kvm: x86: Defer setting of CR2 until #PF delivery
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80
81 #define emul_to_vcpu(ctxt) \
82         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 1000;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
142
143 static bool __read_mostly vector_hashing = true;
144 module_param(vector_hashing, bool, S_IRUGO);
145
146 bool __read_mostly enable_vmware_backdoor = false;
147 module_param(enable_vmware_backdoor, bool, S_IRUGO);
148 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
149
150 static bool __read_mostly force_emulation_prefix = false;
151 module_param(force_emulation_prefix, bool, S_IRUGO);
152
153 #define KVM_NR_SHARED_MSRS 16
154
155 struct kvm_shared_msrs_global {
156         int nr;
157         u32 msrs[KVM_NR_SHARED_MSRS];
158 };
159
160 struct kvm_shared_msrs {
161         struct user_return_notifier urn;
162         bool registered;
163         struct kvm_shared_msr_values {
164                 u64 host;
165                 u64 curr;
166         } values[KVM_NR_SHARED_MSRS];
167 };
168
169 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
170 static struct kvm_shared_msrs __percpu *shared_msrs;
171
172 struct kvm_stats_debugfs_item debugfs_entries[] = {
173         { "pf_fixed", VCPU_STAT(pf_fixed) },
174         { "pf_guest", VCPU_STAT(pf_guest) },
175         { "tlb_flush", VCPU_STAT(tlb_flush) },
176         { "invlpg", VCPU_STAT(invlpg) },
177         { "exits", VCPU_STAT(exits) },
178         { "io_exits", VCPU_STAT(io_exits) },
179         { "mmio_exits", VCPU_STAT(mmio_exits) },
180         { "signal_exits", VCPU_STAT(signal_exits) },
181         { "irq_window", VCPU_STAT(irq_window_exits) },
182         { "nmi_window", VCPU_STAT(nmi_window_exits) },
183         { "halt_exits", VCPU_STAT(halt_exits) },
184         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
185         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
186         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
187         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
188         { "hypercalls", VCPU_STAT(hypercalls) },
189         { "request_irq", VCPU_STAT(request_irq_exits) },
190         { "irq_exits", VCPU_STAT(irq_exits) },
191         { "host_state_reload", VCPU_STAT(host_state_reload) },
192         { "fpu_reload", VCPU_STAT(fpu_reload) },
193         { "insn_emulation", VCPU_STAT(insn_emulation) },
194         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
195         { "irq_injections", VCPU_STAT(irq_injections) },
196         { "nmi_injections", VCPU_STAT(nmi_injections) },
197         { "req_event", VCPU_STAT(req_event) },
198         { "l1d_flush", VCPU_STAT(l1d_flush) },
199         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
200         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
201         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
202         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
203         { "mmu_flooded", VM_STAT(mmu_flooded) },
204         { "mmu_recycled", VM_STAT(mmu_recycled) },
205         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
206         { "mmu_unsync", VM_STAT(mmu_unsync) },
207         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
208         { "largepages", VM_STAT(lpages) },
209         { "max_mmu_page_hash_collisions",
210                 VM_STAT(max_mmu_page_hash_collisions) },
211         { NULL }
212 };
213
214 u64 __read_mostly host_xcr0;
215
216 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
217
218 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
219 {
220         int i;
221         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
222                 vcpu->arch.apf.gfns[i] = ~0;
223 }
224
225 static void kvm_on_user_return(struct user_return_notifier *urn)
226 {
227         unsigned slot;
228         struct kvm_shared_msrs *locals
229                 = container_of(urn, struct kvm_shared_msrs, urn);
230         struct kvm_shared_msr_values *values;
231         unsigned long flags;
232
233         /*
234          * Disabling irqs at this point since the following code could be
235          * interrupted and executed through kvm_arch_hardware_disable()
236          */
237         local_irq_save(flags);
238         if (locals->registered) {
239                 locals->registered = false;
240                 user_return_notifier_unregister(urn);
241         }
242         local_irq_restore(flags);
243         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
244                 values = &locals->values[slot];
245                 if (values->host != values->curr) {
246                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
247                         values->curr = values->host;
248                 }
249         }
250 }
251
252 static void shared_msr_update(unsigned slot, u32 msr)
253 {
254         u64 value;
255         unsigned int cpu = smp_processor_id();
256         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
257
258         /* only read, and nobody should modify it at this time,
259          * so don't need lock */
260         if (slot >= shared_msrs_global.nr) {
261                 printk(KERN_ERR "kvm: invalid MSR slot!");
262                 return;
263         }
264         rdmsrl_safe(msr, &value);
265         smsr->values[slot].host = value;
266         smsr->values[slot].curr = value;
267 }
268
269 void kvm_define_shared_msr(unsigned slot, u32 msr)
270 {
271         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
272         shared_msrs_global.msrs[slot] = msr;
273         if (slot >= shared_msrs_global.nr)
274                 shared_msrs_global.nr = slot + 1;
275 }
276 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
277
278 static void kvm_shared_msr_cpu_online(void)
279 {
280         unsigned i;
281
282         for (i = 0; i < shared_msrs_global.nr; ++i)
283                 shared_msr_update(i, shared_msrs_global.msrs[i]);
284 }
285
286 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
287 {
288         unsigned int cpu = smp_processor_id();
289         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
290         int err;
291
292         if (((value ^ smsr->values[slot].curr) & mask) == 0)
293                 return 0;
294         smsr->values[slot].curr = value;
295         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
296         if (err)
297                 return 1;
298
299         if (!smsr->registered) {
300                 smsr->urn.on_user_return = kvm_on_user_return;
301                 user_return_notifier_register(&smsr->urn);
302                 smsr->registered = true;
303         }
304         return 0;
305 }
306 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
307
308 static void drop_user_return_notifiers(void)
309 {
310         unsigned int cpu = smp_processor_id();
311         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
312
313         if (smsr->registered)
314                 kvm_on_user_return(&smsr->urn);
315 }
316
317 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
318 {
319         return vcpu->arch.apic_base;
320 }
321 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
322
323 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
324 {
325         return kvm_apic_mode(kvm_get_apic_base(vcpu));
326 }
327 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
328
329 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
330 {
331         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
332         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
333         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
334                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
335
336         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
337                 return 1;
338         if (!msr_info->host_initiated) {
339                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
340                         return 1;
341                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
342                         return 1;
343         }
344
345         kvm_lapic_set_base(vcpu, msr_info->data);
346         return 0;
347 }
348 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
349
350 asmlinkage __visible void kvm_spurious_fault(void)
351 {
352         /* Fault while not rebooting.  We want the trace. */
353         BUG();
354 }
355 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
356
357 #define EXCPT_BENIGN            0
358 #define EXCPT_CONTRIBUTORY      1
359 #define EXCPT_PF                2
360
361 static int exception_class(int vector)
362 {
363         switch (vector) {
364         case PF_VECTOR:
365                 return EXCPT_PF;
366         case DE_VECTOR:
367         case TS_VECTOR:
368         case NP_VECTOR:
369         case SS_VECTOR:
370         case GP_VECTOR:
371                 return EXCPT_CONTRIBUTORY;
372         default:
373                 break;
374         }
375         return EXCPT_BENIGN;
376 }
377
378 #define EXCPT_FAULT             0
379 #define EXCPT_TRAP              1
380 #define EXCPT_ABORT             2
381 #define EXCPT_INTERRUPT         3
382
383 static int exception_type(int vector)
384 {
385         unsigned int mask;
386
387         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
388                 return EXCPT_INTERRUPT;
389
390         mask = 1 << vector;
391
392         /* #DB is trap, as instruction watchpoints are handled elsewhere */
393         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
394                 return EXCPT_TRAP;
395
396         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
397                 return EXCPT_ABORT;
398
399         /* Reserved exceptions will result in fault */
400         return EXCPT_FAULT;
401 }
402
403 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
404 {
405         unsigned nr = vcpu->arch.exception.nr;
406         bool has_payload = vcpu->arch.exception.has_payload;
407         unsigned long payload = vcpu->arch.exception.payload;
408
409         if (!has_payload)
410                 return;
411
412         switch (nr) {
413         case PF_VECTOR:
414                 vcpu->arch.cr2 = payload;
415                 break;
416         }
417
418         vcpu->arch.exception.has_payload = false;
419         vcpu->arch.exception.payload = 0;
420 }
421 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
422
423 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
424                 unsigned nr, bool has_error, u32 error_code,
425                 bool has_payload, unsigned long payload, bool reinject)
426 {
427         u32 prev_nr;
428         int class1, class2;
429
430         kvm_make_request(KVM_REQ_EVENT, vcpu);
431
432         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
433         queue:
434                 if (has_error && !is_protmode(vcpu))
435                         has_error = false;
436                 if (reinject) {
437                         /*
438                          * On vmentry, vcpu->arch.exception.pending is only
439                          * true if an event injection was blocked by
440                          * nested_run_pending.  In that case, however,
441                          * vcpu_enter_guest requests an immediate exit,
442                          * and the guest shouldn't proceed far enough to
443                          * need reinjection.
444                          */
445                         WARN_ON_ONCE(vcpu->arch.exception.pending);
446                         vcpu->arch.exception.injected = true;
447                         if (WARN_ON_ONCE(has_payload)) {
448                                 /*
449                                  * A reinjected event has already
450                                  * delivered its payload.
451                                  */
452                                 has_payload = false;
453                                 payload = 0;
454                         }
455                 } else {
456                         vcpu->arch.exception.pending = true;
457                         vcpu->arch.exception.injected = false;
458                 }
459                 vcpu->arch.exception.has_error_code = has_error;
460                 vcpu->arch.exception.nr = nr;
461                 vcpu->arch.exception.error_code = error_code;
462                 vcpu->arch.exception.has_payload = has_payload;
463                 vcpu->arch.exception.payload = payload;
464                 /*
465                  * In guest mode, payload delivery should be deferred,
466                  * so that the L1 hypervisor can intercept #PF before
467                  * CR2 is modified.  However, for ABI compatibility
468                  * with KVM_GET_VCPU_EVENTS and KVM_SET_VCPU_EVENTS,
469                  * we can't delay payload delivery unless userspace
470                  * has enabled this functionality via the per-VM
471                  * capability, KVM_CAP_EXCEPTION_PAYLOAD.
472                  */
473                 if (!vcpu->kvm->arch.exception_payload_enabled ||
474                     !is_guest_mode(vcpu))
475                         kvm_deliver_exception_payload(vcpu);
476                 return;
477         }
478
479         /* to check exception */
480         prev_nr = vcpu->arch.exception.nr;
481         if (prev_nr == DF_VECTOR) {
482                 /* triple fault -> shutdown */
483                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
484                 return;
485         }
486         class1 = exception_class(prev_nr);
487         class2 = exception_class(nr);
488         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
489                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
490                 /*
491                  * Generate double fault per SDM Table 5-5.  Set
492                  * exception.pending = true so that the double fault
493                  * can trigger a nested vmexit.
494                  */
495                 vcpu->arch.exception.pending = true;
496                 vcpu->arch.exception.injected = false;
497                 vcpu->arch.exception.has_error_code = true;
498                 vcpu->arch.exception.nr = DF_VECTOR;
499                 vcpu->arch.exception.error_code = 0;
500                 vcpu->arch.exception.has_payload = false;
501                 vcpu->arch.exception.payload = 0;
502         } else
503                 /* replace previous exception with a new one in a hope
504                    that instruction re-execution will regenerate lost
505                    exception */
506                 goto queue;
507 }
508
509 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
510 {
511         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
512 }
513 EXPORT_SYMBOL_GPL(kvm_queue_exception);
514
515 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
516 {
517         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
518 }
519 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
520
521 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
522                                     u32 error_code, unsigned long payload)
523 {
524         kvm_multiple_exception(vcpu, nr, true, error_code,
525                                true, payload, false);
526 }
527
528 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
529 {
530         if (err)
531                 kvm_inject_gp(vcpu, 0);
532         else
533                 return kvm_skip_emulated_instruction(vcpu);
534
535         return 1;
536 }
537 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
538
539 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
540 {
541         ++vcpu->stat.pf_guest;
542         vcpu->arch.exception.nested_apf =
543                 is_guest_mode(vcpu) && fault->async_page_fault;
544         if (vcpu->arch.exception.nested_apf) {
545                 vcpu->arch.apf.nested_apf_token = fault->address;
546                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
547         } else {
548                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
549                                         fault->address);
550         }
551 }
552 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
553
554 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
555 {
556         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
557                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
558         else
559                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
560
561         return fault->nested_page_fault;
562 }
563
564 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
565 {
566         atomic_inc(&vcpu->arch.nmi_queued);
567         kvm_make_request(KVM_REQ_NMI, vcpu);
568 }
569 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
570
571 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
572 {
573         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
574 }
575 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
576
577 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
578 {
579         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
580 }
581 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
582
583 /*
584  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
585  * a #GP and return false.
586  */
587 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
588 {
589         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
590                 return true;
591         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
592         return false;
593 }
594 EXPORT_SYMBOL_GPL(kvm_require_cpl);
595
596 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
597 {
598         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
599                 return true;
600
601         kvm_queue_exception(vcpu, UD_VECTOR);
602         return false;
603 }
604 EXPORT_SYMBOL_GPL(kvm_require_dr);
605
606 /*
607  * This function will be used to read from the physical memory of the currently
608  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
609  * can read from guest physical or from the guest's guest physical memory.
610  */
611 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
612                             gfn_t ngfn, void *data, int offset, int len,
613                             u32 access)
614 {
615         struct x86_exception exception;
616         gfn_t real_gfn;
617         gpa_t ngpa;
618
619         ngpa     = gfn_to_gpa(ngfn);
620         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
621         if (real_gfn == UNMAPPED_GVA)
622                 return -EFAULT;
623
624         real_gfn = gpa_to_gfn(real_gfn);
625
626         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
627 }
628 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
629
630 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
631                                void *data, int offset, int len, u32 access)
632 {
633         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
634                                        data, offset, len, access);
635 }
636
637 /*
638  * Load the pae pdptrs.  Return true is they are all valid.
639  */
640 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
641 {
642         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
643         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
644         int i;
645         int ret;
646         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
647
648         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
649                                       offset * sizeof(u64), sizeof(pdpte),
650                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
651         if (ret < 0) {
652                 ret = 0;
653                 goto out;
654         }
655         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
656                 if ((pdpte[i] & PT_PRESENT_MASK) &&
657                     (pdpte[i] &
658                      vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
659                         ret = 0;
660                         goto out;
661                 }
662         }
663         ret = 1;
664
665         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
666         __set_bit(VCPU_EXREG_PDPTR,
667                   (unsigned long *)&vcpu->arch.regs_avail);
668         __set_bit(VCPU_EXREG_PDPTR,
669                   (unsigned long *)&vcpu->arch.regs_dirty);
670 out:
671
672         return ret;
673 }
674 EXPORT_SYMBOL_GPL(load_pdptrs);
675
676 bool pdptrs_changed(struct kvm_vcpu *vcpu)
677 {
678         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
679         bool changed = true;
680         int offset;
681         gfn_t gfn;
682         int r;
683
684         if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
685                 return false;
686
687         if (!test_bit(VCPU_EXREG_PDPTR,
688                       (unsigned long *)&vcpu->arch.regs_avail))
689                 return true;
690
691         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
692         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
693         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
694                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
695         if (r < 0)
696                 goto out;
697         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
698 out:
699
700         return changed;
701 }
702 EXPORT_SYMBOL_GPL(pdptrs_changed);
703
704 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
705 {
706         unsigned long old_cr0 = kvm_read_cr0(vcpu);
707         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
708
709         cr0 |= X86_CR0_ET;
710
711 #ifdef CONFIG_X86_64
712         if (cr0 & 0xffffffff00000000UL)
713                 return 1;
714 #endif
715
716         cr0 &= ~CR0_RESERVED_BITS;
717
718         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
719                 return 1;
720
721         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
722                 return 1;
723
724         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
725 #ifdef CONFIG_X86_64
726                 if ((vcpu->arch.efer & EFER_LME)) {
727                         int cs_db, cs_l;
728
729                         if (!is_pae(vcpu))
730                                 return 1;
731                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
732                         if (cs_l)
733                                 return 1;
734                 } else
735 #endif
736                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
737                                                  kvm_read_cr3(vcpu)))
738                         return 1;
739         }
740
741         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
742                 return 1;
743
744         kvm_x86_ops->set_cr0(vcpu, cr0);
745
746         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
747                 kvm_clear_async_pf_completion_queue(vcpu);
748                 kvm_async_pf_hash_reset(vcpu);
749         }
750
751         if ((cr0 ^ old_cr0) & update_bits)
752                 kvm_mmu_reset_context(vcpu);
753
754         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
755             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
756             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
757                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
758
759         return 0;
760 }
761 EXPORT_SYMBOL_GPL(kvm_set_cr0);
762
763 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
764 {
765         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
766 }
767 EXPORT_SYMBOL_GPL(kvm_lmsw);
768
769 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
770 {
771         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
772                         !vcpu->guest_xcr0_loaded) {
773                 /* kvm_set_xcr() also depends on this */
774                 if (vcpu->arch.xcr0 != host_xcr0)
775                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
776                 vcpu->guest_xcr0_loaded = 1;
777         }
778 }
779
780 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
781 {
782         if (vcpu->guest_xcr0_loaded) {
783                 if (vcpu->arch.xcr0 != host_xcr0)
784                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
785                 vcpu->guest_xcr0_loaded = 0;
786         }
787 }
788
789 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
790 {
791         u64 xcr0 = xcr;
792         u64 old_xcr0 = vcpu->arch.xcr0;
793         u64 valid_bits;
794
795         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
796         if (index != XCR_XFEATURE_ENABLED_MASK)
797                 return 1;
798         if (!(xcr0 & XFEATURE_MASK_FP))
799                 return 1;
800         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
801                 return 1;
802
803         /*
804          * Do not allow the guest to set bits that we do not support
805          * saving.  However, xcr0 bit 0 is always set, even if the
806          * emulated CPU does not support XSAVE (see fx_init).
807          */
808         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
809         if (xcr0 & ~valid_bits)
810                 return 1;
811
812         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
813             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
814                 return 1;
815
816         if (xcr0 & XFEATURE_MASK_AVX512) {
817                 if (!(xcr0 & XFEATURE_MASK_YMM))
818                         return 1;
819                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
820                         return 1;
821         }
822         vcpu->arch.xcr0 = xcr0;
823
824         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
825                 kvm_update_cpuid(vcpu);
826         return 0;
827 }
828
829 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
830 {
831         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
832             __kvm_set_xcr(vcpu, index, xcr)) {
833                 kvm_inject_gp(vcpu, 0);
834                 return 1;
835         }
836         return 0;
837 }
838 EXPORT_SYMBOL_GPL(kvm_set_xcr);
839
840 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
841 {
842         unsigned long old_cr4 = kvm_read_cr4(vcpu);
843         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
844                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
845
846         if (cr4 & CR4_RESERVED_BITS)
847                 return 1;
848
849         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
850                 return 1;
851
852         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
853                 return 1;
854
855         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
856                 return 1;
857
858         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
859                 return 1;
860
861         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
862                 return 1;
863
864         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
865                 return 1;
866
867         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
868                 return 1;
869
870         if (is_long_mode(vcpu)) {
871                 if (!(cr4 & X86_CR4_PAE))
872                         return 1;
873         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
874                    && ((cr4 ^ old_cr4) & pdptr_bits)
875                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
876                                    kvm_read_cr3(vcpu)))
877                 return 1;
878
879         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
880                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
881                         return 1;
882
883                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
884                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
885                         return 1;
886         }
887
888         if (kvm_x86_ops->set_cr4(vcpu, cr4))
889                 return 1;
890
891         if (((cr4 ^ old_cr4) & pdptr_bits) ||
892             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
893                 kvm_mmu_reset_context(vcpu);
894
895         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
896                 kvm_update_cpuid(vcpu);
897
898         return 0;
899 }
900 EXPORT_SYMBOL_GPL(kvm_set_cr4);
901
902 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
903 {
904         bool skip_tlb_flush = false;
905 #ifdef CONFIG_X86_64
906         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
907
908         if (pcid_enabled) {
909                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
910                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
911         }
912 #endif
913
914         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
915                 if (!skip_tlb_flush) {
916                         kvm_mmu_sync_roots(vcpu);
917                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
918                 }
919                 return 0;
920         }
921
922         if (is_long_mode(vcpu) &&
923             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
924                 return 1;
925         else if (is_pae(vcpu) && is_paging(vcpu) &&
926                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
927                 return 1;
928
929         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
930         vcpu->arch.cr3 = cr3;
931         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
932
933         return 0;
934 }
935 EXPORT_SYMBOL_GPL(kvm_set_cr3);
936
937 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
938 {
939         if (cr8 & CR8_RESERVED_BITS)
940                 return 1;
941         if (lapic_in_kernel(vcpu))
942                 kvm_lapic_set_tpr(vcpu, cr8);
943         else
944                 vcpu->arch.cr8 = cr8;
945         return 0;
946 }
947 EXPORT_SYMBOL_GPL(kvm_set_cr8);
948
949 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
950 {
951         if (lapic_in_kernel(vcpu))
952                 return kvm_lapic_get_cr8(vcpu);
953         else
954                 return vcpu->arch.cr8;
955 }
956 EXPORT_SYMBOL_GPL(kvm_get_cr8);
957
958 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
959 {
960         int i;
961
962         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
963                 for (i = 0; i < KVM_NR_DB_REGS; i++)
964                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
965                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
966         }
967 }
968
969 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
970 {
971         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
972                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
973 }
974
975 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
976 {
977         unsigned long dr7;
978
979         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
980                 dr7 = vcpu->arch.guest_debug_dr7;
981         else
982                 dr7 = vcpu->arch.dr7;
983         kvm_x86_ops->set_dr7(vcpu, dr7);
984         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
985         if (dr7 & DR7_BP_EN_MASK)
986                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
987 }
988
989 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
990 {
991         u64 fixed = DR6_FIXED_1;
992
993         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
994                 fixed |= DR6_RTM;
995         return fixed;
996 }
997
998 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
999 {
1000         switch (dr) {
1001         case 0 ... 3:
1002                 vcpu->arch.db[dr] = val;
1003                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1004                         vcpu->arch.eff_db[dr] = val;
1005                 break;
1006         case 4:
1007                 /* fall through */
1008         case 6:
1009                 if (val & 0xffffffff00000000ULL)
1010                         return -1; /* #GP */
1011                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1012                 kvm_update_dr6(vcpu);
1013                 break;
1014         case 5:
1015                 /* fall through */
1016         default: /* 7 */
1017                 if (val & 0xffffffff00000000ULL)
1018                         return -1; /* #GP */
1019                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1020                 kvm_update_dr7(vcpu);
1021                 break;
1022         }
1023
1024         return 0;
1025 }
1026
1027 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1028 {
1029         if (__kvm_set_dr(vcpu, dr, val)) {
1030                 kvm_inject_gp(vcpu, 0);
1031                 return 1;
1032         }
1033         return 0;
1034 }
1035 EXPORT_SYMBOL_GPL(kvm_set_dr);
1036
1037 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1038 {
1039         switch (dr) {
1040         case 0 ... 3:
1041                 *val = vcpu->arch.db[dr];
1042                 break;
1043         case 4:
1044                 /* fall through */
1045         case 6:
1046                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1047                         *val = vcpu->arch.dr6;
1048                 else
1049                         *val = kvm_x86_ops->get_dr6(vcpu);
1050                 break;
1051         case 5:
1052                 /* fall through */
1053         default: /* 7 */
1054                 *val = vcpu->arch.dr7;
1055                 break;
1056         }
1057         return 0;
1058 }
1059 EXPORT_SYMBOL_GPL(kvm_get_dr);
1060
1061 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1062 {
1063         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1064         u64 data;
1065         int err;
1066
1067         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1068         if (err)
1069                 return err;
1070         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1071         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1072         return err;
1073 }
1074 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1075
1076 /*
1077  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1078  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1079  *
1080  * This list is modified at module load time to reflect the
1081  * capabilities of the host cpu. This capabilities test skips MSRs that are
1082  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1083  * may depend on host virtualization features rather than host cpu features.
