
9395                  * backdoor interface) need this to work
9396                  */
9397                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9398                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9399         }
9400         regs->rax = kvm_rax_read(vcpu);
9401         regs->rbx = kvm_rbx_read(vcpu);
9402         regs->rcx = kvm_rcx_read(vcpu);
9403         regs->rdx = kvm_rdx_read(vcpu);
9404         regs->rsi = kvm_rsi_read(vcpu);
9405         regs->rdi = kvm_rdi_read(vcpu);
9406         regs->rsp = kvm_rsp_read(vcpu);
9407         regs->rbp = kvm_rbp_read(vcpu);
9408 #ifdef CONFIG_X86_64
9409         regs->r8 = kvm_r8_read(vcpu);
9410         regs->r9 = kvm_r9_read(vcpu);
9411         regs->r10 = kvm_r10_read(vcpu);
9412         regs->r11 = kvm_r11_read(vcpu);
9413         regs->r12 = kvm_r12_read(vcpu);
9414         regs->r13 = kvm_r13_read(vcpu);
9415         regs->r14 = kvm_r14_read(vcpu);
9416         regs->r15 = kvm_r15_read(vcpu);
9417 #endif
9418
9419         regs->rip = kvm_rip_read(vcpu);
9420         regs->rflags = kvm_get_rflags(vcpu);
9421 }
9422
9423 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9424 {
9425         vcpu_load(vcpu);
9426         __get_regs(vcpu, regs);
9427         vcpu_put(vcpu);
9428         return 0;
9429 }
9430
9431 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9432 {
9433         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9434         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9435
9436         kvm_rax_write(vcpu, regs->rax);
9437         kvm_rbx_write(vcpu, regs->rbx);
9438         kvm_rcx_write(vcpu, regs->rcx);
9439         kvm_rdx_write(vcpu, regs->rdx);
9440         kvm_rsi_write(vcpu, regs->rsi);
9441         kvm_rdi_write(vcpu, regs->rdi);
9442         kvm_rsp_write(vcpu, regs->rsp);
9443         kvm_rbp_write(vcpu, regs->rbp);
9444 #ifdef CONFIG_X86_64
9445         kvm_r8_write(vcpu, regs->r8);
9446         kvm_r9_write(vcpu, regs->r9);
9447         kvm_r10_write(vcpu, regs->r10);
9448         kvm_r11_write(vcpu, regs->r11);
9449         kvm_r12_write(vcpu, regs->r12);
9450         kvm_r13_write(vcpu, regs->r13);
9451         kvm_r14_write(vcpu, regs->r14);
9452         kvm_r15_write(vcpu, regs->r15);
9453 #endif
9454
9455         kvm_rip_write(vcpu, regs->rip);
9456         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9457
9458         vcpu->arch.exception.pending = false;
9459
9460         kvm_make_request(KVM_REQ_EVENT, vcpu);
9461 }
9462
9463 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9464 {
9465         vcpu_load(vcpu);
9466         __set_regs(vcpu, regs);
9467         vcpu_put(vcpu);
9468         return 0;
9469 }
9470
9471 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9472 {
9473         struct kvm_segment cs;
9474
9475         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9476         *db = cs.db;
9477         *l = cs.l;
9478 }
9479 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9480
9481 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9482 {
9483         struct desc_ptr dt;
9484
9485         if (vcpu->arch.guest_state_protected)
9486                 goto skip_protected_regs;
9487
9488         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9489         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9490         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9491         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9492         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9493         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9494
9495         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9496         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9497
9498         kvm_x86_ops.get_idt(vcpu, &dt);
9499         sregs->idt.limit = dt.size;
9500         sregs->idt.base = dt.address;
9501         kvm_x86_ops.get_gdt(vcpu, &dt);
9502         sregs->gdt.limit = dt.size;
9503         sregs->gdt.base = dt.address;
9504
9505         sregs->cr2 = vcpu->arch.cr2;
9506         sregs->cr3 = kvm_read_cr3(vcpu);
9507
9508 skip_protected_regs:
9509         sregs->cr0 = kvm_read_cr0(vcpu);
9510         sregs->cr4 = kvm_read_cr4(vcpu);
9511         sregs->cr8 = kvm_get_cr8(vcpu);
9512         sregs->efer = vcpu->arch.efer;
9513         sregs->apic_base = kvm_get_apic_base(vcpu);
9514
9515         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9516
9517         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9518                 set_bit(vcpu->arch.interrupt.nr,
9519                         (unsigned long *)sregs->interrupt_bitmap);
9520 }
9521
9522 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9523                                   struct kvm_sregs *sregs)
9524 {
9525         vcpu_load(vcpu);
9526         __get_sregs(vcpu, sregs);
9527         vcpu_put(vcpu);
9528         return 0;
9529 }
9530
9531 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9532                                     struct kvm_mp_state *mp_state)
9533 {
9534         vcpu_load(vcpu);
9535         if (kvm_mpx_supported())
9536                 kvm_load_guest_fpu(vcpu);
9537
9538         kvm_apic_accept_events(vcpu);
9539         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
9540              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
9541             vcpu->arch.pv.pv_unhalted)
9542                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9543         else
9544                 mp_state->mp_state = vcpu->arch.mp_state;
9545
9546         if (kvm_mpx_supported())
9547                 kvm_put_guest_fpu(vcpu);
9548         vcpu_put(vcpu);
9549         return 0;
9550 }
9551
9552 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9553                                     struct kvm_mp_state *mp_state)
9554 {
9555         int ret = -EINVAL;
9556
9557         vcpu_load(vcpu);
9558
9559         if (!lapic_in_kernel(vcpu) &&
9560             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9561                 goto out;
9562
9563         /*
9564          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9565          * INIT state; latched init should be reported using
9566          * KVM_SET_VCPU_EVENTS, so reject it here.
9567          */
9568         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9569             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9570              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9571                 goto out;
9572
9573         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9574                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9575                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9576         } else
9577                 vcpu->arch.mp_state = mp_state->mp_state;
9578         kvm_make_request(KVM_REQ_EVENT, vcpu);
9579
9580         ret = 0;
9581 out:
9582         vcpu_put(vcpu);
9583         return ret;
9584 }
9585
9586 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9587                     int reason, bool has_error_code, u32 error_code)
9588 {
9589         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9590         int ret;
9591
9592         init_emulate_ctxt(vcpu);
9593
9594         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9595                                    has_error_code, error_code);
9596         if (ret) {
9597                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9598                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9599                 vcpu->run->internal.ndata = 0;
9600                 return 0;
9601         }
9602
9603         kvm_rip_write(vcpu, ctxt->eip);
9604         kvm_set_rflags(vcpu, ctxt->eflags);
9605         return 1;
9606 }
9607 EXPORT_SYMBOL_GPL(kvm_task_switch);
9608
9609 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9610 {
9611         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9612                 /*
9613                  * When EFER.LME and CR0.PG are set, the processor is in
9614                  * 64-bit mode (though maybe in a 32-bit code segment).
9615                  * CR4.PAE and EFER.LMA must be set.
9616                  */
9617                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
9618                         return false;
9619                 if (sregs->cr3 & vcpu->arch.cr3_lm_rsvd_bits)
9620                         return false;
9621         } else {
9622                 /*
9623                  * Not in 64-bit mode: EFER.LMA is clear and the code
9624                  * segment cannot be 64-bit.
