kvm: fix compilation on aarch64
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 #include <asm/intel_pt.h>
73
74 #define CREATE_TRACE_POINTS
75 #include "trace.h"
76
77 #define MAX_IO_MSRS 256
78 #define KVM_MAX_MCE_BANKS 32
79 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
80 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
81
82 #define emul_to_vcpu(ctxt) \
83         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
84
85 /* EFER defaults:
86  * - enable syscall per default because its emulated by KVM
87  * - enable LME and LMA per default on 64 bit KVM
88  */
89 #ifdef CONFIG_X86_64
90 static
91 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
92 #else
93 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
94 #endif
95
96 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
97 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
98
99 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
100                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
101
102 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
103 static void process_nmi(struct kvm_vcpu *vcpu);
104 static void enter_smm(struct kvm_vcpu *vcpu);
105 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
106 static void store_regs(struct kvm_vcpu *vcpu);
107 static int sync_regs(struct kvm_vcpu *vcpu);
108
109 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
110 EXPORT_SYMBOL_GPL(kvm_x86_ops);
111
112 static bool __read_mostly ignore_msrs = 0;
113 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
114
115 static bool __read_mostly report_ignored_msrs = true;
116 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
117
118 unsigned int min_timer_period_us = 200;
119 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
120
121 static bool __read_mostly kvmclock_periodic_sync = true;
122 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
123
124 bool __read_mostly kvm_has_tsc_control;
125 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
126 u32  __read_mostly kvm_max_guest_tsc_khz;
127 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
128 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
129 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
130 u64  __read_mostly kvm_max_tsc_scaling_ratio;
131 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
132 u64 __read_mostly kvm_default_tsc_scaling_ratio;
133 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
134
135 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
136 static u32 __read_mostly tsc_tolerance_ppm = 250;
137 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
138
139 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
140 unsigned int __read_mostly lapic_timer_advance_ns = 1000;
141 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
142 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
143
144 static bool __read_mostly vector_hashing = true;
145 module_param(vector_hashing, bool, S_IRUGO);
146
147 bool __read_mostly enable_vmware_backdoor = false;
148 module_param(enable_vmware_backdoor, bool, S_IRUGO);
149 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
150
151 static bool __read_mostly force_emulation_prefix = false;
152 module_param(force_emulation_prefix, bool, S_IRUGO);
153
154 #define KVM_NR_SHARED_MSRS 16
155
156 struct kvm_shared_msrs_global {
157         int nr;
158         u32 msrs[KVM_NR_SHARED_MSRS];
159 };
160
161 struct kvm_shared_msrs {
162         struct user_return_notifier urn;
163         bool registered;
164         struct kvm_shared_msr_values {
165                 u64 host;
166                 u64 curr;
167         } values[KVM_NR_SHARED_MSRS];
168 };
169
170 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
171 static struct kvm_shared_msrs __percpu *shared_msrs;
172
173 struct kvm_stats_debugfs_item debugfs_entries[] = {
174         { "pf_fixed", VCPU_STAT(pf_fixed) },
175         { "pf_guest", VCPU_STAT(pf_guest) },
176         { "tlb_flush", VCPU_STAT(tlb_flush) },
177         { "invlpg", VCPU_STAT(invlpg) },
178         { "exits", VCPU_STAT(exits) },
179         { "io_exits", VCPU_STAT(io_exits) },
180         { "mmio_exits", VCPU_STAT(mmio_exits) },
181         { "signal_exits", VCPU_STAT(signal_exits) },
182         { "irq_window", VCPU_STAT(irq_window_exits) },
183         { "nmi_window", VCPU_STAT(nmi_window_exits) },
184         { "halt_exits", VCPU_STAT(halt_exits) },
185         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
186         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
187         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
188         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
189         { "hypercalls", VCPU_STAT(hypercalls) },
190         { "request_irq", VCPU_STAT(request_irq_exits) },
191         { "irq_exits", VCPU_STAT(irq_exits) },
192         { "host_state_reload", VCPU_STAT(host_state_reload) },
193         { "fpu_reload", VCPU_STAT(fpu_reload) },
194         { "insn_emulation", VCPU_STAT(insn_emulation) },
195         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
196         { "irq_injections", VCPU_STAT(irq_injections) },
197         { "nmi_injections", VCPU_STAT(nmi_injections) },
198         { "req_event", VCPU_STAT(req_event) },
199         { "l1d_flush", VCPU_STAT(l1d_flush) },
200         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
201         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
202         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
203         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
204         { "mmu_flooded", VM_STAT(mmu_flooded) },
205         { "mmu_recycled", VM_STAT(mmu_recycled) },
206         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
207         { "mmu_unsync", VM_STAT(mmu_unsync) },
208         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
209         { "largepages", VM_STAT(lpages) },
210         { "max_mmu_page_hash_collisions",
211                 VM_STAT(max_mmu_page_hash_collisions) },
212         { NULL }
213 };
214
215 u64 __read_mostly host_xcr0;
216
217 struct kmem_cache *x86_fpu_cache;
218 EXPORT_SYMBOL_GPL(x86_fpu_cache);
219
220 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
221
222 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
223 {
224         int i;
225         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
226                 vcpu->arch.apf.gfns[i] = ~0;
227 }
228
229 static void kvm_on_user_return(struct user_return_notifier *urn)
230 {
231         unsigned slot;
232         struct kvm_shared_msrs *locals
233                 = container_of(urn, struct kvm_shared_msrs, urn);
234         struct kvm_shared_msr_values *values;
235         unsigned long flags;
236
237         /*
238          * Disabling irqs at this point since the following code could be
239          * interrupted and executed through kvm_arch_hardware_disable()
240          */
241         local_irq_save(flags);
242         if (locals->registered) {
243                 locals->registered = false;
244                 user_return_notifier_unregister(urn);
245         }
246         local_irq_restore(flags);
247         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
248                 values = &locals->values[slot];
249                 if (values->host != values->curr) {
250                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
251                         values->curr = values->host;
252                 }
253         }
254 }
255
256 static void shared_msr_update(unsigned slot, u32 msr)
257 {
258         u64 value;
259         unsigned int cpu = smp_processor_id();
260         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
261
262         /* only read, and nobody should modify it at this time,
263          * so don't need lock */
264         if (slot >= shared_msrs_global.nr) {
265                 printk(KERN_ERR "kvm: invalid MSR slot!");
266                 return;
267         }
268         rdmsrl_safe(msr, &value);
269         smsr->values[slot].host = value;
270         smsr->values[slot].curr = value;
271 }
272
273 void kvm_define_shared_msr(unsigned slot, u32 msr)
274 {
275         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
276         shared_msrs_global.msrs[slot] = msr;
277         if (slot >= shared_msrs_global.nr)
278                 shared_msrs_global.nr = slot + 1;
279 }
280 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
281
282 static void kvm_shared_msr_cpu_online(void)
283 {
284         unsigned i;
285
286         for (i = 0; i < shared_msrs_global.nr; ++i)
287                 shared_msr_update(i, shared_msrs_global.msrs[i]);
288 }
289
290 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
291 {
292         unsigned int cpu = smp_processor_id();
293         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
294         int err;
295
296         if (((value ^ smsr->values[slot].curr) & mask) == 0)
297                 return 0;
298         smsr->values[slot].curr = value;
299         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
300         if (err)
301                 return 1;
302
303         if (!smsr->registered) {
304                 smsr->urn.on_user_return = kvm_on_user_return;
305                 user_return_notifier_register(&smsr->urn);
306                 smsr->registered = true;
307         }
308         return 0;
309 }
310 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
311
312 static void drop_user_return_notifiers(void)
313 {
314         unsigned int cpu = smp_processor_id();
315         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
316
317         if (smsr->registered)
318                 kvm_on_user_return(&smsr->urn);
319 }
320
321 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
322 {
323         return vcpu->arch.apic_base;
324 }
325 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
326
327 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
328 {
329         return kvm_apic_mode(kvm_get_apic_base(vcpu));
330 }
331 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
332
333 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
334 {
335         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
336         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
337         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
338                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
339
340         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
341                 return 1;
342         if (!msr_info->host_initiated) {
343                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
344                         return 1;
345                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
346                         return 1;
347         }
348
349         kvm_lapic_set_base(vcpu, msr_info->data);
350         return 0;
351 }
352 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
353
354 asmlinkage __visible void kvm_spurious_fault(void)
355 {
356         /* Fault while not rebooting.  We want the trace. */
357         BUG();
358 }
359 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
360
361 #define EXCPT_BENIGN            0
362 #define EXCPT_CONTRIBUTORY      1
363 #define EXCPT_PF                2
364
365 static int exception_class(int vector)
366 {
367         switch (vector) {
368         case PF_VECTOR:
369                 return EXCPT_PF;
370         case DE_VECTOR:
371         case TS_VECTOR:
372         case NP_VECTOR:
373         case SS_VECTOR:
374         case GP_VECTOR:
375                 return EXCPT_CONTRIBUTORY;
376         default:
377                 break;
378         }
379         return EXCPT_BENIGN;
380 }
381
382 #define EXCPT_FAULT             0
383 #define EXCPT_TRAP              1
384 #define EXCPT_ABORT             2
385 #define EXCPT_INTERRUPT         3
386
387 static int exception_type(int vector)
388 {
389         unsigned int mask;
390
391         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
392                 return EXCPT_INTERRUPT;
393
394         mask = 1 << vector;
395
396         /* #DB is trap, as instruction watchpoints are handled elsewhere */
397         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
398                 return EXCPT_TRAP;
399
400         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
401                 return EXCPT_ABORT;
402
403         /* Reserved exceptions will result in fault */
404         return EXCPT_FAULT;
405 }
406
407 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
408 {
409         unsigned nr = vcpu->arch.exception.nr;
410         bool has_payload = vcpu->arch.exception.has_payload;
411         unsigned long payload = vcpu->arch.exception.payload;
412
413         if (!has_payload)
414                 return;
415
416         switch (nr) {
417         case DB_VECTOR:
418                 /*
419                  * "Certain debug exceptions may clear bit 0-3.  The
420                  * remaining contents of the DR6 register are never
421                  * cleared by the processor".
422                  */
423                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
424                 /*
425                  * DR6.RTM is set by all #DB exceptions that don't clear it.
426                  */
427                 vcpu->arch.dr6 |= DR6_RTM;
428                 vcpu->arch.dr6 |= payload;
429                 /*
430                  * Bit 16 should be set in the payload whenever the #DB
431                  * exception should clear DR6.RTM. This makes the payload
432                  * compatible with the pending debug exceptions under VMX.
433                  * Though not currently documented in the SDM, this also
434                  * makes the payload compatible with the exit qualification
435                  * for #DB exceptions under VMX.
436                  */
437                 vcpu->arch.dr6 ^= payload & DR6_RTM;
438                 break;
439         case PF_VECTOR:
440                 vcpu->arch.cr2 = payload;
441                 break;
442         }
443
444         vcpu->arch.exception.has_payload = false;
445         vcpu->arch.exception.payload = 0;
446 }
447 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
448
449 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
450                 unsigned nr, bool has_error, u32 error_code,
451                 bool has_payload, unsigned long payload, bool reinject)
452 {
453         u32 prev_nr;
454         int class1, class2;
455
456         kvm_make_request(KVM_REQ_EVENT, vcpu);
457
458         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
459         queue:
460                 if (has_error && !is_protmode(vcpu))
461                         has_error = false;
462                 if (reinject) {
463                         /*
464                          * On vmentry, vcpu->arch.exception.pending is only
465                          * true if an event injection was blocked by
466                          * nested_run_pending.  In that case, however,
467                          * vcpu_enter_guest requests an immediate exit,
468                          * and the guest shouldn't proceed far enough to
469                          * need reinjection.
470                          */
471                         WARN_ON_ONCE(vcpu->arch.exception.pending);
472                         vcpu->arch.exception.injected = true;
473                         if (WARN_ON_ONCE(has_payload)) {
474                                 /*
475                                  * A reinjected event has already
476                                  * delivered its payload.
477                                  */
478                                 has_payload = false;
479                                 payload = 0;
480                         }
481                 } else {
482                         vcpu->arch.exception.pending = true;
483                         vcpu->arch.exception.injected = false;
484                 }
485                 vcpu->arch.exception.has_error_code = has_error;
486                 vcpu->arch.exception.nr = nr;
487                 vcpu->arch.exception.error_code = error_code;
488                 vcpu->arch.exception.has_payload = has_payload;
489                 vcpu->arch.exception.payload = payload;
490                 /*
491                  * In guest mode, payload delivery should be deferred,
492                  * so that the L1 hypervisor can intercept #PF before
493                  * CR2 is modified (or intercept #DB before DR6 is
494                  * modified under nVMX).  However, for ABI
495                  * compatibility with KVM_GET_VCPU_EVENTS and
496                  * KVM_SET_VCPU_EVENTS, we can't delay payload
497                  * delivery unless userspace has enabled this
498                  * functionality via the per-VM capability,
499                  * KVM_CAP_EXCEPTION_PAYLOAD.
500                  */
501                 if (!vcpu->kvm->arch.exception_payload_enabled ||
502                     !is_guest_mode(vcpu))
503                         kvm_deliver_exception_payload(vcpu);
504                 return;
505         }
506
507         /* to check exception */
508         prev_nr = vcpu->arch.exception.nr;
509         if (prev_nr == DF_VECTOR) {
510                 /* triple fault -> shutdown */
511                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
512                 return;
513         }
514         class1 = exception_class(prev_nr);
515         class2 = exception_class(nr);
516         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
517                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
518                 /*
519                  * Generate double fault per SDM Table 5-5.  Set
520                  * exception.pending = true so that the double fault
521                  * can trigger a nested vmexit.
522                  */
523                 vcpu->arch.exception.pending = true;
524                 vcpu->arch.exception.injected = false;
525                 vcpu->arch.exception.has_error_code = true;
526                 vcpu->arch.exception.nr = DF_VECTOR;
527                 vcpu->arch.exception.error_code = 0;
528                 vcpu->arch.exception.has_payload = false;
529                 vcpu->arch.exception.payload = 0;
530         } else
531                 /* replace previous exception with a new one in a hope
532                    that instruction re-execution will regenerate lost
533                    exception */
534                 goto queue;
535 }
536
537 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
538 {
539         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
540 }
541 EXPORT_SYMBOL_GPL(kvm_queue_exception);
542
543 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
544 {
545         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
546 }
547 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
548
549 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
550                                   unsigned long payload)
551 {
552         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
553 }
554
555 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
556                                     u32 error_code, unsigned long payload)
557 {
558         kvm_multiple_exception(vcpu, nr, true, error_code,
559                                true, payload, false);
560 }
561
562 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
563 {
564         if (err)
565                 kvm_inject_gp(vcpu, 0);
566         else
567                 return kvm_skip_emulated_instruction(vcpu);
568
569         return 1;
570 }
571 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
572
573 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
574 {
575         ++vcpu->stat.pf_guest;
576         vcpu->arch.exception.nested_apf =
577                 is_guest_mode(vcpu) && fault->async_page_fault;
578         if (vcpu->arch.exception.nested_apf) {
579                 vcpu->arch.apf.nested_apf_token = fault->address;
580                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
581         } else {
582                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
583                                         fault->address);
584         }
585 }
586 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
587
588 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
589 {
590         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
591                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
592         else
593                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
594
595         return fault->nested_page_fault;
596 }
597
598 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
599 {
600         atomic_inc(&vcpu->arch.nmi_queued);
601         kvm_make_request(KVM_REQ_NMI, vcpu);
602 }
603 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
604
605 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
606 {
607         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
608 }
609 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
610
611 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
612 {
613         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
614 }
615 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
616
617 /*
618  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
619  * a #GP and return false.
620  */
621 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
622 {
623         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
624                 return true;
625         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
626         return false;
627 }
628 EXPORT_SYMBOL_GPL(kvm_require_cpl);
629
630 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
631 {
632         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
633                 return true;
634
635         kvm_queue_exception(vcpu, UD_VECTOR);
636         return false;
637 }
638 EXPORT_SYMBOL_GPL(kvm_require_dr);
639
640 /*
641  * This function will be used to read from the physical memory of the currently
642  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
643  * can read from guest physical or from the guest's guest physical memory.
644  */
645 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
646                             gfn_t ngfn, void *data, int offset, int len,
647                             u32 access)
648 {
649         struct x86_exception exception;
650         gfn_t real_gfn;
651         gpa_t ngpa;
652
653         ngpa     = gfn_to_gpa(ngfn);
654         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
655         if (real_gfn == UNMAPPED_GVA)
656                 return -EFAULT;
657
658         real_gfn = gpa_to_gfn(real_gfn);
659
660         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
661 }
662 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
663
664 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
665                                void *data, int offset, int len, u32 access)
666 {
667         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
668                                        data, offset, len, access);
669 }
670
671 /*
672  * Load the pae pdptrs.  Return true is they are all valid.
673  */
674 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
675 {
676         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
677         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
678         int i;
679         int ret;
680         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
681
682         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
683                                       offset * sizeof(u64), sizeof(pdpte),
684                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
685         if (ret < 0) {
686                 ret = 0;
687                 goto out;
688         }
689         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
690                 if ((pdpte[i] & PT_PRESENT_MASK) &&
691                     (pdpte[i] &
692                      vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
693                         ret = 0;
694                         goto out;
695                 }
696         }
697         ret = 1;
698
699         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
700         __set_bit(VCPU_EXREG_PDPTR,
701                   (unsigned long *)&vcpu->arch.regs_avail);
702         __set_bit(VCPU_EXREG_PDPTR,
703                   (unsigned long *)&vcpu->arch.regs_dirty);
704 out:
705
706         return ret;
707 }
708 EXPORT_SYMBOL_GPL(load_pdptrs);
709
710 bool pdptrs_changed(struct kvm_vcpu *vcpu)
711 {
712         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
713         bool changed = true;
714         int offset;
715         gfn_t gfn;
716         int r;
717
718         if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
719                 return false;
720
721         if (!test_bit(VCPU_EXREG_PDPTR,
722                       (unsigned long *)&vcpu->arch.regs_avail))
723                 return true;
724
725         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
726         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
727         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
728                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
729         if (r < 0)
730                 goto out;
731         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
732 out:
733
734         return changed;
735 }
736 EXPORT_SYMBOL_GPL(pdptrs_changed);
737
738 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
739 {
740         unsigned long old_cr0 = kvm_read_cr0(vcpu);
741         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
742
743         cr0 |= X86_CR0_ET;
744
745 #ifdef CONFIG_X86_64
746         if (cr0 & 0xffffffff00000000UL)
747                 return 1;
748 #endif
749
750         cr0 &= ~CR0_RESERVED_BITS;
751
752         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
753                 return 1;
754
755         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
756                 return 1;
757
758         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
759 #ifdef CONFIG_X86_64
760                 if ((vcpu->arch.efer & EFER_LME)) {
761                         int cs_db, cs_l;
762
763                         if (!is_pae(vcpu))
764                                 return 1;
765                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
766                         if (cs_l)
767                                 return 1;
768                 } else
769 #endif
770                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
771                                                  kvm_read_cr3(vcpu)))
772                         return 1;
773         }
774
775         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
776                 return 1;
777
778         kvm_x86_ops->set_cr0(vcpu, cr0);
779
780         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
781                 kvm_clear_async_pf_completion_queue(vcpu);
782                 kvm_async_pf_hash_reset(vcpu);
783         }
784
785         if ((cr0 ^ old_cr0) & update_bits)
786                 kvm_mmu_reset_context(vcpu);
787
788         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
789             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
790             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
791                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
792
793         return 0;
794 }
795 EXPORT_SYMBOL_GPL(kvm_set_cr0);
796
797 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
798 {
799         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
800 }
801 EXPORT_SYMBOL_GPL(kvm_lmsw);
802
803 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
804 {
805         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
806                         !vcpu->guest_xcr0_loaded) {
807                 /* kvm_set_xcr() also depends on this */
808                 if (vcpu->arch.xcr0 != host_xcr0)
809                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
810                 vcpu->guest_xcr0_loaded = 1;
811         }
812 }
813 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
814
815 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
816 {
817         if (vcpu->guest_xcr0_loaded) {
818                 if (vcpu->arch.xcr0 != host_xcr0)
819                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
820                 vcpu->guest_xcr0_loaded = 0;
821         }
822 }
823 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
824
825 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
826 {
827         u64 xcr0 = xcr;
828         u64 old_xcr0 = vcpu->arch.xcr0;
829         u64 valid_bits;
830
831         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
832         if (index != XCR_XFEATURE_ENABLED_MASK)
833                 return 1;
834         if (!(xcr0 & XFEATURE_MASK_FP))
835                 return 1;
836         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
837                 return 1;
838
839         /*
840          * Do not allow the guest to set bits that we do not support
841          * saving.  However, xcr0 bit 0 is always set, even if the
842          * emulated CPU does not support XSAVE (see fx_init).
843          */
844         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
845         if (xcr0 & ~valid_bits)
846                 return 1;
847
848         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
849             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
850                 return 1;
851
852         if (xcr0 & XFEATURE_MASK_AVX512) {
853                 if (!(xcr0 & XFEATURE_MASK_YMM))
854                         return 1;
855                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
856                         return 1;
857         }
858         vcpu->arch.xcr0 = xcr0;
859
860         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
861                 kvm_update_cpuid(vcpu);
862         return 0;
863 }
864
865 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
866 {
867         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
868             __kvm_set_xcr(vcpu, index, xcr)) {
869                 kvm_inject_gp(vcpu, 0);
870                 return 1;
871         }
872         return 0;
873 }
874 EXPORT_SYMBOL_GPL(kvm_set_xcr);
875
876 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
877 {
878         unsigned long old_cr4 = kvm_read_cr4(vcpu);
879         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
880                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
881
882         if (cr4 & CR4_RESERVED_BITS)
883                 return 1;
884
885         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
886                 return 1;
887
888         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
889                 return 1;
890
891         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
892                 return 1;
893
894         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
895                 return 1;
896
897         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
898                 return 1;
899
900         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
901                 return 1;
902
903         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
904                 return 1;
905
906         if (is_long_mode(vcpu)) {
907                 if (!(cr4 & X86_CR4_PAE))
908                         return 1;
909         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
910                    && ((cr4 ^ old_cr4) & pdptr_bits)
911                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
912                                    kvm_read_cr3(vcpu)))
913                 return 1;
914
915         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
916                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
917                         return 1;
918
919                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
920                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
921                         return 1;
922         }
923
924         if (kvm_x86_ops->set_cr4(vcpu, cr4))
925                 return 1;
926
927         if (((cr4 ^ old_cr4) & pdptr_bits) ||
928             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
929                 kvm_mmu_reset_context(vcpu);
930
931         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
932                 kvm_update_cpuid(vcpu);
933
934         return 0;
935 }
936 EXPORT_SYMBOL_GPL(kvm_set_cr4);
937
938 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
939 {
940         bool skip_tlb_flush = false;
941 #ifdef CONFIG_X86_64
942         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
943
944         if (pcid_enabled) {
945                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
946                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
947         }
948 #endif
949
950         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
951                 if (!skip_tlb_flush) {
952                         kvm_mmu_sync_roots(vcpu);
953                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
954                 }
955                 return 0;
956         }
957
958         if (is_long_mode(vcpu) &&
959             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
960                 return 1;
961         else if (is_pae(vcpu) && is_paging(vcpu) &&
962                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
963                 return 1;
964
965         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
966         vcpu->arch.cr3 = cr3;
967         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
968
969         return 0;
970 }
971 EXPORT_SYMBOL_GPL(kvm_set_cr3);
972
973 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
974 {
975         if (cr8 & CR8_RESERVED_BITS)
976                 return 1;
977         if (lapic_in_kernel(vcpu))
978                 kvm_lapic_set_tpr(vcpu, cr8);
979         else
980                 vcpu->arch.cr8 = cr8;
981         return 0;
982 }
983 EXPORT_SYMBOL_GPL(kvm_set_cr8);
984
985 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
986 {
987         if (lapic_in_kernel(vcpu))
988                 return kvm_lapic_get_cr8(vcpu);
989         else
990                 return vcpu->arch.cr8;
991 }
992 EXPORT_SYMBOL_GPL(kvm_get_cr8);
993
994 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
995 {
996         int i;
997
998         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
999                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1000                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1001                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1002         }
1003 }
1004
1005 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1006 {
1007         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1008                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1009 }
1010
1011 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1012 {
1013         unsigned long dr7;
1014
1015         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1016                 dr7 = vcpu->arch.guest_debug_dr7;
1017         else
1018                 dr7 = vcpu->arch.dr7;
1019         kvm_x86_ops->set_dr7(vcpu, dr7);
1020         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1021         if (dr7 & DR7_BP_EN_MASK)
1022                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1023 }
1024
1025 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1026 {
1027         u64 fixed = DR6_FIXED_1;
1028
1029         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1030                 fixed |= DR6_RTM;
1031         return fixed;
1032 }
1033
1034 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1035 {
1036         switch (dr) {
1037         case 0 ... 3:
1038                 vcpu->arch.db[dr] = val;
1039                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1040                         vcpu->arch.eff_db[dr] = val;
1041                 break;
1042         case 4:
1043                 /* fall through */
1044         case 6:
1045                 if (val & 0xffffffff00000000ULL)
1046                         return -1; /* #GP */
1047                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1048                 kvm_update_dr6(vcpu);
1049                 break;
1050         case 5:
1051                 /* fall through */
1052         default: /* 7 */
1053                 if (val & 0xffffffff00000000ULL)
1054                         return -1; /* #GP */
1055                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1056                 kvm_update_dr7(vcpu);
1057                 break;
1058         }
1059
1060         return 0;
1061 }
1062
1063 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1064 {
1065         if (__kvm_set_dr(vcpu, dr, val)) {
1066                 kvm_inject_gp(vcpu, 0);
1067                 return 1;
1068         }
1069         return 0;
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_set_dr);
1072
1073 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1074 {
1075         switch (dr) {
1076         case 0 ... 3:
1077                 *val = vcpu->arch.db[dr];
1078                 break;
1079         case 4:
1080                 /* fall through */
1081         case 6:
1082                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1083                         *val = vcpu->arch.dr6;
1084                 else
1085                         *val = kvm_x86_ops->get_dr6(vcpu);
1086                 break;
1087         case 5:
1088                 /* fall through */
1089         default: /* 7 */
1090                 *val = vcpu->arch.dr7;
1091                 break;
1092         }
1093         return 0;
1094 }
1095 EXPORT_SYMBOL_GPL(kvm_get_dr);
1096
1097 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1098 {
1099         u32 ecx = kvm_rcx_read(vcpu);
1100         u64 data;
1101         int err;
1102
1103         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1104         if (err)
1105                 return err;
1106         kvm_rax_write(vcpu, (u32)data);
1107         kvm_rdx_write(vcpu, data >> 32);
1108         return err;
1109 }
1110 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1111
1112 /*
1113  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1114  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1115  *
1116  * This list is modified at module load time to reflect the
1117  * capabilities of the host cpu. This capabilities test skips MSRs that are
1118  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1119  * may depend on host virtualization features rather than host cpu features.
1120  */
1121
1122 static u32 msrs_to_save[] = {
1123         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1124         MSR_STAR,
1125 #ifdef CONFIG_X86_64
1126         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1127 #endif
1128         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1129         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1130         MSR_IA32_SPEC_CTRL,
1131         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1132         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1133         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1134         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1135         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1136         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1137 };
1138
1139 static unsigned num_msrs_to_save;
1140
1141 static u32 emulated_msrs[] = {
1142         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1143         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1144         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1145         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1146         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1147         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1148         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1149         HV_X64_MSR_RESET,
1150         HV_X64_MSR_VP_INDEX,
1151         HV_X64_MSR_VP_RUNTIME,
1152         HV_X64_MSR_SCONTROL,
1153         HV_X64_MSR_STIMER0_CONFIG,
1154         HV_X64_MSR_VP_ASSIST_PAGE,
1155         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1156         HV_X64_MSR_TSC_EMULATION_STATUS,
1157
1158         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1159         MSR_KVM_PV_EOI_EN,
1160
1161         MSR_IA32_TSC_ADJUST,
1162         MSR_IA32_TSCDEADLINE,
1163         MSR_IA32_ARCH_CAPABILITIES,
1164         MSR_IA32_MISC_ENABLE,
1165         MSR_IA32_MCG_STATUS,
1166         MSR_IA32_MCG_CTL,
1167         MSR_IA32_MCG_EXT_CTL,
1168         MSR_IA32_SMBASE,
1169         MSR_SMI_COUNT,
1170         MSR_PLATFORM_INFO,
1171         MSR_MISC_FEATURES_ENABLES,
1172         MSR_AMD64_VIRT_SPEC_CTRL,
1173         MSR_IA32_POWER_CTL,
1174
1175         MSR_K7_HWCR,
1176 };
1177
1178 static unsigned num_emulated_msrs;
1179
1180 /*
1181  * List of msr numbers which are used to expose MSR-based features that
1182  * can be used by a hypervisor to validate requested CPU features.
1183  */
1184 static u32 msr_based_features[] = {
1185         MSR_IA32_VMX_BASIC,
1186         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1187         MSR_IA32_VMX_PINBASED_CTLS,
1188         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1189         MSR_IA32_VMX_PROCBASED_CTLS,
1190         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1191         MSR_IA32_VMX_EXIT_CTLS,
1192         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1193         MSR_IA32_VMX_ENTRY_CTLS,
1194         MSR_IA32_VMX_MISC,
1195         MSR_IA32_VMX_CR0_FIXED0,
1196         MSR_IA32_VMX_CR0_FIXED1,
1197         MSR_IA32_VMX_CR4_FIXED0,
1198         MSR_IA32_VMX_CR4_FIXED1,
1199         MSR_IA32_VMX_VMCS_ENUM,
1200         MSR_IA32_VMX_PROCBASED_CTLS2,
1201         MSR_IA32_VMX_EPT_VPID_CAP,
1202         MSR_IA32_VMX_VMFUNC,
1203
1204         MSR_F10H_DECFG,
1205         MSR_IA32_UCODE_REV,
1206         MSR_IA32_ARCH_CAPABILITIES,
1207 };
1208
1209 static unsigned int num_msr_based_features;
1210
1211 u64 kvm_get_arch_capabilities(void)
1212 {
1213         u64 data;
1214
1215         rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1216
1217         /*
1218          * If we're doing cache flushes (either "always" or "cond")
1219          * we will do one whenever the guest does a vmlaunch/vmresume.
1220          * If an outer hypervisor is doing the cache flush for us
1221          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1222          * capability to the guest too, and if EPT is disabled we're not
1223          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1224          * require a nested hypervisor to do a flush of its own.
1225          */
1226         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1227                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1228
1229         return data;
1230 }
1231 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1232
1233 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1234 {
1235         switch (msr->index) {
1236         case MSR_IA32_ARCH_CAPABILITIES:
1237                 msr->data = kvm_get_arch_capabilities();
1238                 break;
1239         case MSR_IA32_UCODE_REV:
1240                 rdmsrl_safe(msr->index, &msr->data);
1241                 break;
1242         default:
1243                 if (kvm_x86_ops->get_msr_feature(msr))
1244                         return 1;
1245         }
1246         return 0;
1247 }
1248
1249 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1250 {
1251         struct kvm_msr_entry msr;
1252         int r;
1253
1254         msr.index = index;
1255         r = kvm_get_msr_feature(&msr);
1256         if (r)
1257                 return r;
1258
1259         *data = msr.data;
1260
1261         return 0;
1262 }
1263
1264 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1265 {
1266         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1267                 return false;
1268
1269         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1270                 return false;
1271
1272         if (efer & (EFER_LME | EFER_LMA) &&
1273             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1274                 return false;
1275
1276         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1277                 return false;
1278
1279         return true;
1280
1281 }
1282 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1283 {
1284         if (efer & efer_reserved_bits)
1285                 return false;
1286
1287         return __kvm_valid_efer(vcpu, efer);
1288 }
1289 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1290
1291 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1292 {
1293         u64 old_efer = vcpu->arch.efer;
1294         u64 efer = msr_info->data;
1295
1296         if (efer & efer_reserved_bits)
1297                 return false;
1298
1299         if (!msr_info->host_initiated) {
1300                 if (!__kvm_valid_efer(vcpu, efer))
1301                         return 1;
1302
1303                 if (is_paging(vcpu) &&
1304                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1305                         return 1;
1306         }
1307
1308         efer &= ~EFER_LMA;
1309         efer |= vcpu->arch.efer & EFER_LMA;
1310
1311         kvm_x86_ops->set_efer(vcpu, efer);
1312
1313         /* Update reserved bits */
1314         if ((efer ^ old_efer) & EFER_NX)
1315                 kvm_mmu_reset_context(vcpu);
1316
1317         return 0;
1318 }
1319
1320 void kvm_enable_efer_bits(u64 mask)
1321 {
1322        efer_reserved_bits &= ~mask;
1323 }
1324 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1325
1326 /*
1327  * Writes msr value into into the appropriate "register".
1328  * Returns 0 on success, non-0 otherwise.
1329  * Assumes vcpu_load() was already called.
1330  */
1331 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1332 {
1333         switch (msr->index) {
1334         case MSR_FS_BASE:
1335         case MSR_GS_BASE:
1336         case MSR_KERNEL_GS_BASE:
1337         case MSR_CSTAR:
1338         case MSR_LSTAR:
1339                 if (is_noncanonical_address(msr->data, vcpu))
1340                         return 1;
1341                 break;
1342         case MSR_IA32_SYSENTER_EIP:
1343         case MSR_IA32_SYSENTER_ESP:
1344                 /*
1345                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1346                  * non-canonical address is written on Intel but not on
1347                  * AMD (which ignores the top 32-bits, because it does
1348                  * not implement 64-bit SYSENTER).
1349                  *
1350                  * 64-bit code should hence be able to write a non-canonical
1351                  * value on AMD.  Making the address canonical ensures that
1352                  * vmentry does not fail on Intel after writing a non-canonical
1353                  * value, and that something deterministic happens if the guest
1354                  * invokes 64-bit SYSENTER.