1084  */
1085
1086 static u32 msrs_to_save[] = {
1087         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1088         MSR_STAR,
1089 #ifdef CONFIG_X86_64
1090         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1091 #endif
1092         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1093         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1094         MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1095 };
1096
1097 static unsigned num_msrs_to_save;
1098
1099 static u32 emulated_msrs[] = {
1100         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1101         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1102         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1103         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1104         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1105         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1106         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1107         HV_X64_MSR_RESET,
1108         HV_X64_MSR_VP_INDEX,
1109         HV_X64_MSR_VP_RUNTIME,
1110         HV_X64_MSR_SCONTROL,
1111         HV_X64_MSR_STIMER0_CONFIG,
1112         HV_X64_MSR_VP_ASSIST_PAGE,
1113         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1114         HV_X64_MSR_TSC_EMULATION_STATUS,
1115
1116         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1117         MSR_KVM_PV_EOI_EN,
1118
1119         MSR_IA32_TSC_ADJUST,
1120         MSR_IA32_TSCDEADLINE,
1121         MSR_IA32_MISC_ENABLE,
1122         MSR_IA32_MCG_STATUS,
1123         MSR_IA32_MCG_CTL,
1124         MSR_IA32_MCG_EXT_CTL,
1125         MSR_IA32_SMBASE,
1126         MSR_SMI_COUNT,
1127         MSR_PLATFORM_INFO,
1128         MSR_MISC_FEATURES_ENABLES,
1129         MSR_AMD64_VIRT_SPEC_CTRL,
1130 };
1131
1132 static unsigned num_emulated_msrs;
1133
1134 /*
1135  * List of msr numbers which are used to expose MSR-based features that
1136  * can be used by a hypervisor to validate requested CPU features.
1137  */
1138 static u32 msr_based_features[] = {
1139         MSR_IA32_VMX_BASIC,
1140         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1141         MSR_IA32_VMX_PINBASED_CTLS,
1142         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1143         MSR_IA32_VMX_PROCBASED_CTLS,
1144         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1145         MSR_IA32_VMX_EXIT_CTLS,
1146         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1147         MSR_IA32_VMX_ENTRY_CTLS,
1148         MSR_IA32_VMX_MISC,
1149         MSR_IA32_VMX_CR0_FIXED0,
1150         MSR_IA32_VMX_CR0_FIXED1,
1151         MSR_IA32_VMX_CR4_FIXED0,
1152         MSR_IA32_VMX_CR4_FIXED1,
1153         MSR_IA32_VMX_VMCS_ENUM,
1154         MSR_IA32_VMX_PROCBASED_CTLS2,
1155         MSR_IA32_VMX_EPT_VPID_CAP,
1156         MSR_IA32_VMX_VMFUNC,
1157
1158         MSR_F10H_DECFG,
1159         MSR_IA32_UCODE_REV,
1160         MSR_IA32_ARCH_CAPABILITIES,
1161 };
1162
1163 static unsigned int num_msr_based_features;
1164
1165 u64 kvm_get_arch_capabilities(void)
1166 {
1167         u64 data;
1168
1169         rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1170
1171         /*
1172          * If we're doing cache flushes (either "always" or "cond")
1173          * we will do one whenever the guest does a vmlaunch/vmresume.
1174          * If an outer hypervisor is doing the cache flush for us
1175          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1176          * capability to the guest too, and if EPT is disabled we're not
1177          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1178          * require a nested hypervisor to do a flush of its own.
1179          */
1180         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1181                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1182
1183         return data;
1184 }
1185 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1186
1187 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1188 {
1189         switch (msr->index) {
1190         case MSR_IA32_ARCH_CAPABILITIES:
1191                 msr->data = kvm_get_arch_capabilities();
1192                 break;
1193         case MSR_IA32_UCODE_REV:
1194                 rdmsrl_safe(msr->index, &msr->data);
1195                 break;
1196         default:
1197                 if (kvm_x86_ops->get_msr_feature(msr))
1198                         return 1;
1199         }
1200         return 0;
1201 }
1202
1203 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1204 {
1205         struct kvm_msr_entry msr;
1206         int r;
1207
1208         msr.index = index;
1209         r = kvm_get_msr_feature(&msr);
1210         if (r)
1211                 return r;
1212
1213         *data = msr.data;
1214
1215         return 0;
1216 }
1217
1218 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1219 {
1220         if (efer & efer_reserved_bits)
1221                 return false;
1222
1223         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1224                         return false;
1225
1226         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1227                         return false;
1228
1229         return true;
1230 }
1231 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1232
1233 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1234 {
1235         u64 old_efer = vcpu->arch.efer;
1236
1237         if (!kvm_valid_efer(vcpu, efer))
1238                 return 1;
1239
1240         if (is_paging(vcpu)
1241             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1242                 return 1;
1243
1244         efer &= ~EFER_LMA;
1245         efer |= vcpu->arch.efer & EFER_LMA;
1246
1247         kvm_x86_ops->set_efer(vcpu, efer);
1248
1249         /* Update reserved bits */
1250         if ((efer ^ old_efer) & EFER_NX)
1251                 kvm_mmu_reset_context(vcpu);
1252
1253         return 0;
1254 }
1255
1256 void kvm_enable_efer_bits(u64 mask)
1257 {
1258        efer_reserved_bits &= ~mask;
1259 }
1260 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1261
1262 /*
1263  * Writes msr value into into the appropriate "register".
1264  * Returns 0 on success, non-0 otherwise.
1265  * Assumes vcpu_load() was already called.
1266  */
1267 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1268 {
1269         switch (msr->index) {
1270         case MSR_FS_BASE:
1271         case MSR_GS_BASE:
1272         case MSR_KERNEL_GS_BASE:
1273         case MSR_CSTAR:
1274         case MSR_LSTAR:
1275                 if (is_noncanonical_address(msr->data, vcpu))
1276                         return 1;
1277                 break;
1278         case MSR_IA32_SYSENTER_EIP:
1279         case MSR_IA32_SYSENTER_ESP:
1280                 /*
1281                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1282                  * non-canonical address is written on Intel but not on
1283                  * AMD (which ignores the top 32-bits, because it does
1284                  * not implement 64-bit SYSENTER).
1285                  *
1286                  * 64-bit code should hence be able to write a non-canonical
1287                  * value on AMD.  Making the address canonical ensures that
1288                  * vmentry does not fail on Intel after writing a non-canonical
1289                  * value, and that something deterministic happens if the guest
1290                  * invokes 64-bit SYSENTER.
1291                  */
1292                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1293         }
1294         return kvm_x86_ops->set_msr(vcpu, msr);
1295 }
1296 EXPORT_SYMBOL_GPL(kvm_set_msr);
1297
1298 /*
1299  * Adapt set_msr() to msr_io()'s calling convention
1300  */
1301 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1302 {
1303         struct msr_data msr;
1304         int r;
1305
1306         msr.index = index;
1307         msr.host_initiated = true;
1308         r = kvm_get_msr(vcpu, &msr);
1309         if (r)
1310                 return r;
1311
1312         *data = msr.data;
1313         return 0;
1314 }
1315
1316 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1317 {
1318         struct msr_data msr;
1319
1320         msr.data = *data;
1321         msr.index = index;
1322         msr.host_initiated = true;
1323         return kvm_set_msr(vcpu, &msr);
1324 }
1325
1326 #ifdef CONFIG_X86_64
1327 struct pvclock_gtod_data {
1328         seqcount_t      seq;
1329
1330         struct { /* extract of a clocksource struct */
1331                 int vclock_mode;
1332                 u64     cycle_last;
1333                 u64     mask;
1334                 u32     mult;
1335                 u32     shift;
1336         } clock;
1337
1338         u64             boot_ns;
1339         u64             nsec_base;
1340         u64             wall_time_sec;
1341 };
1342
1343 static struct pvclock_gtod_data pvclock_gtod_data;
1344
1345 static void update_pvclock_gtod(struct timekeeper *tk)
1346 {
1347         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1348         u64 boot_ns;
1349
1350         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1351
1352         write_seqcount_begin(&vdata->seq);
1353
1354         /* copy pvclock gtod data */
1355         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1356         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1357         vdata->clock.mask               = tk->tkr_mono.mask;
1358         vdata->clock.mult               = tk->tkr_mono.mult;
1359         vdata->clock.shift              = tk->tkr_mono.shift;
1360
1361         vdata->boot_ns                  = boot_ns;
1362         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1363
1364         vdata->wall_time_sec            = tk->xtime_sec;
1365
1366         write_seqcount_end(&vdata->seq);
1367 }
1368 #endif
1369
1370 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1371 {
1372         /*
1373          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1374          * vcpu_enter_guest.  This function is only called from
1375          * the physical CPU that is running vcpu.
1376          */
1377         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1378 }
1379
1380 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1381 {
1382         int version;
1383         int r;
1384         struct pvclock_wall_clock wc;
1385         struct timespec64 boot;
1386
1387         if (!wall_clock)
1388                 return;
1389
1390         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1391         if (r)
1392                 return;
1393
1394         if (version & 1)
1395                 ++version;  /* first time write, random junk */
1396
1397         ++version;
1398
1399         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1400                 return;
1401
1402         /*
1403          * The guest calculates current wall clock time by adding
1404          * system time (updated by kvm_guest_time_update below) to the
1405          * wall clock specified here.  guest system time equals host
1406          * system time for us, thus we must fill in host boot time here.
1407          */
1408         getboottime64(&boot);
1409
1410         if (kvm->arch.kvmclock_offset) {
1411                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1412                 boot = timespec64_sub(boot, ts);
1413         }
1414         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1415         wc.nsec = boot.tv_nsec;
1416         wc.version = version;
1417
1418         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1419
1420         version++;
1421         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1422 }
1423
1424 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1425 {
1426         do_shl32_div32(dividend, divisor);
1427         return dividend;
1428 }
1429
1430 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1431                                s8 *pshift, u32 *pmultiplier)
1432 {
1433         uint64_t scaled64;
1434         int32_t  shift = 0;
1435         uint64_t tps64;
1436         uint32_t tps32;
1437
1438         tps64 = base_hz;
1439         scaled64 = scaled_hz;
1440         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1441                 tps64 >>= 1;
1442                 shift--;
1443         }
1444
1445         tps32 = (uint32_t)tps64;
1446         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1447                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1448                         scaled64 >>= 1;
1449                 else
1450                         tps32 <<= 1;
1451                 shift++;
1452         }
1453
1454         *pshift = shift;
1455         *pmultiplier = div_frac(scaled64, tps32);
1456
1457         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1458                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1459 }
1460
1461 #ifdef CONFIG_X86_64
1462 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1463 #endif
1464
1465 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1466 static unsigned long max_tsc_khz;
1467
1468 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1469 {
1470         u64 v = (u64)khz * (1000000 + ppm);
1471         do_div(v, 1000000);
1472         return v;
1473 }
1474
1475 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1476 {
1477         u64 ratio;
1478
1479         /* Guest TSC same frequency as host TSC? */
1480         if (!scale) {
1481                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1482                 return 0;
1483         }
1484
1485         /* TSC scaling supported? */
1486         if (!kvm_has_tsc_control) {
1487                 if (user_tsc_khz > tsc_khz) {
1488                         vcpu->arch.tsc_catchup = 1;
1489                         vcpu->arch.tsc_always_catchup = 1;
1490                         return 0;
1491                 } else {
1492                         WARN(1, "user requested TSC rate below hardware speed\n");
1493                         return -1;
1494                 }
1495         }
1496
1497         /* TSC scaling required  - calculate ratio */
1498         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1499                                 user_tsc_khz, tsc_khz);
1500
1501         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1502                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1503                           user_tsc_khz);
1504                 return -1;
1505         }
1506
1507         vcpu->arch.tsc_scaling_ratio = ratio;
1508         return 0;
1509 }
1510
1511 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1512 {
1513         u32 thresh_lo, thresh_hi;
1514         int use_scaling = 0;
1515
1516         /* tsc_khz can be zero if TSC calibration fails */
1517         if (user_tsc_khz == 0) {
1518                 /* set tsc_scaling_ratio to a safe value */
1519                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1520                 return -1;
1521         }
1522
1523         /* Compute a scale to convert nanoseconds in TSC cycles */
1524         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1525                            &vcpu->arch.virtual_tsc_shift,
1526                            &vcpu->arch.virtual_tsc_mult);
1527         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1528
1529         /*
1530          * Compute the variation in TSC rate which is acceptable
1531          * within the range of tolerance and decide if the
1532          * rate being applied is within that bounds of the hardware
1533          * rate.  If so, no scaling or compensation need be done.
1534          */
1535         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1536         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1537         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1538                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1539                 use_scaling = 1;
1540         }
1541         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1542 }
1543
1544 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1545 {
1546         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1547                                       vcpu->arch.virtual_tsc_mult,
1548                                       vcpu->arch.virtual_tsc_shift);
1549         tsc += vcpu->arch.this_tsc_write;
1550         return tsc;
1551 }
1552
1553 static inline int gtod_is_based_on_tsc(int mode)
1554 {
1555         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1556 }
1557
1558 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1559 {
1560 #ifdef CONFIG_X86_64
1561         bool vcpus_matched;
1562         struct kvm_arch *ka = &vcpu->kvm->arch;
1563         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1564
1565         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1566                          atomic_read(&vcpu->kvm->online_vcpus));
1567
1568         /*
1569          * Once the masterclock is enabled, always perform request in
1570          * order to update it.
1571          *
1572          * In order to enable masterclock, the host clocksource must be TSC
1573          * and the vcpus need to have matched TSCs.  When that happens,
1574          * perform request to enable masterclock.
1575          */
1576         if (ka->use_master_clock ||
1577             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1578                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1579
1580         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1581                             atomic_read(&vcpu->kvm->online_vcpus),
1582                             ka->use_master_clock, gtod->clock.vclock_mode);
1583 #endif
1584 }
1585
1586 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1587 {
1588         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1589         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1590 }
1591
1592 /*
1593  * Multiply tsc by a fixed point number represented by ratio.
1594  *
1595  * The most significant 64-N bits (mult) of ratio represent the
1596  * integral part of the fixed point number; the remaining N bits
1597  * (frac) represent the fractional part, ie. ratio represents a fixed
1598  * point number (mult + frac * 2^(-N)).
1599  *
1600  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1601  */
1602 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1603 {
1604         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1605 }
1606
1607 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1608 {
1609         u64 _tsc = tsc;
1610         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1611
1612         if (ratio != kvm_default_tsc_scaling_ratio)
1613                 _tsc = __scale_tsc(ratio, tsc);
1614
1615         return _tsc;
1616 }
1617 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1618
1619 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1620 {
1621         u64 tsc;
1622
1623         tsc = kvm_scale_tsc(vcpu, rdtsc());
1624
1625         return target_tsc - tsc;
1626 }
1627
1628 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1629 {
1630         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1631
1632         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1633 }
1634 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1635
1636 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1637 {
1638         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1639         vcpu->arch.tsc_offset = offset;
1640 }
1641
1642 static inline bool kvm_check_tsc_unstable(void)
1643 {
1644 #ifdef CONFIG_X86_64
1645         /*
1646          * TSC is marked unstable when we're running on Hyper-V,
1647          * 'TSC page' clocksource is good.
1648          */
1649         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1650                 return false;
1651 #endif
1652         return check_tsc_unstable();
1653 }
1654
1655 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1656 {
1657         struct kvm *kvm = vcpu->kvm;
1658         u64 offset, ns, elapsed;
1659         unsigned long flags;
1660         bool matched;
1661         bool already_matched;
1662         u64 data = msr->data;
1663         bool synchronizing = false;
1664
1665         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1666         offset = kvm_compute_tsc_offset(vcpu, data);
1667         ns = ktime_get_boot_ns();
1668         elapsed = ns - kvm->arch.last_tsc_nsec;
1669
1670         if (vcpu->arch.virtual_tsc_khz) {
1671                 if (data == 0 && msr->host_initiated) {
1672                         /*
1673                          * detection of vcpu initialization -- need to sync
1674                          * with other vCPUs. This particularly helps to keep
1675                          * kvm_clock stable after CPU hotplug
1676                          */
1677                         synchronizing = true;
1678                 } else {
1679                         u64 tsc_exp = kvm->arch.last_tsc_write +
1680                                                 nsec_to_cycles(vcpu, elapsed);
1681                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1682                         /*
1683                          * Special case: TSC write with a small delta (1 second)
1684                          * of virtual cycle time against real time is
1685                          * interpreted as an attempt to synchronize the CPU.
1686                          */
1687                         synchronizing = data < tsc_exp + tsc_hz &&
1688                                         data + tsc_hz > tsc_exp;
1689                 }
1690         }
1691
1692         /*
1693          * For a reliable TSC, we can match TSC offsets, and for an unstable
1694          * TSC, we add elapsed time in this computation.  We could let the
1695          * compensation code attempt to catch up if we fall behind, but
1696          * it's better to try to match offsets from the beginning.
1697          */
1698         if (synchronizing &&
1699             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1700                 if (!kvm_check_tsc_unstable()) {
1701                         offset = kvm->arch.cur_tsc_offset;
1702                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1703                 } else {
1704                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1705                         data += delta;
1706                         offset = kvm_compute_tsc_offset(vcpu, data);
1707                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1708                 }
1709                 matched = true;
1710                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1711         } else {
1712                 /*
1713                  * We split periods of matched TSC writes into generations.
1714                  * For each generation, we track the original measured
1715                  * nanosecond time, offset, and write, so if TSCs are in
1716                  * sync, we can match exact offset, and if not, we can match
1717                  * exact software computation in compute_guest_tsc()
1718                  *
1719                  * These values are tracked in kvm->arch.cur_xxx variables.
1720                  */
1721                 kvm->arch.cur_tsc_generation++;
1722                 kvm->arch.cur_tsc_nsec = ns;
1723                 kvm->arch.cur_tsc_write = data;
1724                 kvm->arch.cur_tsc_offset = offset;
1725                 matched = false;
1726                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1727                          kvm->arch.cur_tsc_generation, data);
1728         }
1729
1730         /*
1731          * We also track th most recent recorded KHZ, write and time to
1732          * allow the matching interval to be extended at each write.
1733          */
1734         kvm->arch.last_tsc_nsec = ns;
1735         kvm->arch.last_tsc_write = data;
1736         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1737
1738         vcpu->arch.last_guest_tsc = data;
1739
1740         /* Keep track of which generation this VCPU has synchronized to */
1741         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1742         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1743         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1744
1745         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1746                 update_ia32_tsc_adjust_msr(vcpu, offset);
1747
1748         kvm_vcpu_write_tsc_offset(vcpu, offset);
1749         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1750
1751         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1752         if (!matched) {
1753                 kvm->arch.nr_vcpus_matched_tsc = 0;
1754         } else if (!already_matched) {
1755                 kvm->arch.nr_vcpus_matched_tsc++;
1756         }
1757
1758         kvm_track_tsc_matching(vcpu);
1759         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1760 }
1761
1762 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1763
1764 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1765                                            s64 adjustment)
1766 {
1767         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1768 }
1769
1770 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1771 {
1772         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1773                 WARN_ON(adjustment < 0);
1774         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1775         adjust_tsc_offset_guest(vcpu, adjustment);
1776 }
1777
1778 #ifdef CONFIG_X86_64
1779
1780 static u64 read_tsc(void)
1781 {
1782         u64 ret = (u64)rdtsc_ordered();
1783         u64 last = pvclock_gtod_data.clock.cycle_last;
1784
1785         if (likely(ret >= last))
1786                 return ret;
1787
1788         /*
1789          * GCC likes to generate cmov here, but this branch is extremely
1790          * predictable (it's just a function of time and the likely is
1791          * very likely) and there's a data dependence, so force GCC
1792          * to generate a branch instead.  I don't barrier() because
1793          * we don't actually need a barrier, and if this function
1794          * ever gets inlined it will generate worse code.
1795          */
1796         asm volatile ("");
1797         return last;
1798 }
1799
1800 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1801 {
1802         long v;
1803         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1804         u64 tsc_pg_val;
1805
1806         switch (gtod->clock.vclock_mode) {
1807         case VCLOCK_HVCLOCK:
1808                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1809                                                   tsc_timestamp);
1810                 if (tsc_pg_val != U64_MAX) {
1811                         /* TSC page valid */
1812                         *mode = VCLOCK_HVCLOCK;
1813                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1814                                 gtod->clock.mask;
1815                 } else {
1816                         /* TSC page invalid */
1817                         *mode = VCLOCK_NONE;
1818                 }
1819                 break;
1820         case VCLOCK_TSC:
1821                 *mode = VCLOCK_TSC;
1822                 *tsc_timestamp = read_tsc();
1823                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1824                         gtod->clock.mask;
1825                 break;
1826         default:
1827                 *mode = VCLOCK_NONE;
1828         }
1829
1830         if (*mode == VCLOCK_NONE)
1831                 *tsc_timestamp = v = 0;
1832
1833         return v * gtod->clock.mult;
1834 }
1835
1836 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1837 {
1838         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1839         unsigned long seq;
1840         int mode;
1841         u64 ns;
1842
1843         do {
1844                 seq = read_seqcount_begin(&gtod->seq);
1845                 ns = gtod->nsec_base;
1846                 ns += vgettsc(tsc_timestamp, &mode);
1847                 ns >>= gtod->clock.shift;
1848                 ns += gtod->boot_ns;
1849         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1850         *t = ns;
1851
1852         return mode;
1853 }
1854
1855 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1856 {
1857         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1858         unsigned long seq;
1859         int mode;
1860         u64 ns;
1861
1862         do {
1863                 seq = read_seqcount_begin(&gtod->seq);
1864                 ts->tv_sec = gtod->wall_time_sec;
1865                 ns = gtod->nsec_base;
1866                 ns += vgettsc(tsc_timestamp, &mode);
1867                 ns >>= gtod->clock.shift;
1868         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1869
1870         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1871         ts->tv_nsec = ns;
1872
1873         return mode;
1874 }
1875
1876 /* returns true if host is using TSC based clocksource */
1877 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1878 {
1879         /* checked again under seqlock below */
1880         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1881                 return false;
1882
1883         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1884                                                       tsc_timestamp));
1885 }
1886
1887 /* returns true if host is using TSC based clocksource */
1888 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1889                                            u64 *tsc_timestamp)
1890 {
1891         /* checked again under seqlock below */
1892         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1893                 return false;
1894
1895         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1896 }
1897 #endif
1898
1899 /*
1900  *
1901  * Assuming a stable TSC across physical CPUS, and a stable TSC
1902  * across virtual CPUs, the following condition is possible.
1903  * Each numbered line represents an event visible to both
1904  * CPUs at the next numbered event.
1905  *
1906  * "timespecX" represents host monotonic time. "tscX" represents
1907  * RDTSC value.
1908  *
1909  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1910  *
1911  * 1.  read timespec0,tsc0
1912  * 2.                                   | timespec1 = timespec0 + N
1913  *                                      | tsc1 = tsc0 + M
1914  * 3. transition to guest               | transition to guest
1915  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1916  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1917  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1918  *
1919  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1920  *
1921  *      - ret0 < ret1
1922  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1923  *              ...
1924  *      - 0 < N - M => M < N
1925  *
1926  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1927  * always the case (the difference between two distinct xtime instances
1928  * might be smaller then the difference between corresponding TSC reads,
1929  * when updating guest vcpus pvclock areas).
1930  *
1931  * To avoid that problem, do not allow visibility of distinct
1932  * system_timestamp/tsc_timestamp values simultaneously: use a master
1933  * copy of host monotonic time values. Update that master copy
1934  * in lockstep.
1935  *
1936  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1937  *
1938  */
1939
1940 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1941 {
1942 #ifdef CONFIG_X86_64
1943         struct kvm_arch *ka = &kvm->arch;
1944         int vclock_mode;
1945         bool host_tsc_clocksource, vcpus_matched;
1946
1947         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1948                         atomic_read(&kvm->online_vcpus));
1949
1950         /*
1951          * If the host uses TSC clock, then passthrough TSC as stable
1952          * to the guest.