9625                  */
9626                 if (sregs->efer & EFER_LMA || sregs->cs.l)
9627                         return false;
9628         }
9629
9630         return kvm_is_valid_cr4(vcpu, sregs->cr4);
9631 }
9632
9633 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9634 {
9635         struct msr_data apic_base_msr;
9636         int mmu_reset_needed = 0;
9637         int pending_vec, max_bits, idx;
9638         struct desc_ptr dt;
9639         int ret = -EINVAL;
9640
9641         if (!kvm_is_valid_sregs(vcpu, sregs))
9642                 goto out;
9643
9644         apic_base_msr.data = sregs->apic_base;
9645         apic_base_msr.host_initiated = true;
9646         if (kvm_set_apic_base(vcpu, &apic_base_msr))
9647                 goto out;
9648
9649         if (vcpu->arch.guest_state_protected)
9650                 goto skip_protected_regs;
9651
9652         dt.size = sregs->idt.limit;
9653         dt.address = sregs->idt.base;
9654         kvm_x86_ops.set_idt(vcpu, &dt);
9655         dt.size = sregs->gdt.limit;
9656         dt.address = sregs->gdt.base;
9657         kvm_x86_ops.set_gdt(vcpu, &dt);
9658
9659         vcpu->arch.cr2 = sregs->cr2;
9660         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9661         vcpu->arch.cr3 = sregs->cr3;
9662         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9663
9664         kvm_set_cr8(vcpu, sregs->cr8);
9665
9666         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9667         kvm_x86_ops.set_efer(vcpu, sregs->efer);
9668
9669         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9670         kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9671         vcpu->arch.cr0 = sregs->cr0;
9672
9673         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9674         kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9675
9676         idx = srcu_read_lock(&vcpu->kvm->srcu);
9677         if (is_pae_paging(vcpu)) {
9678                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9679                 mmu_reset_needed = 1;
9680         }
9681         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9682
9683         if (mmu_reset_needed)
9684                 kvm_mmu_reset_context(vcpu);
9685
9686         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9687         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9688         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9689         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9690         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9691         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9692
9693         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9694         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9695
9696         update_cr8_intercept(vcpu);
9697
9698         /* Older userspace won't unhalt the vcpu on reset. */
9699         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9700             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9701             !is_protmode(vcpu))
9702                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9703
9704 skip_protected_regs:
9705         max_bits = KVM_NR_INTERRUPTS;
9706         pending_vec = find_first_bit(
9707                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9708         if (pending_vec < max_bits) {
9709                 kvm_queue_interrupt(vcpu, pending_vec, false);
9710                 pr_debug("Set back pending irq %d\n", pending_vec);
9711         }
9712
9713         kvm_make_request(KVM_REQ_EVENT, vcpu);
9714
9715         ret = 0;
9716 out:
9717         return ret;
9718 }
9719
9720 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9721                                   struct kvm_sregs *sregs)
9722 {
9723         int ret;
9724
9725         vcpu_load(vcpu);
9726         ret = __set_sregs(vcpu, sregs);
9727         vcpu_put(vcpu);
9728         return ret;
9729 }
9730
9731 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9732                                         struct kvm_guest_debug *dbg)
9733 {
9734         unsigned long rflags;
9735         int i, r;
9736
9737         if (vcpu->arch.guest_state_protected)
9738                 return -EINVAL;
9739
9740         vcpu_load(vcpu);
9741
9742         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9743                 r = -EBUSY;
9744                 if (vcpu->arch.exception.pending)
9745                         goto out;
9746                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9747                         kvm_queue_exception(vcpu, DB_VECTOR);
9748                 else
9749                         kvm_queue_exception(vcpu, BP_VECTOR);
9750         }
9751
9752         /*
9753          * Read rflags as long as potentially injected trace flags are still
9754          * filtered out.
9755          */
9756         rflags = kvm_get_rflags(vcpu);
9757
9758         vcpu->guest_debug = dbg->control;
9759         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9760                 vcpu->guest_debug = 0;
9761
9762         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9763                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9764                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9765                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9766         } else {
9767                 for (i = 0; i < KVM_NR_DB_REGS; i++)
9768                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9769         }
9770         kvm_update_dr7(vcpu);
9771
9772         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9773                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9774                         get_segment_base(vcpu, VCPU_SREG_CS);
9775
9776         /*
9777          * Trigger an rflags update that will inject or remove the trace
9778          * flags.
9779          */
9780         kvm_set_rflags(vcpu, rflags);
9781
9782         kvm_x86_ops.update_exception_bitmap(vcpu);
9783
9784         r = 0;
9785
9786 out:
9787         vcpu_put(vcpu);
9788         return r;
9789 }
9790
9791 /*
9792  * Translate a guest virtual address to a guest physical address.
9793  */
9794 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9795                                     struct kvm_translation *tr)
9796 {
9797         unsigned long vaddr = tr->linear_address;
9798         gpa_t gpa;
9799         int idx;
9800
9801         vcpu_load(vcpu);
9802
9803         idx = srcu_read_lock(&vcpu->kvm->srcu);
9804         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9805         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9806         tr->physical_address = gpa;
9807         tr->valid = gpa != UNMAPPED_GVA;
9808         tr->writeable = 1;
9809         tr->usermode = 0;
9810
9811         vcpu_put(vcpu);
9812         return 0;
9813 }
9814
9815 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9816 {
9817         struct fxregs_state *fxsave;
9818
9819         if (!vcpu->arch.guest_fpu)
9820                 return 0;
9821
9822         vcpu_load(vcpu);
9823
9824         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9825         memcpy(fpu->fpr, fxsave->st_space, 128);
9826         fpu->fcw = fxsave->cwd;
9827         fpu->fsw = fxsave->swd;
9828         fpu->ftwx = fxsave->twd;
9829         fpu->last_opcode = fxsave->fop;
9830         fpu->last_ip = fxsave->rip;
9831         fpu->last_dp = fxsave->rdp;
9832         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9833
9834         vcpu_put(vcpu);
9835         return 0;
9836 }
9837
9838 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9839 {
9840         struct fxregs_state *fxsave;
9841
9842         if (!vcpu->arch.guest_fpu)
9843                 return 0;
9844
9845         vcpu_load(vcpu);
9846
9847         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9848
9849         memcpy(fxsave->st_space, fpu->fpr, 128);
9850         fxsave->cwd = fpu->fcw;
9851         fxsave->swd = fpu->fsw;
9852         fxsave->twd = fpu->ftwx;
9853         fxsave->fop = fpu->last_opcode;
9854         fxsave->rip = fpu->last_ip;
9855         fxsave->rdp = fpu->last_dp;
9856         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9857
9858         vcpu_put(vcpu);
9859         return 0;
9860 }
9861
9862 static void store_regs(struct kvm_vcpu *vcpu)
9863 {
9864         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9865
9866         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9867                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9868
9869         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9870                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9871
9872         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9873                 kvm_vcpu_ioctl_x86_get_vcpu_events(
9874                                 vcpu, &vcpu->run->s.regs.events);
9875 }
9876
9877 static int sync_regs(struct kvm_vcpu *vcpu)
9878 {
9879         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9880                 return -EINVAL;
9881
9882         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9883                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9884                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9885         }
9886         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9887                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9888                         return -EINVAL;
9889                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9890         }
9891         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9892                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9893                                 vcpu, &vcpu->run->s.regs.events))
9894                         return -EINVAL;
9895                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9896         }
9897
9898         return 0;
9899 }
9900
9901 static void fx_init(struct kvm_vcpu *vcpu)
9902 {
9903         if (!vcpu->arch.guest_fpu)
9904                 return;
9905
9906         fpstate_init(&vcpu->arch.guest_fpu->state);
9907         if (boot_cpu_has(X86_FEATURE_XSAVES))
9908                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9909                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
9910
9911         /*
9912          * Ensure guest xcr0 is valid for loading
9913          */
9914         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9915
9916         vcpu->arch.cr0 |= X86_CR0_ET;
9917 }
9918
9919 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
9920 {
9921         if (vcpu->arch.guest_fpu) {
9922                 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9923                 vcpu->arch.guest_fpu = NULL;
9924         }
9925 }
9926 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
9927
9928 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9929 {