1355                  */
1356                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1357         }
1358         return kvm_x86_ops->set_msr(vcpu, msr);
1359 }
1360 EXPORT_SYMBOL_GPL(kvm_set_msr);
1361
1362 /*
1363  * Adapt set_msr() to msr_io()'s calling convention
1364  */
1365 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1366 {
1367         struct msr_data msr;
1368         int r;
1369
1370         msr.index = index;
1371         msr.host_initiated = true;
1372         r = kvm_get_msr(vcpu, &msr);
1373         if (r)
1374                 return r;
1375
1376         *data = msr.data;
1377         return 0;
1378 }
1379
1380 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1381 {
1382         struct msr_data msr;
1383
1384         msr.data = *data;
1385         msr.index = index;
1386         msr.host_initiated = true;
1387         return kvm_set_msr(vcpu, &msr);
1388 }
1389
1390 #ifdef CONFIG_X86_64
1391 struct pvclock_gtod_data {
1392         seqcount_t      seq;
1393
1394         struct { /* extract of a clocksource struct */
1395                 int vclock_mode;
1396                 u64     cycle_last;
1397                 u64     mask;
1398                 u32     mult;
1399                 u32     shift;
1400         } clock;
1401
1402         u64             boot_ns;
1403         u64             nsec_base;
1404         u64             wall_time_sec;
1405 };
1406
1407 static struct pvclock_gtod_data pvclock_gtod_data;
1408
1409 static void update_pvclock_gtod(struct timekeeper *tk)
1410 {
1411         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1412         u64 boot_ns;
1413
1414         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1415
1416         write_seqcount_begin(&vdata->seq);
1417
1418         /* copy pvclock gtod data */
1419         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1420         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1421         vdata->clock.mask               = tk->tkr_mono.mask;
1422         vdata->clock.mult               = tk->tkr_mono.mult;
1423         vdata->clock.shift              = tk->tkr_mono.shift;
1424
1425         vdata->boot_ns                  = boot_ns;
1426         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1427
1428         vdata->wall_time_sec            = tk->xtime_sec;
1429
1430         write_seqcount_end(&vdata->seq);
1431 }
1432 #endif
1433
1434 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1435 {
1436         /*
1437          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1438          * vcpu_enter_guest.  This function is only called from
1439          * the physical CPU that is running vcpu.
1440          */
1441         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1442 }
1443
1444 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1445 {
1446         int version;
1447         int r;
1448         struct pvclock_wall_clock wc;
1449         struct timespec64 boot;
1450
1451         if (!wall_clock)
1452                 return;
1453
1454         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1455         if (r)
1456                 return;
1457
1458         if (version & 1)
1459                 ++version;  /* first time write, random junk */
1460
1461         ++version;
1462
1463         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1464                 return;
1465
1466         /*
1467          * The guest calculates current wall clock time by adding
1468          * system time (updated by kvm_guest_time_update below) to the
1469          * wall clock specified here.  guest system time equals host
1470          * system time for us, thus we must fill in host boot time here.
1471          */
1472         getboottime64(&boot);
1473
1474         if (kvm->arch.kvmclock_offset) {
1475                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1476                 boot = timespec64_sub(boot, ts);
1477         }
1478         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1479         wc.nsec = boot.tv_nsec;
1480         wc.version = version;
1481
1482         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1483
1484         version++;
1485         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1486 }
1487
1488 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1489 {
1490         do_shl32_div32(dividend, divisor);
1491         return dividend;
1492 }
1493
1494 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1495                                s8 *pshift, u32 *pmultiplier)
1496 {
1497         uint64_t scaled64;
1498         int32_t  shift = 0;
1499         uint64_t tps64;
1500         uint32_t tps32;
1501
1502         tps64 = base_hz;
1503         scaled64 = scaled_hz;
1504         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1505                 tps64 >>= 1;
1506                 shift--;
1507         }
1508
1509         tps32 = (uint32_t)tps64;
1510         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1511                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1512                         scaled64 >>= 1;
1513                 else
1514                         tps32 <<= 1;
1515                 shift++;
1516         }
1517
1518         *pshift = shift;
1519         *pmultiplier = div_frac(scaled64, tps32);
1520
1521         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1522                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1523 }
1524
1525 #ifdef CONFIG_X86_64
1526 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1527 #endif
1528
1529 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1530 static unsigned long max_tsc_khz;
1531
1532 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1533 {
1534         u64 v = (u64)khz * (1000000 + ppm);
1535         do_div(v, 1000000);
1536         return v;
1537 }
1538
1539 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1540 {
1541         u64 ratio;
1542
1543         /* Guest TSC same frequency as host TSC? */
1544         if (!scale) {
1545                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1546                 return 0;
1547         }
1548
1549         /* TSC scaling supported? */
1550         if (!kvm_has_tsc_control) {
1551                 if (user_tsc_khz > tsc_khz) {
1552                         vcpu->arch.tsc_catchup = 1;
1553                         vcpu->arch.tsc_always_catchup = 1;
1554                         return 0;
1555                 } else {
1556                         WARN(1, "user requested TSC rate below hardware speed\n");
1557                         return -1;
1558                 }
1559         }
1560
1561         /* TSC scaling required  - calculate ratio */
1562         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1563                                 user_tsc_khz, tsc_khz);
1564
1565         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1566                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1567                           user_tsc_khz);
1568                 return -1;
1569         }
1570
1571         vcpu->arch.tsc_scaling_ratio = ratio;
1572         return 0;
1573 }
1574
1575 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1576 {
1577         u32 thresh_lo, thresh_hi;
1578         int use_scaling = 0;
1579
1580         /* tsc_khz can be zero if TSC calibration fails */
1581         if (user_tsc_khz == 0) {
1582                 /* set tsc_scaling_ratio to a safe value */
1583                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1584                 return -1;
1585         }
1586
1587         /* Compute a scale to convert nanoseconds in TSC cycles */
1588         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1589                            &vcpu->arch.virtual_tsc_shift,
1590                            &vcpu->arch.virtual_tsc_mult);
1591         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1592
1593         /*
1594          * Compute the variation in TSC rate which is acceptable
1595          * within the range of tolerance and decide if the
1596          * rate being applied is within that bounds of the hardware
1597          * rate.  If so, no scaling or compensation need be done.
1598          */
1599         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1600         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1601         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1602                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1603                 use_scaling = 1;
1604         }
1605         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1606 }
1607
1608 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1609 {
1610         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1611                                       vcpu->arch.virtual_tsc_mult,
1612                                       vcpu->arch.virtual_tsc_shift);
1613         tsc += vcpu->arch.this_tsc_write;
1614         return tsc;
1615 }
1616
1617 static inline int gtod_is_based_on_tsc(int mode)
1618 {
1619         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1620 }
1621
1622 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1623 {
1624 #ifdef CONFIG_X86_64
1625         bool vcpus_matched;
1626         struct kvm_arch *ka = &vcpu->kvm->arch;
1627         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1628
1629         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1630                          atomic_read(&vcpu->kvm->online_vcpus));
1631
1632         /*
1633          * Once the masterclock is enabled, always perform request in
1634          * order to update it.
1635          *
1636          * In order to enable masterclock, the host clocksource must be TSC
1637          * and the vcpus need to have matched TSCs.  When that happens,
1638          * perform request to enable masterclock.
1639          */
1640         if (ka->use_master_clock ||
1641             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1642                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1643
1644         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1645                             atomic_read(&vcpu->kvm->online_vcpus),
1646                             ka->use_master_clock, gtod->clock.vclock_mode);
1647 #endif
1648 }
1649
1650 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1651 {
1652         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1653         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1654 }
1655
1656 /*
1657  * Multiply tsc by a fixed point number represented by ratio.
1658  *
1659  * The most significant 64-N bits (mult) of ratio represent the
1660  * integral part of the fixed point number; the remaining N bits
1661  * (frac) represent the fractional part, ie. ratio represents a fixed
1662  * point number (mult + frac * 2^(-N)).
1663  *
1664  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1665  */
1666 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1667 {
1668         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1669 }
1670
1671 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1672 {
1673         u64 _tsc = tsc;
1674         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1675
1676         if (ratio != kvm_default_tsc_scaling_ratio)
1677                 _tsc = __scale_tsc(ratio, tsc);
1678
1679         return _tsc;
1680 }
1681 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1682
1683 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1684 {
1685         u64 tsc;
1686
1687         tsc = kvm_scale_tsc(vcpu, rdtsc());
1688
1689         return target_tsc - tsc;
1690 }
1691
1692 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1693 {
1694         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1695
1696         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1697 }
1698 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1699
1700 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1701 {
1702         vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1703 }
1704
1705 static inline bool kvm_check_tsc_unstable(void)
1706 {
1707 #ifdef CONFIG_X86_64
1708         /*
1709          * TSC is marked unstable when we're running on Hyper-V,
1710          * 'TSC page' clocksource is good.
1711          */
1712         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1713                 return false;
1714 #endif
1715         return check_tsc_unstable();
1716 }
1717
1718 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1719 {
1720         struct kvm *kvm = vcpu->kvm;
1721         u64 offset, ns, elapsed;
1722         unsigned long flags;
1723         bool matched;
1724         bool already_matched;
1725         u64 data = msr->data;
1726         bool synchronizing = false;
1727
1728         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1729         offset = kvm_compute_tsc_offset(vcpu, data);
1730         ns = ktime_get_boot_ns();
1731         elapsed = ns - kvm->arch.last_tsc_nsec;
1732
1733         if (vcpu->arch.virtual_tsc_khz) {
1734                 if (data == 0 && msr->host_initiated) {
1735                         /*
1736                          * detection of vcpu initialization -- need to sync
1737                          * with other vCPUs. This particularly helps to keep
1738                          * kvm_clock stable after CPU hotplug
1739                          */
1740                         synchronizing = true;
1741                 } else {
1742                         u64 tsc_exp = kvm->arch.last_tsc_write +
1743                                                 nsec_to_cycles(vcpu, elapsed);
1744                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1745                         /*
1746                          * Special case: TSC write with a small delta (1 second)
1747                          * of virtual cycle time against real time is
1748                          * interpreted as an attempt to synchronize the CPU.
1749                          */
1750                         synchronizing = data < tsc_exp + tsc_hz &&
1751                                         data + tsc_hz > tsc_exp;
1752                 }
1753         }
1754
1755         /*
1756          * For a reliable TSC, we can match TSC offsets, and for an unstable
1757          * TSC, we add elapsed time in this computation.  We could let the
1758          * compensation code attempt to catch up if we fall behind, but
1759          * it's better to try to match offsets from the beginning.
1760          */
1761         if (synchronizing &&
1762             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1763                 if (!kvm_check_tsc_unstable()) {
1764                         offset = kvm->arch.cur_tsc_offset;
1765                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1766                 } else {
1767                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1768                         data += delta;
1769                         offset = kvm_compute_tsc_offset(vcpu, data);
1770                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1771                 }
1772                 matched = true;
1773                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1774         } else {
1775                 /*
1776                  * We split periods of matched TSC writes into generations.
1777                  * For each generation, we track the original measured
1778                  * nanosecond time, offset, and write, so if TSCs are in
1779                  * sync, we can match exact offset, and if not, we can match
1780                  * exact software computation in compute_guest_tsc()
1781                  *
1782                  * These values are tracked in kvm->arch.cur_xxx variables.
1783                  */
1784                 kvm->arch.cur_tsc_generation++;
1785                 kvm->arch.cur_tsc_nsec = ns;
1786                 kvm->arch.cur_tsc_write = data;
1787                 kvm->arch.cur_tsc_offset = offset;
1788                 matched = false;
1789                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1790                          kvm->arch.cur_tsc_generation, data);
1791         }
1792
1793         /*
1794          * We also track th most recent recorded KHZ, write and time to
1795          * allow the matching interval to be extended at each write.
1796          */
1797         kvm->arch.last_tsc_nsec = ns;
1798         kvm->arch.last_tsc_write = data;
1799         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1800
1801         vcpu->arch.last_guest_tsc = data;
1802
1803         /* Keep track of which generation this VCPU has synchronized to */
1804         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1805         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1806         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1807
1808         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1809                 update_ia32_tsc_adjust_msr(vcpu, offset);
1810
1811         kvm_vcpu_write_tsc_offset(vcpu, offset);
1812         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1813
1814         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1815         if (!matched) {
1816                 kvm->arch.nr_vcpus_matched_tsc = 0;
1817         } else if (!already_matched) {
1818                 kvm->arch.nr_vcpus_matched_tsc++;
1819         }
1820
1821         kvm_track_tsc_matching(vcpu);
1822         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1823 }
1824
1825 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1826
1827 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1828                                            s64 adjustment)
1829 {
1830         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1831         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1832 }
1833
1834 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1835 {
1836         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1837                 WARN_ON(adjustment < 0);
1838         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1839         adjust_tsc_offset_guest(vcpu, adjustment);
1840 }
1841
1842 #ifdef CONFIG_X86_64
1843
1844 static u64 read_tsc(void)
1845 {
1846         u64 ret = (u64)rdtsc_ordered();
1847         u64 last = pvclock_gtod_data.clock.cycle_last;
1848
1849         if (likely(ret >= last))
1850                 return ret;
1851
1852         /*
1853          * GCC likes to generate cmov here, but this branch is extremely
1854          * predictable (it's just a function of time and the likely is
1855          * very likely) and there's a data dependence, so force GCC
1856          * to generate a branch instead.  I don't barrier() because
1857          * we don't actually need a barrier, and if this function
1858          * ever gets inlined it will generate worse code.
1859          */
1860         asm volatile ("");
1861         return last;
1862 }
1863
1864 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1865 {
1866         long v;
1867         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1868         u64 tsc_pg_val;
1869
1870         switch (gtod->clock.vclock_mode) {
1871         case VCLOCK_HVCLOCK:
1872                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1873                                                   tsc_timestamp);
1874                 if (tsc_pg_val != U64_MAX) {
1875                         /* TSC page valid */
1876                         *mode = VCLOCK_HVCLOCK;
1877                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1878                                 gtod->clock.mask;
1879                 } else {
1880                         /* TSC page invalid */
1881                         *mode = VCLOCK_NONE;
1882                 }
1883                 break;
1884         case VCLOCK_TSC:
1885                 *mode = VCLOCK_TSC;
1886                 *tsc_timestamp = read_tsc();
1887                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1888                         gtod->clock.mask;
1889                 break;
1890         default:
1891                 *mode = VCLOCK_NONE;
1892         }
1893
1894         if (*mode == VCLOCK_NONE)
1895                 *tsc_timestamp = v = 0;
1896
1897         return v * gtod->clock.mult;
1898 }
1899
1900 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1901 {
1902         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1903         unsigned long seq;
1904         int mode;
1905         u64 ns;
1906
1907         do {
1908                 seq = read_seqcount_begin(&gtod->seq);
1909                 ns = gtod->nsec_base;
1910                 ns += vgettsc(tsc_timestamp, &mode);
1911                 ns >>= gtod->clock.shift;
1912                 ns += gtod->boot_ns;
1913         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1914         *t = ns;
1915
1916         return mode;
1917 }
1918
1919 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1920 {
1921         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1922         unsigned long seq;
1923         int mode;
1924         u64 ns;
1925
1926         do {
1927                 seq = read_seqcount_begin(&gtod->seq);
1928                 ts->tv_sec = gtod->wall_time_sec;
1929                 ns = gtod->nsec_base;
1930                 ns += vgettsc(tsc_timestamp, &mode);
1931                 ns >>= gtod->clock.shift;
1932         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1933
1934         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1935         ts->tv_nsec = ns;
1936
1937         return mode;
1938 }
1939
1940 /* returns true if host is using TSC based clocksource */
1941 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1942 {
1943         /* checked again under seqlock below */
1944         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1945                 return false;
1946
1947         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1948                                                       tsc_timestamp));
1949 }
1950
1951 /* returns true if host is using TSC based clocksource */
1952 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1953                                            u64 *tsc_timestamp)
1954 {
1955         /* checked again under seqlock below */
1956         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1957                 return false;
1958
1959         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1960 }
1961 #endif
1962
1963 /*
1964  *
1965  * Assuming a stable TSC across physical CPUS, and a stable TSC
1966  * across virtual CPUs, the following condition is possible.
1967  * Each numbered line represents an event visible to both
1968  * CPUs at the next numbered event.
1969  *
1970  * "timespecX" represents host monotonic time. "tscX" represents
1971  * RDTSC value.
1972  *
1973  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1974  *
1975  * 1.  read timespec0,tsc0
1976  * 2.                                   | timespec1 = timespec0 + N
1977  *                                      | tsc1 = tsc0 + M
1978  * 3. transition to guest               | transition to guest
1979  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1980  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1981  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1982  *
1983  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1984  *
1985  *      - ret0 < ret1
1986  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1987  *              ...
1988  *      - 0 < N - M => M < N
1989  *
1990  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1991  * always the case (the difference between two distinct xtime instances
1992  * might be smaller then the difference between corresponding TSC reads,
1993  * when updating guest vcpus pvclock areas).
1994  *
1995  * To avoid that problem, do not allow visibility of distinct
1996  * system_timestamp/tsc_timestamp values simultaneously: use a master
1997  * copy of host monotonic time values. Update that master copy
1998  * in lockstep.
1999  *
2000  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2001  *
2002  */
2003
2004 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2005 {
2006 #ifdef CONFIG_X86_64
2007         struct kvm_arch *ka = &kvm->arch;
2008         int vclock_mode;
2009         bool host_tsc_clocksource, vcpus_matched;
2010
2011         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2012                         atomic_read(&kvm->online_vcpus));
2013
2014         /*
2015          * If the host uses TSC clock, then passthrough TSC as stable
2016          * to the guest.
2017          */
2018         host_tsc_clocksource = kvm_get_time_and_clockread(
2019                                         &ka->master_kernel_ns,
2020                                         &ka->master_cycle_now);
2021
2022         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2023                                 && !ka->backwards_tsc_observed
2024                                 && !ka->boot_vcpu_runs_old_kvmclock;
2025
2026         if (ka->use_master_clock)
2027                 atomic_set(&kvm_guest_has_master_clock, 1);
2028
2029         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2030         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2031                                         vcpus_matched);
2032 #endif
2033 }
2034
2035 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2036 {
2037         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2038 }
2039
2040 static void kvm_gen_update_masterclock(struct kvm *kvm)
2041 {
2042 #ifdef CONFIG_X86_64
2043         int i;
2044         struct kvm_vcpu *vcpu;
2045         struct kvm_arch *ka = &kvm->arch;
2046
2047         spin_lock(&ka->pvclock_gtod_sync_lock);
2048         kvm_make_mclock_inprogress_request(kvm);
2049         /* no guest entries from this point */
2050         pvclock_update_vm_gtod_copy(kvm);
2051
2052         kvm_for_each_vcpu(i, vcpu, kvm)
2053                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2054
2055         /* guest entries allowed */
2056         kvm_for_each_vcpu(i, vcpu, kvm)
2057                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2058
2059         spin_unlock(&ka->pvclock_gtod_sync_lock);
2060 #endif
2061 }
2062
2063 u64 get_kvmclock_ns(struct kvm *kvm)
2064 {
2065         struct kvm_arch *ka = &kvm->arch;
2066         struct pvclock_vcpu_time_info hv_clock;
2067         u64 ret;
2068
2069         spin_lock(&ka->pvclock_gtod_sync_lock);
2070         if (!ka->use_master_clock) {
2071                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2072                 return ktime_get_boot_ns() + ka->kvmclock_offset;
2073         }
2074
2075         hv_clock.tsc_timestamp = ka->master_cycle_now;
2076         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2077         spin_unlock(&ka->pvclock_gtod_sync_lock);
2078
2079         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2080         get_cpu();
2081
2082         if (__this_cpu_read(cpu_tsc_khz)) {
2083                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2084                                    &hv_clock.tsc_shift,
2085                                    &hv_clock.tsc_to_system_mul);
2086                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2087         } else
2088                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
2089
2090         put_cpu();
2091
2092         return ret;
2093 }
2094
2095 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2096 {
2097         struct kvm_vcpu_arch *vcpu = &v->arch;
2098         struct pvclock_vcpu_time_info guest_hv_clock;
2099
2100         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2101                 &guest_hv_clock, sizeof(guest_hv_clock))))
2102                 return;
2103
2104         /* This VCPU is paused, but it's legal for a guest to read another
2105          * VCPU's kvmclock, so we really have to follow the specification where
2106          * it says that version is odd if data is being modified, and even after
2107          * it is consistent.
2108          *
2109          * Version field updates must be kept separate.  This is because
2110          * kvm_write_guest_cached might use a "rep movs" instruction, and
2111          * writes within a string instruction are weakly ordered.  So there
2112          * are three writes overall.
2113          *
2114          * As a small optimization, only write the version field in the first
2115          * and third write.  The vcpu->pv_time cache is still valid, because the
2116          * version field is the first in the struct.
2117          */
2118         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2119
2120         if (guest_hv_clock.version & 1)
2121                 ++guest_hv_clock.version;  /* first time write, random junk */
2122
2123         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2124         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2125                                 &vcpu->hv_clock,
2126                                 sizeof(vcpu->hv_clock.version));
2127
2128         smp_wmb();
2129
2130         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2131         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2132
2133         if (vcpu->pvclock_set_guest_stopped_request) {
2134                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2135                 vcpu->pvclock_set_guest_stopped_request = false;
2136         }
2137
2138         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2139
2140         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2141                                 &vcpu->hv_clock,
2142                                 sizeof(vcpu->hv_clock));
2143
2144         smp_wmb();
2145
2146         vcpu->hv_clock.version++;
2147         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2148                                 &vcpu->hv_clock,
2149                                 sizeof(vcpu->hv_clock.version));
2150 }
2151
2152 static int kvm_guest_time_update(struct kvm_vcpu *v)
2153 {
2154         unsigned long flags, tgt_tsc_khz;
2155         struct kvm_vcpu_arch *vcpu = &v->arch;
2156         struct kvm_arch *ka = &v->kvm->arch;
2157         s64 kernel_ns;
2158         u64 tsc_timestamp, host_tsc;
2159         u8 pvclock_flags;
2160         bool use_master_clock;
2161
2162         kernel_ns = 0;
2163         host_tsc = 0;
2164
2165         /*
2166          * If the host uses TSC clock, then passthrough TSC as stable
2167          * to the guest.
2168          */
2169         spin_lock(&ka->pvclock_gtod_sync_lock);
2170         use_master_clock = ka->use_master_clock;
2171         if (use_master_clock) {
2172                 host_tsc = ka->master_cycle_now;
2173                 kernel_ns = ka->master_kernel_ns;
2174         }
2175         spin_unlock(&ka->pvclock_gtod_sync_lock);
2176
2177         /* Keep irq disabled to prevent changes to the clock */
2178         local_irq_save(flags);
2179         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2180         if (unlikely(tgt_tsc_khz == 0)) {
2181                 local_irq_restore(flags);
2182                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2183                 return 1;
2184         }
2185         if (!use_master_clock) {
2186                 host_tsc = rdtsc();
2187                 kernel_ns = ktime_get_boot_ns();
2188         }
2189
2190         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2191
2192         /*
2193          * We may have to catch up the TSC to match elapsed wall clock
2194          * time for two reasons, even if kvmclock is used.
2195          *   1) CPU could have been running below the maximum TSC rate
2196          *   2) Broken TSC compensation resets the base at each VCPU
2197          *      entry to avoid unknown leaps of TSC even when running
2198          *      again on the same CPU.  This may cause apparent elapsed
2199          *      time to disappear, and the guest to stand still or run
2200          *      very slowly.
2201          */
2202         if (vcpu->tsc_catchup) {
2203                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2204                 if (tsc > tsc_timestamp) {
2205                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2206                         tsc_timestamp = tsc;
2207                 }
2208         }
2209
2210         local_irq_restore(flags);
2211
2212         /* With all the info we got, fill in the values */
2213
2214         if (kvm_has_tsc_control)
2215                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2216
2217         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2218                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2219                                    &vcpu->hv_clock.tsc_shift,
2220                                    &vcpu->hv_clock.tsc_to_system_mul);
2221                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2222         }
2223
2224         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2225         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2226         vcpu->last_guest_tsc = tsc_timestamp;
2227
2228         /* If the host uses TSC clocksource, then it is stable */
2229         pvclock_flags = 0;
2230         if (use_master_clock)
2231                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2232
2233         vcpu->hv_clock.flags = pvclock_flags;
2234
2235         if (vcpu->pv_time_enabled)
2236                 kvm_setup_pvclock_page(v);
2237         if (v == kvm_get_vcpu(v->kvm, 0))
2238                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2239         return 0;
2240 }
2241
2242 /*
2243  * kvmclock updates which are isolated to a given vcpu, such as
2244  * vcpu->cpu migration, should not allow system_timestamp from
2245  * the rest of the vcpus to remain static. Otherwise ntp frequency
2246  * correction applies to one vcpu's system_timestamp but not
2247  * the others.
2248  *
2249  * So in those cases, request a kvmclock update for all vcpus.
2250  * We need to rate-limit these requests though, as they can
2251  * considerably slow guests that have a large number of vcpus.
2252  * The time for a remote vcpu to update its kvmclock is bound
2253  * by the delay we use to rate-limit the updates.
2254  */
2255
2256 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2257
2258 static void kvmclock_update_fn(struct work_struct *work)
2259 {
2260         int i;
2261         struct delayed_work *dwork = to_delayed_work(work);
2262         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2263                                            kvmclock_update_work);
2264         struct kvm *kvm = container_of(ka, struct kvm, arch);
2265         struct kvm_vcpu *vcpu;
2266
2267         kvm_for_each_vcpu(i, vcpu, kvm) {
2268                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2269                 kvm_vcpu_kick(vcpu);
2270         }
2271 }
2272
2273 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2274 {
2275         struct kvm *kvm = v->kvm;
2276
2277         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2278         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2279                                         KVMCLOCK_UPDATE_DELAY);
2280 }
2281
2282 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2283
2284 static void kvmclock_sync_fn(struct work_struct *work)
2285 {
2286         struct delayed_work *dwork = to_delayed_work(work);
2287         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2288                                            kvmclock_sync_work);
2289         struct kvm *kvm = container_of(ka, struct kvm, arch);
2290
2291         if (!kvmclock_periodic_sync)
2292                 return;
2293
2294         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2295         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2296                                         KVMCLOCK_SYNC_PERIOD);
2297 }
2298
2299 /*
2300  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2301  */
2302 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2303 {
2304         /* McStatusWrEn enabled? */
2305         if (guest_cpuid_is_amd(vcpu))
2306                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2307
2308         return false;
2309 }
2310
2311 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2312 {
2313         u64 mcg_cap = vcpu->arch.mcg_cap;
2314         unsigned bank_num = mcg_cap & 0xff;
2315         u32 msr = msr_info->index;
2316         u64 data = msr_info->data;
2317
2318         switch (msr) {
2319         case MSR_IA32_MCG_STATUS:
2320                 vcpu->arch.mcg_status = data;
2321                 break;
2322         case MSR_IA32_MCG_CTL:
2323                 if (!(mcg_cap & MCG_CTL_P) &&
2324                     (data || !msr_info->host_initiated))
2325                         return 1;
2326                 if (data != 0 && data != ~(u64)0)
2327                         return 1;
2328                 vcpu->arch.mcg_ctl = data;
2329                 break;
2330         default:
2331                 if (msr >= MSR_IA32_MC0_CTL &&
2332                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2333                         u32 offset = msr - MSR_IA32_MC0_CTL;
2334                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2335                          * some Linux kernels though clear bit 10 in bank 4 to
2336                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2337                          * this to avoid an uncatched #GP in the guest
2338                          */
2339                         if ((offset & 0x3) == 0 &&
2340                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2341                                 return -1;
2342
2343                         /* MCi_STATUS */
2344                         if (!msr_info->host_initiated &&
2345                             (offset & 0x3) == 1 && data != 0) {
2346                                 if (!can_set_mci_status(vcpu))
2347                                         return -1;
2348                         }
2349
2350                         vcpu->arch.mce_banks[offset] = data;
2351                         break;
2352                 }
2353                 return 1;
2354         }
2355         return 0;
2356 }
2357
2358 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2359 {
2360         struct kvm *kvm = vcpu->kvm;
2361         int lm = is_long_mode(vcpu);
2362         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2363                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2364         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2365                 : kvm->arch.xen_hvm_config.blob_size_32;
2366         u32 page_num = data & ~PAGE_MASK;
2367         u64 page_addr = data & PAGE_MASK;
2368         u8 *page;
2369         int r;
2370
2371         r = -E2BIG;
2372         if (page_num >= blob_size)
2373                 goto out;
2374         r = -ENOMEM;
2375         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2376         if (IS_ERR(page)) {
2377                 r = PTR_ERR(page);
2378                 goto out;
2379         }
2380         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2381                 goto out_free;
2382         r = 0;
2383 out_free:
2384         kfree(page);
2385 out:
2386         return r;
2387 }
2388
2389 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2390 {
2391         gpa_t gpa = data & ~0x3f;
2392
2393         /* Bits 3:5 are reserved, Should be zero */
2394         if (data & 0x38)
2395                 return 1;
2396
2397         vcpu->arch.apf.msr_val = data;
2398
2399         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2400                 kvm_clear_async_pf_completion_queue(vcpu);
2401                 kvm_async_pf_hash_reset(vcpu);
2402                 return 0;
2403         }
2404
2405         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2406                                         sizeof(u32)))
2407                 return 1;
2408
2409         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2410         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2411         kvm_async_pf_wakeup_all(vcpu);
2412         return 0;
2413 }
2414
2415 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2416 {
2417         vcpu->arch.pv_time_enabled = false;
2418 }
2419
2420 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2421 {
2422         ++vcpu->stat.tlb_flush;
2423         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2424 }
2425
2426 static void record_steal_time(struct kvm_vcpu *vcpu)
2427 {
2428         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2429                 return;
2430
2431         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2432                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2433                 return;
2434
2435         /*
2436          * Doing a TLB flush here, on the guest's behalf, can avoid
2437          * expensive IPIs.
2438          */
2439         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2440                 kvm_vcpu_flush_tlb(vcpu, false);
2441
2442         if (vcpu->arch.st.steal.version & 1)
2443                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2444
2445         vcpu->arch.st.steal.version += 1;
2446
2447         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2448                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2449
2450         smp_wmb();
2451
2452         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2453                 vcpu->arch.st.last_steal;
2454         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2455
2456         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2457                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2458
2459         smp_wmb();
2460
2461         vcpu->arch.st.steal.version += 1;
2462
2463         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2464                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2465 }
2466
2467 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2468 {
2469         bool pr = false;
2470         u32 msr = msr_info->index;
2471         u64 data = msr_info->data;
2472
2473         switch (msr) {
2474         case MSR_AMD64_NB_CFG:
2475         case MSR_IA32_UCODE_WRITE:
2476         case MSR_VM_HSAVE_PA:
2477         case MSR_AMD64_PATCH_LOADER:
2478         case MSR_AMD64_BU_CFG2:
2479         case MSR_AMD64_DC_CFG:
2480         case MSR_F15H_EX_CFG:
2481                 break;
2482
2483         case MSR_IA32_UCODE_REV:
2484                 if (msr_info->host_initiated)
2485                         vcpu->arch.microcode_version = data;
2486                 break;
2487         case MSR_IA32_ARCH_CAPABILITIES:
2488                 if (!msr_info->host_initiated)
2489                         return 1;
2490                 vcpu->arch.arch_capabilities = data;
2491                 break;
2492         case MSR_EFER:
2493                 return set_efer(vcpu, msr_info);
2494         case MSR_K7_HWCR:
2495                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2496                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2497                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2498
2499                 /* Handle McStatusWrEn */
2500                 if (data == BIT_ULL(18)) {
2501                         vcpu->arch.msr_hwcr = data;
2502                 } else if (data != 0) {
2503                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2504                                     data);
2505                         return 1;
2506                 }
2507                 break;
2508         case MSR_FAM10H_MMIO_CONF_BASE:
2509                 if (data != 0) {
2510                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2511                                     "0x%llx\n", data);
2512                         return 1;
2513                 }
2514                 break;
2515         case MSR_IA32_DEBUGCTLMSR:
2516                 if (!data) {
2517                         /* We support the non-activated case already */
2518                         break;
2519                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2520                         /* Values other than LBR and BTF are vendor-specific,
2521                            thus reserved and should throw a #GP */
2522                         return 1;
2523                 }
2524                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2525                             __func__, data);
2526                 break;
2527         case 0x200 ... 0x2ff:
2528                 return kvm_mtrr_set_msr(vcpu, msr, data);
2529         case MSR_IA32_APICBASE:
2530                 return kvm_set_apic_base(vcpu, msr_info);
2531         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2532                 return kvm_x2apic_msr_write(vcpu, msr, data);
2533         case MSR_IA32_TSCDEADLINE:
2534                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2535                 break;
2536         case MSR_IA32_TSC_ADJUST:
2537                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2538                         if (!msr_info->host_initiated) {
2539                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2540                                 adjust_tsc_offset_guest(vcpu, adj);
2541                         }
2542                         vcpu->arch.ia32_tsc_adjust_msr = data;
2543                 }
2544                 break;
2545         case MSR_IA32_MISC_ENABLE:
2546                 vcpu->arch.ia32_misc_enable_msr = data;
2547                 break;
2548         case MSR_IA32_SMBASE:
2549                 if (!msr_info->host_initiated)
2550                         return 1;
2551                 vcpu->arch.smbase = data;
2552                 break;
2553         case MSR_IA32_TSC:
2554                 kvm_write_tsc(vcpu, msr_info);
2555                 break;
2556         case MSR_SMI_COUNT:
2557                 if (!msr_info->host_initiated)
2558                         return 1;
2559                 vcpu->arch.smi_count = data;
2560                 break;
2561         case MSR_KVM_WALL_CLOCK_NEW:
2562         case MSR_KVM_WALL_CLOCK:
2563                 vcpu->kvm->arch.wall_clock = data;
2564                 kvm_write_wall_clock(vcpu->kvm, data);
2565                 break;
2566         case MSR_KVM_SYSTEM_TIME_NEW:
2567         case MSR_KVM_SYSTEM_TIME: {
2568                 struct kvm_arch *ka = &vcpu->kvm->arch;
2569
2570                 kvmclock_reset(vcpu);
2571
2572                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2573                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2574
2575                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2576                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2577
2578                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2579                 }
2580
2581                 vcpu->arch.time = data;
2582                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2583
2584                 /* we verify if the enable bit is set... */
2585                 if (!(data & 1))
2586                         break;
2587
2588                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2589                      &vcpu->arch.pv_time, data & ~1ULL,
2590                      sizeof(struct pvclock_vcpu_time_info)))
2591                         vcpu->arch.pv_time_enabled = false;
2592                 else
2593                         vcpu->arch.pv_time_enabled = true;
2594
2595                 break;
2596         }
2597         case MSR_KVM_ASYNC_PF_EN:
2598                 if (kvm_pv_enable_async_pf(vcpu, data))
2599                         return 1;
2600                 break;
2601         case MSR_KVM_STEAL_TIME:
2602
2603                 if (unlikely(!sched_info_on()))
2604                         return 1;
2605
2606                 if (data & KVM_STEAL_RESERVED_MASK)
2607                         return 1;
2608
2609                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2610                                                 data & KVM_STEAL_VALID_BITS,
2611                                                 sizeof(struct kvm_steal_time)))
2612                         return 1;
2613
2614                 vcpu->arch.st.msr_val = data;
2615
2616                 if (!(data & KVM_MSR_ENABLED))
2617                         break;
2618
2619                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2620
2621                 break;
2622         case MSR_KVM_PV_EOI_EN:
2623                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2624                         return 1;
2625                 break;
2626
2627         case MSR_IA32_MCG_CTL:
2628         case MSR_IA32_MCG_STATUS:
2629         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2630                 return set_msr_mce(vcpu, msr_info);
2631
2632         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2633         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2634                 pr = true; /* fall through */
2635         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2636         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2637                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2638                         return kvm_pmu_set_msr(vcpu, msr_info);
2639
2640                 if (pr || data != 0)
2641                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2642                                     "0x%x data 0x%llx\n", msr, data);
2643                 break;
2644         case MSR_K7_CLK_CTL:
2645                 /*
2646                  * Ignore all writes to this no longer documented MSR.