1953          */
1954         host_tsc_clocksource = kvm_get_time_and_clockread(
1955                                         &ka->master_kernel_ns,
1956                                         &ka->master_cycle_now);
1957
1958         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1959                                 && !ka->backwards_tsc_observed
1960                                 && !ka->boot_vcpu_runs_old_kvmclock;
1961
1962         if (ka->use_master_clock)
1963                 atomic_set(&kvm_guest_has_master_clock, 1);
1964
1965         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1966         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1967                                         vcpus_matched);
1968 #endif
1969 }
1970
1971 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1972 {
1973         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1974 }
1975
1976 static void kvm_gen_update_masterclock(struct kvm *kvm)
1977 {
1978 #ifdef CONFIG_X86_64
1979         int i;
1980         struct kvm_vcpu *vcpu;
1981         struct kvm_arch *ka = &kvm->arch;
1982
1983         spin_lock(&ka->pvclock_gtod_sync_lock);
1984         kvm_make_mclock_inprogress_request(kvm);
1985         /* no guest entries from this point */
1986         pvclock_update_vm_gtod_copy(kvm);
1987
1988         kvm_for_each_vcpu(i, vcpu, kvm)
1989                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1990
1991         /* guest entries allowed */
1992         kvm_for_each_vcpu(i, vcpu, kvm)
1993                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1994
1995         spin_unlock(&ka->pvclock_gtod_sync_lock);
1996 #endif
1997 }
1998
1999 u64 get_kvmclock_ns(struct kvm *kvm)
2000 {
2001         struct kvm_arch *ka = &kvm->arch;
2002         struct pvclock_vcpu_time_info hv_clock;
2003         u64 ret;
2004
2005         spin_lock(&ka->pvclock_gtod_sync_lock);
2006         if (!ka->use_master_clock) {
2007                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2008                 return ktime_get_boot_ns() + ka->kvmclock_offset;
2009         }
2010
2011         hv_clock.tsc_timestamp = ka->master_cycle_now;
2012         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2013         spin_unlock(&ka->pvclock_gtod_sync_lock);
2014
2015         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2016         get_cpu();
2017
2018         if (__this_cpu_read(cpu_tsc_khz)) {
2019                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2020                                    &hv_clock.tsc_shift,
2021                                    &hv_clock.tsc_to_system_mul);
2022                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2023         } else
2024                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
2025
2026         put_cpu();
2027
2028         return ret;
2029 }
2030
2031 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2032 {
2033         struct kvm_vcpu_arch *vcpu = &v->arch;
2034         struct pvclock_vcpu_time_info guest_hv_clock;
2035
2036         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2037                 &guest_hv_clock, sizeof(guest_hv_clock))))
2038                 return;
2039
2040         /* This VCPU is paused, but it's legal for a guest to read another
2041          * VCPU's kvmclock, so we really have to follow the specification where
2042          * it says that version is odd if data is being modified, and even after
2043          * it is consistent.
2044          *
2045          * Version field updates must be kept separate.  This is because
2046          * kvm_write_guest_cached might use a "rep movs" instruction, and
2047          * writes within a string instruction are weakly ordered.  So there
2048          * are three writes overall.
2049          *
2050          * As a small optimization, only write the version field in the first
2051          * and third write.  The vcpu->pv_time cache is still valid, because the
2052          * version field is the first in the struct.
2053          */
2054         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2055
2056         if (guest_hv_clock.version & 1)
2057                 ++guest_hv_clock.version;  /* first time write, random junk */
2058
2059         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2060         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2061                                 &vcpu->hv_clock,
2062                                 sizeof(vcpu->hv_clock.version));
2063
2064         smp_wmb();
2065
2066         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2067         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2068
2069         if (vcpu->pvclock_set_guest_stopped_request) {
2070                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2071                 vcpu->pvclock_set_guest_stopped_request = false;
2072         }
2073
2074         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2075
2076         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2077                                 &vcpu->hv_clock,
2078                                 sizeof(vcpu->hv_clock));
2079
2080         smp_wmb();
2081
2082         vcpu->hv_clock.version++;
2083         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2084                                 &vcpu->hv_clock,
2085                                 sizeof(vcpu->hv_clock.version));
2086 }
2087
2088 static int kvm_guest_time_update(struct kvm_vcpu *v)
2089 {
2090         unsigned long flags, tgt_tsc_khz;
2091         struct kvm_vcpu_arch *vcpu = &v->arch;
2092         struct kvm_arch *ka = &v->kvm->arch;
2093         s64 kernel_ns;
2094         u64 tsc_timestamp, host_tsc;
2095         u8 pvclock_flags;
2096         bool use_master_clock;
2097
2098         kernel_ns = 0;
2099         host_tsc = 0;
2100
2101         /*
2102          * If the host uses TSC clock, then passthrough TSC as stable
2103          * to the guest.
2104          */
2105         spin_lock(&ka->pvclock_gtod_sync_lock);
2106         use_master_clock = ka->use_master_clock;
2107         if (use_master_clock) {
2108                 host_tsc = ka->master_cycle_now;
2109                 kernel_ns = ka->master_kernel_ns;
2110         }
2111         spin_unlock(&ka->pvclock_gtod_sync_lock);
2112
2113         /* Keep irq disabled to prevent changes to the clock */
2114         local_irq_save(flags);
2115         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2116         if (unlikely(tgt_tsc_khz == 0)) {
2117                 local_irq_restore(flags);
2118                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2119                 return 1;
2120         }
2121         if (!use_master_clock) {
2122                 host_tsc = rdtsc();
2123                 kernel_ns = ktime_get_boot_ns();
2124         }
2125
2126         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2127
2128         /*
2129          * We may have to catch up the TSC to match elapsed wall clock
2130          * time for two reasons, even if kvmclock is used.
2131          *   1) CPU could have been running below the maximum TSC rate
2132          *   2) Broken TSC compensation resets the base at each VCPU
2133          *      entry to avoid unknown leaps of TSC even when running
2134          *      again on the same CPU.  This may cause apparent elapsed
2135          *      time to disappear, and the guest to stand still or run
2136          *      very slowly.
2137          */
2138         if (vcpu->tsc_catchup) {
2139                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2140                 if (tsc > tsc_timestamp) {
2141                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2142                         tsc_timestamp = tsc;
2143                 }
2144         }
2145
2146         local_irq_restore(flags);
2147
2148         /* With all the info we got, fill in the values */
2149
2150         if (kvm_has_tsc_control)
2151                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2152
2153         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2154                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2155                                    &vcpu->hv_clock.tsc_shift,
2156                                    &vcpu->hv_clock.tsc_to_system_mul);
2157                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2158         }
2159
2160         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2161         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2162         vcpu->last_guest_tsc = tsc_timestamp;
2163
2164         /* If the host uses TSC clocksource, then it is stable */
2165         pvclock_flags = 0;
2166         if (use_master_clock)
2167                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2168
2169         vcpu->hv_clock.flags = pvclock_flags;
2170
2171         if (vcpu->pv_time_enabled)
2172                 kvm_setup_pvclock_page(v);
2173         if (v == kvm_get_vcpu(v->kvm, 0))
2174                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2175         return 0;
2176 }
2177
2178 /*
2179  * kvmclock updates which are isolated to a given vcpu, such as
2180  * vcpu->cpu migration, should not allow system_timestamp from
2181  * the rest of the vcpus to remain static. Otherwise ntp frequency
2182  * correction applies to one vcpu's system_timestamp but not
2183  * the others.
2184  *
2185  * So in those cases, request a kvmclock update for all vcpus.
2186  * We need to rate-limit these requests though, as they can
2187  * considerably slow guests that have a large number of vcpus.
2188  * The time for a remote vcpu to update its kvmclock is bound
2189  * by the delay we use to rate-limit the updates.
2190  */
2191
2192 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2193
2194 static void kvmclock_update_fn(struct work_struct *work)
2195 {
2196         int i;
2197         struct delayed_work *dwork = to_delayed_work(work);
2198         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2199                                            kvmclock_update_work);
2200         struct kvm *kvm = container_of(ka, struct kvm, arch);
2201         struct kvm_vcpu *vcpu;
2202
2203         kvm_for_each_vcpu(i, vcpu, kvm) {
2204                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2205                 kvm_vcpu_kick(vcpu);
2206         }
2207 }
2208
2209 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2210 {
2211         struct kvm *kvm = v->kvm;
2212
2213         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2214         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2215                                         KVMCLOCK_UPDATE_DELAY);
2216 }
2217
2218 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2219
2220 static void kvmclock_sync_fn(struct work_struct *work)
2221 {
2222         struct delayed_work *dwork = to_delayed_work(work);
2223         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2224                                            kvmclock_sync_work);
2225         struct kvm *kvm = container_of(ka, struct kvm, arch);
2226
2227         if (!kvmclock_periodic_sync)
2228                 return;
2229
2230         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2231         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2232                                         KVMCLOCK_SYNC_PERIOD);
2233 }
2234
2235 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2236 {
2237         u64 mcg_cap = vcpu->arch.mcg_cap;
2238         unsigned bank_num = mcg_cap & 0xff;
2239         u32 msr = msr_info->index;
2240         u64 data = msr_info->data;
2241
2242         switch (msr) {
2243         case MSR_IA32_MCG_STATUS:
2244                 vcpu->arch.mcg_status = data;
2245                 break;
2246         case MSR_IA32_MCG_CTL:
2247                 if (!(mcg_cap & MCG_CTL_P) &&
2248                     (data || !msr_info->host_initiated))
2249                         return 1;
2250                 if (data != 0 && data != ~(u64)0)
2251                         return 1;
2252                 vcpu->arch.mcg_ctl = data;
2253                 break;
2254         default:
2255                 if (msr >= MSR_IA32_MC0_CTL &&
2256                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2257                         u32 offset = msr - MSR_IA32_MC0_CTL;
2258                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2259                          * some Linux kernels though clear bit 10 in bank 4 to
2260                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2261                          * this to avoid an uncatched #GP in the guest
2262                          */
2263                         if ((offset & 0x3) == 0 &&
2264                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2265                                 return -1;
2266                         if (!msr_info->host_initiated &&
2267                                 (offset & 0x3) == 1 && data != 0)
2268                                 return -1;
2269                         vcpu->arch.mce_banks[offset] = data;
2270                         break;
2271                 }
2272                 return 1;
2273         }
2274         return 0;
2275 }
2276
2277 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2278 {
2279         struct kvm *kvm = vcpu->kvm;
2280         int lm = is_long_mode(vcpu);
2281         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2282                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2283         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2284                 : kvm->arch.xen_hvm_config.blob_size_32;
2285         u32 page_num = data & ~PAGE_MASK;
2286         u64 page_addr = data & PAGE_MASK;
2287         u8 *page;
2288         int r;
2289
2290         r = -E2BIG;
2291         if (page_num >= blob_size)
2292                 goto out;
2293         r = -ENOMEM;
2294         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2295         if (IS_ERR(page)) {
2296                 r = PTR_ERR(page);
2297                 goto out;
2298         }
2299         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2300                 goto out_free;
2301         r = 0;
2302 out_free:
2303         kfree(page);
2304 out:
2305         return r;
2306 }
2307
2308 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2309 {
2310         gpa_t gpa = data & ~0x3f;
2311
2312         /* Bits 3:5 are reserved, Should be zero */
2313         if (data & 0x38)
2314                 return 1;
2315
2316         vcpu->arch.apf.msr_val = data;
2317
2318         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2319                 kvm_clear_async_pf_completion_queue(vcpu);
2320                 kvm_async_pf_hash_reset(vcpu);
2321                 return 0;
2322         }
2323
2324         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2325                                         sizeof(u32)))
2326                 return 1;
2327
2328         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2329         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2330         kvm_async_pf_wakeup_all(vcpu);
2331         return 0;
2332 }
2333
2334 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2335 {
2336         vcpu->arch.pv_time_enabled = false;
2337 }
2338
2339 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2340 {
2341         ++vcpu->stat.tlb_flush;
2342         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2343 }
2344
2345 static void record_steal_time(struct kvm_vcpu *vcpu)
2346 {
2347         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2348                 return;
2349
2350         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2351                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2352                 return;
2353
2354         /*
2355          * Doing a TLB flush here, on the guest's behalf, can avoid
2356          * expensive IPIs.
2357          */
2358         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2359                 kvm_vcpu_flush_tlb(vcpu, false);
2360
2361         if (vcpu->arch.st.steal.version & 1)
2362                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2363
2364         vcpu->arch.st.steal.version += 1;
2365
2366         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2367                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2368
2369         smp_wmb();
2370
2371         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2372                 vcpu->arch.st.last_steal;
2373         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2374
2375         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2376                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2377
2378         smp_wmb();
2379
2380         vcpu->arch.st.steal.version += 1;
2381
2382         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2383                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2384 }
2385
2386 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2387 {
2388         bool pr = false;
2389         u32 msr = msr_info->index;
2390         u64 data = msr_info->data;
2391
2392         switch (msr) {
2393         case MSR_AMD64_NB_CFG:
2394         case MSR_IA32_UCODE_WRITE:
2395         case MSR_VM_HSAVE_PA:
2396         case MSR_AMD64_PATCH_LOADER:
2397         case MSR_AMD64_BU_CFG2:
2398         case MSR_AMD64_DC_CFG:
2399                 break;
2400
2401         case MSR_IA32_UCODE_REV:
2402                 if (msr_info->host_initiated)
2403                         vcpu->arch.microcode_version = data;
2404                 break;
2405         case MSR_EFER:
2406                 return set_efer(vcpu, data);
2407         case MSR_K7_HWCR:
2408                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2409                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2410                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2411                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2412                 if (data != 0) {
2413                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2414                                     data);
2415                         return 1;
2416                 }
2417                 break;
2418         case MSR_FAM10H_MMIO_CONF_BASE:
2419                 if (data != 0) {
2420                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2421                                     "0x%llx\n", data);
2422                         return 1;
2423                 }
2424                 break;
2425         case MSR_IA32_DEBUGCTLMSR:
2426                 if (!data) {
2427                         /* We support the non-activated case already */
2428                         break;
2429                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2430                         /* Values other than LBR and BTF are vendor-specific,
2431                            thus reserved and should throw a #GP */
2432                         return 1;
2433                 }
2434                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2435                             __func__, data);
2436                 break;
2437         case 0x200 ... 0x2ff:
2438                 return kvm_mtrr_set_msr(vcpu, msr, data);
2439         case MSR_IA32_APICBASE:
2440                 return kvm_set_apic_base(vcpu, msr_info);
2441         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2442                 return kvm_x2apic_msr_write(vcpu, msr, data);
2443         case MSR_IA32_TSCDEADLINE:
2444                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2445                 break;
2446         case MSR_IA32_TSC_ADJUST:
2447                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2448                         if (!msr_info->host_initiated) {
2449                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2450                                 adjust_tsc_offset_guest(vcpu, adj);
2451                         }
2452                         vcpu->arch.ia32_tsc_adjust_msr = data;
2453                 }
2454                 break;
2455         case MSR_IA32_MISC_ENABLE:
2456                 vcpu->arch.ia32_misc_enable_msr = data;
2457                 break;
2458         case MSR_IA32_SMBASE:
2459                 if (!msr_info->host_initiated)
2460                         return 1;
2461                 vcpu->arch.smbase = data;
2462                 break;
2463         case MSR_IA32_TSC:
2464                 kvm_write_tsc(vcpu, msr_info);
2465                 break;
2466         case MSR_SMI_COUNT:
2467                 if (!msr_info->host_initiated)
2468                         return 1;
2469                 vcpu->arch.smi_count = data;
2470                 break;
2471         case MSR_KVM_WALL_CLOCK_NEW:
2472         case MSR_KVM_WALL_CLOCK:
2473                 vcpu->kvm->arch.wall_clock = data;
2474                 kvm_write_wall_clock(vcpu->kvm, data);
2475                 break;
2476         case MSR_KVM_SYSTEM_TIME_NEW:
2477         case MSR_KVM_SYSTEM_TIME: {
2478                 struct kvm_arch *ka = &vcpu->kvm->arch;
2479
2480                 kvmclock_reset(vcpu);
2481
2482                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2483                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2484
2485                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2486                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2487
2488                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2489                 }
2490
2491                 vcpu->arch.time = data;
2492                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2493
2494                 /* we verify if the enable bit is set... */
2495                 if (!(data & 1))
2496                         break;
2497
2498                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2499                      &vcpu->arch.pv_time, data & ~1ULL,
2500                      sizeof(struct pvclock_vcpu_time_info)))
2501                         vcpu->arch.pv_time_enabled = false;
2502                 else
2503                         vcpu->arch.pv_time_enabled = true;
2504
2505                 break;
2506         }
2507         case MSR_KVM_ASYNC_PF_EN:
2508                 if (kvm_pv_enable_async_pf(vcpu, data))
2509                         return 1;
2510                 break;
2511         case MSR_KVM_STEAL_TIME:
2512
2513                 if (unlikely(!sched_info_on()))
2514                         return 1;
2515
2516                 if (data & KVM_STEAL_RESERVED_MASK)
2517                         return 1;
2518
2519                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2520                                                 data & KVM_STEAL_VALID_BITS,
2521                                                 sizeof(struct kvm_steal_time)))
2522                         return 1;
2523
2524                 vcpu->arch.st.msr_val = data;
2525
2526                 if (!(data & KVM_MSR_ENABLED))
2527                         break;
2528
2529                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2530
2531                 break;
2532         case MSR_KVM_PV_EOI_EN:
2533                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2534                         return 1;
2535                 break;
2536
2537         case MSR_IA32_MCG_CTL:
2538         case MSR_IA32_MCG_STATUS:
2539         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2540                 return set_msr_mce(vcpu, msr_info);
2541
2542         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2543         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2544                 pr = true; /* fall through */
2545         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2546         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2547                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2548                         return kvm_pmu_set_msr(vcpu, msr_info);
2549
2550                 if (pr || data != 0)
2551                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2552                                     "0x%x data 0x%llx\n", msr, data);
2553                 break;
2554         case MSR_K7_CLK_CTL:
2555                 /*
2556                  * Ignore all writes to this no longer documented MSR.
2557                  * Writes are only relevant for old K7 processors,
2558                  * all pre-dating SVM, but a recommended workaround from
2559                  * AMD for these chips. It is possible to specify the
2560                  * affected processor models on the command line, hence
2561                  * the need to ignore the workaround.
2562                  */
2563                 break;
2564         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2565         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2566         case HV_X64_MSR_CRASH_CTL:
2567         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2568         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2569         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2570         case HV_X64_MSR_TSC_EMULATION_STATUS:
2571                 return kvm_hv_set_msr_common(vcpu, msr, data,
2572                                              msr_info->host_initiated);
2573         case MSR_IA32_BBL_CR_CTL3:
2574                 /* Drop writes to this legacy MSR -- see rdmsr
2575                  * counterpart for further detail.
2576                  */
2577                 if (report_ignored_msrs)
2578                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2579                                 msr, data);
2580                 break;
2581         case MSR_AMD64_OSVW_ID_LENGTH:
2582                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2583                         return 1;
2584                 vcpu->arch.osvw.length = data;
2585                 break;
2586         case MSR_AMD64_OSVW_STATUS:
2587                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2588                         return 1;
2589                 vcpu->arch.osvw.status = data;
2590                 break;
2591         case MSR_PLATFORM_INFO:
2592                 if (!msr_info->host_initiated ||
2593                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2594                      cpuid_fault_enabled(vcpu)))
2595                         return 1;
2596                 vcpu->arch.msr_platform_info = data;
2597                 break;
2598         case MSR_MISC_FEATURES_ENABLES:
2599                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2600                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2601                      !supports_cpuid_fault(vcpu)))
2602                         return 1;
2603                 vcpu->arch.msr_misc_features_enables = data;
2604                 break;
2605         default:
2606                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2607                         return xen_hvm_config(vcpu, data);
2608                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2609                         return kvm_pmu_set_msr(vcpu, msr_info);
2610                 if (!ignore_msrs) {
2611                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2612                                     msr, data);
2613                         return 1;
2614                 } else {
2615                         if (report_ignored_msrs)
2616                                 vcpu_unimpl(vcpu,
2617                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2618                                         msr, data);
2619                         break;
2620                 }
2621         }
2622         return 0;
2623 }
2624 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2625
2626
2627 /*
2628  * Reads an msr value (of 'msr_index') into 'pdata'.
2629  * Returns 0 on success, non-0 otherwise.
2630  * Assumes vcpu_load() was already called.
2631  */
2632 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2633 {
2634         return kvm_x86_ops->get_msr(vcpu, msr);
2635 }
2636 EXPORT_SYMBOL_GPL(kvm_get_msr);
2637
2638 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2639 {
2640         u64 data;
2641         u64 mcg_cap = vcpu->arch.mcg_cap;
2642         unsigned bank_num = mcg_cap & 0xff;
2643
2644         switch (msr) {
2645         case MSR_IA32_P5_MC_ADDR:
2646         case MSR_IA32_P5_MC_TYPE:
2647                 data = 0;
2648                 break;
2649         case MSR_IA32_MCG_CAP:
2650                 data = vcpu->arch.mcg_cap;
2651                 break;
2652         case MSR_IA32_MCG_CTL:
2653                 if (!(mcg_cap & MCG_CTL_P) && !host)
2654                         return 1;
2655                 data = vcpu->arch.mcg_ctl;
2656                 break;
2657         case MSR_IA32_MCG_STATUS:
2658                 data = vcpu->arch.mcg_status;
2659                 break;
2660         default:
2661                 if (msr >= MSR_IA32_MC0_CTL &&
2662                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2663                         u32 offset = msr - MSR_IA32_MC0_CTL;
2664                         data = vcpu->arch.mce_banks[offset];
2665                         break;
2666                 }
2667                 return 1;
2668         }
2669         *pdata = data;
2670         return 0;
2671 }
2672
2673 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2674 {
2675         switch (msr_info->index) {
2676         case MSR_IA32_PLATFORM_ID:
2677         case MSR_IA32_EBL_CR_POWERON:
2678         case MSR_IA32_DEBUGCTLMSR:
2679         case MSR_IA32_LASTBRANCHFROMIP:
2680         case MSR_IA32_LASTBRANCHTOIP:
2681         case MSR_IA32_LASTINTFROMIP:
2682         case MSR_IA32_LASTINTTOIP:
2683         case MSR_K8_SYSCFG:
2684         case MSR_K8_TSEG_ADDR:
2685         case MSR_K8_TSEG_MASK:
2686         case MSR_K7_HWCR:
2687         case MSR_VM_HSAVE_PA:
2688         case MSR_K8_INT_PENDING_MSG:
2689         case MSR_AMD64_NB_CFG:
2690         case MSR_FAM10H_MMIO_CONF_BASE:
2691         case MSR_AMD64_BU_CFG2:
2692         case MSR_IA32_PERF_CTL:
2693         case MSR_AMD64_DC_CFG:
2694                 msr_info->data = 0;
2695                 break;
2696         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2697         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2698         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2699         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2700         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2701                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2702                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2703                 msr_info->data = 0;
2704                 break;
2705         case MSR_IA32_UCODE_REV:
2706                 msr_info->data = vcpu->arch.microcode_version;
2707                 break;
2708         case MSR_IA32_TSC:
2709                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2710                 break;
2711         case MSR_MTRRcap:
2712         case 0x200 ... 0x2ff:
2713                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2714         case 0xcd: /* fsb frequency */
2715                 msr_info->data = 3;
2716                 break;
2717                 /*
2718                  * MSR_EBC_FREQUENCY_ID
2719                  * Conservative value valid for even the basic CPU models.
2720                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2721                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2722                  * and 266MHz for model 3, or 4. Set Core Clock
2723                  * Frequency to System Bus Frequency Ratio to 1 (bits
2724                  * 31:24) even though these are only valid for CPU
2725                  * models > 2, however guests may end up dividing or
2726                  * multiplying by zero otherwise.