9930         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9931                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9932                              "guest TSC will not be reliable\n");
9933
9934         return 0;
9935 }
9936
9937 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9938 {
9939         struct page *page;
9940         int r;
9941
9942         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9943                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9944         else
9945                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9946
9947         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9948
9949         r = kvm_mmu_create(vcpu);
9950         if (r < 0)
9951                 return r;
9952
9953         if (irqchip_in_kernel(vcpu->kvm)) {
9954                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9955                 if (r < 0)
9956                         goto fail_mmu_destroy;
9957                 if (kvm_apicv_activated(vcpu->kvm))
9958                         vcpu->arch.apicv_active = true;
9959         } else
9960                 static_key_slow_inc(&kvm_no_apic_vcpu);
9961
9962         r = -ENOMEM;
9963
9964         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
9965         if (!page)
9966                 goto fail_free_lapic;
9967         vcpu->arch.pio_data = page_address(page);
9968
9969         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9970                                        GFP_KERNEL_ACCOUNT);
9971         if (!vcpu->arch.mce_banks)
9972                 goto fail_free_pio_data;
9973         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9974
9975         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9976                                 GFP_KERNEL_ACCOUNT))
9977                 goto fail_free_mce_banks;
9978
9979         if (!alloc_emulate_ctxt(vcpu))
9980                 goto free_wbinvd_dirty_mask;
9981
9982         vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9983                                                 GFP_KERNEL_ACCOUNT);
9984         if (!vcpu->arch.user_fpu) {
9985                 pr_err("kvm: failed to allocate userspace's fpu\n");
9986                 goto free_emulate_ctxt;
9987         }
9988
9989         vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9990                                                  GFP_KERNEL_ACCOUNT);
9991         if (!vcpu->arch.guest_fpu) {
9992                 pr_err("kvm: failed to allocate vcpu's fpu\n");
9993                 goto free_user_fpu;
9994         }
9995         fx_init(vcpu);
9996
9997         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9998
9999         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10000
10001         kvm_async_pf_hash_reset(vcpu);
10002         kvm_pmu_init(vcpu);
10003
10004         vcpu->arch.pending_external_vector = -1;
10005         vcpu->arch.preempted_in_kernel = false;
10006
10007         kvm_hv_vcpu_init(vcpu);
10008
10009         r = kvm_x86_ops.vcpu_create(vcpu);
10010         if (r)
10011                 goto free_guest_fpu;
10012
10013         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10014         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10015         kvm_vcpu_mtrr_init(vcpu);
10016         vcpu_load(vcpu);
10017         kvm_vcpu_reset(vcpu, false);
10018         kvm_init_mmu(vcpu, false);
10019         vcpu_put(vcpu);
10020         return 0;
10021
10022 free_guest_fpu:
10023         kvm_free_guest_fpu(vcpu);
10024 free_user_fpu:
10025         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10026 free_emulate_ctxt:
10027         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10028 free_wbinvd_dirty_mask:
10029         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10030 fail_free_mce_banks:
10031         kfree(vcpu->arch.mce_banks);
10032 fail_free_pio_data:
10033         free_page((unsigned long)vcpu->arch.pio_data);
10034 fail_free_lapic:
10035         kvm_free_lapic(vcpu);
10036 fail_mmu_destroy:
10037         kvm_mmu_destroy(vcpu);
10038         return r;
10039 }
10040
10041 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10042 {
10043         struct kvm *kvm = vcpu->kvm;
10044
10045         kvm_hv_vcpu_postcreate(vcpu);
10046
10047         if (mutex_lock_killable(&vcpu->mutex))
10048                 return;
10049         vcpu_load(vcpu);
10050         kvm_synchronize_tsc(vcpu, 0);
10051         vcpu_put(vcpu);
10052
10053         /* poll control enabled by default */
10054         vcpu->arch.msr_kvm_poll_control = 1;
10055
10056         mutex_unlock(&vcpu->mutex);
10057
10058         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10059                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10060                                                 KVMCLOCK_SYNC_PERIOD);
10061 }
10062
10063 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10064 {
10065         struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10066         int idx;
10067
10068         kvm_release_pfn(cache->pfn, cache->dirty, cache);
10069
10070         kvmclock_reset(vcpu);
10071
10072         kvm_x86_ops.vcpu_free(vcpu);
10073
10074         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10075         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10076         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10077         kvm_free_guest_fpu(vcpu);
10078
10079         kvm_hv_vcpu_uninit(vcpu);
10080         kvm_pmu_destroy(vcpu);
10081         kfree(vcpu->arch.mce_banks);
10082         kvm_free_lapic(vcpu);
10083         idx = srcu_read_lock(&vcpu->kvm->srcu);
10084         kvm_mmu_destroy(vcpu);
10085         srcu_read_unlock(&vcpu->kvm->srcu, idx);
10086         free_page((unsigned long)vcpu->arch.pio_data);
10087         kvfree(vcpu->arch.cpuid_entries);
10088         if (!lapic_in_kernel(vcpu))
10089                 static_key_slow_dec(&kvm_no_apic_vcpu);
10090 }
10091
10092 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10093 {
10094         kvm_lapic_reset(vcpu, init_event);
10095
10096         vcpu->arch.hflags = 0;
10097
10098         vcpu->arch.smi_pending = 0;
10099         vcpu->arch.smi_count = 0;
10100         atomic_set(&vcpu->arch.nmi_queued, 0);
10101         vcpu->arch.nmi_pending = 0;
10102         vcpu->arch.nmi_injected = false;
10103         kvm_clear_interrupt_queue(vcpu);
10104         kvm_clear_exception_queue(vcpu);
10105
10106         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10107         kvm_update_dr0123(vcpu);
10108         vcpu->arch.dr6 = DR6_INIT;
10109         vcpu->arch.dr7 = DR7_FIXED_1;
10110         kvm_update_dr7(vcpu);
10111
10112         vcpu->arch.cr2 = 0;
10113
10114         kvm_make_request(KVM_REQ_EVENT, vcpu);
10115         vcpu->arch.apf.msr_en_val = 0;
10116         vcpu->arch.apf.msr_int_val = 0;
10117         vcpu->arch.st.msr_val = 0;
10118
10119         kvmclock_reset(vcpu);
10120
10121         kvm_clear_async_pf_completion_queue(vcpu);
10122         kvm_async_pf_hash_reset(vcpu);
10123         vcpu->arch.apf.halted = false;
10124
10125         if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10126                 void *mpx_state_buffer;
10127
10128                 /*
10129                  * To avoid have the INIT path from kvm_apic_has_events() that be
10130                  * called with loaded FPU and does not let userspace fix the state.
10131                  */
10132                 if (init_event)
10133                         kvm_put_guest_fpu(vcpu);
10134                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10135                                         XFEATURE_BNDREGS);
10136                 if (mpx_state_buffer)
10137                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10138                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10139                                         XFEATURE_BNDCSR);
10140                 if (mpx_state_buffer)
10141                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10142                 if (init_event)
10143                         kvm_load_guest_fpu(vcpu);
10144         }
10145
10146         if (!init_event) {
10147                 kvm_pmu_reset(vcpu);
10148                 vcpu->arch.smbase = 0x30000;
10149
10150                 vcpu->arch.msr_misc_features_enables = 0;
10151
10152                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10153         }
10154
10155         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10156         vcpu->arch.regs_avail = ~0;
10157         vcpu->arch.regs_dirty = ~0;
10158
10159         vcpu->arch.ia32_xss = 0;
10160
10161         kvm_x86_ops.vcpu_reset(vcpu, init_event);
10162 }
10163
10164 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10165 {
10166         struct kvm_segment cs;
10167
10168         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10169         cs.selector = vector << 8;
10170         cs.base = vector << 12;
10171         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10172         kvm_rip_write(vcpu, 0);
10173 }
10174 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10175
10176 int kvm_arch_hardware_enable(void)
10177 {
10178         struct kvm *kvm;
10179         struct kvm_vcpu *vcpu;
10180         int i;
10181         int ret;
10182         u64 local_tsc;
10183         u64 max_tsc = 0;
10184         bool stable, backwards_tsc = false;
10185
10186         kvm_user_return_msr_cpu_online();
10187         ret = kvm_x86_ops.hardware_enable();
10188         if (ret != 0)
10189                 return ret;
10190
10191         local_tsc = rdtsc();
10192         stable = !kvm_check_tsc_unstable();
10193         list_for_each_entry(kvm, &vm_list, vm_list) {
10194                 kvm_for_each_vcpu(i, vcpu, kvm) {
10195                         if (!stable && vcpu->cpu == smp_processor_id())
10196                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10197                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10198                                 backwards_tsc = true;
10199                                 if (vcpu->arch.last_host_tsc > max_tsc)
10200                                         max_tsc = vcpu->arch.last_host_tsc;
10201                         }
10202                 }
10203         }
10204
10205         /*
10206          * Sometimes, even reliable TSCs go backwards.  This happens on
10207          * platforms that reset TSC during suspend or hibernate actions, but
10208          * maintain synchronization.  We must compensate.  Fortunately, we can
10209          * detect that condition here, which happens early in CPU bringup,
10210          * before any KVM threads can be running.  Unfortunately, we can't
10211          * bring the TSCs fully up to date with real time, as we aren't yet far
10212          * enough into CPU bringup that we know how much real time has actually
10213          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10214          * variables that haven't been updated yet.