2647                  * Writes are only relevant for old K7 processors,
2648                  * all pre-dating SVM, but a recommended workaround from
2649                  * AMD for these chips. It is possible to specify the
2650                  * affected processor models on the command line, hence
2651                  * the need to ignore the workaround.
2652                  */
2653                 break;
2654         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2655         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2656         case HV_X64_MSR_CRASH_CTL:
2657         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2658         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2659         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2660         case HV_X64_MSR_TSC_EMULATION_STATUS:
2661                 return kvm_hv_set_msr_common(vcpu, msr, data,
2662                                              msr_info->host_initiated);
2663         case MSR_IA32_BBL_CR_CTL3:
2664                 /* Drop writes to this legacy MSR -- see rdmsr
2665                  * counterpart for further detail.
2666                  */
2667                 if (report_ignored_msrs)
2668                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2669                                 msr, data);
2670                 break;
2671         case MSR_AMD64_OSVW_ID_LENGTH:
2672                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2673                         return 1;
2674                 vcpu->arch.osvw.length = data;
2675                 break;
2676         case MSR_AMD64_OSVW_STATUS:
2677                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2678                         return 1;
2679                 vcpu->arch.osvw.status = data;
2680                 break;
2681         case MSR_PLATFORM_INFO:
2682                 if (!msr_info->host_initiated ||
2683                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2684                      cpuid_fault_enabled(vcpu)))
2685                         return 1;
2686                 vcpu->arch.msr_platform_info = data;
2687                 break;
2688         case MSR_MISC_FEATURES_ENABLES:
2689                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2690                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2691                      !supports_cpuid_fault(vcpu)))
2692                         return 1;
2693                 vcpu->arch.msr_misc_features_enables = data;
2694                 break;
2695         default:
2696                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2697                         return xen_hvm_config(vcpu, data);
2698                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2699                         return kvm_pmu_set_msr(vcpu, msr_info);
2700                 if (!ignore_msrs) {
2701                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2702                                     msr, data);
2703                         return 1;
2704                 } else {
2705                         if (report_ignored_msrs)
2706                                 vcpu_unimpl(vcpu,
2707                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2708                                         msr, data);
2709                         break;
2710                 }
2711         }
2712         return 0;
2713 }
2714 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2715
2716
2717 /*
2718  * Reads an msr value (of 'msr_index') into 'pdata'.
2719  * Returns 0 on success, non-0 otherwise.
2720  * Assumes vcpu_load() was already called.
2721  */
2722 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2723 {
2724         return kvm_x86_ops->get_msr(vcpu, msr);
2725 }
2726 EXPORT_SYMBOL_GPL(kvm_get_msr);
2727
2728 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2729 {
2730         u64 data;
2731         u64 mcg_cap = vcpu->arch.mcg_cap;
2732         unsigned bank_num = mcg_cap & 0xff;
2733
2734         switch (msr) {
2735         case MSR_IA32_P5_MC_ADDR:
2736         case MSR_IA32_P5_MC_TYPE:
2737                 data = 0;
2738                 break;
2739         case MSR_IA32_MCG_CAP:
2740                 data = vcpu->arch.mcg_cap;
2741                 break;
2742         case MSR_IA32_MCG_CTL:
2743                 if (!(mcg_cap & MCG_CTL_P) && !host)
2744                         return 1;
2745                 data = vcpu->arch.mcg_ctl;
2746                 break;
2747         case MSR_IA32_MCG_STATUS:
2748                 data = vcpu->arch.mcg_status;
2749                 break;
2750         default:
2751                 if (msr >= MSR_IA32_MC0_CTL &&
2752                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2753                         u32 offset = msr - MSR_IA32_MC0_CTL;
2754                         data = vcpu->arch.mce_banks[offset];
2755                         break;
2756                 }
2757                 return 1;
2758         }
2759         *pdata = data;
2760         return 0;
2761 }
2762
2763 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2764 {
2765         switch (msr_info->index) {
2766         case MSR_IA32_PLATFORM_ID:
2767         case MSR_IA32_EBL_CR_POWERON:
2768         case MSR_IA32_DEBUGCTLMSR:
2769         case MSR_IA32_LASTBRANCHFROMIP:
2770         case MSR_IA32_LASTBRANCHTOIP:
2771         case MSR_IA32_LASTINTFROMIP:
2772         case MSR_IA32_LASTINTTOIP:
2773         case MSR_K8_SYSCFG:
2774         case MSR_K8_TSEG_ADDR:
2775         case MSR_K8_TSEG_MASK:
2776         case MSR_VM_HSAVE_PA:
2777         case MSR_K8_INT_PENDING_MSG:
2778         case MSR_AMD64_NB_CFG:
2779         case MSR_FAM10H_MMIO_CONF_BASE:
2780         case MSR_AMD64_BU_CFG2:
2781         case MSR_IA32_PERF_CTL:
2782         case MSR_AMD64_DC_CFG:
2783         case MSR_F15H_EX_CFG:
2784                 msr_info->data = 0;
2785                 break;
2786         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2787         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2788         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2789         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2790         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2791                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2792                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2793                 msr_info->data = 0;
2794                 break;
2795         case MSR_IA32_UCODE_REV:
2796                 msr_info->data = vcpu->arch.microcode_version;
2797                 break;
2798         case MSR_IA32_ARCH_CAPABILITIES:
2799                 if (!msr_info->host_initiated &&
2800                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2801                         return 1;
2802                 msr_info->data = vcpu->arch.arch_capabilities;
2803                 break;
2804         case MSR_IA32_TSC:
2805                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2806                 break;
2807         case MSR_MTRRcap:
2808         case 0x200 ... 0x2ff:
2809                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2810         case 0xcd: /* fsb frequency */
2811                 msr_info->data = 3;
2812                 break;
2813                 /*
2814                  * MSR_EBC_FREQUENCY_ID
2815                  * Conservative value valid for even the basic CPU models.
2816                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2817                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2818                  * and 266MHz for model 3, or 4. Set Core Clock
2819                  * Frequency to System Bus Frequency Ratio to 1 (bits
2820                  * 31:24) even though these are only valid for CPU
2821                  * models > 2, however guests may end up dividing or
2822                  * multiplying by zero otherwise.
2823                  */
2824         case MSR_EBC_FREQUENCY_ID:
2825                 msr_info->data = 1 << 24;
2826                 break;
2827         case MSR_IA32_APICBASE:
2828                 msr_info->data = kvm_get_apic_base(vcpu);
2829                 break;
2830         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2831                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2832                 break;
2833         case MSR_IA32_TSCDEADLINE:
2834                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2835                 break;
2836         case MSR_IA32_TSC_ADJUST:
2837                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2838                 break;
2839         case MSR_IA32_MISC_ENABLE:
2840                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2841                 break;
2842         case MSR_IA32_SMBASE:
2843                 if (!msr_info->host_initiated)
2844                         return 1;
2845                 msr_info->data = vcpu->arch.smbase;
2846                 break;
2847         case MSR_SMI_COUNT:
2848                 msr_info->data = vcpu->arch.smi_count;
2849                 break;
2850         case MSR_IA32_PERF_STATUS:
2851                 /* TSC increment by tick */
2852                 msr_info->data = 1000ULL;
2853                 /* CPU multiplier */
2854                 msr_info->data |= (((uint64_t)4ULL) << 40);
2855                 break;
2856         case MSR_EFER:
2857                 msr_info->data = vcpu->arch.efer;
2858                 break;
2859         case MSR_KVM_WALL_CLOCK:
2860         case MSR_KVM_WALL_CLOCK_NEW:
2861                 msr_info->data = vcpu->kvm->arch.wall_clock;
2862                 break;
2863         case MSR_KVM_SYSTEM_TIME:
2864         case MSR_KVM_SYSTEM_TIME_NEW:
2865                 msr_info->data = vcpu->arch.time;
2866                 break;
2867         case MSR_KVM_ASYNC_PF_EN:
2868                 msr_info->data = vcpu->arch.apf.msr_val;
2869                 break;
2870         case MSR_KVM_STEAL_TIME:
2871                 msr_info->data = vcpu->arch.st.msr_val;
2872                 break;
2873         case MSR_KVM_PV_EOI_EN:
2874                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2875                 break;
2876         case MSR_IA32_P5_MC_ADDR:
2877         case MSR_IA32_P5_MC_TYPE:
2878         case MSR_IA32_MCG_CAP:
2879         case MSR_IA32_MCG_CTL:
2880         case MSR_IA32_MCG_STATUS:
2881         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2882                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2883                                    msr_info->host_initiated);
2884         case MSR_K7_CLK_CTL:
2885                 /*
2886                  * Provide expected ramp-up count for K7. All other
2887                  * are set to zero, indicating minimum divisors for
2888                  * every field.
2889                  *
2890                  * This prevents guest kernels on AMD host with CPU
2891                  * type 6, model 8 and higher from exploding due to
2892                  * the rdmsr failing.
2893                  */
2894                 msr_info->data = 0x20000000;
2895                 break;
2896         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2897         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2898         case HV_X64_MSR_CRASH_CTL:
2899         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2900         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2901         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2902         case HV_X64_MSR_TSC_EMULATION_STATUS:
2903                 return kvm_hv_get_msr_common(vcpu,
2904                                              msr_info->index, &msr_info->data,
2905                                              msr_info->host_initiated);
2906                 break;
2907         case MSR_IA32_BBL_CR_CTL3:
2908                 /* This legacy MSR exists but isn't fully documented in current
2909                  * silicon.  It is however accessed by winxp in very narrow
2910                  * scenarios where it sets bit #19, itself documented as
2911                  * a "reserved" bit.  Best effort attempt to source coherent
2912                  * read data here should the balance of the register be
2913                  * interpreted by the guest:
2914                  *
2915                  * L2 cache control register 3: 64GB range, 256KB size,
2916                  * enabled, latency 0x1, configured
2917                  */
2918                 msr_info->data = 0xbe702111;
2919                 break;
2920         case MSR_AMD64_OSVW_ID_LENGTH:
2921                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2922                         return 1;
2923                 msr_info->data = vcpu->arch.osvw.length;
2924                 break;
2925         case MSR_AMD64_OSVW_STATUS:
2926                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2927                         return 1;
2928                 msr_info->data = vcpu->arch.osvw.status;
2929                 break;
2930         case MSR_PLATFORM_INFO:
2931                 if (!msr_info->host_initiated &&
2932                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2933                         return 1;
2934                 msr_info->data = vcpu->arch.msr_platform_info;
2935                 break;
2936         case MSR_MISC_FEATURES_ENABLES:
2937                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2938                 break;
2939         case MSR_K7_HWCR:
2940                 msr_info->data = vcpu->arch.msr_hwcr;
2941                 break;
2942         default:
2943                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2944                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2945                 if (!ignore_msrs) {
2946                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2947                                                msr_info->index);
2948                         return 1;
2949                 } else {
2950                         if (report_ignored_msrs)
2951                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2952                                         msr_info->index);
2953                         msr_info->data = 0;
2954                 }
2955                 break;
2956         }
2957         return 0;
2958 }
2959 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2960
2961 /*
2962  * Read or write a bunch of msrs. All parameters are kernel addresses.
2963  *
2964  * @return number of msrs set successfully.
2965  */
2966 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2967                     struct kvm_msr_entry *entries,
2968                     int (*do_msr)(struct kvm_vcpu *vcpu,
2969                                   unsigned index, u64 *data))
2970 {
2971         int i;
2972
2973         for (i = 0; i < msrs->nmsrs; ++i)
2974                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2975                         break;
2976
2977         return i;
2978 }
2979
2980 /*
2981  * Read or write a bunch of msrs. Parameters are user addresses.
2982  *
2983  * @return number of msrs set successfully.
2984  */
2985 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2986                   int (*do_msr)(struct kvm_vcpu *vcpu,
2987                                 unsigned index, u64 *data),
2988                   int writeback)
2989 {
2990         struct kvm_msrs msrs;
2991         struct kvm_msr_entry *entries;
2992         int r, n;
2993         unsigned size;
2994
2995         r = -EFAULT;
2996         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
2997                 goto out;
2998
2999         r = -E2BIG;
3000         if (msrs.nmsrs >= MAX_IO_MSRS)
3001                 goto out;
3002
3003         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3004         entries = memdup_user(user_msrs->entries, size);
3005         if (IS_ERR(entries)) {
3006                 r = PTR_ERR(entries);
3007                 goto out;
3008         }
3009
3010         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3011         if (r < 0)
3012                 goto out_free;
3013
3014         r = -EFAULT;
3015         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3016                 goto out_free;
3017
3018         r = n;
3019
3020 out_free:
3021         kfree(entries);
3022 out:
3023         return r;
3024 }
3025
3026 static inline bool kvm_can_mwait_in_guest(void)
3027 {
3028         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3029                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3030                 boot_cpu_has(X86_FEATURE_ARAT);
3031 }
3032
3033 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3034 {
3035         int r = 0;
3036
3037         switch (ext) {
3038         case KVM_CAP_IRQCHIP:
3039         case KVM_CAP_HLT:
3040         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3041         case KVM_CAP_SET_TSS_ADDR:
3042         case KVM_CAP_EXT_CPUID:
3043         case KVM_CAP_EXT_EMUL_CPUID:
3044         case KVM_CAP_CLOCKSOURCE:
3045         case KVM_CAP_PIT:
3046         case KVM_CAP_NOP_IO_DELAY:
3047         case KVM_CAP_MP_STATE:
3048         case KVM_CAP_SYNC_MMU:
3049         case KVM_CAP_USER_NMI:
3050         case KVM_CAP_REINJECT_CONTROL:
3051         case KVM_CAP_IRQ_INJECT_STATUS:
3052         case KVM_CAP_IOEVENTFD:
3053         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3054         case KVM_CAP_PIT2:
3055         case KVM_CAP_PIT_STATE2:
3056         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3057         case KVM_CAP_XEN_HVM:
3058         case KVM_CAP_VCPU_EVENTS:
3059         case KVM_CAP_HYPERV:
3060         case KVM_CAP_HYPERV_VAPIC:
3061         case KVM_CAP_HYPERV_SPIN:
3062         case KVM_CAP_HYPERV_SYNIC:
3063         case KVM_CAP_HYPERV_SYNIC2:
3064         case KVM_CAP_HYPERV_VP_INDEX:
3065         case KVM_CAP_HYPERV_EVENTFD:
3066         case KVM_CAP_HYPERV_TLBFLUSH:
3067         case KVM_CAP_HYPERV_SEND_IPI:
3068         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3069         case KVM_CAP_HYPERV_CPUID:
3070         case KVM_CAP_PCI_SEGMENT:
3071         case KVM_CAP_DEBUGREGS:
3072         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3073         case KVM_CAP_XSAVE:
3074         case KVM_CAP_ASYNC_PF:
3075         case KVM_CAP_GET_TSC_KHZ:
3076         case KVM_CAP_KVMCLOCK_CTRL:
3077         case KVM_CAP_READONLY_MEM:
3078         case KVM_CAP_HYPERV_TIME:
3079         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3080         case KVM_CAP_TSC_DEADLINE_TIMER:
3081         case KVM_CAP_DISABLE_QUIRKS:
3082         case KVM_CAP_SET_BOOT_CPU_ID:
3083         case KVM_CAP_SPLIT_IRQCHIP:
3084         case KVM_CAP_IMMEDIATE_EXIT:
3085         case KVM_CAP_GET_MSR_FEATURES:
3086         case KVM_CAP_MSR_PLATFORM_INFO:
3087         case KVM_CAP_EXCEPTION_PAYLOAD:
3088                 r = 1;
3089                 break;
3090         case KVM_CAP_SYNC_REGS:
3091                 r = KVM_SYNC_X86_VALID_FIELDS;
3092                 break;
3093         case KVM_CAP_ADJUST_CLOCK:
3094                 r = KVM_CLOCK_TSC_STABLE;
3095                 break;
3096         case KVM_CAP_X86_DISABLE_EXITS:
3097                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
3098                 if(kvm_can_mwait_in_guest())
3099                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3100                 break;
3101         case KVM_CAP_X86_SMM:
3102                 /* SMBASE is usually relocated above 1M on modern chipsets,
3103                  * and SMM handlers might indeed rely on 4G segment limits,
3104                  * so do not report SMM to be available if real mode is
3105                  * emulated via vm86 mode.  Still, do not go to great lengths
3106                  * to avoid userspace's usage of the feature, because it is a
3107                  * fringe case that is not enabled except via specific settings
3108                  * of the module parameters.
3109                  */
3110                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3111                 break;
3112         case KVM_CAP_VAPIC:
3113                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3114                 break;
3115         case KVM_CAP_NR_VCPUS:
3116                 r = KVM_SOFT_MAX_VCPUS;
3117                 break;
3118         case KVM_CAP_MAX_VCPUS:
3119                 r = KVM_MAX_VCPUS;
3120                 break;
3121         case KVM_CAP_PV_MMU:    /* obsolete */
3122                 r = 0;
3123                 break;
3124         case KVM_CAP_MCE:
3125                 r = KVM_MAX_MCE_BANKS;
3126                 break;
3127         case KVM_CAP_XCRS:
3128                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3129                 break;
3130         case KVM_CAP_TSC_CONTROL:
3131                 r = kvm_has_tsc_control;
3132                 break;
3133         case KVM_CAP_X2APIC_API:
3134                 r = KVM_X2APIC_API_VALID_FLAGS;
3135                 break;
3136         case KVM_CAP_NESTED_STATE:
3137                 r = kvm_x86_ops->get_nested_state ?
3138                         kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3139                 break;
3140         default:
3141                 break;
3142         }
3143         return r;
3144
3145 }
3146
3147 long kvm_arch_dev_ioctl(struct file *filp,
3148                         unsigned int ioctl, unsigned long arg)
3149 {
3150         void __user *argp = (void __user *)arg;
3151         long r;
3152
3153         switch (ioctl) {
3154         case KVM_GET_MSR_INDEX_LIST: {
3155                 struct kvm_msr_list __user *user_msr_list = argp;
3156                 struct kvm_msr_list msr_list;
3157                 unsigned n;
3158
3159                 r = -EFAULT;
3160                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3161                         goto out;
3162                 n = msr_list.nmsrs;
3163                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3164                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3165                         goto out;
3166                 r = -E2BIG;
3167                 if (n < msr_list.nmsrs)
3168                         goto out;
3169                 r = -EFAULT;
3170                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3171                                  num_msrs_to_save * sizeof(u32)))
3172                         goto out;
3173                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3174                                  &emulated_msrs,
3175                                  num_emulated_msrs * sizeof(u32)))
3176                         goto out;
3177                 r = 0;
3178                 break;
3179         }
3180         case KVM_GET_SUPPORTED_CPUID:
3181         case KVM_GET_EMULATED_CPUID: {
3182                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3183                 struct kvm_cpuid2 cpuid;
3184
3185                 r = -EFAULT;
3186                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3187                         goto out;
3188
3189                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3190                                             ioctl);
3191                 if (r)
3192                         goto out;
3193
3194                 r = -EFAULT;
3195                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3196                         goto out;
3197                 r = 0;
3198                 break;
3199         }
3200         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3201                 r = -EFAULT;
3202                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3203                                  sizeof(kvm_mce_cap_supported)))
3204                         goto out;
3205                 r = 0;
3206                 break;
3207         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3208                 struct kvm_msr_list __user *user_msr_list = argp;
3209                 struct kvm_msr_list msr_list;
3210                 unsigned int n;
3211
3212                 r = -EFAULT;
3213                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3214                         goto out;
3215                 n = msr_list.nmsrs;
3216                 msr_list.nmsrs = num_msr_based_features;
3217                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3218                         goto out;
3219                 r = -E2BIG;
3220                 if (n < msr_list.nmsrs)
3221                         goto out;
3222                 r = -EFAULT;
3223                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3224                                  num_msr_based_features * sizeof(u32)))
3225                         goto out;
3226                 r = 0;
3227                 break;
3228         }
3229         case KVM_GET_MSRS:
3230                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3231                 break;
3232         }
3233         default:
3234                 r = -EINVAL;
3235         }
3236 out:
3237         return r;
3238 }
3239
3240 static void wbinvd_ipi(void *garbage)
3241 {
3242         wbinvd();
3243 }
3244
3245 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3246 {
3247         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3248 }
3249
3250 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3251 {
3252         /* Address WBINVD may be executed by guest */
3253         if (need_emulate_wbinvd(vcpu)) {
3254                 if (kvm_x86_ops->has_wbinvd_exit())
3255                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3256                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3257                         smp_call_function_single(vcpu->cpu,
3258                                         wbinvd_ipi, NULL, 1);
3259         }
3260
3261         kvm_x86_ops->vcpu_load(vcpu, cpu);
3262
3263         /* Apply any externally detected TSC adjustments (due to suspend) */
3264         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3265                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3266                 vcpu->arch.tsc_offset_adjustment = 0;
3267                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3268         }
3269
3270         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3271                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3272                                 rdtsc() - vcpu->arch.last_host_tsc;
3273                 if (tsc_delta < 0)
3274                         mark_tsc_unstable("KVM discovered backwards TSC");
3275
3276                 if (kvm_check_tsc_unstable()) {
3277                         u64 offset = kvm_compute_tsc_offset(vcpu,
3278                                                 vcpu->arch.last_guest_tsc);
3279                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3280                         vcpu->arch.tsc_catchup = 1;
3281                 }
3282
3283                 if (kvm_lapic_hv_timer_in_use(vcpu))
3284                         kvm_lapic_restart_hv_timer(vcpu);
3285
3286                 /*
3287                  * On a host with synchronized TSC, there is no need to update
3288                  * kvmclock on vcpu->cpu migration
3289                  */
3290                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3291                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3292                 if (vcpu->cpu != cpu)
3293                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3294                 vcpu->cpu = cpu;
3295         }
3296
3297         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3298 }
3299
3300 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3301 {
3302         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3303                 return;
3304
3305         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3306
3307         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3308                         &vcpu->arch.st.steal.preempted,
3309                         offsetof(struct kvm_steal_time, preempted),
3310                         sizeof(vcpu->arch.st.steal.preempted));
3311 }
3312
3313 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3314 {
3315         int idx;
3316
3317         if (vcpu->preempted)
3318                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3319
3320         /*
3321          * Disable page faults because we're in atomic context here.
3322          * kvm_write_guest_offset_cached() would call might_fault()
3323          * that relies on pagefault_disable() to tell if there's a
3324          * bug. NOTE: the write to guest memory may not go through if
3325          * during postcopy live migration or if there's heavy guest
3326          * paging.
3327          */
3328         pagefault_disable();
3329         /*
3330          * kvm_memslots() will be called by
3331          * kvm_write_guest_offset_cached() so take the srcu lock.
3332          */
3333         idx = srcu_read_lock(&vcpu->kvm->srcu);
3334         kvm_steal_time_set_preempted(vcpu);
3335         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3336         pagefault_enable();
3337         kvm_x86_ops->vcpu_put(vcpu);
3338         vcpu->arch.last_host_tsc = rdtsc();
3339         /*
3340          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3341          * on every vmexit, but if not, we might have a stale dr6 from the
3342          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3343          */
3344         set_debugreg(0, 6);
3345 }
3346
3347 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3348                                     struct kvm_lapic_state *s)
3349 {
3350         if (vcpu->arch.apicv_active)
3351                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3352
3353         return kvm_apic_get_state(vcpu, s);
3354 }
3355
3356 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3357                                     struct kvm_lapic_state *s)
3358 {
3359         int r;
3360
3361         r = kvm_apic_set_state(vcpu, s);
3362         if (r)
3363                 return r;
3364         update_cr8_intercept(vcpu);
3365
3366         return 0;
3367 }
3368
3369 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3370 {
3371         return (!lapic_in_kernel(vcpu) ||
3372                 kvm_apic_accept_pic_intr(vcpu));
3373 }
3374
3375 /*
3376  * if userspace requested an interrupt window, check that the
3377  * interrupt window is open.
3378  *
3379  * No need to exit to userspace if we already have an interrupt queued.
3380  */
3381 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3382 {
3383         return kvm_arch_interrupt_allowed(vcpu) &&
3384                 !kvm_cpu_has_interrupt(vcpu) &&
3385                 !kvm_event_needs_reinjection(vcpu) &&
3386                 kvm_cpu_accept_dm_intr(vcpu);
3387 }
3388
3389 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3390                                     struct kvm_interrupt *irq)
3391 {
3392         if (irq->irq >= KVM_NR_INTERRUPTS)
3393                 return -EINVAL;
3394
3395         if (!irqchip_in_kernel(vcpu->kvm)) {
3396                 kvm_queue_interrupt(vcpu, irq->irq, false);
3397                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3398                 return 0;
3399         }
3400
3401         /*
3402          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3403          * fail for in-kernel 8259.
3404          */
3405         if (pic_in_kernel(vcpu->kvm))
3406                 return -ENXIO;
3407
3408         if (vcpu->arch.pending_external_vector != -1)
3409                 return -EEXIST;
3410
3411         vcpu->arch.pending_external_vector = irq->irq;
3412         kvm_make_request(KVM_REQ_EVENT, vcpu);
3413         return 0;
3414 }
3415
3416 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3417 {
3418         kvm_inject_nmi(vcpu);
3419
3420         return 0;
3421 }
3422
3423 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3424 {
3425         kvm_make_request(KVM_REQ_SMI, vcpu);
3426
3427         return 0;
3428 }
3429
3430 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3431                                            struct kvm_tpr_access_ctl *tac)
3432 {
3433         if (tac->flags)
3434                 return -EINVAL;
3435         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3436         return 0;
3437 }
3438
3439 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3440                                         u64 mcg_cap)
3441 {
3442         int r;
3443         unsigned bank_num = mcg_cap & 0xff, bank;
3444
3445         r = -EINVAL;
3446         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3447                 goto out;
3448         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3449                 goto out;
3450         r = 0;
3451         vcpu->arch.mcg_cap = mcg_cap;
3452         /* Init IA32_MCG_CTL to all 1s */
3453         if (mcg_cap & MCG_CTL_P)
3454                 vcpu->arch.mcg_ctl = ~(u64)0;
3455         /* Init IA32_MCi_CTL to all 1s */
3456         for (bank = 0; bank < bank_num; bank++)
3457                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3458
3459         if (kvm_x86_ops->setup_mce)
3460                 kvm_x86_ops->setup_mce(vcpu);
3461 out:
3462         return r;
3463 }
3464
3465 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3466                                       struct kvm_x86_mce *mce)
3467 {
3468         u64 mcg_cap = vcpu->arch.mcg_cap;
3469         unsigned bank_num = mcg_cap & 0xff;
3470         u64 *banks = vcpu->arch.mce_banks;
3471
3472         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3473                 return -EINVAL;
3474         /*
3475          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3476          * reporting is disabled
3477          */
3478         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3479             vcpu->arch.mcg_ctl != ~(u64)0)
3480                 return 0;
3481         banks += 4 * mce->bank;
3482         /*
3483          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3484          * reporting is disabled for the bank
3485          */
3486         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3487                 return 0;
3488         if (mce->status & MCI_STATUS_UC) {
3489                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3490                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3491                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3492                         return 0;
3493                 }
3494                 if (banks[1] & MCI_STATUS_VAL)
3495                         mce->status |= MCI_STATUS_OVER;
3496                 banks[2] = mce->addr;
3497                 banks[3] = mce->misc;
3498                 vcpu->arch.mcg_status = mce->mcg_status;
3499                 banks[1] = mce->status;
3500                 kvm_queue_exception(vcpu, MC_VECTOR);
3501         } else if (!(banks[1] & MCI_STATUS_VAL)
3502                    || !(banks[1] & MCI_STATUS_UC)) {
3503                 if (banks[1] & MCI_STATUS_VAL)
3504                         mce->status |= MCI_STATUS_OVER;
3505                 banks[2] = mce->addr;
3506                 banks[3] = mce->misc;
3507                 banks[1] = mce->status;
3508         } else
3509                 banks[1] |= MCI_STATUS_OVER;
3510         return 0;
3511 }
3512
3513 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3514                                                struct kvm_vcpu_events *events)
3515 {
3516         process_nmi(vcpu);
3517
3518         /*
3519          * The API doesn't provide the instruction length for software
3520          * exceptions, so don't report them. As long as the guest RIP
3521          * isn't advanced, we should expect to encounter the exception
3522          * again.
3523          */
3524         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3525                 events->exception.injected = 0;
3526                 events->exception.pending = 0;
3527         } else {
3528                 events->exception.injected = vcpu->arch.exception.injected;
3529                 events->exception.pending = vcpu->arch.exception.pending;
3530                 /*
3531                  * For ABI compatibility, deliberately conflate
3532                  * pending and injected exceptions when
3533                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3534                  */
3535                 if (!vcpu->kvm->arch.exception_payload_enabled)
3536                         events->exception.injected |=
3537                                 vcpu->arch.exception.pending;
3538         }
3539         events->exception.nr = vcpu->arch.exception.nr;
3540         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3541         events->exception.error_code = vcpu->arch.exception.error_code;
3542         events->exception_has_payload = vcpu->arch.exception.has_payload;
3543         events->exception_payload = vcpu->arch.exception.payload;
3544
3545         events->interrupt.injected =
3546                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3547         events->interrupt.nr = vcpu->arch.interrupt.nr;
3548         events->interrupt.soft = 0;
3549         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3550
3551         events->nmi.injected = vcpu->arch.nmi_injected;
3552         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3553         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3554         events->nmi.pad = 0;
3555
3556         events->sipi_vector = 0; /* never valid when reporting to user space */
3557
3558         events->smi.smm = is_smm(vcpu);
3559         events->smi.pending = vcpu->arch.smi_pending;
3560         events->smi.smm_inside_nmi =
3561                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3562         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3563
3564         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3565                          | KVM_VCPUEVENT_VALID_SHADOW
3566                          | KVM_VCPUEVENT_VALID_SMM);
3567         if (vcpu->kvm->arch.exception_payload_enabled)
3568                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3569
3570         memset(&events->reserved, 0, sizeof(events->reserved));
3571 }
3572
3573 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3574
3575 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3576                                               struct kvm_vcpu_events *events)
3577 {
3578         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3579                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3580                               | KVM_VCPUEVENT_VALID_SHADOW
3581                               | KVM_VCPUEVENT_VALID_SMM
3582                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3583                 return -EINVAL;
3584
3585         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3586                 if (!vcpu->kvm->arch.exception_payload_enabled)
3587                         return -EINVAL;
3588                 if (events->exception.pending)
3589                         events->exception.injected = 0;
3590                 else
3591                         events->exception_has_payload = 0;
3592         } else {
3593                 events->exception.pending = 0;
3594                 events->exception_has_payload = 0;
3595         }
3596
3597         if ((events->exception.injected || events->exception.pending) &&
3598             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3599                 return -EINVAL;
3600
3601         /* INITs are latched while in SMM */
3602         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3603             (events->smi.smm || events->smi.pending) &&
3604             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3605                 return -EINVAL;
3606
3607         process_nmi(vcpu);
3608         vcpu->arch.exception.injected = events->exception.injected;
3609         vcpu->arch.exception.pending = events->exception.pending;
3610         vcpu->arch.exception.nr = events->exception.nr;
3611         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3612         vcpu->arch.exception.error_code = events->exception.error_code;
3613         vcpu->arch.exception.has_payload = events->exception_has_payload;
3614         vcpu->arch.exception.payload = events->exception_payload;
3615
3616         vcpu->arch.interrupt.injected = events->interrupt.injected;
3617         vcpu->arch.interrupt.nr = events->interrupt.nr;
3618         vcpu->arch.interrupt.soft = events->interrupt.soft;
3619         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3620                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3621                                                   events->interrupt.shadow);
3622
3623         vcpu->arch.nmi_injected = events->nmi.injected;
3624         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3625                 vcpu->arch.nmi_pending = events->nmi.pending;
3626         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3627
3628         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3629             lapic_in_kernel(vcpu))
3630                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3631
3632         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3633                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3634                         if (events->smi.smm)
3635                                 vcpu->arch.hflags |= HF_SMM_MASK;
3636                         else
3637                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
3638                         kvm_smm_changed(vcpu);
3639                 }
3640
3641                 vcpu->arch.smi_pending = events->smi.pending;
3642
3643                 if (events->smi.smm) {
3644                         if (events->smi.smm_inside_nmi)
3645                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3646                         else
3647                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3648                         if (lapic_in_kernel(vcpu)) {
3649                                 if (events->smi.latched_init)
3650                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3651                                 else
3652                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3653                         }
3654                 }
3655         }
3656
3657         kvm_make_request(KVM_REQ_EVENT, vcpu);
3658
3659         return 0;
3660 }
3661
3662 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3663                                              struct kvm_debugregs *dbgregs)
3664 {
3665         unsigned long val;
3666
3667         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3668         kvm_get_dr(vcpu, 6, &val);
3669         dbgregs->dr6 = val;
3670         dbgregs->dr7 = vcpu->arch.dr7;
3671         dbgregs->flags = 0;
3672         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3673 }
3674
3675 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3676                                             struct kvm_debugregs *dbgregs)
3677 {
3678         if (dbgregs->flags)
3679                 return -EINVAL;
3680
3681         if (dbgregs->dr6 & ~0xffffffffull)
3682                 return -EINVAL;
3683         if (dbgregs->dr7 & ~0xffffffffull)
3684                 return -EINVAL;
3685
3686         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3687         kvm_update_dr0123(vcpu);
3688         vcpu->arch.dr6 = dbgregs->dr6;
3689         kvm_update_dr6(vcpu);
3690         vcpu->arch.dr7 = dbgregs->dr7;
3691         kvm_update_dr7(vcpu);
3692
3693         return 0;
3694 }
3695
3696 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3697
3698 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3699 {
3700         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3701         u64 xstate_bv = xsave->header.xfeatures;
3702         u64 valid;
3703
3704         /*
3705          * Copy legacy XSAVE area, to avoid complications with CPUID
3706          * leaves 0 and 1 in the loop below.
