Merge tag 'kbuild-v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60
61 #include <trace/events/kvm.h>
62
63 #include <asm/debugreg.h>
64 #include <asm/msr.h>
65 #include <asm/desc.h>
66 #include <asm/mce.h>
67 #include <linux/kernel_stat.h>
68 #include <asm/fpu/internal.h> /* Ugh! */
69 #include <asm/pvclock.h>
70 #include <asm/div64.h>
71 #include <asm/irq_remapping.h>
72 #include <asm/mshyperv.h>
73 #include <asm/hypervisor.h>
74 #include <asm/intel_pt.h>
75 #include <asm/emulate_prefix.h>
76 #include <clocksource/hyperv_timer.h>
77
78 #define CREATE_TRACE_POINTS
79 #include "trace.h"
80
81 #define MAX_IO_MSRS 256
82 #define KVM_MAX_MCE_BANKS 32
83 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
84 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
85
86 #define emul_to_vcpu(ctxt) \
87         ((struct kvm_vcpu *)(ctxt)->vcpu)
88
89 /* EFER defaults:
90  * - enable syscall per default because its emulated by KVM
91  * - enable LME and LMA per default on 64 bit KVM
92  */
93 #ifdef CONFIG_X86_64
94 static
95 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
96 #else
97 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
98 #endif
99
100 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
101
102 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
103                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
104
105 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
106 static void process_nmi(struct kvm_vcpu *vcpu);
107 static void enter_smm(struct kvm_vcpu *vcpu);
108 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
109 static void store_regs(struct kvm_vcpu *vcpu);
110 static int sync_regs(struct kvm_vcpu *vcpu);
111
112 struct kvm_x86_ops kvm_x86_ops __read_mostly;
113 EXPORT_SYMBOL_GPL(kvm_x86_ops);
114
115 static bool __read_mostly ignore_msrs = 0;
116 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
117
118 static bool __read_mostly report_ignored_msrs = true;
119 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
120
121 unsigned int min_timer_period_us = 200;
122 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
123
124 static bool __read_mostly kvmclock_periodic_sync = true;
125 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
126
127 bool __read_mostly kvm_has_tsc_control;
128 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
129 u32  __read_mostly kvm_max_guest_tsc_khz;
130 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
131 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
132 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
133 u64  __read_mostly kvm_max_tsc_scaling_ratio;
134 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
135 u64 __read_mostly kvm_default_tsc_scaling_ratio;
136 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
137
138 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
139 static u32 __read_mostly tsc_tolerance_ppm = 250;
140 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
141
142 /*
143  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
144  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
145  * advancement entirely.  Any other value is used as-is and disables adaptive
146  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
147  */
148 static int __read_mostly lapic_timer_advance_ns = -1;
149 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
150
151 static bool __read_mostly vector_hashing = true;
152 module_param(vector_hashing, bool, S_IRUGO);
153
154 bool __read_mostly enable_vmware_backdoor = false;
155 module_param(enable_vmware_backdoor, bool, S_IRUGO);
156 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
157
158 static bool __read_mostly force_emulation_prefix = false;
159 module_param(force_emulation_prefix, bool, S_IRUGO);
160
161 int __read_mostly pi_inject_timer = -1;
162 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
163
164 #define KVM_NR_SHARED_MSRS 16
165
166 struct kvm_shared_msrs_global {
167         int nr;
168         u32 msrs[KVM_NR_SHARED_MSRS];
169 };
170
171 struct kvm_shared_msrs {
172         struct user_return_notifier urn;
173         bool registered;
174         struct kvm_shared_msr_values {
175                 u64 host;
176                 u64 curr;
177         } values[KVM_NR_SHARED_MSRS];
178 };
179
180 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
181 static struct kvm_shared_msrs __percpu *shared_msrs;
182
183 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
184                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
185                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
186                                 | XFEATURE_MASK_PKRU)
187
188 u64 __read_mostly host_efer;
189 EXPORT_SYMBOL_GPL(host_efer);
190
191 bool __read_mostly allow_smaller_maxphyaddr = 0;
192 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
193
194 static u64 __read_mostly host_xss;
195 u64 __read_mostly supported_xss;
196 EXPORT_SYMBOL_GPL(supported_xss);
197
198 struct kvm_stats_debugfs_item debugfs_entries[] = {
199         VCPU_STAT("pf_fixed", pf_fixed),
200         VCPU_STAT("pf_guest", pf_guest),
201         VCPU_STAT("tlb_flush", tlb_flush),
202         VCPU_STAT("invlpg", invlpg),
203         VCPU_STAT("exits", exits),
204         VCPU_STAT("io_exits", io_exits),
205         VCPU_STAT("mmio_exits", mmio_exits),
206         VCPU_STAT("signal_exits", signal_exits),
207         VCPU_STAT("irq_window", irq_window_exits),
208         VCPU_STAT("nmi_window", nmi_window_exits),
209         VCPU_STAT("halt_exits", halt_exits),
210         VCPU_STAT("halt_successful_poll", halt_successful_poll),
211         VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
212         VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
213         VCPU_STAT("halt_wakeup", halt_wakeup),
214         VCPU_STAT("hypercalls", hypercalls),
215         VCPU_STAT("request_irq", request_irq_exits),
216         VCPU_STAT("irq_exits", irq_exits),
217         VCPU_STAT("host_state_reload", host_state_reload),
218         VCPU_STAT("fpu_reload", fpu_reload),
219         VCPU_STAT("insn_emulation", insn_emulation),
220         VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
221         VCPU_STAT("irq_injections", irq_injections),
222         VCPU_STAT("nmi_injections", nmi_injections),
223         VCPU_STAT("req_event", req_event),
224         VCPU_STAT("l1d_flush", l1d_flush),
225         VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
226         VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
227         VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
228         VM_STAT("mmu_pte_write", mmu_pte_write),
229         VM_STAT("mmu_pte_updated", mmu_pte_updated),
230         VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
231         VM_STAT("mmu_flooded", mmu_flooded),
232         VM_STAT("mmu_recycled", mmu_recycled),
233         VM_STAT("mmu_cache_miss", mmu_cache_miss),
234         VM_STAT("mmu_unsync", mmu_unsync),
235         VM_STAT("remote_tlb_flush", remote_tlb_flush),
236         VM_STAT("largepages", lpages, .mode = 0444),
237         VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
238         VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
239         { NULL }
240 };
241
242 u64 __read_mostly host_xcr0;
243 u64 __read_mostly supported_xcr0;
244 EXPORT_SYMBOL_GPL(supported_xcr0);
245
246 static struct kmem_cache *x86_fpu_cache;
247
248 static struct kmem_cache *x86_emulator_cache;
249
250 /*
251  * When called, it means the previous get/set msr reached an invalid msr.
252  * Return 0 if we want to ignore/silent this failed msr access, or 1 if we want
253  * to fail the caller.
254  */
255 static int kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
256                                  u64 data, bool write)
257 {
258         const char *op = write ? "wrmsr" : "rdmsr";
259
260         if (ignore_msrs) {
261                 if (report_ignored_msrs)
262                         vcpu_unimpl(vcpu, "ignored %s: 0x%x data 0x%llx\n",
263                                     op, msr, data);
264                 /* Mask the error */
265                 return 0;
266         } else {
267                 vcpu_debug_ratelimited(vcpu, "unhandled %s: 0x%x data 0x%llx\n",
268                                        op, msr, data);
269                 return 1;
270         }
271 }
272
273 static struct kmem_cache *kvm_alloc_emulator_cache(void)
274 {
275         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
276         unsigned int size = sizeof(struct x86_emulate_ctxt);
277
278         return kmem_cache_create_usercopy("x86_emulator", size,
279                                           __alignof__(struct x86_emulate_ctxt),
280                                           SLAB_ACCOUNT, useroffset,
281                                           size - useroffset, NULL);
282 }
283
284 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
285
286 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
287 {
288         int i;
289         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
290                 vcpu->arch.apf.gfns[i] = ~0;
291 }
292
293 static void kvm_on_user_return(struct user_return_notifier *urn)
294 {
295         unsigned slot;
296         struct kvm_shared_msrs *locals
297                 = container_of(urn, struct kvm_shared_msrs, urn);
298         struct kvm_shared_msr_values *values;
299         unsigned long flags;
300
301         /*
302          * Disabling irqs at this point since the following code could be
303          * interrupted and executed through kvm_arch_hardware_disable()
304          */
305         local_irq_save(flags);
306         if (locals->registered) {
307                 locals->registered = false;
308                 user_return_notifier_unregister(urn);
309         }
310         local_irq_restore(flags);
311         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
312                 values = &locals->values[slot];
313                 if (values->host != values->curr) {
314                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
315                         values->curr = values->host;
316                 }
317         }
318 }
319
320 void kvm_define_shared_msr(unsigned slot, u32 msr)
321 {
322         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
323         shared_msrs_global.msrs[slot] = msr;
324         if (slot >= shared_msrs_global.nr)
325                 shared_msrs_global.nr = slot + 1;
326 }
327 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
328
329 static void kvm_shared_msr_cpu_online(void)
330 {
331         unsigned int cpu = smp_processor_id();
332         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
333         u64 value;
334         int i;
335
336         for (i = 0; i < shared_msrs_global.nr; ++i) {
337                 rdmsrl_safe(shared_msrs_global.msrs[i], &value);
338                 smsr->values[i].host = value;
339                 smsr->values[i].curr = value;
340         }
341 }
342
343 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
344 {
345         unsigned int cpu = smp_processor_id();
346         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
347         int err;
348
349         value = (value & mask) | (smsr->values[slot].host & ~mask);
350         if (value == smsr->values[slot].curr)
351                 return 0;
352         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
353         if (err)
354                 return 1;
355
356         smsr->values[slot].curr = value;
357         if (!smsr->registered) {
358                 smsr->urn.on_user_return = kvm_on_user_return;
359                 user_return_notifier_register(&smsr->urn);
360                 smsr->registered = true;
361         }
362         return 0;
363 }
364 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
365
366 static void drop_user_return_notifiers(void)
367 {
368         unsigned int cpu = smp_processor_id();
369         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
370
371         if (smsr->registered)
372                 kvm_on_user_return(&smsr->urn);
373 }
374
375 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
376 {
377         return vcpu->arch.apic_base;
378 }
379 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
380
381 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
382 {
383         return kvm_apic_mode(kvm_get_apic_base(vcpu));
384 }
385 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
386
387 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
388 {
389         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
390         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
391         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
392                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
393
394         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
395                 return 1;
396         if (!msr_info->host_initiated) {
397                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
398                         return 1;
399                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
400                         return 1;
401         }
402
403         kvm_lapic_set_base(vcpu, msr_info->data);
404         kvm_recalculate_apic_map(vcpu->kvm);
405         return 0;
406 }
407 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
408
409 asmlinkage __visible noinstr void kvm_spurious_fault(void)
410 {
411         /* Fault while not rebooting.  We want the trace. */
412         BUG_ON(!kvm_rebooting);
413 }
414 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
415
416 #define EXCPT_BENIGN            0
417 #define EXCPT_CONTRIBUTORY      1
418 #define EXCPT_PF                2
419
420 static int exception_class(int vector)
421 {
422         switch (vector) {
423         case PF_VECTOR:
424                 return EXCPT_PF;
425         case DE_VECTOR:
426         case TS_VECTOR:
427         case NP_VECTOR:
428         case SS_VECTOR:
429         case GP_VECTOR:
430                 return EXCPT_CONTRIBUTORY;
431         default:
432                 break;
433         }
434         return EXCPT_BENIGN;
435 }
436
437 #define EXCPT_FAULT             0
438 #define EXCPT_TRAP              1
439 #define EXCPT_ABORT             2
440 #define EXCPT_INTERRUPT         3
441
442 static int exception_type(int vector)
443 {
444         unsigned int mask;
445
446         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
447                 return EXCPT_INTERRUPT;
448
449         mask = 1 << vector;
450
451         /* #DB is trap, as instruction watchpoints are handled elsewhere */
452         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
453                 return EXCPT_TRAP;
454
455         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
456                 return EXCPT_ABORT;
457
458         /* Reserved exceptions will result in fault */
459         return EXCPT_FAULT;
460 }
461
462 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
463 {
464         unsigned nr = vcpu->arch.exception.nr;
465         bool has_payload = vcpu->arch.exception.has_payload;
466         unsigned long payload = vcpu->arch.exception.payload;
467
468         if (!has_payload)
469                 return;
470
471         switch (nr) {
472         case DB_VECTOR:
473                 /*
474                  * "Certain debug exceptions may clear bit 0-3.  The
475                  * remaining contents of the DR6 register are never
476                  * cleared by the processor".
477                  */
478                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
479                 /*
480                  * DR6.RTM is set by all #DB exceptions that don't clear it.
481                  */
482                 vcpu->arch.dr6 |= DR6_RTM;
483                 vcpu->arch.dr6 |= payload;
484                 /*
485                  * Bit 16 should be set in the payload whenever the #DB
486                  * exception should clear DR6.RTM. This makes the payload
487                  * compatible with the pending debug exceptions under VMX.
488                  * Though not currently documented in the SDM, this also
489                  * makes the payload compatible with the exit qualification
490                  * for #DB exceptions under VMX.
491                  */
492                 vcpu->arch.dr6 ^= payload & DR6_RTM;
493
494                 /*
495                  * The #DB payload is defined as compatible with the 'pending
496                  * debug exceptions' field under VMX, not DR6. While bit 12 is
497                  * defined in the 'pending debug exceptions' field (enabled
498                  * breakpoint), it is reserved and must be zero in DR6.
499                  */
500                 vcpu->arch.dr6 &= ~BIT(12);
501                 break;
502         case PF_VECTOR:
503                 vcpu->arch.cr2 = payload;
504                 break;
505         }
506
507         vcpu->arch.exception.has_payload = false;
508         vcpu->arch.exception.payload = 0;
509 }
510 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
511
512 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
513                 unsigned nr, bool has_error, u32 error_code,
514                 bool has_payload, unsigned long payload, bool reinject)
515 {
516         u32 prev_nr;
517         int class1, class2;
518
519         kvm_make_request(KVM_REQ_EVENT, vcpu);
520
521         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
522         queue:
523                 if (has_error && !is_protmode(vcpu))
524                         has_error = false;
525                 if (reinject) {
526                         /*
527                          * On vmentry, vcpu->arch.exception.pending is only
528                          * true if an event injection was blocked by
529                          * nested_run_pending.  In that case, however,
530                          * vcpu_enter_guest requests an immediate exit,
531                          * and the guest shouldn't proceed far enough to
532                          * need reinjection.
533                          */
534                         WARN_ON_ONCE(vcpu->arch.exception.pending);
535                         vcpu->arch.exception.injected = true;
536                         if (WARN_ON_ONCE(has_payload)) {
537                                 /*
538                                  * A reinjected event has already
539                                  * delivered its payload.
540                                  */
541                                 has_payload = false;
542                                 payload = 0;
543                         }
544                 } else {
545                         vcpu->arch.exception.pending = true;
546                         vcpu->arch.exception.injected = false;
547                 }
548                 vcpu->arch.exception.has_error_code = has_error;
549                 vcpu->arch.exception.nr = nr;
550                 vcpu->arch.exception.error_code = error_code;
551                 vcpu->arch.exception.has_payload = has_payload;
552                 vcpu->arch.exception.payload = payload;
553                 if (!is_guest_mode(vcpu))
554                         kvm_deliver_exception_payload(vcpu);
555                 return;
556         }
557
558         /* to check exception */
559         prev_nr = vcpu->arch.exception.nr;
560         if (prev_nr == DF_VECTOR) {
561                 /* triple fault -> shutdown */
562                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
563                 return;
564         }
565         class1 = exception_class(prev_nr);
566         class2 = exception_class(nr);
567         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
568                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
569                 /*
570                  * Generate double fault per SDM Table 5-5.  Set
571                  * exception.pending = true so that the double fault
572                  * can trigger a nested vmexit.
573                  */
574                 vcpu->arch.exception.pending = true;
575                 vcpu->arch.exception.injected = false;
576                 vcpu->arch.exception.has_error_code = true;
577                 vcpu->arch.exception.nr = DF_VECTOR;
578                 vcpu->arch.exception.error_code = 0;
579                 vcpu->arch.exception.has_payload = false;
580                 vcpu->arch.exception.payload = 0;
581         } else
582                 /* replace previous exception with a new one in a hope
583                    that instruction re-execution will regenerate lost
584                    exception */
585                 goto queue;
586 }
587
588 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
589 {
590         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
591 }
592 EXPORT_SYMBOL_GPL(kvm_queue_exception);
593
594 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
595 {
596         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
597 }
598 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
599
600 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
601                            unsigned long payload)
602 {
603         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
604 }
605 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
606
607 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
608                                     u32 error_code, unsigned long payload)
609 {
610         kvm_multiple_exception(vcpu, nr, true, error_code,
611                                true, payload, false);
612 }
613
614 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
615 {
616         if (err)
617                 kvm_inject_gp(vcpu, 0);
618         else
619                 return kvm_skip_emulated_instruction(vcpu);
620
621         return 1;
622 }
623 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
624
625 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
626 {
627         ++vcpu->stat.pf_guest;
628         vcpu->arch.exception.nested_apf =
629                 is_guest_mode(vcpu) && fault->async_page_fault;
630         if (vcpu->arch.exception.nested_apf) {
631                 vcpu->arch.apf.nested_apf_token = fault->address;
632                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
633         } else {
634                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
635                                         fault->address);
636         }
637 }
638 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
639
640 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
641                                     struct x86_exception *fault)
642 {
643         struct kvm_mmu *fault_mmu;
644         WARN_ON_ONCE(fault->vector != PF_VECTOR);
645
646         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
647                                                vcpu->arch.walk_mmu;
648
649         /*
650          * Invalidate the TLB entry for the faulting address, if it exists,
651          * else the access will fault indefinitely (and to emulate hardware).
652          */
653         if ((fault->error_code & PFERR_PRESENT_MASK) &&
654             !(fault->error_code & PFERR_RSVD_MASK))
655                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
656                                        fault_mmu->root_hpa);
657
658         fault_mmu->inject_page_fault(vcpu, fault);
659         return fault->nested_page_fault;
660 }
661 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
662
663 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
664 {
665         atomic_inc(&vcpu->arch.nmi_queued);
666         kvm_make_request(KVM_REQ_NMI, vcpu);
667 }
668 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
669
670 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
671 {
672         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
673 }
674 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
675
676 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
677 {
678         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
679 }
680 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
681
682 /*
683  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
684  * a #GP and return false.
685  */
686 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
687 {
688         if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
689                 return true;
690         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
691         return false;
692 }
693 EXPORT_SYMBOL_GPL(kvm_require_cpl);
694
695 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
696 {
697         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
698                 return true;
699
700         kvm_queue_exception(vcpu, UD_VECTOR);
701         return false;
702 }
703 EXPORT_SYMBOL_GPL(kvm_require_dr);
704
705 /*
706  * This function will be used to read from the physical memory of the currently
707  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
708  * can read from guest physical or from the guest's guest physical memory.
709  */
710 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
711                             gfn_t ngfn, void *data, int offset, int len,
712                             u32 access)
713 {
714         struct x86_exception exception;
715         gfn_t real_gfn;
716         gpa_t ngpa;
717
718         ngpa     = gfn_to_gpa(ngfn);
719         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
720         if (real_gfn == UNMAPPED_GVA)
721                 return -EFAULT;
722
723         real_gfn = gpa_to_gfn(real_gfn);
724
725         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
726 }
727 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
728
729 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
730                                void *data, int offset, int len, u32 access)
731 {
732         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
733                                        data, offset, len, access);
734 }
735
736 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
737 {
738         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
739                rsvd_bits(1, 2);
740 }
741
742 /*
743  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
744  */
745 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
746 {
747         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
748         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
749         int i;
750         int ret;
751         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
752
753         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
754                                       offset * sizeof(u64), sizeof(pdpte),
755                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
756         if (ret < 0) {
757                 ret = 0;
758                 goto out;
759         }
760         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
761                 if ((pdpte[i] & PT_PRESENT_MASK) &&
762                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
763                         ret = 0;
764                         goto out;
765                 }
766         }
767         ret = 1;
768
769         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
770         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
771
772 out:
773
774         return ret;
775 }
776 EXPORT_SYMBOL_GPL(load_pdptrs);
777
778 bool pdptrs_changed(struct kvm_vcpu *vcpu)
779 {
780         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
781         int offset;
782         gfn_t gfn;
783         int r;
784
785         if (!is_pae_paging(vcpu))
786                 return false;
787
788         if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
789                 return true;
790
791         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
792         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
793         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
794                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
795         if (r < 0)
796                 return true;
797
798         return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
799 }
800 EXPORT_SYMBOL_GPL(pdptrs_changed);
801
802 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
803 {
804         unsigned long old_cr0 = kvm_read_cr0(vcpu);
805         unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
806         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
807
808         cr0 |= X86_CR0_ET;
809
810 #ifdef CONFIG_X86_64
811         if (cr0 & 0xffffffff00000000UL)
812                 return 1;
813 #endif
814
815         cr0 &= ~CR0_RESERVED_BITS;
816
817         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
818                 return 1;
819
820         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
821                 return 1;
822
823 #ifdef CONFIG_X86_64
824         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
825             (cr0 & X86_CR0_PG)) {
826                 int cs_db, cs_l;
827
828                 if (!is_pae(vcpu))
829                         return 1;
830                 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
831                 if (cs_l)
832                         return 1;
833         }
834 #endif
835         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
836             is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
837             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
838                 return 1;
839
840         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
841                 return 1;
842
843         kvm_x86_ops.set_cr0(vcpu, cr0);
844
845         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
846                 kvm_clear_async_pf_completion_queue(vcpu);
847                 kvm_async_pf_hash_reset(vcpu);
848         }
849
850         if ((cr0 ^ old_cr0) & update_bits)
851                 kvm_mmu_reset_context(vcpu);
852
853         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
854             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
855             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
856                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
857
858         return 0;
859 }
860 EXPORT_SYMBOL_GPL(kvm_set_cr0);
861
862 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
863 {
864         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
865 }
866 EXPORT_SYMBOL_GPL(kvm_lmsw);
867
868 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
869 {
870         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
871
872                 if (vcpu->arch.xcr0 != host_xcr0)
873                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
874
875                 if (vcpu->arch.xsaves_enabled &&
876                     vcpu->arch.ia32_xss != host_xss)
877                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
878         }
879
880         if (static_cpu_has(X86_FEATURE_PKU) &&
881             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
882              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
883             vcpu->arch.pkru != vcpu->arch.host_pkru)
884                 __write_pkru(vcpu->arch.pkru);
885 }
886 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
887
888 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
889 {
890         if (static_cpu_has(X86_FEATURE_PKU) &&
891             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
892              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
893                 vcpu->arch.pkru = rdpkru();
894                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
895                         __write_pkru(vcpu->arch.host_pkru);
896         }
897
898         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
899
900                 if (vcpu->arch.xcr0 != host_xcr0)
901                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
902
903                 if (vcpu->arch.xsaves_enabled &&
904                     vcpu->arch.ia32_xss != host_xss)
905                         wrmsrl(MSR_IA32_XSS, host_xss);
906         }
907
908 }
909 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
910
911 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
912 {
913         u64 xcr0 = xcr;
914         u64 old_xcr0 = vcpu->arch.xcr0;
915         u64 valid_bits;
916
917         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
918         if (index != XCR_XFEATURE_ENABLED_MASK)
919                 return 1;
920         if (!(xcr0 & XFEATURE_MASK_FP))
921                 return 1;
922         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
923                 return 1;
924
925         /*
926          * Do not allow the guest to set bits that we do not support
927          * saving.  However, xcr0 bit 0 is always set, even if the
928          * emulated CPU does not support XSAVE (see fx_init).
929          */
930         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
931         if (xcr0 & ~valid_bits)
932                 return 1;
933
934         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
935             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
936                 return 1;
937
938         if (xcr0 & XFEATURE_MASK_AVX512) {
939                 if (!(xcr0 & XFEATURE_MASK_YMM))
940                         return 1;
941                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
942                         return 1;
943         }
944         vcpu->arch.xcr0 = xcr0;
945
946         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
947                 kvm_update_cpuid_runtime(vcpu);
948         return 0;
949 }
950
951 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
952 {
953         if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
954             __kvm_set_xcr(vcpu, index, xcr)) {
955                 kvm_inject_gp(vcpu, 0);
956                 return 1;
957         }
958         return 0;
959 }
960 EXPORT_SYMBOL_GPL(kvm_set_xcr);
961
962 int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
963 {
964         if (cr4 & cr4_reserved_bits)
965                 return -EINVAL;
966
967         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
968                 return -EINVAL;
969
970         return 0;
971 }
972 EXPORT_SYMBOL_GPL(kvm_valid_cr4);
973
974 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
975 {
976         unsigned long old_cr4 = kvm_read_cr4(vcpu);
977         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
978                                    X86_CR4_SMEP;
979         unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE;
980
981         if (kvm_valid_cr4(vcpu, cr4))
982                 return 1;
983
984         if (is_long_mode(vcpu)) {
985                 if (!(cr4 & X86_CR4_PAE))
986                         return 1;
987                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
988                         return 1;
989         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
990                    && ((cr4 ^ old_cr4) & pdptr_bits)
991                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
992                                    kvm_read_cr3(vcpu)))
993                 return 1;
994
995         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
996                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
997                         return 1;
998
999                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1000                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1001                         return 1;
1002         }
1003
1004         if (kvm_x86_ops.set_cr4(vcpu, cr4))
1005                 return 1;
1006
1007         if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1008             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1009                 kvm_mmu_reset_context(vcpu);
1010
1011         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1012                 kvm_update_cpuid_runtime(vcpu);
1013
1014         return 0;
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1017
1018 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1019 {
1020         bool skip_tlb_flush = false;
1021 #ifdef CONFIG_X86_64
1022         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1023
1024         if (pcid_enabled) {
1025                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1026                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1027         }
1028 #endif
1029
1030         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1031                 if (!skip_tlb_flush) {
1032                         kvm_mmu_sync_roots(vcpu);
1033                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1034                 }
1035                 return 0;
1036         }
1037
1038         if (is_long_mode(vcpu) &&
1039             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
1040                 return 1;
1041         else if (is_pae_paging(vcpu) &&
1042                  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1043                 return 1;
1044
1045         kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1046         vcpu->arch.cr3 = cr3;
1047         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1048
1049         return 0;
1050 }
1051 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1052
1053 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1054 {
1055         if (cr8 & CR8_RESERVED_BITS)
1056                 return 1;
1057         if (lapic_in_kernel(vcpu))
1058                 kvm_lapic_set_tpr(vcpu, cr8);
1059         else
1060                 vcpu->arch.cr8 = cr8;
1061         return 0;
1062 }
1063 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1064
1065 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1066 {
1067         if (lapic_in_kernel(vcpu))
1068                 return kvm_lapic_get_cr8(vcpu);
1069         else
1070                 return vcpu->arch.cr8;
1071 }
1072 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1073
1074 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1075 {
1076         int i;
1077
1078         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1079                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1080                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1081                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1082         }
1083 }
1084
1085 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1086 {
1087         unsigned long dr7;
1088
1089         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1090                 dr7 = vcpu->arch.guest_debug_dr7;
1091         else
1092                 dr7 = vcpu->arch.dr7;
1093         kvm_x86_ops.set_dr7(vcpu, dr7);
1094         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1095         if (dr7 & DR7_BP_EN_MASK)
1096                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1097 }
1098 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1099
1100 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1101 {
1102         u64 fixed = DR6_FIXED_1;
1103
1104         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1105                 fixed |= DR6_RTM;
1106         return fixed;
1107 }
1108
1109 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1110 {
1111         size_t size = ARRAY_SIZE(vcpu->arch.db);
1112
1113         switch (dr) {
1114         case 0 ... 3:
1115                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1116                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1117                         vcpu->arch.eff_db[dr] = val;
1118                 break;
1119         case 4:
1120         case 6:
1121                 if (!kvm_dr6_valid(val))
1122                         return -1; /* #GP */
1123                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1124                 break;
1125         case 5:
1126         default: /* 7 */
1127                 if (!kvm_dr7_valid(val))
1128                         return -1; /* #GP */
1129                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1130                 kvm_update_dr7(vcpu);
1131                 break;
1132         }
1133
1134         return 0;
1135 }
1136
1137 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1138 {
1139         if (__kvm_set_dr(vcpu, dr, val)) {
1140                 kvm_inject_gp(vcpu, 0);
1141                 return 1;
1142         }
1143         return 0;
1144 }
1145 EXPORT_SYMBOL_GPL(kvm_set_dr);
1146
1147 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1148 {
1149         size_t size = ARRAY_SIZE(vcpu->arch.db);
1150
1151         switch (dr) {
1152         case 0 ... 3:
1153                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1154                 break;
1155         case 4:
1156         case 6:
1157                 *val = vcpu->arch.dr6;
1158                 break;
1159         case 5:
1160         default: /* 7 */
1161                 *val = vcpu->arch.dr7;
1162                 break;
1163         }
1164         return 0;
1165 }
1166 EXPORT_SYMBOL_GPL(kvm_get_dr);
1167
1168 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1169 {
1170         u32 ecx = kvm_rcx_read(vcpu);
1171         u64 data;
1172         int err;
1173
1174         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1175         if (err)
1176                 return err;
1177         kvm_rax_write(vcpu, (u32)data);
1178         kvm_rdx_write(vcpu, data >> 32);
1179         return err;
1180 }
1181 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1182
1183 /*
1184  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1185  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1186  *
1187  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1188  * extract the supported MSRs from the related const lists.
1189  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1190  * capabilities of the host cpu. This capabilities test skips MSRs that are
1191  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1192  * may depend on host virtualization features rather than host cpu features.
1193  */
1194
1195 static const u32 msrs_to_save_all[] = {
1196         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1197         MSR_STAR,
1198 #ifdef CONFIG_X86_64
1199         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1200 #endif
1201         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1202         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1203         MSR_IA32_SPEC_CTRL,
1204         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1205         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1206         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1207         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1208         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1209         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1210         MSR_IA32_UMWAIT_CONTROL,
1211
1212         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1213         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1214         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1215         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1216         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1217         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1218         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1219         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1220         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1221         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1222         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1223         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1224         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1225         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1226         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1227         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1228         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1229         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1230         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1231         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1232         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1233         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1234 };
1235
1236 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1237 static unsigned num_msrs_to_save;
1238
1239 static const u32 emulated_msrs_all[] = {
1240         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1241         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1242         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1243         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1244         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1245         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1246         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1247         HV_X64_MSR_RESET,
1248         HV_X64_MSR_VP_INDEX,
1249         HV_X64_MSR_VP_RUNTIME,
1250         HV_X64_MSR_SCONTROL,
1251         HV_X64_MSR_STIMER0_CONFIG,
1252         HV_X64_MSR_VP_ASSIST_PAGE,
1253         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1254         HV_X64_MSR_TSC_EMULATION_STATUS,
1255         HV_X64_MSR_SYNDBG_OPTIONS,
1256         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1257         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1258         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1259
1260         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1261         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1262
1263         MSR_IA32_TSC_ADJUST,
1264         MSR_IA32_TSCDEADLINE,
1265         MSR_IA32_ARCH_CAPABILITIES,
1266         MSR_IA32_PERF_CAPABILITIES,
1267         MSR_IA32_MISC_ENABLE,
1268         MSR_IA32_MCG_STATUS,
1269         MSR_IA32_MCG_CTL,
1270         MSR_IA32_MCG_EXT_CTL,
1271         MSR_IA32_SMBASE,
1272         MSR_SMI_COUNT,
1273         MSR_PLATFORM_INFO,
1274         MSR_MISC_FEATURES_ENABLES,
1275         MSR_AMD64_VIRT_SPEC_CTRL,
1276         MSR_IA32_POWER_CTL,
1277         MSR_IA32_UCODE_REV,
1278
1279         /*
1280          * The following list leaves out MSRs whose values are determined
1281          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1282          * We always support the "true" VMX control MSRs, even if the host
1283          * processor does not, so I am putting these registers here rather
1284          * than in msrs_to_save_all.
1285          */
1286         MSR_IA32_VMX_BASIC,
1287         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1288         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1289         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1290         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1291         MSR_IA32_VMX_MISC,
1292         MSR_IA32_VMX_CR0_FIXED0,
1293         MSR_IA32_VMX_CR4_FIXED0,
1294         MSR_IA32_VMX_VMCS_ENUM,
1295         MSR_IA32_VMX_PROCBASED_CTLS2,
1296         MSR_IA32_VMX_EPT_VPID_CAP,
1297         MSR_IA32_VMX_VMFUNC,
1298
1299         MSR_K7_HWCR,
1300         MSR_KVM_POLL_CONTROL,
1301 };
1302
1303 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1304 static unsigned num_emulated_msrs;
1305
1306 /*
1307  * List of msr numbers which are used to expose MSR-based features that
1308  * can be used by a hypervisor to validate requested CPU features.
1309  */
1310 static const u32 msr_based_features_all[] = {
1311         MSR_IA32_VMX_BASIC,
1312         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1313         MSR_IA32_VMX_PINBASED_CTLS,
1314         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1315         MSR_IA32_VMX_PROCBASED_CTLS,
1316         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1317         MSR_IA32_VMX_EXIT_CTLS,
1318         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1319         MSR_IA32_VMX_ENTRY_CTLS,
1320         MSR_IA32_VMX_MISC,
1321         MSR_IA32_VMX_CR0_FIXED0,
1322         MSR_IA32_VMX_CR0_FIXED1,
1323         MSR_IA32_VMX_CR4_FIXED0,
1324         MSR_IA32_VMX_CR4_FIXED1,
1325         MSR_IA32_VMX_VMCS_ENUM,
1326         MSR_IA32_VMX_PROCBASED_CTLS2,
1327         MSR_IA32_VMX_EPT_VPID_CAP,
1328         MSR_IA32_VMX_VMFUNC,
1329
1330         MSR_F10H_DECFG,
1331         MSR_IA32_UCODE_REV,
1332         MSR_IA32_ARCH_CAPABILITIES,
1333         MSR_IA32_PERF_CAPABILITIES,
1334 };
1335
1336 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1337 static unsigned int num_msr_based_features;
1338
1339 static u64 kvm_get_arch_capabilities(void)
1340 {
1341         u64 data = 0;
1342
1343         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1344                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1345
1346         /*
1347          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1348          * the nested hypervisor runs with NX huge pages.  If it is not,
1349          * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1350          * L1 guests, so it need not worry about its own (L2) guests.
1351          */
1352         data |= ARCH_CAP_PSCHANGE_MC_NO;
1353
1354         /*
1355          * If we're doing cache flushes (either "always" or "cond")
1356          * we will do one whenever the guest does a vmlaunch/vmresume.
1357          * If an outer hypervisor is doing the cache flush for us
1358          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1359          * capability to the guest too, and if EPT is disabled we're not
1360          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1361          * require a nested hypervisor to do a flush of its own.
1362          */
1363         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1364                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1365
1366         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1367                 data |= ARCH_CAP_RDCL_NO;
1368         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1369                 data |= ARCH_CAP_SSB_NO;
1370         if (!boot_cpu_has_bug(X86_BUG_MDS))
1371                 data |= ARCH_CAP_MDS_NO;
1372
1373         /*
1374          * On TAA affected systems:
1375          *      - nothing to do if TSX is disabled on the host.
1376          *      - we emulate TSX_CTRL if present on the host.
1377          *        This lets the guest use VERW to clear CPU buffers.
1378          */
1379         if (!boot_cpu_has(X86_FEATURE_RTM))
1380                 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1381         else if (!boot_cpu_has_bug(X86_BUG_TAA))
1382                 data |= ARCH_CAP_TAA_NO;
1383
1384         return data;
1385 }
1386
1387 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1388 {
1389         switch (msr->index) {
1390         case MSR_IA32_ARCH_CAPABILITIES:
1391                 msr->data = kvm_get_arch_capabilities();
1392                 break;
1393         case MSR_IA32_UCODE_REV:
1394                 rdmsrl_safe(msr->index, &msr->data);
1395                 break;
1396         default:
1397                 return kvm_x86_ops.get_msr_feature(msr);
1398         }
1399         return 0;
1400 }
1401
1402 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1403 {
1404         struct kvm_msr_entry msr;
1405         int r;
1406
1407         msr.index = index;
1408         r = kvm_get_msr_feature(&msr);
1409
1410         if (r == KVM_MSR_RET_INVALID) {
1411                 /* Unconditionally clear the output for simplicity */
1412                 *data = 0;
1413                 r = kvm_msr_ignored_check(vcpu, index, 0, false);
1414         }
1415
1416         if (r)
1417                 return r;
1418
1419         *data = msr.data;
1420
1421         return 0;
1422 }
1423
1424 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1425 {
1426         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1427                 return false;
1428
1429         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1430                 return false;
1431
1432         if (efer & (EFER_LME | EFER_LMA) &&
1433             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1434                 return false;
1435
1436         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1437                 return false;
1438
1439         return true;
1440
1441 }
1442 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1443 {
1444         if (efer & efer_reserved_bits)
1445                 return false;
1446
1447         return __kvm_valid_efer(vcpu, efer);
1448 }
1449 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1450
1451 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1452 {
1453         u64 old_efer = vcpu->arch.efer;
1454         u64 efer = msr_info->data;
1455
1456         if (efer & efer_reserved_bits)
1457                 return 1;
1458
1459         if (!msr_info->host_initiated) {
1460                 if (!__kvm_valid_efer(vcpu, efer))
1461                         return 1;
1462
1463                 if (is_paging(vcpu) &&
1464                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1465                         return 1;
1466         }
1467
1468         efer &= ~EFER_LMA;
1469         efer |= vcpu->arch.efer & EFER_LMA;
1470
1471         kvm_x86_ops.set_efer(vcpu, efer);
1472
1473         /* Update reserved bits */
1474         if ((efer ^ old_efer) & EFER_NX)
1475                 kvm_mmu_reset_context(vcpu);
1476
1477         return 0;
1478 }
1479
1480 void kvm_enable_efer_bits(u64 mask)
1481 {
1482        efer_reserved_bits &= ~mask;
1483 }
1484 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1485
1486 /*
1487  * Write @data into the MSR specified by @index.  Select MSR specific fault
1488  * checks are bypassed if @host_initiated is %true.