10215          *
10216          * So we simply find the maximum observed TSC above, then record the
10217          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10218          * the adjustment will be applied.  Note that we accumulate
10219          * adjustments, in case multiple suspend cycles happen before some VCPU
10220          * gets a chance to run again.  In the event that no KVM threads get a
10221          * chance to run, we will miss the entire elapsed period, as we'll have
10222          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10223          * loose cycle time.  This isn't too big a deal, since the loss will be
10224          * uniform across all VCPUs (not to mention the scenario is extremely
10225          * unlikely). It is possible that a second hibernate recovery happens
10226          * much faster than a first, causing the observed TSC here to be
10227          * smaller; this would require additional padding adjustment, which is
10228          * why we set last_host_tsc to the local tsc observed here.
10229          *
10230          * N.B. - this code below runs only on platforms with reliable TSC,
10231          * as that is the only way backwards_tsc is set above.  Also note
10232          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10233          * have the same delta_cyc adjustment applied if backwards_tsc
10234          * is detected.  Note further, this adjustment is only done once,
10235          * as we reset last_host_tsc on all VCPUs to stop this from being
10236          * called multiple times (one for each physical CPU bringup).
10237          *
10238          * Platforms with unreliable TSCs don't have to deal with this, they
10239          * will be compensated by the logic in vcpu_load, which sets the TSC to
10240          * catchup mode.  This will catchup all VCPUs to real time, but cannot
10241          * guarantee that they stay in perfect synchronization.
10242          */
10243         if (backwards_tsc) {
10244                 u64 delta_cyc = max_tsc - local_tsc;
10245                 list_for_each_entry(kvm, &vm_list, vm_list) {
10246                         kvm->arch.backwards_tsc_observed = true;
10247                         kvm_for_each_vcpu(i, vcpu, kvm) {
10248                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10249                                 vcpu->arch.last_host_tsc = local_tsc;
10250                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10251                         }
10252
10253                         /*
10254                          * We have to disable TSC offset matching.. if you were
10255                          * booting a VM while issuing an S4 host suspend....
10256                          * you may have some problem.  Solving this issue is
10257                          * left as an exercise to the reader.
10258                          */
10259                         kvm->arch.last_tsc_nsec = 0;
10260                         kvm->arch.last_tsc_write = 0;
10261                 }
10262
10263         }
10264         return 0;
10265 }
10266
10267 void kvm_arch_hardware_disable(void)
10268 {
10269         kvm_x86_ops.hardware_disable();
10270         drop_user_return_notifiers();
10271 }
10272
10273 int kvm_arch_hardware_setup(void *opaque)
10274 {
10275         struct kvm_x86_init_ops *ops = opaque;
10276         int r;
10277
10278         rdmsrl_safe(MSR_EFER, &host_efer);
10279
10280         if (boot_cpu_has(X86_FEATURE_XSAVES))
10281                 rdmsrl(MSR_IA32_XSS, host_xss);
10282
10283         r = ops->hardware_setup();
10284         if (r != 0)
10285                 return r;
10286
10287         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10288
10289         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10290                 supported_xss = 0;
10291
10292 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10293         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10294 #undef __kvm_cpu_cap_has
10295
10296         if (kvm_has_tsc_control) {
10297                 /*
10298                  * Make sure the user can only configure tsc_khz values that
10299                  * fit into a signed integer.
10300                  * A min value is not calculated because it will always
10301                  * be 1 on all machines.
10302                  */
10303                 u64 max = min(0x7fffffffULL,
10304                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10305                 kvm_max_guest_tsc_khz = max;
10306
10307                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10308         }
10309
10310         kvm_init_msr_list();
10311         return 0;
10312 }
10313
10314 void kvm_arch_hardware_unsetup(void)
10315 {
10316         kvm_x86_ops.hardware_unsetup();
10317 }
10318
10319 int kvm_arch_check_processor_compat(void *opaque)
10320 {
10321         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10322         struct kvm_x86_init_ops *ops = opaque;
10323
10324         WARN_ON(!irqs_disabled());
10325
10326         if (__cr4_reserved_bits(cpu_has, c) !=
10327             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10328                 return -EIO;
10329
10330         return ops->check_processor_compatibility();
10331 }
10332
10333 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10334 {
10335         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10336 }
10337 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10338
10339 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10340 {
10341         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10342 }
10343
10344 struct static_key kvm_no_apic_vcpu __read_mostly;
10345 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
10346
10347 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10348 {
10349         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10350
10351         vcpu->arch.l1tf_flush_l1d = true;
10352         if (pmu->version && unlikely(pmu->event_count)) {
10353                 pmu->need_cleanup = true;
10354                 kvm_make_request(KVM_REQ_PMU, vcpu);
10355         }
10356         kvm_x86_ops.sched_in(vcpu, cpu);
10357 }
10358
10359 void kvm_arch_free_vm(struct kvm *kvm)
10360 {
10361         kfree(kvm->arch.hyperv.hv_pa_pg);
10362         vfree(kvm);
10363 }
10364
10365
10366 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10367 {
10368         if (type)
10369                 return -EINVAL;
10370
10371         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10372         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10373         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10374         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10375         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10376         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10377
10378         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10379         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10380         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10381         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10382                 &kvm->arch.irq_sources_bitmap);
10383
10384         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10385         mutex_init(&kvm->arch.apic_map_lock);
10386         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10387
10388         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10389         pvclock_update_vm_gtod_copy(kvm);
10390
10391         kvm->arch.guest_can_read_msr_platform_info = true;
10392
10393         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10394         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10395
10396         kvm_hv_init_vm(kvm);
10397         kvm_page_track_init(kvm);
10398         kvm_mmu_init_vm(kvm);
10399
10400         return kvm_x86_ops.vm_init(kvm);
10401 }
10402
10403 int kvm_arch_post_init_vm(struct kvm *kvm)
10404 {
10405         return kvm_mmu_post_init_vm(kvm);
10406 }
10407
10408 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10409 {
10410         vcpu_load(vcpu);
10411         kvm_mmu_unload(vcpu);
10412         vcpu_put(vcpu);
10413 }
10414
10415 static void kvm_free_vcpus(struct kvm *kvm)
10416 {
10417         unsigned int i;
10418         struct kvm_vcpu *vcpu;
10419
10420         /*
10421          * Unpin any mmu pages first.
10422          */
10423         kvm_for_each_vcpu(i, vcpu, kvm) {
10424                 kvm_clear_async_pf_completion_queue(vcpu);
10425                 kvm_unload_vcpu_mmu(vcpu);
10426         }
10427         kvm_for_each_vcpu(i, vcpu, kvm)
10428                 kvm_vcpu_destroy(vcpu);
10429
10430         mutex_lock(&kvm->lock);
10431         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10432                 kvm->vcpus[i] = NULL;
10433
10434         atomic_set(&kvm->online_vcpus, 0);
10435         mutex_unlock(&kvm->lock);
10436 }
10437
10438 void kvm_arch_sync_events(struct kvm *kvm)
10439 {
10440         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10441         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10442         kvm_free_pit(kvm);
10443 }
10444
10445 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
10446
10447 /**
10448  * __x86_set_memory_region: Setup KVM internal memory slot
10449  *
10450  * @kvm: the kvm pointer to the VM.