2727                  */
2728         case MSR_EBC_FREQUENCY_ID:
2729                 msr_info->data = 1 << 24;
2730                 break;
2731         case MSR_IA32_APICBASE:
2732                 msr_info->data = kvm_get_apic_base(vcpu);
2733                 break;
2734         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2735                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2736                 break;
2737         case MSR_IA32_TSCDEADLINE:
2738                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2739                 break;
2740         case MSR_IA32_TSC_ADJUST:
2741                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2742                 break;
2743         case MSR_IA32_MISC_ENABLE:
2744                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2745                 break;
2746         case MSR_IA32_SMBASE:
2747                 if (!msr_info->host_initiated)
2748                         return 1;
2749                 msr_info->data = vcpu->arch.smbase;
2750                 break;
2751         case MSR_SMI_COUNT:
2752                 msr_info->data = vcpu->arch.smi_count;
2753                 break;
2754         case MSR_IA32_PERF_STATUS:
2755                 /* TSC increment by tick */
2756                 msr_info->data = 1000ULL;
2757                 /* CPU multiplier */
2758                 msr_info->data |= (((uint64_t)4ULL) << 40);
2759                 break;
2760         case MSR_EFER:
2761                 msr_info->data = vcpu->arch.efer;
2762                 break;
2763         case MSR_KVM_WALL_CLOCK:
2764         case MSR_KVM_WALL_CLOCK_NEW:
2765                 msr_info->data = vcpu->kvm->arch.wall_clock;
2766                 break;
2767         case MSR_KVM_SYSTEM_TIME:
2768         case MSR_KVM_SYSTEM_TIME_NEW:
2769                 msr_info->data = vcpu->arch.time;
2770                 break;
2771         case MSR_KVM_ASYNC_PF_EN:
2772                 msr_info->data = vcpu->arch.apf.msr_val;
2773                 break;
2774         case MSR_KVM_STEAL_TIME:
2775                 msr_info->data = vcpu->arch.st.msr_val;
2776                 break;
2777         case MSR_KVM_PV_EOI_EN:
2778                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2779                 break;
2780         case MSR_IA32_P5_MC_ADDR:
2781         case MSR_IA32_P5_MC_TYPE:
2782         case MSR_IA32_MCG_CAP:
2783         case MSR_IA32_MCG_CTL:
2784         case MSR_IA32_MCG_STATUS:
2785         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2786                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2787                                    msr_info->host_initiated);
2788         case MSR_K7_CLK_CTL:
2789                 /*
2790                  * Provide expected ramp-up count for K7. All other
2791                  * are set to zero, indicating minimum divisors for
2792                  * every field.
2793                  *
2794                  * This prevents guest kernels on AMD host with CPU
2795                  * type 6, model 8 and higher from exploding due to
2796                  * the rdmsr failing.
2797                  */
2798                 msr_info->data = 0x20000000;
2799                 break;
2800         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2801         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2802         case HV_X64_MSR_CRASH_CTL:
2803         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2804         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2805         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2806         case HV_X64_MSR_TSC_EMULATION_STATUS:
2807                 return kvm_hv_get_msr_common(vcpu,
2808                                              msr_info->index, &msr_info->data,
2809                                              msr_info->host_initiated);
2810                 break;
2811         case MSR_IA32_BBL_CR_CTL3:
2812                 /* This legacy MSR exists but isn't fully documented in current
2813                  * silicon.  It is however accessed by winxp in very narrow
2814                  * scenarios where it sets bit #19, itself documented as
2815                  * a "reserved" bit.  Best effort attempt to source coherent
2816                  * read data here should the balance of the register be
2817                  * interpreted by the guest:
2818                  *
2819                  * L2 cache control register 3: 64GB range, 256KB size,
2820                  * enabled, latency 0x1, configured
2821                  */
2822                 msr_info->data = 0xbe702111;
2823                 break;
2824         case MSR_AMD64_OSVW_ID_LENGTH:
2825                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2826                         return 1;
2827                 msr_info->data = vcpu->arch.osvw.length;
2828                 break;
2829         case MSR_AMD64_OSVW_STATUS:
2830                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2831                         return 1;
2832                 msr_info->data = vcpu->arch.osvw.status;
2833                 break;
2834         case MSR_PLATFORM_INFO:
2835                 if (!msr_info->host_initiated &&
2836                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2837                         return 1;
2838                 msr_info->data = vcpu->arch.msr_platform_info;
2839                 break;
2840         case MSR_MISC_FEATURES_ENABLES:
2841                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2842                 break;
2843         default:
2844                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2845                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2846                 if (!ignore_msrs) {
2847                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2848                                                msr_info->index);
2849                         return 1;
2850                 } else {
2851                         if (report_ignored_msrs)
2852                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2853                                         msr_info->index);
2854                         msr_info->data = 0;
2855                 }
2856                 break;
2857         }
2858         return 0;
2859 }
2860 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2861
2862 /*
2863  * Read or write a bunch of msrs. All parameters are kernel addresses.
2864  *
2865  * @return number of msrs set successfully.
2866  */
2867 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2868                     struct kvm_msr_entry *entries,
2869                     int (*do_msr)(struct kvm_vcpu *vcpu,
2870                                   unsigned index, u64 *data))
2871 {
2872         int i;
2873
2874         for (i = 0; i < msrs->nmsrs; ++i)
2875                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2876                         break;
2877
2878         return i;
2879 }
2880
2881 /*
2882  * Read or write a bunch of msrs. Parameters are user addresses.
2883  *
2884  * @return number of msrs set successfully.
2885  */
2886 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2887                   int (*do_msr)(struct kvm_vcpu *vcpu,
2888                                 unsigned index, u64 *data),
2889                   int writeback)
2890 {
2891         struct kvm_msrs msrs;
2892         struct kvm_msr_entry *entries;
2893         int r, n;
2894         unsigned size;
2895
2896         r = -EFAULT;
2897         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2898                 goto out;
2899
2900         r = -E2BIG;
2901         if (msrs.nmsrs >= MAX_IO_MSRS)
2902                 goto out;
2903
2904         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2905         entries = memdup_user(user_msrs->entries, size);
2906         if (IS_ERR(entries)) {
2907                 r = PTR_ERR(entries);
2908                 goto out;
2909         }
2910
2911         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2912         if (r < 0)
2913                 goto out_free;
2914
2915         r = -EFAULT;
2916         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2917                 goto out_free;
2918
2919         r = n;
2920
2921 out_free:
2922         kfree(entries);
2923 out:
2924         return r;
2925 }
2926
2927 static inline bool kvm_can_mwait_in_guest(void)
2928 {
2929         return boot_cpu_has(X86_FEATURE_MWAIT) &&
2930                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
2931                 boot_cpu_has(X86_FEATURE_ARAT);
2932 }
2933
2934 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2935 {
2936         int r = 0;
2937
2938         switch (ext) {
2939         case KVM_CAP_IRQCHIP:
2940         case KVM_CAP_HLT:
2941         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2942         case KVM_CAP_SET_TSS_ADDR:
2943         case KVM_CAP_EXT_CPUID:
2944         case KVM_CAP_EXT_EMUL_CPUID:
2945         case KVM_CAP_CLOCKSOURCE:
2946         case KVM_CAP_PIT:
2947         case KVM_CAP_NOP_IO_DELAY:
2948         case KVM_CAP_MP_STATE:
2949         case KVM_CAP_SYNC_MMU:
2950         case KVM_CAP_USER_NMI:
2951         case KVM_CAP_REINJECT_CONTROL:
2952         case KVM_CAP_IRQ_INJECT_STATUS:
2953         case KVM_CAP_IOEVENTFD:
2954         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2955         case KVM_CAP_PIT2:
2956         case KVM_CAP_PIT_STATE2:
2957         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2958         case KVM_CAP_XEN_HVM:
2959         case KVM_CAP_VCPU_EVENTS:
2960         case KVM_CAP_HYPERV:
2961         case KVM_CAP_HYPERV_VAPIC:
2962         case KVM_CAP_HYPERV_SPIN:
2963         case KVM_CAP_HYPERV_SYNIC:
2964         case KVM_CAP_HYPERV_SYNIC2:
2965         case KVM_CAP_HYPERV_VP_INDEX:
2966         case KVM_CAP_HYPERV_EVENTFD:
2967         case KVM_CAP_HYPERV_TLBFLUSH:
2968         case KVM_CAP_HYPERV_SEND_IPI:
2969         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
2970         case KVM_CAP_PCI_SEGMENT:
2971         case KVM_CAP_DEBUGREGS:
2972         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2973         case KVM_CAP_XSAVE:
2974         case KVM_CAP_ASYNC_PF:
2975         case KVM_CAP_GET_TSC_KHZ:
2976         case KVM_CAP_KVMCLOCK_CTRL:
2977         case KVM_CAP_READONLY_MEM:
2978         case KVM_CAP_HYPERV_TIME:
2979         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2980         case KVM_CAP_TSC_DEADLINE_TIMER:
2981         case KVM_CAP_ENABLE_CAP_VM:
2982         case KVM_CAP_DISABLE_QUIRKS:
2983         case KVM_CAP_SET_BOOT_CPU_ID:
2984         case KVM_CAP_SPLIT_IRQCHIP:
2985         case KVM_CAP_IMMEDIATE_EXIT:
2986         case KVM_CAP_GET_MSR_FEATURES:
2987         case KVM_CAP_MSR_PLATFORM_INFO:
2988                 r = 1;
2989                 break;
2990         case KVM_CAP_SYNC_REGS:
2991                 r = KVM_SYNC_X86_VALID_FIELDS;
2992                 break;
2993         case KVM_CAP_ADJUST_CLOCK:
2994                 r = KVM_CLOCK_TSC_STABLE;
2995                 break;
2996         case KVM_CAP_X86_DISABLE_EXITS:
2997                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
2998                 if(kvm_can_mwait_in_guest())
2999                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3000                 break;
3001         case KVM_CAP_X86_SMM:
3002                 /* SMBASE is usually relocated above 1M on modern chipsets,
3003                  * and SMM handlers might indeed rely on 4G segment limits,
3004                  * so do not report SMM to be available if real mode is
3005                  * emulated via vm86 mode.  Still, do not go to great lengths
3006                  * to avoid userspace's usage of the feature, because it is a
3007                  * fringe case that is not enabled except via specific settings
3008                  * of the module parameters.
3009                  */
3010                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3011                 break;
3012         case KVM_CAP_VAPIC:
3013                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3014                 break;
3015         case KVM_CAP_NR_VCPUS:
3016                 r = KVM_SOFT_MAX_VCPUS;
3017                 break;
3018         case KVM_CAP_MAX_VCPUS:
3019                 r = KVM_MAX_VCPUS;
3020                 break;
3021         case KVM_CAP_NR_MEMSLOTS:
3022                 r = KVM_USER_MEM_SLOTS;
3023                 break;
3024         case KVM_CAP_PV_MMU:    /* obsolete */
3025                 r = 0;
3026                 break;
3027         case KVM_CAP_MCE:
3028                 r = KVM_MAX_MCE_BANKS;
3029                 break;
3030         case KVM_CAP_XCRS:
3031                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3032                 break;
3033         case KVM_CAP_TSC_CONTROL:
3034                 r = kvm_has_tsc_control;
3035                 break;
3036         case KVM_CAP_X2APIC_API:
3037                 r = KVM_X2APIC_API_VALID_FLAGS;
3038                 break;
3039         case KVM_CAP_NESTED_STATE:
3040                 r = kvm_x86_ops->get_nested_state ?
3041                         kvm_x86_ops->get_nested_state(NULL, 0, 0) : 0;
3042                 break;
3043         default:
3044                 break;
3045         }
3046         return r;
3047
3048 }
3049
3050 long kvm_arch_dev_ioctl(struct file *filp,
3051                         unsigned int ioctl, unsigned long arg)
3052 {
3053         void __user *argp = (void __user *)arg;
3054         long r;
3055
3056         switch (ioctl) {
3057         case KVM_GET_MSR_INDEX_LIST: {
3058                 struct kvm_msr_list __user *user_msr_list = argp;
3059                 struct kvm_msr_list msr_list;
3060                 unsigned n;
3061
3062                 r = -EFAULT;
3063                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
3064                         goto out;
3065                 n = msr_list.nmsrs;
3066                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3067                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
3068                         goto out;
3069                 r = -E2BIG;
3070                 if (n < msr_list.nmsrs)
3071                         goto out;
3072                 r = -EFAULT;
3073                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3074                                  num_msrs_to_save * sizeof(u32)))
3075                         goto out;
3076                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3077                                  &emulated_msrs,
3078                                  num_emulated_msrs * sizeof(u32)))
3079                         goto out;
3080                 r = 0;
3081                 break;
3082         }
3083         case KVM_GET_SUPPORTED_CPUID:
3084         case KVM_GET_EMULATED_CPUID: {
3085                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3086                 struct kvm_cpuid2 cpuid;
3087
3088                 r = -EFAULT;
3089                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3090                         goto out;
3091
3092                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3093                                             ioctl);
3094                 if (r)
3095                         goto out;
3096
3097                 r = -EFAULT;
3098                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3099                         goto out;
3100                 r = 0;
3101                 break;
3102         }
3103         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3104                 r = -EFAULT;
3105                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3106                                  sizeof(kvm_mce_cap_supported)))
3107                         goto out;
3108                 r = 0;
3109                 break;
3110         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3111                 struct kvm_msr_list __user *user_msr_list = argp;
3112                 struct kvm_msr_list msr_list;
3113                 unsigned int n;
3114
3115                 r = -EFAULT;
3116                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3117                         goto out;
3118                 n = msr_list.nmsrs;
3119                 msr_list.nmsrs = num_msr_based_features;
3120                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3121                         goto out;
3122                 r = -E2BIG;
3123                 if (n < msr_list.nmsrs)
3124                         goto out;
3125                 r = -EFAULT;
3126                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3127                                  num_msr_based_features * sizeof(u32)))
3128                         goto out;
3129                 r = 0;
3130                 break;
3131         }
3132         case KVM_GET_MSRS:
3133                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3134                 break;
3135         }
3136         default:
3137                 r = -EINVAL;
3138         }
3139 out:
3140         return r;
3141 }
3142
3143 static void wbinvd_ipi(void *garbage)
3144 {
3145         wbinvd();
3146 }
3147
3148 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3149 {
3150         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3151 }
3152
3153 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3154 {
3155         /* Address WBINVD may be executed by guest */
3156         if (need_emulate_wbinvd(vcpu)) {
3157                 if (kvm_x86_ops->has_wbinvd_exit())
3158                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3159                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3160                         smp_call_function_single(vcpu->cpu,
3161                                         wbinvd_ipi, NULL, 1);
3162         }
3163
3164         kvm_x86_ops->vcpu_load(vcpu, cpu);
3165
3166         /* Apply any externally detected TSC adjustments (due to suspend) */
3167         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3168                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3169                 vcpu->arch.tsc_offset_adjustment = 0;
3170                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3171         }
3172
3173         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3174                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3175                                 rdtsc() - vcpu->arch.last_host_tsc;
3176                 if (tsc_delta < 0)
3177                         mark_tsc_unstable("KVM discovered backwards TSC");
3178
3179                 if (kvm_check_tsc_unstable()) {
3180                         u64 offset = kvm_compute_tsc_offset(vcpu,
3181                                                 vcpu->arch.last_guest_tsc);
3182                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3183                         vcpu->arch.tsc_catchup = 1;
3184                 }
3185
3186                 if (kvm_lapic_hv_timer_in_use(vcpu))
3187                         kvm_lapic_restart_hv_timer(vcpu);
3188
3189                 /*
3190                  * On a host with synchronized TSC, there is no need to update
3191                  * kvmclock on vcpu->cpu migration
3192                  */
3193                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3194                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3195                 if (vcpu->cpu != cpu)
3196                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3197                 vcpu->cpu = cpu;
3198         }
3199
3200         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3201 }
3202
3203 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3204 {
3205         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3206                 return;
3207
3208         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3209
3210         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3211                         &vcpu->arch.st.steal.preempted,
3212                         offsetof(struct kvm_steal_time, preempted),
3213                         sizeof(vcpu->arch.st.steal.preempted));
3214 }
3215
3216 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3217 {
3218         int idx;
3219
3220         if (vcpu->preempted)
3221                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3222
3223         /*
3224          * Disable page faults because we're in atomic context here.
3225          * kvm_write_guest_offset_cached() would call might_fault()
3226          * that relies on pagefault_disable() to tell if there's a
3227          * bug. NOTE: the write to guest memory may not go through if
3228          * during postcopy live migration or if there's heavy guest
3229          * paging.
3230          */
3231         pagefault_disable();
3232         /*
3233          * kvm_memslots() will be called by
3234          * kvm_write_guest_offset_cached() so take the srcu lock.
3235          */
3236         idx = srcu_read_lock(&vcpu->kvm->srcu);
3237         kvm_steal_time_set_preempted(vcpu);
3238         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3239         pagefault_enable();
3240         kvm_x86_ops->vcpu_put(vcpu);
3241         vcpu->arch.last_host_tsc = rdtsc();
3242         /*
3243          * Here dr6 is either zero or, if the guest has run and userspace
3244          * has not set any breakpoints or watchpoints, it can be set to
3245          * the guest dr6 (stored in vcpu->arch.dr6). do_debug expects dr6
3246          * to be cleared after it runs, so clear the host register.  However,
3247          * MOV to DR can be expensive when running nested, omit it if
3248          * vcpu->arch.dr6 is already zero: in that case, the host dr6 cannot
3249          * currently be nonzero.
3250          */
3251         if (vcpu->arch.dr6)
3252                 set_debugreg(0, 6);
3253 }
3254
3255 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3256                                     struct kvm_lapic_state *s)
3257 {
3258         if (vcpu->arch.apicv_active)
3259                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3260
3261         return kvm_apic_get_state(vcpu, s);
3262 }
3263
3264 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3265                                     struct kvm_lapic_state *s)
3266 {
3267         int r;
3268
3269         r = kvm_apic_set_state(vcpu, s);
3270         if (r)
3271                 return r;
3272         update_cr8_intercept(vcpu);
3273
3274         return 0;
3275 }
3276
3277 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3278 {
3279         return (!lapic_in_kernel(vcpu) ||
3280                 kvm_apic_accept_pic_intr(vcpu));
3281 }
3282
3283 /*
3284  * if userspace requested an interrupt window, check that the
3285  * interrupt window is open.
3286  *
3287  * No need to exit to userspace if we already have an interrupt queued.
3288  */
3289 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3290 {
3291         return kvm_arch_interrupt_allowed(vcpu) &&
3292                 !kvm_cpu_has_interrupt(vcpu) &&
3293                 !kvm_event_needs_reinjection(vcpu) &&
3294                 kvm_cpu_accept_dm_intr(vcpu);
3295 }
3296
3297 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3298                                     struct kvm_interrupt *irq)
3299 {
3300         if (irq->irq >= KVM_NR_INTERRUPTS)
3301                 return -EINVAL;
3302
3303         if (!irqchip_in_kernel(vcpu->kvm)) {
3304                 kvm_queue_interrupt(vcpu, irq->irq, false);
3305                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3306                 return 0;
3307         }
3308
3309         /*
3310          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3311          * fail for in-kernel 8259.
3312          */
3313         if (pic_in_kernel(vcpu->kvm))
3314                 return -ENXIO;
3315
3316         if (vcpu->arch.pending_external_vector != -1)
3317                 return -EEXIST;
3318
3319         vcpu->arch.pending_external_vector = irq->irq;
3320         kvm_make_request(KVM_REQ_EVENT, vcpu);
3321         return 0;
3322 }
3323
3324 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3325 {
3326         kvm_inject_nmi(vcpu);
3327
3328         return 0;
3329 }
3330
3331 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3332 {
3333         kvm_make_request(KVM_REQ_SMI, vcpu);
3334
3335         return 0;
3336 }
3337
3338 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3339                                            struct kvm_tpr_access_ctl *tac)
3340 {
3341         if (tac->flags)
3342                 return -EINVAL;
3343         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3344         return 0;
3345 }
3346
3347 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3348                                         u64 mcg_cap)
3349 {
3350         int r;
3351         unsigned bank_num = mcg_cap & 0xff, bank;
3352
3353         r = -EINVAL;
3354         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3355                 goto out;
3356         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3357                 goto out;
3358         r = 0;
3359         vcpu->arch.mcg_cap = mcg_cap;
3360         /* Init IA32_MCG_CTL to all 1s */
3361         if (mcg_cap & MCG_CTL_P)
3362                 vcpu->arch.mcg_ctl = ~(u64)0;
3363         /* Init IA32_MCi_CTL to all 1s */
3364         for (bank = 0; bank < bank_num; bank++)
3365                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3366
3367         if (kvm_x86_ops->setup_mce)
3368                 kvm_x86_ops->setup_mce(vcpu);
3369 out:
3370         return r;
3371 }
3372
3373 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3374                                       struct kvm_x86_mce *mce)
3375 {
3376         u64 mcg_cap = vcpu->arch.mcg_cap;
3377         unsigned bank_num = mcg_cap & 0xff;
3378         u64 *banks = vcpu->arch.mce_banks;
3379
3380         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3381                 return -EINVAL;
3382         /*
3383          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3384          * reporting is disabled
3385          */
3386         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3387             vcpu->arch.mcg_ctl != ~(u64)0)
3388                 return 0;
3389         banks += 4 * mce->bank;
3390         /*
3391          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3392          * reporting is disabled for the bank
3393          */
3394         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3395                 return 0;
3396         if (mce->status & MCI_STATUS_UC) {
3397                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3398                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3399                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3400                         return 0;
3401                 }
3402                 if (banks[1] & MCI_STATUS_VAL)
3403                         mce->status |= MCI_STATUS_OVER;
3404                 banks[2] = mce->addr;
3405                 banks[3] = mce->misc;
3406                 vcpu->arch.mcg_status = mce->mcg_status;
3407                 banks[1] = mce->status;
3408                 kvm_queue_exception(vcpu, MC_VECTOR);
3409         } else if (!(banks[1] & MCI_STATUS_VAL)
3410                    || !(banks[1] & MCI_STATUS_UC)) {
3411                 if (banks[1] & MCI_STATUS_VAL)
3412                         mce->status |= MCI_STATUS_OVER;
3413                 banks[2] = mce->addr;
3414                 banks[3] = mce->misc;
3415                 banks[1] = mce->status;
3416         } else
3417                 banks[1] |= MCI_STATUS_OVER;
3418         return 0;
3419 }
3420
3421 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3422                                                struct kvm_vcpu_events *events)
3423 {
3424         process_nmi(vcpu);
3425
3426         /*
3427          * The API doesn't provide the instruction length for software
3428          * exceptions, so don't report them. As long as the guest RIP
3429          * isn't advanced, we should expect to encounter the exception
3430          * again.