1489  * Returns 0 on success, non-0 otherwise.
1490  * Assumes vcpu_load() was already called.
1491  */
1492 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1493                          bool host_initiated)
1494 {
1495         struct msr_data msr;
1496
1497         switch (index) {
1498         case MSR_FS_BASE:
1499         case MSR_GS_BASE:
1500         case MSR_KERNEL_GS_BASE:
1501         case MSR_CSTAR:
1502         case MSR_LSTAR:
1503                 if (is_noncanonical_address(data, vcpu))
1504                         return 1;
1505                 break;
1506         case MSR_IA32_SYSENTER_EIP:
1507         case MSR_IA32_SYSENTER_ESP:
1508                 /*
1509                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1510                  * non-canonical address is written on Intel but not on
1511                  * AMD (which ignores the top 32-bits, because it does
1512                  * not implement 64-bit SYSENTER).
1513                  *
1514                  * 64-bit code should hence be able to write a non-canonical
1515                  * value on AMD.  Making the address canonical ensures that
1516                  * vmentry does not fail on Intel after writing a non-canonical
1517                  * value, and that something deterministic happens if the guest
1518                  * invokes 64-bit SYSENTER.
1519                  */
1520                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1521         }
1522
1523         msr.data = data;
1524         msr.index = index;
1525         msr.host_initiated = host_initiated;
1526
1527         return kvm_x86_ops.set_msr(vcpu, &msr);
1528 }
1529
1530 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1531                                      u32 index, u64 data, bool host_initiated)
1532 {
1533         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1534
1535         if (ret == KVM_MSR_RET_INVALID)
1536                 ret = kvm_msr_ignored_check(vcpu, index, data, true);
1537
1538         return ret;
1539 }
1540
1541 /*
1542  * Read the MSR specified by @index into @data.  Select MSR specific fault
1543  * checks are bypassed if @host_initiated is %true.
1544  * Returns 0 on success, non-0 otherwise.
1545  * Assumes vcpu_load() was already called.
1546  */
1547 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1548                   bool host_initiated)
1549 {
1550         struct msr_data msr;
1551         int ret;
1552
1553         msr.index = index;
1554         msr.host_initiated = host_initiated;
1555
1556         ret = kvm_x86_ops.get_msr(vcpu, &msr);
1557         if (!ret)
1558                 *data = msr.data;
1559         return ret;
1560 }
1561
1562 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1563                                      u32 index, u64 *data, bool host_initiated)
1564 {
1565         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1566
1567         if (ret == KVM_MSR_RET_INVALID) {
1568                 /* Unconditionally clear *data for simplicity */
1569                 *data = 0;
1570                 ret = kvm_msr_ignored_check(vcpu, index, 0, false);
1571         }
1572
1573         return ret;
1574 }
1575
1576 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1577 {
1578         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1579 }
1580 EXPORT_SYMBOL_GPL(kvm_get_msr);
1581
1582 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1583 {
1584         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1585 }
1586 EXPORT_SYMBOL_GPL(kvm_set_msr);
1587
1588 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1589 {
1590         u32 ecx = kvm_rcx_read(vcpu);
1591         u64 data;
1592
1593         if (kvm_get_msr(vcpu, ecx, &data)) {
1594                 trace_kvm_msr_read_ex(ecx);
1595                 kvm_inject_gp(vcpu, 0);
1596                 return 1;
1597         }
1598
1599         trace_kvm_msr_read(ecx, data);
1600
1601         kvm_rax_write(vcpu, data & -1u);
1602         kvm_rdx_write(vcpu, (data >> 32) & -1u);
1603         return kvm_skip_emulated_instruction(vcpu);
1604 }
1605 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1606
1607 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1608 {
1609         u32 ecx = kvm_rcx_read(vcpu);
1610         u64 data = kvm_read_edx_eax(vcpu);
1611
1612         if (kvm_set_msr(vcpu, ecx, data)) {
1613                 trace_kvm_msr_write_ex(ecx, data);
1614                 kvm_inject_gp(vcpu, 0);
1615                 return 1;
1616         }
1617
1618         trace_kvm_msr_write(ecx, data);
1619         return kvm_skip_emulated_instruction(vcpu);
1620 }
1621 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1622
1623 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1624 {
1625         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1626                 xfer_to_guest_mode_work_pending();
1627 }
1628 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1629
1630 /*
1631  * The fast path for frequent and performance sensitive wrmsr emulation,
1632  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1633  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1634  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1635  * other cases which must be called after interrupts are enabled on the host.
1636  */
1637 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1638 {
1639         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1640                 return 1;
1641
1642         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1643                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1644                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1645                 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1646
1647                 data &= ~(1 << 12);
1648                 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1649                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1650                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1651                 trace_kvm_apic_write(APIC_ICR, (u32)data);
1652                 return 0;
1653         }
1654
1655         return 1;
1656 }
1657
1658 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1659 {
1660         if (!kvm_can_use_hv_timer(vcpu))
1661                 return 1;
1662
1663         kvm_set_lapic_tscdeadline_msr(vcpu, data);
1664         return 0;
1665 }
1666
1667 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1668 {
1669         u32 msr = kvm_rcx_read(vcpu);
1670         u64 data;
1671         fastpath_t ret = EXIT_FASTPATH_NONE;
1672
1673         switch (msr) {
1674         case APIC_BASE_MSR + (APIC_ICR >> 4):
1675                 data = kvm_read_edx_eax(vcpu);
1676                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1677                         kvm_skip_emulated_instruction(vcpu);
1678                         ret = EXIT_FASTPATH_EXIT_HANDLED;
1679                 }
1680                 break;
1681         case MSR_IA32_TSCDEADLINE:
1682                 data = kvm_read_edx_eax(vcpu);
1683                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1684                         kvm_skip_emulated_instruction(vcpu);
1685                         ret = EXIT_FASTPATH_REENTER_GUEST;
1686                 }
1687                 break;
1688         default:
1689                 break;
1690         }
1691
1692         if (ret != EXIT_FASTPATH_NONE)
1693                 trace_kvm_msr_write(msr, data);
1694
1695         return ret;
1696 }
1697 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1698
1699 /*
1700  * Adapt set_msr() to msr_io()'s calling convention
1701  */
1702 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1703 {
1704         return kvm_get_msr_ignored_check(vcpu, index, data, true);
1705 }
1706
1707 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1708 {
1709         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1710 }
1711
1712 #ifdef CONFIG_X86_64
1713 struct pvclock_clock {
1714         int vclock_mode;
1715         u64 cycle_last;
1716         u64 mask;
1717         u32 mult;
1718         u32 shift;
1719         u64 base_cycles;
1720         u64 offset;
1721 };
1722
1723 struct pvclock_gtod_data {
1724         seqcount_t      seq;
1725
1726         struct pvclock_clock clock; /* extract of a clocksource struct */
1727         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1728
1729         ktime_t         offs_boot;
1730         u64             wall_time_sec;
1731 };
1732
1733 static struct pvclock_gtod_data pvclock_gtod_data;
1734
1735 static void update_pvclock_gtod(struct timekeeper *tk)
1736 {
1737         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1738
1739         write_seqcount_begin(&vdata->seq);
1740
1741         /* copy pvclock gtod data */
1742         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
1743         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1744         vdata->clock.mask               = tk->tkr_mono.mask;
1745         vdata->clock.mult               = tk->tkr_mono.mult;
1746         vdata->clock.shift              = tk->tkr_mono.shift;
1747         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
1748         vdata->clock.offset             = tk->tkr_mono.base;
1749
1750         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
1751         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
1752         vdata->raw_clock.mask           = tk->tkr_raw.mask;
1753         vdata->raw_clock.mult           = tk->tkr_raw.mult;
1754         vdata->raw_clock.shift          = tk->tkr_raw.shift;
1755         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
1756         vdata->raw_clock.offset         = tk->tkr_raw.base;
1757
1758         vdata->wall_time_sec            = tk->xtime_sec;
1759
1760         vdata->offs_boot                = tk->offs_boot;
1761
1762         write_seqcount_end(&vdata->seq);
1763 }
1764
1765 static s64 get_kvmclock_base_ns(void)
1766 {
1767         /* Count up from boot time, but with the frequency of the raw clock.  */
1768         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1769 }
1770 #else
1771 static s64 get_kvmclock_base_ns(void)
1772 {
1773         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1774         return ktime_get_boottime_ns();
1775 }
1776 #endif
1777
1778 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1779 {
1780         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1781         kvm_vcpu_kick(vcpu);
1782 }
1783
1784 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1785 {
1786         int version;
1787         int r;
1788         struct pvclock_wall_clock wc;
1789         u64 wall_nsec;
1790
1791         if (!wall_clock)
1792                 return;
1793
1794         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1795         if (r)
1796                 return;
1797
1798         if (version & 1)
1799                 ++version;  /* first time write, random junk */
1800
1801         ++version;
1802
1803         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1804                 return;
1805
1806         /*
1807          * The guest calculates current wall clock time by adding
1808          * system time (updated by kvm_guest_time_update below) to the
1809          * wall clock specified here.  We do the reverse here.
1810          */
1811         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1812
1813         wc.nsec = do_div(wall_nsec, 1000000000);
1814         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1815         wc.version = version;
1816
1817         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1818
1819         version++;
1820         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1821 }
1822
1823 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1824 {
1825         do_shl32_div32(dividend, divisor);
1826         return dividend;
1827 }
1828
1829 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1830                                s8 *pshift, u32 *pmultiplier)
1831 {
1832         uint64_t scaled64;
1833         int32_t  shift = 0;
1834         uint64_t tps64;
1835         uint32_t tps32;
1836
1837         tps64 = base_hz;
1838         scaled64 = scaled_hz;
1839         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1840                 tps64 >>= 1;
1841                 shift--;
1842         }
1843
1844         tps32 = (uint32_t)tps64;
1845         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1846                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1847                         scaled64 >>= 1;
1848                 else
1849                         tps32 <<= 1;
1850                 shift++;
1851         }
1852
1853         *pshift = shift;
1854         *pmultiplier = div_frac(scaled64, tps32);
1855 }
1856
1857 #ifdef CONFIG_X86_64
1858 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1859 #endif
1860
1861 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1862 static unsigned long max_tsc_khz;
1863
1864 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1865 {
1866         u64 v = (u64)khz * (1000000 + ppm);
1867         do_div(v, 1000000);
1868         return v;
1869 }
1870
1871 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1872 {
1873         u64 ratio;
1874
1875         /* Guest TSC same frequency as host TSC? */
1876         if (!scale) {
1877                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1878                 return 0;
1879         }
1880
1881         /* TSC scaling supported? */
1882         if (!kvm_has_tsc_control) {
1883                 if (user_tsc_khz > tsc_khz) {
1884                         vcpu->arch.tsc_catchup = 1;
1885                         vcpu->arch.tsc_always_catchup = 1;
1886                         return 0;
1887                 } else {
1888                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1889                         return -1;
1890                 }
1891         }
1892
1893         /* TSC scaling required  - calculate ratio */
1894         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1895                                 user_tsc_khz, tsc_khz);
1896
1897         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1898                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1899                                     user_tsc_khz);
1900                 return -1;
1901         }
1902
1903         vcpu->arch.tsc_scaling_ratio = ratio;
1904         return 0;
1905 }
1906
1907 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1908 {
1909         u32 thresh_lo, thresh_hi;
1910         int use_scaling = 0;
1911
1912         /* tsc_khz can be zero if TSC calibration fails */
1913         if (user_tsc_khz == 0) {
1914                 /* set tsc_scaling_ratio to a safe value */
1915                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1916                 return -1;
1917         }
1918
1919         /* Compute a scale to convert nanoseconds in TSC cycles */
1920         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1921                            &vcpu->arch.virtual_tsc_shift,
1922                            &vcpu->arch.virtual_tsc_mult);
1923         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1924
1925         /*
1926          * Compute the variation in TSC rate which is acceptable
1927          * within the range of tolerance and decide if the
1928          * rate being applied is within that bounds of the hardware
1929          * rate.  If so, no scaling or compensation need be done.
1930          */
1931         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1932         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1933         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1934                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1935                 use_scaling = 1;
1936         }
1937         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1938 }
1939
1940 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1941 {
1942         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1943                                       vcpu->arch.virtual_tsc_mult,
1944                                       vcpu->arch.virtual_tsc_shift);
1945         tsc += vcpu->arch.this_tsc_write;
1946         return tsc;
1947 }
1948
1949 static inline int gtod_is_based_on_tsc(int mode)
1950 {
1951         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
1952 }
1953
1954 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1955 {
1956 #ifdef CONFIG_X86_64
1957         bool vcpus_matched;
1958         struct kvm_arch *ka = &vcpu->kvm->arch;
1959         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1960
1961         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1962                          atomic_read(&vcpu->kvm->online_vcpus));
1963
1964         /*
1965          * Once the masterclock is enabled, always perform request in
1966          * order to update it.
1967          *
1968          * In order to enable masterclock, the host clocksource must be TSC
1969          * and the vcpus need to have matched TSCs.  When that happens,
1970          * perform request to enable masterclock.
1971          */
1972         if (ka->use_master_clock ||
1973             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1974                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1975
1976         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1977                             atomic_read(&vcpu->kvm->online_vcpus),
1978                             ka->use_master_clock, gtod->clock.vclock_mode);
1979 #endif
1980 }
1981
1982 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1983 {
1984         u64 curr_offset = vcpu->arch.l1_tsc_offset;
1985         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1986 }
1987
1988 /*
1989  * Multiply tsc by a fixed point number represented by ratio.
1990  *
1991  * The most significant 64-N bits (mult) of ratio represent the
1992  * integral part of the fixed point number; the remaining N bits
1993  * (frac) represent the fractional part, ie. ratio represents a fixed
1994  * point number (mult + frac * 2^(-N)).
1995  *
1996  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1997  */
1998 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1999 {
2000         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2001 }
2002
2003 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2004 {
2005         u64 _tsc = tsc;
2006         u64 ratio = vcpu->arch.tsc_scaling_ratio;
2007
2008         if (ratio != kvm_default_tsc_scaling_ratio)
2009                 _tsc = __scale_tsc(ratio, tsc);
2010
2011         return _tsc;
2012 }
2013 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2014
2015 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2016 {
2017         u64 tsc;
2018
2019         tsc = kvm_scale_tsc(vcpu, rdtsc());
2020
2021         return target_tsc - tsc;
2022 }
2023
2024 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2025 {
2026         return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2027 }
2028 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2029
2030 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2031 {
2032         vcpu->arch.l1_tsc_offset = offset;
2033         vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
2034 }
2035
2036 static inline bool kvm_check_tsc_unstable(void)
2037 {
2038 #ifdef CONFIG_X86_64
2039         /*
2040          * TSC is marked unstable when we're running on Hyper-V,
2041          * 'TSC page' clocksource is good.
2042          */
2043         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2044                 return false;
2045 #endif
2046         return check_tsc_unstable();
2047 }
2048
2049 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
2050 {
2051         struct kvm *kvm = vcpu->kvm;
2052         u64 offset, ns, elapsed;
2053         unsigned long flags;
2054         bool matched;
2055         bool already_matched;
2056         u64 data = msr->data;
2057         bool synchronizing = false;
2058
2059         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2060         offset = kvm_compute_tsc_offset(vcpu, data);
2061         ns = get_kvmclock_base_ns();
2062         elapsed = ns - kvm->arch.last_tsc_nsec;
2063
2064         if (vcpu->arch.virtual_tsc_khz) {
2065                 if (data == 0 && msr->host_initiated) {
2066                         /*
2067                          * detection of vcpu initialization -- need to sync
2068                          * with other vCPUs. This particularly helps to keep
2069                          * kvm_clock stable after CPU hotplug
2070                          */
2071                         synchronizing = true;
2072                 } else {
2073                         u64 tsc_exp = kvm->arch.last_tsc_write +
2074                                                 nsec_to_cycles(vcpu, elapsed);
2075                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2076                         /*
2077                          * Special case: TSC write with a small delta (1 second)
2078                          * of virtual cycle time against real time is
2079                          * interpreted as an attempt to synchronize the CPU.
2080                          */
2081                         synchronizing = data < tsc_exp + tsc_hz &&
2082                                         data + tsc_hz > tsc_exp;
2083                 }
2084         }
2085
2086         /*
2087          * For a reliable TSC, we can match TSC offsets, and for an unstable
2088          * TSC, we add elapsed time in this computation.  We could let the
2089          * compensation code attempt to catch up if we fall behind, but
2090          * it's better to try to match offsets from the beginning.
2091          */
2092         if (synchronizing &&
2093             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2094                 if (!kvm_check_tsc_unstable()) {
2095                         offset = kvm->arch.cur_tsc_offset;
2096                 } else {
2097                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2098                         data += delta;
2099                         offset = kvm_compute_tsc_offset(vcpu, data);
2100                 }
2101                 matched = true;
2102                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2103         } else {
2104                 /*
2105                  * We split periods of matched TSC writes into generations.
2106                  * For each generation, we track the original measured
2107                  * nanosecond time, offset, and write, so if TSCs are in
2108                  * sync, we can match exact offset, and if not, we can match
2109                  * exact software computation in compute_guest_tsc()
2110                  *
2111                  * These values are tracked in kvm->arch.cur_xxx variables.
2112                  */
2113                 kvm->arch.cur_tsc_generation++;
2114                 kvm->arch.cur_tsc_nsec = ns;
2115                 kvm->arch.cur_tsc_write = data;
2116                 kvm->arch.cur_tsc_offset = offset;
2117                 matched = false;
2118         }
2119
2120         /*
2121          * We also track th most recent recorded KHZ, write and time to
2122          * allow the matching interval to be extended at each write.
2123          */
2124         kvm->arch.last_tsc_nsec = ns;
2125         kvm->arch.last_tsc_write = data;
2126         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2127
2128         vcpu->arch.last_guest_tsc = data;
2129
2130         /* Keep track of which generation this VCPU has synchronized to */
2131         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2132         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2133         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2134
2135         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
2136                 update_ia32_tsc_adjust_msr(vcpu, offset);
2137
2138         kvm_vcpu_write_tsc_offset(vcpu, offset);
2139         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2140
2141         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2142         if (!matched) {
2143                 kvm->arch.nr_vcpus_matched_tsc = 0;
2144         } else if (!already_matched) {
2145                 kvm->arch.nr_vcpus_matched_tsc++;
2146         }
2147
2148         kvm_track_tsc_matching(vcpu);
2149         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2150 }
2151
2152 EXPORT_SYMBOL_GPL(kvm_write_tsc);
2153
2154 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2155                                            s64 adjustment)
2156 {
2157         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2158         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2159 }
2160
2161 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2162 {
2163         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2164                 WARN_ON(adjustment < 0);
2165         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2166         adjust_tsc_offset_guest(vcpu, adjustment);
2167 }
2168
2169 #ifdef CONFIG_X86_64
2170
2171 static u64 read_tsc(void)
2172 {
2173         u64 ret = (u64)rdtsc_ordered();
2174         u64 last = pvclock_gtod_data.clock.cycle_last;
2175
2176         if (likely(ret >= last))
2177                 return ret;
2178
2179         /*
2180          * GCC likes to generate cmov here, but this branch is extremely
2181          * predictable (it's just a function of time and the likely is
2182          * very likely) and there's a data dependence, so force GCC
2183          * to generate a branch instead.  I don't barrier() because
2184          * we don't actually need a barrier, and if this function
2185          * ever gets inlined it will generate worse code.
2186          */
2187         asm volatile ("");
2188         return last;
2189 }
2190
2191 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2192                           int *mode)
2193 {
2194         long v;
2195         u64 tsc_pg_val;
2196
2197         switch (clock->vclock_mode) {
2198         case VDSO_CLOCKMODE_HVCLOCK:
2199                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2200                                                   tsc_timestamp);
2201                 if (tsc_pg_val != U64_MAX) {
2202                         /* TSC page valid */
2203                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2204                         v = (tsc_pg_val - clock->cycle_last) &
2205                                 clock->mask;
2206                 } else {
2207                         /* TSC page invalid */
2208                         *mode = VDSO_CLOCKMODE_NONE;
2209                 }
2210                 break;
2211         case VDSO_CLOCKMODE_TSC:
2212                 *mode = VDSO_CLOCKMODE_TSC;
2213                 *tsc_timestamp = read_tsc();
2214                 v = (*tsc_timestamp - clock->cycle_last) &
2215                         clock->mask;
2216                 break;
2217         default:
2218                 *mode = VDSO_CLOCKMODE_NONE;
2219         }
2220
2221         if (*mode == VDSO_CLOCKMODE_NONE)
2222                 *tsc_timestamp = v = 0;
2223
2224         return v * clock->mult;
2225 }
2226
2227 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2228 {
2229         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2230         unsigned long seq;
2231         int mode;
2232         u64 ns;
2233
2234         do {
2235                 seq = read_seqcount_begin(&gtod->seq);
2236                 ns = gtod->raw_clock.base_cycles;
2237                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2238                 ns >>= gtod->raw_clock.shift;
2239                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2240         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2241         *t = ns;
2242
2243         return mode;
2244 }
2245
2246 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2247 {
2248         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2249         unsigned long seq;
2250         int mode;
2251         u64 ns;
2252
2253         do {
2254                 seq = read_seqcount_begin(&gtod->seq);
2255                 ts->tv_sec = gtod->wall_time_sec;
2256                 ns = gtod->clock.base_cycles;
2257                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2258                 ns >>= gtod->clock.shift;
2259         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2260
2261         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2262         ts->tv_nsec = ns;
2263
2264         return mode;
2265 }
2266
2267 /* returns true if host is using TSC based clocksource */
2268 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2269 {
2270         /* checked again under seqlock below */
2271         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2272                 return false;
2273
2274         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2275                                                       tsc_timestamp));
2276 }
2277
2278 /* returns true if host is using TSC based clocksource */
2279 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2280                                            u64 *tsc_timestamp)
2281 {
2282         /* checked again under seqlock below */
2283         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2284                 return false;
2285
2286         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2287 }
2288 #endif
2289
2290 /*
2291  *
2292  * Assuming a stable TSC across physical CPUS, and a stable TSC
2293  * across virtual CPUs, the following condition is possible.
2294  * Each numbered line represents an event visible to both
2295  * CPUs at the next numbered event.
2296  *
2297  * "timespecX" represents host monotonic time. "tscX" represents
2298  * RDTSC value.
2299  *
2300  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2301  *
2302  * 1.  read timespec0,tsc0
2303  * 2.                                   | timespec1 = timespec0 + N
2304  *                                      | tsc1 = tsc0 + M
2305  * 3. transition to guest               | transition to guest
2306  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2307  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2308  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2309  *
2310  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2311  *
2312  *      - ret0 < ret1
2313  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2314  *              ...
2315  *      - 0 < N - M => M < N
2316  *
2317  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2318  * always the case (the difference between two distinct xtime instances
2319  * might be smaller then the difference between corresponding TSC reads,
2320  * when updating guest vcpus pvclock areas).
2321  *
2322  * To avoid that problem, do not allow visibility of distinct
2323  * system_timestamp/tsc_timestamp values simultaneously: use a master
2324  * copy of host monotonic time values. Update that master copy
2325  * in lockstep.
2326  *
2327  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2328  *
2329  */
2330
2331 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2332 {
2333 #ifdef CONFIG_X86_64
2334         struct kvm_arch *ka = &kvm->arch;
2335         int vclock_mode;
2336         bool host_tsc_clocksource, vcpus_matched;
2337
2338         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2339                         atomic_read(&kvm->online_vcpus));
2340
2341         /*
2342          * If the host uses TSC clock, then passthrough TSC as stable
2343          * to the guest.
2344          */
2345         host_tsc_clocksource = kvm_get_time_and_clockread(
2346                                         &ka->master_kernel_ns,
2347                                         &ka->master_cycle_now);
2348
2349         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2350                                 && !ka->backwards_tsc_observed
2351                                 && !ka->boot_vcpu_runs_old_kvmclock;
2352
2353         if (ka->use_master_clock)
2354                 atomic_set(&kvm_guest_has_master_clock, 1);
2355
2356         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2357         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2358                                         vcpus_matched);
2359 #endif
2360 }
2361
2362 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2363 {
2364         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2365 }
2366
2367 static void kvm_gen_update_masterclock(struct kvm *kvm)
2368 {
2369 #ifdef CONFIG_X86_64
2370         int i;
2371         struct kvm_vcpu *vcpu;
2372         struct kvm_arch *ka = &kvm->arch;
2373
2374         spin_lock(&ka->pvclock_gtod_sync_lock);
2375         kvm_make_mclock_inprogress_request(kvm);
2376         /* no guest entries from this point */
2377         pvclock_update_vm_gtod_copy(kvm);
2378
2379         kvm_for_each_vcpu(i, vcpu, kvm)
2380                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2381
2382         /* guest entries allowed */
2383         kvm_for_each_vcpu(i, vcpu, kvm)
2384                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2385
2386         spin_unlock(&ka->pvclock_gtod_sync_lock);
2387 #endif
2388 }
2389
2390 u64 get_kvmclock_ns(struct kvm *kvm)
2391 {
2392         struct kvm_arch *ka = &kvm->arch;
2393         struct pvclock_vcpu_time_info hv_clock;
2394         u64 ret;
2395
2396         spin_lock(&ka->pvclock_gtod_sync_lock);
2397         if (!ka->use_master_clock) {
2398                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2399                 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2400         }
2401
2402         hv_clock.tsc_timestamp = ka->master_cycle_now;
2403         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2404         spin_unlock(&ka->pvclock_gtod_sync_lock);
2405
2406         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2407         get_cpu();
2408
2409         if (__this_cpu_read(cpu_tsc_khz)) {
2410                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2411                                    &hv_clock.tsc_shift,
2412                                    &hv_clock.tsc_to_system_mul);
2413                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2414         } else
2415                 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2416
2417         put_cpu();
2418
2419         return ret;
2420 }
2421
2422 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2423 {
2424         struct kvm_vcpu_arch *vcpu = &v->arch;
2425         struct pvclock_vcpu_time_info guest_hv_clock;
2426
2427         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2428                 &guest_hv_clock, sizeof(guest_hv_clock))))
2429                 return;
2430
2431         /* This VCPU is paused, but it's legal for a guest to read another
2432          * VCPU's kvmclock, so we really have to follow the specification where
2433          * it says that version is odd if data is being modified, and even after
2434          * it is consistent.
2435          *
2436          * Version field updates must be kept separate.  This is because
2437          * kvm_write_guest_cached might use a "rep movs" instruction, and
2438          * writes within a string instruction are weakly ordered.  So there
2439          * are three writes overall.
2440          *
2441          * As a small optimization, only write the version field in the first
2442          * and third write.  The vcpu->pv_time cache is still valid, because the
2443          * version field is the first in the struct.
2444          */
2445         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2446
2447         if (guest_hv_clock.version & 1)
2448                 ++guest_hv_clock.version;  /* first time write, random junk */
2449
2450         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2451         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2452                                 &vcpu->hv_clock,
2453                                 sizeof(vcpu->hv_clock.version));
2454
2455         smp_wmb();
2456
2457         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2458         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2459
2460         if (vcpu->pvclock_set_guest_stopped_request) {
2461                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2462                 vcpu->pvclock_set_guest_stopped_request = false;
2463         }
2464
2465         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2466
2467         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2468                                 &vcpu->hv_clock,
2469                                 sizeof(vcpu->hv_clock));
2470
2471         smp_wmb();
2472
2473         vcpu->hv_clock.version++;
2474         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2475                                 &vcpu->hv_clock,
2476                                 sizeof(vcpu->hv_clock.version));
2477 }
2478
2479 static int kvm_guest_time_update(struct kvm_vcpu *v)
2480 {
2481         unsigned long flags, tgt_tsc_khz;
2482         struct kvm_vcpu_arch *vcpu = &v->arch;
2483         struct kvm_arch *ka = &v->kvm->arch;
2484         s64 kernel_ns;
2485         u64 tsc_timestamp, host_tsc;
2486         u8 pvclock_flags;
2487         bool use_master_clock;
2488
2489         kernel_ns = 0;
2490         host_tsc = 0;
2491
2492         /*
2493          * If the host uses TSC clock, then passthrough TSC as stable
2494          * to the guest.
2495          */
2496         spin_lock(&ka->pvclock_gtod_sync_lock);
2497         use_master_clock = ka->use_master_clock;
2498         if (use_master_clock) {
2499                 host_tsc = ka->master_cycle_now;
2500                 kernel_ns = ka->master_kernel_ns;
2501         }
2502         spin_unlock(&ka->pvclock_gtod_sync_lock);
2503
2504         /* Keep irq disabled to prevent changes to the clock */
2505         local_irq_save(flags);
2506         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2507         if (unlikely(tgt_tsc_khz == 0)) {
2508                 local_irq_restore(flags);
2509                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2510                 return 1;
2511         }
2512         if (!use_master_clock) {
2513                 host_tsc = rdtsc();
2514                 kernel_ns = get_kvmclock_base_ns();
2515         }
2516
2517         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2518
2519         /*
2520          * We may have to catch up the TSC to match elapsed wall clock
2521          * time for two reasons, even if kvmclock is used.
2522          *   1) CPU could have been running below the maximum TSC rate
2523          *   2) Broken TSC compensation resets the base at each VCPU
2524          *      entry to avoid unknown leaps of TSC even when running
2525          *      again on the same CPU.  This may cause apparent elapsed
2526          *      time to disappear, and the guest to stand still or run
2527          *      very slowly.
2528          */
2529         if (vcpu->tsc_catchup) {
2530                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2531                 if (tsc > tsc_timestamp) {
2532                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2533                         tsc_timestamp = tsc;
2534                 }
2535         }
2536
2537         local_irq_restore(flags);
2538
2539         /* With all the info we got, fill in the values */
2540
2541         if (kvm_has_tsc_control)
2542                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2543
2544         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2545                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2546                                    &vcpu->hv_clock.tsc_shift,
2547                                    &vcpu->hv_clock.tsc_to_system_mul);
2548                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2549         }
2550
2551         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2552         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2553         vcpu->last_guest_tsc = tsc_timestamp;
2554
2555         /* If the host uses TSC clocksource, then it is stable */
2556         pvclock_flags = 0;
2557         if (use_master_clock)
2558                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2559
2560         vcpu->hv_clock.flags = pvclock_flags;
2561
2562         if (vcpu->pv_time_enabled)
2563                 kvm_setup_pvclock_page(v);
2564         if (v == kvm_get_vcpu(v->kvm, 0))
2565                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2566         return 0;
2567 }
2568
2569 /*
2570  * kvmclock updates which are isolated to a given vcpu, such as
2571  * vcpu->cpu migration, should not allow system_timestamp from
2572  * the rest of the vcpus to remain static. Otherwise ntp frequency
2573  * correction applies to one vcpu's system_timestamp but not
2574  * the others.
2575  *
2576  * So in those cases, request a kvmclock update for all vcpus.
2577  * We need to rate-limit these requests though, as they can
2578  * considerably slow guests that have a large number of vcpus.
2579  * The time for a remote vcpu to update its kvmclock is bound
2580  * by the delay we use to rate-limit the updates.
2581  */
2582
2583 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2584
2585 static void kvmclock_update_fn(struct work_struct *work)
2586 {
2587         int i;
2588         struct delayed_work *dwork = to_delayed_work(work);
2589         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2590                                            kvmclock_update_work);
2591         struct kvm *kvm = container_of(ka, struct kvm, arch);
2592         struct kvm_vcpu *vcpu;
2593
2594         kvm_for_each_vcpu(i, vcpu, kvm) {
2595                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2596                 kvm_vcpu_kick(vcpu);
2597         }
2598 }
2599
2600 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2601 {
2602         struct kvm *kvm = v->kvm;
2603
2604         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2605         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2606                                         KVMCLOCK_UPDATE_DELAY);
2607 }
2608
2609 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2610
2611 static void kvmclock_sync_fn(struct work_struct *work)
2612 {
2613         struct delayed_work *dwork = to_delayed_work(work);
2614         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2615                                            kvmclock_sync_work);
2616         struct kvm *kvm = container_of(ka, struct kvm, arch);
2617
2618         if (!kvmclock_periodic_sync)
2619                 return;
2620
2621         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2622         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2623                                         KVMCLOCK_SYNC_PERIOD);
2624 }
2625
2626 /*
2627  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2628  */
2629 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2630 {
2631         /* McStatusWrEn enabled? */
2632         if (guest_cpuid_is_amd_or_hygon(vcpu))
2633                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2634
2635         return false;
2636 }
2637
2638 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2639 {
2640         u64 mcg_cap = vcpu->arch.mcg_cap;
2641         unsigned bank_num = mcg_cap & 0xff;
2642         u32 msr = msr_info->index;
2643         u64 data = msr_info->data;
2644
2645         switch (msr) {
2646         case MSR_IA32_MCG_STATUS:
2647                 vcpu->arch.mcg_status = data;
2648                 break;
2649         case MSR_IA32_MCG_CTL:
2650                 if (!(mcg_cap & MCG_CTL_P) &&
2651                     (data || !msr_info->host_initiated))
2652                         return 1;
2653                 if (data != 0 && data != ~(u64)0)
2654                         return 1;
2655                 vcpu->arch.mcg_ctl = data;
2656                 break;
2657         default:
2658                 if (msr >= MSR_IA32_MC0_CTL &&
2659                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2660                         u32 offset = array_index_nospec(
2661                                 msr - MSR_IA32_MC0_CTL,
2662                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2663
2664                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2665                          * some Linux kernels though clear bit 10 in bank 4 to
2666                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2667                          * this to avoid an uncatched #GP in the guest
2668                          */
2669                         if ((offset & 0x3) == 0 &&
2670                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2671                                 return -1;
2672
2673                         /* MCi_STATUS */
2674                         if (!msr_info->host_initiated &&
2675                             (offset & 0x3) == 1 && data != 0) {
2676                                 if (!can_set_mci_status(vcpu))
2677                                         return -1;
2678                         }
2679
2680                         vcpu->arch.mce_banks[offset] = data;
2681                         break;
2682                 }
2683                 return 1;
2684         }
2685         return 0;
2686 }
2687
2688 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2689 {
2690         struct kvm *kvm = vcpu->kvm;
2691         int lm = is_long_mode(vcpu);
2692         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2693                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2694         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2695                 : kvm->arch.xen_hvm_config.blob_size_32;
2696         u32 page_num = data & ~PAGE_MASK;
2697         u64 page_addr = data & PAGE_MASK;
2698         u8 *page;
2699         int r;
2700
2701         r = -E2BIG;
2702         if (page_num >= blob_size)
2703                 goto out;
2704         r = -ENOMEM;
2705         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2706         if (IS_ERR(page)) {
2707                 r = PTR_ERR(page);
2708                 goto out;
2709         }
2710         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2711                 goto out_free;
2712         r = 0;
2713 out_free:
2714         kfree(page);
2715 out:
2716         return r;
2717 }
2718
2719 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2720 {
2721         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2722
2723         return (vcpu->arch.apf.msr_en_val & mask) == mask;
2724 }
2725
2726 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2727 {
2728         gpa_t gpa = data & ~0x3f;
2729
2730         /* Bits 4:5 are reserved, Should be zero */
2731         if (data & 0x30)
2732                 return 1;
2733
2734         if (!lapic_in_kernel(vcpu))
2735                 return data ? 1 : 0;
2736
2737         vcpu->arch.apf.msr_en_val = data;
2738
2739         if (!kvm_pv_async_pf_enabled(vcpu)) {
2740                 kvm_clear_async_pf_completion_queue(vcpu);
2741                 kvm_async_pf_hash_reset(vcpu);
2742                 return 0;
2743         }
2744
2745         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2746                                         sizeof(u64)))
2747                 return 1;
2748
2749         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2750         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2751
2752         kvm_async_pf_wakeup_all(vcpu);
2753
2754         return 0;
2755 }
2756
2757 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2758 {
2759         /* Bits 8-63 are reserved */
2760         if (data >> 8)
2761                 return 1;
2762
2763         if (!lapic_in_kernel(vcpu))
2764                 return 1;
2765
2766         vcpu->arch.apf.msr_int_val = data;
2767
2768         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2769
2770         return 0;
2771 }
2772
2773 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2774 {
2775         vcpu->arch.pv_time_enabled = false;
2776         vcpu->arch.time = 0;
2777 }
2778
2779 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2780 {
2781         ++vcpu->stat.tlb_flush;
2782         kvm_x86_ops.tlb_flush_all(vcpu);
2783 }
2784
2785 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2786 {
2787         ++vcpu->stat.tlb_flush;
2788         kvm_x86_ops.tlb_flush_guest(vcpu);
2789 }
2790
2791 static void record_steal_time(struct kvm_vcpu *vcpu)
2792 {
2793         struct kvm_host_map map;
2794         struct kvm_steal_time *st;
2795
2796         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2797                 return;
2798
2799         /* -EAGAIN is returned in atomic context so we can just return. */
2800         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2801                         &map, &vcpu->arch.st.cache, false))
2802                 return;
2803
2804         st = map.hva +
2805                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2806
2807         /*
2808          * Doing a TLB flush here, on the guest's behalf, can avoid
2809          * expensive IPIs.