10451  * @id: the slot ID to setup.
10452  * @gpa: the GPA to install the slot (unused when @size == 0).
10453  * @size: the size of the slot. Set to zero to uninstall a slot.
10454  *
10455  * This function helps to setup a KVM internal memory slot.  Specify
10456  * @size > 0 to install a new slot, while @size == 0 to uninstall a
10457  * slot.  The return code can be one of the following:
10458  *
10459  *   HVA:           on success (uninstall will return a bogus HVA)
10460  *   -errno:        on error
10461  *
10462  * The caller should always use IS_ERR() to check the return value
10463  * before use.  Note, the KVM internal memory slots are guaranteed to
10464  * remain valid and unchanged until the VM is destroyed, i.e., the
10465  * GPA->HVA translation will not change.  However, the HVA is a user
10466  * address, i.e. its accessibility is not guaranteed, and must be
10467  * accessed via __copy_{to,from}_user().
10468  */
10469 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
10470                                       u32 size)
10471 {
10472         int i, r;
10473         unsigned long hva, old_npages;
10474         struct kvm_memslots *slots = kvm_memslots(kvm);
10475         struct kvm_memory_slot *slot;
10476
10477         /* Called with kvm->slots_lock held.  */
10478         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10479                 return ERR_PTR_USR(-EINVAL);
10480
10481         slot = id_to_memslot(slots, id);
10482         if (size) {
10483                 if (slot && slot->npages)
10484                         return ERR_PTR_USR(-EEXIST);
10485
10486                 /*
10487                  * MAP_SHARED to prevent internal slot pages from being moved
10488                  * by fork()/COW.
10489                  */
10490                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10491                               MAP_SHARED | MAP_ANONYMOUS, 0);
10492                 if (IS_ERR((void *)hva))
10493                         return (void __user *)hva;
10494         } else {
10495                 if (!slot || !slot->npages)
10496                         return 0;
10497
10498                 old_npages = slot->npages;
10499                 hva = slot->userspace_addr;
10500         }
10501
10502         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10503                 struct kvm_userspace_memory_region m;
10504
10505                 m.slot = id | (i << 16);
10506                 m.flags = 0;
10507                 m.guest_phys_addr = gpa;
10508                 m.userspace_addr = hva;
10509                 m.memory_size = size;
10510                 r = __kvm_set_memory_region(kvm, &m);
10511                 if (r < 0)
10512                         return ERR_PTR_USR(r);
10513         }
10514
10515         if (!size)
10516                 vm_munmap(hva, old_npages * PAGE_SIZE);
10517
10518         return (void __user *)hva;
10519 }
10520 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10521
10522 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10523 {
10524         kvm_mmu_pre_destroy_vm(kvm);
10525 }
10526
10527 void kvm_arch_destroy_vm(struct kvm *kvm)
10528 {
10529         u32 i;
10530
10531         if (current->mm == kvm->mm) {
10532                 /*
10533                  * Free memory regions allocated on behalf of userspace,
10534                  * unless the the memory map has changed due to process exit
10535                  * or fd copying.
10536                  */
10537                 mutex_lock(&kvm->slots_lock);
10538                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10539                                         0, 0);
10540                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10541                                         0, 0);
10542                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10543                 mutex_unlock(&kvm->slots_lock);
10544         }
10545         if (kvm_x86_ops.vm_destroy)
10546                 kvm_x86_ops.vm_destroy(kvm);
10547         for (i = 0; i < kvm->arch.msr_filter.count; i++)
10548                 kfree(kvm->arch.msr_filter.ranges[i].bitmap);
10549         kvm_pic_destroy(kvm);
10550         kvm_ioapic_destroy(kvm);
10551         kvm_free_vcpus(kvm);
10552         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10553         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10554         kvm_mmu_uninit_vm(kvm);
10555         kvm_page_track_cleanup(kvm);
10556         kvm_hv_destroy_vm(kvm);
10557 }
10558
10559 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10560 {
10561         int i;
10562
10563         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10564                 kvfree(slot->arch.rmap[i]);
10565                 slot->arch.rmap[i] = NULL;
10566
10567                 if (i == 0)
10568                         continue;
10569
10570                 kvfree(slot->arch.lpage_info[i - 1]);
10571                 slot->arch.lpage_info[i - 1] = NULL;
10572         }
10573
10574         kvm_page_track_free_memslot(slot);
10575 }
10576
10577 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10578                                       unsigned long npages)
10579 {
10580         int i;
10581
10582         /*
10583          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10584          * old arrays will be freed by __kvm_set_memory_region() if installing
10585          * the new memslot is successful.
10586          */
10587         memset(&slot->arch, 0, sizeof(slot->arch));
10588
10589         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10590                 struct kvm_lpage_info *linfo;
10591                 unsigned long ugfn;
10592                 int lpages;
10593                 int level = i + 1;
10594
10595                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
10596                                       slot->base_gfn, level) + 1;
10597
10598                 slot->arch.rmap[i] =
10599                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10600                                  GFP_KERNEL_ACCOUNT);
10601                 if (!slot->arch.rmap[i])
10602                         goto out_free;
10603                 if (i == 0)
10604                         continue;
10605
10606                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10607                 if (!linfo)
10608                         goto out_free;
10609
10610                 slot->arch.lpage_info[i - 1] = linfo;
10611
10612                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10613                         linfo[0].disallow_lpage = 1;
10614                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10615                         linfo[lpages - 1].disallow_lpage = 1;
10616                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
10617                 /*
10618                  * If the gfn and userspace address are not aligned wrt each
10619                  * other, disable large page support for this slot.
10620                  */
10621                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10622                         unsigned long j;
10623
10624                         for (j = 0; j < lpages; ++j)
10625                                 linfo[j].disallow_lpage = 1;
10626                 }
10627         }
10628
10629         if (kvm_page_track_create_memslot(slot, npages))
10630                 goto out_free;
10631
10632         return 0;
10633
10634 out_free:
10635         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10636                 kvfree(slot->arch.rmap[i]);
10637                 slot->arch.rmap[i] = NULL;
10638                 if (i == 0)
10639                         continue;
10640
10641                 kvfree(slot->arch.lpage_info[i - 1]);
10642                 slot->arch.lpage_info[i - 1] = NULL;
10643         }
10644         return -ENOMEM;
10645 }
10646
10647 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10648 {
10649         struct kvm_vcpu *vcpu;
10650         int i;
10651
10652         /*
10653          * memslots->generation has been incremented.
10654          * mmio generation may have reached its maximum value.
10655          */
10656         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10657
10658         /* Force re-initialization of steal_time cache */
10659         kvm_for_each_vcpu(i, vcpu, kvm)
10660                 kvm_vcpu_kick(vcpu);
10661 }
10662
10663 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10664                                 struct kvm_memory_slot *memslot,
10665                                 const struct kvm_userspace_memory_region *mem,
10666                                 enum kvm_mr_change change)
10667 {
10668         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10669                 return kvm_alloc_memslot_metadata(memslot,
10670                                                   mem->memory_size >> PAGE_SHIFT);
10671         return 0;
10672 }
10673
10674 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10675                                      struct kvm_memory_slot *old,
10676                                      struct kvm_memory_slot *new,
10677                                      enum kvm_mr_change change)
10678 {
10679         /*
10680          * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10681          * See comments below.
10682          */
10683         if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10684                 return;
10685
10686         /*
10687          * Dirty logging tracks sptes in 4k granularity, meaning that large
10688          * sptes have to be split.  If live migration is successful, the guest
10689          * in the source machine will be destroyed and large sptes will be
10690          * created in the destination. However, if the guest continues to run
10691          * in the source machine (for example if live migration fails), small
10692          * sptes will remain around and cause bad performance.