3707          */
3708         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3709
3710         /* Set XSTATE_BV */
3711         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3712         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3713
3714         /*
3715          * Copy each region from the possibly compacted offset to the
3716          * non-compacted offset.
3717          */
3718         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3719         while (valid) {
3720                 u64 feature = valid & -valid;
3721                 int index = fls64(feature) - 1;
3722                 void *src = get_xsave_addr(xsave, feature);
3723
3724                 if (src) {
3725                         u32 size, offset, ecx, edx;
3726                         cpuid_count(XSTATE_CPUID, index,
3727                                     &size, &offset, &ecx, &edx);
3728                         if (feature == XFEATURE_MASK_PKRU)
3729                                 memcpy(dest + offset, &vcpu->arch.pkru,
3730                                        sizeof(vcpu->arch.pkru));
3731                         else
3732                                 memcpy(dest + offset, src, size);
3733
3734                 }
3735
3736                 valid -= feature;
3737         }
3738 }
3739
3740 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3741 {
3742         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3743         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3744         u64 valid;
3745
3746         /*
3747          * Copy legacy XSAVE area, to avoid complications with CPUID
3748          * leaves 0 and 1 in the loop below.
3749          */
3750         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3751
3752         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3753         xsave->header.xfeatures = xstate_bv;
3754         if (boot_cpu_has(X86_FEATURE_XSAVES))
3755                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3756
3757         /*
3758          * Copy each region from the non-compacted offset to the
3759          * possibly compacted offset.
3760          */
3761         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3762         while (valid) {
3763                 u64 feature = valid & -valid;
3764                 int index = fls64(feature) - 1;
3765                 void *dest = get_xsave_addr(xsave, feature);
3766
3767                 if (dest) {
3768                         u32 size, offset, ecx, edx;
3769                         cpuid_count(XSTATE_CPUID, index,
3770                                     &size, &offset, &ecx, &edx);
3771                         if (feature == XFEATURE_MASK_PKRU)
3772                                 memcpy(&vcpu->arch.pkru, src + offset,
3773                                        sizeof(vcpu->arch.pkru));
3774                         else
3775                                 memcpy(dest, src + offset, size);
3776                 }
3777
3778                 valid -= feature;
3779         }
3780 }
3781
3782 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3783                                          struct kvm_xsave *guest_xsave)
3784 {
3785         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3786                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3787                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3788         } else {
3789                 memcpy(guest_xsave->region,
3790                         &vcpu->arch.guest_fpu->state.fxsave,
3791                         sizeof(struct fxregs_state));
3792                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3793                         XFEATURE_MASK_FPSSE;
3794         }
3795 }
3796
3797 #define XSAVE_MXCSR_OFFSET 24
3798
3799 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3800                                         struct kvm_xsave *guest_xsave)
3801 {
3802         u64 xstate_bv =
3803                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3804         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3805
3806         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3807                 /*
3808                  * Here we allow setting states that are not present in
3809                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3810                  * with old userspace.
3811                  */
3812                 if (xstate_bv & ~kvm_supported_xcr0() ||
3813                         mxcsr & ~mxcsr_feature_mask)
3814                         return -EINVAL;
3815                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3816         } else {
3817                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3818                         mxcsr & ~mxcsr_feature_mask)
3819                         return -EINVAL;
3820                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3821                         guest_xsave->region, sizeof(struct fxregs_state));
3822         }
3823         return 0;
3824 }
3825
3826 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3827                                         struct kvm_xcrs *guest_xcrs)
3828 {
3829         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3830                 guest_xcrs->nr_xcrs = 0;
3831                 return;
3832         }
3833
3834         guest_xcrs->nr_xcrs = 1;
3835         guest_xcrs->flags = 0;
3836         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3837         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3838 }
3839
3840 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3841                                        struct kvm_xcrs *guest_xcrs)
3842 {
3843         int i, r = 0;
3844
3845         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3846                 return -EINVAL;
3847
3848         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3849                 return -EINVAL;
3850
3851         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3852                 /* Only support XCR0 currently */
3853                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3854                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3855                                 guest_xcrs->xcrs[i].value);
3856                         break;
3857                 }
3858         if (r)
3859                 r = -EINVAL;
3860         return r;
3861 }
3862
3863 /*
3864  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3865  * stopped by the hypervisor.  This function will be called from the host only.
3866  * EINVAL is returned when the host attempts to set the flag for a guest that
3867  * does not support pv clocks.
3868  */
3869 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3870 {
3871         if (!vcpu->arch.pv_time_enabled)
3872                 return -EINVAL;
3873         vcpu->arch.pvclock_set_guest_stopped_request = true;
3874         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3875         return 0;
3876 }
3877
3878 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3879                                      struct kvm_enable_cap *cap)
3880 {
3881         int r;
3882         uint16_t vmcs_version;
3883         void __user *user_ptr;
3884
3885         if (cap->flags)
3886                 return -EINVAL;
3887
3888         switch (cap->cap) {
3889         case KVM_CAP_HYPERV_SYNIC2:
3890                 if (cap->args[0])
3891                         return -EINVAL;
3892                 /* fall through */
3893
3894         case KVM_CAP_HYPERV_SYNIC:
3895                 if (!irqchip_in_kernel(vcpu->kvm))
3896                         return -EINVAL;
3897                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3898                                              KVM_CAP_HYPERV_SYNIC2);
3899         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3900                 if (!kvm_x86_ops->nested_enable_evmcs)
3901                         return -ENOTTY;
3902                 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3903                 if (!r) {
3904                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
3905                         if (copy_to_user(user_ptr, &vmcs_version,
3906                                          sizeof(vmcs_version)))
3907                                 r = -EFAULT;
3908                 }
3909                 return r;
3910
3911         default:
3912                 return -EINVAL;
3913         }
3914 }
3915
3916 long kvm_arch_vcpu_ioctl(struct file *filp,
3917                          unsigned int ioctl, unsigned long arg)
3918 {
3919         struct kvm_vcpu *vcpu = filp->private_data;
3920         void __user *argp = (void __user *)arg;
3921         int r;
3922         union {
3923                 struct kvm_lapic_state *lapic;
3924                 struct kvm_xsave *xsave;
3925                 struct kvm_xcrs *xcrs;
3926                 void *buffer;
3927         } u;
3928
3929         vcpu_load(vcpu);
3930
3931         u.buffer = NULL;
3932         switch (ioctl) {
3933         case KVM_GET_LAPIC: {
3934                 r = -EINVAL;
3935                 if (!lapic_in_kernel(vcpu))
3936                         goto out;
3937                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
3938                                 GFP_KERNEL_ACCOUNT);
3939
3940                 r = -ENOMEM;
3941                 if (!u.lapic)
3942                         goto out;
3943                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3944                 if (r)
3945                         goto out;
3946                 r = -EFAULT;
3947                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3948                         goto out;
3949                 r = 0;
3950                 break;
3951         }
3952         case KVM_SET_LAPIC: {
3953                 r = -EINVAL;
3954                 if (!lapic_in_kernel(vcpu))
3955                         goto out;
3956                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3957                 if (IS_ERR(u.lapic)) {
3958                         r = PTR_ERR(u.lapic);
3959                         goto out_nofree;
3960                 }
3961
3962                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3963                 break;
3964         }
3965         case KVM_INTERRUPT: {
3966                 struct kvm_interrupt irq;
3967
3968                 r = -EFAULT;
3969                 if (copy_from_user(&irq, argp, sizeof(irq)))
3970                         goto out;
3971                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3972                 break;
3973         }
3974         case KVM_NMI: {
3975                 r = kvm_vcpu_ioctl_nmi(vcpu);
3976                 break;
3977         }
3978         case KVM_SMI: {
3979                 r = kvm_vcpu_ioctl_smi(vcpu);
3980                 break;
3981         }
3982         case KVM_SET_CPUID: {
3983                 struct kvm_cpuid __user *cpuid_arg = argp;
3984                 struct kvm_cpuid cpuid;
3985
3986                 r = -EFAULT;
3987                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3988                         goto out;
3989                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3990                 break;
3991         }
3992         case KVM_SET_CPUID2: {
3993                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3994                 struct kvm_cpuid2 cpuid;
3995
3996                 r = -EFAULT;
3997                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3998                         goto out;
3999                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4000                                               cpuid_arg->entries);
4001                 break;
4002         }
4003         case KVM_GET_CPUID2: {
4004                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4005                 struct kvm_cpuid2 cpuid;
4006
4007                 r = -EFAULT;
4008                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4009                         goto out;
4010                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4011                                               cpuid_arg->entries);
4012                 if (r)
4013                         goto out;
4014                 r = -EFAULT;
4015                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4016                         goto out;
4017                 r = 0;
4018                 break;
4019         }
4020         case KVM_GET_MSRS: {
4021                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4022                 r = msr_io(vcpu, argp, do_get_msr, 1);
4023                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4024                 break;
4025         }
4026         case KVM_SET_MSRS: {
4027                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4028                 r = msr_io(vcpu, argp, do_set_msr, 0);
4029                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4030                 break;
4031         }
4032         case KVM_TPR_ACCESS_REPORTING: {
4033                 struct kvm_tpr_access_ctl tac;
4034
4035                 r = -EFAULT;
4036                 if (copy_from_user(&tac, argp, sizeof(tac)))
4037                         goto out;
4038                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4039                 if (r)
4040                         goto out;
4041                 r = -EFAULT;
4042                 if (copy_to_user(argp, &tac, sizeof(tac)))
4043                         goto out;
4044                 r = 0;
4045                 break;
4046         };
4047         case KVM_SET_VAPIC_ADDR: {
4048                 struct kvm_vapic_addr va;
4049                 int idx;
4050
4051                 r = -EINVAL;
4052                 if (!lapic_in_kernel(vcpu))
4053                         goto out;
4054                 r = -EFAULT;
4055                 if (copy_from_user(&va, argp, sizeof(va)))
4056                         goto out;
4057                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4058                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4059                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4060                 break;
4061         }
4062         case KVM_X86_SETUP_MCE: {
4063                 u64 mcg_cap;
4064
4065                 r = -EFAULT;
4066                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4067                         goto out;
4068                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4069                 break;
4070         }
4071         case KVM_X86_SET_MCE: {
4072                 struct kvm_x86_mce mce;
4073
4074                 r = -EFAULT;
4075                 if (copy_from_user(&mce, argp, sizeof(mce)))
4076                         goto out;
4077                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4078                 break;
4079         }
4080         case KVM_GET_VCPU_EVENTS: {
4081                 struct kvm_vcpu_events events;
4082
4083                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4084
4085                 r = -EFAULT;
4086                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4087                         break;
4088                 r = 0;
4089                 break;
4090         }
4091         case KVM_SET_VCPU_EVENTS: {
4092                 struct kvm_vcpu_events events;
4093
4094                 r = -EFAULT;
4095                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4096                         break;
4097
4098                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4099                 break;
4100         }
4101         case KVM_GET_DEBUGREGS: {
4102                 struct kvm_debugregs dbgregs;
4103
4104                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4105
4106                 r = -EFAULT;
4107                 if (copy_to_user(argp, &dbgregs,
4108                                  sizeof(struct kvm_debugregs)))
4109                         break;
4110                 r = 0;
4111                 break;
4112         }
4113         case KVM_SET_DEBUGREGS: {
4114                 struct kvm_debugregs dbgregs;
4115
4116                 r = -EFAULT;
4117                 if (copy_from_user(&dbgregs, argp,
4118                                    sizeof(struct kvm_debugregs)))
4119                         break;
4120
4121                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4122                 break;
4123         }
4124         case KVM_GET_XSAVE: {
4125                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4126                 r = -ENOMEM;
4127                 if (!u.xsave)
4128                         break;
4129
4130                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4131
4132                 r = -EFAULT;
4133                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4134                         break;
4135                 r = 0;
4136                 break;
4137         }
4138         case KVM_SET_XSAVE: {
4139                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4140                 if (IS_ERR(u.xsave)) {
4141                         r = PTR_ERR(u.xsave);
4142                         goto out_nofree;
4143                 }
4144
4145                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4146                 break;
4147         }
4148         case KVM_GET_XCRS: {
4149                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4150                 r = -ENOMEM;
4151                 if (!u.xcrs)
4152                         break;
4153
4154                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4155
4156                 r = -EFAULT;
4157                 if (copy_to_user(argp, u.xcrs,
4158                                  sizeof(struct kvm_xcrs)))
4159                         break;
4160                 r = 0;
4161                 break;
4162         }
4163         case KVM_SET_XCRS: {
4164                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4165                 if (IS_ERR(u.xcrs)) {
4166                         r = PTR_ERR(u.xcrs);
4167                         goto out_nofree;
4168                 }
4169
4170                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4171                 break;
4172         }
4173         case KVM_SET_TSC_KHZ: {
4174                 u32 user_tsc_khz;
4175
4176                 r = -EINVAL;
4177                 user_tsc_khz = (u32)arg;
4178
4179                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4180                         goto out;
4181
4182                 if (user_tsc_khz == 0)
4183                         user_tsc_khz = tsc_khz;
4184
4185                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4186                         r = 0;
4187
4188                 goto out;
4189         }
4190         case KVM_GET_TSC_KHZ: {
4191                 r = vcpu->arch.virtual_tsc_khz;
4192                 goto out;
4193         }
4194         case KVM_KVMCLOCK_CTRL: {
4195                 r = kvm_set_guest_paused(vcpu);
4196                 goto out;
4197         }
4198         case KVM_ENABLE_CAP: {
4199                 struct kvm_enable_cap cap;
4200
4201                 r = -EFAULT;
4202                 if (copy_from_user(&cap, argp, sizeof(cap)))
4203                         goto out;
4204                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4205                 break;
4206         }
4207         case KVM_GET_NESTED_STATE: {
4208                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4209                 u32 user_data_size;
4210
4211                 r = -EINVAL;
4212                 if (!kvm_x86_ops->get_nested_state)
4213                         break;
4214
4215                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4216                 r = -EFAULT;
4217                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4218                         break;
4219
4220                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4221                                                   user_data_size);
4222                 if (r < 0)
4223                         break;
4224
4225                 if (r > user_data_size) {
4226                         if (put_user(r, &user_kvm_nested_state->size))
4227                                 r = -EFAULT;
4228                         else
4229                                 r = -E2BIG;
4230                         break;
4231                 }
4232
4233                 r = 0;
4234                 break;
4235         }
4236         case KVM_SET_NESTED_STATE: {
4237                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4238                 struct kvm_nested_state kvm_state;
4239
4240                 r = -EINVAL;
4241                 if (!kvm_x86_ops->set_nested_state)
4242                         break;
4243
4244                 r = -EFAULT;
4245                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4246                         break;
4247
4248                 r = -EINVAL;
4249                 if (kvm_state.size < sizeof(kvm_state))
4250                         break;
4251
4252                 if (kvm_state.flags &
4253                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4254                       | KVM_STATE_NESTED_EVMCS))
4255                         break;
4256
4257                 /* nested_run_pending implies guest_mode.  */
4258                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4259                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4260                         break;
4261
4262                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4263                 break;
4264         }
4265         case KVM_GET_SUPPORTED_HV_CPUID: {
4266                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4267                 struct kvm_cpuid2 cpuid;
4268
4269                 r = -EFAULT;
4270                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4271                         goto out;
4272
4273                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4274                                                 cpuid_arg->entries);
4275                 if (r)
4276                         goto out;
4277
4278                 r = -EFAULT;
4279                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4280                         goto out;
4281                 r = 0;
4282                 break;
4283         }
4284         default:
4285                 r = -EINVAL;
4286         }
4287 out:
4288         kfree(u.buffer);
4289 out_nofree:
4290         vcpu_put(vcpu);
4291         return r;
4292 }
4293
4294 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4295 {
4296         return VM_FAULT_SIGBUS;
4297 }
4298
4299 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4300 {
4301         int ret;
4302
4303         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4304                 return -EINVAL;
4305         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4306         return ret;
4307 }
4308
4309 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4310                                               u64 ident_addr)
4311 {
4312         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4313 }
4314
4315 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4316                                          unsigned long kvm_nr_mmu_pages)
4317 {
4318         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4319                 return -EINVAL;
4320
4321         mutex_lock(&kvm->slots_lock);
4322
4323         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4324         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4325
4326         mutex_unlock(&kvm->slots_lock);
4327         return 0;
4328 }
4329
4330 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4331 {
4332         return kvm->arch.n_max_mmu_pages;
4333 }
4334
4335 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4336 {
4337         struct kvm_pic *pic = kvm->arch.vpic;
4338         int r;
4339
4340         r = 0;
4341         switch (chip->chip_id) {
4342         case KVM_IRQCHIP_PIC_MASTER:
4343                 memcpy(&chip->chip.pic, &pic->pics[0],
4344                         sizeof(struct kvm_pic_state));
4345                 break;
4346         case KVM_IRQCHIP_PIC_SLAVE:
4347                 memcpy(&chip->chip.pic, &pic->pics[1],
4348                         sizeof(struct kvm_pic_state));
4349                 break;
4350         case KVM_IRQCHIP_IOAPIC:
4351                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4352                 break;
4353         default:
4354                 r = -EINVAL;
4355                 break;
4356         }
4357         return r;
4358 }
4359
4360 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4361 {
4362         struct kvm_pic *pic = kvm->arch.vpic;
4363         int r;
4364
4365         r = 0;
4366         switch (chip->chip_id) {
4367         case KVM_IRQCHIP_PIC_MASTER:
4368                 spin_lock(&pic->lock);
4369                 memcpy(&pic->pics[0], &chip->chip.pic,
4370                         sizeof(struct kvm_pic_state));
4371                 spin_unlock(&pic->lock);
4372                 break;
4373         case KVM_IRQCHIP_PIC_SLAVE:
4374                 spin_lock(&pic->lock);
4375                 memcpy(&pic->pics[1], &chip->chip.pic,
4376                         sizeof(struct kvm_pic_state));
4377                 spin_unlock(&pic->lock);
4378                 break;
4379         case KVM_IRQCHIP_IOAPIC:
4380                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4381                 break;
4382         default:
4383                 r = -EINVAL;
4384                 break;
4385         }
4386         kvm_pic_update_irq(pic);
4387         return r;
4388 }
4389
4390 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4391 {
4392         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4393
4394         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4395
4396         mutex_lock(&kps->lock);
4397         memcpy(ps, &kps->channels, sizeof(*ps));
4398         mutex_unlock(&kps->lock);
4399         return 0;
4400 }
4401
4402 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4403 {
4404         int i;
4405         struct kvm_pit *pit = kvm->arch.vpit;
4406
4407         mutex_lock(&pit->pit_state.lock);
4408         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4409         for (i = 0; i < 3; i++)
4410                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4411         mutex_unlock(&pit->pit_state.lock);
4412         return 0;
4413 }
4414
4415 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4416 {
4417         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4418         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4419                 sizeof(ps->channels));
4420         ps->flags = kvm->arch.vpit->pit_state.flags;
4421         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4422         memset(&ps->reserved, 0, sizeof(ps->reserved));
4423         return 0;
4424 }
4425
4426 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4427 {
4428         int start = 0;
4429         int i;
4430         u32 prev_legacy, cur_legacy;
4431         struct kvm_pit *pit = kvm->arch.vpit;
4432
4433         mutex_lock(&pit->pit_state.lock);
4434         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4435         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4436         if (!prev_legacy && cur_legacy)
4437                 start = 1;
4438         memcpy(&pit->pit_state.channels, &ps->channels,
4439                sizeof(pit->pit_state.channels));
4440         pit->pit_state.flags = ps->flags;
4441         for (i = 0; i < 3; i++)
4442                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4443                                    start && i == 0);
4444         mutex_unlock(&pit->pit_state.lock);
4445         return 0;
4446 }
4447
4448 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4449                                  struct kvm_reinject_control *control)
4450 {
4451         struct kvm_pit *pit = kvm->arch.vpit;
4452
4453         if (!pit)
4454                 return -ENXIO;
4455
4456         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4457          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4458          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4459          */
4460         mutex_lock(&pit->pit_state.lock);
4461         kvm_pit_set_reinject(pit, control->pit_reinject);
4462         mutex_unlock(&pit->pit_state.lock);
4463
4464         return 0;
4465 }
4466
4467 /**
4468  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4469  * @kvm: kvm instance
4470  * @log: slot id and address to which we copy the log
4471  *
4472  * Steps 1-4 below provide general overview of dirty page logging. See
4473  * kvm_get_dirty_log_protect() function description for additional details.
4474  *
4475  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4476  * always flush the TLB (step 4) even if previous step failed  and the dirty
4477  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4478  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4479  * writes will be marked dirty for next log read.
4480  *
4481  *   1. Take a snapshot of the bit and clear it if needed.
4482  *   2. Write protect the corresponding page.
4483  *   3. Copy the snapshot to the userspace.
4484  *   4. Flush TLB's if needed.
4485  */
4486 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4487 {
4488         bool flush = false;
4489         int r;
4490
4491         mutex_lock(&kvm->slots_lock);
4492
4493         /*
4494          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4495          */
4496         if (kvm_x86_ops->flush_log_dirty)
4497                 kvm_x86_ops->flush_log_dirty(kvm);
4498
4499         r = kvm_get_dirty_log_protect(kvm, log, &flush);
4500
4501         /*
4502          * All the TLBs can be flushed out of mmu lock, see the comments in
4503          * kvm_mmu_slot_remove_write_access().
4504          */
4505         lockdep_assert_held(&kvm->slots_lock);
4506         if (flush)
4507                 kvm_flush_remote_tlbs(kvm);
4508
4509         mutex_unlock(&kvm->slots_lock);
4510         return r;
4511 }
4512
4513 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4514 {
4515         bool flush = false;
4516         int r;
4517
4518         mutex_lock(&kvm->slots_lock);
4519
4520         /*
4521          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4522          */
4523         if (kvm_x86_ops->flush_log_dirty)
4524                 kvm_x86_ops->flush_log_dirty(kvm);
4525
4526         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4527
4528         /*
4529          * All the TLBs can be flushed out of mmu lock, see the comments in
4530          * kvm_mmu_slot_remove_write_access().
4531          */
4532         lockdep_assert_held(&kvm->slots_lock);
4533         if (flush)
4534                 kvm_flush_remote_tlbs(kvm);
4535
4536         mutex_unlock(&kvm->slots_lock);
4537         return r;
4538 }
4539
4540 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4541                         bool line_status)
4542 {
4543         if (!irqchip_in_kernel(kvm))
4544                 return -ENXIO;
4545
4546         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4547                                         irq_event->irq, irq_event->level,
4548                                         line_status);
4549         return 0;
4550 }
4551
4552 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4553                             struct kvm_enable_cap *cap)
4554 {
4555         int r;
4556
4557         if (cap->flags)
4558                 return -EINVAL;
4559
4560         switch (cap->cap) {
4561         case KVM_CAP_DISABLE_QUIRKS:
4562                 kvm->arch.disabled_quirks = cap->args[0];
4563                 r = 0;
4564                 break;
4565         case KVM_CAP_SPLIT_IRQCHIP: {
4566                 mutex_lock(&kvm->lock);
4567                 r = -EINVAL;
4568                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4569                         goto split_irqchip_unlock;
4570                 r = -EEXIST;
4571                 if (irqchip_in_kernel(kvm))
4572                         goto split_irqchip_unlock;
4573                 if (kvm->created_vcpus)
4574                         goto split_irqchip_unlock;
4575                 r = kvm_setup_empty_irq_routing(kvm);
4576                 if (r)
4577                         goto split_irqchip_unlock;
4578                 /* Pairs with irqchip_in_kernel. */
4579                 smp_wmb();
4580                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4581                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4582                 r = 0;
4583 split_irqchip_unlock:
4584                 mutex_unlock(&kvm->lock);
4585                 break;
4586         }
4587         case KVM_CAP_X2APIC_API:
4588                 r = -EINVAL;
4589                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4590                         break;
4591
4592                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4593                         kvm->arch.x2apic_format = true;
4594                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4595                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4596
4597                 r = 0;
4598                 break;
4599         case KVM_CAP_X86_DISABLE_EXITS:
4600                 r = -EINVAL;
4601                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4602                         break;
4603
4604                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4605                         kvm_can_mwait_in_guest())
4606                         kvm->arch.mwait_in_guest = true;
4607                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4608                         kvm->arch.hlt_in_guest = true;
4609                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4610                         kvm->arch.pause_in_guest = true;
4611                 r = 0;
4612                 break;
4613         case KVM_CAP_MSR_PLATFORM_INFO:
4614                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4615                 r = 0;
4616                 break;
4617         case KVM_CAP_EXCEPTION_PAYLOAD:
4618                 kvm->arch.exception_payload_enabled = cap->args[0];
4619                 r = 0;
4620                 break;
4621         default:
4622                 r = -EINVAL;
4623                 break;
4624         }
4625         return r;
4626 }
4627
4628 long kvm_arch_vm_ioctl(struct file *filp,
4629                        unsigned int ioctl, unsigned long arg)
4630 {
4631         struct kvm *kvm = filp->private_data;
4632         void __user *argp = (void __user *)arg;
4633         int r = -ENOTTY;
4634         /*
4635          * This union makes it completely explicit to gcc-3.x
4636          * that these two variables' stack usage should be
4637          * combined, not added together.
4638          */
4639         union {
4640                 struct kvm_pit_state ps;
4641                 struct kvm_pit_state2 ps2;
4642                 struct kvm_pit_config pit_config;
4643         } u;
4644
4645         switch (ioctl) {
4646         case KVM_SET_TSS_ADDR:
4647                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4648                 break;
4649         case KVM_SET_IDENTITY_MAP_ADDR: {
4650                 u64 ident_addr;
4651
4652                 mutex_lock(&kvm->lock);
4653                 r = -EINVAL;
4654                 if (kvm->created_vcpus)
4655                         goto set_identity_unlock;
4656                 r = -EFAULT;
4657                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4658                         goto set_identity_unlock;
4659                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4660 set_identity_unlock:
4661                 mutex_unlock(&kvm->lock);
4662                 break;
4663         }
4664         case KVM_SET_NR_MMU_PAGES:
4665                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4666                 break;
4667         case KVM_GET_NR_MMU_PAGES:
4668                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4669                 break;
4670         case KVM_CREATE_IRQCHIP: {
4671                 mutex_lock(&kvm->lock);
4672
4673                 r = -EEXIST;
4674                 if (irqchip_in_kernel(kvm))
4675                         goto create_irqchip_unlock;
4676
4677                 r = -EINVAL;
4678                 if (kvm->created_vcpus)
4679                         goto create_irqchip_unlock;
4680
4681                 r = kvm_pic_init(kvm);
4682                 if (r)
4683                         goto create_irqchip_unlock;
4684
4685                 r = kvm_ioapic_init(kvm);
4686                 if (r) {
4687                         kvm_pic_destroy(kvm);
4688                         goto create_irqchip_unlock;
4689                 }
4690
4691                 r = kvm_setup_default_irq_routing(kvm);
4692                 if (r) {
4693                         kvm_ioapic_destroy(kvm);
4694                         kvm_pic_destroy(kvm);
4695                         goto create_irqchip_unlock;
4696                 }
4697                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4698                 smp_wmb();
4699                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4700         create_irqchip_unlock:
4701                 mutex_unlock(&kvm->lock);
4702                 break;
4703         }
4704         case KVM_CREATE_PIT:
4705                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4706                 goto create_pit;
4707         case KVM_CREATE_PIT2:
4708                 r = -EFAULT;
4709                 if (copy_from_user(&u.pit_config, argp,
4710                                    sizeof(struct kvm_pit_config)))
4711                         goto out;
4712         create_pit:
4713                 mutex_lock(&kvm->lock);
4714                 r = -EEXIST;
4715                 if (kvm->arch.vpit)
4716                         goto create_pit_unlock;
4717                 r = -ENOMEM;
4718                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4719                 if (kvm->arch.vpit)
4720                         r = 0;
4721         create_pit_unlock:
4722                 mutex_unlock(&kvm->lock);
4723                 break;
4724         case KVM_GET_IRQCHIP: {
4725                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4726                 struct kvm_irqchip *chip;
4727
4728                 chip = memdup_user(argp, sizeof(*chip));
4729                 if (IS_ERR(chip)) {
4730                         r = PTR_ERR(chip);
4731                         goto out;
4732                 }
4733
4734                 r = -ENXIO;
4735                 if (!irqchip_kernel(kvm))
4736                         goto get_irqchip_out;
4737                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4738                 if (r)
4739                         goto get_irqchip_out;
4740                 r = -EFAULT;
4741                 if (copy_to_user(argp, chip, sizeof(*chip)))
4742                         goto get_irqchip_out;
4743                 r = 0;
4744         get_irqchip_out:
4745                 kfree(chip);
4746                 break;
4747         }
4748         case KVM_SET_IRQCHIP: {
4749                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4750                 struct kvm_irqchip *chip;
4751
4752                 chip = memdup_user(argp, sizeof(*chip));
4753                 if (IS_ERR(chip)) {
4754                         r = PTR_ERR(chip);
4755                         goto out;
4756                 }
4757
4758                 r = -ENXIO;
4759                 if (!irqchip_kernel(kvm))
4760                         goto set_irqchip_out;
4761                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4762                 if (r)
4763                         goto set_irqchip_out;
4764                 r = 0;
4765         set_irqchip_out:
4766                 kfree(chip);
4767                 break;
4768         }
4769         case KVM_GET_PIT: {
4770                 r = -EFAULT;
4771                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4772                         goto out;
4773                 r = -ENXIO;
4774                 if (!kvm->arch.vpit)
4775                         goto out;
4776                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4777                 if (r)
4778                         goto out;
4779                 r = -EFAULT;
4780                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4781                         goto out;
4782                 r = 0;
4783                 break;
4784         }
4785         case KVM_SET_PIT: {
4786                 r = -EFAULT;
4787                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4788                         goto out;
4789                 r = -ENXIO;
4790                 if (!kvm->arch.vpit)
4791                         goto out;
4792                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4793                 break;
4794         }
4795         case KVM_GET_PIT2: {
4796                 r = -ENXIO;
4797                 if (!kvm->arch.vpit)
4798                         goto out;
4799                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4800                 if (r)
4801                         goto out;
4802                 r = -EFAULT;
4803                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4804                         goto out;
4805                 r = 0;
4806                 break;
4807         }
4808         case KVM_SET_PIT2: {
4809                 r = -EFAULT;
4810                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4811                         goto out;
4812                 r = -ENXIO;
4813                 if (!kvm->arch.vpit)
4814                         goto out;
4815                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4816                 break;
4817         }
4818         case KVM_REINJECT_CONTROL: {
4819                 struct kvm_reinject_control control;
4820                 r =  -EFAULT;
4821                 if (copy_from_user(&control, argp, sizeof(control)))
4822                         goto out;
4823                 r = kvm_vm_ioctl_reinject(kvm, &control);
4824                 break;
4825         }
4826         case KVM_SET_BOOT_CPU_ID:
4827                 r = 0;
4828                 mutex_lock(&kvm->lock);
4829                 if (kvm->created_vcpus)
4830                         r = -EBUSY;
4831                 else
4832                         kvm->arch.bsp_vcpu_id = arg;
4833                 mutex_unlock(&kvm->lock);
4834                 break;
4835         case KVM_XEN_HVM_CONFIG: {
4836                 struct kvm_xen_hvm_config xhc;
4837                 r = -EFAULT;
4838                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4839                         goto out;
4840                 r = -EINVAL;
4841                 if (xhc.flags)
4842                         goto out;
4843                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4844                 r = 0;
4845                 break;
4846         }
4847         case KVM_SET_CLOCK: {
4848                 struct kvm_clock_data user_ns;
4849                 u64 now_ns;
4850
4851                 r = -EFAULT;
4852                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4853                         goto out;
4854
4855                 r = -EINVAL;
4856                 if (user_ns.flags)
4857                         goto out;
4858
4859                 r = 0;
4860                 /*
4861                  * TODO: userspace has to take care of races with VCPU_RUN, so
4862                  * kvm_gen_update_masterclock() can be cut down to locked
4863                  * pvclock_update_vm_gtod_copy().
4864                  */
4865                 kvm_gen_update_masterclock(kvm);
4866                 now_ns = get_kvmclock_ns(kvm);
4867                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4868                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4869                 break;
4870         }
4871         case KVM_GET_CLOCK: {
4872                 struct kvm_clock_data user_ns;
4873                 u64 now_ns;
4874
4875                 now_ns = get_kvmclock_ns(kvm);
4876                 user_ns.clock = now_ns;
4877                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4878                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4879
4880                 r = -EFAULT;
4881                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4882                         goto out;
4883                 r = 0;
4884                 break;
4885         }
4886         case KVM_MEMORY_ENCRYPT_OP: {
4887                 r = -ENOTTY;
4888                 if (kvm_x86_ops->mem_enc_op)
4889                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4890                 break;
4891         }
4892         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4893                 struct kvm_enc_region region;
4894
4895                 r = -EFAULT;
4896                 if (copy_from_user(&region, argp, sizeof(region)))
4897                         goto out;
4898
4899                 r = -ENOTTY;
4900                 if (kvm_x86_ops->mem_enc_reg_region)
4901                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4902                 break;
4903         }
4904         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4905                 struct kvm_enc_region region;
4906
4907                 r = -EFAULT;
4908                 if (copy_from_user(&region, argp, sizeof(region)))
4909                         goto out;
4910
4911                 r = -ENOTTY;
4912                 if (kvm_x86_ops->mem_enc_unreg_region)
4913                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4914                 break;
4915         }
4916         case KVM_HYPERV_EVENTFD: {
4917                 struct kvm_hyperv_eventfd hvevfd;
4918
4919                 r = -EFAULT;
4920                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4921                         goto out;
4922                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4923                 break;
4924         }
4925         default:
4926                 r = -ENOTTY;
4927         }
4928 out:
4929         return r;
4930 }
4931
4932 static void kvm_init_msr_list(void)
4933 {
4934         u32 dummy[2];
4935         unsigned i, j;
4936
4937         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4938                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4939                         continue;
4940
4941                 /*
4942                  * Even MSRs that are valid in the host may not be exposed
4943                  * to the guests in some cases.