2810          */
2811         trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2812                 st->preempted & KVM_VCPU_FLUSH_TLB);
2813         if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2814                 kvm_vcpu_flush_tlb_guest(vcpu);
2815
2816         vcpu->arch.st.preempted = 0;
2817
2818         if (st->version & 1)
2819                 st->version += 1;  /* first time write, random junk */
2820
2821         st->version += 1;
2822
2823         smp_wmb();
2824
2825         st->steal += current->sched_info.run_delay -
2826                 vcpu->arch.st.last_steal;
2827         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2828
2829         smp_wmb();
2830
2831         st->version += 1;
2832
2833         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2834 }
2835
2836 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2837 {
2838         bool pr = false;
2839         u32 msr = msr_info->index;
2840         u64 data = msr_info->data;
2841
2842         switch (msr) {
2843         case MSR_AMD64_NB_CFG:
2844         case MSR_IA32_UCODE_WRITE:
2845         case MSR_VM_HSAVE_PA:
2846         case MSR_AMD64_PATCH_LOADER:
2847         case MSR_AMD64_BU_CFG2:
2848         case MSR_AMD64_DC_CFG:
2849         case MSR_F15H_EX_CFG:
2850                 break;
2851
2852         case MSR_IA32_UCODE_REV:
2853                 if (msr_info->host_initiated)
2854                         vcpu->arch.microcode_version = data;
2855                 break;
2856         case MSR_IA32_ARCH_CAPABILITIES:
2857                 if (!msr_info->host_initiated)
2858                         return 1;
2859                 vcpu->arch.arch_capabilities = data;
2860                 break;
2861         case MSR_IA32_PERF_CAPABILITIES: {
2862                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
2863
2864                 if (!msr_info->host_initiated)
2865                         return 1;
2866                 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
2867                         return 1;
2868                 if (data & ~msr_ent.data)
2869                         return 1;
2870
2871                 vcpu->arch.perf_capabilities = data;
2872
2873                 return 0;
2874                 }
2875         case MSR_EFER:
2876                 return set_efer(vcpu, msr_info);
2877         case MSR_K7_HWCR:
2878                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2879                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2880                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2881
2882                 /* Handle McStatusWrEn */
2883                 if (data == BIT_ULL(18)) {
2884                         vcpu->arch.msr_hwcr = data;
2885                 } else if (data != 0) {
2886                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2887                                     data);
2888                         return 1;
2889                 }
2890                 break;
2891         case MSR_FAM10H_MMIO_CONF_BASE:
2892                 if (data != 0) {
2893                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2894                                     "0x%llx\n", data);
2895                         return 1;
2896                 }
2897                 break;
2898         case MSR_IA32_DEBUGCTLMSR:
2899                 if (!data) {
2900                         /* We support the non-activated case already */
2901                         break;
2902                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2903                         /* Values other than LBR and BTF are vendor-specific,
2904                            thus reserved and should throw a #GP */
2905                         return 1;
2906                 }
2907                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2908                             __func__, data);
2909                 break;
2910         case 0x200 ... 0x2ff:
2911                 return kvm_mtrr_set_msr(vcpu, msr, data);
2912         case MSR_IA32_APICBASE:
2913                 return kvm_set_apic_base(vcpu, msr_info);
2914         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
2915                 return kvm_x2apic_msr_write(vcpu, msr, data);
2916         case MSR_IA32_TSCDEADLINE:
2917                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2918                 break;
2919         case MSR_IA32_TSC_ADJUST:
2920                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2921                         if (!msr_info->host_initiated) {
2922                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2923                                 adjust_tsc_offset_guest(vcpu, adj);
2924                         }
2925                         vcpu->arch.ia32_tsc_adjust_msr = data;
2926                 }
2927                 break;
2928         case MSR_IA32_MISC_ENABLE:
2929                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2930                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2931                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2932                                 return 1;
2933                         vcpu->arch.ia32_misc_enable_msr = data;
2934                         kvm_update_cpuid_runtime(vcpu);
2935                 } else {
2936                         vcpu->arch.ia32_misc_enable_msr = data;
2937                 }
2938                 break;
2939         case MSR_IA32_SMBASE:
2940                 if (!msr_info->host_initiated)
2941                         return 1;
2942                 vcpu->arch.smbase = data;
2943                 break;
2944         case MSR_IA32_POWER_CTL:
2945                 vcpu->arch.msr_ia32_power_ctl = data;
2946                 break;
2947         case MSR_IA32_TSC:
2948                 kvm_write_tsc(vcpu, msr_info);
2949                 break;
2950         case MSR_IA32_XSS:
2951                 if (!msr_info->host_initiated &&
2952                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2953                         return 1;
2954                 /*
2955                  * KVM supports exposing PT to the guest, but does not support
2956                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
2957                  * XSAVES/XRSTORS to save/restore PT MSRs.
2958                  */
2959                 if (data & ~supported_xss)
2960                         return 1;
2961                 vcpu->arch.ia32_xss = data;
2962                 break;
2963         case MSR_SMI_COUNT:
2964                 if (!msr_info->host_initiated)
2965                         return 1;
2966                 vcpu->arch.smi_count = data;
2967                 break;
2968         case MSR_KVM_WALL_CLOCK_NEW:
2969         case MSR_KVM_WALL_CLOCK:
2970                 vcpu->kvm->arch.wall_clock = data;
2971                 kvm_write_wall_clock(vcpu->kvm, data);
2972                 break;
2973         case MSR_KVM_SYSTEM_TIME_NEW:
2974         case MSR_KVM_SYSTEM_TIME: {
2975                 struct kvm_arch *ka = &vcpu->kvm->arch;
2976
2977                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2978                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2979
2980                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2981                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2982
2983                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2984                 }
2985
2986                 vcpu->arch.time = data;
2987                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2988
2989                 /* we verify if the enable bit is set... */
2990                 vcpu->arch.pv_time_enabled = false;
2991                 if (!(data & 1))
2992                         break;
2993
2994                 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2995                      &vcpu->arch.pv_time, data & ~1ULL,
2996                      sizeof(struct pvclock_vcpu_time_info)))
2997                         vcpu->arch.pv_time_enabled = true;
2998
2999                 break;
3000         }
3001         case MSR_KVM_ASYNC_PF_EN:
3002                 if (kvm_pv_enable_async_pf(vcpu, data))
3003                         return 1;
3004                 break;
3005         case MSR_KVM_ASYNC_PF_INT:
3006                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3007                         return 1;
3008                 break;
3009         case MSR_KVM_ASYNC_PF_ACK:
3010                 if (data & 0x1) {
3011                         vcpu->arch.apf.pageready_pending = false;
3012                         kvm_check_async_pf_completion(vcpu);
3013                 }
3014                 break;
3015         case MSR_KVM_STEAL_TIME:
3016
3017                 if (unlikely(!sched_info_on()))
3018                         return 1;
3019
3020                 if (data & KVM_STEAL_RESERVED_MASK)
3021                         return 1;
3022
3023                 vcpu->arch.st.msr_val = data;
3024
3025                 if (!(data & KVM_MSR_ENABLED))
3026                         break;
3027
3028                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3029
3030                 break;
3031         case MSR_KVM_PV_EOI_EN:
3032                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3033                         return 1;
3034                 break;
3035
3036         case MSR_KVM_POLL_CONTROL:
3037                 /* only enable bit supported */
3038                 if (data & (-1ULL << 1))
3039                         return 1;
3040
3041                 vcpu->arch.msr_kvm_poll_control = data;
3042                 break;
3043
3044         case MSR_IA32_MCG_CTL:
3045         case MSR_IA32_MCG_STATUS:
3046         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3047                 return set_msr_mce(vcpu, msr_info);
3048
3049         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3050         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3051                 pr = true;
3052                 fallthrough;
3053         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3054         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3055                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3056                         return kvm_pmu_set_msr(vcpu, msr_info);
3057
3058                 if (pr || data != 0)
3059                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3060                                     "0x%x data 0x%llx\n", msr, data);
3061                 break;
3062         case MSR_K7_CLK_CTL:
3063                 /*
3064                  * Ignore all writes to this no longer documented MSR.
3065                  * Writes are only relevant for old K7 processors,
3066                  * all pre-dating SVM, but a recommended workaround from
3067                  * AMD for these chips. It is possible to specify the
3068                  * affected processor models on the command line, hence
3069                  * the need to ignore the workaround.
3070                  */
3071                 break;
3072         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3073         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3074         case HV_X64_MSR_SYNDBG_OPTIONS:
3075         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3076         case HV_X64_MSR_CRASH_CTL:
3077         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3078         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3079         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3080         case HV_X64_MSR_TSC_EMULATION_STATUS:
3081                 return kvm_hv_set_msr_common(vcpu, msr, data,
3082                                              msr_info->host_initiated);
3083         case MSR_IA32_BBL_CR_CTL3:
3084                 /* Drop writes to this legacy MSR -- see rdmsr
3085                  * counterpart for further detail.
3086                  */
3087                 if (report_ignored_msrs)
3088                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3089                                 msr, data);
3090                 break;
3091         case MSR_AMD64_OSVW_ID_LENGTH:
3092                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3093                         return 1;
3094                 vcpu->arch.osvw.length = data;
3095                 break;
3096         case MSR_AMD64_OSVW_STATUS:
3097                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3098                         return 1;
3099                 vcpu->arch.osvw.status = data;
3100                 break;
3101         case MSR_PLATFORM_INFO:
3102                 if (!msr_info->host_initiated ||
3103                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3104                      cpuid_fault_enabled(vcpu)))
3105                         return 1;
3106                 vcpu->arch.msr_platform_info = data;
3107                 break;
3108         case MSR_MISC_FEATURES_ENABLES:
3109                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3110                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3111                      !supports_cpuid_fault(vcpu)))
3112                         return 1;
3113                 vcpu->arch.msr_misc_features_enables = data;
3114                 break;
3115         default:
3116                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3117                         return xen_hvm_config(vcpu, data);
3118                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3119                         return kvm_pmu_set_msr(vcpu, msr_info);
3120                 return KVM_MSR_RET_INVALID;
3121         }
3122         return 0;
3123 }
3124 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3125
3126 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3127 {
3128         u64 data;
3129         u64 mcg_cap = vcpu->arch.mcg_cap;
3130         unsigned bank_num = mcg_cap & 0xff;
3131
3132         switch (msr) {
3133         case MSR_IA32_P5_MC_ADDR:
3134         case MSR_IA32_P5_MC_TYPE:
3135                 data = 0;
3136                 break;
3137         case MSR_IA32_MCG_CAP:
3138                 data = vcpu->arch.mcg_cap;
3139                 break;
3140         case MSR_IA32_MCG_CTL:
3141                 if (!(mcg_cap & MCG_CTL_P) && !host)
3142                         return 1;
3143                 data = vcpu->arch.mcg_ctl;
3144                 break;
3145         case MSR_IA32_MCG_STATUS:
3146                 data = vcpu->arch.mcg_status;
3147                 break;
3148         default:
3149                 if (msr >= MSR_IA32_MC0_CTL &&
3150                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3151                         u32 offset = array_index_nospec(
3152                                 msr - MSR_IA32_MC0_CTL,
3153                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3154
3155                         data = vcpu->arch.mce_banks[offset];
3156                         break;
3157                 }
3158                 return 1;
3159         }
3160         *pdata = data;
3161         return 0;
3162 }
3163
3164 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3165 {
3166         switch (msr_info->index) {
3167         case MSR_IA32_PLATFORM_ID:
3168         case MSR_IA32_EBL_CR_POWERON:
3169         case MSR_IA32_DEBUGCTLMSR:
3170         case MSR_IA32_LASTBRANCHFROMIP:
3171         case MSR_IA32_LASTBRANCHTOIP:
3172         case MSR_IA32_LASTINTFROMIP:
3173         case MSR_IA32_LASTINTTOIP:
3174         case MSR_K8_SYSCFG:
3175         case MSR_K8_TSEG_ADDR:
3176         case MSR_K8_TSEG_MASK:
3177         case MSR_VM_HSAVE_PA:
3178         case MSR_K8_INT_PENDING_MSG:
3179         case MSR_AMD64_NB_CFG:
3180         case MSR_FAM10H_MMIO_CONF_BASE:
3181         case MSR_AMD64_BU_CFG2:
3182         case MSR_IA32_PERF_CTL:
3183         case MSR_AMD64_DC_CFG:
3184         case MSR_F15H_EX_CFG:
3185         /*
3186          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3187          * limit) MSRs. Just return 0, as we do not want to expose the host
3188          * data here. Do not conditionalize this on CPUID, as KVM does not do
3189          * so for existing CPU-specific MSRs.
3190          */
3191         case MSR_RAPL_POWER_UNIT:
3192         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3193         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3194         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3195         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3196                 msr_info->data = 0;
3197                 break;
3198         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3199         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3200         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3201         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3202         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3203                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3204                         return kvm_pmu_get_msr(vcpu, msr_info);
3205                 msr_info->data = 0;
3206                 break;
3207         case MSR_IA32_UCODE_REV:
3208                 msr_info->data = vcpu->arch.microcode_version;
3209                 break;
3210         case MSR_IA32_ARCH_CAPABILITIES:
3211                 if (!msr_info->host_initiated &&
3212                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3213                         return 1;
3214                 msr_info->data = vcpu->arch.arch_capabilities;
3215                 break;
3216         case MSR_IA32_PERF_CAPABILITIES:
3217                 if (!msr_info->host_initiated &&
3218                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3219                         return 1;
3220                 msr_info->data = vcpu->arch.perf_capabilities;
3221                 break;
3222         case MSR_IA32_POWER_CTL:
3223                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3224                 break;
3225         case MSR_IA32_TSC: {
3226                 /*
3227                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3228                  * even when not intercepted. AMD manual doesn't explicitly
3229                  * state this but appears to behave the same.
3230                  *
3231                  * On userspace reads and writes, however, we unconditionally
3232                  * operate L1's TSC value to ensure backwards-compatible
3233                  * behavior for migration.
3234                  */
3235                 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3236                                                             vcpu->arch.tsc_offset;
3237
3238                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3239                 break;
3240         }
3241         case MSR_MTRRcap:
3242         case 0x200 ... 0x2ff:
3243                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3244         case 0xcd: /* fsb frequency */
3245                 msr_info->data = 3;
3246                 break;
3247                 /*
3248                  * MSR_EBC_FREQUENCY_ID
3249                  * Conservative value valid for even the basic CPU models.
3250                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3251                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3252                  * and 266MHz for model 3, or 4. Set Core Clock
3253                  * Frequency to System Bus Frequency Ratio to 1 (bits
3254                  * 31:24) even though these are only valid for CPU
3255                  * models > 2, however guests may end up dividing or
3256                  * multiplying by zero otherwise.
3257                  */
3258         case MSR_EBC_FREQUENCY_ID:
3259                 msr_info->data = 1 << 24;
3260                 break;
3261         case MSR_IA32_APICBASE:
3262                 msr_info->data = kvm_get_apic_base(vcpu);
3263                 break;
3264         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3265                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3266         case MSR_IA32_TSCDEADLINE:
3267                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3268                 break;
3269         case MSR_IA32_TSC_ADJUST:
3270                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3271                 break;
3272         case MSR_IA32_MISC_ENABLE:
3273                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3274                 break;
3275         case MSR_IA32_SMBASE:
3276                 if (!msr_info->host_initiated)
3277                         return 1;
3278                 msr_info->data = vcpu->arch.smbase;
3279                 break;
3280         case MSR_SMI_COUNT:
3281                 msr_info->data = vcpu->arch.smi_count;
3282                 break;
3283         case MSR_IA32_PERF_STATUS:
3284                 /* TSC increment by tick */
3285                 msr_info->data = 1000ULL;
3286                 /* CPU multiplier */
3287                 msr_info->data |= (((uint64_t)4ULL) << 40);
3288                 break;
3289         case MSR_EFER:
3290                 msr_info->data = vcpu->arch.efer;
3291                 break;
3292         case MSR_KVM_WALL_CLOCK:
3293         case MSR_KVM_WALL_CLOCK_NEW:
3294                 msr_info->data = vcpu->kvm->arch.wall_clock;
3295                 break;
3296         case MSR_KVM_SYSTEM_TIME:
3297         case MSR_KVM_SYSTEM_TIME_NEW:
3298                 msr_info->data = vcpu->arch.time;
3299                 break;
3300         case MSR_KVM_ASYNC_PF_EN:
3301                 msr_info->data = vcpu->arch.apf.msr_en_val;
3302                 break;
3303         case MSR_KVM_ASYNC_PF_INT:
3304                 msr_info->data = vcpu->arch.apf.msr_int_val;
3305                 break;
3306         case MSR_KVM_ASYNC_PF_ACK:
3307                 msr_info->data = 0;
3308                 break;
3309         case MSR_KVM_STEAL_TIME:
3310                 msr_info->data = vcpu->arch.st.msr_val;
3311                 break;
3312         case MSR_KVM_PV_EOI_EN:
3313                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3314                 break;
3315         case MSR_KVM_POLL_CONTROL:
3316                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3317                 break;
3318         case MSR_IA32_P5_MC_ADDR:
3319         case MSR_IA32_P5_MC_TYPE:
3320         case MSR_IA32_MCG_CAP:
3321         case MSR_IA32_MCG_CTL:
3322         case MSR_IA32_MCG_STATUS:
3323         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3324                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3325                                    msr_info->host_initiated);
3326         case MSR_IA32_XSS:
3327                 if (!msr_info->host_initiated &&
3328                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3329                         return 1;
3330                 msr_info->data = vcpu->arch.ia32_xss;
3331                 break;
3332         case MSR_K7_CLK_CTL:
3333                 /*
3334                  * Provide expected ramp-up count for K7. All other
3335                  * are set to zero, indicating minimum divisors for
3336                  * every field.
3337                  *
3338                  * This prevents guest kernels on AMD host with CPU
3339                  * type 6, model 8 and higher from exploding due to
3340                  * the rdmsr failing.
3341                  */
3342                 msr_info->data = 0x20000000;
3343                 break;
3344         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3345         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3346         case HV_X64_MSR_SYNDBG_OPTIONS:
3347         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3348         case HV_X64_MSR_CRASH_CTL:
3349         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3350         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3351         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3352         case HV_X64_MSR_TSC_EMULATION_STATUS:
3353                 return kvm_hv_get_msr_common(vcpu,
3354                                              msr_info->index, &msr_info->data,
3355                                              msr_info->host_initiated);
3356         case MSR_IA32_BBL_CR_CTL3:
3357                 /* This legacy MSR exists but isn't fully documented in current
3358                  * silicon.  It is however accessed by winxp in very narrow
3359                  * scenarios where it sets bit #19, itself documented as
3360                  * a "reserved" bit.  Best effort attempt to source coherent
3361                  * read data here should the balance of the register be
3362                  * interpreted by the guest:
3363                  *
3364                  * L2 cache control register 3: 64GB range, 256KB size,
3365                  * enabled, latency 0x1, configured
3366                  */
3367                 msr_info->data = 0xbe702111;
3368                 break;
3369         case MSR_AMD64_OSVW_ID_LENGTH:
3370                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3371                         return 1;
3372                 msr_info->data = vcpu->arch.osvw.length;
3373                 break;
3374         case MSR_AMD64_OSVW_STATUS:
3375                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3376                         return 1;
3377                 msr_info->data = vcpu->arch.osvw.status;
3378                 break;
3379         case MSR_PLATFORM_INFO:
3380                 if (!msr_info->host_initiated &&
3381                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3382                         return 1;
3383                 msr_info->data = vcpu->arch.msr_platform_info;
3384                 break;
3385         case MSR_MISC_FEATURES_ENABLES:
3386                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3387                 break;
3388         case MSR_K7_HWCR:
3389                 msr_info->data = vcpu->arch.msr_hwcr;
3390                 break;
3391         default:
3392                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3393                         return kvm_pmu_get_msr(vcpu, msr_info);
3394                 return KVM_MSR_RET_INVALID;
3395         }
3396         return 0;
3397 }
3398 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3399
3400 /*
3401  * Read or write a bunch of msrs. All parameters are kernel addresses.
3402  *
3403  * @return number of msrs set successfully.
3404  */
3405 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3406                     struct kvm_msr_entry *entries,
3407                     int (*do_msr)(struct kvm_vcpu *vcpu,
3408                                   unsigned index, u64 *data))
3409 {
3410         int i;
3411
3412         for (i = 0; i < msrs->nmsrs; ++i)
3413                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3414                         break;
3415
3416         return i;
3417 }
3418
3419 /*
3420  * Read or write a bunch of msrs. Parameters are user addresses.
3421  *
3422  * @return number of msrs set successfully.
3423  */
3424 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3425                   int (*do_msr)(struct kvm_vcpu *vcpu,
3426                                 unsigned index, u64 *data),
3427                   int writeback)
3428 {
3429         struct kvm_msrs msrs;
3430         struct kvm_msr_entry *entries;
3431         int r, n;
3432         unsigned size;
3433
3434         r = -EFAULT;
3435         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3436                 goto out;
3437
3438         r = -E2BIG;
3439         if (msrs.nmsrs >= MAX_IO_MSRS)
3440                 goto out;
3441
3442         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3443         entries = memdup_user(user_msrs->entries, size);
3444         if (IS_ERR(entries)) {
3445                 r = PTR_ERR(entries);
3446                 goto out;
3447         }
3448
3449         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3450         if (r < 0)
3451                 goto out_free;
3452
3453         r = -EFAULT;
3454         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3455                 goto out_free;
3456
3457         r = n;
3458
3459 out_free:
3460         kfree(entries);
3461 out:
3462         return r;
3463 }
3464
3465 static inline bool kvm_can_mwait_in_guest(void)
3466 {
3467         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3468                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3469                 boot_cpu_has(X86_FEATURE_ARAT);
3470 }
3471
3472 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3473 {
3474         int r = 0;
3475
3476         switch (ext) {
3477         case KVM_CAP_IRQCHIP:
3478         case KVM_CAP_HLT:
3479         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3480         case KVM_CAP_SET_TSS_ADDR:
3481         case KVM_CAP_EXT_CPUID:
3482         case KVM_CAP_EXT_EMUL_CPUID:
3483         case KVM_CAP_CLOCKSOURCE:
3484         case KVM_CAP_PIT:
3485         case KVM_CAP_NOP_IO_DELAY:
3486         case KVM_CAP_MP_STATE:
3487         case KVM_CAP_SYNC_MMU:
3488         case KVM_CAP_USER_NMI:
3489         case KVM_CAP_REINJECT_CONTROL:
3490         case KVM_CAP_IRQ_INJECT_STATUS:
3491         case KVM_CAP_IOEVENTFD:
3492         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3493         case KVM_CAP_PIT2:
3494         case KVM_CAP_PIT_STATE2:
3495         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3496         case KVM_CAP_XEN_HVM:
3497         case KVM_CAP_VCPU_EVENTS:
3498         case KVM_CAP_HYPERV:
3499         case KVM_CAP_HYPERV_VAPIC:
3500         case KVM_CAP_HYPERV_SPIN:
3501         case KVM_CAP_HYPERV_SYNIC:
3502         case KVM_CAP_HYPERV_SYNIC2:
3503         case KVM_CAP_HYPERV_VP_INDEX:
3504         case KVM_CAP_HYPERV_EVENTFD:
3505         case KVM_CAP_HYPERV_TLBFLUSH:
3506         case KVM_CAP_HYPERV_SEND_IPI:
3507         case KVM_CAP_HYPERV_CPUID:
3508         case KVM_CAP_PCI_SEGMENT:
3509         case KVM_CAP_DEBUGREGS:
3510         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3511         case KVM_CAP_XSAVE:
3512         case KVM_CAP_ASYNC_PF:
3513         case KVM_CAP_ASYNC_PF_INT:
3514         case KVM_CAP_GET_TSC_KHZ:
3515         case KVM_CAP_KVMCLOCK_CTRL:
3516         case KVM_CAP_READONLY_MEM:
3517         case KVM_CAP_HYPERV_TIME:
3518         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3519         case KVM_CAP_TSC_DEADLINE_TIMER:
3520         case KVM_CAP_DISABLE_QUIRKS:
3521         case KVM_CAP_SET_BOOT_CPU_ID:
3522         case KVM_CAP_SPLIT_IRQCHIP:
3523         case KVM_CAP_IMMEDIATE_EXIT:
3524         case KVM_CAP_PMU_EVENT_FILTER:
3525         case KVM_CAP_GET_MSR_FEATURES:
3526         case KVM_CAP_MSR_PLATFORM_INFO:
3527         case KVM_CAP_EXCEPTION_PAYLOAD:
3528         case KVM_CAP_SET_GUEST_DEBUG:
3529         case KVM_CAP_LAST_CPU:
3530                 r = 1;
3531                 break;
3532         case KVM_CAP_SYNC_REGS:
3533                 r = KVM_SYNC_X86_VALID_FIELDS;
3534                 break;
3535         case KVM_CAP_ADJUST_CLOCK:
3536                 r = KVM_CLOCK_TSC_STABLE;
3537                 break;
3538         case KVM_CAP_X86_DISABLE_EXITS:
3539                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3540                       KVM_X86_DISABLE_EXITS_CSTATE;
3541                 if(kvm_can_mwait_in_guest())
3542                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3543                 break;
3544         case KVM_CAP_X86_SMM:
3545                 /* SMBASE is usually relocated above 1M on modern chipsets,
3546                  * and SMM handlers might indeed rely on 4G segment limits,
3547                  * so do not report SMM to be available if real mode is
3548                  * emulated via vm86 mode.  Still, do not go to great lengths
3549                  * to avoid userspace's usage of the feature, because it is a
3550                  * fringe case that is not enabled except via specific settings
3551                  * of the module parameters.
3552                  */
3553                 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3554                 break;
3555         case KVM_CAP_VAPIC:
3556                 r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3557                 break;
3558         case KVM_CAP_NR_VCPUS:
3559                 r = KVM_SOFT_MAX_VCPUS;
3560                 break;
3561         case KVM_CAP_MAX_VCPUS:
3562                 r = KVM_MAX_VCPUS;
3563                 break;
3564         case KVM_CAP_MAX_VCPU_ID:
3565                 r = KVM_MAX_VCPU_ID;
3566                 break;
3567         case KVM_CAP_PV_MMU:    /* obsolete */
3568                 r = 0;
3569                 break;
3570         case KVM_CAP_MCE:
3571                 r = KVM_MAX_MCE_BANKS;
3572                 break;
3573         case KVM_CAP_XCRS:
3574                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3575                 break;
3576         case KVM_CAP_TSC_CONTROL:
3577                 r = kvm_has_tsc_control;
3578                 break;
3579         case KVM_CAP_X2APIC_API:
3580                 r = KVM_X2APIC_API_VALID_FLAGS;
3581                 break;
3582         case KVM_CAP_NESTED_STATE:
3583                 r = kvm_x86_ops.nested_ops->get_state ?
3584                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3585                 break;
3586         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3587                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3588                 break;
3589         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3590                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3591                 break;
3592         case KVM_CAP_SMALLER_MAXPHYADDR:
3593                 r = (int) allow_smaller_maxphyaddr;
3594                 break;
3595         case KVM_CAP_STEAL_TIME:
3596                 r = sched_info_on();
3597                 break;
3598         default:
3599                 break;
3600         }
3601         return r;
3602
3603 }
3604
3605 long kvm_arch_dev_ioctl(struct file *filp,
3606                         unsigned int ioctl, unsigned long arg)
3607 {
3608         void __user *argp = (void __user *)arg;
3609         long r;
3610
3611         switch (ioctl) {
3612         case KVM_GET_MSR_INDEX_LIST: {
3613                 struct kvm_msr_list __user *user_msr_list = argp;
3614                 struct kvm_msr_list msr_list;
3615                 unsigned n;
3616
3617                 r = -EFAULT;
3618                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3619                         goto out;
3620                 n = msr_list.nmsrs;
3621                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3622                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3623                         goto out;
3624                 r = -E2BIG;
3625                 if (n < msr_list.nmsrs)
3626                         goto out;
3627                 r = -EFAULT;
3628                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3629                                  num_msrs_to_save * sizeof(u32)))
3630                         goto out;
3631                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3632                                  &emulated_msrs,
3633                                  num_emulated_msrs * sizeof(u32)))
3634                         goto out;
3635                 r = 0;
3636                 break;
3637         }
3638         case KVM_GET_SUPPORTED_CPUID:
3639         case KVM_GET_EMULATED_CPUID: {
3640                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3641                 struct kvm_cpuid2 cpuid;
3642
3643                 r = -EFAULT;
3644                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3645                         goto out;
3646
3647                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3648                                             ioctl);
3649                 if (r)
3650                         goto out;
3651
3652                 r = -EFAULT;
3653                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3654                         goto out;
3655                 r = 0;
3656                 break;
3657         }
3658         case KVM_X86_GET_MCE_CAP_SUPPORTED:
3659                 r = -EFAULT;
3660                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3661                                  sizeof(kvm_mce_cap_supported)))
3662                         goto out;
3663                 r = 0;
3664                 break;
3665         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3666                 struct kvm_msr_list __user *user_msr_list = argp;
3667                 struct kvm_msr_list msr_list;
3668                 unsigned int n;
3669
3670                 r = -EFAULT;
3671                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3672                         goto out;
3673                 n = msr_list.nmsrs;
3674                 msr_list.nmsrs = num_msr_based_features;
3675                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3676                         goto out;
3677                 r = -E2BIG;
3678                 if (n < msr_list.nmsrs)
3679                         goto out;
3680                 r = -EFAULT;
3681                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3682                                  num_msr_based_features * sizeof(u32)))
3683                         goto out;
3684                 r = 0;
3685                 break;
3686         }
3687         case KVM_GET_MSRS:
3688                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3689                 break;
3690         default:
3691                 r = -EINVAL;
3692                 break;
3693         }
3694 out:
3695         return r;
3696 }
3697
3698 static void wbinvd_ipi(void *garbage)
3699 {
3700         wbinvd();
3701 }
3702
3703 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3704 {
3705         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3706 }
3707
3708 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3709 {
3710         /* Address WBINVD may be executed by guest */
3711         if (need_emulate_wbinvd(vcpu)) {
3712                 if (kvm_x86_ops.has_wbinvd_exit())
3713                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3714                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3715                         smp_call_function_single(vcpu->cpu,
3716                                         wbinvd_ipi, NULL, 1);
3717         }
3718
3719         kvm_x86_ops.vcpu_load(vcpu, cpu);
3720
3721         /* Save host pkru register if supported */
3722         vcpu->arch.host_pkru = read_pkru();
3723
3724         /* Apply any externally detected TSC adjustments (due to suspend) */
3725         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3726                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3727                 vcpu->arch.tsc_offset_adjustment = 0;
3728                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3729         }
3730
3731         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3732                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3733                                 rdtsc() - vcpu->arch.last_host_tsc;
3734                 if (tsc_delta < 0)
3735                         mark_tsc_unstable("KVM discovered backwards TSC");
3736
3737                 if (kvm_check_tsc_unstable()) {
3738                         u64 offset = kvm_compute_tsc_offset(vcpu,
3739                                                 vcpu->arch.last_guest_tsc);
3740                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3741                         vcpu->arch.tsc_catchup = 1;
3742                 }
3743
3744                 if (kvm_lapic_hv_timer_in_use(vcpu))
3745                         kvm_lapic_restart_hv_timer(vcpu);
3746
3747                 /*
3748                  * On a host with synchronized TSC, there is no need to update
3749                  * kvmclock on vcpu->cpu migration
3750                  */
3751                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3752                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3753                 if (vcpu->cpu != cpu)
3754                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3755                 vcpu->cpu = cpu;
3756         }
3757
3758         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3759 }
3760
3761 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3762 {
3763         struct kvm_host_map map;
3764         struct kvm_steal_time *st;
3765
3766         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3767                 return;
3768
3769         if (vcpu->arch.st.preempted)
3770                 return;
3771
3772         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3773                         &vcpu->arch.st.cache, true))
3774                 return;
3775
3776         st = map.hva +
3777                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3778
3779         st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3780
3781         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3782 }
3783
3784 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3785 {
3786         int idx;
3787
3788         if (vcpu->preempted)
3789                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
3790
3791         /*
3792          * Disable page faults because we're in atomic context here.
3793          * kvm_write_guest_offset_cached() would call might_fault()
3794          * that relies on pagefault_disable() to tell if there's a
3795          * bug. NOTE: the write to guest memory may not go through if
3796          * during postcopy live migration or if there's heavy guest
3797          * paging.
3798          */
3799         pagefault_disable();
3800         /*
3801          * kvm_memslots() will be called by
3802          * kvm_write_guest_offset_cached() so take the srcu lock.
3803          */
3804         idx = srcu_read_lock(&vcpu->kvm->srcu);
3805         kvm_steal_time_set_preempted(vcpu);
3806         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3807         pagefault_enable();
3808         kvm_x86_ops.vcpu_put(vcpu);
3809         vcpu->arch.last_host_tsc = rdtsc();
3810         /*
3811          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3812          * on every vmexit, but if not, we might have a stale dr6 from the
3813          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3814          */
3815         set_debugreg(0, 6);
3816 }
3817
3818 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3819                                     struct kvm_lapic_state *s)
3820 {
3821         if (vcpu->arch.apicv_active)
3822                 kvm_x86_ops.sync_pir_to_irr(vcpu);
3823
3824         return kvm_apic_get_state(vcpu, s);
3825 }
3826
3827 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3828                                     struct kvm_lapic_state *s)
3829 {
3830         int r;
3831
3832         r = kvm_apic_set_state(vcpu, s);
3833         if (r)
3834                 return r;
3835         update_cr8_intercept(vcpu);
3836
3837         return 0;
3838 }
3839
3840 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3841 {
3842         return (!lapic_in_kernel(vcpu) ||
3843                 kvm_apic_accept_pic_intr(vcpu));
3844 }
3845
3846 /*
3847  * if userspace requested an interrupt window, check that the
3848  * interrupt window is open.
3849  *
3850  * No need to exit to userspace if we already have an interrupt queued.
3851  */
3852 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3853 {
3854         return kvm_arch_interrupt_allowed(vcpu) &&
3855                 !kvm_cpu_has_interrupt(vcpu) &&
3856                 !kvm_event_needs_reinjection(vcpu) &&
3857                 kvm_cpu_accept_dm_intr(vcpu);
3858 }
3859
3860 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3861                                     struct kvm_interrupt *irq)
3862 {
3863         if (irq->irq >= KVM_NR_INTERRUPTS)
3864                 return -EINVAL;
3865
3866         if (!irqchip_in_kernel(vcpu->kvm)) {
3867                 kvm_queue_interrupt(vcpu, irq->irq, false);
3868                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3869                 return 0;
3870         }
3871
3872         /*
3873          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3874          * fail for in-kernel 8259.
3875          */
3876         if (pic_in_kernel(vcpu->kvm))
3877                 return -ENXIO;
3878
3879         if (vcpu->arch.pending_external_vector != -1)
3880                 return -EEXIST;
3881
3882         vcpu->arch.pending_external_vector = irq->irq;
3883         kvm_make_request(KVM_REQ_EVENT, vcpu);
3884         return 0;
3885 }
3886
3887 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3888 {
3889         kvm_inject_nmi(vcpu);
3890
3891         return 0;
3892 }
3893
3894 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3895 {
3896         kvm_make_request(KVM_REQ_SMI, vcpu);
3897
3898         return 0;
3899 }
3900
3901 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3902                                            struct kvm_tpr_access_ctl *tac)
3903 {
3904         if (tac->flags)
3905                 return -EINVAL;
3906         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3907         return 0;
3908 }
3909
3910 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3911                                         u64 mcg_cap)
3912 {
3913         int r;
3914         unsigned bank_num = mcg_cap & 0xff, bank;
3915
3916         r = -EINVAL;
3917         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
3918                 goto out;
3919         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3920                 goto out;
3921         r = 0;
3922         vcpu->arch.mcg_cap = mcg_cap;
3923         /* Init IA32_MCG_CTL to all 1s */
3924         if (mcg_cap & MCG_CTL_P)
3925                 vcpu->arch.mcg_ctl = ~(u64)0;
3926         /* Init IA32_MCi_CTL to all 1s */
3927         for (bank = 0; bank < bank_num; bank++)
3928                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3929
3930         kvm_x86_ops.setup_mce(vcpu);
3931 out:
3932         return r;
3933 }
3934
3935 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3936                                       struct kvm_x86_mce *mce)
3937 {
3938         u64 mcg_cap = vcpu->arch.mcg_cap;
3939         unsigned bank_num = mcg_cap & 0xff;
3940         u64 *banks = vcpu->arch.mce_banks;
3941
3942         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3943                 return -EINVAL;
3944         /*
3945          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3946          * reporting is disabled
3947          */
3948         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3949             vcpu->arch.mcg_ctl != ~(u64)0)
3950                 return 0;
3951         banks += 4 * mce->bank;
3952         /*
3953          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3954          * reporting is disabled for the bank
3955          */
3956         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3957                 return 0;
3958         if (mce->status & MCI_STATUS_UC) {
3959                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3960                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3961                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3962                         return 0;
3963                 }
3964                 if (banks[1] & MCI_STATUS_VAL)
3965                         mce->status |= MCI_STATUS_OVER;
3966                 banks[2] = mce->addr;
3967                 banks[3] = mce->misc;
3968                 vcpu->arch.mcg_status = mce->mcg_status;
3969                 banks[1] = mce->status;
3970                 kvm_queue_exception(vcpu, MC_VECTOR);
3971         } else if (!(banks[1] & MCI_STATUS_VAL)
3972                    || !(banks[1] & MCI_STATUS_UC)) {
3973                 if (banks[1] & MCI_STATUS_VAL)
3974                         mce->status |= MCI_STATUS_OVER;
3975                 banks[2] = mce->addr;
3976                 banks[3] = mce->misc;
3977                 banks[1] = mce->status;
3978         } else
3979                 banks[1] |= MCI_STATUS_OVER;
3980         return 0;
3981 }
3982
3983 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3984                                                struct kvm_vcpu_events *events)
3985 {
3986         process_nmi(vcpu);
3987
3988         /*
3989          * In guest mode, payload delivery should be deferred,
3990          * so that the L1 hypervisor can intercept #PF before
3991          * CR2 is modified (or intercept #DB before DR6 is
3992          * modified under nVMX). Unless the per-VM capability,
3993          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
3994          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
3995          * opportunistically defer the exception payload, deliver it if the
3996          * capability hasn't been requested before processing a
3997          * KVM_GET_VCPU_EVENTS.