10693          *
10694          * Scan sptes if dirty logging has been stopped, dropping those
10695          * which can be collapsed into a single large-page spte.  Later
10696          * page faults will create the large-page sptes.
10697          *
10698          * There is no need to do this in any of the following cases:
10699          * CREATE:      No dirty mappings will already exist.
10700          * MOVE/DELETE: The old mappings will already have been cleaned up by
10701          *              kvm_arch_flush_shadow_memslot()
10702          */
10703         if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10704             !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10705                 kvm_mmu_zap_collapsible_sptes(kvm, new);
10706
10707         /*
10708          * Enable or disable dirty logging for the slot.
10709          *
10710          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10711          * slot have been zapped so no dirty logging updates are needed for
10712          * the old slot.
10713          * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10714          * any mappings that might be created in it will consume the
10715          * properties of the new slot and do not need to be updated here.
10716          *
10717          * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10718          * called to enable/disable dirty logging.
10719          *
10720          * When disabling dirty logging with PML enabled, the D-bit is set
10721          * for sptes in the slot in order to prevent unnecessary GPA
10722          * logging in the PML buffer (and potential PML buffer full VMEXIT).
10723          * This guarantees leaving PML enabled for the guest's lifetime
10724          * won't have any additional overhead from PML when the guest is
10725          * running with dirty logging disabled.
10726          *
10727          * When enabling dirty logging, large sptes are write-protected
10728          * so they can be split on first write.  New large sptes cannot
10729          * be created for this slot until the end of the logging.
10730          * See the comments in fast_page_fault().
10731          * For small sptes, nothing is done if the dirty log is in the
10732          * initial-all-set state.  Otherwise, depending on whether pml
10733          * is enabled the D-bit or the W-bit will be cleared.
10734          */
10735         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10736                 if (kvm_x86_ops.slot_enable_log_dirty) {
10737                         kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10738                 } else {
10739                         int level =
10740                                 kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10741                                 PG_LEVEL_2M : PG_LEVEL_4K;
10742
10743                         /*
10744                          * If we're with initial-all-set, we don't need
10745                          * to write protect any small page because
10746                          * they're reported as dirty already.  However
10747                          * we still need to write-protect huge pages
10748                          * so that the page split can happen lazily on
10749                          * the first write to the huge page.
10750                          */
10751                         kvm_mmu_slot_remove_write_access(kvm, new, level);
10752                 }
10753         } else {
10754                 if (kvm_x86_ops.slot_disable_log_dirty)
10755                         kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10756         }
10757 }
10758
10759 void kvm_arch_commit_memory_region(struct kvm *kvm,
10760                                 const struct kvm_userspace_memory_region *mem,
10761                                 struct kvm_memory_slot *old,
10762                                 const struct kvm_memory_slot *new,
10763                                 enum kvm_mr_change change)
10764 {
10765         if (!kvm->arch.n_requested_mmu_pages)
10766                 kvm_mmu_change_mmu_pages(kvm,
10767                                 kvm_mmu_calculate_default_mmu_pages(kvm));
10768
10769         /*
10770          * FIXME: const-ify all uses of struct kvm_memory_slot.
10771          */
10772         kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10773
10774         /* Free the arrays associated with the old memslot. */
10775         if (change == KVM_MR_MOVE)
10776                 kvm_arch_free_memslot(kvm, old);
10777 }
10778
10779 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10780 {
10781         kvm_mmu_zap_all(kvm);
10782 }
10783
10784 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10785                                    struct kvm_memory_slot *slot)
10786 {
10787         kvm_page_track_flush_slot(kvm, slot);
10788 }
10789
10790 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10791 {
10792         return (is_guest_mode(vcpu) &&
10793                         kvm_x86_ops.guest_apic_has_interrupt &&
10794                         kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10795 }
10796
10797 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10798 {
10799         if (!list_empty_careful(&vcpu->async_pf.done))
10800                 return true;
10801
10802         if (kvm_apic_has_events(vcpu))
10803                 return true;
10804
10805         if (vcpu->arch.pv.pv_unhalted)
10806                 return true;
10807
10808         if (vcpu->arch.exception.pending)
10809                 return true;
10810
10811         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10812             (vcpu->arch.nmi_pending &&
10813              kvm_x86_ops.nmi_allowed(vcpu, false)))
10814                 return true;
10815
10816         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10817             (vcpu->arch.smi_pending &&
10818              kvm_x86_ops.smi_allowed(vcpu, false)))
10819                 return true;
10820
10821         if (kvm_arch_interrupt_allowed(vcpu) &&
10822             (kvm_cpu_has_interrupt(vcpu) ||
10823             kvm_guest_apic_has_interrupt(vcpu)))
10824                 return true;
10825
10826         if (kvm_hv_has_stimer_pending(vcpu))
10827                 return true;
10828
10829         if (is_guest_mode(vcpu) &&
10830             kvm_x86_ops.nested_ops->hv_timer_pending &&
10831             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10832                 return true;
10833
10834         return false;
10835 }
10836
10837 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10838 {
10839         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10840 }
10841
10842 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10843 {
10844         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10845                 return true;
10846
10847         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10848                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10849                  kvm_test_request(KVM_REQ_EVENT, vcpu))
10850                 return true;
10851
10852         if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10853                 return true;
10854
10855         return false;
10856 }
10857
10858 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10859 {
10860         return vcpu->arch.preempted_in_kernel;
10861 }
10862
10863 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10864 {
10865         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10866 }
10867
10868 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10869 {
10870         return kvm_x86_ops.interrupt_allowed(vcpu, false);
10871 }
10872
10873 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10874 {
10875         /* Can't read the RIP when guest state is protected, just return 0 */
10876         if (vcpu->arch.guest_state_protected)
10877                 return 0;
10878
10879         if (is_64_bit_mode(vcpu))
10880                 return kvm_rip_read(vcpu);
10881         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10882                      kvm_rip_read(vcpu));
10883 }
10884 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10885
10886 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10887 {
10888         return kvm_get_linear_rip(vcpu) == linear_rip;
10889 }
10890 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10891
10892 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10893 {
10894         unsigned long rflags;
10895
10896         rflags = kvm_x86_ops.get_rflags(vcpu);
10897         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10898                 rflags &= ~X86_EFLAGS_TF;
10899         return rflags;
10900 }
10901 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10902
10903 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10904 {
10905         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10906             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10907                 rflags |= X86_EFLAGS_TF;
10908         kvm_x86_ops.set_rflags(vcpu, rflags);
10909 }
10910
10911 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10912 {
10913         __kvm_set_rflags(vcpu, rflags);
10914         kvm_make_request(KVM_REQ_EVENT, vcpu);
10915 }
10916 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10917
10918 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10919 {
10920         int r;
10921
10922         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10923               work->wakeup_all)
10924                 return;
10925
10926         r = kvm_mmu_reload(vcpu);
10927         if (unlikely(r))
10928                 return;
10929
10930         if (!vcpu->arch.mmu->direct_map &&
10931               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10932                 return;
10933
10934         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10935 }
10936
10937 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10938 {
10939         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
10940
10941         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10942 }
10943
10944 static inline u32 kvm_async_pf_next_probe(u32 key)
10945 {
10946         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
10947 }
10948
10949 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10950 {
10951         u32 key = kvm_async_pf_hash_fn(gfn);
10952
10953         while (vcpu->arch.apf.gfns[key] != ~0)
10954                 key = kvm_async_pf_next_probe(key);
10955
10956         vcpu->arch.apf.gfns[key] = gfn;
10957 }
10958
10959 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10960 {
10961         int i;
10962         u32 key = kvm_async_pf_hash_fn(gfn);
10963
10964         for (i = 0; i < ASYNC_PF_PER_VCPU &&
10965                      (vcpu->arch.apf.gfns[key] != gfn &&
10966                       vcpu->arch.apf.gfns[key] != ~0); i++)
10967                 key = kvm_async_pf_next_probe(key);
10968
10969         return key;
10970 }
10971
10972 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10973 {
10974         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10975 }
10976
10977 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10978 {
10979         u32 i, j, k;
10980
10981         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10982
10983         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
10984                 return;
10985
10986         while (true) {
10987                 vcpu->arch.apf.gfns[i] = ~0;
10988                 do {
10989                         j = kvm_async_pf_next_probe(j);
10990                         if (vcpu->arch.apf.gfns[j] == ~0)
10991                                 return;
10992                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10993                         /*
10994                          * k lies cyclically in ]i,j]
10995                          * |    i.k.j |
10996                          * |....j i.k.| or  |.k..j i...|
10997                          */
10998                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10999                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11000                 i = j;
11001         }
11002 }
11003
11004 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11005 {
11006         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11007
11008         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11009                                       sizeof(reason));
11010 }
11011
11012 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11013 {
11014         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11015
11016         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11017                                              &token, offset, sizeof(token));
11018 }
11019
11020 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11021 {
11022         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11023         u32 val;
11024
11025         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11026                                          &val, offset, sizeof(val)))
11027                 return false;
11028
11029         return !val;
11030 }
11031
11032 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11033 {
11034         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11035                 return false;
11036
11037         if (!kvm_pv_async_pf_enabled(vcpu) ||
11038             (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
11039                 return false;
11040
11041         return true;
11042 }
11043
11044 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11045 {
11046         if (unlikely(!lapic_in_kernel(vcpu) ||
11047                      kvm_event_needs_reinjection(vcpu) ||
11048                      vcpu->arch.exception.pending))
11049                 return false;
11050
11051         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11052                 return false;
11053
11054         /*
11055          * If interrupts are off we cannot even use an artificial
11056          * halt state.