4944                  */
4945                 switch (msrs_to_save[i]) {
4946                 case MSR_IA32_BNDCFGS:
4947                         if (!kvm_mpx_supported())
4948                                 continue;
4949                         break;
4950                 case MSR_TSC_AUX:
4951                         if (!kvm_x86_ops->rdtscp_supported())
4952                                 continue;
4953                         break;
4954                 case MSR_IA32_RTIT_CTL:
4955                 case MSR_IA32_RTIT_STATUS:
4956                         if (!kvm_x86_ops->pt_supported())
4957                                 continue;
4958                         break;
4959                 case MSR_IA32_RTIT_CR3_MATCH:
4960                         if (!kvm_x86_ops->pt_supported() ||
4961                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
4962                                 continue;
4963                         break;
4964                 case MSR_IA32_RTIT_OUTPUT_BASE:
4965                 case MSR_IA32_RTIT_OUTPUT_MASK:
4966                         if (!kvm_x86_ops->pt_supported() ||
4967                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
4968                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
4969                                 continue;
4970                         break;
4971                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
4972                         if (!kvm_x86_ops->pt_supported() ||
4973                                 msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
4974                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
4975                                 continue;
4976                         break;
4977                 }
4978                 default:
4979                         break;
4980                 }
4981
4982                 if (j < i)
4983                         msrs_to_save[j] = msrs_to_save[i];
4984                 j++;
4985         }
4986         num_msrs_to_save = j;
4987
4988         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4989                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4990                         continue;
4991
4992                 if (j < i)
4993                         emulated_msrs[j] = emulated_msrs[i];
4994                 j++;
4995         }
4996         num_emulated_msrs = j;
4997
4998         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4999                 struct kvm_msr_entry msr;
5000
5001                 msr.index = msr_based_features[i];
5002                 if (kvm_get_msr_feature(&msr))
5003                         continue;
5004
5005                 if (j < i)
5006                         msr_based_features[j] = msr_based_features[i];
5007                 j++;
5008         }
5009         num_msr_based_features = j;
5010 }
5011
5012 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5013                            const void *v)
5014 {
5015         int handled = 0;
5016         int n;
5017
5018         do {
5019                 n = min(len, 8);
5020                 if (!(lapic_in_kernel(vcpu) &&
5021                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5022                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5023                         break;
5024                 handled += n;
5025                 addr += n;
5026                 len -= n;
5027                 v += n;
5028         } while (len);
5029
5030         return handled;
5031 }
5032
5033 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5034 {
5035         int handled = 0;
5036         int n;
5037
5038         do {
5039                 n = min(len, 8);
5040                 if (!(lapic_in_kernel(vcpu) &&
5041                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5042                                          addr, n, v))
5043                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5044                         break;
5045                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5046                 handled += n;
5047                 addr += n;
5048                 len -= n;
5049                 v += n;
5050         } while (len);
5051
5052         return handled;
5053 }
5054
5055 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5056                         struct kvm_segment *var, int seg)
5057 {
5058         kvm_x86_ops->set_segment(vcpu, var, seg);
5059 }
5060
5061 void kvm_get_segment(struct kvm_vcpu *vcpu,
5062                      struct kvm_segment *var, int seg)
5063 {
5064         kvm_x86_ops->get_segment(vcpu, var, seg);
5065 }
5066
5067 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5068                            struct x86_exception *exception)
5069 {
5070         gpa_t t_gpa;
5071
5072         BUG_ON(!mmu_is_nested(vcpu));
5073
5074         /* NPT walks are always user-walks */
5075         access |= PFERR_USER_MASK;
5076         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5077
5078         return t_gpa;
5079 }
5080
5081 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5082                               struct x86_exception *exception)
5083 {
5084         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5085         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5086 }
5087
5088  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5089                                 struct x86_exception *exception)
5090 {
5091         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5092         access |= PFERR_FETCH_MASK;
5093         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5094 }
5095
5096 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5097                                struct x86_exception *exception)
5098 {
5099         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5100         access |= PFERR_WRITE_MASK;
5101         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5102 }
5103
5104 /* uses this to access any guest's mapped memory without checking CPL */
5105 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5106                                 struct x86_exception *exception)
5107 {
5108         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5109 }
5110
5111 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5112                                       struct kvm_vcpu *vcpu, u32 access,
5113                                       struct x86_exception *exception)
5114 {
5115         void *data = val;
5116         int r = X86EMUL_CONTINUE;
5117
5118         while (bytes) {
5119                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5120                                                             exception);
5121                 unsigned offset = addr & (PAGE_SIZE-1);
5122                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5123                 int ret;
5124
5125                 if (gpa == UNMAPPED_GVA)
5126                         return X86EMUL_PROPAGATE_FAULT;
5127                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5128                                                offset, toread);
5129                 if (ret < 0) {
5130                         r = X86EMUL_IO_NEEDED;
5131                         goto out;
5132                 }
5133
5134                 bytes -= toread;
5135                 data += toread;
5136                 addr += toread;
5137         }
5138 out:
5139         return r;
5140 }
5141
5142 /* used for instruction fetching */
5143 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5144                                 gva_t addr, void *val, unsigned int bytes,
5145                                 struct x86_exception *exception)
5146 {
5147         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5148         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5149         unsigned offset;
5150         int ret;
5151
5152         /* Inline kvm_read_guest_virt_helper for speed.  */
5153         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5154                                                     exception);
5155         if (unlikely(gpa == UNMAPPED_GVA))
5156                 return X86EMUL_PROPAGATE_FAULT;
5157
5158         offset = addr & (PAGE_SIZE-1);
5159         if (WARN_ON(offset + bytes > PAGE_SIZE))
5160                 bytes = (unsigned)PAGE_SIZE - offset;
5161         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5162                                        offset, bytes);
5163         if (unlikely(ret < 0))
5164                 return X86EMUL_IO_NEEDED;
5165
5166         return X86EMUL_CONTINUE;
5167 }
5168
5169 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5170                                gva_t addr, void *val, unsigned int bytes,
5171                                struct x86_exception *exception)
5172 {
5173         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5174
5175         /*
5176          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5177          * is returned, but our callers are not ready for that and they blindly
5178          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5179          * uninitialized kernel stack memory into cr2 and error code.
5180          */
5181         memset(exception, 0, sizeof(*exception));
5182         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5183                                           exception);
5184 }
5185 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5186
5187 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5188                              gva_t addr, void *val, unsigned int bytes,
5189                              struct x86_exception *exception, bool system)
5190 {
5191         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5192         u32 access = 0;
5193
5194         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5195                 access |= PFERR_USER_MASK;
5196
5197         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5198 }
5199
5200 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5201                 unsigned long addr, void *val, unsigned int bytes)
5202 {
5203         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5204         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5205
5206         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5207 }
5208
5209 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5210                                       struct kvm_vcpu *vcpu, u32 access,
5211                                       struct x86_exception *exception)
5212 {
5213         void *data = val;
5214         int r = X86EMUL_CONTINUE;
5215
5216         while (bytes) {
5217                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5218                                                              access,
5219                                                              exception);
5220                 unsigned offset = addr & (PAGE_SIZE-1);
5221                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5222                 int ret;
5223
5224                 if (gpa == UNMAPPED_GVA)
5225                         return X86EMUL_PROPAGATE_FAULT;
5226                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5227                 if (ret < 0) {
5228                         r = X86EMUL_IO_NEEDED;
5229                         goto out;
5230                 }
5231
5232                 bytes -= towrite;
5233                 data += towrite;
5234                 addr += towrite;
5235         }
5236 out:
5237         return r;
5238 }
5239
5240 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5241                               unsigned int bytes, struct x86_exception *exception,
5242                               bool system)
5243 {
5244         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5245         u32 access = PFERR_WRITE_MASK;
5246
5247         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5248                 access |= PFERR_USER_MASK;
5249
5250         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5251                                            access, exception);
5252 }
5253
5254 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5255                                 unsigned int bytes, struct x86_exception *exception)
5256 {
5257         /* kvm_write_guest_virt_system can pull in tons of pages. */
5258         vcpu->arch.l1tf_flush_l1d = true;
5259
5260         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5261                                            PFERR_WRITE_MASK, exception);
5262 }
5263 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5264
5265 int handle_ud(struct kvm_vcpu *vcpu)
5266 {
5267         int emul_type = EMULTYPE_TRAP_UD;
5268         enum emulation_result er;
5269         char sig[5]; /* ud2; .ascii "kvm" */
5270         struct x86_exception e;
5271
5272         if (force_emulation_prefix &&
5273             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5274                                 sig, sizeof(sig), &e) == 0 &&
5275             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5276                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5277                 emul_type = 0;
5278         }
5279
5280         er = kvm_emulate_instruction(vcpu, emul_type);
5281         if (er == EMULATE_USER_EXIT)
5282                 return 0;
5283         if (er != EMULATE_DONE)
5284                 kvm_queue_exception(vcpu, UD_VECTOR);
5285         return 1;
5286 }
5287 EXPORT_SYMBOL_GPL(handle_ud);
5288
5289 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5290                             gpa_t gpa, bool write)
5291 {
5292         /* For APIC access vmexit */
5293         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5294                 return 1;
5295
5296         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5297                 trace_vcpu_match_mmio(gva, gpa, write, true);
5298                 return 1;
5299         }
5300
5301         return 0;
5302 }
5303
5304 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5305                                 gpa_t *gpa, struct x86_exception *exception,
5306                                 bool write)
5307 {
5308         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5309                 | (write ? PFERR_WRITE_MASK : 0);
5310
5311         /*
5312          * currently PKRU is only applied to ept enabled guest so
5313          * there is no pkey in EPT page table for L1 guest or EPT
5314          * shadow page table for L2 guest.
5315          */
5316         if (vcpu_match_mmio_gva(vcpu, gva)
5317             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5318                                  vcpu->arch.access, 0, access)) {
5319                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5320                                         (gva & (PAGE_SIZE - 1));
5321                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5322                 return 1;
5323         }
5324
5325         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5326
5327         if (*gpa == UNMAPPED_GVA)
5328                 return -1;
5329
5330         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5331 }
5332
5333 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5334                         const void *val, int bytes)
5335 {
5336         int ret;
5337
5338         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5339         if (ret < 0)
5340                 return 0;
5341         kvm_page_track_write(vcpu, gpa, val, bytes);
5342         return 1;
5343 }
5344
5345 struct read_write_emulator_ops {
5346         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5347                                   int bytes);
5348         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5349                                   void *val, int bytes);
5350         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5351                                int bytes, void *val);
5352         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5353                                     void *val, int bytes);
5354         bool write;
5355 };
5356
5357 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5358 {
5359         if (vcpu->mmio_read_completed) {
5360                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5361                                vcpu->mmio_fragments[0].gpa, val);
5362                 vcpu->mmio_read_completed = 0;
5363                 return 1;
5364         }
5365
5366         return 0;
5367 }
5368
5369 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5370                         void *val, int bytes)
5371 {
5372         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5373 }
5374
5375 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5376                          void *val, int bytes)
5377 {
5378         return emulator_write_phys(vcpu, gpa, val, bytes);
5379 }
5380
5381 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5382 {
5383         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5384         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5385 }
5386
5387 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5388                           void *val, int bytes)
5389 {
5390         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5391         return X86EMUL_IO_NEEDED;
5392 }
5393
5394 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5395                            void *val, int bytes)
5396 {
5397         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5398
5399         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5400         return X86EMUL_CONTINUE;
5401 }
5402
5403 static const struct read_write_emulator_ops read_emultor = {
5404         .read_write_prepare = read_prepare,
5405         .read_write_emulate = read_emulate,
5406         .read_write_mmio = vcpu_mmio_read,
5407         .read_write_exit_mmio = read_exit_mmio,
5408 };
5409
5410 static const struct read_write_emulator_ops write_emultor = {
5411         .read_write_emulate = write_emulate,
5412         .read_write_mmio = write_mmio,
5413         .read_write_exit_mmio = write_exit_mmio,
5414         .write = true,
5415 };
5416
5417 static int emulator_read_write_onepage(unsigned long addr, void *val,
5418                                        unsigned int bytes,
5419                                        struct x86_exception *exception,
5420                                        struct kvm_vcpu *vcpu,
5421                                        const struct read_write_emulator_ops *ops)
5422 {
5423         gpa_t gpa;
5424         int handled, ret;
5425         bool write = ops->write;
5426         struct kvm_mmio_fragment *frag;
5427         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5428
5429         /*
5430          * If the exit was due to a NPF we may already have a GPA.
5431          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5432          * Note, this cannot be used on string operations since string
5433          * operation using rep will only have the initial GPA from the NPF
5434          * occurred.
5435          */
5436         if (vcpu->arch.gpa_available &&
5437             emulator_can_use_gpa(ctxt) &&
5438             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5439                 gpa = vcpu->arch.gpa_val;
5440                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5441         } else {
5442                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5443                 if (ret < 0)
5444                         return X86EMUL_PROPAGATE_FAULT;
5445         }
5446
5447         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5448                 return X86EMUL_CONTINUE;
5449
5450         /*
5451          * Is this MMIO handled locally?
5452          */
5453         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5454         if (handled == bytes)
5455                 return X86EMUL_CONTINUE;
5456
5457         gpa += handled;
5458         bytes -= handled;
5459         val += handled;
5460
5461         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5462         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5463         frag->gpa = gpa;
5464         frag->data = val;
5465         frag->len = bytes;
5466         return X86EMUL_CONTINUE;
5467 }
5468
5469 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5470                         unsigned long addr,
5471                         void *val, unsigned int bytes,
5472                         struct x86_exception *exception,
5473                         const struct read_write_emulator_ops *ops)
5474 {
5475         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5476         gpa_t gpa;
5477         int rc;
5478
5479         if (ops->read_write_prepare &&
5480                   ops->read_write_prepare(vcpu, val, bytes))
5481                 return X86EMUL_CONTINUE;
5482
5483         vcpu->mmio_nr_fragments = 0;
5484
5485         /* Crossing a page boundary? */
5486         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5487                 int now;
5488
5489                 now = -addr & ~PAGE_MASK;
5490                 rc = emulator_read_write_onepage(addr, val, now, exception,
5491                                                  vcpu, ops);
5492
5493                 if (rc != X86EMUL_CONTINUE)
5494                         return rc;
5495                 addr += now;
5496                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5497                         addr = (u32)addr;
5498                 val += now;
5499                 bytes -= now;
5500         }
5501
5502         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5503                                          vcpu, ops);
5504         if (rc != X86EMUL_CONTINUE)
5505                 return rc;
5506
5507         if (!vcpu->mmio_nr_fragments)
5508                 return rc;
5509
5510         gpa = vcpu->mmio_fragments[0].gpa;
5511
5512         vcpu->mmio_needed = 1;
5513         vcpu->mmio_cur_fragment = 0;
5514
5515         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5516         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5517         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5518         vcpu->run->mmio.phys_addr = gpa;
5519
5520         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5521 }
5522
5523 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5524                                   unsigned long addr,
5525                                   void *val,
5526                                   unsigned int bytes,
5527                                   struct x86_exception *exception)
5528 {
5529         return emulator_read_write(ctxt, addr, val, bytes,
5530                                    exception, &read_emultor);
5531 }
5532
5533 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5534                             unsigned long addr,
5535                             const void *val,
5536                             unsigned int bytes,
5537                             struct x86_exception *exception)
5538 {
5539         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5540                                    exception, &write_emultor);
5541 }
5542
5543 #define CMPXCHG_TYPE(t, ptr, old, new) \
5544         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5545
5546 #ifdef CONFIG_X86_64
5547 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5548 #else
5549 #  define CMPXCHG64(ptr, old, new) \
5550         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5551 #endif
5552
5553 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5554                                      unsigned long addr,
5555                                      const void *old,
5556                                      const void *new,
5557                                      unsigned int bytes,
5558                                      struct x86_exception *exception)
5559 {
5560         struct kvm_host_map map;
5561         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5562         gpa_t gpa;
5563         char *kaddr;
5564         bool exchanged;
5565
5566         /* guests cmpxchg8b have to be emulated atomically */
5567         if (bytes > 8 || (bytes & (bytes - 1)))
5568                 goto emul_write;
5569
5570         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5571
5572         if (gpa == UNMAPPED_GVA ||
5573             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5574                 goto emul_write;
5575
5576         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5577                 goto emul_write;
5578
5579         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5580                 goto emul_write;
5581
5582         kaddr = map.hva + offset_in_page(gpa);
5583
5584         switch (bytes) {
5585         case 1:
5586                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5587                 break;
5588         case 2:
5589                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5590                 break;
5591         case 4:
5592                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5593                 break;
5594         case 8:
5595                 exchanged = CMPXCHG64(kaddr, old, new);
5596                 break;
5597         default:
5598                 BUG();
5599         }
5600
5601         kvm_vcpu_unmap(vcpu, &map, true);
5602
5603         if (!exchanged)
5604                 return X86EMUL_CMPXCHG_FAILED;
5605
5606         kvm_page_track_write(vcpu, gpa, new, bytes);
5607
5608         return X86EMUL_CONTINUE;
5609
5610 emul_write:
5611         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5612
5613         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5614 }
5615
5616 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5617 {
5618         int r = 0, i;
5619
5620         for (i = 0; i < vcpu->arch.pio.count; i++) {
5621                 if (vcpu->arch.pio.in)
5622                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5623                                             vcpu->arch.pio.size, pd);
5624                 else
5625                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5626                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5627                                              pd);
5628                 if (r)
5629                         break;
5630                 pd += vcpu->arch.pio.size;
5631         }
5632         return r;
5633 }
5634
5635 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5636                                unsigned short port, void *val,
5637                                unsigned int count, bool in)
5638 {
5639         vcpu->arch.pio.port = port;
5640         vcpu->arch.pio.in = in;
5641         vcpu->arch.pio.count  = count;
5642         vcpu->arch.pio.size = size;
5643
5644         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5645                 vcpu->arch.pio.count = 0;
5646                 return 1;
5647         }
5648
5649         vcpu->run->exit_reason = KVM_EXIT_IO;
5650         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5651         vcpu->run->io.size = size;
5652         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5653         vcpu->run->io.count = count;
5654         vcpu->run->io.port = port;
5655
5656         return 0;
5657 }
5658
5659 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5660                                     int size, unsigned short port, void *val,
5661                                     unsigned int count)
5662 {
5663         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5664         int ret;
5665
5666         if (vcpu->arch.pio.count)
5667                 goto data_avail;
5668
5669         memset(vcpu->arch.pio_data, 0, size * count);
5670
5671         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5672         if (ret) {
5673 data_avail:
5674                 memcpy(val, vcpu->arch.pio_data, size * count);
5675                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5676                 vcpu->arch.pio.count = 0;
5677                 return 1;
5678         }
5679
5680         return 0;
5681 }
5682
5683 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5684                                      int size, unsigned short port,
5685                                      const void *val, unsigned int count)
5686 {
5687         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5688
5689         memcpy(vcpu->arch.pio_data, val, size * count);
5690         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5691         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5692 }
5693
5694 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5695 {
5696         return kvm_x86_ops->get_segment_base(vcpu, seg);
5697 }
5698
5699 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5700 {
5701         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5702 }
5703
5704 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5705 {
5706         if (!need_emulate_wbinvd(vcpu))
5707                 return X86EMUL_CONTINUE;
5708
5709         if (kvm_x86_ops->has_wbinvd_exit()) {
5710                 int cpu = get_cpu();
5711
5712                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5713                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5714                                 wbinvd_ipi, NULL, 1);
5715                 put_cpu();
5716                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5717         } else
5718                 wbinvd();
5719         return X86EMUL_CONTINUE;
5720 }
5721
5722 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5723 {
5724         kvm_emulate_wbinvd_noskip(vcpu);
5725         return kvm_skip_emulated_instruction(vcpu);
5726 }
5727 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5728
5729
5730
5731 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5732 {
5733         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5734 }
5735
5736 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5737                            unsigned long *dest)
5738 {
5739         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5740 }
5741
5742 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5743                            unsigned long value)
5744 {
5745
5746         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5747 }
5748
5749 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5750 {
5751         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5752 }
5753
5754 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5755 {
5756         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5757         unsigned long value;
5758
5759         switch (cr) {
5760         case 0:
5761                 value = kvm_read_cr0(vcpu);
5762                 break;
5763         case 2:
5764                 value = vcpu->arch.cr2;
5765                 break;
5766         case 3:
5767                 value = kvm_read_cr3(vcpu);
5768                 break;
5769         case 4:
5770                 value = kvm_read_cr4(vcpu);
5771                 break;
5772         case 8:
5773                 value = kvm_get_cr8(vcpu);
5774                 break;
5775         default:
5776                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5777                 return 0;
5778         }
5779
5780         return value;
5781 }
5782
5783 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5784 {
5785         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5786         int res = 0;
5787
5788         switch (cr) {
5789         case 0:
5790                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5791                 break;
5792         case 2:
5793                 vcpu->arch.cr2 = val;
5794                 break;
5795         case 3:
5796                 res = kvm_set_cr3(vcpu, val);
5797                 break;
5798         case 4:
5799                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5800                 break;
5801         case 8:
5802                 res = kvm_set_cr8(vcpu, val);
5803                 break;
5804         default:
5805                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5806                 res = -1;
5807         }
5808
5809         return res;
5810 }
5811
5812 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5813 {
5814         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5815 }
5816
5817 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5818 {
5819         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5820 }
5821
5822 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5823 {
5824         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5825 }
5826
5827 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5828 {
5829         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5830 }
5831
5832 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5833 {
5834         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5835 }
5836
5837 static unsigned long emulator_get_cached_segment_base(
5838         struct x86_emulate_ctxt *ctxt, int seg)
5839 {
5840         return get_segment_base(emul_to_vcpu(ctxt), seg);
5841 }
5842
5843 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5844                                  struct desc_struct *desc, u32 *base3,
5845                                  int seg)
5846 {
5847         struct kvm_segment var;
5848
5849         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5850         *selector = var.selector;
5851
5852         if (var.unusable) {
5853                 memset(desc, 0, sizeof(*desc));
5854                 if (base3)
5855                         *base3 = 0;
5856                 return false;
5857         }
5858
5859         if (var.g)
5860                 var.limit >>= 12;
5861         set_desc_limit(desc, var.limit);
5862         set_desc_base(desc, (unsigned long)var.base);
5863 #ifdef CONFIG_X86_64
5864         if (base3)
5865                 *base3 = var.base >> 32;
5866 #endif
5867         desc->type = var.type;
5868         desc->s = var.s;
5869         desc->dpl = var.dpl;
5870         desc->p = var.present;
5871         desc->avl = var.avl;
5872         desc->l = var.l;
5873         desc->d = var.db;
5874         desc->g = var.g;
5875
5876         return true;
5877 }
5878
5879 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5880                                  struct desc_struct *desc, u32 base3,
5881                                  int seg)
5882 {
5883         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5884         struct kvm_segment var;
5885
5886         var.selector = selector;
5887         var.base = get_desc_base(desc);
5888 #ifdef CONFIG_X86_64
5889         var.base |= ((u64)base3) << 32;
5890 #endif
5891         var.limit = get_desc_limit(desc);
5892         if (desc->g)
5893                 var.limit = (var.limit << 12) | 0xfff;
5894         var.type = desc->type;
5895         var.dpl = desc->dpl;
5896         var.db = desc->d;
5897         var.s = desc->s;
5898         var.l = desc->l;
5899         var.g = desc->g;
5900         var.avl = desc->avl;
5901         var.present = desc->p;
5902         var.unusable = !var.present;
5903         var.padding = 0;
5904
5905         kvm_set_segment(vcpu, &var, seg);
5906         return;
5907 }
5908
5909 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5910                             u32 msr_index, u64 *pdata)
5911 {
5912         struct msr_data msr;
5913         int r;
5914
5915         msr.index = msr_index;
5916         msr.host_initiated = false;
5917         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5918         if (r)
5919                 return r;
5920
5921         *pdata = msr.data;
5922         return 0;
5923 }
5924
5925 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5926                             u32 msr_index, u64 data)
5927 {
5928         struct msr_data msr;
5929
5930         msr.data = data;
5931         msr.index = msr_index;
5932         msr.host_initiated = false;
5933         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5934 }
5935
5936 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5937 {
5938         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5939
5940         return vcpu->arch.smbase;
5941 }
5942
5943 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5944 {
5945         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5946
5947         vcpu->arch.smbase = smbase;
5948 }
5949
5950 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5951                               u32 pmc)
5952 {
5953         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5954 }
5955
5956 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5957                              u32 pmc, u64 *pdata)
5958 {
5959         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5960 }
5961
5962 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5963 {
5964         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5965 }
5966
5967 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5968                               struct x86_instruction_info *info,
5969                               enum x86_intercept_stage stage)
5970 {
5971         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5972 }
5973
5974 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5975                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5976 {
5977         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5978 }
5979
5980 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5981 {
5982         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5983 }
5984
5985 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5986 {
5987         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5988 }
5989
5990 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5991 {
5992         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5993 }
5994
5995 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5996 {
5997         return emul_to_vcpu(ctxt)->arch.hflags;
5998 }
5999
6000 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6001 {
6002         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6003 }
6004
6005 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6006                                   const char *smstate)
6007 {
6008         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6009 }
6010
6011 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6012 {
6013         kvm_smm_changed(emul_to_vcpu(ctxt));
6014 }
6015
6016 static const struct x86_emulate_ops emulate_ops = {
6017         .read_gpr            = emulator_read_gpr,
6018         .write_gpr           = emulator_write_gpr,
6019         .read_std            = emulator_read_std,
6020         .write_std           = emulator_write_std,
6021         .read_phys           = kvm_read_guest_phys_system,
6022         .fetch               = kvm_fetch_guest_virt,
6023         .read_emulated       = emulator_read_emulated,
6024         .write_emulated      = emulator_write_emulated,
6025         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6026         .invlpg              = emulator_invlpg,
6027         .pio_in_emulated     = emulator_pio_in_emulated,
6028         .pio_out_emulated    = emulator_pio_out_emulated,
6029         .get_segment         = emulator_get_segment,
6030         .set_segment         = emulator_set_segment,
6031         .get_cached_segment_base = emulator_get_cached_segment_base,
6032         .get_gdt             = emulator_get_gdt,
6033         .get_idt             = emulator_get_idt,
6034         .set_gdt             = emulator_set_gdt,
6035         .set_idt             = emulator_set_idt,
6036         .get_cr              = emulator_get_cr,
6037         .set_cr              = emulator_set_cr,
6038         .cpl                 = emulator_get_cpl,
6039         .get_dr              = emulator_get_dr,
6040         .set_dr              = emulator_set_dr,
6041         .get_smbase          = emulator_get_smbase,
6042         .set_smbase          = emulator_set_smbase,
6043         .set_msr             = emulator_set_msr,
6044         .get_msr             = emulator_get_msr,
6045         .check_pmc           = emulator_check_pmc,
6046         .read_pmc            = emulator_read_pmc,
6047         .halt                = emulator_halt,
6048         .wbinvd              = emulator_wbinvd,
6049         .fix_hypercall       = emulator_fix_hypercall,
6050         .intercept           = emulator_intercept,
6051         .get_cpuid           = emulator_get_cpuid,
6052         .set_nmi_mask        = emulator_set_nmi_mask,
6053         .get_hflags          = emulator_get_hflags,
6054         .set_hflags          = emulator_set_hflags,
6055         .pre_leave_smm       = emulator_pre_leave_smm,
6056         .post_leave_smm      = emulator_post_leave_smm,
6057 };
6058
6059 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6060 {
6061         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6062         /*
6063          * an sti; sti; sequence only disable interrupts for the first
6064          * instruction. So, if the last instruction, be it emulated or
6065          * not, left the system with the INT_STI flag enabled, it
6066          * means that the last instruction is an sti. We should not
6067          * leave the flag on in this case. The same goes for mov ss
6068          */
6069         if (int_shadow & mask)
6070                 mask = 0;
6071         if (unlikely(int_shadow || mask)) {
6072                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6073                 if (!mask)
6074                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6075         }
6076 }
6077
6078 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6079 {
6080         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6081         if (ctxt->exception.vector == PF_VECTOR)
6082                 return kvm_propagate_fault(vcpu, &ctxt->exception);
6083
6084         if (ctxt->exception.error_code_valid)
6085                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6086                                       ctxt->exception.error_code);
6087         else
6088                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6089         return false;
6090 }
6091
6092 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6093 {
6094         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6095         int cs_db, cs_l;
6096
6097         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6098
6099         ctxt->eflags = kvm_get_rflags(vcpu);
6100         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6101
6102         ctxt->eip = kvm_rip_read(vcpu);
6103         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6104                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6105                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6106                      cs_db                              ? X86EMUL_MODE_PROT32 :
6107                                                           X86EMUL_MODE_PROT16;
6108         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6109         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6110         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6111
6112         init_decode_cache(ctxt);
6113         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6114 }
6115
6116 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6117 {
6118         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6119         int ret;
6120
6121         init_emulate_ctxt(vcpu);
6122
6123         ctxt->op_bytes = 2;
6124         ctxt->ad_bytes = 2;
6125         ctxt->_eip = ctxt->eip + inc_eip;
6126         ret = emulate_int_real(ctxt, irq);
6127
6128         if (ret != X86EMUL_CONTINUE)
6129                 return EMULATE_FAIL;
6130
6131         ctxt->eip = ctxt->_eip;
6132         kvm_rip_write(vcpu, ctxt->eip);
6133         kvm_set_rflags(vcpu, ctxt->eflags);
6134
6135         return EMULATE_DONE;
6136 }
6137 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6138
6139 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6140 {
6141         int r = EMULATE_DONE;
6142
6143         ++vcpu->stat.insn_emulation_fail;
6144         trace_kvm_emulate_insn_failed(vcpu);
6145
6146         if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6147                 return EMULATE_FAIL;
6148
6149         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6150                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6151                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6152                 vcpu->run->internal.ndata = 0;
6153                 r = EMULATE_USER_EXIT;
6154         }
6155
6156         kvm_queue_exception(vcpu, UD_VECTOR);
6157
6158         return r;
6159 }
6160
6161 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6162                                   bool write_fault_to_shadow_pgtable,
6163                                   int emulation_type)
6164 {
6165         gpa_t gpa = cr2;
6166         kvm_pfn_t pfn;
6167
6168         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6169                 return false;
6170
6171         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6172                 return false;
6173
6174         if (!vcpu->arch.mmu->direct_map) {
6175                 /*
6176                  * Write permission should be allowed since only
6177                  * write access need to be emulated.
6178                  */
6179                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6180
6181                 /*
6182                  * If the mapping is invalid in guest, let cpu retry
6183                  * it to generate fault.
6184                  */
6185                 if (gpa == UNMAPPED_GVA)
6186                         return true;
6187         }
6188
6189         /*
6190          * Do not retry the unhandleable instruction if it faults on the
6191          * readonly host memory, otherwise it will goto a infinite loop:
6192          * retry instruction -> write #PF -> emulation fail -> retry
6193          * instruction -> ...
6194          */
6195         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6196
6197         /*
6198          * If the instruction failed on the error pfn, it can not be fixed,
6199          * report the error to userspace.
6200          */
6201         if (is_error_noslot_pfn(pfn))
6202                 return false;
6203
6204         kvm_release_pfn_clean(pfn);
6205
6206         /* The instructions are well-emulated on direct mmu. */
6207         if (vcpu->arch.mmu->direct_map) {
6208                 unsigned int indirect_shadow_pages;
6209
6210                 spin_lock(&vcpu->kvm->mmu_lock);
6211                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6212                 spin_unlock(&vcpu->kvm->mmu_lock);
6213
6214                 if (indirect_shadow_pages)
6215                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6216
6217                 return true;
6218         }
6219
6220         /*
6221          * if emulation was due to access to shadowed page table
6222          * and it failed try to unshadow page and re-enter the
6223          * guest to let CPU execute the instruction.
6224          */
6225         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6226
6227         /*
6228          * If the access faults on its page table, it can not
6229          * be fixed by unprotecting shadow page and it should
6230          * be reported to userspace.
6231          */
6232         return !write_fault_to_shadow_pgtable;
6233 }
6234
6235 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6236                               unsigned long cr2,  int emulation_type)
6237 {
6238         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6239         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6240
6241         last_retry_eip = vcpu->arch.last_retry_eip;
6242         last_retry_addr = vcpu->arch.last_retry_addr;
6243
6244         /*
6245          * If the emulation is caused by #PF and it is non-page_table
6246          * writing instruction, it means the VM-EXIT is caused by shadow
6247          * page protected, we can zap the shadow page and retry this
6248          * instruction directly.
6249          *
6250          * Note: if the guest uses a non-page-table modifying instruction
6251          * on the PDE that points to the instruction, then we will unmap
6252          * the instruction and go to an infinite loop. So, we cache the
6253          * last retried eip and the last fault address, if we meet the eip
6254          * and the address again, we can break out of the potential infinite
6255          * loop.