3998          */
3999         if (!vcpu->kvm->arch.exception_payload_enabled &&
4000             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4001                 kvm_deliver_exception_payload(vcpu);
4002
4003         /*
4004          * The API doesn't provide the instruction length for software
4005          * exceptions, so don't report them. As long as the guest RIP
4006          * isn't advanced, we should expect to encounter the exception
4007          * again.
4008          */
4009         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4010                 events->exception.injected = 0;
4011                 events->exception.pending = 0;
4012         } else {
4013                 events->exception.injected = vcpu->arch.exception.injected;
4014                 events->exception.pending = vcpu->arch.exception.pending;
4015                 /*
4016                  * For ABI compatibility, deliberately conflate
4017                  * pending and injected exceptions when
4018                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4019                  */
4020                 if (!vcpu->kvm->arch.exception_payload_enabled)
4021                         events->exception.injected |=
4022                                 vcpu->arch.exception.pending;
4023         }
4024         events->exception.nr = vcpu->arch.exception.nr;
4025         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4026         events->exception.error_code = vcpu->arch.exception.error_code;
4027         events->exception_has_payload = vcpu->arch.exception.has_payload;
4028         events->exception_payload = vcpu->arch.exception.payload;
4029
4030         events->interrupt.injected =
4031                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4032         events->interrupt.nr = vcpu->arch.interrupt.nr;
4033         events->interrupt.soft = 0;
4034         events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
4035
4036         events->nmi.injected = vcpu->arch.nmi_injected;
4037         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4038         events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
4039         events->nmi.pad = 0;
4040
4041         events->sipi_vector = 0; /* never valid when reporting to user space */
4042
4043         events->smi.smm = is_smm(vcpu);
4044         events->smi.pending = vcpu->arch.smi_pending;
4045         events->smi.smm_inside_nmi =
4046                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4047         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4048
4049         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4050                          | KVM_VCPUEVENT_VALID_SHADOW
4051                          | KVM_VCPUEVENT_VALID_SMM);
4052         if (vcpu->kvm->arch.exception_payload_enabled)
4053                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4054
4055         memset(&events->reserved, 0, sizeof(events->reserved));
4056 }
4057
4058 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4059
4060 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4061                                               struct kvm_vcpu_events *events)
4062 {
4063         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4064                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4065                               | KVM_VCPUEVENT_VALID_SHADOW
4066                               | KVM_VCPUEVENT_VALID_SMM
4067                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4068                 return -EINVAL;
4069
4070         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4071                 if (!vcpu->kvm->arch.exception_payload_enabled)
4072                         return -EINVAL;
4073                 if (events->exception.pending)
4074                         events->exception.injected = 0;
4075                 else
4076                         events->exception_has_payload = 0;
4077         } else {
4078                 events->exception.pending = 0;
4079                 events->exception_has_payload = 0;
4080         }
4081
4082         if ((events->exception.injected || events->exception.pending) &&
4083             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4084                 return -EINVAL;
4085
4086         /* INITs are latched while in SMM */
4087         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4088             (events->smi.smm || events->smi.pending) &&
4089             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4090                 return -EINVAL;
4091
4092         process_nmi(vcpu);
4093         vcpu->arch.exception.injected = events->exception.injected;
4094         vcpu->arch.exception.pending = events->exception.pending;
4095         vcpu->arch.exception.nr = events->exception.nr;
4096         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4097         vcpu->arch.exception.error_code = events->exception.error_code;
4098         vcpu->arch.exception.has_payload = events->exception_has_payload;
4099         vcpu->arch.exception.payload = events->exception_payload;
4100
4101         vcpu->arch.interrupt.injected = events->interrupt.injected;
4102         vcpu->arch.interrupt.nr = events->interrupt.nr;
4103         vcpu->arch.interrupt.soft = events->interrupt.soft;
4104         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4105                 kvm_x86_ops.set_interrupt_shadow(vcpu,
4106                                                   events->interrupt.shadow);
4107
4108         vcpu->arch.nmi_injected = events->nmi.injected;
4109         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4110                 vcpu->arch.nmi_pending = events->nmi.pending;
4111         kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4112
4113         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4114             lapic_in_kernel(vcpu))
4115                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4116
4117         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4118                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4119                         if (events->smi.smm)
4120                                 vcpu->arch.hflags |= HF_SMM_MASK;
4121                         else
4122                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
4123                         kvm_smm_changed(vcpu);
4124                 }
4125
4126                 vcpu->arch.smi_pending = events->smi.pending;
4127
4128                 if (events->smi.smm) {
4129                         if (events->smi.smm_inside_nmi)
4130                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4131                         else
4132                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4133                 }
4134
4135                 if (lapic_in_kernel(vcpu)) {
4136                         if (events->smi.latched_init)
4137                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4138                         else
4139                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4140                 }
4141         }
4142
4143         kvm_make_request(KVM_REQ_EVENT, vcpu);
4144
4145         return 0;
4146 }
4147
4148 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4149                                              struct kvm_debugregs *dbgregs)
4150 {
4151         unsigned long val;
4152
4153         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4154         kvm_get_dr(vcpu, 6, &val);
4155         dbgregs->dr6 = val;
4156         dbgregs->dr7 = vcpu->arch.dr7;
4157         dbgregs->flags = 0;
4158         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4159 }
4160
4161 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4162                                             struct kvm_debugregs *dbgregs)
4163 {
4164         if (dbgregs->flags)
4165                 return -EINVAL;
4166
4167         if (dbgregs->dr6 & ~0xffffffffull)
4168                 return -EINVAL;
4169         if (dbgregs->dr7 & ~0xffffffffull)
4170                 return -EINVAL;
4171
4172         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4173         kvm_update_dr0123(vcpu);
4174         vcpu->arch.dr6 = dbgregs->dr6;
4175         vcpu->arch.dr7 = dbgregs->dr7;
4176         kvm_update_dr7(vcpu);
4177
4178         return 0;
4179 }
4180
4181 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4182
4183 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4184 {
4185         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4186         u64 xstate_bv = xsave->header.xfeatures;
4187         u64 valid;
4188
4189         /*
4190          * Copy legacy XSAVE area, to avoid complications with CPUID
4191          * leaves 0 and 1 in the loop below.
4192          */
4193         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4194
4195         /* Set XSTATE_BV */
4196         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4197         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4198
4199         /*
4200          * Copy each region from the possibly compacted offset to the
4201          * non-compacted offset.
4202          */
4203         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4204         while (valid) {
4205                 u64 xfeature_mask = valid & -valid;
4206                 int xfeature_nr = fls64(xfeature_mask) - 1;
4207                 void *src = get_xsave_addr(xsave, xfeature_nr);
4208
4209                 if (src) {
4210                         u32 size, offset, ecx, edx;
4211                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4212                                     &size, &offset, &ecx, &edx);
4213                         if (xfeature_nr == XFEATURE_PKRU)
4214                                 memcpy(dest + offset, &vcpu->arch.pkru,
4215                                        sizeof(vcpu->arch.pkru));
4216                         else
4217                                 memcpy(dest + offset, src, size);
4218
4219                 }
4220
4221                 valid -= xfeature_mask;
4222         }
4223 }
4224
4225 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4226 {
4227         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4228         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4229         u64 valid;
4230
4231         /*
4232          * Copy legacy XSAVE area, to avoid complications with CPUID
4233          * leaves 0 and 1 in the loop below.
4234          */
4235         memcpy(xsave, src, XSAVE_HDR_OFFSET);
4236
4237         /* Set XSTATE_BV and possibly XCOMP_BV.  */
4238         xsave->header.xfeatures = xstate_bv;
4239         if (boot_cpu_has(X86_FEATURE_XSAVES))
4240                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4241
4242         /*
4243          * Copy each region from the non-compacted offset to the
4244          * possibly compacted offset.
4245          */
4246         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4247         while (valid) {
4248                 u64 xfeature_mask = valid & -valid;
4249                 int xfeature_nr = fls64(xfeature_mask) - 1;
4250                 void *dest = get_xsave_addr(xsave, xfeature_nr);
4251
4252                 if (dest) {
4253                         u32 size, offset, ecx, edx;
4254                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4255                                     &size, &offset, &ecx, &edx);
4256                         if (xfeature_nr == XFEATURE_PKRU)
4257                                 memcpy(&vcpu->arch.pkru, src + offset,
4258                                        sizeof(vcpu->arch.pkru));
4259                         else
4260                                 memcpy(dest, src + offset, size);
4261                 }
4262
4263                 valid -= xfeature_mask;
4264         }
4265 }
4266
4267 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4268                                          struct kvm_xsave *guest_xsave)
4269 {
4270         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4271                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4272                 fill_xsave((u8 *) guest_xsave->region, vcpu);
4273         } else {
4274                 memcpy(guest_xsave->region,
4275                         &vcpu->arch.guest_fpu->state.fxsave,
4276                         sizeof(struct fxregs_state));
4277                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4278                         XFEATURE_MASK_FPSSE;
4279         }
4280 }
4281
4282 #define XSAVE_MXCSR_OFFSET 24
4283
4284 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4285                                         struct kvm_xsave *guest_xsave)
4286 {
4287         u64 xstate_bv =
4288                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4289         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4290
4291         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4292                 /*
4293                  * Here we allow setting states that are not present in
4294                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4295                  * with old userspace.
4296                  */
4297                 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4298                         return -EINVAL;
4299                 load_xsave(vcpu, (u8 *)guest_xsave->region);
4300         } else {
4301                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4302                         mxcsr & ~mxcsr_feature_mask)
4303                         return -EINVAL;
4304                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4305                         guest_xsave->region, sizeof(struct fxregs_state));
4306         }
4307         return 0;
4308 }
4309
4310 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4311                                         struct kvm_xcrs *guest_xcrs)
4312 {
4313         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4314                 guest_xcrs->nr_xcrs = 0;
4315                 return;
4316         }
4317
4318         guest_xcrs->nr_xcrs = 1;
4319         guest_xcrs->flags = 0;
4320         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4321         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4322 }
4323
4324 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4325                                        struct kvm_xcrs *guest_xcrs)
4326 {
4327         int i, r = 0;
4328
4329         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4330                 return -EINVAL;
4331
4332         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4333                 return -EINVAL;
4334
4335         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4336                 /* Only support XCR0 currently */
4337                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4338                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4339                                 guest_xcrs->xcrs[i].value);
4340                         break;
4341                 }
4342         if (r)
4343                 r = -EINVAL;
4344         return r;
4345 }
4346
4347 /*
4348  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4349  * stopped by the hypervisor.  This function will be called from the host only.
4350  * EINVAL is returned when the host attempts to set the flag for a guest that
4351  * does not support pv clocks.
4352  */
4353 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4354 {
4355         if (!vcpu->arch.pv_time_enabled)
4356                 return -EINVAL;
4357         vcpu->arch.pvclock_set_guest_stopped_request = true;
4358         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4359         return 0;
4360 }
4361
4362 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4363                                      struct kvm_enable_cap *cap)
4364 {
4365         int r;
4366         uint16_t vmcs_version;
4367         void __user *user_ptr;
4368
4369         if (cap->flags)
4370                 return -EINVAL;
4371
4372         switch (cap->cap) {
4373         case KVM_CAP_HYPERV_SYNIC2:
4374                 if (cap->args[0])
4375                         return -EINVAL;
4376                 fallthrough;
4377
4378         case KVM_CAP_HYPERV_SYNIC:
4379                 if (!irqchip_in_kernel(vcpu->kvm))
4380                         return -EINVAL;
4381                 return kvm_hv_activate_synic(vcpu, cap->cap ==
4382                                              KVM_CAP_HYPERV_SYNIC2);
4383         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4384                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4385                         return -ENOTTY;
4386                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4387                 if (!r) {
4388                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
4389                         if (copy_to_user(user_ptr, &vmcs_version,
4390                                          sizeof(vmcs_version)))
4391                                 r = -EFAULT;
4392                 }
4393                 return r;
4394         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4395                 if (!kvm_x86_ops.enable_direct_tlbflush)
4396                         return -ENOTTY;
4397
4398                 return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4399
4400         default:
4401                 return -EINVAL;
4402         }
4403 }
4404
4405 long kvm_arch_vcpu_ioctl(struct file *filp,
4406                          unsigned int ioctl, unsigned long arg)
4407 {
4408         struct kvm_vcpu *vcpu = filp->private_data;
4409         void __user *argp = (void __user *)arg;
4410         int r;
4411         union {
4412                 struct kvm_lapic_state *lapic;
4413                 struct kvm_xsave *xsave;
4414                 struct kvm_xcrs *xcrs;
4415                 void *buffer;
4416         } u;
4417
4418         vcpu_load(vcpu);
4419
4420         u.buffer = NULL;
4421         switch (ioctl) {
4422         case KVM_GET_LAPIC: {
4423                 r = -EINVAL;
4424                 if (!lapic_in_kernel(vcpu))
4425                         goto out;
4426                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4427                                 GFP_KERNEL_ACCOUNT);
4428
4429                 r = -ENOMEM;
4430                 if (!u.lapic)
4431                         goto out;
4432                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4433                 if (r)
4434                         goto out;
4435                 r = -EFAULT;
4436                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4437                         goto out;
4438                 r = 0;
4439                 break;
4440         }
4441         case KVM_SET_LAPIC: {
4442                 r = -EINVAL;
4443                 if (!lapic_in_kernel(vcpu))
4444                         goto out;
4445                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4446                 if (IS_ERR(u.lapic)) {
4447                         r = PTR_ERR(u.lapic);
4448                         goto out_nofree;
4449                 }
4450
4451                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4452                 break;
4453         }
4454         case KVM_INTERRUPT: {
4455                 struct kvm_interrupt irq;
4456
4457                 r = -EFAULT;
4458                 if (copy_from_user(&irq, argp, sizeof(irq)))
4459                         goto out;
4460                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4461                 break;
4462         }
4463         case KVM_NMI: {
4464                 r = kvm_vcpu_ioctl_nmi(vcpu);
4465                 break;
4466         }
4467         case KVM_SMI: {
4468                 r = kvm_vcpu_ioctl_smi(vcpu);
4469                 break;
4470         }
4471         case KVM_SET_CPUID: {
4472                 struct kvm_cpuid __user *cpuid_arg = argp;
4473                 struct kvm_cpuid cpuid;
4474
4475                 r = -EFAULT;
4476                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4477                         goto out;
4478                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4479                 break;
4480         }
4481         case KVM_SET_CPUID2: {
4482                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4483                 struct kvm_cpuid2 cpuid;
4484
4485                 r = -EFAULT;
4486                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4487                         goto out;
4488                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4489                                               cpuid_arg->entries);
4490                 break;
4491         }
4492         case KVM_GET_CPUID2: {
4493                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4494                 struct kvm_cpuid2 cpuid;
4495
4496                 r = -EFAULT;
4497                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4498                         goto out;
4499                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4500                                               cpuid_arg->entries);
4501                 if (r)
4502                         goto out;
4503                 r = -EFAULT;
4504                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4505                         goto out;
4506                 r = 0;
4507                 break;
4508         }
4509         case KVM_GET_MSRS: {
4510                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4511                 r = msr_io(vcpu, argp, do_get_msr, 1);
4512                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4513                 break;
4514         }
4515         case KVM_SET_MSRS: {
4516                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4517                 r = msr_io(vcpu, argp, do_set_msr, 0);
4518                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4519                 break;
4520         }
4521         case KVM_TPR_ACCESS_REPORTING: {
4522                 struct kvm_tpr_access_ctl tac;
4523
4524                 r = -EFAULT;
4525                 if (copy_from_user(&tac, argp, sizeof(tac)))
4526                         goto out;
4527                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4528                 if (r)
4529                         goto out;
4530                 r = -EFAULT;
4531                 if (copy_to_user(argp, &tac, sizeof(tac)))
4532                         goto out;
4533                 r = 0;
4534                 break;
4535         };
4536         case KVM_SET_VAPIC_ADDR: {
4537                 struct kvm_vapic_addr va;
4538                 int idx;
4539
4540                 r = -EINVAL;
4541                 if (!lapic_in_kernel(vcpu))
4542                         goto out;
4543                 r = -EFAULT;
4544                 if (copy_from_user(&va, argp, sizeof(va)))
4545                         goto out;
4546                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4547                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4548                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4549                 break;
4550         }
4551         case KVM_X86_SETUP_MCE: {
4552                 u64 mcg_cap;
4553
4554                 r = -EFAULT;
4555                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4556                         goto out;
4557                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4558                 break;
4559         }
4560         case KVM_X86_SET_MCE: {
4561                 struct kvm_x86_mce mce;
4562
4563                 r = -EFAULT;
4564                 if (copy_from_user(&mce, argp, sizeof(mce)))
4565                         goto out;
4566                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4567                 break;
4568         }
4569         case KVM_GET_VCPU_EVENTS: {
4570                 struct kvm_vcpu_events events;
4571
4572                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4573
4574                 r = -EFAULT;
4575                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4576                         break;
4577                 r = 0;
4578                 break;
4579         }
4580         case KVM_SET_VCPU_EVENTS: {
4581                 struct kvm_vcpu_events events;
4582
4583                 r = -EFAULT;
4584                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4585                         break;
4586
4587                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4588                 break;
4589         }
4590         case KVM_GET_DEBUGREGS: {
4591                 struct kvm_debugregs dbgregs;
4592
4593                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4594
4595                 r = -EFAULT;
4596                 if (copy_to_user(argp, &dbgregs,
4597                                  sizeof(struct kvm_debugregs)))
4598                         break;
4599                 r = 0;
4600                 break;
4601         }
4602         case KVM_SET_DEBUGREGS: {
4603                 struct kvm_debugregs dbgregs;
4604
4605                 r = -EFAULT;
4606                 if (copy_from_user(&dbgregs, argp,
4607                                    sizeof(struct kvm_debugregs)))
4608                         break;
4609
4610                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4611                 break;
4612         }
4613         case KVM_GET_XSAVE: {
4614                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4615                 r = -ENOMEM;
4616                 if (!u.xsave)
4617                         break;
4618
4619                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4620
4621                 r = -EFAULT;
4622                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4623                         break;
4624                 r = 0;
4625                 break;
4626         }
4627         case KVM_SET_XSAVE: {
4628                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4629                 if (IS_ERR(u.xsave)) {
4630                         r = PTR_ERR(u.xsave);
4631                         goto out_nofree;
4632                 }
4633
4634                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4635                 break;
4636         }
4637         case KVM_GET_XCRS: {
4638                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4639                 r = -ENOMEM;
4640                 if (!u.xcrs)
4641                         break;
4642
4643                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4644
4645                 r = -EFAULT;
4646                 if (copy_to_user(argp, u.xcrs,
4647                                  sizeof(struct kvm_xcrs)))
4648                         break;
4649                 r = 0;
4650                 break;
4651         }
4652         case KVM_SET_XCRS: {
4653                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4654                 if (IS_ERR(u.xcrs)) {
4655                         r = PTR_ERR(u.xcrs);
4656                         goto out_nofree;
4657                 }
4658
4659                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4660                 break;
4661         }
4662         case KVM_SET_TSC_KHZ: {
4663                 u32 user_tsc_khz;
4664
4665                 r = -EINVAL;
4666                 user_tsc_khz = (u32)arg;
4667
4668                 if (kvm_has_tsc_control &&
4669                     user_tsc_khz >= kvm_max_guest_tsc_khz)
4670                         goto out;
4671
4672                 if (user_tsc_khz == 0)
4673                         user_tsc_khz = tsc_khz;
4674
4675                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4676                         r = 0;
4677
4678                 goto out;
4679         }
4680         case KVM_GET_TSC_KHZ: {
4681                 r = vcpu->arch.virtual_tsc_khz;
4682                 goto out;
4683         }
4684         case KVM_KVMCLOCK_CTRL: {
4685                 r = kvm_set_guest_paused(vcpu);
4686                 goto out;
4687         }
4688         case KVM_ENABLE_CAP: {
4689                 struct kvm_enable_cap cap;
4690
4691                 r = -EFAULT;
4692                 if (copy_from_user(&cap, argp, sizeof(cap)))
4693                         goto out;
4694                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4695                 break;
4696         }
4697         case KVM_GET_NESTED_STATE: {
4698                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4699                 u32 user_data_size;
4700
4701                 r = -EINVAL;
4702                 if (!kvm_x86_ops.nested_ops->get_state)
4703                         break;
4704
4705                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4706                 r = -EFAULT;
4707                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4708                         break;
4709
4710                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4711                                                      user_data_size);
4712                 if (r < 0)
4713                         break;
4714
4715                 if (r > user_data_size) {
4716                         if (put_user(r, &user_kvm_nested_state->size))
4717                                 r = -EFAULT;
4718                         else
4719                                 r = -E2BIG;
4720                         break;
4721                 }
4722
4723                 r = 0;
4724                 break;
4725         }
4726         case KVM_SET_NESTED_STATE: {
4727                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4728                 struct kvm_nested_state kvm_state;
4729                 int idx;
4730
4731                 r = -EINVAL;
4732                 if (!kvm_x86_ops.nested_ops->set_state)
4733                         break;
4734
4735                 r = -EFAULT;
4736                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4737                         break;
4738
4739                 r = -EINVAL;
4740                 if (kvm_state.size < sizeof(kvm_state))
4741                         break;
4742
4743                 if (kvm_state.flags &
4744                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4745                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
4746                       | KVM_STATE_NESTED_GIF_SET))
4747                         break;
4748
4749                 /* nested_run_pending implies guest_mode.  */
4750                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4751                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4752                         break;
4753
4754                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4755                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
4756                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4757                 break;
4758         }
4759         case KVM_GET_SUPPORTED_HV_CPUID: {
4760                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4761                 struct kvm_cpuid2 cpuid;
4762
4763                 r = -EFAULT;
4764                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4765                         goto out;
4766
4767                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4768                                                 cpuid_arg->entries);
4769                 if (r)
4770                         goto out;
4771
4772                 r = -EFAULT;
4773                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4774                         goto out;
4775                 r = 0;
4776                 break;
4777         }
4778         default:
4779                 r = -EINVAL;
4780         }
4781 out:
4782         kfree(u.buffer);
4783 out_nofree:
4784         vcpu_put(vcpu);
4785         return r;
4786 }
4787
4788 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4789 {
4790         return VM_FAULT_SIGBUS;
4791 }
4792
4793 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4794 {
4795         int ret;
4796
4797         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4798                 return -EINVAL;
4799         ret = kvm_x86_ops.set_tss_addr(kvm, addr);
4800         return ret;
4801 }
4802
4803 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4804                                               u64 ident_addr)
4805 {
4806         return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
4807 }
4808
4809 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4810                                          unsigned long kvm_nr_mmu_pages)
4811 {
4812         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4813                 return -EINVAL;
4814
4815         mutex_lock(&kvm->slots_lock);
4816
4817         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4818         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4819
4820         mutex_unlock(&kvm->slots_lock);
4821         return 0;
4822 }
4823
4824 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4825 {
4826         return kvm->arch.n_max_mmu_pages;
4827 }
4828
4829 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4830 {
4831         struct kvm_pic *pic = kvm->arch.vpic;
4832         int r;
4833
4834         r = 0;
4835         switch (chip->chip_id) {
4836         case KVM_IRQCHIP_PIC_MASTER:
4837                 memcpy(&chip->chip.pic, &pic->pics[0],
4838                         sizeof(struct kvm_pic_state));
4839                 break;
4840         case KVM_IRQCHIP_PIC_SLAVE:
4841                 memcpy(&chip->chip.pic, &pic->pics[1],
4842                         sizeof(struct kvm_pic_state));
4843                 break;
4844         case KVM_IRQCHIP_IOAPIC:
4845                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4846                 break;
4847         default:
4848                 r = -EINVAL;
4849                 break;
4850         }
4851         return r;
4852 }
4853
4854 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4855 {
4856         struct kvm_pic *pic = kvm->arch.vpic;
4857         int r;
4858
4859         r = 0;
4860         switch (chip->chip_id) {
4861         case KVM_IRQCHIP_PIC_MASTER:
4862                 spin_lock(&pic->lock);
4863                 memcpy(&pic->pics[0], &chip->chip.pic,
4864                         sizeof(struct kvm_pic_state));
4865                 spin_unlock(&pic->lock);
4866                 break;
4867         case KVM_IRQCHIP_PIC_SLAVE:
4868                 spin_lock(&pic->lock);
4869                 memcpy(&pic->pics[1], &chip->chip.pic,
4870                         sizeof(struct kvm_pic_state));
4871                 spin_unlock(&pic->lock);
4872                 break;
4873         case KVM_IRQCHIP_IOAPIC:
4874                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4875                 break;
4876         default:
4877                 r = -EINVAL;
4878                 break;
4879         }
4880         kvm_pic_update_irq(pic);
4881         return r;
4882 }
4883
4884 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4885 {
4886         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4887
4888         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4889
4890         mutex_lock(&kps->lock);
4891         memcpy(ps, &kps->channels, sizeof(*ps));
4892         mutex_unlock(&kps->lock);
4893         return 0;
4894 }
4895
4896 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4897 {
4898         int i;
4899         struct kvm_pit *pit = kvm->arch.vpit;
4900
4901         mutex_lock(&pit->pit_state.lock);
4902         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4903         for (i = 0; i < 3; i++)
4904                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4905         mutex_unlock(&pit->pit_state.lock);
4906         return 0;
4907 }
4908
4909 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4910 {
4911         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4912         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4913                 sizeof(ps->channels));
4914         ps->flags = kvm->arch.vpit->pit_state.flags;
4915         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4916         memset(&ps->reserved, 0, sizeof(ps->reserved));
4917         return 0;
4918 }
4919
4920 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4921 {
4922         int start = 0;
4923         int i;
4924         u32 prev_legacy, cur_legacy;
4925         struct kvm_pit *pit = kvm->arch.vpit;
4926
4927         mutex_lock(&pit->pit_state.lock);
4928         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4929         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4930         if (!prev_legacy && cur_legacy)
4931                 start = 1;
4932         memcpy(&pit->pit_state.channels, &ps->channels,
4933                sizeof(pit->pit_state.channels));
4934         pit->pit_state.flags = ps->flags;
4935         for (i = 0; i < 3; i++)
4936                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4937                                    start && i == 0);
4938         mutex_unlock(&pit->pit_state.lock);
4939         return 0;
4940 }
4941
4942 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4943                                  struct kvm_reinject_control *control)
4944 {
4945         struct kvm_pit *pit = kvm->arch.vpit;
4946
4947         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4948          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4949          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4950          */
4951         mutex_lock(&pit->pit_state.lock);
4952         kvm_pit_set_reinject(pit, control->pit_reinject);
4953         mutex_unlock(&pit->pit_state.lock);
4954
4955         return 0;
4956 }
4957
4958 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
4959 {
4960         /*
4961          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4962          */
4963         if (kvm_x86_ops.flush_log_dirty)
4964                 kvm_x86_ops.flush_log_dirty(kvm);
4965 }
4966
4967 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4968                         bool line_status)
4969 {
4970         if (!irqchip_in_kernel(kvm))
4971                 return -ENXIO;
4972
4973         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4974                                         irq_event->irq, irq_event->level,
4975                                         line_status);
4976         return 0;
4977 }
4978
4979 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4980                             struct kvm_enable_cap *cap)
4981 {
4982         int r;
4983
4984         if (cap->flags)
4985                 return -EINVAL;
4986
4987         switch (cap->cap) {
4988         case KVM_CAP_DISABLE_QUIRKS:
4989                 kvm->arch.disabled_quirks = cap->args[0];
4990                 r = 0;
4991                 break;
4992         case KVM_CAP_SPLIT_IRQCHIP: {
4993                 mutex_lock(&kvm->lock);
4994                 r = -EINVAL;
4995                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4996                         goto split_irqchip_unlock;
4997                 r = -EEXIST;
4998                 if (irqchip_in_kernel(kvm))
4999                         goto split_irqchip_unlock;
5000                 if (kvm->created_vcpus)
5001                         goto split_irqchip_unlock;
5002                 r = kvm_setup_empty_irq_routing(kvm);
5003                 if (r)
5004                         goto split_irqchip_unlock;
5005                 /* Pairs with irqchip_in_kernel. */
5006                 smp_wmb();
5007                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5008                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5009                 r = 0;
5010 split_irqchip_unlock:
5011                 mutex_unlock(&kvm->lock);
5012                 break;
5013         }
5014         case KVM_CAP_X2APIC_API:
5015                 r = -EINVAL;
5016                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5017                         break;
5018
5019                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5020                         kvm->arch.x2apic_format = true;
5021                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5022                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
5023
5024                 r = 0;
5025                 break;
5026         case KVM_CAP_X86_DISABLE_EXITS:
5027                 r = -EINVAL;
5028                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5029                         break;
5030
5031                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5032                         kvm_can_mwait_in_guest())
5033                         kvm->arch.mwait_in_guest = true;
5034                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5035                         kvm->arch.hlt_in_guest = true;
5036                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5037                         kvm->arch.pause_in_guest = true;
5038                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5039                         kvm->arch.cstate_in_guest = true;
5040                 r = 0;
5041                 break;
5042         case KVM_CAP_MSR_PLATFORM_INFO:
5043                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5044                 r = 0;
5045                 break;
5046         case KVM_CAP_EXCEPTION_PAYLOAD:
5047                 kvm->arch.exception_payload_enabled = cap->args[0];
5048                 r = 0;
5049                 break;
5050         default:
5051                 r = -EINVAL;
5052                 break;
5053         }
5054         return r;
5055 }
5056
5057 long kvm_arch_vm_ioctl(struct file *filp,
5058                        unsigned int ioctl, unsigned long arg)
5059 {
5060         struct kvm *kvm = filp->private_data;
5061         void __user *argp = (void __user *)arg;
5062         int r = -ENOTTY;
5063         /*
5064          * This union makes it completely explicit to gcc-3.x
5065          * that these two variables' stack usage should be
5066          * combined, not added together.
5067          */
5068         union {
5069                 struct kvm_pit_state ps;
5070                 struct kvm_pit_state2 ps2;
5071                 struct kvm_pit_config pit_config;
5072         } u;
5073
5074         switch (ioctl) {
5075         case KVM_SET_TSS_ADDR:
5076                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5077                 break;
5078         case KVM_SET_IDENTITY_MAP_ADDR: {
5079                 u64 ident_addr;
5080
5081                 mutex_lock(&kvm->lock);
5082                 r = -EINVAL;
5083                 if (kvm->created_vcpus)
5084                         goto set_identity_unlock;
5085                 r = -EFAULT;
5086                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5087                         goto set_identity_unlock;
5088                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5089 set_identity_unlock:
5090                 mutex_unlock(&kvm->lock);
5091                 break;
5092         }
5093         case KVM_SET_NR_MMU_PAGES:
5094                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5095                 break;
5096         case KVM_GET_NR_MMU_PAGES:
5097                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5098                 break;
5099         case KVM_CREATE_IRQCHIP: {
5100                 mutex_lock(&kvm->lock);
5101
5102                 r = -EEXIST;
5103                 if (irqchip_in_kernel(kvm))
5104                         goto create_irqchip_unlock;
5105
5106                 r = -EINVAL;
5107                 if (kvm->created_vcpus)
5108                         goto create_irqchip_unlock;
5109
5110                 r = kvm_pic_init(kvm);
5111                 if (r)
5112                         goto create_irqchip_unlock;
5113
5114                 r = kvm_ioapic_init(kvm);
5115                 if (r) {
5116                         kvm_pic_destroy(kvm);
5117                         goto create_irqchip_unlock;
5118                 }
5119
5120                 r = kvm_setup_default_irq_routing(kvm);
5121                 if (r) {
5122                         kvm_ioapic_destroy(kvm);
5123                         kvm_pic_destroy(kvm);
5124                         goto create_irqchip_unlock;
5125                 }
5126                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5127                 smp_wmb();
5128                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5129         create_irqchip_unlock:
5130                 mutex_unlock(&kvm->lock);
5131                 break;
5132         }
5133         case KVM_CREATE_PIT:
5134                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5135                 goto create_pit;
5136         case KVM_CREATE_PIT2:
5137                 r = -EFAULT;
5138                 if (copy_from_user(&u.pit_config, argp,
5139                                    sizeof(struct kvm_pit_config)))
5140                         goto out;
5141         create_pit:
5142                 mutex_lock(&kvm->lock);
5143                 r = -EEXIST;
5144                 if (kvm->arch.vpit)
5145                         goto create_pit_unlock;
5146                 r = -ENOMEM;
5147                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5148                 if (kvm->arch.vpit)
5149                         r = 0;
5150         create_pit_unlock:
5151                 mutex_unlock(&kvm->lock);
5152                 break;
5153         case KVM_GET_IRQCHIP: {
5154                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5155                 struct kvm_irqchip *chip;
5156
5157                 chip = memdup_user(argp, sizeof(*chip));
5158                 if (IS_ERR(chip)) {
5159                         r = PTR_ERR(chip);
5160                         goto out;
5161                 }
5162
5163                 r = -ENXIO;
5164                 if (!irqchip_kernel(kvm))
5165                         goto get_irqchip_out;
5166                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5167                 if (r)
5168                         goto get_irqchip_out;
5169                 r = -EFAULT;
5170                 if (copy_to_user(argp, chip, sizeof(*chip)))
5171                         goto get_irqchip_out;
5172                 r = 0;
5173         get_irqchip_out:
5174                 kfree(chip);
5175                 break;
5176         }
5177         case KVM_SET_IRQCHIP: {
5178                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5179                 struct kvm_irqchip *chip;
5180
5181                 chip = memdup_user(argp, sizeof(*chip));
5182                 if (IS_ERR(chip)) {
5183                         r = PTR_ERR(chip);
5184                         goto out;
5185                 }
5186
5187                 r = -ENXIO;
5188                 if (!irqchip_kernel(kvm))
5189                         goto set_irqchip_out;
5190                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5191         set_irqchip_out:
5192                 kfree(chip);
5193                 break;
5194         }
5195         case KVM_GET_PIT: {
5196                 r = -EFAULT;
5197                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5198                         goto out;
5199                 r = -ENXIO;
5200                 if (!kvm->arch.vpit)
5201                         goto out;
5202                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5203                 if (r)
5204                         goto out;
5205                 r = -EFAULT;
5206                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5207                         goto out;
5208                 r = 0;
5209                 break;
5210         }
5211         case KVM_SET_PIT: {
5212                 r = -EFAULT;
5213                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5214                         goto out;
5215                 mutex_lock(&kvm->lock);
5216                 r = -ENXIO;
5217                 if (!kvm->arch.vpit)
5218                         goto set_pit_out;
5219                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5220 set_pit_out:
5221                 mutex_unlock(&kvm->lock);
5222                 break;
5223         }
5224         case KVM_GET_PIT2: {
5225                 r = -ENXIO;
5226                 if (!kvm->arch.vpit)
5227                         goto out;
5228                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5229                 if (r)
5230                         goto out;
5231                 r = -EFAULT;
5232                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5233                         goto out;
5234                 r = 0;
5235                 break;
5236         }
5237         case KVM_SET_PIT2: {
5238                 r = -EFAULT;
5239                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5240                         goto out;
5241                 mutex_lock(&kvm->lock);
5242                 r = -ENXIO;
5243                 if (!kvm->arch.vpit)
5244                         goto set_pit2_out;
5245                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5246 set_pit2_out:
5247                 mutex_unlock(&kvm->lock);
5248                 break;
5249         }
5250         case KVM_REINJECT_CONTROL: {
5251                 struct kvm_reinject_control control;
5252                 r =  -EFAULT;
5253                 if (copy_from_user(&control, argp, sizeof(control)))
5254                         goto out;
5255                 r = -ENXIO;
5256                 if (!kvm->arch.vpit)
5257                         goto out;
5258                 r = kvm_vm_ioctl_reinject(kvm, &control);
5259                 break;
5260         }
5261         case KVM_SET_BOOT_CPU_ID:
5262                 r = 0;
5263                 mutex_lock(&kvm->lock);
5264                 if (kvm->created_vcpus)
5265                         r = -EBUSY;
5266                 else
5267                         kvm->arch.bsp_vcpu_id = arg;
5268                 mutex_unlock(&kvm->lock);
5269                 break;
5270         case KVM_XEN_HVM_CONFIG: {
5271                 struct kvm_xen_hvm_config xhc;
5272                 r = -EFAULT;
5273                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5274                         goto out;
5275                 r = -EINVAL;
5276                 if (xhc.flags)
5277                         goto out;
5278                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5279                 r = 0;
5280                 break;
5281         }
5282         case KVM_SET_CLOCK: {
5283                 struct kvm_clock_data user_ns;
5284                 u64 now_ns;
5285
5286                 r = -EFAULT;
5287                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5288                         goto out;
5289
5290                 r = -EINVAL;
5291                 if (user_ns.flags)
5292                         goto out;
5293
5294                 r = 0;
5295                 /*
5296                  * TODO: userspace has to take care of races with VCPU_RUN, so
5297                  * kvm_gen_update_masterclock() can be cut down to locked
5298                  * pvclock_update_vm_gtod_copy().