11057          */
11058         return kvm_arch_interrupt_allowed(vcpu);
11059 }
11060
11061 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11062                                      struct kvm_async_pf *work)
11063 {
11064         struct x86_exception fault;
11065
11066         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11067         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11068
11069         if (kvm_can_deliver_async_pf(vcpu) &&
11070             !apf_put_user_notpresent(vcpu)) {
11071                 fault.vector = PF_VECTOR;
11072                 fault.error_code_valid = true;
11073                 fault.error_code = 0;
11074                 fault.nested_page_fault = false;
11075                 fault.address = work->arch.token;
11076                 fault.async_page_fault = true;
11077                 kvm_inject_page_fault(vcpu, &fault);
11078                 return true;
11079         } else {
11080                 /*
11081                  * It is not possible to deliver a paravirtualized asynchronous
11082                  * page fault, but putting the guest in an artificial halt state
11083                  * can be beneficial nevertheless: if an interrupt arrives, we
11084                  * can deliver it timely and perhaps the guest will schedule
11085                  * another process.  When the instruction that triggered a page
11086                  * fault is retried, hopefully the page will be ready in the host.
11087                  */
11088                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11089                 return false;
11090         }
11091 }
11092
11093 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11094                                  struct kvm_async_pf *work)
11095 {
11096         struct kvm_lapic_irq irq = {
11097                 .delivery_mode = APIC_DM_FIXED,
11098                 .vector = vcpu->arch.apf.vec
11099         };
11100
11101         if (work->wakeup_all)
11102                 work->arch.token = ~0; /* broadcast wakeup */
11103         else
11104                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11105         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11106
11107         if ((work->wakeup_all || work->notpresent_injected) &&
11108             kvm_pv_async_pf_enabled(vcpu) &&
11109             !apf_put_user_ready(vcpu, work->arch.token)) {
11110                 vcpu->arch.apf.pageready_pending = true;
11111                 kvm_apic_set_irq(vcpu, &irq, NULL);
11112         }
11113
11114         vcpu->arch.apf.halted = false;
11115         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11116 }
11117
11118 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11119 {
11120         kvm_make_request(KVM_REQ_APF_READY, vcpu);
11121         if (!vcpu->arch.apf.pageready_pending)
11122                 kvm_vcpu_kick(vcpu);
11123 }
11124
11125 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11126 {
11127         if (!kvm_pv_async_pf_enabled(vcpu))
11128                 return true;
11129         else
11130                 return apf_pageready_slot_free(vcpu);
11131 }
11132
11133 void kvm_arch_start_assignment(struct kvm *kvm)
11134 {
11135         atomic_inc(&kvm->arch.assigned_device_count);
11136 }
11137 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11138
11139 void kvm_arch_end_assignment(struct kvm *kvm)
11140 {
11141         atomic_dec(&kvm->arch.assigned_device_count);
11142 }
11143 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11144
11145 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11146 {
11147         return atomic_read(&kvm->arch.assigned_device_count);
11148 }
11149 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11150
11151 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11152 {
11153         atomic_inc(&kvm->arch.noncoherent_dma_count);
11154 }
11155 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11156
11157 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11158 {
11159         atomic_dec(&kvm->arch.noncoherent_dma_count);
11160 }
11161 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11162
11163 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11164 {
11165         return atomic_read(&kvm->arch.noncoherent_dma_count);
11166 }
11167 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11168
11169 bool kvm_arch_has_irq_bypass(void)
11170 {
11171         return true;
11172 }
11173
11174 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11175                                       struct irq_bypass_producer *prod)
11176 {
11177         struct kvm_kernel_irqfd *irqfd =
11178                 container_of(cons, struct kvm_kernel_irqfd, consumer);
11179         int ret;
11180
11181         irqfd->producer = prod;
11182         kvm_arch_start_assignment(irqfd->kvm);
11183         ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
11184                                          prod->irq, irqfd->gsi, 1);
11185
11186         if (ret)
11187                 kvm_arch_end_assignment(irqfd->kvm);
11188
11189         return ret;
11190 }
11191
11192 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11193                                       struct irq_bypass_producer *prod)
11194 {
11195         int ret;
11196         struct kvm_kernel_irqfd *irqfd =
11197                 container_of(cons, struct kvm_kernel_irqfd, consumer);
11198
11199         WARN_ON(irqfd->producer != prod);
11200         irqfd->producer = NULL;
11201
11202         /*
11203          * When producer of consumer is unregistered, we change back to
11204          * remapped mode, so we can re-use the current implementation
11205          * when the irq is masked/disabled or the consumer side (KVM
11206          * int this case doesn't want to receive the interrupts.
11207         */
11208         ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11209         if (ret)
11210                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11211                        " fails: %d\n", irqfd->consumer.token, ret);
11212
11213         kvm_arch_end_assignment(irqfd->kvm);
11214 }
11215
11216 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11217                                    uint32_t guest_irq, bool set)
11218 {
11219         return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
11220 }
11221
11222 bool kvm_vector_hashing_enabled(void)
11223 {
11224         return vector_hashing;
11225 }
11226
11227 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11228 {
11229         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11230 }
11231 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11232
11233
11234 int kvm_spec_ctrl_test_value(u64 value)
11235 {
11236         /*
11237          * test that setting IA32_SPEC_CTRL to given value
11238          * is allowed by the host processor
11239          */
11240
11241         u64 saved_value;
11242         unsigned long flags;
11243         int ret = 0;
11244
11245         local_irq_save(flags);
11246
11247         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11248                 ret = 1;
11249         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11250                 ret = 1;
11251         else
11252                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11253
11254         local_irq_restore(flags);
11255
11256         return ret;
11257 }
11258 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11259
11260 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11261 {
11262         struct x86_exception fault;
11263         u32 access = error_code &
11264                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11265
11266         if (!(error_code & PFERR_PRESENT_MASK) ||
11267             vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11268                 /*
11269                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11270                  * tables probably do not match the TLB.  Just proceed
11271                  * with the error code that the processor gave.
11272                  */
11273                 fault.vector = PF_VECTOR;
11274                 fault.error_code_valid = true;
11275                 fault.error_code = error_code;
11276                 fault.nested_page_fault = false;
11277                 fault.address = gva;
11278         }
11279         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11280 }
11281 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11282
11283 /*
11284  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11285  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11286  * indicates whether exit to userspace is needed.