6256          */
6257         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6258
6259         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6260                 return false;
6261
6262         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6263                 return false;
6264
6265         if (x86_page_table_writing_insn(ctxt))
6266                 return false;
6267
6268         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6269                 return false;
6270
6271         vcpu->arch.last_retry_eip = ctxt->eip;
6272         vcpu->arch.last_retry_addr = cr2;
6273
6274         if (!vcpu->arch.mmu->direct_map)
6275                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6276
6277         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6278
6279         return true;
6280 }
6281
6282 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6283 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6284
6285 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6286 {
6287         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6288                 /* This is a good place to trace that we are exiting SMM.  */
6289                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6290
6291                 /* Process a latched INIT or SMI, if any.  */
6292                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6293         }
6294
6295         kvm_mmu_reset_context(vcpu);
6296 }
6297
6298 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6299                                 unsigned long *db)
6300 {
6301         u32 dr6 = 0;
6302         int i;
6303         u32 enable, rwlen;
6304
6305         enable = dr7;
6306         rwlen = dr7 >> 16;
6307         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6308                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6309                         dr6 |= (1 << i);
6310         return dr6;
6311 }
6312
6313 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6314 {
6315         struct kvm_run *kvm_run = vcpu->run;
6316
6317         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6318                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6319                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6320                 kvm_run->debug.arch.exception = DB_VECTOR;
6321                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6322                 *r = EMULATE_USER_EXIT;
6323         } else {
6324                 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6325         }
6326 }
6327
6328 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6329 {
6330         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6331         int r = EMULATE_DONE;
6332
6333         kvm_x86_ops->skip_emulated_instruction(vcpu);
6334
6335         /*
6336          * rflags is the old, "raw" value of the flags.  The new value has
6337          * not been saved yet.
6338          *
6339          * This is correct even for TF set by the guest, because "the
6340          * processor will not generate this exception after the instruction
6341          * that sets the TF flag".
6342          */
6343         if (unlikely(rflags & X86_EFLAGS_TF))
6344                 kvm_vcpu_do_singlestep(vcpu, &r);
6345         return r == EMULATE_DONE;
6346 }
6347 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6348
6349 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6350 {
6351         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6352             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6353                 struct kvm_run *kvm_run = vcpu->run;
6354                 unsigned long eip = kvm_get_linear_rip(vcpu);
6355                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6356                                            vcpu->arch.guest_debug_dr7,
6357                                            vcpu->arch.eff_db);
6358
6359                 if (dr6 != 0) {
6360                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6361                         kvm_run->debug.arch.pc = eip;
6362                         kvm_run->debug.arch.exception = DB_VECTOR;
6363                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6364                         *r = EMULATE_USER_EXIT;
6365                         return true;
6366                 }
6367         }
6368
6369         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6370             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6371                 unsigned long eip = kvm_get_linear_rip(vcpu);
6372                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6373                                            vcpu->arch.dr7,
6374                                            vcpu->arch.db);
6375
6376                 if (dr6 != 0) {
6377                         vcpu->arch.dr6 &= ~15;
6378                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6379                         kvm_queue_exception(vcpu, DB_VECTOR);
6380                         *r = EMULATE_DONE;
6381                         return true;
6382                 }
6383         }
6384
6385         return false;
6386 }
6387
6388 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6389 {
6390         switch (ctxt->opcode_len) {
6391         case 1:
6392                 switch (ctxt->b) {
6393                 case 0xe4:      /* IN */
6394                 case 0xe5:
6395                 case 0xec:
6396                 case 0xed:
6397                 case 0xe6:      /* OUT */
6398                 case 0xe7:
6399                 case 0xee:
6400                 case 0xef:
6401                 case 0x6c:      /* INS */
6402                 case 0x6d:
6403                 case 0x6e:      /* OUTS */
6404                 case 0x6f:
6405                         return true;
6406                 }
6407                 break;
6408         case 2:
6409                 switch (ctxt->b) {
6410                 case 0x33:      /* RDPMC */
6411                         return true;
6412                 }
6413                 break;
6414         }
6415
6416         return false;
6417 }
6418
6419 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6420                             unsigned long cr2,
6421                             int emulation_type,
6422                             void *insn,
6423                             int insn_len)
6424 {
6425         int r;
6426         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6427         bool writeback = true;
6428         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6429
6430         vcpu->arch.l1tf_flush_l1d = true;
6431
6432         /*
6433          * Clear write_fault_to_shadow_pgtable here to ensure it is
6434          * never reused.
6435          */
6436         vcpu->arch.write_fault_to_shadow_pgtable = false;
6437         kvm_clear_exception_queue(vcpu);
6438
6439         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6440                 init_emulate_ctxt(vcpu);
6441
6442                 /*
6443                  * We will reenter on the same instruction since
6444                  * we do not set complete_userspace_io.  This does not
6445                  * handle watchpoints yet, those would be handled in
6446                  * the emulate_ops.
6447                  */
6448                 if (!(emulation_type & EMULTYPE_SKIP) &&
6449                     kvm_vcpu_check_breakpoint(vcpu, &r))
6450                         return r;
6451
6452                 ctxt->interruptibility = 0;
6453                 ctxt->have_exception = false;
6454                 ctxt->exception.vector = -1;
6455                 ctxt->perm_ok = false;
6456
6457                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6458
6459                 r = x86_decode_insn(ctxt, insn, insn_len);
6460
6461                 trace_kvm_emulate_insn_start(vcpu);
6462                 ++vcpu->stat.insn_emulation;
6463                 if (r != EMULATION_OK)  {
6464                         if (emulation_type & EMULTYPE_TRAP_UD)
6465                                 return EMULATE_FAIL;
6466                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6467                                                 emulation_type))
6468                                 return EMULATE_DONE;
6469                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
6470                                 return EMULATE_DONE;
6471                         if (emulation_type & EMULTYPE_SKIP)
6472                                 return EMULATE_FAIL;
6473                         return handle_emulation_failure(vcpu, emulation_type);
6474                 }
6475         }
6476
6477         if ((emulation_type & EMULTYPE_VMWARE) &&
6478             !is_vmware_backdoor_opcode(ctxt))
6479                 return EMULATE_FAIL;
6480
6481         if (emulation_type & EMULTYPE_SKIP) {
6482                 kvm_rip_write(vcpu, ctxt->_eip);
6483                 if (ctxt->eflags & X86_EFLAGS_RF)
6484                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6485                 return EMULATE_DONE;
6486         }
6487
6488         if (retry_instruction(ctxt, cr2, emulation_type))
6489                 return EMULATE_DONE;
6490
6491         /* this is needed for vmware backdoor interface to work since it
6492            changes registers values  during IO operation */
6493         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6494                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6495                 emulator_invalidate_register_cache(ctxt);
6496         }
6497
6498 restart:
6499         /* Save the faulting GPA (cr2) in the address field */
6500         ctxt->exception.address = cr2;
6501
6502         r = x86_emulate_insn(ctxt);
6503
6504         if (r == EMULATION_INTERCEPTED)
6505                 return EMULATE_DONE;
6506
6507         if (r == EMULATION_FAILED) {
6508                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6509                                         emulation_type))
6510                         return EMULATE_DONE;
6511
6512                 return handle_emulation_failure(vcpu, emulation_type);
6513         }
6514
6515         if (ctxt->have_exception) {
6516                 r = EMULATE_DONE;
6517                 if (inject_emulated_exception(vcpu))
6518                         return r;
6519         } else if (vcpu->arch.pio.count) {
6520                 if (!vcpu->arch.pio.in) {
6521                         /* FIXME: return into emulator if single-stepping.  */
6522                         vcpu->arch.pio.count = 0;
6523                 } else {
6524                         writeback = false;
6525                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6526                 }
6527                 r = EMULATE_USER_EXIT;
6528         } else if (vcpu->mmio_needed) {
6529                 if (!vcpu->mmio_is_write)
6530                         writeback = false;
6531                 r = EMULATE_USER_EXIT;
6532                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6533         } else if (r == EMULATION_RESTART)
6534                 goto restart;
6535         else
6536                 r = EMULATE_DONE;
6537
6538         if (writeback) {
6539                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6540                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6541                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6542                 kvm_rip_write(vcpu, ctxt->eip);
6543                 if (r == EMULATE_DONE && ctxt->tf)
6544                         kvm_vcpu_do_singlestep(vcpu, &r);
6545                 if (!ctxt->have_exception ||
6546                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6547                         __kvm_set_rflags(vcpu, ctxt->eflags);
6548
6549                 /*
6550                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6551                  * do nothing, and it will be requested again as soon as
6552                  * the shadow expires.  But we still need to check here,
6553                  * because POPF has no interrupt shadow.
6554                  */
6555                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6556                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6557         } else
6558                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6559
6560         return r;
6561 }
6562
6563 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6564 {
6565         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6566 }
6567 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6568
6569 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6570                                         void *insn, int insn_len)
6571 {
6572         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6573 }
6574 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6575
6576 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6577 {
6578         vcpu->arch.pio.count = 0;
6579
6580         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6581                 return 1;
6582
6583         return kvm_skip_emulated_instruction(vcpu);
6584 }
6585
6586 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6587                             unsigned short port)
6588 {
6589         unsigned long val = kvm_rax_read(vcpu);
6590         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6591                                             size, port, &val, 1);
6592
6593         if (!ret) {
6594                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6595                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6596         }
6597         return ret;
6598 }
6599
6600 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6601 {
6602         unsigned long val;
6603
6604         /* We should only ever be called with arch.pio.count equal to 1 */
6605         BUG_ON(vcpu->arch.pio.count != 1);
6606
6607         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6608                 vcpu->arch.pio.count = 0;
6609                 return 1;
6610         }
6611
6612         /* For size less than 4 we merge, else we zero extend */
6613         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6614
6615         /*
6616          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6617          * the copy and tracing
6618          */
6619         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6620                                  vcpu->arch.pio.port, &val, 1);
6621         kvm_rax_write(vcpu, val);
6622
6623         return kvm_skip_emulated_instruction(vcpu);
6624 }
6625
6626 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6627                            unsigned short port)
6628 {
6629         unsigned long val;
6630         int ret;
6631
6632         /* For size less than 4 we merge, else we zero extend */
6633         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6634
6635         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6636                                        &val, 1);
6637         if (ret) {
6638                 kvm_rax_write(vcpu, val);
6639                 return ret;
6640         }
6641
6642         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6643         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6644
6645         return 0;
6646 }
6647
6648 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6649 {
6650         int ret;
6651
6652         if (in)
6653                 ret = kvm_fast_pio_in(vcpu, size, port);
6654         else
6655                 ret = kvm_fast_pio_out(vcpu, size, port);
6656         return ret && kvm_skip_emulated_instruction(vcpu);
6657 }
6658 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6659
6660 static int kvmclock_cpu_down_prep(unsigned int cpu)
6661 {
6662         __this_cpu_write(cpu_tsc_khz, 0);
6663         return 0;
6664 }
6665
6666 static void tsc_khz_changed(void *data)
6667 {
6668         struct cpufreq_freqs *freq = data;
6669         unsigned long khz = 0;
6670
6671         if (data)
6672                 khz = freq->new;
6673         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6674                 khz = cpufreq_quick_get(raw_smp_processor_id());
6675         if (!khz)
6676                 khz = tsc_khz;
6677         __this_cpu_write(cpu_tsc_khz, khz);
6678 }
6679
6680 #ifdef CONFIG_X86_64
6681 static void kvm_hyperv_tsc_notifier(void)
6682 {
6683         struct kvm *kvm;
6684         struct kvm_vcpu *vcpu;
6685         int cpu;
6686
6687         spin_lock(&kvm_lock);
6688         list_for_each_entry(kvm, &vm_list, vm_list)
6689                 kvm_make_mclock_inprogress_request(kvm);
6690
6691         hyperv_stop_tsc_emulation();
6692
6693         /* TSC frequency always matches when on Hyper-V */
6694         for_each_present_cpu(cpu)
6695                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6696         kvm_max_guest_tsc_khz = tsc_khz;
6697
6698         list_for_each_entry(kvm, &vm_list, vm_list) {
6699                 struct kvm_arch *ka = &kvm->arch;
6700
6701                 spin_lock(&ka->pvclock_gtod_sync_lock);
6702
6703                 pvclock_update_vm_gtod_copy(kvm);
6704
6705                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6706                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6707
6708                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6709                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6710
6711                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6712         }
6713         spin_unlock(&kvm_lock);
6714 }
6715 #endif
6716
6717 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6718                                      void *data)
6719 {
6720         struct cpufreq_freqs *freq = data;
6721         struct kvm *kvm;
6722         struct kvm_vcpu *vcpu;
6723         int i, send_ipi = 0;
6724
6725         /*
6726          * We allow guests to temporarily run on slowing clocks,
6727          * provided we notify them after, or to run on accelerating
6728          * clocks, provided we notify them before.  Thus time never
6729          * goes backwards.
6730          *
6731          * However, we have a problem.  We can't atomically update
6732          * the frequency of a given CPU from this function; it is
6733          * merely a notifier, which can be called from any CPU.
6734          * Changing the TSC frequency at arbitrary points in time
6735          * requires a recomputation of local variables related to
6736          * the TSC for each VCPU.  We must flag these local variables
6737          * to be updated and be sure the update takes place with the
6738          * new frequency before any guests proceed.
6739          *
6740          * Unfortunately, the combination of hotplug CPU and frequency
6741          * change creates an intractable locking scenario; the order
6742          * of when these callouts happen is undefined with respect to
6743          * CPU hotplug, and they can race with each other.  As such,
6744          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6745          * undefined; you can actually have a CPU frequency change take
6746          * place in between the computation of X and the setting of the
6747          * variable.  To protect against this problem, all updates of
6748          * the per_cpu tsc_khz variable are done in an interrupt
6749          * protected IPI, and all callers wishing to update the value
6750          * must wait for a synchronous IPI to complete (which is trivial
6751          * if the caller is on the CPU already).  This establishes the
6752          * necessary total order on variable updates.
6753          *
6754          * Note that because a guest time update may take place
6755          * anytime after the setting of the VCPU's request bit, the
6756          * correct TSC value must be set before the request.  However,
6757          * to ensure the update actually makes it to any guest which
6758          * starts running in hardware virtualization between the set
6759          * and the acquisition of the spinlock, we must also ping the
6760          * CPU after setting the request bit.
6761          *
6762          */
6763
6764         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6765                 return 0;
6766         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6767                 return 0;
6768
6769         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6770
6771         spin_lock(&kvm_lock);
6772         list_for_each_entry(kvm, &vm_list, vm_list) {
6773                 kvm_for_each_vcpu(i, vcpu, kvm) {
6774                         if (vcpu->cpu != freq->cpu)
6775                                 continue;
6776                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6777                         if (vcpu->cpu != smp_processor_id())
6778                                 send_ipi = 1;
6779                 }
6780         }
6781         spin_unlock(&kvm_lock);
6782
6783         if (freq->old < freq->new && send_ipi) {
6784                 /*
6785                  * We upscale the frequency.  Must make the guest
6786                  * doesn't see old kvmclock values while running with
6787                  * the new frequency, otherwise we risk the guest sees
6788                  * time go backwards.
6789                  *
6790                  * In case we update the frequency for another cpu
6791                  * (which might be in guest context) send an interrupt
6792                  * to kick the cpu out of guest context.  Next time
6793                  * guest context is entered kvmclock will be updated,
6794                  * so the guest will not see stale values.
6795                  */
6796                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6797         }
6798         return 0;
6799 }
6800
6801 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6802         .notifier_call  = kvmclock_cpufreq_notifier
6803 };
6804
6805 static int kvmclock_cpu_online(unsigned int cpu)
6806 {
6807         tsc_khz_changed(NULL);
6808         return 0;
6809 }
6810
6811 static void kvm_timer_init(void)
6812 {
6813         max_tsc_khz = tsc_khz;
6814
6815         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6816 #ifdef CONFIG_CPU_FREQ
6817                 struct cpufreq_policy policy;
6818                 int cpu;
6819
6820                 memset(&policy, 0, sizeof(policy));
6821                 cpu = get_cpu();
6822                 cpufreq_get_policy(&policy, cpu);
6823                 if (policy.cpuinfo.max_freq)
6824                         max_tsc_khz = policy.cpuinfo.max_freq;
6825                 put_cpu();
6826 #endif
6827                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6828                                           CPUFREQ_TRANSITION_NOTIFIER);
6829         }
6830         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6831
6832         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6833                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6834 }
6835
6836 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6837 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6838
6839 int kvm_is_in_guest(void)
6840 {
6841         return __this_cpu_read(current_vcpu) != NULL;
6842 }
6843
6844 static int kvm_is_user_mode(void)
6845 {
6846         int user_mode = 3;
6847
6848         if (__this_cpu_read(current_vcpu))
6849                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6850
6851         return user_mode != 0;
6852 }
6853
6854 static unsigned long kvm_get_guest_ip(void)
6855 {
6856         unsigned long ip = 0;
6857
6858         if (__this_cpu_read(current_vcpu))
6859                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6860
6861         return ip;
6862 }
6863
6864 static void kvm_handle_intel_pt_intr(void)
6865 {
6866         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
6867
6868         kvm_make_request(KVM_REQ_PMI, vcpu);
6869         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
6870                         (unsigned long *)&vcpu->arch.pmu.global_status);
6871 }
6872
6873 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6874         .is_in_guest            = kvm_is_in_guest,
6875         .is_user_mode           = kvm_is_user_mode,
6876         .get_guest_ip           = kvm_get_guest_ip,
6877         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
6878 };
6879
6880 static void kvm_set_mmio_spte_mask(void)
6881 {
6882         u64 mask;
6883         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6884
6885         /*
6886          * Set the reserved bits and the present bit of an paging-structure
6887          * entry to generate page fault with PFER.RSV = 1.
6888          */
6889
6890         /*
6891          * Mask the uppermost physical address bit, which would be reserved as
6892          * long as the supported physical address width is less than 52.
6893          */
6894         mask = 1ull << 51;
6895
6896         /* Set the present bit. */
6897         mask |= 1ull;
6898
6899         /*
6900          * If reserved bit is not supported, clear the present bit to disable
6901          * mmio page fault.
6902          */
6903         if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6904                 mask &= ~1ull;
6905
6906         kvm_mmu_set_mmio_spte_mask(mask, mask);
6907 }
6908
6909 #ifdef CONFIG_X86_64
6910 static void pvclock_gtod_update_fn(struct work_struct *work)
6911 {
6912         struct kvm *kvm;
6913
6914         struct kvm_vcpu *vcpu;
6915         int i;
6916
6917         spin_lock(&kvm_lock);
6918         list_for_each_entry(kvm, &vm_list, vm_list)
6919                 kvm_for_each_vcpu(i, vcpu, kvm)
6920                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6921         atomic_set(&kvm_guest_has_master_clock, 0);
6922         spin_unlock(&kvm_lock);
6923 }
6924
6925 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6926
6927 /*
6928  * Notification about pvclock gtod data update.
6929  */
6930 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6931                                void *priv)
6932 {
6933         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6934         struct timekeeper *tk = priv;
6935
6936         update_pvclock_gtod(tk);
6937
6938         /* disable master clock if host does not trust, or does not
6939          * use, TSC based clocksource.
6940          */
6941         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6942             atomic_read(&kvm_guest_has_master_clock) != 0)
6943                 queue_work(system_long_wq, &pvclock_gtod_work);
6944
6945         return 0;
6946 }
6947
6948 static struct notifier_block pvclock_gtod_notifier = {
6949         .notifier_call = pvclock_gtod_notify,
6950 };
6951 #endif
6952
6953 int kvm_arch_init(void *opaque)
6954 {
6955         int r;
6956         struct kvm_x86_ops *ops = opaque;
6957
6958         if (kvm_x86_ops) {
6959                 printk(KERN_ERR "kvm: already loaded the other module\n");
6960                 r = -EEXIST;
6961                 goto out;
6962         }
6963
6964         if (!ops->cpu_has_kvm_support()) {
6965                 printk(KERN_ERR "kvm: no hardware support\n");
6966                 r = -EOPNOTSUPP;
6967                 goto out;
6968         }
6969         if (ops->disabled_by_bios()) {
6970                 printk(KERN_ERR "kvm: disabled by bios\n");
6971                 r = -EOPNOTSUPP;
6972                 goto out;
6973         }
6974
6975         /*
6976          * KVM explicitly assumes that the guest has an FPU and
6977          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
6978          * vCPU's FPU state as a fxregs_state struct.
6979          */
6980         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
6981                 printk(KERN_ERR "kvm: inadequate fpu\n");
6982                 r = -EOPNOTSUPP;
6983                 goto out;
6984         }
6985
6986         r = -ENOMEM;
6987         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
6988                                           __alignof__(struct fpu), SLAB_ACCOUNT,
6989                                           NULL);
6990         if (!x86_fpu_cache) {
6991                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
6992                 goto out;
6993         }
6994
6995         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6996         if (!shared_msrs) {
6997                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6998                 goto out_free_x86_fpu_cache;
6999         }
7000
7001         r = kvm_mmu_module_init();
7002         if (r)
7003                 goto out_free_percpu;
7004
7005         kvm_set_mmio_spte_mask();
7006
7007         kvm_x86_ops = ops;
7008
7009         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7010                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7011                         PT_PRESENT_MASK, 0, sme_me_mask);
7012         kvm_timer_init();
7013
7014         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7015
7016         if (boot_cpu_has(X86_FEATURE_XSAVE))
7017                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7018
7019         kvm_lapic_init();
7020 #ifdef CONFIG_X86_64
7021         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7022
7023         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7024                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7025 #endif
7026
7027         return 0;
7028
7029 out_free_percpu:
7030         free_percpu(shared_msrs);
7031 out_free_x86_fpu_cache:
7032         kmem_cache_destroy(x86_fpu_cache);
7033 out:
7034         return r;
7035 }
7036
7037 void kvm_arch_exit(void)
7038 {
7039 #ifdef CONFIG_X86_64
7040         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7041                 clear_hv_tscchange_cb();
7042 #endif
7043         kvm_lapic_exit();
7044         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7045
7046         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7047                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7048                                             CPUFREQ_TRANSITION_NOTIFIER);
7049         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7050 #ifdef CONFIG_X86_64
7051         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7052 #endif
7053         kvm_x86_ops = NULL;
7054         kvm_mmu_module_exit();
7055         free_percpu(shared_msrs);
7056         kmem_cache_destroy(x86_fpu_cache);
7057 }
7058
7059 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7060 {
7061         ++vcpu->stat.halt_exits;
7062         if (lapic_in_kernel(vcpu)) {
7063                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7064                 return 1;
7065         } else {
7066                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7067                 return 0;
7068         }
7069 }
7070 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7071
7072 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7073 {
7074         int ret = kvm_skip_emulated_instruction(vcpu);
7075         /*
7076          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7077          * KVM_EXIT_DEBUG here.
7078          */
7079         return kvm_vcpu_halt(vcpu) && ret;
7080 }
7081 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7082
7083 #ifdef CONFIG_X86_64
7084 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7085                                 unsigned long clock_type)
7086 {
7087         struct kvm_clock_pairing clock_pairing;
7088         struct timespec64 ts;
7089         u64 cycle;
7090         int ret;
7091
7092         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7093                 return -KVM_EOPNOTSUPP;
7094
7095         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7096                 return -KVM_EOPNOTSUPP;
7097
7098         clock_pairing.sec = ts.tv_sec;
7099         clock_pairing.nsec = ts.tv_nsec;
7100         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7101         clock_pairing.flags = 0;
7102         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7103
7104         ret = 0;
7105         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7106                             sizeof(struct kvm_clock_pairing)))
7107                 ret = -KVM_EFAULT;
7108
7109         return ret;
7110 }
7111 #endif
7112
7113 /*
7114  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7115  *
7116  * @apicid - apicid of vcpu to be kicked.
7117  */
7118 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7119 {
7120         struct kvm_lapic_irq lapic_irq;
7121
7122         lapic_irq.shorthand = 0;
7123         lapic_irq.dest_mode = 0;
7124         lapic_irq.level = 0;
7125         lapic_irq.dest_id = apicid;
7126         lapic_irq.msi_redir_hint = false;
7127
7128         lapic_irq.delivery_mode = APIC_DM_REMRD;
7129         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7130 }
7131
7132 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7133 {
7134         if (!lapic_in_kernel(vcpu)) {
7135                 WARN_ON_ONCE(vcpu->arch.apicv_active);
7136                 return;
7137         }
7138         if (!vcpu->arch.apicv_active)
7139                 return;
7140
7141         vcpu->arch.apicv_active = false;
7142         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7143 }
7144
7145 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7146 {
7147         unsigned long nr, a0, a1, a2, a3, ret;
7148         int op_64_bit;
7149
7150         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7151                 return kvm_hv_hypercall(vcpu);
7152
7153         nr = kvm_rax_read(vcpu);
7154         a0 = kvm_rbx_read(vcpu);
7155         a1 = kvm_rcx_read(vcpu);
7156         a2 = kvm_rdx_read(vcpu);
7157         a3 = kvm_rsi_read(vcpu);
7158
7159         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7160
7161         op_64_bit = is_64_bit_mode(vcpu);
7162         if (!op_64_bit) {
7163                 nr &= 0xFFFFFFFF;
7164                 a0 &= 0xFFFFFFFF;
7165                 a1 &= 0xFFFFFFFF;
7166                 a2 &= 0xFFFFFFFF;
7167                 a3 &= 0xFFFFFFFF;
7168         }
7169
7170         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7171                 ret = -KVM_EPERM;
7172                 goto out;
7173         }
7174
7175         switch (nr) {
7176         case KVM_HC_VAPIC_POLL_IRQ:
7177                 ret = 0;
7178                 break;
7179         case KVM_HC_KICK_CPU:
7180                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7181                 ret = 0;
7182                 break;
7183 #ifdef CONFIG_X86_64
7184         case KVM_HC_CLOCK_PAIRING:
7185                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7186                 break;
7187 #endif
7188         case KVM_HC_SEND_IPI:
7189                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7190                 break;
7191         default:
7192                 ret = -KVM_ENOSYS;
7193                 break;
7194         }
7195 out:
7196         if (!op_64_bit)
7197                 ret = (u32)ret;
7198         kvm_rax_write(vcpu, ret);
7199
7200         ++vcpu->stat.hypercalls;
7201         return kvm_skip_emulated_instruction(vcpu);
7202 }
7203 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7204
7205 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7206 {
7207         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7208         char instruction[3];
7209         unsigned long rip = kvm_rip_read(vcpu);
7210
7211         kvm_x86_ops->patch_hypercall(vcpu, instruction);
7212
7213         return emulator_write_emulated(ctxt, rip, instruction, 3,
7214                 &ctxt->exception);
7215 }
7216
7217 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7218 {
7219         return vcpu->run->request_interrupt_window &&
7220                 likely(!pic_in_kernel(vcpu->kvm));
7221 }
7222
7223 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7224 {
7225         struct kvm_run *kvm_run = vcpu->run;
7226
7227         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7228         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7229         kvm_run->cr8 = kvm_get_cr8(vcpu);
7230         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7231         kvm_run->ready_for_interrupt_injection =
7232                 pic_in_kernel(vcpu->kvm) ||
7233                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7234 }
7235
7236 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7237 {
7238         int max_irr, tpr;
7239
7240         if (!kvm_x86_ops->update_cr8_intercept)
7241                 return;
7242
7243         if (!lapic_in_kernel(vcpu))
7244                 return;
7245
7246         if (vcpu->arch.apicv_active)
7247                 return;
7248
7249         if (!vcpu->arch.apic->vapic_addr)
7250                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7251         else
7252                 max_irr = -1;
7253
7254         if (max_irr != -1)
7255                 max_irr >>= 4;
7256
7257         tpr = kvm_lapic_get_cr8(vcpu);
7258
7259         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7260 }
7261
7262 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7263 {
7264         int r;
7265
7266         /* try to reinject previous events if any */
7267
7268         if (vcpu->arch.exception.injected)
7269                 kvm_x86_ops->queue_exception(vcpu);
7270         /*
7271          * Do not inject an NMI or interrupt if there is a pending
7272          * exception.  Exceptions and interrupts are recognized at
7273          * instruction boundaries, i.e. the start of an instruction.
7274          * Trap-like exceptions, e.g. #DB, have higher priority than
7275          * NMIs and interrupts, i.e. traps are recognized before an
7276          * NMI/interrupt that's pending on the same instruction.
7277          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7278          * priority, but are only generated (pended) during instruction
7279          * execution, i.e. a pending fault-like exception means the
7280          * fault occurred on the *previous* instruction and must be
7281          * serviced prior to recognizing any new events in order to
7282          * fully complete the previous instruction.
7283          */
7284         else if (!vcpu->arch.exception.pending) {
7285                 if (vcpu->arch.nmi_injected)
7286                         kvm_x86_ops->set_nmi(vcpu);
7287                 else if (vcpu->arch.interrupt.injected)
7288                         kvm_x86_ops->set_irq(vcpu);
7289         }
7290
7291         /*
7292          * Call check_nested_events() even if we reinjected a previous event
7293          * in order for caller to determine if it should require immediate-exit
7294          * from L2 to L1 due to pending L1 events which require exit
7295          * from L2 to L1.
7296          */
7297         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7298                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7299                 if (r != 0)
7300                         return r;
7301         }
7302
7303         /* try to inject new event if pending */
7304         if (vcpu->arch.exception.pending) {
7305                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7306                                         vcpu->arch.exception.has_error_code,
7307                                         vcpu->arch.exception.error_code);
7308
7309                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7310                 vcpu->arch.exception.pending = false;
7311                 vcpu->arch.exception.injected = true;
7312
7313                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7314                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7315                                              X86_EFLAGS_RF);
7316
7317                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7318                         /*
7319                          * This code assumes that nSVM doesn't use
7320                          * check_nested_events(). If it does, the
7321                          * DR6/DR7 changes should happen before L1
7322                          * gets a #VMEXIT for an intercepted #DB in
7323                          * L2.  (Under VMX, on the other hand, the
7324                          * DR6/DR7 changes should not happen in the
7325                          * event of a VM-exit to L1 for an intercepted
7326                          * #DB in L2.)
7327                          */
7328                         kvm_deliver_exception_payload(vcpu);
7329                         if (vcpu->arch.dr7 & DR7_GD) {
7330                                 vcpu->arch.dr7 &= ~DR7_GD;
7331                                 kvm_update_dr7(vcpu);
7332                         }
7333                 }
7334
7335                 kvm_x86_ops->queue_exception(vcpu);
7336         }
7337
7338         /* Don't consider new event if we re-injected an event */
7339         if (kvm_event_needs_reinjection(vcpu))
7340                 return 0;
7341
7342         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7343             kvm_x86_ops->smi_allowed(vcpu)) {
7344                 vcpu->arch.smi_pending = false;
7345                 ++vcpu->arch.smi_count;
7346                 enter_smm(vcpu);
7347         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7348                 --vcpu->arch.nmi_pending;
7349                 vcpu->arch.nmi_injected = true;
7350                 kvm_x86_ops->set_nmi(vcpu);
7351         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7352                 /*
7353                  * Because interrupts can be injected asynchronously, we are
7354                  * calling check_nested_events again here to avoid a race condition.
7355                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7356                  * proposal and current concerns.  Perhaps we should be setting
7357                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7358                  */
7359                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7360                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7361                         if (r != 0)
7362                                 return r;
7363                 }
7364                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7365                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7366                                             false);
7367                         kvm_x86_ops->set_irq(vcpu);
7368                 }
7369         }
7370
7371         return 0;
7372 }
7373
7374 static void process_nmi(struct kvm_vcpu *vcpu)
7375 {
7376         unsigned limit = 2;
7377
7378         /*
7379          * x86 is limited to one NMI running, and one NMI pending after it.
7380          * If an NMI is already in progress, limit further NMIs to just one.
7381          * Otherwise, allow two (and we'll inject the first one immediately).
7382          */
7383         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7384                 limit = 1;
7385
7386         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7387         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7388         kvm_make_request(KVM_REQ_EVENT, vcpu);
7389 }
7390
7391 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7392 {
7393         u32 flags = 0;
7394         flags |= seg->g       << 23;
7395         flags |= seg->db      << 22;
7396         flags |= seg->l       << 21;
7397         flags |= seg->avl     << 20;
7398         flags |= seg->present << 15;
7399         flags |= seg->dpl     << 13;
7400         flags |= seg->s       << 12;
7401         flags |= seg->type    << 8;
7402         return flags;
7403 }
7404
7405 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7406 {
7407         struct kvm_segment seg;
7408         int offset;
7409
7410         kvm_get_segment(vcpu, &seg, n);
7411         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7412
7413         if (n < 3)
7414                 offset = 0x7f84 + n * 12;
7415         else
7416                 offset = 0x7f2c + (n - 3) * 12;
7417
7418         put_smstate(u32, buf, offset + 8, seg.base);
7419         put_smstate(u32, buf, offset + 4, seg.limit);
7420         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7421 }
7422
7423 #ifdef CONFIG_X86_64
7424 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7425 {
7426         struct kvm_segment seg;
7427         int offset;
7428         u16 flags;
7429
7430         kvm_get_segment(vcpu, &seg, n);
7431         offset = 0x7e00 + n * 16;
7432
7433         flags = enter_smm_get_segment_flags(&seg) >> 8;
7434         put_smstate(u16, buf, offset, seg.selector);
7435         put_smstate(u16, buf, offset + 2, flags);
7436         put_smstate(u32, buf, offset + 4, seg.limit);
7437         put_smstate(u64, buf, offset + 8, seg.base);
7438 }
7439 #endif
7440
7441 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7442 {
7443         struct desc_ptr dt;
7444         struct kvm_segment seg;
7445         unsigned long val;
7446         int i;
7447
7448         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7449         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7450         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7451         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7452
7453         for (i = 0; i < 8; i++)
7454                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7455
7456         kvm_get_dr(vcpu, 6, &val);
7457         put_smstate(u32, buf, 0x7fcc, (u32)val);
7458         kvm_get_dr(vcpu, 7, &val);
7459         put_smstate(u32, buf, 0x7fc8, (u32)val);
7460
7461         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7462         put_smstate(u32, buf, 0x7fc4, seg.selector);
7463         put_smstate(u32, buf, 0x7f64, seg.base);
7464         put_smstate(u32, buf, 0x7f60, seg.limit);
7465         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7466
7467         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7468         put_smstate(u32, buf, 0x7fc0, seg.selector);
7469         put_smstate(u32, buf, 0x7f80, seg.base);
7470         put_smstate(u32, buf, 0x7f7c, seg.limit);
7471         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7472
7473         kvm_x86_ops->get_gdt(vcpu, &dt);
7474         put_smstate(u32, buf, 0x7f74, dt.address);
7475         put_smstate(u32, buf, 0x7f70, dt.size);
7476
7477         kvm_x86_ops->get_idt(vcpu, &dt);
7478         put_smstate(u32, buf, 0x7f58, dt.address);
7479         put_smstate(u32, buf, 0x7f54, dt.size);
7480
7481         for (i = 0; i < 6; i++)
7482                 enter_smm_save_seg_32(vcpu, buf, i);
7483
7484         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7485
7486         /* revision id */
7487         put_smstate(u32, buf, 0x7efc, 0x00020000);
7488         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7489 }
7490
7491 #ifdef CONFIG_X86_64
7492 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7493 {
7494         struct desc_ptr dt;
7495         struct kvm_segment seg;
7496         unsigned long val;
7497         int i;
7498
7499         for (i = 0; i < 16; i++)
7500                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7501
7502         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7503         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7504
7505         kvm_get_dr(vcpu, 6, &val);
7506         put_smstate(u64, buf, 0x7f68, val);
7507         kvm_get_dr(vcpu, 7, &val);
7508         put_smstate(u64, buf, 0x7f60, val);
7509
7510         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7511         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7512         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7513
7514         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7515
7516         /* revision id */
7517         put_smstate(u32, buf, 0x7efc, 0x00020064);
7518
7519         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7520
7521         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7522         put_smstate(u16, buf, 0x7e90, seg.selector);
7523         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7524         put_smstate(u32, buf, 0x7e94, seg.limit);
7525         put_smstate(u64, buf, 0x7e98, seg.base);
7526
7527         kvm_x86_ops->get_idt(vcpu, &dt);
7528         put_smstate(u32, buf, 0x7e84, dt.size);
7529         put_smstate(u64, buf, 0x7e88, dt.address);
7530
7531         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7532         put_smstate(u16, buf, 0x7e70, seg.selector);
7533         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7534         put_smstate(u32, buf, 0x7e74, seg.limit);
7535         put_smstate(u64, buf, 0x7e78, seg.base);
7536
7537         kvm_x86_ops->get_gdt(vcpu, &dt);
7538         put_smstate(u32, buf, 0x7e64, dt.size);
7539         put_smstate(u64, buf, 0x7e68, dt.address);
7540
7541         for (i = 0; i < 6; i++)
7542                 enter_smm_save_seg_64(vcpu, buf, i);
7543 }
7544 #endif
7545
7546 static void enter_smm(struct kvm_vcpu *vcpu)
7547 {
7548         struct kvm_segment cs, ds;
7549         struct desc_ptr dt;
7550         char buf[512];
7551         u32 cr0;
7552
7553         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7554         memset(buf, 0, 512);
7555 #ifdef CONFIG_X86_64
7556         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7557                 enter_smm_save_state_64(vcpu, buf);
7558         else
7559 #endif
7560                 enter_smm_save_state_32(vcpu, buf);
7561
7562         /*
7563          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7564          * vCPU state (e.g. leave guest mode) after we've saved the state into
7565          * the SMM state-save area.