5299                  */
5300                 kvm_gen_update_masterclock(kvm);
5301                 now_ns = get_kvmclock_ns(kvm);
5302                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5303                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5304                 break;
5305         }
5306         case KVM_GET_CLOCK: {
5307                 struct kvm_clock_data user_ns;
5308                 u64 now_ns;
5309
5310                 now_ns = get_kvmclock_ns(kvm);
5311                 user_ns.clock = now_ns;
5312                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5313                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5314
5315                 r = -EFAULT;
5316                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5317                         goto out;
5318                 r = 0;
5319                 break;
5320         }
5321         case KVM_MEMORY_ENCRYPT_OP: {
5322                 r = -ENOTTY;
5323                 if (kvm_x86_ops.mem_enc_op)
5324                         r = kvm_x86_ops.mem_enc_op(kvm, argp);
5325                 break;
5326         }
5327         case KVM_MEMORY_ENCRYPT_REG_REGION: {
5328                 struct kvm_enc_region region;
5329
5330                 r = -EFAULT;
5331                 if (copy_from_user(&region, argp, sizeof(region)))
5332                         goto out;
5333
5334                 r = -ENOTTY;
5335                 if (kvm_x86_ops.mem_enc_reg_region)
5336                         r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5337                 break;
5338         }
5339         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5340                 struct kvm_enc_region region;
5341
5342                 r = -EFAULT;
5343                 if (copy_from_user(&region, argp, sizeof(region)))
5344                         goto out;
5345
5346                 r = -ENOTTY;
5347                 if (kvm_x86_ops.mem_enc_unreg_region)
5348                         r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5349                 break;
5350         }
5351         case KVM_HYPERV_EVENTFD: {
5352                 struct kvm_hyperv_eventfd hvevfd;
5353
5354                 r = -EFAULT;
5355                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5356                         goto out;
5357                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5358                 break;
5359         }
5360         case KVM_SET_PMU_EVENT_FILTER:
5361                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5362                 break;
5363         default:
5364                 r = -ENOTTY;
5365         }
5366 out:
5367         return r;
5368 }
5369
5370 static void kvm_init_msr_list(void)
5371 {
5372         struct x86_pmu_capability x86_pmu;
5373         u32 dummy[2];
5374         unsigned i;
5375
5376         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5377                          "Please update the fixed PMCs in msrs_to_saved_all[]");
5378
5379         perf_get_x86_pmu_capability(&x86_pmu);
5380
5381         num_msrs_to_save = 0;
5382         num_emulated_msrs = 0;
5383         num_msr_based_features = 0;
5384
5385         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5386                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5387                         continue;
5388
5389                 /*
5390                  * Even MSRs that are valid in the host may not be exposed
5391                  * to the guests in some cases.
5392                  */
5393                 switch (msrs_to_save_all[i]) {
5394                 case MSR_IA32_BNDCFGS:
5395                         if (!kvm_mpx_supported())
5396                                 continue;
5397                         break;
5398                 case MSR_TSC_AUX:
5399                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5400                                 continue;
5401                         break;
5402                 case MSR_IA32_UMWAIT_CONTROL:
5403                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5404                                 continue;
5405                         break;
5406                 case MSR_IA32_RTIT_CTL:
5407                 case MSR_IA32_RTIT_STATUS:
5408                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5409                                 continue;
5410                         break;
5411                 case MSR_IA32_RTIT_CR3_MATCH:
5412                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5413                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5414                                 continue;
5415                         break;
5416                 case MSR_IA32_RTIT_OUTPUT_BASE:
5417                 case MSR_IA32_RTIT_OUTPUT_MASK:
5418                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5419                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5420                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5421                                 continue;
5422                         break;
5423                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5424                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5425                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5426                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5427                                 continue;
5428                         break;
5429                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5430                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5431                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5432                                 continue;
5433                         break;
5434                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5435                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5436                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5437                                 continue;
5438                         break;
5439                 default:
5440                         break;
5441                 }
5442
5443                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5444         }
5445
5446         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5447                 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5448                         continue;
5449
5450                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5451         }
5452
5453         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5454                 struct kvm_msr_entry msr;
5455
5456                 msr.index = msr_based_features_all[i];
5457                 if (kvm_get_msr_feature(&msr))
5458                         continue;
5459
5460                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5461         }
5462 }
5463
5464 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5465                            const void *v)
5466 {
5467         int handled = 0;
5468         int n;
5469
5470         do {
5471                 n = min(len, 8);
5472                 if (!(lapic_in_kernel(vcpu) &&
5473                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5474                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5475                         break;
5476                 handled += n;
5477                 addr += n;
5478                 len -= n;
5479                 v += n;
5480         } while (len);
5481
5482         return handled;
5483 }
5484
5485 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5486 {
5487         int handled = 0;
5488         int n;
5489
5490         do {
5491                 n = min(len, 8);
5492                 if (!(lapic_in_kernel(vcpu) &&
5493                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5494                                          addr, n, v))
5495                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5496                         break;
5497                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5498                 handled += n;
5499                 addr += n;
5500                 len -= n;
5501                 v += n;
5502         } while (len);
5503
5504         return handled;
5505 }
5506
5507 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5508                         struct kvm_segment *var, int seg)
5509 {
5510         kvm_x86_ops.set_segment(vcpu, var, seg);
5511 }
5512
5513 void kvm_get_segment(struct kvm_vcpu *vcpu,
5514                      struct kvm_segment *var, int seg)
5515 {
5516         kvm_x86_ops.get_segment(vcpu, var, seg);
5517 }
5518
5519 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5520                            struct x86_exception *exception)
5521 {
5522         gpa_t t_gpa;
5523
5524         BUG_ON(!mmu_is_nested(vcpu));
5525
5526         /* NPT walks are always user-walks */
5527         access |= PFERR_USER_MASK;
5528         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5529
5530         return t_gpa;
5531 }
5532
5533 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5534                               struct x86_exception *exception)
5535 {
5536         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5537         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5538 }
5539
5540  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5541                                 struct x86_exception *exception)
5542 {
5543         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5544         access |= PFERR_FETCH_MASK;
5545         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5546 }
5547
5548 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5549                                struct x86_exception *exception)
5550 {
5551         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5552         access |= PFERR_WRITE_MASK;
5553         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5554 }
5555
5556 /* uses this to access any guest's mapped memory without checking CPL */
5557 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5558                                 struct x86_exception *exception)
5559 {
5560         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5561 }
5562
5563 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5564                                       struct kvm_vcpu *vcpu, u32 access,
5565                                       struct x86_exception *exception)
5566 {
5567         void *data = val;
5568         int r = X86EMUL_CONTINUE;
5569
5570         while (bytes) {
5571                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5572                                                             exception);
5573                 unsigned offset = addr & (PAGE_SIZE-1);
5574                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5575                 int ret;
5576
5577                 if (gpa == UNMAPPED_GVA)
5578                         return X86EMUL_PROPAGATE_FAULT;
5579                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5580                                                offset, toread);
5581                 if (ret < 0) {
5582                         r = X86EMUL_IO_NEEDED;
5583                         goto out;
5584                 }
5585
5586                 bytes -= toread;
5587                 data += toread;
5588                 addr += toread;
5589         }
5590 out:
5591         return r;
5592 }
5593
5594 /* used for instruction fetching */
5595 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5596                                 gva_t addr, void *val, unsigned int bytes,
5597                                 struct x86_exception *exception)
5598 {
5599         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5600         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5601         unsigned offset;
5602         int ret;
5603
5604         /* Inline kvm_read_guest_virt_helper for speed.  */
5605         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5606                                                     exception);
5607         if (unlikely(gpa == UNMAPPED_GVA))
5608                 return X86EMUL_PROPAGATE_FAULT;
5609
5610         offset = addr & (PAGE_SIZE-1);
5611         if (WARN_ON(offset + bytes > PAGE_SIZE))
5612                 bytes = (unsigned)PAGE_SIZE - offset;
5613         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5614                                        offset, bytes);
5615         if (unlikely(ret < 0))
5616                 return X86EMUL_IO_NEEDED;
5617
5618         return X86EMUL_CONTINUE;
5619 }
5620
5621 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5622                                gva_t addr, void *val, unsigned int bytes,
5623                                struct x86_exception *exception)
5624 {
5625         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5626
5627         /*
5628          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5629          * is returned, but our callers are not ready for that and they blindly
5630          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5631          * uninitialized kernel stack memory into cr2 and error code.
5632          */
5633         memset(exception, 0, sizeof(*exception));
5634         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5635                                           exception);
5636 }
5637 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5638
5639 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5640                              gva_t addr, void *val, unsigned int bytes,
5641                              struct x86_exception *exception, bool system)
5642 {
5643         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5644         u32 access = 0;
5645
5646         if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5647                 access |= PFERR_USER_MASK;
5648
5649         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5650 }
5651
5652 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5653                 unsigned long addr, void *val, unsigned int bytes)
5654 {
5655         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5656         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5657
5658         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5659 }
5660
5661 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5662                                       struct kvm_vcpu *vcpu, u32 access,
5663                                       struct x86_exception *exception)
5664 {
5665         void *data = val;
5666         int r = X86EMUL_CONTINUE;
5667
5668         while (bytes) {
5669                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5670                                                              access,
5671                                                              exception);
5672                 unsigned offset = addr & (PAGE_SIZE-1);
5673                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5674                 int ret;
5675
5676                 if (gpa == UNMAPPED_GVA)
5677                         return X86EMUL_PROPAGATE_FAULT;
5678                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5679                 if (ret < 0) {
5680                         r = X86EMUL_IO_NEEDED;
5681                         goto out;
5682                 }
5683
5684                 bytes -= towrite;
5685                 data += towrite;
5686                 addr += towrite;
5687         }
5688 out:
5689         return r;
5690 }
5691
5692 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5693                               unsigned int bytes, struct x86_exception *exception,
5694                               bool system)
5695 {
5696         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5697         u32 access = PFERR_WRITE_MASK;
5698
5699         if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5700                 access |= PFERR_USER_MASK;
5701
5702         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5703                                            access, exception);
5704 }
5705
5706 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5707                                 unsigned int bytes, struct x86_exception *exception)
5708 {
5709         /* kvm_write_guest_virt_system can pull in tons of pages. */
5710         vcpu->arch.l1tf_flush_l1d = true;
5711
5712         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5713                                            PFERR_WRITE_MASK, exception);
5714 }
5715 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5716
5717 int handle_ud(struct kvm_vcpu *vcpu)
5718 {
5719         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5720         int emul_type = EMULTYPE_TRAP_UD;
5721         char sig[5]; /* ud2; .ascii "kvm" */
5722         struct x86_exception e;
5723
5724         if (force_emulation_prefix &&
5725             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5726                                 sig, sizeof(sig), &e) == 0 &&
5727             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5728                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5729                 emul_type = EMULTYPE_TRAP_UD_FORCED;
5730         }
5731
5732         return kvm_emulate_instruction(vcpu, emul_type);
5733 }
5734 EXPORT_SYMBOL_GPL(handle_ud);
5735
5736 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5737                             gpa_t gpa, bool write)
5738 {
5739         /* For APIC access vmexit */
5740         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5741                 return 1;
5742
5743         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5744                 trace_vcpu_match_mmio(gva, gpa, write, true);
5745                 return 1;
5746         }
5747
5748         return 0;
5749 }
5750
5751 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5752                                 gpa_t *gpa, struct x86_exception *exception,
5753                                 bool write)
5754 {
5755         u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5756                 | (write ? PFERR_WRITE_MASK : 0);
5757
5758         /*
5759          * currently PKRU is only applied to ept enabled guest so
5760          * there is no pkey in EPT page table for L1 guest or EPT
5761          * shadow page table for L2 guest.
5762          */
5763         if (vcpu_match_mmio_gva(vcpu, gva)
5764             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5765                                  vcpu->arch.mmio_access, 0, access)) {
5766                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5767                                         (gva & (PAGE_SIZE - 1));
5768                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5769                 return 1;
5770         }
5771
5772         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5773
5774         if (*gpa == UNMAPPED_GVA)
5775                 return -1;
5776
5777         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5778 }
5779
5780 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5781                         const void *val, int bytes)
5782 {
5783         int ret;
5784
5785         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5786         if (ret < 0)
5787                 return 0;
5788         kvm_page_track_write(vcpu, gpa, val, bytes);
5789         return 1;
5790 }
5791
5792 struct read_write_emulator_ops {
5793         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5794                                   int bytes);
5795         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5796                                   void *val, int bytes);
5797         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5798                                int bytes, void *val);
5799         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5800                                     void *val, int bytes);
5801         bool write;
5802 };
5803
5804 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5805 {
5806         if (vcpu->mmio_read_completed) {
5807                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5808                                vcpu->mmio_fragments[0].gpa, val);
5809                 vcpu->mmio_read_completed = 0;
5810                 return 1;
5811         }
5812
5813         return 0;
5814 }
5815
5816 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5817                         void *val, int bytes)
5818 {
5819         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5820 }
5821
5822 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5823                          void *val, int bytes)
5824 {
5825         return emulator_write_phys(vcpu, gpa, val, bytes);
5826 }
5827
5828 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5829 {
5830         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5831         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5832 }
5833
5834 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5835                           void *val, int bytes)
5836 {
5837         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5838         return X86EMUL_IO_NEEDED;
5839 }
5840
5841 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5842                            void *val, int bytes)
5843 {
5844         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5845
5846         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5847         return X86EMUL_CONTINUE;
5848 }
5849
5850 static const struct read_write_emulator_ops read_emultor = {
5851         .read_write_prepare = read_prepare,
5852         .read_write_emulate = read_emulate,
5853         .read_write_mmio = vcpu_mmio_read,
5854         .read_write_exit_mmio = read_exit_mmio,
5855 };
5856
5857 static const struct read_write_emulator_ops write_emultor = {
5858         .read_write_emulate = write_emulate,
5859         .read_write_mmio = write_mmio,
5860         .read_write_exit_mmio = write_exit_mmio,
5861         .write = true,
5862 };
5863
5864 static int emulator_read_write_onepage(unsigned long addr, void *val,
5865                                        unsigned int bytes,
5866                                        struct x86_exception *exception,
5867                                        struct kvm_vcpu *vcpu,
5868                                        const struct read_write_emulator_ops *ops)
5869 {
5870         gpa_t gpa;
5871         int handled, ret;
5872         bool write = ops->write;
5873         struct kvm_mmio_fragment *frag;
5874         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
5875
5876         /*
5877          * If the exit was due to a NPF we may already have a GPA.
5878          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5879          * Note, this cannot be used on string operations since string
5880          * operation using rep will only have the initial GPA from the NPF
5881          * occurred.
5882          */
5883         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
5884             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
5885                 gpa = ctxt->gpa_val;
5886                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5887         } else {
5888                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5889                 if (ret < 0)
5890                         return X86EMUL_PROPAGATE_FAULT;
5891         }
5892
5893         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5894                 return X86EMUL_CONTINUE;
5895
5896         /*
5897          * Is this MMIO handled locally?
5898          */
5899         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5900         if (handled == bytes)
5901                 return X86EMUL_CONTINUE;
5902
5903         gpa += handled;
5904         bytes -= handled;
5905         val += handled;
5906
5907         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5908         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5909         frag->gpa = gpa;
5910         frag->data = val;
5911         frag->len = bytes;
5912         return X86EMUL_CONTINUE;
5913 }
5914
5915 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5916                         unsigned long addr,
5917                         void *val, unsigned int bytes,
5918                         struct x86_exception *exception,
5919                         const struct read_write_emulator_ops *ops)
5920 {
5921         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5922         gpa_t gpa;
5923         int rc;
5924
5925         if (ops->read_write_prepare &&
5926                   ops->read_write_prepare(vcpu, val, bytes))
5927                 return X86EMUL_CONTINUE;
5928
5929         vcpu->mmio_nr_fragments = 0;
5930
5931         /* Crossing a page boundary? */
5932         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5933                 int now;
5934
5935                 now = -addr & ~PAGE_MASK;
5936                 rc = emulator_read_write_onepage(addr, val, now, exception,
5937                                                  vcpu, ops);
5938
5939                 if (rc != X86EMUL_CONTINUE)
5940                         return rc;
5941                 addr += now;
5942                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5943                         addr = (u32)addr;
5944                 val += now;
5945                 bytes -= now;
5946         }
5947
5948         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5949                                          vcpu, ops);
5950         if (rc != X86EMUL_CONTINUE)
5951                 return rc;
5952
5953         if (!vcpu->mmio_nr_fragments)
5954                 return rc;
5955
5956         gpa = vcpu->mmio_fragments[0].gpa;
5957
5958         vcpu->mmio_needed = 1;
5959         vcpu->mmio_cur_fragment = 0;
5960
5961         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5962         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5963         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5964         vcpu->run->mmio.phys_addr = gpa;
5965
5966         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5967 }
5968
5969 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5970                                   unsigned long addr,
5971                                   void *val,
5972                                   unsigned int bytes,
5973                                   struct x86_exception *exception)
5974 {
5975         return emulator_read_write(ctxt, addr, val, bytes,
5976                                    exception, &read_emultor);
5977 }
5978
5979 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5980                             unsigned long addr,
5981                             const void *val,
5982                             unsigned int bytes,
5983                             struct x86_exception *exception)
5984 {
5985         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5986                                    exception, &write_emultor);
5987 }
5988
5989 #define CMPXCHG_TYPE(t, ptr, old, new) \
5990         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5991
5992 #ifdef CONFIG_X86_64
5993 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5994 #else
5995 #  define CMPXCHG64(ptr, old, new) \
5996         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5997 #endif
5998
5999 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6000                                      unsigned long addr,
6001                                      const void *old,
6002                                      const void *new,
6003                                      unsigned int bytes,
6004                                      struct x86_exception *exception)
6005 {
6006         struct kvm_host_map map;
6007         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6008         u64 page_line_mask;
6009         gpa_t gpa;
6010         char *kaddr;
6011         bool exchanged;
6012
6013         /* guests cmpxchg8b have to be emulated atomically */
6014         if (bytes > 8 || (bytes & (bytes - 1)))
6015                 goto emul_write;
6016
6017         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6018
6019         if (gpa == UNMAPPED_GVA ||
6020             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6021                 goto emul_write;
6022
6023         /*
6024          * Emulate the atomic as a straight write to avoid #AC if SLD is
6025          * enabled in the host and the access splits a cache line.
6026          */
6027         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6028                 page_line_mask = ~(cache_line_size() - 1);
6029         else
6030                 page_line_mask = PAGE_MASK;
6031
6032         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6033                 goto emul_write;
6034
6035         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6036                 goto emul_write;
6037
6038         kaddr = map.hva + offset_in_page(gpa);
6039
6040         switch (bytes) {
6041         case 1:
6042                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6043                 break;
6044         case 2:
6045                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6046                 break;
6047         case 4:
6048                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6049                 break;
6050         case 8:
6051                 exchanged = CMPXCHG64(kaddr, old, new);
6052                 break;
6053         default:
6054                 BUG();
6055         }
6056
6057         kvm_vcpu_unmap(vcpu, &map, true);
6058
6059         if (!exchanged)
6060                 return X86EMUL_CMPXCHG_FAILED;
6061
6062         kvm_page_track_write(vcpu, gpa, new, bytes);
6063
6064         return X86EMUL_CONTINUE;
6065
6066 emul_write:
6067         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6068
6069         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6070 }
6071
6072 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6073 {
6074         int r = 0, i;
6075
6076         for (i = 0; i < vcpu->arch.pio.count; i++) {
6077                 if (vcpu->arch.pio.in)
6078                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6079                                             vcpu->arch.pio.size, pd);
6080                 else
6081                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6082                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
6083                                              pd);
6084                 if (r)
6085                         break;
6086                 pd += vcpu->arch.pio.size;
6087         }
6088         return r;
6089 }
6090
6091 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6092                                unsigned short port, void *val,
6093                                unsigned int count, bool in)
6094 {
6095         vcpu->arch.pio.port = port;
6096         vcpu->arch.pio.in = in;
6097         vcpu->arch.pio.count  = count;
6098         vcpu->arch.pio.size = size;
6099
6100         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6101                 vcpu->arch.pio.count = 0;
6102                 return 1;
6103         }
6104
6105         vcpu->run->exit_reason = KVM_EXIT_IO;
6106         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6107         vcpu->run->io.size = size;
6108         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6109         vcpu->run->io.count = count;
6110         vcpu->run->io.port = port;
6111
6112         return 0;
6113 }
6114
6115 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6116                            unsigned short port, void *val, unsigned int count)
6117 {
6118         int ret;
6119
6120         if (vcpu->arch.pio.count)
6121                 goto data_avail;
6122
6123         memset(vcpu->arch.pio_data, 0, size * count);
6124
6125         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6126         if (ret) {
6127 data_avail:
6128                 memcpy(val, vcpu->arch.pio_data, size * count);
6129                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6130                 vcpu->arch.pio.count = 0;
6131                 return 1;
6132         }
6133
6134         return 0;
6135 }
6136
6137 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6138                                     int size, unsigned short port, void *val,
6139                                     unsigned int count)
6140 {
6141         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6142
6143 }
6144
6145 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6146                             unsigned short port, const void *val,
6147                             unsigned int count)
6148 {
6149         memcpy(vcpu->arch.pio_data, val, size * count);
6150         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6151         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6152 }
6153
6154 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6155                                      int size, unsigned short port,
6156                                      const void *val, unsigned int count)
6157 {
6158         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6159 }
6160
6161 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6162 {
6163         return kvm_x86_ops.get_segment_base(vcpu, seg);
6164 }
6165
6166 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6167 {
6168         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6169 }
6170
6171 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6172 {
6173         if (!need_emulate_wbinvd(vcpu))
6174                 return X86EMUL_CONTINUE;
6175
6176         if (kvm_x86_ops.has_wbinvd_exit()) {
6177                 int cpu = get_cpu();
6178
6179                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6180                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6181                                 wbinvd_ipi, NULL, 1);
6182                 put_cpu();
6183                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6184         } else
6185                 wbinvd();
6186         return X86EMUL_CONTINUE;
6187 }
6188
6189 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6190 {
6191         kvm_emulate_wbinvd_noskip(vcpu);
6192         return kvm_skip_emulated_instruction(vcpu);
6193 }
6194 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6195
6196
6197
6198 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6199 {
6200         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6201 }
6202
6203 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6204                            unsigned long *dest)
6205 {
6206         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6207 }
6208
6209 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6210                            unsigned long value)
6211 {
6212
6213         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6214 }
6215
6216 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6217 {
6218         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6219 }
6220
6221 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6222 {
6223         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6224         unsigned long value;
6225
6226         switch (cr) {
6227         case 0:
6228                 value = kvm_read_cr0(vcpu);
6229                 break;
6230         case 2:
6231                 value = vcpu->arch.cr2;
6232                 break;
6233         case 3:
6234                 value = kvm_read_cr3(vcpu);
6235                 break;
6236         case 4:
6237                 value = kvm_read_cr4(vcpu);
6238                 break;
6239         case 8:
6240                 value = kvm_get_cr8(vcpu);
6241                 break;
6242         default:
6243                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6244                 return 0;
6245         }
6246
6247         return value;
6248 }
6249
6250 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6251 {
6252         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6253         int res = 0;
6254
6255         switch (cr) {
6256         case 0:
6257                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6258                 break;
6259         case 2:
6260                 vcpu->arch.cr2 = val;
6261                 break;
6262         case 3:
6263                 res = kvm_set_cr3(vcpu, val);
6264                 break;
6265         case 4:
6266                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6267                 break;
6268         case 8:
6269                 res = kvm_set_cr8(vcpu, val);
6270                 break;
6271         default:
6272                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6273                 res = -1;
6274         }
6275
6276         return res;
6277 }
6278
6279 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6280 {
6281         return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6282 }
6283
6284 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6285 {
6286         kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6287 }
6288
6289 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6290 {
6291         kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6292 }
6293
6294 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6295 {
6296         kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6297 }
6298
6299 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6300 {
6301         kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6302 }
6303
6304 static unsigned long emulator_get_cached_segment_base(
6305         struct x86_emulate_ctxt *ctxt, int seg)
6306 {
6307         return get_segment_base(emul_to_vcpu(ctxt), seg);
6308 }
6309
6310 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6311                                  struct desc_struct *desc, u32 *base3,
6312                                  int seg)
6313 {
6314         struct kvm_segment var;
6315
6316         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6317         *selector = var.selector;
6318
6319         if (var.unusable) {
6320                 memset(desc, 0, sizeof(*desc));
6321                 if (base3)
6322                         *base3 = 0;
6323                 return false;
6324         }
6325
6326         if (var.g)
6327                 var.limit >>= 12;
6328         set_desc_limit(desc, var.limit);
6329         set_desc_base(desc, (unsigned long)var.base);
6330 #ifdef CONFIG_X86_64
6331         if (base3)
6332                 *base3 = var.base >> 32;
6333 #endif
6334         desc->type = var.type;
6335         desc->s = var.s;
6336         desc->dpl = var.dpl;
6337         desc->p = var.present;
6338         desc->avl = var.avl;
6339         desc->l = var.l;
6340         desc->d = var.db;
6341         desc->g = var.g;
6342
6343         return true;
6344 }
6345
6346 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6347                                  struct desc_struct *desc, u32 base3,
6348                                  int seg)
6349 {
6350         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6351         struct kvm_segment var;
6352
6353         var.selector = selector;
6354         var.base = get_desc_base(desc);
6355 #ifdef CONFIG_X86_64
6356         var.base |= ((u64)base3) << 32;
6357 #endif
6358         var.limit = get_desc_limit(desc);
6359         if (desc->g)
6360                 var.limit = (var.limit << 12) | 0xfff;
6361         var.type = desc->type;
6362         var.dpl = desc->dpl;
6363         var.db = desc->d;
6364         var.s = desc->s;
6365         var.l = desc->l;
6366         var.g = desc->g;
6367         var.avl = desc->avl;
6368         var.present = desc->p;
6369         var.unusable = !var.present;
6370         var.padding = 0;
6371
6372         kvm_set_segment(vcpu, &var, seg);
6373         return;
6374 }
6375
6376 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6377                             u32 msr_index, u64 *pdata)
6378 {
6379         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6380 }
6381
6382 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6383                             u32 msr_index, u64 data)
6384 {
6385         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6386 }
6387
6388 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6389 {
6390         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6391
6392         return vcpu->arch.smbase;
6393 }
6394
6395 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6396 {
6397         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6398
6399         vcpu->arch.smbase = smbase;
6400 }
6401
6402 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6403                               u32 pmc)
6404 {
6405         return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6406 }
6407
6408 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6409                              u32 pmc, u64 *pdata)
6410 {
6411         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6412 }
6413
6414 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6415 {
6416         emul_to_vcpu(ctxt)->arch.halt_request = 1;
6417 }
6418
6419 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6420                               struct x86_instruction_info *info,
6421                               enum x86_intercept_stage stage)
6422 {
6423         return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6424                                             &ctxt->exception);
6425 }
6426
6427 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6428                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6429                               bool exact_only)
6430 {
6431         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6432 }
6433
6434 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6435 {
6436         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6437 }
6438
6439 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6440 {
6441         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6442 }
6443
6444 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6445 {
6446         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6447 }
6448
6449 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6450 {
6451         return kvm_register_read(emul_to_vcpu(ctxt), reg);
6452 }
6453
6454 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6455 {
6456         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6457 }
6458
6459 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6460 {
6461         kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6462 }
6463
6464 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6465 {
6466         return emul_to_vcpu(ctxt)->arch.hflags;
6467 }
6468
6469 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6470 {
6471         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6472 }
6473
6474 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6475                                   const char *smstate)
6476 {
6477         return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6478 }
6479
6480 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6481 {
6482         kvm_smm_changed(emul_to_vcpu(ctxt));
6483 }
6484
6485 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6486 {
6487         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6488 }
6489
6490 static const struct x86_emulate_ops emulate_ops = {
6491         .read_gpr            = emulator_read_gpr,
6492         .write_gpr           = emulator_write_gpr,
6493         .read_std            = emulator_read_std,
6494         .write_std           = emulator_write_std,
6495         .read_phys           = kvm_read_guest_phys_system,
6496         .fetch               = kvm_fetch_guest_virt,
6497         .read_emulated       = emulator_read_emulated,
6498         .write_emulated      = emulator_write_emulated,
6499         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6500         .invlpg              = emulator_invlpg,
6501         .pio_in_emulated     = emulator_pio_in_emulated,
6502         .pio_out_emulated    = emulator_pio_out_emulated,
6503         .get_segment         = emulator_get_segment,
6504         .set_segment         = emulator_set_segment,
6505         .get_cached_segment_base = emulator_get_cached_segment_base,
6506         .get_gdt             = emulator_get_gdt,
6507         .get_idt             = emulator_get_idt,
6508         .set_gdt             = emulator_set_gdt,
6509         .set_idt             = emulator_set_idt,
6510         .get_cr              = emulator_get_cr,
6511         .set_cr              = emulator_set_cr,
6512         .cpl                 = emulator_get_cpl,
6513         .get_dr              = emulator_get_dr,
6514         .set_dr              = emulator_set_dr,
6515         .get_smbase          = emulator_get_smbase,
6516         .set_smbase          = emulator_set_smbase,
6517         .set_msr             = emulator_set_msr,
6518         .get_msr             = emulator_get_msr,
6519         .check_pmc           = emulator_check_pmc,
6520         .read_pmc            = emulator_read_pmc,
6521         .halt                = emulator_halt,
6522         .wbinvd              = emulator_wbinvd,
6523         .fix_hypercall       = emulator_fix_hypercall,
6524         .intercept           = emulator_intercept,
6525         .get_cpuid           = emulator_get_cpuid,
6526         .guest_has_long_mode = emulator_guest_has_long_mode,
6527         .guest_has_movbe     = emulator_guest_has_movbe,
6528         .guest_has_fxsr      = emulator_guest_has_fxsr,
6529         .set_nmi_mask        = emulator_set_nmi_mask,
6530         .get_hflags          = emulator_get_hflags,
6531         .set_hflags          = emulator_set_hflags,
6532         .pre_leave_smm       = emulator_pre_leave_smm,
6533         .post_leave_smm      = emulator_post_leave_smm,
6534         .set_xcr             = emulator_set_xcr,
6535 };
6536
6537 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6538 {
6539         u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6540         /*
6541          * an sti; sti; sequence only disable interrupts for the first
6542          * instruction. So, if the last instruction, be it emulated or
6543          * not, left the system with the INT_STI flag enabled, it
6544          * means that the last instruction is an sti. We should not
6545          * leave the flag on in this case. The same goes for mov ss
6546          */
6547         if (int_shadow & mask)
6548                 mask = 0;
6549         if (unlikely(int_shadow || mask)) {
6550                 kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6551                 if (!mask)
6552                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6553         }
6554 }
6555
6556 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6557 {
6558         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6559         if (ctxt->exception.vector == PF_VECTOR)
6560                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
6561
6562         if (ctxt->exception.error_code_valid)
6563                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6564                                       ctxt->exception.error_code);
6565         else
6566                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6567         return false;
6568 }
6569
6570 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6571 {
6572         struct x86_emulate_ctxt *ctxt;
6573
6574         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6575         if (!ctxt) {
6576                 pr_err("kvm: failed to allocate vcpu's emulator\n");
6577                 return NULL;
6578         }
6579
6580         ctxt->vcpu = vcpu;
6581         ctxt->ops = &emulate_ops;
6582         vcpu->arch.emulate_ctxt = ctxt;
6583
6584         return ctxt;
6585 }
6586
6587 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6588 {
6589         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6590         int cs_db, cs_l;
6591
6592         kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6593
6594         ctxt->gpa_available = false;
6595         ctxt->eflags = kvm_get_rflags(vcpu);
6596         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6597
6598         ctxt->eip = kvm_rip_read(vcpu);
6599         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6600                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6601                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6602                      cs_db                              ? X86EMUL_MODE_PROT32 :
6603                                                           X86EMUL_MODE_PROT16;
6604         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6605         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6606         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6607
6608         init_decode_cache(ctxt);
6609         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6610 }
6611
6612 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6613 {
6614         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6615         int ret;
6616
6617         init_emulate_ctxt(vcpu);
6618
6619         ctxt->op_bytes = 2;
6620         ctxt->ad_bytes = 2;
6621         ctxt->_eip = ctxt->eip + inc_eip;
6622         ret = emulate_int_real(ctxt, irq);
6623
6624         if (ret != X86EMUL_CONTINUE) {
6625                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6626         } else {
6627                 ctxt->eip = ctxt->_eip;
6628                 kvm_rip_write(vcpu, ctxt->eip);
6629                 kvm_set_rflags(vcpu, ctxt->eflags);
6630         }
6631 }
6632 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6633
6634 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6635 {
6636         ++vcpu->stat.insn_emulation_fail;
6637         trace_kvm_emulate_insn_failed(vcpu);
6638
6639         if (emulation_type & EMULTYPE_VMWARE_GP) {
6640                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6641                 return 1;
6642         }
6643
6644         if (emulation_type & EMULTYPE_SKIP) {
6645                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6646                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6647                 vcpu->run->internal.ndata = 0;
6648                 return 0;
6649         }
6650
6651         kvm_queue_exception(vcpu, UD_VECTOR);
6652
6653         if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
6654                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6655                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6656                 vcpu->run->internal.ndata = 0;
6657                 return 0;
6658         }
6659
6660         return 1;
6661 }
6662
6663 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6664                                   bool write_fault_to_shadow_pgtable,
6665                                   int emulation_type)
6666 {
6667         gpa_t gpa = cr2_or_gpa;
6668         kvm_pfn_t pfn;
6669
6670         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6671                 return false;
6672
6673         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6674             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6675                 return false;
6676
6677         if (!vcpu->arch.mmu->direct_map) {
6678                 /*
6679                  * Write permission should be allowed since only
6680                  * write access need to be emulated.
6681                  */
6682                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6683
6684                 /*
6685                  * If the mapping is invalid in guest, let cpu retry
6686                  * it to generate fault.
6687                  */
6688                 if (gpa == UNMAPPED_GVA)
6689                         return true;
6690         }
6691
6692         /*
6693          * Do not retry the unhandleable instruction if it faults on the
6694          * readonly host memory, otherwise it will goto a infinite loop:
6695          * retry instruction -> write #PF -> emulation fail -> retry
6696          * instruction -> ...
6697          */
6698         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6699
6700         /*
6701          * If the instruction failed on the error pfn, it can not be fixed,
6702          * report the error to userspace.
6703          */
6704         if (is_error_noslot_pfn(pfn))
6705                 return false;
6706
6707         kvm_release_pfn_clean(pfn);
6708
6709         /* The instructions are well-emulated on direct mmu. */
6710         if (vcpu->arch.mmu->direct_map) {
6711                 unsigned int indirect_shadow_pages;
6712
6713                 spin_lock(&vcpu->kvm->mmu_lock);
6714                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6715                 spin_unlock(&vcpu->kvm->mmu_lock);
6716
6717                 if (indirect_shadow_pages)
6718                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6719
6720                 return true;
6721         }
6722
6723         /*
6724          * if emulation was due to access to shadowed page table
6725          * and it failed try to unshadow page and re-enter the
6726          * guest to let CPU execute the instruction.
6727          */
6728         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6729
6730         /*
6731          * If the access faults on its page table, it can not
6732          * be fixed by unprotecting shadow page and it should
6733          * be reported to userspace.
6734          */
6735         return !write_fault_to_shadow_pgtable;
6736 }
6737
6738 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6739                               gpa_t cr2_or_gpa,  int emulation_type)
6740 {
6741         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6742         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
6743
6744         last_retry_eip = vcpu->arch.last_retry_eip;
6745         last_retry_addr = vcpu->arch.last_retry_addr;
6746
6747         /*
6748          * If the emulation is caused by #PF and it is non-page_table
6749          * writing instruction, it means the VM-EXIT is caused by shadow
6750          * page protected, we can zap the shadow page and retry this
6751          * instruction directly.
6752          *
6753          * Note: if the guest uses a non-page-table modifying instruction
6754          * on the PDE that points to the instruction, then we will unmap
6755          * the instruction and go to an infinite loop. So, we cache the
6756          * last retried eip and the last fault address, if we meet the eip
6757          * and the address again, we can break out of the potential infinite
6758          * loop.
6759          */
6760         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6761
6762         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6763                 return false;
6764
6765         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6766             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6767                 return false;
6768
6769         if (x86_page_table_writing_insn(ctxt))
6770                 return false;
6771
6772         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
6773                 return false;
6774
6775         vcpu->arch.last_retry_eip = ctxt->eip;
6776         vcpu->arch.last_retry_addr = cr2_or_gpa;
6777
6778         if (!vcpu->arch.mmu->direct_map)
6779                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6780
6781         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6782
6783         return true;
6784 }
6785
6786 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6787 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6788
6789 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6790 {
6791         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6792                 /* This is a good place to trace that we are exiting SMM.  */
6793                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6794
6795                 /* Process a latched INIT or SMI, if any.  */
6796                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6797         }
6798
6799         kvm_mmu_reset_context(vcpu);
6800 }
6801
6802 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6803                                 unsigned long *db)
6804 {
6805         u32 dr6 = 0;
6806         int i;
6807         u32 enable, rwlen;
6808
6809         enable = dr7;
6810         rwlen = dr7 >> 16;
6811         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6812                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6813                         dr6 |= (1 << i);
6814         return dr6;
6815 }
6816
6817 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6818 {
6819         struct kvm_run *kvm_run = vcpu->run;
6820
6821         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6822                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6823                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
6824                 kvm_run->debug.arch.exception = DB_VECTOR;
6825                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6826                 return 0;
6827         }
6828         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6829         return 1;
6830 }
6831
6832 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6833 {
6834         unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
6835         int r;
6836
6837         r = kvm_x86_ops.skip_emulated_instruction(vcpu);
6838         if (unlikely(!r))
6839                 return 0;
6840
6841         /*
6842          * rflags is the old, "raw" value of the flags.  The new value has
6843          * not been saved yet.
6844          *
6845          * This is correct even for TF set by the guest, because "the
6846          * processor will not generate this exception after the instruction
6847          * that sets the TF flag".