3431          */
3432         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3433                 events->exception.injected = 0;
3434                 events->exception.pending = 0;
3435         } else {
3436                 events->exception.injected = vcpu->arch.exception.injected;
3437                 events->exception.pending = vcpu->arch.exception.pending;
3438                 /*
3439                  * For ABI compatibility, deliberately conflate
3440                  * pending and injected exceptions when
3441                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3442                  */
3443                 if (!vcpu->kvm->arch.exception_payload_enabled)
3444                         events->exception.injected |=
3445                                 vcpu->arch.exception.pending;
3446         }
3447         events->exception.nr = vcpu->arch.exception.nr;
3448         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3449         events->exception.error_code = vcpu->arch.exception.error_code;
3450         events->exception_has_payload = vcpu->arch.exception.has_payload;
3451         events->exception_payload = vcpu->arch.exception.payload;
3452
3453         events->interrupt.injected =
3454                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3455         events->interrupt.nr = vcpu->arch.interrupt.nr;
3456         events->interrupt.soft = 0;
3457         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3458
3459         events->nmi.injected = vcpu->arch.nmi_injected;
3460         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3461         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3462         events->nmi.pad = 0;
3463
3464         events->sipi_vector = 0; /* never valid when reporting to user space */
3465
3466         events->smi.smm = is_smm(vcpu);
3467         events->smi.pending = vcpu->arch.smi_pending;
3468         events->smi.smm_inside_nmi =
3469                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3470         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3471
3472         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3473                          | KVM_VCPUEVENT_VALID_SHADOW
3474                          | KVM_VCPUEVENT_VALID_SMM);
3475         if (vcpu->kvm->arch.exception_payload_enabled)
3476                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3477
3478         memset(&events->reserved, 0, sizeof(events->reserved));
3479 }
3480
3481 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3482
3483 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3484                                               struct kvm_vcpu_events *events)
3485 {
3486         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3487                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3488                               | KVM_VCPUEVENT_VALID_SHADOW
3489                               | KVM_VCPUEVENT_VALID_SMM
3490                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3491                 return -EINVAL;
3492
3493         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3494                 if (!vcpu->kvm->arch.exception_payload_enabled)
3495                         return -EINVAL;
3496                 if (events->exception.pending)
3497                         events->exception.injected = 0;
3498                 else
3499                         events->exception_has_payload = 0;
3500         } else {
3501                 events->exception.pending = 0;
3502                 events->exception_has_payload = 0;
3503         }
3504
3505         if ((events->exception.injected || events->exception.pending) &&
3506             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3507                 return -EINVAL;
3508
3509         /* INITs are latched while in SMM */
3510         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3511             (events->smi.smm || events->smi.pending) &&
3512             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3513                 return -EINVAL;
3514
3515         process_nmi(vcpu);
3516         vcpu->arch.exception.injected = events->exception.injected;
3517         vcpu->arch.exception.pending = events->exception.pending;
3518         vcpu->arch.exception.nr = events->exception.nr;
3519         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3520         vcpu->arch.exception.error_code = events->exception.error_code;
3521         vcpu->arch.exception.has_payload = events->exception_has_payload;
3522         vcpu->arch.exception.payload = events->exception_payload;
3523
3524         vcpu->arch.interrupt.injected = events->interrupt.injected;
3525         vcpu->arch.interrupt.nr = events->interrupt.nr;
3526         vcpu->arch.interrupt.soft = events->interrupt.soft;
3527         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3528                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3529                                                   events->interrupt.shadow);
3530
3531         vcpu->arch.nmi_injected = events->nmi.injected;
3532         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3533                 vcpu->arch.nmi_pending = events->nmi.pending;
3534         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3535
3536         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3537             lapic_in_kernel(vcpu))
3538                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3539
3540         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3541                 u32 hflags = vcpu->arch.hflags;
3542                 if (events->smi.smm)
3543                         hflags |= HF_SMM_MASK;
3544                 else
3545                         hflags &= ~HF_SMM_MASK;
3546                 kvm_set_hflags(vcpu, hflags);
3547
3548                 vcpu->arch.smi_pending = events->smi.pending;
3549
3550                 if (events->smi.smm) {
3551                         if (events->smi.smm_inside_nmi)
3552                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3553                         else
3554                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3555                         if (lapic_in_kernel(vcpu)) {
3556                                 if (events->smi.latched_init)
3557                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3558                                 else
3559                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3560                         }
3561                 }
3562         }
3563
3564         kvm_make_request(KVM_REQ_EVENT, vcpu);
3565
3566         return 0;
3567 }
3568
3569 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3570                                              struct kvm_debugregs *dbgregs)
3571 {
3572         unsigned long val;
3573
3574         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3575         kvm_get_dr(vcpu, 6, &val);
3576         dbgregs->dr6 = val;
3577         dbgregs->dr7 = vcpu->arch.dr7;
3578         dbgregs->flags = 0;
3579         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3580 }
3581
3582 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3583                                             struct kvm_debugregs *dbgregs)
3584 {
3585         if (dbgregs->flags)
3586                 return -EINVAL;
3587
3588         if (dbgregs->dr6 & ~0xffffffffull)
3589                 return -EINVAL;
3590         if (dbgregs->dr7 & ~0xffffffffull)
3591                 return -EINVAL;
3592
3593         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3594         kvm_update_dr0123(vcpu);
3595         vcpu->arch.dr6 = dbgregs->dr6;
3596         kvm_update_dr6(vcpu);
3597         vcpu->arch.dr7 = dbgregs->dr7;
3598         kvm_update_dr7(vcpu);
3599
3600         return 0;
3601 }
3602
3603 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3604
3605 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3606 {
3607         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3608         u64 xstate_bv = xsave->header.xfeatures;
3609         u64 valid;
3610
3611         /*
3612          * Copy legacy XSAVE area, to avoid complications with CPUID
3613          * leaves 0 and 1 in the loop below.
3614          */
3615         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3616
3617         /* Set XSTATE_BV */
3618         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3619         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3620
3621         /*
3622          * Copy each region from the possibly compacted offset to the
3623          * non-compacted offset.
3624          */
3625         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3626         while (valid) {
3627                 u64 feature = valid & -valid;
3628                 int index = fls64(feature) - 1;
3629                 void *src = get_xsave_addr(xsave, feature);
3630
3631                 if (src) {
3632                         u32 size, offset, ecx, edx;
3633                         cpuid_count(XSTATE_CPUID, index,
3634                                     &size, &offset, &ecx, &edx);
3635                         if (feature == XFEATURE_MASK_PKRU)
3636                                 memcpy(dest + offset, &vcpu->arch.pkru,
3637                                        sizeof(vcpu->arch.pkru));
3638                         else
3639                                 memcpy(dest + offset, src, size);
3640
3641                 }
3642
3643                 valid -= feature;
3644         }
3645 }
3646
3647 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3648 {
3649         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3650         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3651         u64 valid;
3652
3653         /*
3654          * Copy legacy XSAVE area, to avoid complications with CPUID
3655          * leaves 0 and 1 in the loop below.
3656          */
3657         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3658
3659         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3660         xsave->header.xfeatures = xstate_bv;
3661         if (boot_cpu_has(X86_FEATURE_XSAVES))
3662                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3663
3664         /*
3665          * Copy each region from the non-compacted offset to the
3666          * possibly compacted offset.
3667          */
3668         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3669         while (valid) {
3670                 u64 feature = valid & -valid;
3671                 int index = fls64(feature) - 1;
3672                 void *dest = get_xsave_addr(xsave, feature);
3673
3674                 if (dest) {
3675                         u32 size, offset, ecx, edx;
3676                         cpuid_count(XSTATE_CPUID, index,
3677                                     &size, &offset, &ecx, &edx);
3678                         if (feature == XFEATURE_MASK_PKRU)
3679                                 memcpy(&vcpu->arch.pkru, src + offset,
3680                                        sizeof(vcpu->arch.pkru));
3681                         else
3682                                 memcpy(dest, src + offset, size);
3683                 }
3684
3685                 valid -= feature;
3686         }
3687 }
3688
3689 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3690                                          struct kvm_xsave *guest_xsave)
3691 {
3692         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3693                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3694                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3695         } else {
3696                 memcpy(guest_xsave->region,
3697                         &vcpu->arch.guest_fpu.state.fxsave,
3698                         sizeof(struct fxregs_state));
3699                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3700                         XFEATURE_MASK_FPSSE;
3701         }
3702 }
3703
3704 #define XSAVE_MXCSR_OFFSET 24
3705
3706 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3707                                         struct kvm_xsave *guest_xsave)
3708 {
3709         u64 xstate_bv =
3710                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3711         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3712
3713         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3714                 /*
3715                  * Here we allow setting states that are not present in
3716                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3717                  * with old userspace.
3718                  */
3719                 if (xstate_bv & ~kvm_supported_xcr0() ||
3720                         mxcsr & ~mxcsr_feature_mask)
3721                         return -EINVAL;
3722                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3723         } else {
3724                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3725                         mxcsr & ~mxcsr_feature_mask)
3726                         return -EINVAL;
3727                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3728                         guest_xsave->region, sizeof(struct fxregs_state));
3729         }
3730         return 0;
3731 }
3732
3733 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3734                                         struct kvm_xcrs *guest_xcrs)
3735 {
3736         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3737                 guest_xcrs->nr_xcrs = 0;
3738                 return;
3739         }
3740
3741         guest_xcrs->nr_xcrs = 1;
3742         guest_xcrs->flags = 0;
3743         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3744         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3745 }
3746
3747 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3748                                        struct kvm_xcrs *guest_xcrs)
3749 {
3750         int i, r = 0;
3751
3752         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3753                 return -EINVAL;
3754
3755         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3756                 return -EINVAL;
3757
3758         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3759                 /* Only support XCR0 currently */
3760                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3761                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3762                                 guest_xcrs->xcrs[i].value);
3763                         break;
3764                 }
3765         if (r)
3766                 r = -EINVAL;
3767         return r;
3768 }
3769
3770 /*
3771  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3772  * stopped by the hypervisor.  This function will be called from the host only.
3773  * EINVAL is returned when the host attempts to set the flag for a guest that
3774  * does not support pv clocks.
3775  */
3776 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3777 {
3778         if (!vcpu->arch.pv_time_enabled)
3779                 return -EINVAL;
3780         vcpu->arch.pvclock_set_guest_stopped_request = true;
3781         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3782         return 0;
3783 }
3784
3785 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3786                                      struct kvm_enable_cap *cap)
3787 {
3788         int r;
3789         uint16_t vmcs_version;
3790         void __user *user_ptr;
3791
3792         if (cap->flags)
3793                 return -EINVAL;
3794
3795         switch (cap->cap) {
3796         case KVM_CAP_HYPERV_SYNIC2:
3797                 if (cap->args[0])
3798                         return -EINVAL;
3799         case KVM_CAP_HYPERV_SYNIC:
3800                 if (!irqchip_in_kernel(vcpu->kvm))
3801                         return -EINVAL;
3802                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3803                                              KVM_CAP_HYPERV_SYNIC2);
3804         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3805                 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3806                 if (!r) {
3807                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
3808                         if (copy_to_user(user_ptr, &vmcs_version,
3809                                          sizeof(vmcs_version)))
3810                                 r = -EFAULT;
3811                 }
3812                 return r;
3813
3814         default:
3815                 return -EINVAL;
3816         }
3817 }
3818
3819 long kvm_arch_vcpu_ioctl(struct file *filp,
3820                          unsigned int ioctl, unsigned long arg)
3821 {
3822         struct kvm_vcpu *vcpu = filp->private_data;
3823         void __user *argp = (void __user *)arg;
3824         int r;
3825         union {
3826                 struct kvm_lapic_state *lapic;
3827                 struct kvm_xsave *xsave;
3828                 struct kvm_xcrs *xcrs;
3829                 void *buffer;
3830         } u;
3831
3832         vcpu_load(vcpu);
3833
3834         u.buffer = NULL;
3835         switch (ioctl) {
3836         case KVM_GET_LAPIC: {
3837                 r = -EINVAL;
3838                 if (!lapic_in_kernel(vcpu))
3839                         goto out;
3840                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3841
3842                 r = -ENOMEM;
3843                 if (!u.lapic)
3844                         goto out;
3845                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3846                 if (r)
3847                         goto out;
3848                 r = -EFAULT;
3849                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3850                         goto out;
3851                 r = 0;
3852                 break;
3853         }
3854         case KVM_SET_LAPIC: {
3855                 r = -EINVAL;
3856                 if (!lapic_in_kernel(vcpu))
3857                         goto out;
3858                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3859                 if (IS_ERR(u.lapic)) {
3860                         r = PTR_ERR(u.lapic);
3861                         goto out_nofree;
3862                 }
3863
3864                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3865                 break;
3866         }
3867         case KVM_INTERRUPT: {
3868                 struct kvm_interrupt irq;
3869
3870                 r = -EFAULT;
3871                 if (copy_from_user(&irq, argp, sizeof irq))
3872                         goto out;
3873                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3874                 break;
3875         }
3876         case KVM_NMI: {
3877                 r = kvm_vcpu_ioctl_nmi(vcpu);
3878                 break;
3879         }
3880         case KVM_SMI: {
3881                 r = kvm_vcpu_ioctl_smi(vcpu);
3882                 break;
3883         }
3884         case KVM_SET_CPUID: {
3885                 struct kvm_cpuid __user *cpuid_arg = argp;
3886                 struct kvm_cpuid cpuid;
3887
3888                 r = -EFAULT;
3889                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3890                         goto out;
3891                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3892                 break;
3893         }
3894         case KVM_SET_CPUID2: {
3895                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3896                 struct kvm_cpuid2 cpuid;
3897
3898                 r = -EFAULT;
3899                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3900                         goto out;
3901                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3902                                               cpuid_arg->entries);
3903                 break;
3904         }
3905         case KVM_GET_CPUID2: {
3906                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3907                 struct kvm_cpuid2 cpuid;
3908
3909                 r = -EFAULT;
3910                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3911                         goto out;
3912                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3913                                               cpuid_arg->entries);
3914                 if (r)
3915                         goto out;
3916                 r = -EFAULT;
3917                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3918                         goto out;
3919                 r = 0;
3920                 break;
3921         }
3922         case KVM_GET_MSRS: {
3923                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3924                 r = msr_io(vcpu, argp, do_get_msr, 1);
3925                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3926                 break;
3927         }
3928         case KVM_SET_MSRS: {
3929                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3930                 r = msr_io(vcpu, argp, do_set_msr, 0);
3931                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3932                 break;
3933         }
3934         case KVM_TPR_ACCESS_REPORTING: {
3935                 struct kvm_tpr_access_ctl tac;
3936
3937                 r = -EFAULT;
3938                 if (copy_from_user(&tac, argp, sizeof tac))
3939                         goto out;
3940                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3941                 if (r)
3942                         goto out;
3943                 r = -EFAULT;
3944                 if (copy_to_user(argp, &tac, sizeof tac))
3945                         goto out;
3946                 r = 0;
3947                 break;
3948         };
3949         case KVM_SET_VAPIC_ADDR: {
3950                 struct kvm_vapic_addr va;
3951                 int idx;
3952
3953                 r = -EINVAL;
3954                 if (!lapic_in_kernel(vcpu))
3955                         goto out;
3956                 r = -EFAULT;
3957                 if (copy_from_user(&va, argp, sizeof va))
3958                         goto out;
3959                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3960                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3961                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3962                 break;
3963         }
3964         case KVM_X86_SETUP_MCE: {
3965                 u64 mcg_cap;
3966
3967                 r = -EFAULT;
3968                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3969                         goto out;
3970                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3971                 break;
3972         }
3973         case KVM_X86_SET_MCE: {
3974                 struct kvm_x86_mce mce;
3975
3976                 r = -EFAULT;
3977                 if (copy_from_user(&mce, argp, sizeof mce))
3978                         goto out;
3979                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3980                 break;
3981         }
3982         case KVM_GET_VCPU_EVENTS: {
3983                 struct kvm_vcpu_events events;
3984
3985                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3986
3987                 r = -EFAULT;
3988                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3989                         break;
3990                 r = 0;
3991                 break;
3992         }
3993         case KVM_SET_VCPU_EVENTS: {
3994                 struct kvm_vcpu_events events;
3995
3996                 r = -EFAULT;
3997                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3998                         break;
3999
4000                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4001                 break;
4002         }
4003         case KVM_GET_DEBUGREGS: {
4004                 struct kvm_debugregs dbgregs;
4005
4006                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4007
4008                 r = -EFAULT;
4009                 if (copy_to_user(argp, &dbgregs,
4010                                  sizeof(struct kvm_debugregs)))
4011                         break;
4012                 r = 0;
4013                 break;
4014         }
4015         case KVM_SET_DEBUGREGS: {
4016                 struct kvm_debugregs dbgregs;
4017
4018                 r = -EFAULT;
4019                 if (copy_from_user(&dbgregs, argp,
4020                                    sizeof(struct kvm_debugregs)))
4021                         break;
4022
4023                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4024                 break;
4025         }
4026         case KVM_GET_XSAVE: {
4027                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
4028                 r = -ENOMEM;
4029                 if (!u.xsave)
4030                         break;
4031
4032                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4033
4034                 r = -EFAULT;
4035                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4036                         break;
4037                 r = 0;
4038                 break;
4039         }
4040         case KVM_SET_XSAVE: {
4041                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4042                 if (IS_ERR(u.xsave)) {
4043                         r = PTR_ERR(u.xsave);
4044                         goto out_nofree;
4045                 }
4046
4047                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4048                 break;
4049         }
4050         case KVM_GET_XCRS: {
4051                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
4052                 r = -ENOMEM;
4053                 if (!u.xcrs)
4054                         break;
4055
4056                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4057
4058                 r = -EFAULT;
4059                 if (copy_to_user(argp, u.xcrs,
4060                                  sizeof(struct kvm_xcrs)))
4061                         break;
4062                 r = 0;
4063                 break;
4064         }
4065         case KVM_SET_XCRS: {
4066                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4067                 if (IS_ERR(u.xcrs)) {
4068                         r = PTR_ERR(u.xcrs);
4069                         goto out_nofree;
4070                 }
4071
4072                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4073                 break;
4074         }
4075         case KVM_SET_TSC_KHZ: {
4076                 u32 user_tsc_khz;
4077
4078                 r = -EINVAL;
4079                 user_tsc_khz = (u32)arg;
4080
4081                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4082                         goto out;
4083
4084                 if (user_tsc_khz == 0)
4085                         user_tsc_khz = tsc_khz;
4086
4087                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4088                         r = 0;
4089
4090                 goto out;
4091         }
4092         case KVM_GET_TSC_KHZ: {
4093                 r = vcpu->arch.virtual_tsc_khz;
4094                 goto out;
4095         }
4096         case KVM_KVMCLOCK_CTRL: {
4097                 r = kvm_set_guest_paused(vcpu);
4098                 goto out;
4099         }
4100         case KVM_ENABLE_CAP: {
4101                 struct kvm_enable_cap cap;
4102
4103                 r = -EFAULT;
4104                 if (copy_from_user(&cap, argp, sizeof(cap)))
4105                         goto out;
4106                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4107                 break;
4108         }
4109         case KVM_GET_NESTED_STATE: {
4110                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4111                 u32 user_data_size;
4112
4113                 r = -EINVAL;
4114                 if (!kvm_x86_ops->get_nested_state)
4115                         break;
4116
4117                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4118                 r = -EFAULT;
4119                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4120                         break;
4121
4122                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4123                                                   user_data_size);
4124                 if (r < 0)
4125                         break;
4126
4127                 if (r > user_data_size) {
4128                         if (put_user(r, &user_kvm_nested_state->size))
4129                                 r = -EFAULT;
4130                         else
4131                                 r = -E2BIG;
4132                         break;
4133                 }
4134
4135                 r = 0;
4136                 break;
4137         }
4138         case KVM_SET_NESTED_STATE: {
4139                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4140                 struct kvm_nested_state kvm_state;
4141
4142                 r = -EINVAL;
4143                 if (!kvm_x86_ops->set_nested_state)
4144                         break;
4145
4146                 r = -EFAULT;
4147                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4148                         break;
4149
4150                 r = -EINVAL;
4151                 if (kvm_state.size < sizeof(kvm_state))
4152                         break;
4153
4154                 if (kvm_state.flags &
4155                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4156                       | KVM_STATE_NESTED_EVMCS))
4157                         break;
4158
4159                 /* nested_run_pending implies guest_mode.  */
4160                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4161                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4162                         break;
4163
4164                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4165                 break;
4166         }
4167         default:
4168                 r = -EINVAL;
4169         }
4170 out:
4171         kfree(u.buffer);
4172 out_nofree:
4173         vcpu_put(vcpu);
4174         return r;
4175 }
4176
4177 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4178 {
4179         return VM_FAULT_SIGBUS;
4180 }
4181
4182 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4183 {
4184         int ret;
4185
4186         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4187                 return -EINVAL;
4188         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4189         return ret;
4190 }
4191
4192 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4193                                               u64 ident_addr)
4194 {
4195         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4196 }
4197
4198 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4199                                           u32 kvm_nr_mmu_pages)
4200 {
4201         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4202                 return -EINVAL;
4203
4204         mutex_lock(&kvm->slots_lock);
4205
4206         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4207         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4208
4209         mutex_unlock(&kvm->slots_lock);
4210         return 0;
4211 }
4212
4213 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4214 {
4215         return kvm->arch.n_max_mmu_pages;
4216 }
4217
4218 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4219 {
4220         struct kvm_pic *pic = kvm->arch.vpic;
4221         int r;
4222
4223         r = 0;
4224         switch (chip->chip_id) {
4225         case KVM_IRQCHIP_PIC_MASTER:
4226                 memcpy(&chip->chip.pic, &pic->pics[0],
4227                         sizeof(struct kvm_pic_state));
4228                 break;
4229         case KVM_IRQCHIP_PIC_SLAVE:
4230                 memcpy(&chip->chip.pic, &pic->pics[1],
4231                         sizeof(struct kvm_pic_state));
4232                 break;
4233         case KVM_IRQCHIP_IOAPIC:
4234                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4235                 break;
4236         default:
4237                 r = -EINVAL;
4238                 break;
4239         }
4240         return r;
4241 }
4242
4243 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4244 {
4245         struct kvm_pic *pic = kvm->arch.vpic;
4246         int r;
4247
4248         r = 0;
4249         switch (chip->chip_id) {
4250         case KVM_IRQCHIP_PIC_MASTER:
4251                 spin_lock(&pic->lock);
4252                 memcpy(&pic->pics[0], &chip->chip.pic,
4253                         sizeof(struct kvm_pic_state));
4254                 spin_unlock(&pic->lock);
4255                 break;
4256         case KVM_IRQCHIP_PIC_SLAVE:
4257                 spin_lock(&pic->lock);
4258                 memcpy(&pic->pics[1], &chip->chip.pic,
4259                         sizeof(struct kvm_pic_state));
4260                 spin_unlock(&pic->lock);
4261                 break;
4262         case KVM_IRQCHIP_IOAPIC:
4263                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4264                 break;
4265         default:
4266                 r = -EINVAL;
4267                 break;
4268         }
4269         kvm_pic_update_irq(pic);
4270         return r;
4271 }
4272
4273 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4274 {
4275         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4276
4277         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4278
4279         mutex_lock(&kps->lock);
4280         memcpy(ps, &kps->channels, sizeof(*ps));
4281         mutex_unlock(&kps->lock);
4282         return 0;
4283 }
4284
4285 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4286 {
4287         int i;
4288         struct kvm_pit *pit = kvm->arch.vpit;
4289
4290         mutex_lock(&pit->pit_state.lock);
4291         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4292         for (i = 0; i < 3; i++)
4293                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4294         mutex_unlock(&pit->pit_state.lock);
4295         return 0;
4296 }
4297
4298 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4299 {
4300         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4301         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4302                 sizeof(ps->channels));
4303         ps->flags = kvm->arch.vpit->pit_state.flags;
4304         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4305         memset(&ps->reserved, 0, sizeof(ps->reserved));
4306         return 0;
4307 }
4308
4309 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4310 {
4311         int start = 0;
4312         int i;
4313         u32 prev_legacy, cur_legacy;
4314         struct kvm_pit *pit = kvm->arch.vpit;
4315
4316         mutex_lock(&pit->pit_state.lock);
4317         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4318         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4319         if (!prev_legacy && cur_legacy)
4320                 start = 1;
4321         memcpy(&pit->pit_state.channels, &ps->channels,
4322                sizeof(pit->pit_state.channels));
4323         pit->pit_state.flags = ps->flags;
4324         for (i = 0; i < 3; i++)
4325                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4326                                    start && i == 0);
4327         mutex_unlock(&pit->pit_state.lock);
4328         return 0;
4329 }
4330
4331 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4332                                  struct kvm_reinject_control *control)
4333 {
4334         struct kvm_pit *pit = kvm->arch.vpit;
4335
4336         if (!pit)
4337                 return -ENXIO;
4338
4339         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4340          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4341          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4342          */
4343         mutex_lock(&pit->pit_state.lock);
4344         kvm_pit_set_reinject(pit, control->pit_reinject);
4345         mutex_unlock(&pit->pit_state.lock);
4346
4347         return 0;
4348 }
4349
4350 /**
4351  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4352  * @kvm: kvm instance
4353  * @log: slot id and address to which we copy the log
4354  *
4355  * Steps 1-4 below provide general overview of dirty page logging. See
4356  * kvm_get_dirty_log_protect() function description for additional details.
4357  *
4358  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4359  * always flush the TLB (step 4) even if previous step failed  and the dirty
4360  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4361  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4362  * writes will be marked dirty for next log read.
4363  *
4364  *   1. Take a snapshot of the bit and clear it if needed.
4365  *   2. Write protect the corresponding page.