7566          */
7567         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7568
7569         vcpu->arch.hflags |= HF_SMM_MASK;
7570         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7571
7572         if (kvm_x86_ops->get_nmi_mask(vcpu))
7573                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7574         else
7575                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7576
7577         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7578         kvm_rip_write(vcpu, 0x8000);
7579
7580         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7581         kvm_x86_ops->set_cr0(vcpu, cr0);
7582         vcpu->arch.cr0 = cr0;
7583
7584         kvm_x86_ops->set_cr4(vcpu, 0);
7585
7586         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7587         dt.address = dt.size = 0;
7588         kvm_x86_ops->set_idt(vcpu, &dt);
7589
7590         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7591
7592         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7593         cs.base = vcpu->arch.smbase;
7594
7595         ds.selector = 0;
7596         ds.base = 0;
7597
7598         cs.limit    = ds.limit = 0xffffffff;
7599         cs.type     = ds.type = 0x3;
7600         cs.dpl      = ds.dpl = 0;
7601         cs.db       = ds.db = 0;
7602         cs.s        = ds.s = 1;
7603         cs.l        = ds.l = 0;
7604         cs.g        = ds.g = 1;
7605         cs.avl      = ds.avl = 0;
7606         cs.present  = ds.present = 1;
7607         cs.unusable = ds.unusable = 0;
7608         cs.padding  = ds.padding = 0;
7609
7610         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7611         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7612         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7613         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7614         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7615         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7616
7617 #ifdef CONFIG_X86_64
7618         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7619                 kvm_x86_ops->set_efer(vcpu, 0);
7620 #endif
7621
7622         kvm_update_cpuid(vcpu);
7623         kvm_mmu_reset_context(vcpu);
7624 }
7625
7626 static void process_smi(struct kvm_vcpu *vcpu)
7627 {
7628         vcpu->arch.smi_pending = true;
7629         kvm_make_request(KVM_REQ_EVENT, vcpu);
7630 }
7631
7632 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7633 {
7634         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7635 }
7636
7637 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7638 {
7639         if (!kvm_apic_present(vcpu))
7640                 return;
7641
7642         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7643
7644         if (irqchip_split(vcpu->kvm))
7645                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7646         else {
7647                 if (vcpu->arch.apicv_active)
7648                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7649                 if (ioapic_in_kernel(vcpu->kvm))
7650                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7651         }
7652
7653         if (is_guest_mode(vcpu))
7654                 vcpu->arch.load_eoi_exitmap_pending = true;
7655         else
7656                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7657 }
7658
7659 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7660 {
7661         u64 eoi_exit_bitmap[4];
7662
7663         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7664                 return;
7665
7666         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7667                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7668         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7669 }
7670
7671 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7672                 unsigned long start, unsigned long end,
7673                 bool blockable)
7674 {
7675         unsigned long apic_address;
7676
7677         /*
7678          * The physical address of apic access page is stored in the VMCS.
7679          * Update it when it becomes invalid.
7680          */
7681         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7682         if (start <= apic_address && apic_address < end)
7683                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7684
7685         return 0;
7686 }
7687
7688 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7689 {
7690         struct page *page = NULL;
7691
7692         if (!lapic_in_kernel(vcpu))
7693                 return;
7694
7695         if (!kvm_x86_ops->set_apic_access_page_addr)
7696                 return;
7697
7698         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7699         if (is_error_page(page))
7700                 return;
7701         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7702
7703         /*
7704          * Do not pin apic access page in memory, the MMU notifier
7705          * will call us again if it is migrated or swapped out.
7706          */
7707         put_page(page);
7708 }
7709 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7710
7711 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7712 {
7713         smp_send_reschedule(vcpu->cpu);
7714 }
7715 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7716
7717 /*
7718  * Returns 1 to let vcpu_run() continue the guest execution loop without
7719  * exiting to the userspace.  Otherwise, the value will be returned to the
7720  * userspace.
7721  */
7722 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7723 {
7724         int r;
7725         bool req_int_win =
7726                 dm_request_for_irq_injection(vcpu) &&
7727                 kvm_cpu_accept_dm_intr(vcpu);
7728
7729         bool req_immediate_exit = false;
7730
7731         if (kvm_request_pending(vcpu)) {
7732                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7733                         kvm_x86_ops->get_vmcs12_pages(vcpu);
7734                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7735                         kvm_mmu_unload(vcpu);
7736                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7737                         __kvm_migrate_timers(vcpu);
7738                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7739                         kvm_gen_update_masterclock(vcpu->kvm);
7740                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7741                         kvm_gen_kvmclock_update(vcpu);
7742                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7743                         r = kvm_guest_time_update(vcpu);
7744                         if (unlikely(r))
7745                                 goto out;
7746                 }
7747                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7748                         kvm_mmu_sync_roots(vcpu);
7749                 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7750                         kvm_mmu_load_cr3(vcpu);
7751                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7752                         kvm_vcpu_flush_tlb(vcpu, true);
7753                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7754                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7755                         r = 0;
7756                         goto out;
7757                 }
7758                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7759                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7760                         vcpu->mmio_needed = 0;
7761                         r = 0;
7762                         goto out;
7763                 }
7764                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7765                         /* Page is swapped out. Do synthetic halt */
7766                         vcpu->arch.apf.halted = true;
7767                         r = 1;
7768                         goto out;
7769                 }
7770                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7771                         record_steal_time(vcpu);
7772                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7773                         process_smi(vcpu);
7774                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7775                         process_nmi(vcpu);
7776                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7777                         kvm_pmu_handle_event(vcpu);
7778                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7779                         kvm_pmu_deliver_pmi(vcpu);
7780                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7781                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7782                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7783                                      vcpu->arch.ioapic_handled_vectors)) {
7784                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7785                                 vcpu->run->eoi.vector =
7786                                                 vcpu->arch.pending_ioapic_eoi;
7787                                 r = 0;
7788                                 goto out;
7789                         }
7790                 }
7791                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7792                         vcpu_scan_ioapic(vcpu);
7793                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7794                         vcpu_load_eoi_exitmap(vcpu);
7795                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7796                         kvm_vcpu_reload_apic_access_page(vcpu);
7797                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7798                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7799                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7800                         r = 0;
7801                         goto out;
7802                 }
7803                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7804                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7805                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7806                         r = 0;
7807                         goto out;
7808                 }
7809                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7810                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7811                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7812                         r = 0;
7813                         goto out;
7814                 }
7815
7816                 /*
7817                  * KVM_REQ_HV_STIMER has to be processed after
7818                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7819                  * depend on the guest clock being up-to-date
7820                  */
7821                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7822                         kvm_hv_process_stimers(vcpu);
7823         }
7824
7825         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7826                 ++vcpu->stat.req_event;
7827                 kvm_apic_accept_events(vcpu);
7828                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7829                         r = 1;
7830                         goto out;
7831                 }
7832
7833                 if (inject_pending_event(vcpu, req_int_win) != 0)
7834                         req_immediate_exit = true;
7835                 else {
7836                         /* Enable SMI/NMI/IRQ window open exits if needed.
7837                          *
7838                          * SMIs have three cases:
7839                          * 1) They can be nested, and then there is nothing to
7840                          *    do here because RSM will cause a vmexit anyway.
7841                          * 2) There is an ISA-specific reason why SMI cannot be
7842                          *    injected, and the moment when this changes can be
7843                          *    intercepted.
7844                          * 3) Or the SMI can be pending because
7845                          *    inject_pending_event has completed the injection
7846                          *    of an IRQ or NMI from the previous vmexit, and
7847                          *    then we request an immediate exit to inject the
7848                          *    SMI.
7849                          */
7850                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7851                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7852                                         req_immediate_exit = true;
7853                         if (vcpu->arch.nmi_pending)
7854                                 kvm_x86_ops->enable_nmi_window(vcpu);
7855                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7856                                 kvm_x86_ops->enable_irq_window(vcpu);
7857                         WARN_ON(vcpu->arch.exception.pending);
7858                 }
7859
7860                 if (kvm_lapic_enabled(vcpu)) {
7861                         update_cr8_intercept(vcpu);
7862                         kvm_lapic_sync_to_vapic(vcpu);
7863                 }
7864         }
7865
7866         r = kvm_mmu_reload(vcpu);
7867         if (unlikely(r)) {
7868                 goto cancel_injection;
7869         }
7870
7871         preempt_disable();
7872
7873         kvm_x86_ops->prepare_guest_switch(vcpu);
7874
7875         /*
7876          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7877          * IPI are then delayed after guest entry, which ensures that they
7878          * result in virtual interrupt delivery.
7879          */
7880         local_irq_disable();
7881         vcpu->mode = IN_GUEST_MODE;
7882
7883         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7884
7885         /*
7886          * 1) We should set ->mode before checking ->requests.  Please see
7887          * the comment in kvm_vcpu_exiting_guest_mode().
7888          *
7889          * 2) For APICv, we should set ->mode before checking PID.ON. This
7890          * pairs with the memory barrier implicit in pi_test_and_set_on
7891          * (see vmx_deliver_posted_interrupt).
7892          *
7893          * 3) This also orders the write to mode from any reads to the page
7894          * tables done while the VCPU is running.  Please see the comment
7895          * in kvm_flush_remote_tlbs.
7896          */
7897         smp_mb__after_srcu_read_unlock();
7898
7899         /*
7900          * This handles the case where a posted interrupt was
7901          * notified with kvm_vcpu_kick.
7902          */
7903         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7904                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7905
7906         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7907             || need_resched() || signal_pending(current)) {
7908                 vcpu->mode = OUTSIDE_GUEST_MODE;
7909                 smp_wmb();
7910                 local_irq_enable();
7911                 preempt_enable();
7912                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7913                 r = 1;
7914                 goto cancel_injection;
7915         }
7916
7917         if (req_immediate_exit) {
7918                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7919                 kvm_x86_ops->request_immediate_exit(vcpu);
7920         }
7921
7922         trace_kvm_entry(vcpu->vcpu_id);
7923         if (lapic_timer_advance_ns)
7924                 wait_lapic_expire(vcpu);
7925         guest_enter_irqoff();
7926
7927         if (unlikely(vcpu->arch.switch_db_regs)) {
7928                 set_debugreg(0, 7);
7929                 set_debugreg(vcpu->arch.eff_db[0], 0);
7930                 set_debugreg(vcpu->arch.eff_db[1], 1);
7931                 set_debugreg(vcpu->arch.eff_db[2], 2);
7932                 set_debugreg(vcpu->arch.eff_db[3], 3);
7933                 set_debugreg(vcpu->arch.dr6, 6);
7934                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7935         }
7936
7937         kvm_x86_ops->run(vcpu);
7938
7939         /*
7940          * Do this here before restoring debug registers on the host.  And
7941          * since we do this before handling the vmexit, a DR access vmexit
7942          * can (a) read the correct value of the debug registers, (b) set
7943          * KVM_DEBUGREG_WONT_EXIT again.
7944          */
7945         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7946                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7947                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7948                 kvm_update_dr0123(vcpu);
7949                 kvm_update_dr6(vcpu);
7950                 kvm_update_dr7(vcpu);
7951                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7952         }
7953
7954         /*
7955          * If the guest has used debug registers, at least dr7
7956          * will be disabled while returning to the host.
7957          * If we don't have active breakpoints in the host, we don't
7958          * care about the messed up debug address registers. But if
7959          * we have some of them active, restore the old state.
7960          */
7961         if (hw_breakpoint_active())
7962                 hw_breakpoint_restore();
7963
7964         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7965
7966         vcpu->mode = OUTSIDE_GUEST_MODE;
7967         smp_wmb();
7968
7969         kvm_before_interrupt(vcpu);
7970         kvm_x86_ops->handle_external_intr(vcpu);
7971         kvm_after_interrupt(vcpu);
7972
7973         ++vcpu->stat.exits;
7974
7975         guest_exit_irqoff();
7976
7977         local_irq_enable();
7978         preempt_enable();
7979
7980         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7981
7982         /*
7983          * Profile KVM exit RIPs:
7984          */
7985         if (unlikely(prof_on == KVM_PROFILING)) {
7986                 unsigned long rip = kvm_rip_read(vcpu);
7987                 profile_hit(KVM_PROFILING, (void *)rip);
7988         }
7989
7990         if (unlikely(vcpu->arch.tsc_always_catchup))
7991                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7992
7993         if (vcpu->arch.apic_attention)
7994                 kvm_lapic_sync_from_vapic(vcpu);
7995
7996         vcpu->arch.gpa_available = false;
7997         r = kvm_x86_ops->handle_exit(vcpu);
7998         return r;
7999
8000 cancel_injection:
8001         kvm_x86_ops->cancel_injection(vcpu);
8002         if (unlikely(vcpu->arch.apic_attention))
8003                 kvm_lapic_sync_from_vapic(vcpu);
8004 out:
8005         return r;
8006 }
8007
8008 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8009 {
8010         if (!kvm_arch_vcpu_runnable(vcpu) &&
8011             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8012                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8013                 kvm_vcpu_block(vcpu);
8014                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8015
8016                 if (kvm_x86_ops->post_block)
8017                         kvm_x86_ops->post_block(vcpu);
8018
8019                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8020                         return 1;
8021         }
8022
8023         kvm_apic_accept_events(vcpu);
8024         switch(vcpu->arch.mp_state) {
8025         case KVM_MP_STATE_HALTED:
8026                 vcpu->arch.pv.pv_unhalted = false;
8027                 vcpu->arch.mp_state =
8028                         KVM_MP_STATE_RUNNABLE;
8029                 /* fall through */
8030         case KVM_MP_STATE_RUNNABLE:
8031                 vcpu->arch.apf.halted = false;
8032                 break;
8033         case KVM_MP_STATE_INIT_RECEIVED:
8034                 break;
8035         default:
8036                 return -EINTR;
8037                 break;
8038         }
8039         return 1;
8040 }
8041
8042 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8043 {
8044         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8045                 kvm_x86_ops->check_nested_events(vcpu, false);
8046
8047         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8048                 !vcpu->arch.apf.halted);
8049 }
8050
8051 static int vcpu_run(struct kvm_vcpu *vcpu)
8052 {
8053         int r;
8054         struct kvm *kvm = vcpu->kvm;
8055
8056         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8057         vcpu->arch.l1tf_flush_l1d = true;
8058
8059         for (;;) {
8060                 if (kvm_vcpu_running(vcpu)) {
8061                         r = vcpu_enter_guest(vcpu);
8062                 } else {
8063                         r = vcpu_block(kvm, vcpu);
8064                 }
8065
8066                 if (r <= 0)
8067                         break;
8068
8069                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8070                 if (kvm_cpu_has_pending_timer(vcpu))
8071                         kvm_inject_pending_timer_irqs(vcpu);
8072
8073                 if (dm_request_for_irq_injection(vcpu) &&
8074                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8075                         r = 0;
8076                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8077                         ++vcpu->stat.request_irq_exits;
8078                         break;
8079                 }
8080
8081                 kvm_check_async_pf_completion(vcpu);
8082
8083                 if (signal_pending(current)) {
8084                         r = -EINTR;
8085                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8086                         ++vcpu->stat.signal_exits;
8087                         break;
8088                 }
8089                 if (need_resched()) {
8090                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8091                         cond_resched();
8092                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8093                 }
8094         }
8095
8096         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8097
8098         return r;
8099 }
8100
8101 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8102 {
8103         int r;
8104         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8105         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8106         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8107         if (r != EMULATE_DONE)
8108                 return 0;
8109         return 1;
8110 }
8111
8112 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8113 {
8114         BUG_ON(!vcpu->arch.pio.count);
8115
8116         return complete_emulated_io(vcpu);
8117 }
8118
8119 /*
8120  * Implements the following, as a state machine:
8121  *
8122  * read:
8123  *   for each fragment
8124  *     for each mmio piece in the fragment
8125  *       write gpa, len
8126  *       exit
8127  *       copy data
8128  *   execute insn
8129  *
8130  * write:
8131  *   for each fragment
8132  *     for each mmio piece in the fragment
8133  *       write gpa, len
8134  *       copy data
8135  *       exit
8136  */
8137 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8138 {
8139         struct kvm_run *run = vcpu->run;
8140         struct kvm_mmio_fragment *frag;
8141         unsigned len;
8142
8143         BUG_ON(!vcpu->mmio_needed);
8144
8145         /* Complete previous fragment */
8146         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8147         len = min(8u, frag->len);
8148         if (!vcpu->mmio_is_write)
8149                 memcpy(frag->data, run->mmio.data, len);
8150
8151         if (frag->len <= 8) {
8152                 /* Switch to the next fragment. */
8153                 frag++;
8154                 vcpu->mmio_cur_fragment++;
8155         } else {
8156                 /* Go forward to the next mmio piece. */
8157                 frag->data += len;
8158                 frag->gpa += len;
8159                 frag->len -= len;
8160         }
8161
8162         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8163                 vcpu->mmio_needed = 0;
8164
8165                 /* FIXME: return into emulator if single-stepping.  */
8166                 if (vcpu->mmio_is_write)
8167                         return 1;
8168                 vcpu->mmio_read_completed = 1;
8169                 return complete_emulated_io(vcpu);
8170         }
8171
8172         run->exit_reason = KVM_EXIT_MMIO;
8173         run->mmio.phys_addr = frag->gpa;
8174         if (vcpu->mmio_is_write)
8175                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8176         run->mmio.len = min(8u, frag->len);
8177         run->mmio.is_write = vcpu->mmio_is_write;
8178         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8179         return 0;
8180 }
8181
8182 /* Swap (qemu) user FPU context for the guest FPU context. */
8183 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8184 {
8185         preempt_disable();
8186         copy_fpregs_to_fpstate(&current->thread.fpu);
8187         /* PKRU is separately restored in kvm_x86_ops->run.  */
8188         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8189                                 ~XFEATURE_MASK_PKRU);
8190         preempt_enable();
8191         trace_kvm_fpu(1);
8192 }
8193
8194 /* When vcpu_run ends, restore user space FPU context. */
8195 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8196 {
8197         preempt_disable();
8198         copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8199         copy_kernel_to_fpregs(&current->thread.fpu.state);
8200         preempt_enable();
8201         ++vcpu->stat.fpu_reload;
8202         trace_kvm_fpu(0);
8203 }
8204
8205 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8206 {
8207         int r;
8208
8209         vcpu_load(vcpu);
8210         kvm_sigset_activate(vcpu);
8211         kvm_load_guest_fpu(vcpu);
8212
8213         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8214                 if (kvm_run->immediate_exit) {
8215                         r = -EINTR;
8216                         goto out;
8217                 }
8218                 kvm_vcpu_block(vcpu);
8219                 kvm_apic_accept_events(vcpu);
8220                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8221                 r = -EAGAIN;
8222                 if (signal_pending(current)) {
8223                         r = -EINTR;
8224                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8225                         ++vcpu->stat.signal_exits;
8226                 }
8227                 goto out;
8228         }
8229
8230         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8231                 r = -EINVAL;
8232                 goto out;
8233         }
8234
8235         if (vcpu->run->kvm_dirty_regs) {
8236                 r = sync_regs(vcpu);
8237                 if (r != 0)
8238                         goto out;
8239         }
8240
8241         /* re-sync apic's tpr */
8242         if (!lapic_in_kernel(vcpu)) {
8243                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8244                         r = -EINVAL;
8245                         goto out;
8246                 }
8247         }
8248
8249         if (unlikely(vcpu->arch.complete_userspace_io)) {
8250                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8251                 vcpu->arch.complete_userspace_io = NULL;
8252                 r = cui(vcpu);
8253                 if (r <= 0)
8254                         goto out;
8255         } else
8256                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8257
8258         if (kvm_run->immediate_exit)
8259                 r = -EINTR;
8260         else
8261                 r = vcpu_run(vcpu);
8262
8263 out:
8264         kvm_put_guest_fpu(vcpu);
8265         if (vcpu->run->kvm_valid_regs)
8266                 store_regs(vcpu);
8267         post_kvm_run_save(vcpu);
8268         kvm_sigset_deactivate(vcpu);
8269
8270         vcpu_put(vcpu);
8271         return r;
8272 }
8273
8274 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8275 {
8276         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8277                 /*
8278                  * We are here if userspace calls get_regs() in the middle of
8279                  * instruction emulation. Registers state needs to be copied
8280                  * back from emulation context to vcpu. Userspace shouldn't do
8281                  * that usually, but some bad designed PV devices (vmware
8282                  * backdoor interface) need this to work
8283                  */
8284                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8285                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8286         }
8287         regs->rax = kvm_rax_read(vcpu);
8288         regs->rbx = kvm_rbx_read(vcpu);
8289         regs->rcx = kvm_rcx_read(vcpu);
8290         regs->rdx = kvm_rdx_read(vcpu);
8291         regs->rsi = kvm_rsi_read(vcpu);
8292         regs->rdi = kvm_rdi_read(vcpu);
8293         regs->rsp = kvm_rsp_read(vcpu);
8294         regs->rbp = kvm_rbp_read(vcpu);
8295 #ifdef CONFIG_X86_64
8296         regs->r8 = kvm_r8_read(vcpu);
8297         regs->r9 = kvm_r9_read(vcpu);
8298         regs->r10 = kvm_r10_read(vcpu);
8299         regs->r11 = kvm_r11_read(vcpu);
8300         regs->r12 = kvm_r12_read(vcpu);
8301         regs->r13 = kvm_r13_read(vcpu);
8302         regs->r14 = kvm_r14_read(vcpu);
8303         regs->r15 = kvm_r15_read(vcpu);
8304 #endif
8305
8306         regs->rip = kvm_rip_read(vcpu);
8307         regs->rflags = kvm_get_rflags(vcpu);
8308 }
8309
8310 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8311 {
8312         vcpu_load(vcpu);
8313         __get_regs(vcpu, regs);
8314         vcpu_put(vcpu);
8315         return 0;
8316 }
8317
8318 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8319 {
8320         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8321         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8322
8323         kvm_rax_write(vcpu, regs->rax);
8324         kvm_rbx_write(vcpu, regs->rbx);
8325         kvm_rcx_write(vcpu, regs->rcx);
8326         kvm_rdx_write(vcpu, regs->rdx);
8327         kvm_rsi_write(vcpu, regs->rsi);
8328         kvm_rdi_write(vcpu, regs->rdi);
8329         kvm_rsp_write(vcpu, regs->rsp);
8330         kvm_rbp_write(vcpu, regs->rbp);
8331 #ifdef CONFIG_X86_64
8332         kvm_r8_write(vcpu, regs->r8);
8333         kvm_r9_write(vcpu, regs->r9);
8334         kvm_r10_write(vcpu, regs->r10);
8335         kvm_r11_write(vcpu, regs->r11);
8336         kvm_r12_write(vcpu, regs->r12);
8337         kvm_r13_write(vcpu, regs->r13);
8338         kvm_r14_write(vcpu, regs->r14);
8339         kvm_r15_write(vcpu, regs->r15);
8340 #endif
8341
8342         kvm_rip_write(vcpu, regs->rip);
8343         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8344
8345         vcpu->arch.exception.pending = false;
8346
8347         kvm_make_request(KVM_REQ_EVENT, vcpu);
8348 }
8349
8350 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8351 {
8352         vcpu_load(vcpu);
8353         __set_regs(vcpu, regs);
8354         vcpu_put(vcpu);
8355         return 0;
8356 }
8357
8358 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8359 {
8360         struct kvm_segment cs;
8361
8362         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8363         *db = cs.db;
8364         *l = cs.l;
8365 }
8366 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8367
8368 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8369 {
8370         struct desc_ptr dt;
8371
8372         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8373         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8374         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8375         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8376         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8377         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8378
8379         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8380         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8381
8382         kvm_x86_ops->get_idt(vcpu, &dt);
8383         sregs->idt.limit = dt.size;
8384         sregs->idt.base = dt.address;
8385         kvm_x86_ops->get_gdt(vcpu, &dt);
8386         sregs->gdt.limit = dt.size;
8387         sregs->gdt.base = dt.address;
8388
8389         sregs->cr0 = kvm_read_cr0(vcpu);
8390         sregs->cr2 = vcpu->arch.cr2;
8391         sregs->cr3 = kvm_read_cr3(vcpu);
8392         sregs->cr4 = kvm_read_cr4(vcpu);
8393         sregs->cr8 = kvm_get_cr8(vcpu);
8394         sregs->efer = vcpu->arch.efer;
8395         sregs->apic_base = kvm_get_apic_base(vcpu);
8396
8397         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8398
8399         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8400                 set_bit(vcpu->arch.interrupt.nr,
8401                         (unsigned long *)sregs->interrupt_bitmap);
8402 }
8403
8404 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8405                                   struct kvm_sregs *sregs)
8406 {
8407         vcpu_load(vcpu);
8408         __get_sregs(vcpu, sregs);
8409         vcpu_put(vcpu);
8410         return 0;
8411 }
8412
8413 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8414                                     struct kvm_mp_state *mp_state)
8415 {
8416         vcpu_load(vcpu);
8417
8418         kvm_apic_accept_events(vcpu);
8419         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8420                                         vcpu->arch.pv.pv_unhalted)
8421                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8422         else
8423                 mp_state->mp_state = vcpu->arch.mp_state;
8424
8425         vcpu_put(vcpu);
8426         return 0;
8427 }
8428
8429 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8430                                     struct kvm_mp_state *mp_state)
8431 {
8432         int ret = -EINVAL;
8433
8434         vcpu_load(vcpu);
8435
8436         if (!lapic_in_kernel(vcpu) &&
8437             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8438                 goto out;
8439
8440         /* INITs are latched while in SMM */
8441         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8442             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8443              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8444                 goto out;
8445
8446         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8447                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8448                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8449         } else
8450                 vcpu->arch.mp_state = mp_state->mp_state;
8451         kvm_make_request(KVM_REQ_EVENT, vcpu);
8452
8453         ret = 0;
8454 out:
8455         vcpu_put(vcpu);
8456         return ret;
8457 }
8458
8459 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8460                     int reason, bool has_error_code, u32 error_code)
8461 {
8462         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8463         int ret;
8464
8465         init_emulate_ctxt(vcpu);
8466
8467         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8468                                    has_error_code, error_code);
8469
8470         if (ret)
8471                 return EMULATE_FAIL;
8472
8473         kvm_rip_write(vcpu, ctxt->eip);
8474         kvm_set_rflags(vcpu, ctxt->eflags);
8475         kvm_make_request(KVM_REQ_EVENT, vcpu);
8476         return EMULATE_DONE;
8477 }
8478 EXPORT_SYMBOL_GPL(kvm_task_switch);
8479
8480 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8481 {
8482         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8483                         (sregs->cr4 & X86_CR4_OSXSAVE))
8484                 return  -EINVAL;
8485
8486         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8487                 /*
8488                  * When EFER.LME and CR0.PG are set, the processor is in
8489                  * 64-bit mode (though maybe in a 32-bit code segment).
8490                  * CR4.PAE and EFER.LMA must be set.
8491                  */
8492                 if (!(sregs->cr4 & X86_CR4_PAE)
8493                     || !(sregs->efer & EFER_LMA))
8494                         return -EINVAL;
8495         } else {
8496                 /*
8497                  * Not in 64-bit mode: EFER.LMA is clear and the code
8498                  * segment cannot be 64-bit.
8499                  */
8500                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8501                         return -EINVAL;
8502         }
8503
8504         return 0;
8505 }
8506
8507 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8508 {
8509         struct msr_data apic_base_msr;
8510         int mmu_reset_needed = 0;
8511         int cpuid_update_needed = 0;
8512         int pending_vec, max_bits, idx;
8513         struct desc_ptr dt;
8514         int ret = -EINVAL;
8515
8516         if (kvm_valid_sregs(vcpu, sregs))
8517                 goto out;
8518
8519         apic_base_msr.data = sregs->apic_base;
8520         apic_base_msr.host_initiated = true;
8521         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8522                 goto out;
8523
8524         dt.size = sregs->idt.limit;
8525         dt.address = sregs->idt.base;
8526         kvm_x86_ops->set_idt(vcpu, &dt);
8527         dt.size = sregs->gdt.limit;
8528         dt.address = sregs->gdt.base;
8529         kvm_x86_ops->set_gdt(vcpu, &dt);
8530
8531         vcpu->arch.cr2 = sregs->cr2;
8532         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8533         vcpu->arch.cr3 = sregs->cr3;
8534         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8535
8536         kvm_set_cr8(vcpu, sregs->cr8);
8537
8538         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8539         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8540
8541         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8542         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8543         vcpu->arch.cr0 = sregs->cr0;
8544
8545         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8546         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8547                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8548         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8549         if (cpuid_update_needed)
8550                 kvm_update_cpuid(vcpu);
8551
8552         idx = srcu_read_lock(&vcpu->kvm->srcu);
8553         if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8554                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8555                 mmu_reset_needed = 1;
8556         }
8557         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8558
8559         if (mmu_reset_needed)
8560                 kvm_mmu_reset_context(vcpu);
8561
8562         max_bits = KVM_NR_INTERRUPTS;
8563         pending_vec = find_first_bit(
8564                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8565         if (pending_vec < max_bits) {
8566                 kvm_queue_interrupt(vcpu, pending_vec, false);
8567                 pr_debug("Set back pending irq %d\n", pending_vec);
8568         }
8569
8570         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8571         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8572         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8573         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8574         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8575         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8576
8577         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8578         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8579
8580         update_cr8_intercept(vcpu);
8581
8582         /* Older userspace won't unhalt the vcpu on reset. */
8583         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8584             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8585             !is_protmode(vcpu))
8586                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8587
8588         kvm_make_request(KVM_REQ_EVENT, vcpu);
8589
8590         ret = 0;
8591 out:
8592         return ret;
8593 }
8594
8595 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8596                                   struct kvm_sregs *sregs)
8597 {
8598         int ret;
8599
8600         vcpu_load(vcpu);
8601         ret = __set_sregs(vcpu, sregs);
8602         vcpu_put(vcpu);
8603         return ret;
8604 }
8605
8606 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8607                                         struct kvm_guest_debug *dbg)
8608 {
8609         unsigned long rflags;
8610         int i, r;
8611
8612         vcpu_load(vcpu);
8613
8614         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8615                 r = -EBUSY;
8616                 if (vcpu->arch.exception.pending)
8617                         goto out;
8618                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8619                         kvm_queue_exception(vcpu, DB_VECTOR);
8620                 else
8621                         kvm_queue_exception(vcpu, BP_VECTOR);
8622         }
8623
8624         /*
8625          * Read rflags as long as potentially injected trace flags are still
8626          * filtered out.
8627          */
8628         rflags = kvm_get_rflags(vcpu);
8629
8630         vcpu->guest_debug = dbg->control;
8631         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8632                 vcpu->guest_debug = 0;
8633
8634         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8635                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8636                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8637                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8638         } else {
8639                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8640                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8641         }
8642         kvm_update_dr7(vcpu);
8643
8644         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8645                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8646                         get_segment_base(vcpu, VCPU_SREG_CS);
8647
8648         /*
8649          * Trigger an rflags update that will inject or remove the trace
8650          * flags.
8651          */
8652         kvm_set_rflags(vcpu, rflags);
8653
8654         kvm_x86_ops->update_bp_intercept(vcpu);
8655
8656         r = 0;
8657
8658 out:
8659         vcpu_put(vcpu);
8660         return r;
8661 }
8662
8663 /*
8664  * Translate a guest virtual address to a guest physical address.