6848          */
6849         if (unlikely(rflags & X86_EFLAGS_TF))
6850                 r = kvm_vcpu_do_singlestep(vcpu);
6851         return r;
6852 }
6853 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6854
6855 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6856 {
6857         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6858             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6859                 struct kvm_run *kvm_run = vcpu->run;
6860                 unsigned long eip = kvm_get_linear_rip(vcpu);
6861                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6862                                            vcpu->arch.guest_debug_dr7,
6863                                            vcpu->arch.eff_db);
6864
6865                 if (dr6 != 0) {
6866                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6867                         kvm_run->debug.arch.pc = eip;
6868                         kvm_run->debug.arch.exception = DB_VECTOR;
6869                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6870                         *r = 0;
6871                         return true;
6872                 }
6873         }
6874
6875         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6876             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6877                 unsigned long eip = kvm_get_linear_rip(vcpu);
6878                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6879                                            vcpu->arch.dr7,
6880                                            vcpu->arch.db);
6881
6882                 if (dr6 != 0) {
6883                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
6884                         *r = 1;
6885                         return true;
6886                 }
6887         }
6888
6889         return false;
6890 }
6891
6892 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6893 {
6894         switch (ctxt->opcode_len) {
6895         case 1:
6896                 switch (ctxt->b) {
6897                 case 0xe4:      /* IN */
6898                 case 0xe5:
6899                 case 0xec:
6900                 case 0xed:
6901                 case 0xe6:      /* OUT */
6902                 case 0xe7:
6903                 case 0xee:
6904                 case 0xef:
6905                 case 0x6c:      /* INS */
6906                 case 0x6d:
6907                 case 0x6e:      /* OUTS */
6908                 case 0x6f:
6909                         return true;
6910                 }
6911                 break;
6912         case 2:
6913                 switch (ctxt->b) {
6914                 case 0x33:      /* RDPMC */
6915                         return true;
6916                 }
6917                 break;
6918         }
6919
6920         return false;
6921 }
6922
6923 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6924                             int emulation_type, void *insn, int insn_len)
6925 {
6926         int r;
6927         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6928         bool writeback = true;
6929         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6930
6931         vcpu->arch.l1tf_flush_l1d = true;
6932
6933         /*
6934          * Clear write_fault_to_shadow_pgtable here to ensure it is
6935          * never reused.
6936          */
6937         vcpu->arch.write_fault_to_shadow_pgtable = false;
6938         kvm_clear_exception_queue(vcpu);
6939
6940         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6941                 init_emulate_ctxt(vcpu);
6942
6943                 /*
6944                  * We will reenter on the same instruction since
6945                  * we do not set complete_userspace_io.  This does not
6946                  * handle watchpoints yet, those would be handled in
6947                  * the emulate_ops.
6948                  */
6949                 if (!(emulation_type & EMULTYPE_SKIP) &&
6950                     kvm_vcpu_check_breakpoint(vcpu, &r))
6951                         return r;
6952
6953                 ctxt->interruptibility = 0;
6954                 ctxt->have_exception = false;
6955                 ctxt->exception.vector = -1;
6956                 ctxt->perm_ok = false;
6957
6958                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6959
6960                 r = x86_decode_insn(ctxt, insn, insn_len);
6961
6962                 trace_kvm_emulate_insn_start(vcpu);
6963                 ++vcpu->stat.insn_emulation;
6964                 if (r != EMULATION_OK)  {
6965                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
6966                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6967                                 kvm_queue_exception(vcpu, UD_VECTOR);
6968                                 return 1;
6969                         }
6970                         if (reexecute_instruction(vcpu, cr2_or_gpa,
6971                                                   write_fault_to_spt,
6972                                                   emulation_type))
6973                                 return 1;
6974                         if (ctxt->have_exception) {
6975                                 /*
6976                                  * #UD should result in just EMULATION_FAILED, and trap-like
6977                                  * exception should not be encountered during decode.
6978                                  */
6979                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6980                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6981                                 inject_emulated_exception(vcpu);
6982                                 return 1;
6983                         }
6984                         return handle_emulation_failure(vcpu, emulation_type);
6985                 }
6986         }
6987
6988         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6989             !is_vmware_backdoor_opcode(ctxt)) {
6990                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6991                 return 1;
6992         }
6993
6994         /*
6995          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6996          * for kvm_skip_emulated_instruction().  The caller is responsible for
6997          * updating interruptibility state and injecting single-step #DBs.
6998          */
6999         if (emulation_type & EMULTYPE_SKIP) {
7000                 kvm_rip_write(vcpu, ctxt->_eip);
7001                 if (ctxt->eflags & X86_EFLAGS_RF)
7002                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7003                 return 1;
7004         }
7005
7006         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7007                 return 1;
7008
7009         /* this is needed for vmware backdoor interface to work since it
7010            changes registers values  during IO operation */
7011         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7012                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7013                 emulator_invalidate_register_cache(ctxt);
7014         }
7015
7016 restart:
7017         if (emulation_type & EMULTYPE_PF) {
7018                 /* Save the faulting GPA (cr2) in the address field */
7019                 ctxt->exception.address = cr2_or_gpa;
7020
7021                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7022                 if (vcpu->arch.mmu->direct_map) {
7023                         ctxt->gpa_available = true;
7024                         ctxt->gpa_val = cr2_or_gpa;
7025                 }
7026         } else {
7027                 /* Sanitize the address out of an abundance of paranoia. */
7028                 ctxt->exception.address = 0;
7029         }
7030
7031         r = x86_emulate_insn(ctxt);
7032
7033         if (r == EMULATION_INTERCEPTED)
7034                 return 1;
7035
7036         if (r == EMULATION_FAILED) {
7037                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7038                                         emulation_type))
7039                         return 1;
7040
7041                 return handle_emulation_failure(vcpu, emulation_type);
7042         }
7043
7044         if (ctxt->have_exception) {
7045                 r = 1;
7046                 if (inject_emulated_exception(vcpu))
7047                         return r;
7048         } else if (vcpu->arch.pio.count) {
7049                 if (!vcpu->arch.pio.in) {
7050                         /* FIXME: return into emulator if single-stepping.  */
7051                         vcpu->arch.pio.count = 0;
7052                 } else {
7053                         writeback = false;
7054                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
7055                 }
7056                 r = 0;
7057         } else if (vcpu->mmio_needed) {
7058                 ++vcpu->stat.mmio_exits;
7059
7060                 if (!vcpu->mmio_is_write)
7061                         writeback = false;
7062                 r = 0;
7063                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7064         } else if (r == EMULATION_RESTART)
7065                 goto restart;
7066         else
7067                 r = 1;
7068
7069         if (writeback) {
7070                 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7071                 toggle_interruptibility(vcpu, ctxt->interruptibility);
7072                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7073                 if (!ctxt->have_exception ||
7074                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7075                         kvm_rip_write(vcpu, ctxt->eip);
7076                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7077                                 r = kvm_vcpu_do_singlestep(vcpu);
7078                         if (kvm_x86_ops.update_emulated_instruction)
7079                                 kvm_x86_ops.update_emulated_instruction(vcpu);
7080                         __kvm_set_rflags(vcpu, ctxt->eflags);
7081                 }
7082
7083                 /*
7084                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7085                  * do nothing, and it will be requested again as soon as
7086                  * the shadow expires.  But we still need to check here,
7087                  * because POPF has no interrupt shadow.
7088                  */
7089                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7090                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7091         } else
7092                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7093
7094         return r;
7095 }
7096
7097 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7098 {
7099         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7100 }
7101 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7102
7103 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7104                                         void *insn, int insn_len)
7105 {
7106         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7107 }
7108 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7109
7110 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7111 {
7112         vcpu->arch.pio.count = 0;
7113         return 1;
7114 }
7115
7116 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7117 {
7118         vcpu->arch.pio.count = 0;
7119
7120         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7121                 return 1;
7122
7123         return kvm_skip_emulated_instruction(vcpu);
7124 }
7125
7126 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7127                             unsigned short port)
7128 {
7129         unsigned long val = kvm_rax_read(vcpu);
7130         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7131
7132         if (ret)
7133                 return ret;
7134
7135         /*
7136          * Workaround userspace that relies on old KVM behavior of %rip being
7137          * incremented prior to exiting to userspace to handle "OUT 0x7e".
7138          */
7139         if (port == 0x7e &&
7140             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7141                 vcpu->arch.complete_userspace_io =
7142                         complete_fast_pio_out_port_0x7e;
7143                 kvm_skip_emulated_instruction(vcpu);
7144         } else {
7145                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7146                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7147         }
7148         return 0;
7149 }
7150
7151 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7152 {
7153         unsigned long val;
7154
7155         /* We should only ever be called with arch.pio.count equal to 1 */
7156         BUG_ON(vcpu->arch.pio.count != 1);
7157
7158         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7159                 vcpu->arch.pio.count = 0;
7160                 return 1;
7161         }
7162
7163         /* For size less than 4 we merge, else we zero extend */
7164         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7165
7166         /*
7167          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7168          * the copy and tracing
7169          */
7170         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7171         kvm_rax_write(vcpu, val);
7172
7173         return kvm_skip_emulated_instruction(vcpu);
7174 }
7175
7176 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7177                            unsigned short port)
7178 {
7179         unsigned long val;
7180         int ret;
7181
7182         /* For size less than 4 we merge, else we zero extend */
7183         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7184
7185         ret = emulator_pio_in(vcpu, size, port, &val, 1);
7186         if (ret) {
7187                 kvm_rax_write(vcpu, val);
7188                 return ret;
7189         }
7190
7191         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7192         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7193
7194         return 0;
7195 }
7196
7197 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7198 {
7199         int ret;
7200
7201         if (in)
7202                 ret = kvm_fast_pio_in(vcpu, size, port);
7203         else
7204                 ret = kvm_fast_pio_out(vcpu, size, port);
7205         return ret && kvm_skip_emulated_instruction(vcpu);
7206 }
7207 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7208
7209 static int kvmclock_cpu_down_prep(unsigned int cpu)
7210 {
7211         __this_cpu_write(cpu_tsc_khz, 0);
7212         return 0;
7213 }
7214
7215 static void tsc_khz_changed(void *data)
7216 {
7217         struct cpufreq_freqs *freq = data;
7218         unsigned long khz = 0;
7219
7220         if (data)
7221                 khz = freq->new;
7222         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7223                 khz = cpufreq_quick_get(raw_smp_processor_id());
7224         if (!khz)
7225                 khz = tsc_khz;
7226         __this_cpu_write(cpu_tsc_khz, khz);
7227 }
7228
7229 #ifdef CONFIG_X86_64
7230 static void kvm_hyperv_tsc_notifier(void)
7231 {
7232         struct kvm *kvm;
7233         struct kvm_vcpu *vcpu;
7234         int cpu;
7235
7236         mutex_lock(&kvm_lock);
7237         list_for_each_entry(kvm, &vm_list, vm_list)
7238                 kvm_make_mclock_inprogress_request(kvm);
7239
7240         hyperv_stop_tsc_emulation();
7241
7242         /* TSC frequency always matches when on Hyper-V */
7243         for_each_present_cpu(cpu)
7244                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7245         kvm_max_guest_tsc_khz = tsc_khz;
7246
7247         list_for_each_entry(kvm, &vm_list, vm_list) {
7248                 struct kvm_arch *ka = &kvm->arch;
7249
7250                 spin_lock(&ka->pvclock_gtod_sync_lock);
7251
7252                 pvclock_update_vm_gtod_copy(kvm);
7253
7254                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7255                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7256
7257                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7258                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7259
7260                 spin_unlock(&ka->pvclock_gtod_sync_lock);
7261         }
7262         mutex_unlock(&kvm_lock);
7263 }
7264 #endif
7265
7266 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7267 {
7268         struct kvm *kvm;
7269         struct kvm_vcpu *vcpu;
7270         int i, send_ipi = 0;
7271
7272         /*
7273          * We allow guests to temporarily run on slowing clocks,
7274          * provided we notify them after, or to run on accelerating
7275          * clocks, provided we notify them before.  Thus time never
7276          * goes backwards.
7277          *
7278          * However, we have a problem.  We can't atomically update
7279          * the frequency of a given CPU from this function; it is
7280          * merely a notifier, which can be called from any CPU.
7281          * Changing the TSC frequency at arbitrary points in time
7282          * requires a recomputation of local variables related to
7283          * the TSC for each VCPU.  We must flag these local variables
7284          * to be updated and be sure the update takes place with the
7285          * new frequency before any guests proceed.
7286          *
7287          * Unfortunately, the combination of hotplug CPU and frequency
7288          * change creates an intractable locking scenario; the order
7289          * of when these callouts happen is undefined with respect to
7290          * CPU hotplug, and they can race with each other.  As such,
7291          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7292          * undefined; you can actually have a CPU frequency change take
7293          * place in between the computation of X and the setting of the
7294          * variable.  To protect against this problem, all updates of
7295          * the per_cpu tsc_khz variable are done in an interrupt
7296          * protected IPI, and all callers wishing to update the value
7297          * must wait for a synchronous IPI to complete (which is trivial
7298          * if the caller is on the CPU already).  This establishes the
7299          * necessary total order on variable updates.
7300          *
7301          * Note that because a guest time update may take place
7302          * anytime after the setting of the VCPU's request bit, the
7303          * correct TSC value must be set before the request.  However,
7304          * to ensure the update actually makes it to any guest which
7305          * starts running in hardware virtualization between the set
7306          * and the acquisition of the spinlock, we must also ping the
7307          * CPU after setting the request bit.
7308          *
7309          */
7310
7311         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7312
7313         mutex_lock(&kvm_lock);
7314         list_for_each_entry(kvm, &vm_list, vm_list) {
7315                 kvm_for_each_vcpu(i, vcpu, kvm) {
7316                         if (vcpu->cpu != cpu)
7317                                 continue;
7318                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7319                         if (vcpu->cpu != raw_smp_processor_id())
7320                                 send_ipi = 1;
7321                 }
7322         }
7323         mutex_unlock(&kvm_lock);
7324
7325         if (freq->old < freq->new && send_ipi) {
7326                 /*
7327                  * We upscale the frequency.  Must make the guest
7328                  * doesn't see old kvmclock values while running with
7329                  * the new frequency, otherwise we risk the guest sees
7330                  * time go backwards.
7331                  *
7332                  * In case we update the frequency for another cpu
7333                  * (which might be in guest context) send an interrupt
7334                  * to kick the cpu out of guest context.  Next time
7335                  * guest context is entered kvmclock will be updated,
7336                  * so the guest will not see stale values.
7337                  */
7338                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7339         }
7340 }
7341
7342 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7343                                      void *data)
7344 {
7345         struct cpufreq_freqs *freq = data;
7346         int cpu;
7347
7348         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7349                 return 0;
7350         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7351                 return 0;
7352
7353         for_each_cpu(cpu, freq->policy->cpus)
7354                 __kvmclock_cpufreq_notifier(freq, cpu);
7355
7356         return 0;
7357 }
7358
7359 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7360         .notifier_call  = kvmclock_cpufreq_notifier
7361 };
7362
7363 static int kvmclock_cpu_online(unsigned int cpu)
7364 {
7365         tsc_khz_changed(NULL);
7366         return 0;
7367 }
7368
7369 static void kvm_timer_init(void)
7370 {
7371         max_tsc_khz = tsc_khz;
7372
7373         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7374 #ifdef CONFIG_CPU_FREQ
7375                 struct cpufreq_policy *policy;
7376                 int cpu;
7377
7378                 cpu = get_cpu();
7379                 policy = cpufreq_cpu_get(cpu);
7380                 if (policy) {
7381                         if (policy->cpuinfo.max_freq)
7382                                 max_tsc_khz = policy->cpuinfo.max_freq;
7383                         cpufreq_cpu_put(policy);
7384                 }
7385                 put_cpu();
7386 #endif
7387                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7388                                           CPUFREQ_TRANSITION_NOTIFIER);
7389         }
7390
7391         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7392                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
7393 }
7394
7395 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7396 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7397
7398 int kvm_is_in_guest(void)
7399 {
7400         return __this_cpu_read(current_vcpu) != NULL;
7401 }
7402
7403 static int kvm_is_user_mode(void)
7404 {
7405         int user_mode = 3;
7406
7407         if (__this_cpu_read(current_vcpu))
7408                 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7409
7410         return user_mode != 0;
7411 }
7412
7413 static unsigned long kvm_get_guest_ip(void)
7414 {
7415         unsigned long ip = 0;
7416
7417         if (__this_cpu_read(current_vcpu))
7418                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7419
7420         return ip;
7421 }
7422
7423 static void kvm_handle_intel_pt_intr(void)
7424 {
7425         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7426
7427         kvm_make_request(KVM_REQ_PMI, vcpu);
7428         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7429                         (unsigned long *)&vcpu->arch.pmu.global_status);
7430 }
7431
7432 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7433         .is_in_guest            = kvm_is_in_guest,
7434         .is_user_mode           = kvm_is_user_mode,
7435         .get_guest_ip           = kvm_get_guest_ip,
7436         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
7437 };
7438
7439 #ifdef CONFIG_X86_64
7440 static void pvclock_gtod_update_fn(struct work_struct *work)
7441 {
7442         struct kvm *kvm;
7443
7444         struct kvm_vcpu *vcpu;
7445         int i;
7446
7447         mutex_lock(&kvm_lock);
7448         list_for_each_entry(kvm, &vm_list, vm_list)
7449                 kvm_for_each_vcpu(i, vcpu, kvm)
7450                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7451         atomic_set(&kvm_guest_has_master_clock, 0);
7452         mutex_unlock(&kvm_lock);
7453 }
7454
7455 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7456
7457 /*
7458  * Notification about pvclock gtod data update.
7459  */
7460 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7461                                void *priv)
7462 {
7463         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7464         struct timekeeper *tk = priv;
7465
7466         update_pvclock_gtod(tk);
7467
7468         /* disable master clock if host does not trust, or does not
7469          * use, TSC based clocksource.
7470          */
7471         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7472             atomic_read(&kvm_guest_has_master_clock) != 0)
7473                 queue_work(system_long_wq, &pvclock_gtod_work);
7474
7475         return 0;
7476 }
7477
7478 static struct notifier_block pvclock_gtod_notifier = {
7479         .notifier_call = pvclock_gtod_notify,
7480 };
7481 #endif
7482
7483 int kvm_arch_init(void *opaque)
7484 {
7485         struct kvm_x86_init_ops *ops = opaque;
7486         int r;
7487
7488         if (kvm_x86_ops.hardware_enable) {
7489                 printk(KERN_ERR "kvm: already loaded the other module\n");
7490                 r = -EEXIST;
7491                 goto out;
7492         }
7493
7494         if (!ops->cpu_has_kvm_support()) {
7495                 pr_err_ratelimited("kvm: no hardware support\n");
7496                 r = -EOPNOTSUPP;
7497                 goto out;
7498         }
7499         if (ops->disabled_by_bios()) {
7500                 pr_err_ratelimited("kvm: disabled by bios\n");
7501                 r = -EOPNOTSUPP;
7502                 goto out;
7503         }
7504
7505         /*
7506          * KVM explicitly assumes that the guest has an FPU and
7507          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7508          * vCPU's FPU state as a fxregs_state struct.
7509          */
7510         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7511                 printk(KERN_ERR "kvm: inadequate fpu\n");
7512                 r = -EOPNOTSUPP;
7513                 goto out;
7514         }
7515
7516         r = -ENOMEM;
7517         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7518                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7519                                           NULL);
7520         if (!x86_fpu_cache) {
7521                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7522                 goto out;
7523         }
7524
7525         x86_emulator_cache = kvm_alloc_emulator_cache();
7526         if (!x86_emulator_cache) {
7527                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
7528                 goto out_free_x86_fpu_cache;
7529         }
7530
7531         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7532         if (!shared_msrs) {
7533                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7534                 goto out_free_x86_emulator_cache;
7535         }
7536
7537         r = kvm_mmu_module_init();
7538         if (r)
7539                 goto out_free_percpu;
7540
7541         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7542                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7543                         PT_PRESENT_MASK, 0, sme_me_mask);
7544         kvm_timer_init();
7545
7546         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7547
7548         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7549                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7550                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7551         }
7552
7553         kvm_lapic_init();
7554         if (pi_inject_timer == -1)
7555                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7556 #ifdef CONFIG_X86_64
7557         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7558
7559         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7560                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7561 #endif
7562
7563         return 0;
7564
7565 out_free_percpu:
7566         free_percpu(shared_msrs);
7567 out_free_x86_emulator_cache:
7568         kmem_cache_destroy(x86_emulator_cache);
7569 out_free_x86_fpu_cache:
7570         kmem_cache_destroy(x86_fpu_cache);
7571 out:
7572         return r;
7573 }
7574
7575 void kvm_arch_exit(void)
7576 {
7577 #ifdef CONFIG_X86_64
7578         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7579                 clear_hv_tscchange_cb();
7580 #endif
7581         kvm_lapic_exit();
7582         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7583
7584         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7585                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7586                                             CPUFREQ_TRANSITION_NOTIFIER);
7587         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7588 #ifdef CONFIG_X86_64
7589         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7590 #endif
7591         kvm_x86_ops.hardware_enable = NULL;
7592         kvm_mmu_module_exit();
7593         free_percpu(shared_msrs);
7594         kmem_cache_destroy(x86_fpu_cache);
7595 }
7596
7597 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7598 {
7599         ++vcpu->stat.halt_exits;
7600         if (lapic_in_kernel(vcpu)) {
7601                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7602                 return 1;
7603         } else {
7604                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7605                 return 0;
7606         }
7607 }
7608 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7609
7610 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7611 {
7612         int ret = kvm_skip_emulated_instruction(vcpu);
7613         /*
7614          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7615          * KVM_EXIT_DEBUG here.
7616          */
7617         return kvm_vcpu_halt(vcpu) && ret;
7618 }
7619 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7620
7621 #ifdef CONFIG_X86_64
7622 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7623                                 unsigned long clock_type)
7624 {
7625         struct kvm_clock_pairing clock_pairing;
7626         struct timespec64 ts;
7627         u64 cycle;
7628         int ret;
7629
7630         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7631                 return -KVM_EOPNOTSUPP;
7632
7633         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7634                 return -KVM_EOPNOTSUPP;
7635
7636         clock_pairing.sec = ts.tv_sec;
7637         clock_pairing.nsec = ts.tv_nsec;
7638         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7639         clock_pairing.flags = 0;
7640         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7641
7642         ret = 0;
7643         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7644                             sizeof(struct kvm_clock_pairing)))
7645                 ret = -KVM_EFAULT;
7646
7647         return ret;
7648 }
7649 #endif
7650
7651 /*
7652  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7653  *
7654  * @apicid - apicid of vcpu to be kicked.
7655  */
7656 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7657 {
7658         struct kvm_lapic_irq lapic_irq;
7659
7660         lapic_irq.shorthand = APIC_DEST_NOSHORT;
7661         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
7662         lapic_irq.level = 0;
7663         lapic_irq.dest_id = apicid;
7664         lapic_irq.msi_redir_hint = false;
7665
7666         lapic_irq.delivery_mode = APIC_DM_REMRD;
7667         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7668 }
7669
7670 bool kvm_apicv_activated(struct kvm *kvm)
7671 {
7672         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
7673 }
7674 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
7675
7676 void kvm_apicv_init(struct kvm *kvm, bool enable)
7677 {
7678         if (enable)
7679                 clear_bit(APICV_INHIBIT_REASON_DISABLE,
7680                           &kvm->arch.apicv_inhibit_reasons);
7681         else
7682                 set_bit(APICV_INHIBIT_REASON_DISABLE,
7683                         &kvm->arch.apicv_inhibit_reasons);
7684 }
7685 EXPORT_SYMBOL_GPL(kvm_apicv_init);
7686
7687 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7688 {
7689         struct kvm_vcpu *target = NULL;
7690         struct kvm_apic_map *map;
7691
7692         rcu_read_lock();
7693         map = rcu_dereference(kvm->arch.apic_map);
7694
7695         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7696                 target = map->phys_map[dest_id]->vcpu;
7697
7698         rcu_read_unlock();
7699
7700         if (target && READ_ONCE(target->ready))
7701                 kvm_vcpu_yield_to(target);
7702 }
7703
7704 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7705 {
7706         unsigned long nr, a0, a1, a2, a3, ret;
7707         int op_64_bit;
7708
7709         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7710                 return kvm_hv_hypercall(vcpu);
7711
7712         nr = kvm_rax_read(vcpu);
7713         a0 = kvm_rbx_read(vcpu);
7714         a1 = kvm_rcx_read(vcpu);
7715         a2 = kvm_rdx_read(vcpu);
7716         a3 = kvm_rsi_read(vcpu);
7717
7718         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7719
7720         op_64_bit = is_64_bit_mode(vcpu);
7721         if (!op_64_bit) {
7722                 nr &= 0xFFFFFFFF;
7723                 a0 &= 0xFFFFFFFF;
7724                 a1 &= 0xFFFFFFFF;
7725                 a2 &= 0xFFFFFFFF;
7726                 a3 &= 0xFFFFFFFF;
7727         }
7728
7729         if (kvm_x86_ops.get_cpl(vcpu) != 0) {
7730                 ret = -KVM_EPERM;
7731                 goto out;
7732         }
7733
7734         switch (nr) {
7735         case KVM_HC_VAPIC_POLL_IRQ:
7736                 ret = 0;
7737                 break;
7738         case KVM_HC_KICK_CPU:
7739                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7740                 kvm_sched_yield(vcpu->kvm, a1);
7741                 ret = 0;
7742                 break;
7743 #ifdef CONFIG_X86_64
7744         case KVM_HC_CLOCK_PAIRING:
7745                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7746                 break;
7747 #endif
7748         case KVM_HC_SEND_IPI:
7749                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7750                 break;
7751         case KVM_HC_SCHED_YIELD:
7752                 kvm_sched_yield(vcpu->kvm, a0);
7753                 ret = 0;
7754                 break;
7755         default:
7756                 ret = -KVM_ENOSYS;
7757                 break;
7758         }
7759 out:
7760         if (!op_64_bit)
7761                 ret = (u32)ret;
7762         kvm_rax_write(vcpu, ret);
7763
7764         ++vcpu->stat.hypercalls;
7765         return kvm_skip_emulated_instruction(vcpu);
7766 }
7767 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7768
7769 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7770 {
7771         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7772         char instruction[3];
7773         unsigned long rip = kvm_rip_read(vcpu);
7774
7775         kvm_x86_ops.patch_hypercall(vcpu, instruction);
7776
7777         return emulator_write_emulated(ctxt, rip, instruction, 3,
7778                 &ctxt->exception);
7779 }
7780
7781 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7782 {
7783         return vcpu->run->request_interrupt_window &&
7784                 likely(!pic_in_kernel(vcpu->kvm));
7785 }
7786
7787 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7788 {
7789         struct kvm_run *kvm_run = vcpu->run;
7790
7791         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7792         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7793         kvm_run->cr8 = kvm_get_cr8(vcpu);
7794         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7795         kvm_run->ready_for_interrupt_injection =
7796                 pic_in_kernel(vcpu->kvm) ||
7797                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7798 }
7799
7800 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7801 {
7802         int max_irr, tpr;
7803
7804         if (!kvm_x86_ops.update_cr8_intercept)
7805                 return;
7806
7807         if (!lapic_in_kernel(vcpu))
7808                 return;
7809
7810         if (vcpu->arch.apicv_active)
7811                 return;
7812
7813         if (!vcpu->arch.apic->vapic_addr)
7814                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7815         else
7816                 max_irr = -1;
7817
7818         if (max_irr != -1)
7819                 max_irr >>= 4;
7820
7821         tpr = kvm_lapic_get_cr8(vcpu);
7822
7823         kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
7824 }
7825
7826 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
7827 {
7828         int r;
7829         bool can_inject = true;
7830
7831         /* try to reinject previous events if any */
7832
7833         if (vcpu->arch.exception.injected) {
7834                 kvm_x86_ops.queue_exception(vcpu);
7835                 can_inject = false;
7836         }
7837         /*
7838          * Do not inject an NMI or interrupt if there is a pending
7839          * exception.  Exceptions and interrupts are recognized at
7840          * instruction boundaries, i.e. the start of an instruction.
7841          * Trap-like exceptions, e.g. #DB, have higher priority than
7842          * NMIs and interrupts, i.e. traps are recognized before an
7843          * NMI/interrupt that's pending on the same instruction.
7844          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7845          * priority, but are only generated (pended) during instruction
7846          * execution, i.e. a pending fault-like exception means the
7847          * fault occurred on the *previous* instruction and must be
7848          * serviced prior to recognizing any new events in order to
7849          * fully complete the previous instruction.
7850          */
7851         else if (!vcpu->arch.exception.pending) {
7852                 if (vcpu->arch.nmi_injected) {
7853                         kvm_x86_ops.set_nmi(vcpu);
7854                         can_inject = false;
7855                 } else if (vcpu->arch.interrupt.injected) {
7856                         kvm_x86_ops.set_irq(vcpu);
7857                         can_inject = false;
7858                 }
7859         }
7860
7861         WARN_ON_ONCE(vcpu->arch.exception.injected &&
7862                      vcpu->arch.exception.pending);
7863
7864         /*
7865          * Call check_nested_events() even if we reinjected a previous event
7866          * in order for caller to determine if it should require immediate-exit
7867          * from L2 to L1 due to pending L1 events which require exit
7868          * from L2 to L1.
7869          */
7870         if (is_guest_mode(vcpu)) {
7871                 r = kvm_x86_ops.nested_ops->check_events(vcpu);
7872                 if (r < 0)
7873                         goto busy;
7874         }
7875
7876         /* try to inject new event if pending */
7877         if (vcpu->arch.exception.pending) {
7878                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7879                                         vcpu->arch.exception.has_error_code,
7880                                         vcpu->arch.exception.error_code);
7881
7882                 vcpu->arch.exception.pending = false;
7883                 vcpu->arch.exception.injected = true;
7884
7885                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7886                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7887                                              X86_EFLAGS_RF);
7888
7889                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7890                         kvm_deliver_exception_payload(vcpu);
7891                         if (vcpu->arch.dr7 & DR7_GD) {
7892                                 vcpu->arch.dr7 &= ~DR7_GD;
7893                                 kvm_update_dr7(vcpu);
7894                         }
7895                 }
7896
7897                 kvm_x86_ops.queue_exception(vcpu);
7898                 can_inject = false;
7899         }
7900
7901         /*
7902          * Finally, inject interrupt events.  If an event cannot be injected
7903          * due to architectural conditions (e.g. IF=0) a window-open exit
7904          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
7905          * and can architecturally be injected, but we cannot do it right now:
7906          * an interrupt could have arrived just now and we have to inject it
7907          * as a vmexit, or there could already an event in the queue, which is
7908          * indicated by can_inject.  In that case we request an immediate exit
7909          * in order to make progress and get back here for another iteration.
7910          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
7911          */
7912         if (vcpu->arch.smi_pending) {
7913                 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
7914                 if (r < 0)
7915                         goto busy;
7916                 if (r) {
7917                         vcpu->arch.smi_pending = false;
7918                         ++vcpu->arch.smi_count;
7919                         enter_smm(vcpu);
7920                         can_inject = false;
7921                 } else
7922                         kvm_x86_ops.enable_smi_window(vcpu);
7923         }
7924
7925         if (vcpu->arch.nmi_pending) {
7926                 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
7927                 if (r < 0)
7928                         goto busy;
7929                 if (r) {
7930                         --vcpu->arch.nmi_pending;
7931                         vcpu->arch.nmi_injected = true;
7932                         kvm_x86_ops.set_nmi(vcpu);
7933                         can_inject = false;
7934                         WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
7935                 }
7936                 if (vcpu->arch.nmi_pending)
7937                         kvm_x86_ops.enable_nmi_window(vcpu);
7938         }
7939
7940         if (kvm_cpu_has_injectable_intr(vcpu)) {
7941                 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
7942                 if (r < 0)
7943                         goto busy;
7944                 if (r) {
7945                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
7946                         kvm_x86_ops.set_irq(vcpu);
7947                         WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
7948                 }
7949                 if (kvm_cpu_has_injectable_intr(vcpu))
7950                         kvm_x86_ops.enable_irq_window(vcpu);
7951         }
7952
7953         if (is_guest_mode(vcpu) &&
7954             kvm_x86_ops.nested_ops->hv_timer_pending &&
7955             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
7956                 *req_immediate_exit = true;
7957
7958         WARN_ON(vcpu->arch.exception.pending);
7959         return;
7960
7961 busy:
7962         *req_immediate_exit = true;
7963         return;
7964 }
7965
7966 static void process_nmi(struct kvm_vcpu *vcpu)
7967 {
7968         unsigned limit = 2;
7969
7970         /*
7971          * x86 is limited to one NMI running, and one NMI pending after it.
7972          * If an NMI is already in progress, limit further NMIs to just one.
7973          * Otherwise, allow two (and we'll inject the first one immediately).
7974          */
7975         if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7976                 limit = 1;
7977
7978         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7979         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7980         kvm_make_request(KVM_REQ_EVENT, vcpu);
7981 }
7982
7983 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7984 {
7985         u32 flags = 0;
7986         flags |= seg->g       << 23;
7987         flags |= seg->db      << 22;
7988         flags |= seg->l       << 21;
7989         flags |= seg->avl     << 20;
7990         flags |= seg->present << 15;
7991         flags |= seg->dpl     << 13;
7992         flags |= seg->s       << 12;
7993         flags |= seg->type    << 8;
7994         return flags;
7995 }
7996
7997 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7998 {
7999         struct kvm_segment seg;
8000         int offset;
8001
8002         kvm_get_segment(vcpu, &seg, n);
8003         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8004
8005         if (n < 3)
8006                 offset = 0x7f84 + n * 12;
8007         else
8008                 offset = 0x7f2c + (n - 3) * 12;
8009
8010         put_smstate(u32, buf, offset + 8, seg.base);
8011         put_smstate(u32, buf, offset + 4, seg.limit);
8012         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8013 }
8014
8015 #ifdef CONFIG_X86_64
8016 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8017 {
8018         struct kvm_segment seg;
8019         int offset;
8020         u16 flags;
8021
8022         kvm_get_segment(vcpu, &seg, n);
8023         offset = 0x7e00 + n * 16;
8024
8025         flags = enter_smm_get_segment_flags(&seg) >> 8;
8026         put_smstate(u16, buf, offset, seg.selector);
8027         put_smstate(u16, buf, offset + 2, flags);
8028         put_smstate(u32, buf, offset + 4, seg.limit);
8029         put_smstate(u64, buf, offset + 8, seg.base);
8030 }
8031 #endif
8032
8033 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8034 {
8035         struct desc_ptr dt;
8036         struct kvm_segment seg;
8037         unsigned long val;
8038         int i;
8039
8040         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8041         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8042         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8043         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8044
8045         for (i = 0; i < 8; i++)
8046                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8047
8048         kvm_get_dr(vcpu, 6, &val);
8049         put_smstate(u32, buf, 0x7fcc, (u32)val);
8050         kvm_get_dr(vcpu, 7, &val);
8051         put_smstate(u32, buf, 0x7fc8, (u32)val);
8052
8053         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8054         put_smstate(u32, buf, 0x7fc4, seg.selector);
8055         put_smstate(u32, buf, 0x7f64, seg.base);
8056         put_smstate(u32, buf, 0x7f60, seg.limit);
8057         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8058
8059         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8060         put_smstate(u32, buf, 0x7fc0, seg.selector);
8061         put_smstate(u32, buf, 0x7f80, seg.base);
8062         put_smstate(u32, buf, 0x7f7c, seg.limit);
8063         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8064
8065         kvm_x86_ops.get_gdt(vcpu, &dt);
8066         put_smstate(u32, buf, 0x7f74, dt.address);
8067         put_smstate(u32, buf, 0x7f70, dt.size);
8068
8069         kvm_x86_ops.get_idt(vcpu, &dt);
8070         put_smstate(u32, buf, 0x7f58, dt.address);
8071         put_smstate(u32, buf, 0x7f54, dt.size);
8072
8073         for (i = 0; i < 6; i++)
8074                 enter_smm_save_seg_32(vcpu, buf, i);
8075
8076         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8077
8078         /* revision id */
8079         put_smstate(u32, buf, 0x7efc, 0x00020000);
8080         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8081 }
8082
8083 #ifdef CONFIG_X86_64
8084 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8085 {
8086         struct desc_ptr dt;
8087         struct kvm_segment seg;
8088         unsigned long val;
8089         int i;
8090
8091         for (i = 0; i < 16; i++)
8092                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8093
8094         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8095         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8096
8097         kvm_get_dr(vcpu, 6, &val);
8098         put_smstate(u64, buf, 0x7f68, val);
8099         kvm_get_dr(vcpu, 7, &val);
8100         put_smstate(u64, buf, 0x7f60, val);
8101
8102         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8103         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8104         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8105
8106         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8107
8108         /* revision id */
8109         put_smstate(u32, buf, 0x7efc, 0x00020064);
8110
8111         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8112
8113         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8114         put_smstate(u16, buf, 0x7e90, seg.selector);
8115         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8116         put_smstate(u32, buf, 0x7e94, seg.limit);
8117         put_smstate(u64, buf, 0x7e98, seg.base);
8118
8119         kvm_x86_ops.get_idt(vcpu, &dt);
8120         put_smstate(u32, buf, 0x7e84, dt.size);
8121         put_smstate(u64, buf, 0x7e88, dt.address);
8122
8123         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8124         put_smstate(u16, buf, 0x7e70, seg.selector);
8125         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8126         put_smstate(u32, buf, 0x7e74, seg.limit);
8127         put_smstate(u64, buf, 0x7e78, seg.base);
8128
8129         kvm_x86_ops.get_gdt(vcpu, &dt);
8130         put_smstate(u32, buf, 0x7e64, dt.size);
8131         put_smstate(u64, buf, 0x7e68, dt.address);
8132
8133         for (i = 0; i < 6; i++)
8134                 enter_smm_save_seg_64(vcpu, buf, i);
8135 }
8136 #endif
8137
8138 static void enter_smm(struct kvm_vcpu *vcpu)
8139 {
8140         struct kvm_segment cs, ds;
8141         struct desc_ptr dt;
8142         char buf[512];
8143         u32 cr0;
8144
8145         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8146         memset(buf, 0, 512);
8147 #ifdef CONFIG_X86_64
8148         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8149                 enter_smm_save_state_64(vcpu, buf);
8150         else
8151 #endif
8152                 enter_smm_save_state_32(vcpu, buf);
8153
8154         /*
8155          * Give pre_enter_smm() a chance to make ISA-specific changes to the
8156          * vCPU state (e.g. leave guest mode) after we've saved the state into
8157          * the SMM state-save area.