11287  */
11288 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11289                               struct x86_exception *e)
11290 {
11291         if (r == X86EMUL_PROPAGATE_FAULT) {
11292                 kvm_inject_emulated_page_fault(vcpu, e);
11293                 return 1;
11294         }
11295
11296         /*
11297          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11298          * while handling a VMX instruction KVM could've handled the request
11299          * correctly by exiting to userspace and performing I/O but there
11300          * doesn't seem to be a real use-case behind such requests, just return
11301          * KVM_EXIT_INTERNAL_ERROR for now.
11302          */
11303         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11304         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11305         vcpu->run->internal.ndata = 0;
11306
11307         return 0;
11308 }
11309 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11310
11311 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11312 {
11313         bool pcid_enabled;
11314         struct x86_exception e;
11315         unsigned i;
11316         unsigned long roots_to_free = 0;
11317         struct {
11318                 u64 pcid;
11319                 u64 gla;
11320         } operand;
11321         int r;
11322
11323         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11324         if (r != X86EMUL_CONTINUE)
11325                 return kvm_handle_memory_failure(vcpu, r, &e);
11326
11327         if (operand.pcid >> 12 != 0) {
11328                 kvm_inject_gp(vcpu, 0);
11329                 return 1;
11330         }
11331
11332         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11333
11334         switch (type) {
11335         case INVPCID_TYPE_INDIV_ADDR:
11336                 if ((!pcid_enabled && (operand.pcid != 0)) ||
11337                     is_noncanonical_address(operand.gla, vcpu)) {
11338                         kvm_inject_gp(vcpu, 0);
11339                         return 1;
11340                 }
11341                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11342                 return kvm_skip_emulated_instruction(vcpu);
11343
11344         case INVPCID_TYPE_SINGLE_CTXT:
11345                 if (!pcid_enabled && (operand.pcid != 0)) {
11346                         kvm_inject_gp(vcpu, 0);
11347                         return 1;
11348                 }
11349
11350                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11351                         kvm_mmu_sync_roots(vcpu);
11352                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11353                 }
11354
11355                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11356                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11357                             == operand.pcid)
11358                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11359
11360                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11361                 /*
11362                  * If neither the current cr3 nor any of the prev_roots use the
11363                  * given PCID, then nothing needs to be done here because a
11364                  * resync will happen anyway before switching to any other CR3.
11365                  */
11366
11367                 return kvm_skip_emulated_instruction(vcpu);
11368
11369         case INVPCID_TYPE_ALL_NON_GLOBAL:
11370                 /*
11371                  * Currently, KVM doesn't mark global entries in the shadow
11372                  * page tables, so a non-global flush just degenerates to a
11373                  * global flush. If needed, we could optimize this later by
11374                  * keeping track of global entries in shadow page tables.
11375                  */
11376
11377                 fallthrough;
11378         case INVPCID_TYPE_ALL_INCL_GLOBAL:
11379                 kvm_mmu_unload(vcpu);
11380                 return kvm_skip_emulated_instruction(vcpu);
11381
11382         default:
11383                 BUG(); /* We have already checked above that type <= 3 */
11384         }
11385 }
11386 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11387
11388 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
11389 {
11390         struct kvm_run *run = vcpu->run;
11391         struct kvm_mmio_fragment *frag;
11392         unsigned int len;
11393
11394         BUG_ON(!vcpu->mmio_needed);
11395
11396         /* Complete previous fragment */
11397         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11398         len = min(8u, frag->len);
11399         if (!vcpu->mmio_is_write)
11400                 memcpy(frag->data, run->mmio.data, len);
11401
11402         if (frag->len <= 8) {
11403                 /* Switch to the next fragment. */
11404                 frag++;
11405                 vcpu->mmio_cur_fragment++;
11406         } else {
11407                 /* Go forward to the next mmio piece. */
11408                 frag->data += len;
11409                 frag->gpa += len;
11410                 frag->len -= len;
11411         }
11412
11413         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11414                 vcpu->mmio_needed = 0;
11415
11416                 // VMG change, at this point, we're always done
11417                 // RIP has already been advanced
11418                 return 1;
11419         }
11420
11421         // More MMIO is needed
11422         run->mmio.phys_addr = frag->gpa;
11423         run->mmio.len = min(8u, frag->len);
11424         run->mmio.is_write = vcpu->mmio_is_write;
11425         if (run->mmio.is_write)
11426                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11427         run->exit_reason = KVM_EXIT_MMIO;
11428
11429         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11430
11431         return 0;
11432 }
11433
11434 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11435                           void *data)
11436 {
11437         int handled;
11438         struct kvm_mmio_fragment *frag;
11439
11440         if (!data)
11441                 return -EINVAL;
11442
11443         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11444         if (handled == bytes)
11445                 return 1;
11446
11447         bytes -= handled;
11448         gpa += handled;
11449         data += handled;
11450
11451         /*TODO: Check if need to increment number of frags */
11452         frag = vcpu->mmio_fragments;
11453         vcpu->mmio_nr_fragments = 1;
11454         frag->len = bytes;
11455         frag->gpa = gpa;
11456         frag->data = data;
11457
11458         vcpu->mmio_needed = 1;
11459         vcpu->mmio_cur_fragment = 0;
11460
11461         vcpu->run->mmio.phys_addr = gpa;
11462         vcpu->run->mmio.len = min(8u, frag->len);
11463         vcpu->run->mmio.is_write = 1;
11464         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
11465         vcpu->run->exit_reason = KVM_EXIT_MMIO;
11466
11467         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11468
11469         return 0;
11470 }
11471 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
11472
11473 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11474                          void *data)
11475 {
11476         int handled;
11477         struct kvm_mmio_fragment *frag;
11478
11479         if (!data)
11480                 return -EINVAL;
11481
11482         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11483         if (handled == bytes)
11484                 return 1;
11485
11486         bytes -= handled;
11487         gpa += handled;
11488         data += handled;
11489
11490         /*TODO: Check if need to increment number of frags */
11491         frag = vcpu->mmio_fragments;
11492         vcpu->mmio_nr_fragments = 1;
11493         frag->len = bytes;
11494         frag->gpa = gpa;
11495         frag->data = data;
11496
11497         vcpu->mmio_needed = 1;
11498         vcpu->mmio_cur_fragment = 0;
11499
11500         vcpu->run->mmio.phys_addr = gpa;
11501         vcpu->run->mmio.len = min(8u, frag->len);
11502         vcpu->run->mmio.is_write = 0;
11503         vcpu->run->exit_reason = KVM_EXIT_MMIO;
11504
11505         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11506
11507         return 0;
11508 }
11509 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
11510
11511 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
11512 {
11513         memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
11514                vcpu->arch.pio.count * vcpu->arch.pio.size);
11515         vcpu->arch.pio.count = 0;
11516
11517         return 1;
11518 }
11519
11520 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
11521                            unsigned int port, void *data,  unsigned int count)
11522 {
11523         int ret;
11524
11525         ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
11526                                         data, count);
11527         if (ret)
11528                 return ret;
11529
11530         vcpu->arch.pio.count = 0;
11531
11532         return 0;
11533 }
11534
11535 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
11536                           unsigned int port, void *data, unsigned int count)
11537 {
11538         int ret;
11539
11540         ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
11541                                        data, count);
11542         if (ret) {
11543                 vcpu->arch.pio.count = 0;
11544         } else {
11545                 vcpu->arch.guest_ins_data = data;
11546                 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
11547         }
11548
11549         return 0;
11550 }
11551
11552 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
11553                          unsigned int port, void *data,  unsigned int count,
11554                          int in)
11555 {
11556         return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
11557                   : kvm_sev_es_outs(vcpu, size, port, data, count);
11558 }
11559 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
11560
11561 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
11562 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11563 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11564 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11569 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11570 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11571 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11572 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11579 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11580 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11581 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11582 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11583 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11584 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
11585 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
11586 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
11587 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);