8665  */
8666 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8667                                     struct kvm_translation *tr)
8668 {
8669         unsigned long vaddr = tr->linear_address;
8670         gpa_t gpa;
8671         int idx;
8672
8673         vcpu_load(vcpu);
8674
8675         idx = srcu_read_lock(&vcpu->kvm->srcu);
8676         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8677         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8678         tr->physical_address = gpa;
8679         tr->valid = gpa != UNMAPPED_GVA;
8680         tr->writeable = 1;
8681         tr->usermode = 0;
8682
8683         vcpu_put(vcpu);
8684         return 0;
8685 }
8686
8687 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8688 {
8689         struct fxregs_state *fxsave;
8690
8691         vcpu_load(vcpu);
8692
8693         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8694         memcpy(fpu->fpr, fxsave->st_space, 128);
8695         fpu->fcw = fxsave->cwd;
8696         fpu->fsw = fxsave->swd;
8697         fpu->ftwx = fxsave->twd;
8698         fpu->last_opcode = fxsave->fop;
8699         fpu->last_ip = fxsave->rip;
8700         fpu->last_dp = fxsave->rdp;
8701         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8702
8703         vcpu_put(vcpu);
8704         return 0;
8705 }
8706
8707 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8708 {
8709         struct fxregs_state *fxsave;
8710
8711         vcpu_load(vcpu);
8712
8713         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8714
8715         memcpy(fxsave->st_space, fpu->fpr, 128);
8716         fxsave->cwd = fpu->fcw;
8717         fxsave->swd = fpu->fsw;
8718         fxsave->twd = fpu->ftwx;
8719         fxsave->fop = fpu->last_opcode;
8720         fxsave->rip = fpu->last_ip;
8721         fxsave->rdp = fpu->last_dp;
8722         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8723
8724         vcpu_put(vcpu);
8725         return 0;
8726 }
8727
8728 static void store_regs(struct kvm_vcpu *vcpu)
8729 {
8730         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8731
8732         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8733                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8734
8735         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8736                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8737
8738         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8739                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8740                                 vcpu, &vcpu->run->s.regs.events);
8741 }
8742
8743 static int sync_regs(struct kvm_vcpu *vcpu)
8744 {
8745         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8746                 return -EINVAL;
8747
8748         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8749                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8750                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8751         }
8752         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8753                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8754                         return -EINVAL;
8755                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8756         }
8757         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8758                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8759                                 vcpu, &vcpu->run->s.regs.events))
8760                         return -EINVAL;
8761                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8762         }
8763
8764         return 0;
8765 }
8766
8767 static void fx_init(struct kvm_vcpu *vcpu)
8768 {
8769         fpstate_init(&vcpu->arch.guest_fpu->state);
8770         if (boot_cpu_has(X86_FEATURE_XSAVES))
8771                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
8772                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8773
8774         /*
8775          * Ensure guest xcr0 is valid for loading
8776          */
8777         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8778
8779         vcpu->arch.cr0 |= X86_CR0_ET;
8780 }
8781
8782 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8783 {
8784         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8785
8786         kvmclock_reset(vcpu);
8787
8788         kvm_x86_ops->vcpu_free(vcpu);
8789         free_cpumask_var(wbinvd_dirty_mask);
8790 }
8791
8792 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8793                                                 unsigned int id)
8794 {
8795         struct kvm_vcpu *vcpu;
8796
8797         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8798                 printk_once(KERN_WARNING
8799                 "kvm: SMP vm created on host with unstable TSC; "
8800                 "guest TSC will not be reliable\n");
8801
8802         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8803
8804         return vcpu;
8805 }
8806
8807 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8808 {
8809         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
8810         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8811         kvm_vcpu_mtrr_init(vcpu);
8812         vcpu_load(vcpu);
8813         kvm_vcpu_reset(vcpu, false);
8814         kvm_init_mmu(vcpu, false);
8815         vcpu_put(vcpu);
8816         return 0;
8817 }
8818
8819 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8820 {
8821         struct msr_data msr;
8822         struct kvm *kvm = vcpu->kvm;
8823
8824         kvm_hv_vcpu_postcreate(vcpu);
8825
8826         if (mutex_lock_killable(&vcpu->mutex))
8827                 return;
8828         vcpu_load(vcpu);
8829         msr.data = 0x0;
8830         msr.index = MSR_IA32_TSC;
8831         msr.host_initiated = true;
8832         kvm_write_tsc(vcpu, &msr);
8833         vcpu_put(vcpu);
8834         mutex_unlock(&vcpu->mutex);
8835
8836         if (!kvmclock_periodic_sync)
8837                 return;
8838
8839         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8840                                         KVMCLOCK_SYNC_PERIOD);
8841 }
8842
8843 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8844 {
8845         vcpu->arch.apf.msr_val = 0;
8846
8847         vcpu_load(vcpu);
8848         kvm_mmu_unload(vcpu);
8849         vcpu_put(vcpu);
8850
8851         kvm_x86_ops->vcpu_free(vcpu);
8852 }
8853
8854 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8855 {
8856         kvm_lapic_reset(vcpu, init_event);
8857
8858         vcpu->arch.hflags = 0;
8859
8860         vcpu->arch.smi_pending = 0;
8861         vcpu->arch.smi_count = 0;
8862         atomic_set(&vcpu->arch.nmi_queued, 0);
8863         vcpu->arch.nmi_pending = 0;
8864         vcpu->arch.nmi_injected = false;
8865         kvm_clear_interrupt_queue(vcpu);
8866         kvm_clear_exception_queue(vcpu);
8867         vcpu->arch.exception.pending = false;
8868
8869         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8870         kvm_update_dr0123(vcpu);
8871         vcpu->arch.dr6 = DR6_INIT;
8872         kvm_update_dr6(vcpu);
8873         vcpu->arch.dr7 = DR7_FIXED_1;
8874         kvm_update_dr7(vcpu);
8875
8876         vcpu->arch.cr2 = 0;
8877
8878         kvm_make_request(KVM_REQ_EVENT, vcpu);
8879         vcpu->arch.apf.msr_val = 0;
8880         vcpu->arch.st.msr_val = 0;
8881
8882         kvmclock_reset(vcpu);
8883
8884         kvm_clear_async_pf_completion_queue(vcpu);
8885         kvm_async_pf_hash_reset(vcpu);
8886         vcpu->arch.apf.halted = false;
8887
8888         if (kvm_mpx_supported()) {
8889                 void *mpx_state_buffer;
8890
8891                 /*
8892                  * To avoid have the INIT path from kvm_apic_has_events() that be
8893                  * called with loaded FPU and does not let userspace fix the state.
8894                  */
8895                 if (init_event)
8896                         kvm_put_guest_fpu(vcpu);
8897                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8898                                         XFEATURE_MASK_BNDREGS);
8899                 if (mpx_state_buffer)
8900                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8901                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8902                                         XFEATURE_MASK_BNDCSR);
8903                 if (mpx_state_buffer)
8904                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8905                 if (init_event)
8906                         kvm_load_guest_fpu(vcpu);
8907         }
8908
8909         if (!init_event) {
8910                 kvm_pmu_reset(vcpu);
8911                 vcpu->arch.smbase = 0x30000;
8912
8913                 vcpu->arch.msr_misc_features_enables = 0;
8914
8915                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8916         }
8917
8918         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8919         vcpu->arch.regs_avail = ~0;
8920         vcpu->arch.regs_dirty = ~0;
8921
8922         vcpu->arch.ia32_xss = 0;
8923
8924         kvm_x86_ops->vcpu_reset(vcpu, init_event);
8925 }
8926
8927 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8928 {
8929         struct kvm_segment cs;
8930
8931         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8932         cs.selector = vector << 8;
8933         cs.base = vector << 12;
8934         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8935         kvm_rip_write(vcpu, 0);
8936 }
8937
8938 int kvm_arch_hardware_enable(void)
8939 {
8940         struct kvm *kvm;
8941         struct kvm_vcpu *vcpu;
8942         int i;
8943         int ret;
8944         u64 local_tsc;
8945         u64 max_tsc = 0;
8946         bool stable, backwards_tsc = false;
8947
8948         kvm_shared_msr_cpu_online();
8949         ret = kvm_x86_ops->hardware_enable();
8950         if (ret != 0)
8951                 return ret;
8952
8953         local_tsc = rdtsc();
8954         stable = !kvm_check_tsc_unstable();
8955         list_for_each_entry(kvm, &vm_list, vm_list) {
8956                 kvm_for_each_vcpu(i, vcpu, kvm) {
8957                         if (!stable && vcpu->cpu == smp_processor_id())
8958                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8959                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8960                                 backwards_tsc = true;
8961                                 if (vcpu->arch.last_host_tsc > max_tsc)
8962                                         max_tsc = vcpu->arch.last_host_tsc;
8963                         }
8964                 }
8965         }
8966
8967         /*
8968          * Sometimes, even reliable TSCs go backwards.  This happens on
8969          * platforms that reset TSC during suspend or hibernate actions, but
8970          * maintain synchronization.  We must compensate.  Fortunately, we can
8971          * detect that condition here, which happens early in CPU bringup,
8972          * before any KVM threads can be running.  Unfortunately, we can't
8973          * bring the TSCs fully up to date with real time, as we aren't yet far
8974          * enough into CPU bringup that we know how much real time has actually
8975          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8976          * variables that haven't been updated yet.
8977          *
8978          * So we simply find the maximum observed TSC above, then record the
8979          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8980          * the adjustment will be applied.  Note that we accumulate
8981          * adjustments, in case multiple suspend cycles happen before some VCPU
8982          * gets a chance to run again.  In the event that no KVM threads get a
8983          * chance to run, we will miss the entire elapsed period, as we'll have
8984          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8985          * loose cycle time.  This isn't too big a deal, since the loss will be
8986          * uniform across all VCPUs (not to mention the scenario is extremely
8987          * unlikely). It is possible that a second hibernate recovery happens
8988          * much faster than a first, causing the observed TSC here to be
8989          * smaller; this would require additional padding adjustment, which is
8990          * why we set last_host_tsc to the local tsc observed here.
8991          *
8992          * N.B. - this code below runs only on platforms with reliable TSC,
8993          * as that is the only way backwards_tsc is set above.  Also note
8994          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8995          * have the same delta_cyc adjustment applied if backwards_tsc
8996          * is detected.  Note further, this adjustment is only done once,
8997          * as we reset last_host_tsc on all VCPUs to stop this from being
8998          * called multiple times (one for each physical CPU bringup).
8999          *
9000          * Platforms with unreliable TSCs don't have to deal with this, they
9001          * will be compensated by the logic in vcpu_load, which sets the TSC to
9002          * catchup mode.  This will catchup all VCPUs to real time, but cannot
9003          * guarantee that they stay in perfect synchronization.
9004          */
9005         if (backwards_tsc) {
9006                 u64 delta_cyc = max_tsc - local_tsc;
9007                 list_for_each_entry(kvm, &vm_list, vm_list) {
9008                         kvm->arch.backwards_tsc_observed = true;
9009                         kvm_for_each_vcpu(i, vcpu, kvm) {
9010                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9011                                 vcpu->arch.last_host_tsc = local_tsc;
9012                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9013                         }
9014
9015                         /*
9016                          * We have to disable TSC offset matching.. if you were
9017                          * booting a VM while issuing an S4 host suspend....
9018                          * you may have some problem.  Solving this issue is
9019                          * left as an exercise to the reader.
9020                          */
9021                         kvm->arch.last_tsc_nsec = 0;
9022                         kvm->arch.last_tsc_write = 0;
9023                 }
9024
9025         }
9026         return 0;
9027 }
9028
9029 void kvm_arch_hardware_disable(void)
9030 {
9031         kvm_x86_ops->hardware_disable();
9032         drop_user_return_notifiers();
9033 }
9034
9035 int kvm_arch_hardware_setup(void)
9036 {
9037         int r;
9038
9039         r = kvm_x86_ops->hardware_setup();
9040         if (r != 0)
9041                 return r;
9042
9043         if (kvm_has_tsc_control) {
9044                 /*
9045                  * Make sure the user can only configure tsc_khz values that
9046                  * fit into a signed integer.
9047                  * A min value is not calculated because it will always
9048                  * be 1 on all machines.
9049                  */
9050                 u64 max = min(0x7fffffffULL,
9051                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9052                 kvm_max_guest_tsc_khz = max;
9053
9054                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9055         }
9056
9057         kvm_init_msr_list();
9058         return 0;
9059 }
9060
9061 void kvm_arch_hardware_unsetup(void)
9062 {
9063         kvm_x86_ops->hardware_unsetup();
9064 }
9065
9066 void kvm_arch_check_processor_compat(void *rtn)
9067 {
9068         kvm_x86_ops->check_processor_compatibility(rtn);
9069 }
9070
9071 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9072 {
9073         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9074 }
9075 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9076
9077 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9078 {
9079         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9080 }
9081
9082 struct static_key kvm_no_apic_vcpu __read_mostly;
9083 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9084
9085 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9086 {
9087         struct page *page;
9088         int r;
9089
9090         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9091         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9092                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9093         else
9094                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9095
9096         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9097         if (!page) {
9098                 r = -ENOMEM;
9099                 goto fail;
9100         }
9101         vcpu->arch.pio_data = page_address(page);
9102
9103         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9104
9105         r = kvm_mmu_create(vcpu);
9106         if (r < 0)
9107                 goto fail_free_pio_data;
9108
9109         if (irqchip_in_kernel(vcpu->kvm)) {
9110                 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9111                 r = kvm_create_lapic(vcpu);
9112                 if (r < 0)
9113                         goto fail_mmu_destroy;
9114         } else
9115                 static_key_slow_inc(&kvm_no_apic_vcpu);
9116
9117         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9118                                        GFP_KERNEL_ACCOUNT);
9119         if (!vcpu->arch.mce_banks) {
9120                 r = -ENOMEM;
9121                 goto fail_free_lapic;
9122         }
9123         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9124
9125         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9126                                 GFP_KERNEL_ACCOUNT)) {
9127                 r = -ENOMEM;
9128                 goto fail_free_mce_banks;
9129         }
9130
9131         fx_init(vcpu);
9132
9133         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9134
9135         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9136
9137         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9138
9139         kvm_async_pf_hash_reset(vcpu);
9140         kvm_pmu_init(vcpu);
9141
9142         vcpu->arch.pending_external_vector = -1;
9143         vcpu->arch.preempted_in_kernel = false;
9144
9145         kvm_hv_vcpu_init(vcpu);
9146
9147         return 0;
9148
9149 fail_free_mce_banks:
9150         kfree(vcpu->arch.mce_banks);
9151 fail_free_lapic:
9152         kvm_free_lapic(vcpu);
9153 fail_mmu_destroy:
9154         kvm_mmu_destroy(vcpu);
9155 fail_free_pio_data:
9156         free_page((unsigned long)vcpu->arch.pio_data);
9157 fail:
9158         return r;
9159 }
9160
9161 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9162 {
9163         int idx;
9164
9165         kvm_hv_vcpu_uninit(vcpu);
9166         kvm_pmu_destroy(vcpu);
9167         kfree(vcpu->arch.mce_banks);
9168         kvm_free_lapic(vcpu);
9169         idx = srcu_read_lock(&vcpu->kvm->srcu);
9170         kvm_mmu_destroy(vcpu);
9171         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9172         free_page((unsigned long)vcpu->arch.pio_data);
9173         if (!lapic_in_kernel(vcpu))
9174                 static_key_slow_dec(&kvm_no_apic_vcpu);
9175 }
9176
9177 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9178 {
9179         vcpu->arch.l1tf_flush_l1d = true;
9180         kvm_x86_ops->sched_in(vcpu, cpu);
9181 }
9182
9183 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9184 {
9185         if (type)
9186                 return -EINVAL;
9187
9188         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9189         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9190         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9191         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9192
9193         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9194         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9195         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9196         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9197                 &kvm->arch.irq_sources_bitmap);
9198
9199         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9200         mutex_init(&kvm->arch.apic_map_lock);
9201         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9202
9203         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
9204         pvclock_update_vm_gtod_copy(kvm);
9205
9206         kvm->arch.guest_can_read_msr_platform_info = true;
9207
9208         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9209         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9210
9211         kvm_hv_init_vm(kvm);
9212         kvm_page_track_init(kvm);
9213         kvm_mmu_init_vm(kvm);
9214
9215         if (kvm_x86_ops->vm_init)
9216                 return kvm_x86_ops->vm_init(kvm);
9217
9218         return 0;
9219 }
9220
9221 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9222 {
9223         vcpu_load(vcpu);
9224         kvm_mmu_unload(vcpu);
9225         vcpu_put(vcpu);
9226 }
9227
9228 static void kvm_free_vcpus(struct kvm *kvm)
9229 {
9230         unsigned int i;
9231         struct kvm_vcpu *vcpu;
9232
9233         /*
9234          * Unpin any mmu pages first.
9235          */
9236         kvm_for_each_vcpu(i, vcpu, kvm) {
9237                 kvm_clear_async_pf_completion_queue(vcpu);
9238                 kvm_unload_vcpu_mmu(vcpu);
9239         }
9240         kvm_for_each_vcpu(i, vcpu, kvm)
9241                 kvm_arch_vcpu_free(vcpu);
9242
9243         mutex_lock(&kvm->lock);
9244         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9245                 kvm->vcpus[i] = NULL;
9246
9247         atomic_set(&kvm->online_vcpus, 0);
9248         mutex_unlock(&kvm->lock);
9249 }
9250
9251 void kvm_arch_sync_events(struct kvm *kvm)
9252 {
9253         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9254         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9255         kvm_free_pit(kvm);
9256 }
9257
9258 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9259 {
9260         int i, r;
9261         unsigned long hva;
9262         struct kvm_memslots *slots = kvm_memslots(kvm);
9263         struct kvm_memory_slot *slot, old;
9264
9265         /* Called with kvm->slots_lock held.  */
9266         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9267                 return -EINVAL;
9268
9269         slot = id_to_memslot(slots, id);
9270         if (size) {
9271                 if (slot->npages)
9272                         return -EEXIST;
9273
9274                 /*
9275                  * MAP_SHARED to prevent internal slot pages from being moved
9276                  * by fork()/COW.
9277                  */
9278                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9279                               MAP_SHARED | MAP_ANONYMOUS, 0);
9280                 if (IS_ERR((void *)hva))
9281                         return PTR_ERR((void *)hva);
9282         } else {
9283                 if (!slot->npages)
9284                         return 0;
9285
9286                 hva = 0;
9287         }
9288
9289         old = *slot;
9290         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9291                 struct kvm_userspace_memory_region m;
9292
9293                 m.slot = id | (i << 16);
9294                 m.flags = 0;
9295                 m.guest_phys_addr = gpa;
9296                 m.userspace_addr = hva;
9297                 m.memory_size = size;
9298                 r = __kvm_set_memory_region(kvm, &m);
9299                 if (r < 0)
9300                         return r;
9301         }
9302
9303         if (!size)
9304                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9305
9306         return 0;
9307 }
9308 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9309
9310 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9311 {
9312         int r;
9313
9314         mutex_lock(&kvm->slots_lock);
9315         r = __x86_set_memory_region(kvm, id, gpa, size);
9316         mutex_unlock(&kvm->slots_lock);
9317
9318         return r;
9319 }
9320 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9321
9322 void kvm_arch_destroy_vm(struct kvm *kvm)
9323 {
9324         if (current->mm == kvm->mm) {
9325                 /*
9326                  * Free memory regions allocated on behalf of userspace,
9327                  * unless the the memory map has changed due to process exit
9328                  * or fd copying.
9329                  */
9330                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9331                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9332                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9333         }
9334         if (kvm_x86_ops->vm_destroy)
9335                 kvm_x86_ops->vm_destroy(kvm);
9336         kvm_pic_destroy(kvm);
9337         kvm_ioapic_destroy(kvm);
9338         kvm_free_vcpus(kvm);
9339         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9340         kvm_mmu_uninit_vm(kvm);
9341         kvm_page_track_cleanup(kvm);
9342         kvm_hv_destroy_vm(kvm);
9343 }
9344
9345 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9346                            struct kvm_memory_slot *dont)
9347 {
9348         int i;
9349
9350         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9351                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9352                         kvfree(free->arch.rmap[i]);
9353                         free->arch.rmap[i] = NULL;
9354                 }
9355                 if (i == 0)
9356                         continue;
9357
9358                 if (!dont || free->arch.lpage_info[i - 1] !=
9359                              dont->arch.lpage_info[i - 1]) {
9360                         kvfree(free->arch.lpage_info[i - 1]);
9361                         free->arch.lpage_info[i - 1] = NULL;
9362                 }
9363         }
9364
9365         kvm_page_track_free_memslot(free, dont);
9366 }
9367
9368 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9369                             unsigned long npages)
9370 {
9371         int i;
9372
9373         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9374                 struct kvm_lpage_info *linfo;
9375                 unsigned long ugfn;
9376                 int lpages;
9377                 int level = i + 1;
9378
9379                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9380                                       slot->base_gfn, level) + 1;
9381
9382                 slot->arch.rmap[i] =
9383                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9384                                  GFP_KERNEL_ACCOUNT);
9385                 if (!slot->arch.rmap[i])
9386                         goto out_free;
9387                 if (i == 0)
9388                         continue;
9389
9390                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9391                 if (!linfo)
9392                         goto out_free;
9393
9394                 slot->arch.lpage_info[i - 1] = linfo;
9395
9396                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9397                         linfo[0].disallow_lpage = 1;
9398                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9399                         linfo[lpages - 1].disallow_lpage = 1;
9400                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9401                 /*
9402                  * If the gfn and userspace address are not aligned wrt each
9403                  * other, or if explicitly asked to, disable large page
9404                  * support for this slot
9405                  */
9406                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9407                     !kvm_largepages_enabled()) {
9408                         unsigned long j;
9409
9410                         for (j = 0; j < lpages; ++j)
9411                                 linfo[j].disallow_lpage = 1;
9412                 }
9413         }
9414
9415         if (kvm_page_track_create_memslot(slot, npages))
9416                 goto out_free;
9417
9418         return 0;
9419
9420 out_free:
9421         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9422                 kvfree(slot->arch.rmap[i]);
9423                 slot->arch.rmap[i] = NULL;
9424                 if (i == 0)
9425                         continue;
9426
9427                 kvfree(slot->arch.lpage_info[i - 1]);
9428                 slot->arch.lpage_info[i - 1] = NULL;
9429         }
9430         return -ENOMEM;
9431 }
9432
9433 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9434 {
9435         /*
9436          * memslots->generation has been incremented.
9437          * mmio generation may have reached its maximum value.
9438          */
9439         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9440 }
9441
9442 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9443                                 struct kvm_memory_slot *memslot,
9444                                 const struct kvm_userspace_memory_region *mem,
9445                                 enum kvm_mr_change change)
9446 {
9447         return 0;
9448 }
9449
9450 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9451                                      struct kvm_memory_slot *new)
9452 {
9453         /* Still write protect RO slot */
9454         if (new->flags & KVM_MEM_READONLY) {
9455                 kvm_mmu_slot_remove_write_access(kvm, new);
9456                 return;
9457         }
9458
9459         /*
9460          * Call kvm_x86_ops dirty logging hooks when they are valid.
9461          *
9462          * kvm_x86_ops->slot_disable_log_dirty is called when:
9463          *
9464          *  - KVM_MR_CREATE with dirty logging is disabled
9465          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9466          *
9467          * The reason is, in case of PML, we need to set D-bit for any slots
9468          * with dirty logging disabled in order to eliminate unnecessary GPA
9469          * logging in PML buffer (and potential PML buffer full VMEXT). This
9470          * guarantees leaving PML enabled during guest's lifetime won't have
9471          * any additional overhead from PML when guest is running with dirty
9472          * logging disabled for memory slots.
9473          *
9474          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9475          * to dirty logging mode.
9476          *
9477          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9478          *
9479          * In case of write protect:
9480          *
9481          * Write protect all pages for dirty logging.
9482          *
9483          * All the sptes including the large sptes which point to this
9484          * slot are set to readonly. We can not create any new large
9485          * spte on this slot until the end of the logging.
9486          *
9487          * See the comments in fast_page_fault().
9488          */
9489         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9490                 if (kvm_x86_ops->slot_enable_log_dirty)
9491                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9492                 else
9493                         kvm_mmu_slot_remove_write_access(kvm, new);
9494         } else {
9495                 if (kvm_x86_ops->slot_disable_log_dirty)
9496                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9497         }
9498 }
9499
9500 void kvm_arch_commit_memory_region(struct kvm *kvm,
9501                                 const struct kvm_userspace_memory_region *mem,
9502                                 const struct kvm_memory_slot *old,
9503                                 const struct kvm_memory_slot *new,
9504                                 enum kvm_mr_change change)
9505 {
9506         if (!kvm->arch.n_requested_mmu_pages)
9507                 kvm_mmu_change_mmu_pages(kvm,
9508                                 kvm_mmu_calculate_default_mmu_pages(kvm));
9509
9510         /*
9511          * Dirty logging tracks sptes in 4k granularity, meaning that large
9512          * sptes have to be split.  If live migration is successful, the guest
9513          * in the source machine will be destroyed and large sptes will be
9514          * created in the destination. However, if the guest continues to run
9515          * in the source machine (for example if live migration fails), small
9516          * sptes will remain around and cause bad performance.
9517          *
9518          * Scan sptes if dirty logging has been stopped, dropping those
9519          * which can be collapsed into a single large-page spte.  Later
9520          * page faults will create the large-page sptes.
9521          */
9522         if ((change != KVM_MR_DELETE) &&
9523                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9524                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9525                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9526
9527         /*
9528          * Set up write protection and/or dirty logging for the new slot.
9529          *
9530          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9531          * been zapped so no dirty logging staff is needed for old slot. For
9532          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9533          * new and it's also covered when dealing with the new slot.
9534          *
9535          * FIXME: const-ify all uses of struct kvm_memory_slot.
9536          */
9537         if (change != KVM_MR_DELETE)
9538                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9539 }
9540
9541 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9542 {
9543         kvm_mmu_zap_all(kvm);
9544 }
9545
9546 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9547                                    struct kvm_memory_slot *slot)
9548 {
9549         kvm_page_track_flush_slot(kvm, slot);
9550 }
9551
9552 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9553 {
9554         return (is_guest_mode(vcpu) &&
9555                         kvm_x86_ops->guest_apic_has_interrupt &&
9556                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9557 }
9558
9559 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9560 {
9561         if (!list_empty_careful(&vcpu->async_pf.done))
9562                 return true;
9563
9564         if (kvm_apic_has_events(vcpu))
9565                 return true;
9566
9567         if (vcpu->arch.pv.pv_unhalted)
9568                 return true;
9569
9570         if (vcpu->arch.exception.pending)
9571                 return true;
9572
9573         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9574             (vcpu->arch.nmi_pending &&
9575              kvm_x86_ops->nmi_allowed(vcpu)))
9576                 return true;
9577
9578         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9579             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9580                 return true;
9581
9582         if (kvm_arch_interrupt_allowed(vcpu) &&
9583             (kvm_cpu_has_interrupt(vcpu) ||
9584             kvm_guest_apic_has_interrupt(vcpu)))
9585                 return true;
9586
9587         if (kvm_hv_has_stimer_pending(vcpu))
9588                 return true;
9589
9590         return false;
9591 }
9592
9593 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9594 {
9595         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9596 }
9597
9598 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9599 {
9600         return vcpu->arch.preempted_in_kernel;
9601 }
9602
9603 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9604 {
9605         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9606 }
9607
9608 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9609 {
9610         return kvm_x86_ops->interrupt_allowed(vcpu);
9611 }
9612
9613 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9614 {
9615         if (is_64_bit_mode(vcpu))
9616                 return kvm_rip_read(vcpu);
9617         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9618                      kvm_rip_read(vcpu));
9619 }
9620 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9621
9622 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9623 {
9624         return kvm_get_linear_rip(vcpu) == linear_rip;
9625 }
9626 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9627
9628 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9629 {
9630         unsigned long rflags;
9631
9632         rflags = kvm_x86_ops->get_rflags(vcpu);
9633         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9634                 rflags &= ~X86_EFLAGS_TF;
9635         return rflags;
9636 }
9637 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9638
9639 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9640 {
9641         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9642             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9643                 rflags |= X86_EFLAGS_TF;
9644         kvm_x86_ops->set_rflags(vcpu, rflags);
9645 }
9646
9647 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9648 {
9649         __kvm_set_rflags(vcpu, rflags);
9650         kvm_make_request(KVM_REQ_EVENT, vcpu);
9651 }
9652 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9653
9654 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9655 {
9656         int r;
9657
9658         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9659               work->wakeup_all)
9660                 return;
9661
9662         r = kvm_mmu_reload(vcpu);
9663         if (unlikely(r))
9664                 return;
9665
9666         if (!vcpu->arch.mmu->direct_map &&
9667               work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9668                 return;
9669
9670         vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9671 }
9672
9673 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9674 {
9675         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9676 }
9677
9678 static inline u32 kvm_async_pf_next_probe(u32 key)
9679 {
9680         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9681 }
9682
9683 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9684 {
9685         u32 key = kvm_async_pf_hash_fn(gfn);
9686
9687         while (vcpu->arch.apf.gfns[key] != ~0)
9688                 key = kvm_async_pf_next_probe(key);
9689
9690         vcpu->arch.apf.gfns[key] = gfn;
9691 }
9692
9693 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9694 {
9695         int i;
9696         u32 key = kvm_async_pf_hash_fn(gfn);
9697
9698         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9699                      (vcpu->arch.apf.gfns[key] != gfn &&
9700                       vcpu->arch.apf.gfns[key] != ~0); i++)
9701                 key = kvm_async_pf_next_probe(key);
9702
9703         return key;
9704 }
9705
9706 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9707 {
9708         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9709 }
9710
9711 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9712 {
9713         u32 i, j, k;
9714
9715         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9716         while (true) {
9717                 vcpu->arch.apf.gfns[i] = ~0;
9718                 do {
9719                         j = kvm_async_pf_next_probe(j);
9720                         if (vcpu->arch.apf.gfns[j] == ~0)
9721                                 return;
9722                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9723                         /*
9724                          * k lies cyclically in ]i,j]
9725                          * |    i.k.j |
9726                          * |....j i.k.| or  |.k..j i...|
9727                          */
9728                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9729                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9730                 i = j;
9731         }
9732 }
9733
9734 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9735 {
9736
9737         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9738                                       sizeof(val));
9739 }
9740
9741 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9742 {
9743
9744         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9745                                       sizeof(u32));
9746 }
9747
9748 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9749                                      struct kvm_async_pf *work)
9750 {
9751         struct x86_exception fault;
9752
9753         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9754         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9755
9756         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9757             (vcpu->arch.apf.send_user_only &&
9758              kvm_x86_ops->get_cpl(vcpu) == 0))
9759                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9760         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9761                 fault.vector = PF_VECTOR;
9762                 fault.error_code_valid = true;
9763                 fault.error_code = 0;
9764                 fault.nested_page_fault = false;
9765                 fault.address = work->arch.token;
9766                 fault.async_page_fault = true;
9767                 kvm_inject_page_fault(vcpu, &fault);
9768         }
9769 }
9770
9771 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9772                                  struct kvm_async_pf *work)
9773 {
9774         struct x86_exception fault;
9775         u32 val;
9776
9777         if (work->wakeup_all)
9778                 work->arch.token = ~0; /* broadcast wakeup */
9779         else
9780                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9781         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9782
9783         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9784             !apf_get_user(vcpu, &val)) {
9785                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9786                     vcpu->arch.exception.pending &&
9787                     vcpu->arch.exception.nr == PF_VECTOR &&
9788                     !apf_put_user(vcpu, 0)) {
9789                         vcpu->arch.exception.injected = false;
9790                         vcpu->arch.exception.pending = false;
9791                         vcpu->arch.exception.nr = 0;
9792                         vcpu->arch.exception.has_error_code = false;
9793                         vcpu->arch.exception.error_code = 0;
9794                         vcpu->arch.exception.has_payload = false;
9795                         vcpu->arch.exception.payload = 0;
9796                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9797                         fault.vector = PF_VECTOR;
9798                         fault.error_code_valid = true;
9799                         fault.error_code = 0;
9800                         fault.nested_page_fault = false;
9801                         fault.address = work->arch.token;
9802                         fault.async_page_fault = true;
9803                         kvm_inject_page_fault(vcpu, &fault);
9804                 }
9805         }
9806         vcpu->arch.apf.halted = false;
9807         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9808 }
9809
9810 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9811 {
9812         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9813                 return true;
9814         else
9815                 return kvm_can_do_async_pf(vcpu);
9816 }
9817
9818 void kvm_arch_start_assignment(struct kvm *kvm)
9819 {
9820         atomic_inc(&kvm->arch.assigned_device_count);
9821 }
9822 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9823
9824 void kvm_arch_end_assignment(struct kvm *kvm)
9825 {
9826         atomic_dec(&kvm->arch.assigned_device_count);
9827 }
9828 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9829
9830 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9831 {
9832         return atomic_read(&kvm->arch.assigned_device_count);
9833 }
9834 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9835
9836 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9837 {
9838         atomic_inc(&kvm->arch.noncoherent_dma_count);
9839 }
9840 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9841
9842 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9843 {
9844         atomic_dec(&kvm->arch.noncoherent_dma_count);
9845 }
9846 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9847
9848 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9849 {
9850         return atomic_read(&kvm->arch.noncoherent_dma_count);
9851 }
9852 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9853
9854 bool kvm_arch_has_irq_bypass(void)
9855 {
9856         return kvm_x86_ops->update_pi_irte != NULL;
9857 }
9858
9859 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9860                                       struct irq_bypass_producer *prod)
9861 {
9862         struct kvm_kernel_irqfd *irqfd =
9863                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9864
9865         irqfd->producer = prod;
9866
9867         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9868                                            prod->irq, irqfd->gsi, 1);
9869 }
9870
9871 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9872                                       struct irq_bypass_producer *prod)
9873 {
9874         int ret;
9875         struct kvm_kernel_irqfd *irqfd =
9876                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9877
9878         WARN_ON(irqfd->producer != prod);
9879         irqfd->producer = NULL;
9880
9881         /*
9882          * When producer of consumer is unregistered, we change back to
9883          * remapped mode, so we can re-use the current implementation
9884          * when the irq is masked/disabled or the consumer side (KVM
9885          * int this case doesn't want to receive the interrupts.
9886         */
9887         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9888         if (ret)
9889                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9890                        " fails: %d\n", irqfd->consumer.token, ret);
9891 }
9892
9893 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9894                                    uint32_t guest_irq, bool set)
9895 {
9896         if (!kvm_x86_ops->update_pi_irte)
9897                 return -EINVAL;
9898
9899         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9900 }
9901
9902 bool kvm_vector_hashing_enabled(void)
9903 {
9904         return vector_hashing;
9905 }
9906 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9907
9908 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9909 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9910 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9911 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9912 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9913 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9914 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9915 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9916 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9917 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9918 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9919 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9920 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9921 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9922 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9923 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9924 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9925 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9926 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);