8158          */
8159         kvm_x86_ops.pre_enter_smm(vcpu, buf);
8160
8161         vcpu->arch.hflags |= HF_SMM_MASK;
8162         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8163
8164         if (kvm_x86_ops.get_nmi_mask(vcpu))
8165                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8166         else
8167                 kvm_x86_ops.set_nmi_mask(vcpu, true);
8168
8169         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8170         kvm_rip_write(vcpu, 0x8000);
8171
8172         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8173         kvm_x86_ops.set_cr0(vcpu, cr0);
8174         vcpu->arch.cr0 = cr0;
8175
8176         kvm_x86_ops.set_cr4(vcpu, 0);
8177
8178         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
8179         dt.address = dt.size = 0;
8180         kvm_x86_ops.set_idt(vcpu, &dt);
8181
8182         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8183
8184         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8185         cs.base = vcpu->arch.smbase;
8186
8187         ds.selector = 0;
8188         ds.base = 0;
8189
8190         cs.limit    = ds.limit = 0xffffffff;
8191         cs.type     = ds.type = 0x3;
8192         cs.dpl      = ds.dpl = 0;
8193         cs.db       = ds.db = 0;
8194         cs.s        = ds.s = 1;
8195         cs.l        = ds.l = 0;
8196         cs.g        = ds.g = 1;
8197         cs.avl      = ds.avl = 0;
8198         cs.present  = ds.present = 1;
8199         cs.unusable = ds.unusable = 0;
8200         cs.padding  = ds.padding = 0;
8201
8202         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8203         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8204         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8205         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8206         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8207         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8208
8209 #ifdef CONFIG_X86_64
8210         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8211                 kvm_x86_ops.set_efer(vcpu, 0);
8212 #endif
8213
8214         kvm_update_cpuid_runtime(vcpu);
8215         kvm_mmu_reset_context(vcpu);
8216 }
8217
8218 static void process_smi(struct kvm_vcpu *vcpu)
8219 {
8220         vcpu->arch.smi_pending = true;
8221         kvm_make_request(KVM_REQ_EVENT, vcpu);
8222 }
8223
8224 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8225                                        unsigned long *vcpu_bitmap)
8226 {
8227         cpumask_var_t cpus;
8228
8229         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8230
8231         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8232                                     NULL, vcpu_bitmap, cpus);
8233
8234         free_cpumask_var(cpus);
8235 }
8236
8237 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8238 {
8239         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8240 }
8241
8242 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8243 {
8244         if (!lapic_in_kernel(vcpu))
8245                 return;
8246
8247         vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8248         kvm_apic_update_apicv(vcpu);
8249         kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8250 }
8251 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8252
8253 /*
8254  * NOTE: Do not hold any lock prior to calling this.
8255  *
8256  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8257  * locked, because it calls __x86_set_memory_region() which does
8258  * synchronize_srcu(&kvm->srcu).
8259  */
8260 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8261 {
8262         struct kvm_vcpu *except;
8263         unsigned long old, new, expected;
8264
8265         if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8266             !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8267                 return;
8268
8269         old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8270         do {
8271                 expected = new = old;
8272                 if (activate)
8273                         __clear_bit(bit, &new);
8274                 else
8275                         __set_bit(bit, &new);
8276                 if (new == old)
8277                         break;
8278                 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8279         } while (old != expected);
8280
8281         if (!!old == !!new)
8282                 return;
8283
8284         trace_kvm_apicv_update_request(activate, bit);
8285         if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8286                 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8287
8288         /*
8289          * Sending request to update APICV for all other vcpus,
8290          * while update the calling vcpu immediately instead of
8291          * waiting for another #VMEXIT to handle the request.
8292          */
8293         except = kvm_get_running_vcpu();
8294         kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8295                                          except);
8296         if (except)
8297                 kvm_vcpu_update_apicv(except);
8298 }
8299 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8300
8301 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8302 {
8303         if (!kvm_apic_present(vcpu))
8304                 return;
8305
8306         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8307
8308         if (irqchip_split(vcpu->kvm))
8309                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8310         else {
8311                 if (vcpu->arch.apicv_active)
8312                         kvm_x86_ops.sync_pir_to_irr(vcpu);
8313                 if (ioapic_in_kernel(vcpu->kvm))
8314                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8315         }
8316
8317         if (is_guest_mode(vcpu))
8318                 vcpu->arch.load_eoi_exitmap_pending = true;
8319         else
8320                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8321 }
8322
8323 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8324 {
8325         u64 eoi_exit_bitmap[4];
8326
8327         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8328                 return;
8329
8330         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8331                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
8332         kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8333 }
8334
8335 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8336                                             unsigned long start, unsigned long end)
8337 {
8338         unsigned long apic_address;
8339
8340         /*
8341          * The physical address of apic access page is stored in the VMCS.
8342          * Update it when it becomes invalid.
8343          */
8344         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8345         if (start <= apic_address && apic_address < end)
8346                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8347 }
8348
8349 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8350 {
8351         if (!lapic_in_kernel(vcpu))
8352                 return;
8353
8354         if (!kvm_x86_ops.set_apic_access_page_addr)
8355                 return;
8356
8357         kvm_x86_ops.set_apic_access_page_addr(vcpu);
8358 }
8359
8360 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8361 {
8362         smp_send_reschedule(vcpu->cpu);
8363 }
8364 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8365
8366 /*
8367  * Returns 1 to let vcpu_run() continue the guest execution loop without
8368  * exiting to the userspace.  Otherwise, the value will be returned to the
8369  * userspace.
8370  */
8371 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8372 {
8373         int r;
8374         bool req_int_win =
8375                 dm_request_for_irq_injection(vcpu) &&
8376                 kvm_cpu_accept_dm_intr(vcpu);
8377         fastpath_t exit_fastpath;
8378
8379         bool req_immediate_exit = false;
8380
8381         if (kvm_request_pending(vcpu)) {
8382                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8383                         if (unlikely(!kvm_x86_ops.nested_ops->get_vmcs12_pages(vcpu))) {
8384                                 r = 0;
8385                                 goto out;
8386                         }
8387                 }
8388                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8389                         kvm_mmu_unload(vcpu);
8390                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8391                         __kvm_migrate_timers(vcpu);
8392                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8393                         kvm_gen_update_masterclock(vcpu->kvm);
8394                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8395                         kvm_gen_kvmclock_update(vcpu);
8396                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8397                         r = kvm_guest_time_update(vcpu);
8398                         if (unlikely(r))
8399                                 goto out;
8400                 }
8401                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8402                         kvm_mmu_sync_roots(vcpu);
8403                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8404                         kvm_mmu_load_pgd(vcpu);
8405                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8406                         kvm_vcpu_flush_tlb_all(vcpu);
8407
8408                         /* Flushing all ASIDs flushes the current ASID... */
8409                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8410                 }
8411                 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8412                         kvm_vcpu_flush_tlb_current(vcpu);
8413                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8414                         kvm_vcpu_flush_tlb_guest(vcpu);
8415
8416                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8417                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8418                         r = 0;
8419                         goto out;
8420                 }
8421                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8422                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8423                         vcpu->mmio_needed = 0;
8424                         r = 0;
8425                         goto out;
8426                 }
8427                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8428                         /* Page is swapped out. Do synthetic halt */
8429                         vcpu->arch.apf.halted = true;
8430                         r = 1;
8431                         goto out;
8432                 }
8433                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8434                         record_steal_time(vcpu);
8435                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8436                         process_smi(vcpu);
8437                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8438                         process_nmi(vcpu);
8439                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8440                         kvm_pmu_handle_event(vcpu);
8441                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8442                         kvm_pmu_deliver_pmi(vcpu);
8443                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8444                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8445                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
8446                                      vcpu->arch.ioapic_handled_vectors)) {
8447                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8448                                 vcpu->run->eoi.vector =
8449                                                 vcpu->arch.pending_ioapic_eoi;
8450                                 r = 0;
8451                                 goto out;
8452                         }
8453                 }
8454                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8455                         vcpu_scan_ioapic(vcpu);
8456                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8457                         vcpu_load_eoi_exitmap(vcpu);
8458                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8459                         kvm_vcpu_reload_apic_access_page(vcpu);
8460                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8461                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8462                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8463                         r = 0;
8464                         goto out;
8465                 }
8466                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8467                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8468                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8469                         r = 0;
8470                         goto out;
8471                 }
8472                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8473                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8474                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8475                         r = 0;
8476                         goto out;
8477                 }
8478
8479                 /*
8480                  * KVM_REQ_HV_STIMER has to be processed after
8481                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8482                  * depend on the guest clock being up-to-date
8483                  */
8484                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8485                         kvm_hv_process_stimers(vcpu);
8486                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8487                         kvm_vcpu_update_apicv(vcpu);
8488                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8489                         kvm_check_async_pf_completion(vcpu);
8490         }
8491
8492         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8493                 ++vcpu->stat.req_event;
8494                 kvm_apic_accept_events(vcpu);
8495                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8496                         r = 1;
8497                         goto out;
8498                 }
8499
8500                 inject_pending_event(vcpu, &req_immediate_exit);
8501                 if (req_int_win)
8502                         kvm_x86_ops.enable_irq_window(vcpu);
8503
8504                 if (kvm_lapic_enabled(vcpu)) {
8505                         update_cr8_intercept(vcpu);
8506                         kvm_lapic_sync_to_vapic(vcpu);
8507                 }
8508         }
8509
8510         r = kvm_mmu_reload(vcpu);
8511         if (unlikely(r)) {
8512                 goto cancel_injection;
8513         }
8514
8515         preempt_disable();
8516
8517         kvm_x86_ops.prepare_guest_switch(vcpu);
8518
8519         /*
8520          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8521          * IPI are then delayed after guest entry, which ensures that they
8522          * result in virtual interrupt delivery.
8523          */
8524         local_irq_disable();
8525         vcpu->mode = IN_GUEST_MODE;
8526
8527         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8528
8529         /*
8530          * 1) We should set ->mode before checking ->requests.  Please see
8531          * the comment in kvm_vcpu_exiting_guest_mode().
8532          *
8533          * 2) For APICv, we should set ->mode before checking PID.ON. This
8534          * pairs with the memory barrier implicit in pi_test_and_set_on
8535          * (see vmx_deliver_posted_interrupt).
8536          *
8537          * 3) This also orders the write to mode from any reads to the page
8538          * tables done while the VCPU is running.  Please see the comment
8539          * in kvm_flush_remote_tlbs.
8540          */
8541         smp_mb__after_srcu_read_unlock();
8542
8543         /*
8544          * This handles the case where a posted interrupt was
8545          * notified with kvm_vcpu_kick.
8546          */
8547         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8548                 kvm_x86_ops.sync_pir_to_irr(vcpu);
8549
8550         if (kvm_vcpu_exit_request(vcpu)) {
8551                 vcpu->mode = OUTSIDE_GUEST_MODE;
8552                 smp_wmb();
8553                 local_irq_enable();
8554                 preempt_enable();
8555                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8556                 r = 1;
8557                 goto cancel_injection;
8558         }
8559
8560         if (req_immediate_exit) {
8561                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8562                 kvm_x86_ops.request_immediate_exit(vcpu);
8563         }
8564
8565         trace_kvm_entry(vcpu->vcpu_id);
8566
8567         fpregs_assert_state_consistent();
8568         if (test_thread_flag(TIF_NEED_FPU_LOAD))
8569                 switch_fpu_return();
8570
8571         if (unlikely(vcpu->arch.switch_db_regs)) {
8572                 set_debugreg(0, 7);
8573                 set_debugreg(vcpu->arch.eff_db[0], 0);
8574                 set_debugreg(vcpu->arch.eff_db[1], 1);
8575                 set_debugreg(vcpu->arch.eff_db[2], 2);
8576                 set_debugreg(vcpu->arch.eff_db[3], 3);
8577                 set_debugreg(vcpu->arch.dr6, 6);
8578                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8579         }
8580
8581         exit_fastpath = kvm_x86_ops.run(vcpu);
8582
8583         /*
8584          * Do this here before restoring debug registers on the host.  And
8585          * since we do this before handling the vmexit, a DR access vmexit
8586          * can (a) read the correct value of the debug registers, (b) set
8587          * KVM_DEBUGREG_WONT_EXIT again.
8588          */
8589         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8590                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8591                 kvm_x86_ops.sync_dirty_debug_regs(vcpu);
8592                 kvm_update_dr0123(vcpu);
8593                 kvm_update_dr7(vcpu);
8594                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8595         }
8596
8597         /*
8598          * If the guest has used debug registers, at least dr7
8599          * will be disabled while returning to the host.
8600          * If we don't have active breakpoints in the host, we don't
8601          * care about the messed up debug address registers. But if
8602          * we have some of them active, restore the old state.
8603          */
8604         if (hw_breakpoint_active())
8605                 hw_breakpoint_restore();
8606
8607         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
8608         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8609
8610         vcpu->mode = OUTSIDE_GUEST_MODE;
8611         smp_wmb();
8612
8613         kvm_x86_ops.handle_exit_irqoff(vcpu);
8614
8615         /*
8616          * Consume any pending interrupts, including the possible source of
8617          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8618          * An instruction is required after local_irq_enable() to fully unblock
8619          * interrupts on processors that implement an interrupt shadow, the
8620          * stat.exits increment will do nicely.
8621          */
8622         kvm_before_interrupt(vcpu);
8623         local_irq_enable();
8624         ++vcpu->stat.exits;
8625         local_irq_disable();
8626         kvm_after_interrupt(vcpu);
8627
8628         if (lapic_in_kernel(vcpu)) {
8629                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8630                 if (delta != S64_MIN) {
8631                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8632                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8633                 }
8634         }
8635
8636         local_irq_enable();
8637         preempt_enable();
8638
8639         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8640
8641         /*
8642          * Profile KVM exit RIPs:
8643          */
8644         if (unlikely(prof_on == KVM_PROFILING)) {
8645                 unsigned long rip = kvm_rip_read(vcpu);
8646                 profile_hit(KVM_PROFILING, (void *)rip);
8647         }
8648
8649         if (unlikely(vcpu->arch.tsc_always_catchup))
8650                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8651
8652         if (vcpu->arch.apic_attention)
8653                 kvm_lapic_sync_from_vapic(vcpu);
8654
8655         r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
8656         return r;
8657
8658 cancel_injection:
8659         if (req_immediate_exit)
8660                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8661         kvm_x86_ops.cancel_injection(vcpu);
8662         if (unlikely(vcpu->arch.apic_attention))
8663                 kvm_lapic_sync_from_vapic(vcpu);
8664 out:
8665         return r;
8666 }
8667
8668 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8669 {
8670         if (!kvm_arch_vcpu_runnable(vcpu) &&
8671             (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
8672                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8673                 kvm_vcpu_block(vcpu);
8674                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8675
8676                 if (kvm_x86_ops.post_block)
8677                         kvm_x86_ops.post_block(vcpu);
8678
8679                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8680                         return 1;
8681         }
8682
8683         kvm_apic_accept_events(vcpu);
8684         switch(vcpu->arch.mp_state) {
8685         case KVM_MP_STATE_HALTED:
8686                 vcpu->arch.pv.pv_unhalted = false;
8687                 vcpu->arch.mp_state =
8688                         KVM_MP_STATE_RUNNABLE;
8689                 fallthrough;
8690         case KVM_MP_STATE_RUNNABLE:
8691                 vcpu->arch.apf.halted = false;
8692                 break;
8693         case KVM_MP_STATE_INIT_RECEIVED:
8694                 break;
8695         default:
8696                 return -EINTR;
8697         }
8698         return 1;
8699 }
8700
8701 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8702 {
8703         if (is_guest_mode(vcpu))
8704                 kvm_x86_ops.nested_ops->check_events(vcpu);
8705
8706         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8707                 !vcpu->arch.apf.halted);
8708 }
8709
8710 static int vcpu_run(struct kvm_vcpu *vcpu)
8711 {
8712         int r;
8713         struct kvm *kvm = vcpu->kvm;
8714
8715         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8716         vcpu->arch.l1tf_flush_l1d = true;
8717
8718         for (;;) {
8719                 if (kvm_vcpu_running(vcpu)) {
8720                         r = vcpu_enter_guest(vcpu);
8721                 } else {
8722                         r = vcpu_block(kvm, vcpu);
8723                 }
8724
8725                 if (r <= 0)
8726                         break;
8727
8728                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8729                 if (kvm_cpu_has_pending_timer(vcpu))
8730                         kvm_inject_pending_timer_irqs(vcpu);
8731
8732                 if (dm_request_for_irq_injection(vcpu) &&
8733                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8734                         r = 0;
8735                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8736                         ++vcpu->stat.request_irq_exits;
8737                         break;
8738                 }
8739
8740                 if (__xfer_to_guest_mode_work_pending()) {
8741                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8742                         r = xfer_to_guest_mode_handle_work(vcpu);
8743                         if (r)
8744                                 return r;
8745                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8746                 }
8747         }
8748
8749         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8750
8751         return r;
8752 }
8753
8754 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8755 {
8756         int r;
8757
8758         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8759         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8760         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8761         return r;
8762 }
8763
8764 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8765 {
8766         BUG_ON(!vcpu->arch.pio.count);
8767
8768         return complete_emulated_io(vcpu);
8769 }
8770
8771 /*
8772  * Implements the following, as a state machine:
8773  *
8774  * read:
8775  *   for each fragment
8776  *     for each mmio piece in the fragment
8777  *       write gpa, len
8778  *       exit
8779  *       copy data
8780  *   execute insn
8781  *
8782  * write:
8783  *   for each fragment
8784  *     for each mmio piece in the fragment
8785  *       write gpa, len
8786  *       copy data
8787  *       exit
8788  */
8789 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8790 {
8791         struct kvm_run *run = vcpu->run;
8792         struct kvm_mmio_fragment *frag;
8793         unsigned len;
8794
8795         BUG_ON(!vcpu->mmio_needed);
8796
8797         /* Complete previous fragment */
8798         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8799         len = min(8u, frag->len);
8800         if (!vcpu->mmio_is_write)
8801                 memcpy(frag->data, run->mmio.data, len);
8802
8803         if (frag->len <= 8) {
8804                 /* Switch to the next fragment. */
8805                 frag++;
8806                 vcpu->mmio_cur_fragment++;
8807         } else {
8808                 /* Go forward to the next mmio piece. */
8809                 frag->data += len;
8810                 frag->gpa += len;
8811                 frag->len -= len;
8812         }
8813
8814         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8815                 vcpu->mmio_needed = 0;
8816
8817                 /* FIXME: return into emulator if single-stepping.  */
8818                 if (vcpu->mmio_is_write)
8819                         return 1;
8820                 vcpu->mmio_read_completed = 1;
8821                 return complete_emulated_io(vcpu);
8822         }
8823
8824         run->exit_reason = KVM_EXIT_MMIO;
8825         run->mmio.phys_addr = frag->gpa;
8826         if (vcpu->mmio_is_write)
8827                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8828         run->mmio.len = min(8u, frag->len);
8829         run->mmio.is_write = vcpu->mmio_is_write;
8830         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8831         return 0;
8832 }
8833
8834 static void kvm_save_current_fpu(struct fpu *fpu)
8835 {
8836         /*
8837          * If the target FPU state is not resident in the CPU registers, just
8838          * memcpy() from current, else save CPU state directly to the target.
8839          */
8840         if (test_thread_flag(TIF_NEED_FPU_LOAD))
8841                 memcpy(&fpu->state, &current->thread.fpu.state,
8842                        fpu_kernel_xstate_size);
8843         else
8844                 copy_fpregs_to_fpstate(fpu);
8845 }
8846
8847 /* Swap (qemu) user FPU context for the guest FPU context. */
8848 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8849 {
8850         fpregs_lock();
8851
8852         kvm_save_current_fpu(vcpu->arch.user_fpu);
8853
8854         /* PKRU is separately restored in kvm_x86_ops.run.  */
8855         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8856                                 ~XFEATURE_MASK_PKRU);
8857
8858         fpregs_mark_activate();
8859         fpregs_unlock();
8860
8861         trace_kvm_fpu(1);
8862 }
8863
8864 /* When vcpu_run ends, restore user space FPU context. */
8865 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8866 {
8867         fpregs_lock();
8868
8869         kvm_save_current_fpu(vcpu->arch.guest_fpu);
8870
8871         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8872
8873         fpregs_mark_activate();
8874         fpregs_unlock();
8875
8876         ++vcpu->stat.fpu_reload;
8877         trace_kvm_fpu(0);
8878 }
8879
8880 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
8881 {
8882         struct kvm_run *kvm_run = vcpu->run;
8883         int r;
8884
8885         vcpu_load(vcpu);
8886         kvm_sigset_activate(vcpu);
8887         kvm_load_guest_fpu(vcpu);
8888
8889         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8890                 if (kvm_run->immediate_exit) {
8891                         r = -EINTR;
8892                         goto out;
8893                 }
8894                 kvm_vcpu_block(vcpu);
8895                 kvm_apic_accept_events(vcpu);
8896                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8897                 r = -EAGAIN;
8898                 if (signal_pending(current)) {
8899                         r = -EINTR;
8900                         kvm_run->exit_reason = KVM_EXIT_INTR;
8901                         ++vcpu->stat.signal_exits;
8902                 }
8903                 goto out;
8904         }
8905
8906         if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8907                 r = -EINVAL;
8908                 goto out;
8909         }
8910
8911         if (kvm_run->kvm_dirty_regs) {
8912                 r = sync_regs(vcpu);
8913                 if (r != 0)
8914                         goto out;
8915         }
8916
8917         /* re-sync apic's tpr */
8918         if (!lapic_in_kernel(vcpu)) {
8919                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8920                         r = -EINVAL;
8921                         goto out;
8922                 }
8923         }
8924
8925         if (unlikely(vcpu->arch.complete_userspace_io)) {
8926                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8927                 vcpu->arch.complete_userspace_io = NULL;
8928                 r = cui(vcpu);
8929                 if (r <= 0)
8930                         goto out;
8931         } else
8932                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8933
8934         if (kvm_run->immediate_exit)
8935                 r = -EINTR;
8936         else
8937                 r = vcpu_run(vcpu);
8938
8939 out:
8940         kvm_put_guest_fpu(vcpu);
8941         if (kvm_run->kvm_valid_regs)
8942                 store_regs(vcpu);
8943         post_kvm_run_save(vcpu);
8944         kvm_sigset_deactivate(vcpu);
8945
8946         vcpu_put(vcpu);
8947         return r;
8948 }
8949
8950 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8951 {
8952         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8953                 /*
8954                  * We are here if userspace calls get_regs() in the middle of
8955                  * instruction emulation. Registers state needs to be copied
8956                  * back from emulation context to vcpu. Userspace shouldn't do
8957                  * that usually, but some bad designed PV devices (vmware
8958                  * backdoor interface) need this to work
8959                  */
8960                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
8961                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8962         }
8963         regs->rax = kvm_rax_read(vcpu);
8964         regs->rbx = kvm_rbx_read(vcpu);
8965         regs->rcx = kvm_rcx_read(vcpu);
8966         regs->rdx = kvm_rdx_read(vcpu);
8967         regs->rsi = kvm_rsi_read(vcpu);
8968         regs->rdi = kvm_rdi_read(vcpu);
8969         regs->rsp = kvm_rsp_read(vcpu);
8970         regs->rbp = kvm_rbp_read(vcpu);
8971 #ifdef CONFIG_X86_64
8972         regs->r8 = kvm_r8_read(vcpu);
8973         regs->r9 = kvm_r9_read(vcpu);
8974         regs->r10 = kvm_r10_read(vcpu);
8975         regs->r11 = kvm_r11_read(vcpu);
8976         regs->r12 = kvm_r12_read(vcpu);
8977         regs->r13 = kvm_r13_read(vcpu);
8978         regs->r14 = kvm_r14_read(vcpu);
8979         regs->r15 = kvm_r15_read(vcpu);
8980 #endif
8981
8982         regs->rip = kvm_rip_read(vcpu);
8983         regs->rflags = kvm_get_rflags(vcpu);
8984 }
8985
8986 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8987 {
8988         vcpu_load(vcpu);
8989         __get_regs(vcpu, regs);
8990         vcpu_put(vcpu);
8991         return 0;
8992 }
8993
8994 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8995 {
8996         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8997         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8998
8999         kvm_rax_write(vcpu, regs->rax);
9000         kvm_rbx_write(vcpu, regs->rbx);
9001         kvm_rcx_write(vcpu, regs->rcx);
9002         kvm_rdx_write(vcpu, regs->rdx);
9003         kvm_rsi_write(vcpu, regs->rsi);
9004         kvm_rdi_write(vcpu, regs->rdi);
9005         kvm_rsp_write(vcpu, regs->rsp);
9006         kvm_rbp_write(vcpu, regs->rbp);
9007 #ifdef CONFIG_X86_64
9008         kvm_r8_write(vcpu, regs->r8);
9009         kvm_r9_write(vcpu, regs->r9);
9010         kvm_r10_write(vcpu, regs->r10);
9011         kvm_r11_write(vcpu, regs->r11);
9012         kvm_r12_write(vcpu, regs->r12);
9013         kvm_r13_write(vcpu, regs->r13);
9014         kvm_r14_write(vcpu, regs->r14);
9015         kvm_r15_write(vcpu, regs->r15);
9016 #endif
9017
9018         kvm_rip_write(vcpu, regs->rip);
9019         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9020
9021         vcpu->arch.exception.pending = false;
9022
9023         kvm_make_request(KVM_REQ_EVENT, vcpu);
9024 }
9025
9026 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9027 {
9028         vcpu_load(vcpu);
9029         __set_regs(vcpu, regs);
9030         vcpu_put(vcpu);
9031         return 0;
9032 }
9033
9034 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9035 {
9036         struct kvm_segment cs;
9037
9038         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9039         *db = cs.db;
9040         *l = cs.l;
9041 }
9042 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9043
9044 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9045 {
9046         struct desc_ptr dt;
9047
9048         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9049         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9050         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9051         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9052         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9053         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9054
9055         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9056         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9057
9058         kvm_x86_ops.get_idt(vcpu, &dt);
9059         sregs->idt.limit = dt.size;
9060         sregs->idt.base = dt.address;
9061         kvm_x86_ops.get_gdt(vcpu, &dt);
9062         sregs->gdt.limit = dt.size;
9063         sregs->gdt.base = dt.address;
9064
9065         sregs->cr0 = kvm_read_cr0(vcpu);
9066         sregs->cr2 = vcpu->arch.cr2;
9067         sregs->cr3 = kvm_read_cr3(vcpu);
9068         sregs->cr4 = kvm_read_cr4(vcpu);
9069         sregs->cr8 = kvm_get_cr8(vcpu);
9070         sregs->efer = vcpu->arch.efer;
9071         sregs->apic_base = kvm_get_apic_base(vcpu);
9072
9073         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9074
9075         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9076                 set_bit(vcpu->arch.interrupt.nr,
9077                         (unsigned long *)sregs->interrupt_bitmap);
9078 }
9079
9080 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9081                                   struct kvm_sregs *sregs)
9082 {
9083         vcpu_load(vcpu);
9084         __get_sregs(vcpu, sregs);
9085         vcpu_put(vcpu);
9086         return 0;
9087 }
9088
9089 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9090                                     struct kvm_mp_state *mp_state)
9091 {
9092         vcpu_load(vcpu);
9093         if (kvm_mpx_supported())
9094                 kvm_load_guest_fpu(vcpu);
9095
9096         kvm_apic_accept_events(vcpu);
9097         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9098                                         vcpu->arch.pv.pv_unhalted)
9099                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9100         else
9101                 mp_state->mp_state = vcpu->arch.mp_state;
9102
9103         if (kvm_mpx_supported())
9104                 kvm_put_guest_fpu(vcpu);
9105         vcpu_put(vcpu);
9106         return 0;
9107 }
9108
9109 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9110                                     struct kvm_mp_state *mp_state)
9111 {
9112         int ret = -EINVAL;
9113
9114         vcpu_load(vcpu);
9115
9116         if (!lapic_in_kernel(vcpu) &&
9117             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9118                 goto out;
9119
9120         /*
9121          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9122          * INIT state; latched init should be reported using
9123          * KVM_SET_VCPU_EVENTS, so reject it here.
9124          */
9125         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9126             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9127              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9128                 goto out;
9129
9130         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9131                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9132                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9133         } else
9134                 vcpu->arch.mp_state = mp_state->mp_state;
9135         kvm_make_request(KVM_REQ_EVENT, vcpu);
9136
9137         ret = 0;
9138 out:
9139         vcpu_put(vcpu);
9140         return ret;
9141 }
9142
9143 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9144                     int reason, bool has_error_code, u32 error_code)
9145 {
9146         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9147         int ret;
9148
9149         init_emulate_ctxt(vcpu);
9150
9151         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9152                                    has_error_code, error_code);
9153         if (ret) {
9154                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9155                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9156                 vcpu->run->internal.ndata = 0;
9157                 return 0;
9158         }
9159
9160         kvm_rip_write(vcpu, ctxt->eip);
9161         kvm_set_rflags(vcpu, ctxt->eflags);
9162         return 1;
9163 }
9164 EXPORT_SYMBOL_GPL(kvm_task_switch);
9165
9166 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9167 {
9168         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9169                 /*
9170                  * When EFER.LME and CR0.PG are set, the processor is in
9171                  * 64-bit mode (though maybe in a 32-bit code segment).
9172                  * CR4.PAE and EFER.LMA must be set.
9173                  */
9174                 if (!(sregs->cr4 & X86_CR4_PAE)
9175                     || !(sregs->efer & EFER_LMA))
9176                         return -EINVAL;
9177         } else {
9178                 /*
9179                  * Not in 64-bit mode: EFER.LMA is clear and the code
9180                  * segment cannot be 64-bit.
9181                  */
9182                 if (sregs->efer & EFER_LMA || sregs->cs.l)
9183                         return -EINVAL;
9184         }
9185
9186         return kvm_valid_cr4(vcpu, sregs->cr4);
9187 }
9188
9189 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9190 {
9191         struct msr_data apic_base_msr;
9192         int mmu_reset_needed = 0;
9193         int cpuid_update_needed = 0;
9194         int pending_vec, max_bits, idx;
9195         struct desc_ptr dt;
9196         int ret = -EINVAL;
9197
9198         if (kvm_valid_sregs(vcpu, sregs))
9199                 goto out;
9200
9201         apic_base_msr.data = sregs->apic_base;
9202         apic_base_msr.host_initiated = true;
9203         if (kvm_set_apic_base(vcpu, &apic_base_msr))
9204                 goto out;
9205
9206         dt.size = sregs->idt.limit;
9207         dt.address = sregs->idt.base;
9208         kvm_x86_ops.set_idt(vcpu, &dt);
9209         dt.size = sregs->gdt.limit;
9210         dt.address = sregs->gdt.base;
9211         kvm_x86_ops.set_gdt(vcpu, &dt);
9212
9213         vcpu->arch.cr2 = sregs->cr2;
9214         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9215         vcpu->arch.cr3 = sregs->cr3;
9216         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9217
9218         kvm_set_cr8(vcpu, sregs->cr8);
9219
9220         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9221         kvm_x86_ops.set_efer(vcpu, sregs->efer);
9222
9223         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9224         kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9225         vcpu->arch.cr0 = sregs->cr0;
9226
9227         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9228         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9229                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
9230         kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9231         if (cpuid_update_needed)
9232                 kvm_update_cpuid_runtime(vcpu);
9233
9234         idx = srcu_read_lock(&vcpu->kvm->srcu);
9235         if (is_pae_paging(vcpu)) {
9236                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9237                 mmu_reset_needed = 1;
9238         }
9239         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9240
9241         if (mmu_reset_needed)
9242                 kvm_mmu_reset_context(vcpu);
9243
9244         max_bits = KVM_NR_INTERRUPTS;
9245         pending_vec = find_first_bit(
9246                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9247         if (pending_vec < max_bits) {
9248                 kvm_queue_interrupt(vcpu, pending_vec, false);
9249                 pr_debug("Set back pending irq %d\n", pending_vec);
9250         }
9251
9252         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9253         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9254         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9255         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9256         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9257         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9258
9259         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9260         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9261
9262         update_cr8_intercept(vcpu);
9263
9264         /* Older userspace won't unhalt the vcpu on reset. */
9265         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9266             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9267             !is_protmode(vcpu))
9268                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9269
9270         kvm_make_request(KVM_REQ_EVENT, vcpu);
9271
9272         ret = 0;
9273 out:
9274         return ret;
9275 }
9276
9277 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9278                                   struct kvm_sregs *sregs)
9279 {
9280         int ret;
9281
9282         vcpu_load(vcpu);
9283         ret = __set_sregs(vcpu, sregs);
9284         vcpu_put(vcpu);
9285         return ret;
9286 }
9287
9288 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9289                                         struct kvm_guest_debug *dbg)
9290 {
9291         unsigned long rflags;
9292         int i, r;
9293
9294         vcpu_load(vcpu);
9295
9296         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9297                 r = -EBUSY;
9298                 if (vcpu->arch.exception.pending)
9299                         goto out;
9300                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9301                         kvm_queue_exception(vcpu, DB_VECTOR);
9302                 else
9303                         kvm_queue_exception(vcpu, BP_VECTOR);
9304         }
9305
9306         /*
9307          * Read rflags as long as potentially injected trace flags are still
9308          * filtered out.
9309          */
9310         rflags = kvm_get_rflags(vcpu);
9311
9312         vcpu->guest_debug = dbg->control;
9313         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9314                 vcpu->guest_debug = 0;
9315
9316         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9317                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9318                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9319                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9320         } else {
9321                 for (i = 0; i < KVM_NR_DB_REGS; i++)
9322                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9323         }
9324         kvm_update_dr7(vcpu);
9325
9326         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9327                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9328                         get_segment_base(vcpu, VCPU_SREG_CS);
9329
9330         /*
9331          * Trigger an rflags update that will inject or remove the trace
9332          * flags.
9333          */
9334         kvm_set_rflags(vcpu, rflags);
9335
9336         kvm_x86_ops.update_exception_bitmap(vcpu);
9337
9338         r = 0;
9339
9340 out:
9341         vcpu_put(vcpu);
9342         return r;
9343 }
9344
9345 /*
9346  * Translate a guest virtual address to a guest physical address.