4366  *   3. Copy the snapshot to the userspace.
4367  *   4. Flush TLB's if needed.
4368  */
4369 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4370 {
4371         bool is_dirty = false;
4372         int r;
4373
4374         mutex_lock(&kvm->slots_lock);
4375
4376         /*
4377          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4378          */
4379         if (kvm_x86_ops->flush_log_dirty)
4380                 kvm_x86_ops->flush_log_dirty(kvm);
4381
4382         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4383
4384         /*
4385          * All the TLBs can be flushed out of mmu lock, see the comments in
4386          * kvm_mmu_slot_remove_write_access().
4387          */
4388         lockdep_assert_held(&kvm->slots_lock);
4389         if (is_dirty)
4390                 kvm_flush_remote_tlbs(kvm);
4391
4392         mutex_unlock(&kvm->slots_lock);
4393         return r;
4394 }
4395
4396 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4397                         bool line_status)
4398 {
4399         if (!irqchip_in_kernel(kvm))
4400                 return -ENXIO;
4401
4402         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4403                                         irq_event->irq, irq_event->level,
4404                                         line_status);
4405         return 0;
4406 }
4407
4408 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4409                                    struct kvm_enable_cap *cap)
4410 {
4411         int r;
4412
4413         if (cap->flags)
4414                 return -EINVAL;
4415
4416         switch (cap->cap) {
4417         case KVM_CAP_DISABLE_QUIRKS:
4418                 kvm->arch.disabled_quirks = cap->args[0];
4419                 r = 0;
4420                 break;
4421         case KVM_CAP_SPLIT_IRQCHIP: {
4422                 mutex_lock(&kvm->lock);
4423                 r = -EINVAL;
4424                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4425                         goto split_irqchip_unlock;
4426                 r = -EEXIST;
4427                 if (irqchip_in_kernel(kvm))
4428                         goto split_irqchip_unlock;
4429                 if (kvm->created_vcpus)
4430                         goto split_irqchip_unlock;
4431                 r = kvm_setup_empty_irq_routing(kvm);
4432                 if (r)
4433                         goto split_irqchip_unlock;
4434                 /* Pairs with irqchip_in_kernel. */
4435                 smp_wmb();
4436                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4437                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4438                 r = 0;
4439 split_irqchip_unlock:
4440                 mutex_unlock(&kvm->lock);
4441                 break;
4442         }
4443         case KVM_CAP_X2APIC_API:
4444                 r = -EINVAL;
4445                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4446                         break;
4447
4448                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4449                         kvm->arch.x2apic_format = true;
4450                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4451                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4452
4453                 r = 0;
4454                 break;
4455         case KVM_CAP_X86_DISABLE_EXITS:
4456                 r = -EINVAL;
4457                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4458                         break;
4459
4460                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4461                         kvm_can_mwait_in_guest())
4462                         kvm->arch.mwait_in_guest = true;
4463                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4464                         kvm->arch.hlt_in_guest = true;
4465                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4466                         kvm->arch.pause_in_guest = true;
4467                 r = 0;
4468                 break;
4469         case KVM_CAP_MSR_PLATFORM_INFO:
4470                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4471                 r = 0;
4472                 break;
4473         default:
4474                 r = -EINVAL;
4475                 break;
4476         }
4477         return r;
4478 }
4479
4480 long kvm_arch_vm_ioctl(struct file *filp,
4481                        unsigned int ioctl, unsigned long arg)
4482 {
4483         struct kvm *kvm = filp->private_data;
4484         void __user *argp = (void __user *)arg;
4485         int r = -ENOTTY;
4486         /*
4487          * This union makes it completely explicit to gcc-3.x
4488          * that these two variables' stack usage should be
4489          * combined, not added together.
4490          */
4491         union {
4492                 struct kvm_pit_state ps;
4493                 struct kvm_pit_state2 ps2;
4494                 struct kvm_pit_config pit_config;
4495         } u;
4496
4497         switch (ioctl) {
4498         case KVM_SET_TSS_ADDR:
4499                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4500                 break;
4501         case KVM_SET_IDENTITY_MAP_ADDR: {
4502                 u64 ident_addr;
4503
4504                 mutex_lock(&kvm->lock);
4505                 r = -EINVAL;
4506                 if (kvm->created_vcpus)
4507                         goto set_identity_unlock;
4508                 r = -EFAULT;
4509                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4510                         goto set_identity_unlock;
4511                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4512 set_identity_unlock:
4513                 mutex_unlock(&kvm->lock);
4514                 break;
4515         }
4516         case KVM_SET_NR_MMU_PAGES:
4517                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4518                 break;
4519         case KVM_GET_NR_MMU_PAGES:
4520                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4521                 break;
4522         case KVM_CREATE_IRQCHIP: {
4523                 mutex_lock(&kvm->lock);
4524
4525                 r = -EEXIST;
4526                 if (irqchip_in_kernel(kvm))
4527                         goto create_irqchip_unlock;
4528
4529                 r = -EINVAL;
4530                 if (kvm->created_vcpus)
4531                         goto create_irqchip_unlock;
4532
4533                 r = kvm_pic_init(kvm);
4534                 if (r)
4535                         goto create_irqchip_unlock;
4536
4537                 r = kvm_ioapic_init(kvm);
4538                 if (r) {
4539                         kvm_pic_destroy(kvm);
4540                         goto create_irqchip_unlock;
4541                 }
4542
4543                 r = kvm_setup_default_irq_routing(kvm);
4544                 if (r) {
4545                         kvm_ioapic_destroy(kvm);
4546                         kvm_pic_destroy(kvm);
4547                         goto create_irqchip_unlock;
4548                 }
4549                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4550                 smp_wmb();
4551                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4552         create_irqchip_unlock:
4553                 mutex_unlock(&kvm->lock);
4554                 break;
4555         }
4556         case KVM_CREATE_PIT:
4557                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4558                 goto create_pit;
4559         case KVM_CREATE_PIT2:
4560                 r = -EFAULT;
4561                 if (copy_from_user(&u.pit_config, argp,
4562                                    sizeof(struct kvm_pit_config)))
4563                         goto out;
4564         create_pit:
4565                 mutex_lock(&kvm->lock);
4566                 r = -EEXIST;
4567                 if (kvm->arch.vpit)
4568                         goto create_pit_unlock;
4569                 r = -ENOMEM;
4570                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4571                 if (kvm->arch.vpit)
4572                         r = 0;
4573         create_pit_unlock:
4574                 mutex_unlock(&kvm->lock);
4575                 break;
4576         case KVM_GET_IRQCHIP: {
4577                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4578                 struct kvm_irqchip *chip;
4579
4580                 chip = memdup_user(argp, sizeof(*chip));
4581                 if (IS_ERR(chip)) {
4582                         r = PTR_ERR(chip);
4583                         goto out;
4584                 }
4585
4586                 r = -ENXIO;
4587                 if (!irqchip_kernel(kvm))
4588                         goto get_irqchip_out;
4589                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4590                 if (r)
4591                         goto get_irqchip_out;
4592                 r = -EFAULT;
4593                 if (copy_to_user(argp, chip, sizeof *chip))
4594                         goto get_irqchip_out;
4595                 r = 0;
4596         get_irqchip_out:
4597                 kfree(chip);
4598                 break;
4599         }
4600         case KVM_SET_IRQCHIP: {
4601                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4602                 struct kvm_irqchip *chip;
4603
4604                 chip = memdup_user(argp, sizeof(*chip));
4605                 if (IS_ERR(chip)) {
4606                         r = PTR_ERR(chip);
4607                         goto out;
4608                 }
4609
4610                 r = -ENXIO;
4611                 if (!irqchip_kernel(kvm))
4612                         goto set_irqchip_out;
4613                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4614                 if (r)
4615                         goto set_irqchip_out;
4616                 r = 0;
4617         set_irqchip_out:
4618                 kfree(chip);
4619                 break;
4620         }
4621         case KVM_GET_PIT: {
4622                 r = -EFAULT;
4623                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4624                         goto out;
4625                 r = -ENXIO;
4626                 if (!kvm->arch.vpit)
4627                         goto out;
4628                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4629                 if (r)
4630                         goto out;
4631                 r = -EFAULT;
4632                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4633                         goto out;
4634                 r = 0;
4635                 break;
4636         }
4637         case KVM_SET_PIT: {
4638                 r = -EFAULT;
4639                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4640                         goto out;
4641                 r = -ENXIO;
4642                 if (!kvm->arch.vpit)
4643                         goto out;
4644                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4645                 break;
4646         }
4647         case KVM_GET_PIT2: {
4648                 r = -ENXIO;
4649                 if (!kvm->arch.vpit)
4650                         goto out;
4651                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4652                 if (r)
4653                         goto out;
4654                 r = -EFAULT;
4655                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4656                         goto out;
4657                 r = 0;
4658                 break;
4659         }
4660         case KVM_SET_PIT2: {
4661                 r = -EFAULT;
4662                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4663                         goto out;
4664                 r = -ENXIO;
4665                 if (!kvm->arch.vpit)
4666                         goto out;
4667                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4668                 break;
4669         }
4670         case KVM_REINJECT_CONTROL: {
4671                 struct kvm_reinject_control control;
4672                 r =  -EFAULT;
4673                 if (copy_from_user(&control, argp, sizeof(control)))
4674                         goto out;
4675                 r = kvm_vm_ioctl_reinject(kvm, &control);
4676                 break;
4677         }
4678         case KVM_SET_BOOT_CPU_ID:
4679                 r = 0;
4680                 mutex_lock(&kvm->lock);
4681                 if (kvm->created_vcpus)
4682                         r = -EBUSY;
4683                 else
4684                         kvm->arch.bsp_vcpu_id = arg;
4685                 mutex_unlock(&kvm->lock);
4686                 break;
4687         case KVM_XEN_HVM_CONFIG: {
4688                 struct kvm_xen_hvm_config xhc;
4689                 r = -EFAULT;
4690                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4691                         goto out;
4692                 r = -EINVAL;
4693                 if (xhc.flags)
4694                         goto out;
4695                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4696                 r = 0;
4697                 break;
4698         }
4699         case KVM_SET_CLOCK: {
4700                 struct kvm_clock_data user_ns;
4701                 u64 now_ns;
4702
4703                 r = -EFAULT;
4704                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4705                         goto out;
4706
4707                 r = -EINVAL;
4708                 if (user_ns.flags)
4709                         goto out;
4710
4711                 r = 0;
4712                 /*
4713                  * TODO: userspace has to take care of races with VCPU_RUN, so
4714                  * kvm_gen_update_masterclock() can be cut down to locked
4715                  * pvclock_update_vm_gtod_copy().
4716                  */
4717                 kvm_gen_update_masterclock(kvm);
4718                 now_ns = get_kvmclock_ns(kvm);
4719                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4720                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4721                 break;
4722         }
4723         case KVM_GET_CLOCK: {
4724                 struct kvm_clock_data user_ns;
4725                 u64 now_ns;
4726
4727                 now_ns = get_kvmclock_ns(kvm);
4728                 user_ns.clock = now_ns;
4729                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4730                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4731
4732                 r = -EFAULT;
4733                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4734                         goto out;
4735                 r = 0;
4736                 break;
4737         }
4738         case KVM_ENABLE_CAP: {
4739                 struct kvm_enable_cap cap;
4740
4741                 r = -EFAULT;
4742                 if (copy_from_user(&cap, argp, sizeof(cap)))
4743                         goto out;
4744                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4745                 break;
4746         }
4747         case KVM_MEMORY_ENCRYPT_OP: {
4748                 r = -ENOTTY;
4749                 if (kvm_x86_ops->mem_enc_op)
4750                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4751                 break;
4752         }
4753         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4754                 struct kvm_enc_region region;
4755
4756                 r = -EFAULT;
4757                 if (copy_from_user(&region, argp, sizeof(region)))
4758                         goto out;
4759
4760                 r = -ENOTTY;
4761                 if (kvm_x86_ops->mem_enc_reg_region)
4762                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4763                 break;
4764         }
4765         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4766                 struct kvm_enc_region region;
4767
4768                 r = -EFAULT;
4769                 if (copy_from_user(&region, argp, sizeof(region)))
4770                         goto out;
4771
4772                 r = -ENOTTY;
4773                 if (kvm_x86_ops->mem_enc_unreg_region)
4774                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4775                 break;
4776         }
4777         case KVM_HYPERV_EVENTFD: {
4778                 struct kvm_hyperv_eventfd hvevfd;
4779
4780                 r = -EFAULT;
4781                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4782                         goto out;
4783                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4784                 break;
4785         }
4786         default:
4787                 r = -ENOTTY;
4788         }
4789 out:
4790         return r;
4791 }
4792
4793 static void kvm_init_msr_list(void)
4794 {
4795         u32 dummy[2];
4796         unsigned i, j;
4797
4798         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4799                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4800                         continue;
4801
4802                 /*
4803                  * Even MSRs that are valid in the host may not be exposed
4804                  * to the guests in some cases.
4805                  */
4806                 switch (msrs_to_save[i]) {
4807                 case MSR_IA32_BNDCFGS:
4808                         if (!kvm_mpx_supported())
4809                                 continue;
4810                         break;
4811                 case MSR_TSC_AUX:
4812                         if (!kvm_x86_ops->rdtscp_supported())
4813                                 continue;
4814                         break;
4815                 default:
4816                         break;
4817                 }
4818
4819                 if (j < i)
4820                         msrs_to_save[j] = msrs_to_save[i];
4821                 j++;
4822         }
4823         num_msrs_to_save = j;
4824
4825         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4826                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4827                         continue;
4828
4829                 if (j < i)
4830                         emulated_msrs[j] = emulated_msrs[i];
4831                 j++;
4832         }
4833         num_emulated_msrs = j;
4834
4835         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4836                 struct kvm_msr_entry msr;
4837
4838                 msr.index = msr_based_features[i];
4839                 if (kvm_get_msr_feature(&msr))
4840                         continue;
4841
4842                 if (j < i)
4843                         msr_based_features[j] = msr_based_features[i];
4844                 j++;
4845         }
4846         num_msr_based_features = j;
4847 }
4848
4849 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4850                            const void *v)
4851 {
4852         int handled = 0;
4853         int n;
4854
4855         do {
4856                 n = min(len, 8);
4857                 if (!(lapic_in_kernel(vcpu) &&
4858                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4859                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4860                         break;
4861                 handled += n;
4862                 addr += n;
4863                 len -= n;
4864                 v += n;
4865         } while (len);
4866
4867         return handled;
4868 }
4869
4870 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4871 {
4872         int handled = 0;
4873         int n;
4874
4875         do {
4876                 n = min(len, 8);
4877                 if (!(lapic_in_kernel(vcpu) &&
4878                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4879                                          addr, n, v))
4880                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4881                         break;
4882                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4883                 handled += n;
4884                 addr += n;
4885                 len -= n;
4886                 v += n;
4887         } while (len);
4888
4889         return handled;
4890 }
4891
4892 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4893                         struct kvm_segment *var, int seg)
4894 {
4895         kvm_x86_ops->set_segment(vcpu, var, seg);
4896 }
4897
4898 void kvm_get_segment(struct kvm_vcpu *vcpu,
4899                      struct kvm_segment *var, int seg)
4900 {
4901         kvm_x86_ops->get_segment(vcpu, var, seg);
4902 }
4903
4904 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4905                            struct x86_exception *exception)
4906 {
4907         gpa_t t_gpa;
4908
4909         BUG_ON(!mmu_is_nested(vcpu));
4910
4911         /* NPT walks are always user-walks */
4912         access |= PFERR_USER_MASK;
4913         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
4914
4915         return t_gpa;
4916 }
4917
4918 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4919                               struct x86_exception *exception)
4920 {
4921         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4922         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4923 }
4924
4925  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4926                                 struct x86_exception *exception)
4927 {
4928         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4929         access |= PFERR_FETCH_MASK;
4930         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4931 }
4932
4933 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4934                                struct x86_exception *exception)
4935 {
4936         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4937         access |= PFERR_WRITE_MASK;
4938         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4939 }
4940
4941 /* uses this to access any guest's mapped memory without checking CPL */
4942 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4943                                 struct x86_exception *exception)
4944 {
4945         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4946 }
4947
4948 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4949                                       struct kvm_vcpu *vcpu, u32 access,
4950                                       struct x86_exception *exception)
4951 {
4952         void *data = val;
4953         int r = X86EMUL_CONTINUE;
4954
4955         while (bytes) {
4956                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4957                                                             exception);
4958                 unsigned offset = addr & (PAGE_SIZE-1);
4959                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4960                 int ret;
4961
4962                 if (gpa == UNMAPPED_GVA)
4963                         return X86EMUL_PROPAGATE_FAULT;
4964                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4965                                                offset, toread);
4966                 if (ret < 0) {
4967                         r = X86EMUL_IO_NEEDED;
4968                         goto out;
4969                 }
4970
4971                 bytes -= toread;
4972                 data += toread;
4973                 addr += toread;
4974         }
4975 out:
4976         return r;
4977 }
4978
4979 /* used for instruction fetching */
4980 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4981                                 gva_t addr, void *val, unsigned int bytes,
4982                                 struct x86_exception *exception)
4983 {
4984         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4985         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4986         unsigned offset;
4987         int ret;
4988
4989         /* Inline kvm_read_guest_virt_helper for speed.  */
4990         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4991                                                     exception);
4992         if (unlikely(gpa == UNMAPPED_GVA))
4993                 return X86EMUL_PROPAGATE_FAULT;
4994
4995         offset = addr & (PAGE_SIZE-1);
4996         if (WARN_ON(offset + bytes > PAGE_SIZE))
4997                 bytes = (unsigned)PAGE_SIZE - offset;
4998         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4999                                        offset, bytes);
5000         if (unlikely(ret < 0))
5001                 return X86EMUL_IO_NEEDED;
5002
5003         return X86EMUL_CONTINUE;
5004 }
5005
5006 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5007                                gva_t addr, void *val, unsigned int bytes,
5008                                struct x86_exception *exception)
5009 {
5010         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5011
5012         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5013                                           exception);
5014 }
5015 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5016
5017 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5018                              gva_t addr, void *val, unsigned int bytes,
5019                              struct x86_exception *exception, bool system)
5020 {
5021         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5022         u32 access = 0;
5023
5024         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5025                 access |= PFERR_USER_MASK;
5026
5027         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5028 }
5029
5030 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5031                 unsigned long addr, void *val, unsigned int bytes)
5032 {
5033         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5034         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5035
5036         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5037 }
5038
5039 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5040                                       struct kvm_vcpu *vcpu, u32 access,
5041                                       struct x86_exception *exception)
5042 {
5043         void *data = val;
5044         int r = X86EMUL_CONTINUE;
5045
5046         while (bytes) {
5047                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5048                                                              access,
5049                                                              exception);
5050                 unsigned offset = addr & (PAGE_SIZE-1);
5051                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5052                 int ret;
5053
5054                 if (gpa == UNMAPPED_GVA)
5055                         return X86EMUL_PROPAGATE_FAULT;
5056                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5057                 if (ret < 0) {
5058                         r = X86EMUL_IO_NEEDED;
5059                         goto out;
5060                 }
5061
5062                 bytes -= towrite;
5063                 data += towrite;
5064                 addr += towrite;
5065         }
5066 out:
5067         return r;
5068 }
5069
5070 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5071                               unsigned int bytes, struct x86_exception *exception,
5072                               bool system)
5073 {
5074         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5075         u32 access = PFERR_WRITE_MASK;
5076
5077         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5078                 access |= PFERR_USER_MASK;
5079
5080         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5081                                            access, exception);
5082 }
5083
5084 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5085                                 unsigned int bytes, struct x86_exception *exception)
5086 {
5087         /* kvm_write_guest_virt_system can pull in tons of pages. */
5088         vcpu->arch.l1tf_flush_l1d = true;
5089
5090         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5091                                            PFERR_WRITE_MASK, exception);
5092 }
5093 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5094
5095 int handle_ud(struct kvm_vcpu *vcpu)
5096 {
5097         int emul_type = EMULTYPE_TRAP_UD;
5098         enum emulation_result er;
5099         char sig[5]; /* ud2; .ascii "kvm" */
5100         struct x86_exception e;
5101
5102         if (force_emulation_prefix &&
5103             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5104                                 sig, sizeof(sig), &e) == 0 &&
5105             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5106                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5107                 emul_type = 0;
5108         }
5109
5110         er = kvm_emulate_instruction(vcpu, emul_type);
5111         if (er == EMULATE_USER_EXIT)
5112                 return 0;
5113         if (er != EMULATE_DONE)
5114                 kvm_queue_exception(vcpu, UD_VECTOR);
5115         return 1;
5116 }
5117 EXPORT_SYMBOL_GPL(handle_ud);
5118
5119 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5120                             gpa_t gpa, bool write)
5121 {
5122         /* For APIC access vmexit */
5123         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5124                 return 1;
5125
5126         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5127                 trace_vcpu_match_mmio(gva, gpa, write, true);
5128                 return 1;
5129         }
5130
5131         return 0;
5132 }
5133
5134 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5135                                 gpa_t *gpa, struct x86_exception *exception,
5136                                 bool write)
5137 {
5138         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5139                 | (write ? PFERR_WRITE_MASK : 0);
5140
5141         /*
5142          * currently PKRU is only applied to ept enabled guest so
5143          * there is no pkey in EPT page table for L1 guest or EPT
5144          * shadow page table for L2 guest.
5145          */
5146         if (vcpu_match_mmio_gva(vcpu, gva)
5147             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5148                                  vcpu->arch.access, 0, access)) {
5149                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5150                                         (gva & (PAGE_SIZE - 1));
5151                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5152                 return 1;
5153         }
5154
5155         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5156
5157         if (*gpa == UNMAPPED_GVA)
5158                 return -1;
5159
5160         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5161 }
5162
5163 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5164                         const void *val, int bytes)
5165 {
5166         int ret;
5167
5168         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5169         if (ret < 0)
5170                 return 0;
5171         kvm_page_track_write(vcpu, gpa, val, bytes);
5172         return 1;
5173 }
5174
5175 struct read_write_emulator_ops {
5176         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5177                                   int bytes);
5178         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5179                                   void *val, int bytes);
5180         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5181                                int bytes, void *val);
5182         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5183                                     void *val, int bytes);
5184         bool write;
5185 };
5186
5187 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5188 {
5189         if (vcpu->mmio_read_completed) {
5190                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5191                                vcpu->mmio_fragments[0].gpa, val);
5192                 vcpu->mmio_read_completed = 0;
5193                 return 1;
5194         }
5195
5196         return 0;
5197 }
5198
5199 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5200                         void *val, int bytes)
5201 {
5202         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5203 }
5204
5205 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5206                          void *val, int bytes)
5207 {
5208         return emulator_write_phys(vcpu, gpa, val, bytes);
5209 }
5210
5211 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5212 {
5213         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5214         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5215 }
5216
5217 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5218                           void *val, int bytes)
5219 {
5220         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5221         return X86EMUL_IO_NEEDED;
5222 }
5223
5224 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5225                            void *val, int bytes)
5226 {
5227         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5228
5229         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5230         return X86EMUL_CONTINUE;
5231 }
5232
5233 static const struct read_write_emulator_ops read_emultor = {
5234         .read_write_prepare = read_prepare,
5235         .read_write_emulate = read_emulate,
5236         .read_write_mmio = vcpu_mmio_read,
5237         .read_write_exit_mmio = read_exit_mmio,
5238 };
5239
5240 static const struct read_write_emulator_ops write_emultor = {
5241         .read_write_emulate = write_emulate,
5242         .read_write_mmio = write_mmio,
5243         .read_write_exit_mmio = write_exit_mmio,
5244         .write = true,
5245 };
5246
5247 static int emulator_read_write_onepage(unsigned long addr, void *val,
5248                                        unsigned int bytes,
5249                                        struct x86_exception *exception,
5250                                        struct kvm_vcpu *vcpu,
5251                                        const struct read_write_emulator_ops *ops)
5252 {
5253         gpa_t gpa;
5254         int handled, ret;
5255         bool write = ops->write;
5256         struct kvm_mmio_fragment *frag;
5257         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5258
5259         /*
5260          * If the exit was due to a NPF we may already have a GPA.
5261          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5262          * Note, this cannot be used on string operations since string
5263          * operation using rep will only have the initial GPA from the NPF
5264          * occurred.
5265          */
5266         if (vcpu->arch.gpa_available &&
5267             emulator_can_use_gpa(ctxt) &&
5268             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5269                 gpa = vcpu->arch.gpa_val;
5270                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5271         } else {
5272                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5273                 if (ret < 0)
5274                         return X86EMUL_PROPAGATE_FAULT;
5275         }
5276
5277         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5278                 return X86EMUL_CONTINUE;
5279
5280         /*
5281          * Is this MMIO handled locally?
5282          */
5283         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5284         if (handled == bytes)
5285                 return X86EMUL_CONTINUE;
5286
5287         gpa += handled;
5288         bytes -= handled;
5289         val += handled;
5290
5291         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5292         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5293         frag->gpa = gpa;
5294         frag->data = val;
5295         frag->len = bytes;
5296         return X86EMUL_CONTINUE;
5297 }
5298
5299 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5300                         unsigned long addr,
5301                         void *val, unsigned int bytes,
5302                         struct x86_exception *exception,
5303                         const struct read_write_emulator_ops *ops)
5304 {
5305         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5306         gpa_t gpa;
5307         int rc;
5308
5309         if (ops->read_write_prepare &&
5310                   ops->read_write_prepare(vcpu, val, bytes))
5311                 return X86EMUL_CONTINUE;
5312
5313         vcpu->mmio_nr_fragments = 0;
5314
5315         /* Crossing a page boundary? */
5316         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5317                 int now;
5318
5319                 now = -addr & ~PAGE_MASK;
5320                 rc = emulator_read_write_onepage(addr, val, now, exception,
5321                                                  vcpu, ops);
5322
5323                 if (rc != X86EMUL_CONTINUE)
5324                         return rc;
5325                 addr += now;
5326                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5327                         addr = (u32)addr;
5328                 val += now;
5329                 bytes -= now;
5330         }
5331
5332         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5333                                          vcpu, ops);
5334         if (rc != X86EMUL_CONTINUE)
5335                 return rc;
5336
5337         if (!vcpu->mmio_nr_fragments)
5338                 return rc;
5339
5340         gpa = vcpu->mmio_fragments[0].gpa;
5341
5342         vcpu->mmio_needed = 1;
5343         vcpu->mmio_cur_fragment = 0;
5344
5345         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5346         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5347         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5348         vcpu->run->mmio.phys_addr = gpa;
5349
5350         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5351 }
5352
5353 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5354                                   unsigned long addr,
5355                                   void *val,
5356                                   unsigned int bytes,
5357                                   struct x86_exception *exception)
5358 {
5359         return emulator_read_write(ctxt, addr, val, bytes,
5360                                    exception, &read_emultor);
5361 }
5362
5363 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5364                             unsigned long addr,
5365                             const void *val,
5366                             unsigned int bytes,
5367                             struct x86_exception *exception)
5368 {
5369         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5370                                    exception, &write_emultor);
5371 }
5372
5373 #define CMPXCHG_TYPE(t, ptr, old, new) \
5374         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5375
5376 #ifdef CONFIG_X86_64
5377 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5378 #else
5379 #  define CMPXCHG64(ptr, old, new) \
5380         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5381 #endif
5382
5383 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5384                                      unsigned long addr,
5385                                      const void *old,
5386                                      const void *new,
5387                                      unsigned int bytes,
5388                                      struct x86_exception *exception)
5389 {
5390         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5391         gpa_t gpa;
5392         struct page *page;
5393         char *kaddr;
5394         bool exchanged;
5395
5396         /* guests cmpxchg8b have to be emulated atomically */
5397         if (bytes > 8 || (bytes & (bytes - 1)))
5398                 goto emul_write;
5399
5400         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5401
5402         if (gpa == UNMAPPED_GVA ||
5403             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5404                 goto emul_write;
5405
5406         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5407                 goto emul_write;
5408
5409         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5410         if (is_error_page(page))
5411                 goto emul_write;
5412
5413         kaddr = kmap_atomic(page);
5414         kaddr += offset_in_page(gpa);
5415         switch (bytes) {
5416         case 1:
5417                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5418                 break;
5419         case 2:
5420                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5421                 break;
5422         case 4:
5423                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5424                 break;
5425         case 8:
5426                 exchanged = CMPXCHG64(kaddr, old, new);
5427                 break;
5428         default:
5429                 BUG();
5430         }
5431         kunmap_atomic(kaddr);
5432         kvm_release_page_dirty(page);
5433
5434         if (!exchanged)
5435                 return X86EMUL_CMPXCHG_FAILED;
5436
5437         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5438         kvm_page_track_write(vcpu, gpa, new, bytes);
5439
5440         return X86EMUL_CONTINUE;
5441
5442 emul_write:
5443         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5444
5445         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5446 }
5447
5448 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5449 {
5450         int r = 0, i;
5451
5452         for (i = 0; i < vcpu->arch.pio.count; i++) {
5453                 if (vcpu->arch.pio.in)
5454                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5455                                             vcpu->arch.pio.size, pd);
5456                 else
5457                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5458                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5459                                              pd);
5460                 if (r)
5461                         break;
5462                 pd += vcpu->arch.pio.size;
5463         }
5464         return r;
5465 }
5466
5467 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5468                                unsigned short port, void *val,
5469                                unsigned int count, bool in)
5470 {
5471         vcpu->arch.pio.port = port;
5472         vcpu->arch.pio.in = in;
5473         vcpu->arch.pio.count  = count;
5474         vcpu->arch.pio.size = size;
5475
5476         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5477                 vcpu->arch.pio.count = 0;
5478                 return 1;
5479         }
5480
5481         vcpu->run->exit_reason = KVM_EXIT_IO;
5482         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5483         vcpu->run->io.size = size;
5484         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5485         vcpu->run->io.count = count;
5486         vcpu->run->io.port = port;
5487
5488         return 0;
5489 }
5490
5491 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5492                                     int size, unsigned short port, void *val,
5493                                     unsigned int count)
5494 {
5495         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5496         int ret;
5497
5498         if (vcpu->arch.pio.count)
5499                 goto data_avail;
5500
5501         memset(vcpu->arch.pio_data, 0, size * count);
5502
5503         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5504         if (ret) {
5505 data_avail:
5506                 memcpy(val, vcpu->arch.pio_data, size * count);
5507                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5508                 vcpu->arch.pio.count = 0;
5509                 return 1;
5510         }
5511
5512         return 0;
5513 }
5514
5515 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5516                                      int size, unsigned short port,
5517                                      const void *val, unsigned int count)
5518 {
5519         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5520
5521         memcpy(vcpu->arch.pio_data, val, size * count);
5522         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5523         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5524 }
5525
5526 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5527 {
5528         return kvm_x86_ops->get_segment_base(vcpu, seg);
5529 }
5530
5531 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5532 {
5533         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5534 }
5535
5536 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5537 {
5538         if (!need_emulate_wbinvd(vcpu))
5539                 return X86EMUL_CONTINUE;
5540
5541         if (kvm_x86_ops->has_wbinvd_exit()) {
5542                 int cpu = get_cpu();
5543
5544                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5545                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5546                                 wbinvd_ipi, NULL, 1);
5547                 put_cpu();
5548                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5549         } else
5550                 wbinvd();
5551         return X86EMUL_CONTINUE;
5552 }
5553
5554 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5555 {
5556         kvm_emulate_wbinvd_noskip(vcpu);
5557         return kvm_skip_emulated_instruction(vcpu);
5558 }
5559 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5560
5561
5562
5563 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5564 {
5565         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5566 }
5567
5568 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5569                            unsigned long *dest)
5570 {
5571         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5572 }
5573
5574 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5575                            unsigned long value)
5576 {
5577
5578         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5579 }
5580
5581 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5582 {
5583         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5584 }
5585
5586 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5587 {
5588         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5589         unsigned long value;
5590
5591         switch (cr) {
5592         case 0:
5593                 value = kvm_read_cr0(vcpu);
5594                 break;
5595         case 2:
5596                 value = vcpu->arch.cr2;
5597                 break;
5598         case 3:
5599                 value = kvm_read_cr3(vcpu);
5600                 break;
5601         case 4:
5602                 value = kvm_read_cr4(vcpu);
5603                 break;
5604         case 8:
5605                 value = kvm_get_cr8(vcpu);
5606                 break;
5607         default:
5608                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5609                 return 0;
5610         }
5611
5612         return value;
5613 }
5614
5615 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5616 {
5617         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5618         int res = 0;
5619
5620         switch (cr) {
5621         case 0:
5622                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5623                 break;
5624         case 2:
5625                 vcpu->arch.cr2 = val;
5626                 break;
5627         case 3:
5628                 res = kvm_set_cr3(vcpu, val);
5629                 break;
5630         case 4:
5631                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5632                 break;
5633         case 8:
5634                 res = kvm_set_cr8(vcpu, val);
5635                 break;
5636         default:
5637                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5638                 res = -1;
5639         }
5640
5641         return res;
5642 }
5643
5644 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5645 {
5646         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5647 }
5648
5649 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5650 {
5651         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5652 }
5653
5654 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5655 {
5656         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5657 }
5658
5659 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5660 {
5661         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5662 }
5663
5664 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5665 {
5666         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5667 }
5668
5669 static unsigned long emulator_get_cached_segment_base(
5670         struct x86_emulate_ctxt *ctxt, int seg)
5671 {
5672         return get_segment_base(emul_to_vcpu(ctxt), seg);
5673 }
5674
5675 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5676                                  struct desc_struct *desc, u32 *base3,
5677                                  int seg)
5678 {
5679         struct kvm_segment var;
5680
5681         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5682         *selector = var.selector;
5683
5684         if (var.unusable) {
5685                 memset(desc, 0, sizeof(*desc));
5686                 if (base3)
5687                         *base3 = 0;
5688                 return false;
5689         }
5690
5691         if (var.g)
5692                 var.limit >>= 12;
5693         set_desc_limit(desc, var.limit);
5694         set_desc_base(desc, (unsigned long)var.base);
5695 #ifdef CONFIG_X86_64
5696         if (base3)
5697                 *base3 = var.base >> 32;
5698 #endif
5699         desc->type = var.type;
5700         desc->s = var.s;
5701         desc->dpl = var.dpl;
5702         desc->p = var.present;
5703         desc->avl = var.avl;
5704         desc->l = var.l;
5705         desc->d = var.db;
5706         desc->g = var.g;
5707
5708         return true;
5709 }
5710
5711 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5712                                  struct desc_struct *desc, u32 base3,
5713                                  int seg)
5714 {
5715         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5716         struct kvm_segment var;
5717
5718         var.selector = selector;
5719         var.base = get_desc_base(desc);
5720 #ifdef CONFIG_X86_64
5721         var.base |= ((u64)base3) << 32;
5722 #endif
5723         var.limit = get_desc_limit(desc);
5724         if (desc->g)
5725                 var.limit = (var.limit << 12) | 0xfff;
5726         var.type = desc->type;
5727         var.dpl = desc->dpl;
5728         var.db = desc->d;
5729         var.s = desc->s;
5730         var.l = desc->l;
5731         var.g = desc->g;
5732         var.avl = desc->avl;
5733         var.present = desc->p;
5734         var.unusable = !var.present;
5735         var.padding = 0;
5736
5737         kvm_set_segment(vcpu, &var, seg);
5738         return;
5739 }
5740
5741 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5742                             u32 msr_index, u64 *pdata)
5743 {
5744         struct msr_data msr;
5745         int r;
5746
5747         msr.index = msr_index;
5748         msr.host_initiated = false;
5749         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5750         if (r)
5751                 return r;
5752
5753         *pdata = msr.data;
5754         return 0;
5755 }
5756
5757 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5758                             u32 msr_index, u64 data)
5759 {
5760         struct msr_data msr;
5761
5762         msr.data = data;
5763         msr.index = msr_index;
5764         msr.host_initiated = false;
5765         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5766 }
5767
5768 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5769 {
5770         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5771
5772         return vcpu->arch.smbase;
5773 }
5774
5775 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5776 {
5777         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5778
5779         vcpu->arch.smbase = smbase;
5780 }
5781
5782 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5783                               u32 pmc)
5784 {
5785         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5786 }
5787
5788 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5789                              u32 pmc, u64 *pdata)
5790 {
5791         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5792 }
5793
5794 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5795 {
5796         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5797 }
5798
5799 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5800                               struct x86_instruction_info *info,
5801                               enum x86_intercept_stage stage)
5802 {
5803         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5804 }
5805
5806 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5807                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5808 {
5809         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5810 }
5811
5812 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5813 {
5814         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5815 }
5816
5817 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5818 {
5819         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5820 }
5821
5822 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5823 {
5824         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5825 }
5826
5827 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5828 {
5829         return emul_to_vcpu(ctxt)->arch.hflags;
5830 }
5831
5832 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5833 {
5834         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5835 }
5836
5837 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5838 {
5839         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5840 }
5841
5842 static const struct x86_emulate_ops emulate_ops = {
5843         .read_gpr            = emulator_read_gpr,
5844         .write_gpr           = emulator_write_gpr,
5845         .read_std            = emulator_read_std,
5846         .write_std           = emulator_write_std,
5847         .read_phys           = kvm_read_guest_phys_system,
5848         .fetch               = kvm_fetch_guest_virt,
5849         .read_emulated       = emulator_read_emulated,
5850         .write_emulated      = emulator_write_emulated,
5851         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5852         .invlpg              = emulator_invlpg,
5853         .pio_in_emulated     = emulator_pio_in_emulated,
5854         .pio_out_emulated    = emulator_pio_out_emulated,
5855         .get_segment         = emulator_get_segment,
5856         .set_segment         = emulator_set_segment,
5857         .get_cached_segment_base = emulator_get_cached_segment_base,
5858         .get_gdt             = emulator_get_gdt,
5859         .get_idt             = emulator_get_idt,
5860         .set_gdt             = emulator_set_gdt,
5861         .set_idt             = emulator_set_idt,
5862         .get_cr              = emulator_get_cr,
5863         .set_cr              = emulator_set_cr,
5864         .cpl                 = emulator_get_cpl,
5865         .get_dr              = emulator_get_dr,
5866         .set_dr              = emulator_set_dr,
5867         .get_smbase          = emulator_get_smbase,
5868         .set_smbase          = emulator_set_smbase,
5869         .set_msr             = emulator_set_msr,
5870         .get_msr             = emulator_get_msr,
5871         .check_pmc           = emulator_check_pmc,
5872         .read_pmc            = emulator_read_pmc,
5873         .halt                = emulator_halt,
5874         .wbinvd              = emulator_wbinvd,
5875         .fix_hypercall       = emulator_fix_hypercall,
5876         .intercept           = emulator_intercept,
5877         .get_cpuid           = emulator_get_cpuid,
5878         .set_nmi_mask        = emulator_set_nmi_mask,
5879         .get_hflags          = emulator_get_hflags,
5880         .set_hflags          = emulator_set_hflags,
5881         .pre_leave_smm       = emulator_pre_leave_smm,
5882 };
5883
5884 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5885 {
5886         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5887         /*
5888          * an sti; sti; sequence only disable interrupts for the first
5889          * instruction. So, if the last instruction, be it emulated or
5890          * not, left the system with the INT_STI flag enabled, it
5891          * means that the last instruction is an sti. We should not
5892          * leave the flag on in this case. The same goes for mov ss
5893          */
5894         if (int_shadow & mask)
5895                 mask = 0;
5896         if (unlikely(int_shadow || mask)) {
5897                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5898                 if (!mask)
5899                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5900         }
5901 }
5902
5903 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5904 {
5905         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5906         if (ctxt->exception.vector == PF_VECTOR)
5907                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5908
5909         if (ctxt->exception.error_code_valid)
5910                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5911                                       ctxt->exception.error_code);
5912         else
5913                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5914         return false;
5915 }
5916
5917 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5918 {
5919         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5920         int cs_db, cs_l;
5921
5922         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5923
5924         ctxt->eflags = kvm_get_rflags(vcpu);
5925         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5926
5927         ctxt->eip = kvm_rip_read(vcpu);
5928         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5929                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5930                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5931                      cs_db                              ? X86EMUL_MODE_PROT32 :
5932                                                           X86EMUL_MODE_PROT16;
5933         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5934         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5935         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5936
5937         init_decode_cache(ctxt);
5938         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5939 }
5940
5941 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5942 {
5943         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5944         int ret;
5945
5946         init_emulate_ctxt(vcpu);
5947
5948         ctxt->op_bytes = 2;
5949         ctxt->ad_bytes = 2;
5950         ctxt->_eip = ctxt->eip + inc_eip;
5951         ret = emulate_int_real(ctxt, irq);
5952
5953         if (ret != X86EMUL_CONTINUE)
5954                 return EMULATE_FAIL;
5955
5956         ctxt->eip = ctxt->_eip;
5957         kvm_rip_write(vcpu, ctxt->eip);
5958         kvm_set_rflags(vcpu, ctxt->eflags);
5959
5960         return EMULATE_DONE;
5961 }
5962 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5963
5964 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
5965 {
5966         int r = EMULATE_DONE;
5967
5968         ++vcpu->stat.insn_emulation_fail;
5969         trace_kvm_emulate_insn_failed(vcpu);
5970
5971         if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
5972                 return EMULATE_FAIL;
5973
5974         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5975                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5976                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5977                 vcpu->run->internal.ndata = 0;
5978                 r = EMULATE_USER_EXIT;
5979         }
5980
5981         kvm_queue_exception(vcpu, UD_VECTOR);
5982
5983         return r;
5984 }
5985
5986 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5987                                   bool write_fault_to_shadow_pgtable,
5988                                   int emulation_type)
5989 {
5990         gpa_t gpa = cr2;
5991         kvm_pfn_t pfn;
5992
5993         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
5994                 return false;
5995
5996         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5997                 return false;
5998
5999         if (!vcpu->arch.mmu->direct_map) {
6000                 /*
6001                  * Write permission should be allowed since only
6002                  * write access need to be emulated.
6003                  */
6004                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6005
6006                 /*
6007                  * If the mapping is invalid in guest, let cpu retry
6008                  * it to generate fault.
6009                  */
6010                 if (gpa == UNMAPPED_GVA)
6011                         return true;
6012         }
6013
6014         /*
6015          * Do not retry the unhandleable instruction if it faults on the
6016          * readonly host memory, otherwise it will goto a infinite loop:
6017          * retry instruction -> write #PF -> emulation fail -> retry
6018          * instruction -> ...
6019          */
6020         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6021
6022         /*
6023          * If the instruction failed on the error pfn, it can not be fixed,
6024          * report the error to userspace.
6025          */
6026         if (is_error_noslot_pfn(pfn))
6027                 return false;
6028
6029         kvm_release_pfn_clean(pfn);
6030
6031         /* The instructions are well-emulated on direct mmu. */
6032         if (vcpu->arch.mmu->direct_map) {
6033                 unsigned int indirect_shadow_pages;
6034
6035                 spin_lock(&vcpu->kvm->mmu_lock);
6036                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6037                 spin_unlock(&vcpu->kvm->mmu_lock);
6038
6039                 if (indirect_shadow_pages)
6040                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6041
6042                 return true;
6043         }
6044
6045         /*
6046          * if emulation was due to access to shadowed page table
6047          * and it failed try to unshadow page and re-enter the
6048          * guest to let CPU execute the instruction.
6049          */
6050         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6051
6052         /*
6053          * If the access faults on its page table, it can not
6054          * be fixed by unprotecting shadow page and it should
6055          * be reported to userspace.
6056          */
6057         return !write_fault_to_shadow_pgtable;
6058 }
6059
6060 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6061                               unsigned long cr2,  int emulation_type)
6062 {
6063         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6064         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6065
6066         last_retry_eip = vcpu->arch.last_retry_eip;
6067         last_retry_addr = vcpu->arch.last_retry_addr;
6068
6069         /*
6070          * If the emulation is caused by #PF and it is non-page_table
6071          * writing instruction, it means the VM-EXIT is caused by shadow
6072          * page protected, we can zap the shadow page and retry this
6073          * instruction directly.
6074          *
6075          * Note: if the guest uses a non-page-table modifying instruction
6076          * on the PDE that points to the instruction, then we will unmap
6077          * the instruction and go to an infinite loop. So, we cache the
6078          * last retried eip and the last fault address, if we meet the eip
6079          * and the address again, we can break out of the potential infinite
6080          * loop.
6081          */
6082         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6083
6084         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6085                 return false;
6086
6087         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6088                 return false;
6089
6090         if (x86_page_table_writing_insn(ctxt))
6091                 return false;
6092
6093         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6094                 return false;
6095
6096         vcpu->arch.last_retry_eip = ctxt->eip;
6097         vcpu->arch.last_retry_addr = cr2;
6098
6099         if (!vcpu->arch.mmu->direct_map)
6100                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6101
6102         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6103
6104         return true;
6105 }
6106
6107 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6108 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6109
6110 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6111 {
6112         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6113                 /* This is a good place to trace that we are exiting SMM.  */
6114                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6115
6116                 /* Process a latched INIT or SMI, if any.  */
6117                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6118         }
6119
6120         kvm_mmu_reset_context(vcpu);
6121 }
6122
6123 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
6124 {
6125         unsigned changed = vcpu->arch.hflags ^ emul_flags;
6126
6127         vcpu->arch.hflags = emul_flags;
6128
6129         if (changed & HF_SMM_MASK)
6130                 kvm_smm_changed(vcpu);
6131 }
6132
6133 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6134                                 unsigned long *db)
6135 {
6136         u32 dr6 = 0;
6137         int i;
6138         u32 enable, rwlen;
6139
6140         enable = dr7;
6141         rwlen = dr7 >> 16;
6142         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6143                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6144                         dr6 |= (1 << i);
6145         return dr6;
6146 }
6147
6148 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6149 {
6150         struct kvm_run *kvm_run = vcpu->run;
6151
6152         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6153                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6154                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6155                 kvm_run->debug.arch.exception = DB_VECTOR;
6156                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6157                 *r = EMULATE_USER_EXIT;
6158         } else {
6159                 /*
6160                  * "Certain debug exceptions may clear bit 0-3.  The
6161                  * remaining contents of the DR6 register are never
6162                  * cleared by the processor".
6163                  */
6164                 vcpu->arch.dr6 &= ~15;
6165                 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
6166                 kvm_queue_exception(vcpu, DB_VECTOR);
6167         }
6168 }
6169
6170 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6171 {
6172         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6173         int r = EMULATE_DONE;
6174
6175         kvm_x86_ops->skip_emulated_instruction(vcpu);
6176
6177         /*
6178          * rflags is the old, "raw" value of the flags.  The new value has
6179          * not been saved yet.
6180          *
6181          * This is correct even for TF set by the guest, because "the
6182          * processor will not generate this exception after the instruction
6183          * that sets the TF flag".