9347  */
9348 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9349                                     struct kvm_translation *tr)
9350 {
9351         unsigned long vaddr = tr->linear_address;
9352         gpa_t gpa;
9353         int idx;
9354
9355         vcpu_load(vcpu);
9356
9357         idx = srcu_read_lock(&vcpu->kvm->srcu);
9358         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9359         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9360         tr->physical_address = gpa;
9361         tr->valid = gpa != UNMAPPED_GVA;
9362         tr->writeable = 1;
9363         tr->usermode = 0;
9364
9365         vcpu_put(vcpu);
9366         return 0;
9367 }
9368
9369 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9370 {
9371         struct fxregs_state *fxsave;
9372
9373         vcpu_load(vcpu);
9374
9375         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9376         memcpy(fpu->fpr, fxsave->st_space, 128);
9377         fpu->fcw = fxsave->cwd;
9378         fpu->fsw = fxsave->swd;
9379         fpu->ftwx = fxsave->twd;
9380         fpu->last_opcode = fxsave->fop;
9381         fpu->last_ip = fxsave->rip;
9382         fpu->last_dp = fxsave->rdp;
9383         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9384
9385         vcpu_put(vcpu);
9386         return 0;
9387 }
9388
9389 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9390 {
9391         struct fxregs_state *fxsave;
9392
9393         vcpu_load(vcpu);
9394
9395         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9396
9397         memcpy(fxsave->st_space, fpu->fpr, 128);
9398         fxsave->cwd = fpu->fcw;
9399         fxsave->swd = fpu->fsw;
9400         fxsave->twd = fpu->ftwx;
9401         fxsave->fop = fpu->last_opcode;
9402         fxsave->rip = fpu->last_ip;
9403         fxsave->rdp = fpu->last_dp;
9404         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9405
9406         vcpu_put(vcpu);
9407         return 0;
9408 }
9409
9410 static void store_regs(struct kvm_vcpu *vcpu)
9411 {
9412         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9413
9414         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9415                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9416
9417         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9418                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9419
9420         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9421                 kvm_vcpu_ioctl_x86_get_vcpu_events(
9422                                 vcpu, &vcpu->run->s.regs.events);
9423 }
9424
9425 static int sync_regs(struct kvm_vcpu *vcpu)
9426 {
9427         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9428                 return -EINVAL;
9429
9430         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9431                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9432                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9433         }
9434         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9435                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9436                         return -EINVAL;
9437                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9438         }
9439         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9440                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9441                                 vcpu, &vcpu->run->s.regs.events))
9442                         return -EINVAL;
9443                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9444         }
9445
9446         return 0;
9447 }
9448
9449 static void fx_init(struct kvm_vcpu *vcpu)
9450 {
9451         fpstate_init(&vcpu->arch.guest_fpu->state);
9452         if (boot_cpu_has(X86_FEATURE_XSAVES))
9453                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9454                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
9455
9456         /*
9457          * Ensure guest xcr0 is valid for loading
9458          */
9459         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9460
9461         vcpu->arch.cr0 |= X86_CR0_ET;
9462 }
9463
9464 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9465 {
9466         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9467                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9468                              "guest TSC will not be reliable\n");
9469
9470         return 0;
9471 }
9472
9473 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9474 {
9475         struct page *page;
9476         int r;
9477
9478         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9479                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9480         else
9481                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9482
9483         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9484
9485         r = kvm_mmu_create(vcpu);
9486         if (r < 0)
9487                 return r;
9488
9489         if (irqchip_in_kernel(vcpu->kvm)) {
9490                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9491                 if (r < 0)
9492                         goto fail_mmu_destroy;
9493                 if (kvm_apicv_activated(vcpu->kvm))
9494                         vcpu->arch.apicv_active = true;
9495         } else
9496                 static_key_slow_inc(&kvm_no_apic_vcpu);
9497
9498         r = -ENOMEM;
9499
9500         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9501         if (!page)
9502                 goto fail_free_lapic;
9503         vcpu->arch.pio_data = page_address(page);
9504
9505         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9506                                        GFP_KERNEL_ACCOUNT);
9507         if (!vcpu->arch.mce_banks)
9508                 goto fail_free_pio_data;
9509         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9510
9511         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9512                                 GFP_KERNEL_ACCOUNT))
9513                 goto fail_free_mce_banks;
9514
9515         if (!alloc_emulate_ctxt(vcpu))
9516                 goto free_wbinvd_dirty_mask;
9517
9518         vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9519                                                 GFP_KERNEL_ACCOUNT);
9520         if (!vcpu->arch.user_fpu) {
9521                 pr_err("kvm: failed to allocate userspace's fpu\n");
9522                 goto free_emulate_ctxt;
9523         }
9524
9525         vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9526                                                  GFP_KERNEL_ACCOUNT);
9527         if (!vcpu->arch.guest_fpu) {
9528                 pr_err("kvm: failed to allocate vcpu's fpu\n");
9529                 goto free_user_fpu;
9530         }
9531         fx_init(vcpu);
9532
9533         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9534
9535         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9536
9537         kvm_async_pf_hash_reset(vcpu);
9538         kvm_pmu_init(vcpu);
9539
9540         vcpu->arch.pending_external_vector = -1;
9541         vcpu->arch.preempted_in_kernel = false;
9542
9543         kvm_hv_vcpu_init(vcpu);
9544
9545         r = kvm_x86_ops.vcpu_create(vcpu);
9546         if (r)
9547                 goto free_guest_fpu;
9548
9549         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9550         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9551         kvm_vcpu_mtrr_init(vcpu);
9552         vcpu_load(vcpu);
9553         kvm_vcpu_reset(vcpu, false);
9554         kvm_init_mmu(vcpu, false);
9555         vcpu_put(vcpu);
9556         return 0;
9557
9558 free_guest_fpu:
9559         kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9560 free_user_fpu:
9561         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9562 free_emulate_ctxt:
9563         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9564 free_wbinvd_dirty_mask:
9565         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9566 fail_free_mce_banks:
9567         kfree(vcpu->arch.mce_banks);
9568 fail_free_pio_data:
9569         free_page((unsigned long)vcpu->arch.pio_data);
9570 fail_free_lapic:
9571         kvm_free_lapic(vcpu);
9572 fail_mmu_destroy:
9573         kvm_mmu_destroy(vcpu);
9574         return r;
9575 }
9576
9577 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9578 {
9579         struct msr_data msr;
9580         struct kvm *kvm = vcpu->kvm;
9581
9582         kvm_hv_vcpu_postcreate(vcpu);
9583
9584         if (mutex_lock_killable(&vcpu->mutex))
9585                 return;
9586         vcpu_load(vcpu);
9587         msr.data = 0x0;
9588         msr.index = MSR_IA32_TSC;
9589         msr.host_initiated = true;
9590         kvm_write_tsc(vcpu, &msr);
9591         vcpu_put(vcpu);
9592
9593         /* poll control enabled by default */
9594         vcpu->arch.msr_kvm_poll_control = 1;
9595
9596         mutex_unlock(&vcpu->mutex);
9597
9598         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9599                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9600                                                 KVMCLOCK_SYNC_PERIOD);
9601 }
9602
9603 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9604 {
9605         struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9606         int idx;
9607
9608         kvm_release_pfn(cache->pfn, cache->dirty, cache);
9609
9610         kvmclock_reset(vcpu);
9611
9612         kvm_x86_ops.vcpu_free(vcpu);
9613
9614         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9615         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9616         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9617         kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9618
9619         kvm_hv_vcpu_uninit(vcpu);
9620         kvm_pmu_destroy(vcpu);
9621         kfree(vcpu->arch.mce_banks);
9622         kvm_free_lapic(vcpu);
9623         idx = srcu_read_lock(&vcpu->kvm->srcu);
9624         kvm_mmu_destroy(vcpu);
9625         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9626         free_page((unsigned long)vcpu->arch.pio_data);
9627         if (!lapic_in_kernel(vcpu))
9628                 static_key_slow_dec(&kvm_no_apic_vcpu);
9629 }
9630
9631 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9632 {
9633         kvm_lapic_reset(vcpu, init_event);
9634
9635         vcpu->arch.hflags = 0;
9636
9637         vcpu->arch.smi_pending = 0;
9638         vcpu->arch.smi_count = 0;
9639         atomic_set(&vcpu->arch.nmi_queued, 0);
9640         vcpu->arch.nmi_pending = 0;
9641         vcpu->arch.nmi_injected = false;
9642         kvm_clear_interrupt_queue(vcpu);
9643         kvm_clear_exception_queue(vcpu);
9644
9645         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9646         kvm_update_dr0123(vcpu);
9647         vcpu->arch.dr6 = DR6_INIT;
9648         vcpu->arch.dr7 = DR7_FIXED_1;
9649         kvm_update_dr7(vcpu);
9650
9651         vcpu->arch.cr2 = 0;
9652
9653         kvm_make_request(KVM_REQ_EVENT, vcpu);
9654         vcpu->arch.apf.msr_en_val = 0;
9655         vcpu->arch.apf.msr_int_val = 0;
9656         vcpu->arch.st.msr_val = 0;
9657
9658         kvmclock_reset(vcpu);
9659
9660         kvm_clear_async_pf_completion_queue(vcpu);
9661         kvm_async_pf_hash_reset(vcpu);
9662         vcpu->arch.apf.halted = false;
9663
9664         if (kvm_mpx_supported()) {
9665                 void *mpx_state_buffer;
9666
9667                 /*
9668                  * To avoid have the INIT path from kvm_apic_has_events() that be
9669                  * called with loaded FPU and does not let userspace fix the state.
9670                  */
9671                 if (init_event)
9672                         kvm_put_guest_fpu(vcpu);
9673                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9674                                         XFEATURE_BNDREGS);
9675                 if (mpx_state_buffer)
9676                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9677                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9678                                         XFEATURE_BNDCSR);
9679                 if (mpx_state_buffer)
9680                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9681                 if (init_event)
9682                         kvm_load_guest_fpu(vcpu);
9683         }
9684
9685         if (!init_event) {
9686                 kvm_pmu_reset(vcpu);
9687                 vcpu->arch.smbase = 0x30000;
9688
9689                 vcpu->arch.msr_misc_features_enables = 0;
9690
9691                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9692         }
9693
9694         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9695         vcpu->arch.regs_avail = ~0;
9696         vcpu->arch.regs_dirty = ~0;
9697
9698         vcpu->arch.ia32_xss = 0;
9699
9700         kvm_x86_ops.vcpu_reset(vcpu, init_event);
9701 }
9702
9703 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9704 {
9705         struct kvm_segment cs;
9706
9707         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9708         cs.selector = vector << 8;
9709         cs.base = vector << 12;
9710         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9711         kvm_rip_write(vcpu, 0);
9712 }
9713
9714 int kvm_arch_hardware_enable(void)
9715 {
9716         struct kvm *kvm;
9717         struct kvm_vcpu *vcpu;
9718         int i;
9719         int ret;
9720         u64 local_tsc;
9721         u64 max_tsc = 0;
9722         bool stable, backwards_tsc = false;
9723
9724         kvm_shared_msr_cpu_online();
9725         ret = kvm_x86_ops.hardware_enable();
9726         if (ret != 0)
9727                 return ret;
9728
9729         local_tsc = rdtsc();
9730         stable = !kvm_check_tsc_unstable();
9731         list_for_each_entry(kvm, &vm_list, vm_list) {
9732                 kvm_for_each_vcpu(i, vcpu, kvm) {
9733                         if (!stable && vcpu->cpu == smp_processor_id())
9734                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9735                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9736                                 backwards_tsc = true;
9737                                 if (vcpu->arch.last_host_tsc > max_tsc)
9738                                         max_tsc = vcpu->arch.last_host_tsc;
9739                         }
9740                 }
9741         }
9742
9743         /*
9744          * Sometimes, even reliable TSCs go backwards.  This happens on
9745          * platforms that reset TSC during suspend or hibernate actions, but
9746          * maintain synchronization.  We must compensate.  Fortunately, we can
9747          * detect that condition here, which happens early in CPU bringup,
9748          * before any KVM threads can be running.  Unfortunately, we can't
9749          * bring the TSCs fully up to date with real time, as we aren't yet far
9750          * enough into CPU bringup that we know how much real time has actually
9751          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9752          * variables that haven't been updated yet.
9753          *
9754          * So we simply find the maximum observed TSC above, then record the
9755          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9756          * the adjustment will be applied.  Note that we accumulate
9757          * adjustments, in case multiple suspend cycles happen before some VCPU
9758          * gets a chance to run again.  In the event that no KVM threads get a
9759          * chance to run, we will miss the entire elapsed period, as we'll have
9760          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9761          * loose cycle time.  This isn't too big a deal, since the loss will be
9762          * uniform across all VCPUs (not to mention the scenario is extremely
9763          * unlikely). It is possible that a second hibernate recovery happens
9764          * much faster than a first, causing the observed TSC here to be
9765          * smaller; this would require additional padding adjustment, which is
9766          * why we set last_host_tsc to the local tsc observed here.
9767          *
9768          * N.B. - this code below runs only on platforms with reliable TSC,
9769          * as that is the only way backwards_tsc is set above.  Also note
9770          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9771          * have the same delta_cyc adjustment applied if backwards_tsc
9772          * is detected.  Note further, this adjustment is only done once,
9773          * as we reset last_host_tsc on all VCPUs to stop this from being
9774          * called multiple times (one for each physical CPU bringup).
9775          *
9776          * Platforms with unreliable TSCs don't have to deal with this, they
9777          * will be compensated by the logic in vcpu_load, which sets the TSC to
9778          * catchup mode.  This will catchup all VCPUs to real time, but cannot
9779          * guarantee that they stay in perfect synchronization.
9780          */
9781         if (backwards_tsc) {
9782                 u64 delta_cyc = max_tsc - local_tsc;
9783                 list_for_each_entry(kvm, &vm_list, vm_list) {
9784                         kvm->arch.backwards_tsc_observed = true;
9785                         kvm_for_each_vcpu(i, vcpu, kvm) {
9786                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9787                                 vcpu->arch.last_host_tsc = local_tsc;
9788                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9789                         }
9790
9791                         /*
9792                          * We have to disable TSC offset matching.. if you were
9793                          * booting a VM while issuing an S4 host suspend....
9794                          * you may have some problem.  Solving this issue is
9795                          * left as an exercise to the reader.
9796                          */
9797                         kvm->arch.last_tsc_nsec = 0;
9798                         kvm->arch.last_tsc_write = 0;
9799                 }
9800
9801         }
9802         return 0;
9803 }
9804
9805 void kvm_arch_hardware_disable(void)
9806 {
9807         kvm_x86_ops.hardware_disable();
9808         drop_user_return_notifiers();
9809 }
9810
9811 int kvm_arch_hardware_setup(void *opaque)
9812 {
9813         struct kvm_x86_init_ops *ops = opaque;
9814         int r;
9815
9816         rdmsrl_safe(MSR_EFER, &host_efer);
9817
9818         if (boot_cpu_has(X86_FEATURE_XSAVES))
9819                 rdmsrl(MSR_IA32_XSS, host_xss);
9820
9821         r = ops->hardware_setup();
9822         if (r != 0)
9823                 return r;
9824
9825         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9826
9827         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9828                 supported_xss = 0;
9829
9830 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9831         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9832 #undef __kvm_cpu_cap_has
9833
9834         if (kvm_has_tsc_control) {
9835                 /*
9836                  * Make sure the user can only configure tsc_khz values that
9837                  * fit into a signed integer.
9838                  * A min value is not calculated because it will always
9839                  * be 1 on all machines.
9840                  */
9841                 u64 max = min(0x7fffffffULL,
9842                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9843                 kvm_max_guest_tsc_khz = max;
9844
9845                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9846         }
9847
9848         kvm_init_msr_list();
9849         return 0;
9850 }
9851
9852 void kvm_arch_hardware_unsetup(void)
9853 {
9854         kvm_x86_ops.hardware_unsetup();
9855 }
9856
9857 int kvm_arch_check_processor_compat(void *opaque)
9858 {
9859         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
9860         struct kvm_x86_init_ops *ops = opaque;
9861
9862         WARN_ON(!irqs_disabled());
9863
9864         if (__cr4_reserved_bits(cpu_has, c) !=
9865             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9866                 return -EIO;
9867
9868         return ops->check_processor_compatibility();
9869 }
9870
9871 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9872 {
9873         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9874 }
9875 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9876
9877 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9878 {
9879         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9880 }
9881
9882 struct static_key kvm_no_apic_vcpu __read_mostly;
9883 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9884
9885 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9886 {
9887         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9888
9889         vcpu->arch.l1tf_flush_l1d = true;
9890         if (pmu->version && unlikely(pmu->event_count)) {
9891                 pmu->need_cleanup = true;
9892                 kvm_make_request(KVM_REQ_PMU, vcpu);
9893         }
9894         kvm_x86_ops.sched_in(vcpu, cpu);
9895 }
9896
9897 void kvm_arch_free_vm(struct kvm *kvm)
9898 {
9899         kfree(kvm->arch.hyperv.hv_pa_pg);
9900         vfree(kvm);
9901 }
9902
9903
9904 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9905 {
9906         if (type)
9907                 return -EINVAL;
9908
9909         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9910         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9911         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9912         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9913         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9914         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9915
9916         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9917         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9918         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9919         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9920                 &kvm->arch.irq_sources_bitmap);
9921
9922         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9923         mutex_init(&kvm->arch.apic_map_lock);
9924         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9925
9926         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
9927         pvclock_update_vm_gtod_copy(kvm);
9928
9929         kvm->arch.guest_can_read_msr_platform_info = true;
9930
9931         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9932         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9933
9934         kvm_hv_init_vm(kvm);
9935         kvm_page_track_init(kvm);
9936         kvm_mmu_init_vm(kvm);
9937
9938         return kvm_x86_ops.vm_init(kvm);
9939 }
9940
9941 int kvm_arch_post_init_vm(struct kvm *kvm)
9942 {
9943         return kvm_mmu_post_init_vm(kvm);
9944 }
9945
9946 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9947 {
9948         vcpu_load(vcpu);
9949         kvm_mmu_unload(vcpu);
9950         vcpu_put(vcpu);
9951 }
9952
9953 static void kvm_free_vcpus(struct kvm *kvm)
9954 {
9955         unsigned int i;
9956         struct kvm_vcpu *vcpu;
9957
9958         /*
9959          * Unpin any mmu pages first.
9960          */
9961         kvm_for_each_vcpu(i, vcpu, kvm) {
9962                 kvm_clear_async_pf_completion_queue(vcpu);
9963                 kvm_unload_vcpu_mmu(vcpu);
9964         }
9965         kvm_for_each_vcpu(i, vcpu, kvm)
9966                 kvm_vcpu_destroy(vcpu);
9967
9968         mutex_lock(&kvm->lock);
9969         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9970                 kvm->vcpus[i] = NULL;
9971
9972         atomic_set(&kvm->online_vcpus, 0);
9973         mutex_unlock(&kvm->lock);
9974 }
9975
9976 void kvm_arch_sync_events(struct kvm *kvm)
9977 {
9978         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9979         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9980         kvm_free_pit(kvm);
9981 }
9982
9983 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9984 {
9985         int i, r;
9986         unsigned long hva, old_npages;
9987         struct kvm_memslots *slots = kvm_memslots(kvm);
9988         struct kvm_memory_slot *slot;
9989
9990         /* Called with kvm->slots_lock held.  */
9991         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9992                 return -EINVAL;
9993
9994         slot = id_to_memslot(slots, id);
9995         if (size) {
9996                 if (slot && slot->npages)
9997                         return -EEXIST;
9998
9999                 /*
10000                  * MAP_SHARED to prevent internal slot pages from being moved
10001                  * by fork()/COW.
10002                  */
10003                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10004                               MAP_SHARED | MAP_ANONYMOUS, 0);
10005                 if (IS_ERR((void *)hva))
10006                         return PTR_ERR((void *)hva);
10007         } else {
10008                 if (!slot || !slot->npages)
10009                         return 0;
10010
10011                 old_npages = slot->npages;
10012                 hva = 0;
10013         }
10014
10015         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10016                 struct kvm_userspace_memory_region m;
10017
10018                 m.slot = id | (i << 16);
10019                 m.flags = 0;
10020                 m.guest_phys_addr = gpa;
10021                 m.userspace_addr = hva;
10022                 m.memory_size = size;
10023                 r = __kvm_set_memory_region(kvm, &m);
10024                 if (r < 0)
10025                         return r;
10026         }
10027
10028         if (!size)
10029                 vm_munmap(hva, old_npages * PAGE_SIZE);
10030
10031         return 0;
10032 }
10033 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10034
10035 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10036 {
10037         kvm_mmu_pre_destroy_vm(kvm);
10038 }
10039
10040 void kvm_arch_destroy_vm(struct kvm *kvm)
10041 {
10042         if (current->mm == kvm->mm) {
10043                 /*
10044                  * Free memory regions allocated on behalf of userspace,
10045                  * unless the the memory map has changed due to process exit
10046                  * or fd copying.
10047                  */
10048                 mutex_lock(&kvm->slots_lock);
10049                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10050                                         0, 0);
10051                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10052                                         0, 0);
10053                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10054                 mutex_unlock(&kvm->slots_lock);
10055         }
10056         if (kvm_x86_ops.vm_destroy)
10057                 kvm_x86_ops.vm_destroy(kvm);
10058         kvm_pic_destroy(kvm);
10059         kvm_ioapic_destroy(kvm);
10060         kvm_free_vcpus(kvm);
10061         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10062         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10063         kvm_mmu_uninit_vm(kvm);
10064         kvm_page_track_cleanup(kvm);
10065         kvm_hv_destroy_vm(kvm);
10066 }
10067
10068 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10069 {
10070         int i;
10071
10072         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10073                 kvfree(slot->arch.rmap[i]);
10074                 slot->arch.rmap[i] = NULL;
10075
10076                 if (i == 0)
10077                         continue;
10078
10079                 kvfree(slot->arch.lpage_info[i - 1]);
10080                 slot->arch.lpage_info[i - 1] = NULL;
10081         }
10082
10083         kvm_page_track_free_memslot(slot);
10084 }
10085
10086 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10087                                       unsigned long npages)
10088 {
10089         int i;
10090
10091         /*
10092          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10093          * old arrays will be freed by __kvm_set_memory_region() if installing
10094          * the new memslot is successful.
10095          */
10096         memset(&slot->arch, 0, sizeof(slot->arch));
10097
10098         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10099                 struct kvm_lpage_info *linfo;
10100                 unsigned long ugfn;
10101                 int lpages;
10102                 int level = i + 1;
10103
10104                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
10105                                       slot->base_gfn, level) + 1;
10106
10107                 slot->arch.rmap[i] =
10108                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10109                                  GFP_KERNEL_ACCOUNT);
10110                 if (!slot->arch.rmap[i])
10111                         goto out_free;
10112                 if (i == 0)
10113                         continue;
10114
10115                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10116                 if (!linfo)
10117                         goto out_free;
10118
10119                 slot->arch.lpage_info[i - 1] = linfo;
10120
10121                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10122                         linfo[0].disallow_lpage = 1;
10123                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10124                         linfo[lpages - 1].disallow_lpage = 1;
10125                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
10126                 /*
10127                  * If the gfn and userspace address are not aligned wrt each
10128                  * other, disable large page support for this slot.
10129                  */
10130                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10131                         unsigned long j;
10132
10133                         for (j = 0; j < lpages; ++j)
10134                                 linfo[j].disallow_lpage = 1;
10135                 }
10136         }
10137
10138         if (kvm_page_track_create_memslot(slot, npages))
10139                 goto out_free;
10140
10141         return 0;
10142
10143 out_free:
10144         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10145                 kvfree(slot->arch.rmap[i]);
10146                 slot->arch.rmap[i] = NULL;
10147                 if (i == 0)
10148                         continue;
10149
10150                 kvfree(slot->arch.lpage_info[i - 1]);
10151                 slot->arch.lpage_info[i - 1] = NULL;
10152         }
10153         return -ENOMEM;
10154 }
10155
10156 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10157 {
10158         struct kvm_vcpu *vcpu;
10159         int i;
10160
10161         /*
10162          * memslots->generation has been incremented.
10163          * mmio generation may have reached its maximum value.
10164          */
10165         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10166
10167         /* Force re-initialization of steal_time cache */
10168         kvm_for_each_vcpu(i, vcpu, kvm)
10169                 kvm_vcpu_kick(vcpu);
10170 }
10171
10172 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10173                                 struct kvm_memory_slot *memslot,
10174                                 const struct kvm_userspace_memory_region *mem,
10175                                 enum kvm_mr_change change)
10176 {
10177         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10178                 return kvm_alloc_memslot_metadata(memslot,
10179                                                   mem->memory_size >> PAGE_SHIFT);
10180         return 0;
10181 }
10182
10183 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10184                                      struct kvm_memory_slot *old,
10185                                      struct kvm_memory_slot *new,
10186                                      enum kvm_mr_change change)
10187 {
10188         /*
10189          * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10190          * See comments below.
10191          */
10192         if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10193                 return;
10194
10195         /*
10196          * Dirty logging tracks sptes in 4k granularity, meaning that large
10197          * sptes have to be split.  If live migration is successful, the guest
10198          * in the source machine will be destroyed and large sptes will be
10199          * created in the destination. However, if the guest continues to run
10200          * in the source machine (for example if live migration fails), small
10201          * sptes will remain around and cause bad performance.
10202          *
10203          * Scan sptes if dirty logging has been stopped, dropping those
10204          * which can be collapsed into a single large-page spte.  Later
10205          * page faults will create the large-page sptes.
10206          *
10207          * There is no need to do this in any of the following cases:
10208          * CREATE:      No dirty mappings will already exist.
10209          * MOVE/DELETE: The old mappings will already have been cleaned up by
10210          *              kvm_arch_flush_shadow_memslot()
10211          */
10212         if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10213             !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10214                 kvm_mmu_zap_collapsible_sptes(kvm, new);
10215
10216         /*
10217          * Enable or disable dirty logging for the slot.
10218          *
10219          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10220          * slot have been zapped so no dirty logging updates are needed for
10221          * the old slot.
10222          * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10223          * any mappings that might be created in it will consume the
10224          * properties of the new slot and do not need to be updated here.
10225          *
10226          * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10227          * called to enable/disable dirty logging.
10228          *
10229          * When disabling dirty logging with PML enabled, the D-bit is set
10230          * for sptes in the slot in order to prevent unnecessary GPA
10231          * logging in the PML buffer (and potential PML buffer full VMEXIT).
10232          * This guarantees leaving PML enabled for the guest's lifetime
10233          * won't have any additional overhead from PML when the guest is
10234          * running with dirty logging disabled.
10235          *
10236          * When enabling dirty logging, large sptes are write-protected
10237          * so they can be split on first write.  New large sptes cannot
10238          * be created for this slot until the end of the logging.
10239          * See the comments in fast_page_fault().
10240          * For small sptes, nothing is done if the dirty log is in the
10241          * initial-all-set state.  Otherwise, depending on whether pml
10242          * is enabled the D-bit or the W-bit will be cleared.
10243          */
10244         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10245                 if (kvm_x86_ops.slot_enable_log_dirty) {
10246                         kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10247                 } else {
10248                         int level =
10249                                 kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10250                                 PG_LEVEL_2M : PG_LEVEL_4K;
10251
10252                         /*
10253                          * If we're with initial-all-set, we don't need
10254                          * to write protect any small page because
10255                          * they're reported as dirty already.  However
10256                          * we still need to write-protect huge pages
10257                          * so that the page split can happen lazily on
10258                          * the first write to the huge page.
10259                          */
10260                         kvm_mmu_slot_remove_write_access(kvm, new, level);
10261                 }
10262         } else {
10263                 if (kvm_x86_ops.slot_disable_log_dirty)
10264                         kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10265         }
10266 }
10267
10268 void kvm_arch_commit_memory_region(struct kvm *kvm,
10269                                 const struct kvm_userspace_memory_region *mem,
10270                                 struct kvm_memory_slot *old,
10271                                 const struct kvm_memory_slot *new,
10272                                 enum kvm_mr_change change)
10273 {
10274         if (!kvm->arch.n_requested_mmu_pages)
10275                 kvm_mmu_change_mmu_pages(kvm,
10276                                 kvm_mmu_calculate_default_mmu_pages(kvm));
10277
10278         /*
10279          * FIXME: const-ify all uses of struct kvm_memory_slot.
10280          */
10281         kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10282
10283         /* Free the arrays associated with the old memslot. */
10284         if (change == KVM_MR_MOVE)
10285                 kvm_arch_free_memslot(kvm, old);
10286 }
10287
10288 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10289 {
10290         kvm_mmu_zap_all(kvm);
10291 }
10292
10293 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10294                                    struct kvm_memory_slot *slot)
10295 {
10296         kvm_page_track_flush_slot(kvm, slot);
10297 }
10298
10299 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10300 {
10301         return (is_guest_mode(vcpu) &&
10302                         kvm_x86_ops.guest_apic_has_interrupt &&
10303                         kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10304 }
10305
10306 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10307 {
10308         if (!list_empty_careful(&vcpu->async_pf.done))
10309                 return true;
10310
10311         if (kvm_apic_has_events(vcpu))
10312                 return true;
10313
10314         if (vcpu->arch.pv.pv_unhalted)
10315                 return true;
10316
10317         if (vcpu->arch.exception.pending)
10318                 return true;
10319
10320         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10321             (vcpu->arch.nmi_pending &&
10322              kvm_x86_ops.nmi_allowed(vcpu, false)))
10323                 return true;
10324
10325         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10326             (vcpu->arch.smi_pending &&
10327              kvm_x86_ops.smi_allowed(vcpu, false)))
10328                 return true;
10329
10330         if (kvm_arch_interrupt_allowed(vcpu) &&
10331             (kvm_cpu_has_interrupt(vcpu) ||
10332             kvm_guest_apic_has_interrupt(vcpu)))
10333                 return true;
10334
10335         if (kvm_hv_has_stimer_pending(vcpu))
10336                 return true;
10337
10338         if (is_guest_mode(vcpu) &&
10339             kvm_x86_ops.nested_ops->hv_timer_pending &&
10340             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10341                 return true;
10342
10343         return false;
10344 }
10345
10346 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10347 {
10348         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10349 }
10350
10351 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10352 {
10353         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10354                 return true;
10355
10356         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10357                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10358                  kvm_test_request(KVM_REQ_EVENT, vcpu))
10359                 return true;
10360
10361         if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10362                 return true;
10363
10364         return false;
10365 }
10366
10367 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10368 {
10369         return vcpu->arch.preempted_in_kernel;
10370 }
10371
10372 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10373 {
10374         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10375 }
10376
10377 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10378 {
10379         return kvm_x86_ops.interrupt_allowed(vcpu, false);
10380 }
10381
10382 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10383 {
10384         if (is_64_bit_mode(vcpu))
10385                 return kvm_rip_read(vcpu);
10386         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10387                      kvm_rip_read(vcpu));
10388 }
10389 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10390
10391 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10392 {
10393         return kvm_get_linear_rip(vcpu) == linear_rip;
10394 }
10395 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10396
10397 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10398 {
10399         unsigned long rflags;
10400
10401         rflags = kvm_x86_ops.get_rflags(vcpu);
10402         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10403                 rflags &= ~X86_EFLAGS_TF;
10404         return rflags;
10405 }
10406 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10407
10408 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10409 {
10410         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10411             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10412                 rflags |= X86_EFLAGS_TF;
10413         kvm_x86_ops.set_rflags(vcpu, rflags);
10414 }
10415
10416 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10417 {
10418         __kvm_set_rflags(vcpu, rflags);
10419         kvm_make_request(KVM_REQ_EVENT, vcpu);
10420 }
10421 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10422
10423 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10424 {
10425         int r;
10426
10427         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10428               work->wakeup_all)
10429                 return;
10430
10431         r = kvm_mmu_reload(vcpu);
10432         if (unlikely(r))
10433                 return;
10434
10435         if (!vcpu->arch.mmu->direct_map &&
10436               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10437                 return;
10438
10439         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10440 }
10441
10442 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10443 {
10444         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
10445
10446         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10447 }
10448
10449 static inline u32 kvm_async_pf_next_probe(u32 key)
10450 {
10451         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
10452 }
10453
10454 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10455 {
10456         u32 key = kvm_async_pf_hash_fn(gfn);
10457
10458         while (vcpu->arch.apf.gfns[key] != ~0)
10459                 key = kvm_async_pf_next_probe(key);
10460
10461         vcpu->arch.apf.gfns[key] = gfn;
10462 }
10463
10464 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10465 {
10466         int i;
10467         u32 key = kvm_async_pf_hash_fn(gfn);
10468
10469         for (i = 0; i < ASYNC_PF_PER_VCPU &&
10470                      (vcpu->arch.apf.gfns[key] != gfn &&
10471                       vcpu->arch.apf.gfns[key] != ~0); i++)
10472                 key = kvm_async_pf_next_probe(key);
10473
10474         return key;
10475 }
10476
10477 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10478 {
10479         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10480 }
10481
10482 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10483 {
10484         u32 i, j, k;
10485
10486         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10487
10488         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
10489                 return;
10490
10491         while (true) {
10492                 vcpu->arch.apf.gfns[i] = ~0;
10493                 do {
10494                         j = kvm_async_pf_next_probe(j);
10495                         if (vcpu->arch.apf.gfns[j] == ~0)
10496                                 return;
10497                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10498                         /*
10499                          * k lies cyclically in ]i,j]
10500                          * |    i.k.j |
10501                          * |....j i.k.| or  |.k..j i...|
10502                          */
10503                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10504                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10505                 i = j;
10506         }
10507 }
10508
10509 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
10510 {
10511         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
10512
10513         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
10514                                       sizeof(reason));
10515 }
10516
10517 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
10518 {
10519         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10520
10521         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10522                                              &token, offset, sizeof(token));
10523 }
10524
10525 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
10526 {
10527         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10528         u32 val;
10529
10530         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10531                                          &val, offset, sizeof(val)))
10532                 return false;
10533
10534         return !val;
10535 }
10536
10537 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10538 {
10539         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10540                 return false;
10541
10542         if (!kvm_pv_async_pf_enabled(vcpu) ||
10543             (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
10544                 return false;
10545
10546         return true;
10547 }
10548
10549 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10550 {
10551         if (unlikely(!lapic_in_kernel(vcpu) ||
10552                      kvm_event_needs_reinjection(vcpu) ||
10553                      vcpu->arch.exception.pending))
10554                 return false;
10555
10556         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10557                 return false;
10558
10559         /*
10560          * If interrupts are off we cannot even use an artificial
10561          * halt state.
10562          */
10563         return kvm_arch_interrupt_allowed(vcpu);
10564 }
10565
10566 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10567                                      struct kvm_async_pf *work)
10568 {
10569         struct x86_exception fault;
10570
10571         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10572         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10573
10574         if (kvm_can_deliver_async_pf(vcpu) &&
10575             !apf_put_user_notpresent(vcpu)) {
10576                 fault.vector = PF_VECTOR;
10577                 fault.error_code_valid = true;
10578                 fault.error_code = 0;
10579                 fault.nested_page_fault = false;
10580                 fault.address = work->arch.token;
10581                 fault.async_page_fault = true;
10582                 kvm_inject_page_fault(vcpu, &fault);
10583                 return true;
10584         } else {
10585                 /*
10586                  * It is not possible to deliver a paravirtualized asynchronous
10587                  * page fault, but putting the guest in an artificial halt state
10588                  * can be beneficial nevertheless: if an interrupt arrives, we
10589                  * can deliver it timely and perhaps the guest will schedule
10590                  * another process.  When the instruction that triggered a page
10591                  * fault is retried, hopefully the page will be ready in the host.
10592                  */
10593                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10594                 return false;
10595         }
10596 }
10597
10598 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10599                                  struct kvm_async_pf *work)
10600 {
10601         struct kvm_lapic_irq irq = {
10602                 .delivery_mode = APIC_DM_FIXED,
10603                 .vector = vcpu->arch.apf.vec
10604         };
10605
10606         if (work->wakeup_all)
10607                 work->arch.token = ~0; /* broadcast wakeup */
10608         else
10609                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10610         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10611
10612         if ((work->wakeup_all || work->notpresent_injected) &&
10613             kvm_pv_async_pf_enabled(vcpu) &&
10614             !apf_put_user_ready(vcpu, work->arch.token)) {
10615                 vcpu->arch.apf.pageready_pending = true;
10616                 kvm_apic_set_irq(vcpu, &irq, NULL);
10617         }
10618
10619         vcpu->arch.apf.halted = false;
10620         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10621 }
10622
10623 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
10624 {
10625         kvm_make_request(KVM_REQ_APF_READY, vcpu);
10626         if (!vcpu->arch.apf.pageready_pending)
10627                 kvm_vcpu_kick(vcpu);
10628 }
10629
10630 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
10631 {
10632         if (!kvm_pv_async_pf_enabled(vcpu))
10633                 return true;
10634         else
10635                 return apf_pageready_slot_free(vcpu);
10636 }
10637
10638 void kvm_arch_start_assignment(struct kvm *kvm)
10639 {
10640         atomic_inc(&kvm->arch.assigned_device_count);
10641 }
10642 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10643
10644 void kvm_arch_end_assignment(struct kvm *kvm)
10645 {
10646         atomic_dec(&kvm->arch.assigned_device_count);
10647 }
10648 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10649
10650 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10651 {
10652         return atomic_read(&kvm->arch.assigned_device_count);
10653 }
10654 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10655
10656 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10657 {
10658         atomic_inc(&kvm->arch.noncoherent_dma_count);
10659 }
10660 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10661
10662 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10663 {
10664         atomic_dec(&kvm->arch.noncoherent_dma_count);
10665 }
10666 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10667
10668 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10669 {
10670         return atomic_read(&kvm->arch.noncoherent_dma_count);
10671 }
10672 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10673
10674 bool kvm_arch_has_irq_bypass(void)
10675 {
10676         return true;
10677 }
10678
10679 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10680                                       struct irq_bypass_producer *prod)
10681 {
10682         struct kvm_kernel_irqfd *irqfd =
10683                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10684         int ret;
10685
10686         irqfd->producer = prod;
10687         kvm_arch_start_assignment(irqfd->kvm);
10688         ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
10689                                          prod->irq, irqfd->gsi, 1);
10690
10691         if (ret)
10692                 kvm_arch_end_assignment(irqfd->kvm);
10693
10694         return ret;
10695 }
10696
10697 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10698                                       struct irq_bypass_producer *prod)
10699 {
10700         int ret;
10701         struct kvm_kernel_irqfd *irqfd =
10702                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10703
10704         WARN_ON(irqfd->producer != prod);
10705         irqfd->producer = NULL;
10706
10707         /*
10708          * When producer of consumer is unregistered, we change back to
10709          * remapped mode, so we can re-use the current implementation
10710          * when the irq is masked/disabled or the consumer side (KVM
10711          * int this case doesn't want to receive the interrupts.
10712         */
10713         ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10714         if (ret)
10715                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10716                        " fails: %d\n", irqfd->consumer.token, ret);
10717
10718         kvm_arch_end_assignment(irqfd->kvm);
10719 }
10720
10721 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10722                                    uint32_t guest_irq, bool set)
10723 {
10724         return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
10725 }
10726
10727 bool kvm_vector_hashing_enabled(void)
10728 {
10729         return vector_hashing;
10730 }
10731
10732 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10733 {
10734         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10735 }
10736 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10737
10738
10739 int kvm_spec_ctrl_test_value(u64 value)
10740 {
10741         /*
10742          * test that setting IA32_SPEC_CTRL to given value
10743          * is allowed by the host processor
10744          */
10745
10746         u64 saved_value;
10747         unsigned long flags;
10748         int ret = 0;
10749
10750         local_irq_save(flags);
10751
10752         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
10753                 ret = 1;
10754         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
10755                 ret = 1;
10756         else
10757                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
10758
10759         local_irq_restore(flags);
10760
10761         return ret;
10762 }
10763 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
10764
10765 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
10766 {
10767         struct x86_exception fault;
10768         u32 access = error_code &
10769                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
10770
10771         if (!(error_code & PFERR_PRESENT_MASK) ||
10772             vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
10773                 /*
10774                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
10775                  * tables probably do not match the TLB.  Just proceed
10776                  * with the error code that the processor gave.
10777                  */
10778                 fault.vector = PF_VECTOR;
10779                 fault.error_code_valid = true;
10780                 fault.error_code = error_code;
10781                 fault.nested_page_fault = false;
10782                 fault.address = gva;
10783         }
10784         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
10785 }
10786 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
10787
10788 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10789 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10790 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10791 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10792 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10793 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10794 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10795 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10796 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10797 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10798 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10799 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10800 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10801 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10802 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10803 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10804 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10805 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10806 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10807 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10808 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
10809 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);