6184          */
6185         if (unlikely(rflags & X86_EFLAGS_TF))
6186                 kvm_vcpu_do_singlestep(vcpu, &r);
6187         return r == EMULATE_DONE;
6188 }
6189 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6190
6191 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6192 {
6193         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6194             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6195                 struct kvm_run *kvm_run = vcpu->run;
6196                 unsigned long eip = kvm_get_linear_rip(vcpu);
6197                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6198                                            vcpu->arch.guest_debug_dr7,
6199                                            vcpu->arch.eff_db);
6200
6201                 if (dr6 != 0) {
6202                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6203                         kvm_run->debug.arch.pc = eip;
6204                         kvm_run->debug.arch.exception = DB_VECTOR;
6205                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6206                         *r = EMULATE_USER_EXIT;
6207                         return true;
6208                 }
6209         }
6210
6211         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6212             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6213                 unsigned long eip = kvm_get_linear_rip(vcpu);
6214                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6215                                            vcpu->arch.dr7,
6216                                            vcpu->arch.db);
6217
6218                 if (dr6 != 0) {
6219                         vcpu->arch.dr6 &= ~15;
6220                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6221                         kvm_queue_exception(vcpu, DB_VECTOR);
6222                         *r = EMULATE_DONE;
6223                         return true;
6224                 }
6225         }
6226
6227         return false;
6228 }
6229
6230 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6231 {
6232         switch (ctxt->opcode_len) {
6233         case 1:
6234                 switch (ctxt->b) {
6235                 case 0xe4:      /* IN */
6236                 case 0xe5:
6237                 case 0xec:
6238                 case 0xed:
6239                 case 0xe6:      /* OUT */
6240                 case 0xe7:
6241                 case 0xee:
6242                 case 0xef:
6243                 case 0x6c:      /* INS */
6244                 case 0x6d:
6245                 case 0x6e:      /* OUTS */
6246                 case 0x6f:
6247                         return true;
6248                 }
6249                 break;
6250         case 2:
6251                 switch (ctxt->b) {
6252                 case 0x33:      /* RDPMC */
6253                         return true;
6254                 }
6255                 break;
6256         }
6257
6258         return false;
6259 }
6260
6261 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6262                             unsigned long cr2,
6263                             int emulation_type,
6264                             void *insn,
6265                             int insn_len)
6266 {
6267         int r;
6268         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6269         bool writeback = true;
6270         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6271
6272         vcpu->arch.l1tf_flush_l1d = true;
6273
6274         /*
6275          * Clear write_fault_to_shadow_pgtable here to ensure it is
6276          * never reused.
6277          */
6278         vcpu->arch.write_fault_to_shadow_pgtable = false;
6279         kvm_clear_exception_queue(vcpu);
6280
6281         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6282                 init_emulate_ctxt(vcpu);
6283
6284                 /*
6285                  * We will reenter on the same instruction since
6286                  * we do not set complete_userspace_io.  This does not
6287                  * handle watchpoints yet, those would be handled in
6288                  * the emulate_ops.
6289                  */
6290                 if (!(emulation_type & EMULTYPE_SKIP) &&
6291                     kvm_vcpu_check_breakpoint(vcpu, &r))
6292                         return r;
6293
6294                 ctxt->interruptibility = 0;
6295                 ctxt->have_exception = false;
6296                 ctxt->exception.vector = -1;
6297                 ctxt->perm_ok = false;
6298
6299                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6300
6301                 r = x86_decode_insn(ctxt, insn, insn_len);
6302
6303                 trace_kvm_emulate_insn_start(vcpu);
6304                 ++vcpu->stat.insn_emulation;
6305                 if (r != EMULATION_OK)  {
6306                         if (emulation_type & EMULTYPE_TRAP_UD)
6307                                 return EMULATE_FAIL;
6308                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6309                                                 emulation_type))
6310                                 return EMULATE_DONE;
6311                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
6312                                 return EMULATE_DONE;
6313                         if (emulation_type & EMULTYPE_SKIP)
6314                                 return EMULATE_FAIL;
6315                         return handle_emulation_failure(vcpu, emulation_type);
6316                 }
6317         }
6318
6319         if ((emulation_type & EMULTYPE_VMWARE) &&
6320             !is_vmware_backdoor_opcode(ctxt))
6321                 return EMULATE_FAIL;
6322
6323         if (emulation_type & EMULTYPE_SKIP) {
6324                 kvm_rip_write(vcpu, ctxt->_eip);
6325                 if (ctxt->eflags & X86_EFLAGS_RF)
6326                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6327                 return EMULATE_DONE;
6328         }
6329
6330         if (retry_instruction(ctxt, cr2, emulation_type))
6331                 return EMULATE_DONE;
6332
6333         /* this is needed for vmware backdoor interface to work since it
6334            changes registers values  during IO operation */
6335         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6336                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6337                 emulator_invalidate_register_cache(ctxt);
6338         }
6339
6340 restart:
6341         /* Save the faulting GPA (cr2) in the address field */
6342         ctxt->exception.address = cr2;
6343
6344         r = x86_emulate_insn(ctxt);
6345
6346         if (r == EMULATION_INTERCEPTED)
6347                 return EMULATE_DONE;
6348
6349         if (r == EMULATION_FAILED) {
6350                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6351                                         emulation_type))
6352                         return EMULATE_DONE;
6353
6354                 return handle_emulation_failure(vcpu, emulation_type);
6355         }
6356
6357         if (ctxt->have_exception) {
6358                 r = EMULATE_DONE;
6359                 if (inject_emulated_exception(vcpu))
6360                         return r;
6361         } else if (vcpu->arch.pio.count) {
6362                 if (!vcpu->arch.pio.in) {
6363                         /* FIXME: return into emulator if single-stepping.  */
6364                         vcpu->arch.pio.count = 0;
6365                 } else {
6366                         writeback = false;
6367                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6368                 }
6369                 r = EMULATE_USER_EXIT;
6370         } else if (vcpu->mmio_needed) {
6371                 if (!vcpu->mmio_is_write)
6372                         writeback = false;
6373                 r = EMULATE_USER_EXIT;
6374                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6375         } else if (r == EMULATION_RESTART)
6376                 goto restart;
6377         else
6378                 r = EMULATE_DONE;
6379
6380         if (writeback) {
6381                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6382                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6383                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6384                 kvm_rip_write(vcpu, ctxt->eip);
6385                 if (r == EMULATE_DONE &&
6386                     (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6387                         kvm_vcpu_do_singlestep(vcpu, &r);
6388                 if (!ctxt->have_exception ||
6389                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6390                         __kvm_set_rflags(vcpu, ctxt->eflags);
6391
6392                 /*
6393                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6394                  * do nothing, and it will be requested again as soon as
6395                  * the shadow expires.  But we still need to check here,
6396                  * because POPF has no interrupt shadow.
6397                  */
6398                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6399                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6400         } else
6401                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6402
6403         return r;
6404 }
6405
6406 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6407 {
6408         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6409 }
6410 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6411
6412 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6413                                         void *insn, int insn_len)
6414 {
6415         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6416 }
6417 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6418
6419 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6420                             unsigned short port)
6421 {
6422         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6423         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6424                                             size, port, &val, 1);
6425         /* do not return to emulator after return from userspace */
6426         vcpu->arch.pio.count = 0;
6427         return ret;
6428 }
6429
6430 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6431 {
6432         unsigned long val;
6433
6434         /* We should only ever be called with arch.pio.count equal to 1 */
6435         BUG_ON(vcpu->arch.pio.count != 1);
6436
6437         /* For size less than 4 we merge, else we zero extend */
6438         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6439                                         : 0;
6440
6441         /*
6442          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6443          * the copy and tracing
6444          */
6445         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6446                                  vcpu->arch.pio.port, &val, 1);
6447         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6448
6449         return 1;
6450 }
6451
6452 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6453                            unsigned short port)
6454 {
6455         unsigned long val;
6456         int ret;
6457
6458         /* For size less than 4 we merge, else we zero extend */
6459         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6460
6461         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6462                                        &val, 1);
6463         if (ret) {
6464                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6465                 return ret;
6466         }
6467
6468         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6469
6470         return 0;
6471 }
6472
6473 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6474 {
6475         int ret = kvm_skip_emulated_instruction(vcpu);
6476
6477         /*
6478          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6479          * KVM_EXIT_DEBUG here.
6480          */
6481         if (in)
6482                 return kvm_fast_pio_in(vcpu, size, port) && ret;
6483         else
6484                 return kvm_fast_pio_out(vcpu, size, port) && ret;
6485 }
6486 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6487
6488 static int kvmclock_cpu_down_prep(unsigned int cpu)
6489 {
6490         __this_cpu_write(cpu_tsc_khz, 0);
6491         return 0;
6492 }
6493
6494 static void tsc_khz_changed(void *data)
6495 {
6496         struct cpufreq_freqs *freq = data;
6497         unsigned long khz = 0;
6498
6499         if (data)
6500                 khz = freq->new;
6501         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6502                 khz = cpufreq_quick_get(raw_smp_processor_id());
6503         if (!khz)
6504                 khz = tsc_khz;
6505         __this_cpu_write(cpu_tsc_khz, khz);
6506 }
6507
6508 #ifdef CONFIG_X86_64
6509 static void kvm_hyperv_tsc_notifier(void)
6510 {
6511         struct kvm *kvm;
6512         struct kvm_vcpu *vcpu;
6513         int cpu;
6514
6515         spin_lock(&kvm_lock);
6516         list_for_each_entry(kvm, &vm_list, vm_list)
6517                 kvm_make_mclock_inprogress_request(kvm);
6518
6519         hyperv_stop_tsc_emulation();
6520
6521         /* TSC frequency always matches when on Hyper-V */
6522         for_each_present_cpu(cpu)
6523                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6524         kvm_max_guest_tsc_khz = tsc_khz;
6525
6526         list_for_each_entry(kvm, &vm_list, vm_list) {
6527                 struct kvm_arch *ka = &kvm->arch;
6528
6529                 spin_lock(&ka->pvclock_gtod_sync_lock);
6530
6531                 pvclock_update_vm_gtod_copy(kvm);
6532
6533                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6534                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6535
6536                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6537                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6538
6539                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6540         }
6541         spin_unlock(&kvm_lock);
6542 }
6543 #endif
6544
6545 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6546                                      void *data)
6547 {
6548         struct cpufreq_freqs *freq = data;
6549         struct kvm *kvm;
6550         struct kvm_vcpu *vcpu;
6551         int i, send_ipi = 0;
6552
6553         /*
6554          * We allow guests to temporarily run on slowing clocks,
6555          * provided we notify them after, or to run on accelerating
6556          * clocks, provided we notify them before.  Thus time never
6557          * goes backwards.
6558          *
6559          * However, we have a problem.  We can't atomically update
6560          * the frequency of a given CPU from this function; it is
6561          * merely a notifier, which can be called from any CPU.
6562          * Changing the TSC frequency at arbitrary points in time
6563          * requires a recomputation of local variables related to
6564          * the TSC for each VCPU.  We must flag these local variables
6565          * to be updated and be sure the update takes place with the
6566          * new frequency before any guests proceed.
6567          *
6568          * Unfortunately, the combination of hotplug CPU and frequency
6569          * change creates an intractable locking scenario; the order
6570          * of when these callouts happen is undefined with respect to
6571          * CPU hotplug, and they can race with each other.  As such,
6572          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6573          * undefined; you can actually have a CPU frequency change take
6574          * place in between the computation of X and the setting of the
6575          * variable.  To protect against this problem, all updates of
6576          * the per_cpu tsc_khz variable are done in an interrupt
6577          * protected IPI, and all callers wishing to update the value
6578          * must wait for a synchronous IPI to complete (which is trivial
6579          * if the caller is on the CPU already).  This establishes the
6580          * necessary total order on variable updates.
6581          *
6582          * Note that because a guest time update may take place
6583          * anytime after the setting of the VCPU's request bit, the
6584          * correct TSC value must be set before the request.  However,
6585          * to ensure the update actually makes it to any guest which
6586          * starts running in hardware virtualization between the set
6587          * and the acquisition of the spinlock, we must also ping the
6588          * CPU after setting the request bit.
6589          *
6590          */
6591
6592         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6593                 return 0;
6594         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6595                 return 0;
6596
6597         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6598
6599         spin_lock(&kvm_lock);
6600         list_for_each_entry(kvm, &vm_list, vm_list) {
6601                 kvm_for_each_vcpu(i, vcpu, kvm) {
6602                         if (vcpu->cpu != freq->cpu)
6603                                 continue;
6604                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6605                         if (vcpu->cpu != smp_processor_id())
6606                                 send_ipi = 1;
6607                 }
6608         }
6609         spin_unlock(&kvm_lock);
6610
6611         if (freq->old < freq->new && send_ipi) {
6612                 /*
6613                  * We upscale the frequency.  Must make the guest
6614                  * doesn't see old kvmclock values while running with
6615                  * the new frequency, otherwise we risk the guest sees
6616                  * time go backwards.
6617                  *
6618                  * In case we update the frequency for another cpu
6619                  * (which might be in guest context) send an interrupt
6620                  * to kick the cpu out of guest context.  Next time
6621                  * guest context is entered kvmclock will be updated,
6622                  * so the guest will not see stale values.
6623                  */
6624                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6625         }
6626         return 0;
6627 }
6628
6629 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6630         .notifier_call  = kvmclock_cpufreq_notifier
6631 };
6632
6633 static int kvmclock_cpu_online(unsigned int cpu)
6634 {
6635         tsc_khz_changed(NULL);
6636         return 0;
6637 }
6638
6639 static void kvm_timer_init(void)
6640 {
6641         max_tsc_khz = tsc_khz;
6642
6643         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6644 #ifdef CONFIG_CPU_FREQ
6645                 struct cpufreq_policy policy;
6646                 int cpu;
6647
6648                 memset(&policy, 0, sizeof(policy));
6649                 cpu = get_cpu();
6650                 cpufreq_get_policy(&policy, cpu);
6651                 if (policy.cpuinfo.max_freq)
6652                         max_tsc_khz = policy.cpuinfo.max_freq;
6653                 put_cpu();
6654 #endif
6655                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6656                                           CPUFREQ_TRANSITION_NOTIFIER);
6657         }
6658         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6659
6660         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6661                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6662 }
6663
6664 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6665 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6666
6667 int kvm_is_in_guest(void)
6668 {
6669         return __this_cpu_read(current_vcpu) != NULL;
6670 }
6671
6672 static int kvm_is_user_mode(void)
6673 {
6674         int user_mode = 3;
6675
6676         if (__this_cpu_read(current_vcpu))
6677                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6678
6679         return user_mode != 0;
6680 }
6681
6682 static unsigned long kvm_get_guest_ip(void)
6683 {
6684         unsigned long ip = 0;
6685
6686         if (__this_cpu_read(current_vcpu))
6687                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6688
6689         return ip;
6690 }
6691
6692 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6693         .is_in_guest            = kvm_is_in_guest,
6694         .is_user_mode           = kvm_is_user_mode,
6695         .get_guest_ip           = kvm_get_guest_ip,
6696 };
6697
6698 static void kvm_set_mmio_spte_mask(void)
6699 {
6700         u64 mask;
6701         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6702
6703         /*
6704          * Set the reserved bits and the present bit of an paging-structure
6705          * entry to generate page fault with PFER.RSV = 1.
6706          */
6707
6708         /*
6709          * Mask the uppermost physical address bit, which would be reserved as
6710          * long as the supported physical address width is less than 52.
6711          */
6712         mask = 1ull << 51;
6713
6714         /* Set the present bit. */
6715         mask |= 1ull;
6716
6717         /*
6718          * If reserved bit is not supported, clear the present bit to disable
6719          * mmio page fault.
6720          */
6721         if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6722                 mask &= ~1ull;
6723
6724         kvm_mmu_set_mmio_spte_mask(mask, mask);
6725 }
6726
6727 #ifdef CONFIG_X86_64
6728 static void pvclock_gtod_update_fn(struct work_struct *work)
6729 {
6730         struct kvm *kvm;
6731
6732         struct kvm_vcpu *vcpu;
6733         int i;
6734
6735         spin_lock(&kvm_lock);
6736         list_for_each_entry(kvm, &vm_list, vm_list)
6737                 kvm_for_each_vcpu(i, vcpu, kvm)
6738                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6739         atomic_set(&kvm_guest_has_master_clock, 0);
6740         spin_unlock(&kvm_lock);
6741 }
6742
6743 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6744
6745 /*
6746  * Notification about pvclock gtod data update.
6747  */
6748 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6749                                void *priv)
6750 {
6751         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6752         struct timekeeper *tk = priv;
6753
6754         update_pvclock_gtod(tk);
6755
6756         /* disable master clock if host does not trust, or does not
6757          * use, TSC based clocksource.
6758          */
6759         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6760             atomic_read(&kvm_guest_has_master_clock) != 0)
6761                 queue_work(system_long_wq, &pvclock_gtod_work);
6762
6763         return 0;
6764 }
6765
6766 static struct notifier_block pvclock_gtod_notifier = {
6767         .notifier_call = pvclock_gtod_notify,
6768 };
6769 #endif
6770
6771 int kvm_arch_init(void *opaque)
6772 {
6773         int r;
6774         struct kvm_x86_ops *ops = opaque;
6775
6776         if (kvm_x86_ops) {
6777                 printk(KERN_ERR "kvm: already loaded the other module\n");
6778                 r = -EEXIST;
6779                 goto out;
6780         }
6781
6782         if (!ops->cpu_has_kvm_support()) {
6783                 printk(KERN_ERR "kvm: no hardware support\n");
6784                 r = -EOPNOTSUPP;
6785                 goto out;
6786         }
6787         if (ops->disabled_by_bios()) {
6788                 printk(KERN_ERR "kvm: disabled by bios\n");
6789                 r = -EOPNOTSUPP;
6790                 goto out;
6791         }
6792
6793         r = -ENOMEM;
6794         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6795         if (!shared_msrs) {
6796                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6797                 goto out;
6798         }
6799
6800         r = kvm_mmu_module_init();
6801         if (r)
6802                 goto out_free_percpu;
6803
6804         kvm_set_mmio_spte_mask();
6805
6806         kvm_x86_ops = ops;
6807
6808         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6809                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6810                         PT_PRESENT_MASK, 0, sme_me_mask);
6811         kvm_timer_init();
6812
6813         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6814
6815         if (boot_cpu_has(X86_FEATURE_XSAVE))
6816                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6817
6818         kvm_lapic_init();
6819 #ifdef CONFIG_X86_64
6820         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6821
6822         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6823                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6824 #endif
6825
6826         return 0;
6827
6828 out_free_percpu:
6829         free_percpu(shared_msrs);
6830 out:
6831         return r;
6832 }
6833
6834 void kvm_arch_exit(void)
6835 {
6836 #ifdef CONFIG_X86_64
6837         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6838                 clear_hv_tscchange_cb();
6839 #endif
6840         kvm_lapic_exit();
6841         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6842
6843         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6844                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6845                                             CPUFREQ_TRANSITION_NOTIFIER);
6846         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6847 #ifdef CONFIG_X86_64
6848         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6849 #endif
6850         kvm_x86_ops = NULL;
6851         kvm_mmu_module_exit();
6852         free_percpu(shared_msrs);
6853 }
6854
6855 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6856 {
6857         ++vcpu->stat.halt_exits;
6858         if (lapic_in_kernel(vcpu)) {
6859                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6860                 return 1;
6861         } else {
6862                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6863                 return 0;
6864         }
6865 }
6866 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6867
6868 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6869 {
6870         int ret = kvm_skip_emulated_instruction(vcpu);
6871         /*
6872          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6873          * KVM_EXIT_DEBUG here.
6874          */
6875         return kvm_vcpu_halt(vcpu) && ret;
6876 }
6877 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6878
6879 #ifdef CONFIG_X86_64
6880 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6881                                 unsigned long clock_type)
6882 {
6883         struct kvm_clock_pairing clock_pairing;
6884         struct timespec64 ts;
6885         u64 cycle;
6886         int ret;
6887
6888         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6889                 return -KVM_EOPNOTSUPP;
6890
6891         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6892                 return -KVM_EOPNOTSUPP;
6893
6894         clock_pairing.sec = ts.tv_sec;
6895         clock_pairing.nsec = ts.tv_nsec;
6896         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6897         clock_pairing.flags = 0;
6898
6899         ret = 0;
6900         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6901                             sizeof(struct kvm_clock_pairing)))
6902                 ret = -KVM_EFAULT;
6903
6904         return ret;
6905 }
6906 #endif
6907
6908 /*
6909  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6910  *
6911  * @apicid - apicid of vcpu to be kicked.
6912  */
6913 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6914 {
6915         struct kvm_lapic_irq lapic_irq;
6916
6917         lapic_irq.shorthand = 0;
6918         lapic_irq.dest_mode = 0;
6919         lapic_irq.level = 0;
6920         lapic_irq.dest_id = apicid;
6921         lapic_irq.msi_redir_hint = false;
6922
6923         lapic_irq.delivery_mode = APIC_DM_REMRD;
6924         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6925 }
6926
6927 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6928 {
6929         vcpu->arch.apicv_active = false;
6930         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6931 }
6932
6933 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6934 {
6935         unsigned long nr, a0, a1, a2, a3, ret;
6936         int op_64_bit;
6937
6938         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6939                 return kvm_hv_hypercall(vcpu);
6940
6941         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6942         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6943         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6944         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6945         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6946
6947         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6948
6949         op_64_bit = is_64_bit_mode(vcpu);
6950         if (!op_64_bit) {
6951                 nr &= 0xFFFFFFFF;
6952                 a0 &= 0xFFFFFFFF;
6953                 a1 &= 0xFFFFFFFF;
6954                 a2 &= 0xFFFFFFFF;
6955                 a3 &= 0xFFFFFFFF;
6956         }
6957
6958         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6959                 ret = -KVM_EPERM;
6960                 goto out;
6961         }
6962
6963         switch (nr) {
6964         case KVM_HC_VAPIC_POLL_IRQ:
6965                 ret = 0;
6966                 break;
6967         case KVM_HC_KICK_CPU:
6968                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6969                 ret = 0;
6970                 break;
6971 #ifdef CONFIG_X86_64
6972         case KVM_HC_CLOCK_PAIRING:
6973                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6974                 break;
6975         case KVM_HC_SEND_IPI:
6976                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
6977                 break;
6978 #endif
6979         default:
6980                 ret = -KVM_ENOSYS;
6981                 break;
6982         }
6983 out:
6984         if (!op_64_bit)
6985                 ret = (u32)ret;
6986         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6987
6988         ++vcpu->stat.hypercalls;
6989         return kvm_skip_emulated_instruction(vcpu);
6990 }
6991 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6992
6993 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6994 {
6995         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6996         char instruction[3];
6997         unsigned long rip = kvm_rip_read(vcpu);
6998
6999         kvm_x86_ops->patch_hypercall(vcpu, instruction);
7000
7001         return emulator_write_emulated(ctxt, rip, instruction, 3,
7002                 &ctxt->exception);
7003 }
7004
7005 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7006 {
7007         return vcpu->run->request_interrupt_window &&
7008                 likely(!pic_in_kernel(vcpu->kvm));
7009 }
7010
7011 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7012 {
7013         struct kvm_run *kvm_run = vcpu->run;
7014
7015         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7016         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7017         kvm_run->cr8 = kvm_get_cr8(vcpu);
7018         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7019         kvm_run->ready_for_interrupt_injection =
7020                 pic_in_kernel(vcpu->kvm) ||
7021                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7022 }
7023
7024 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7025 {
7026         int max_irr, tpr;
7027
7028         if (!kvm_x86_ops->update_cr8_intercept)
7029                 return;
7030
7031         if (!lapic_in_kernel(vcpu))
7032                 return;
7033
7034         if (vcpu->arch.apicv_active)
7035                 return;
7036
7037         if (!vcpu->arch.apic->vapic_addr)
7038                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7039         else
7040                 max_irr = -1;
7041
7042         if (max_irr != -1)
7043                 max_irr >>= 4;
7044
7045         tpr = kvm_lapic_get_cr8(vcpu);
7046
7047         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7048 }
7049
7050 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7051 {
7052         int r;
7053
7054         /* try to reinject previous events if any */
7055
7056         if (vcpu->arch.exception.injected)
7057                 kvm_x86_ops->queue_exception(vcpu);
7058         /*
7059          * Do not inject an NMI or interrupt if there is a pending
7060          * exception.  Exceptions and interrupts are recognized at
7061          * instruction boundaries, i.e. the start of an instruction.
7062          * Trap-like exceptions, e.g. #DB, have higher priority than
7063          * NMIs and interrupts, i.e. traps are recognized before an
7064          * NMI/interrupt that's pending on the same instruction.
7065          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7066          * priority, but are only generated (pended) during instruction
7067          * execution, i.e. a pending fault-like exception means the
7068          * fault occurred on the *previous* instruction and must be
7069          * serviced prior to recognizing any new events in order to
7070          * fully complete the previous instruction.
7071          */
7072         else if (!vcpu->arch.exception.pending) {
7073                 if (vcpu->arch.nmi_injected)
7074                         kvm_x86_ops->set_nmi(vcpu);
7075                 else if (vcpu->arch.interrupt.injected)
7076                         kvm_x86_ops->set_irq(vcpu);
7077         }
7078
7079         /*
7080          * Call check_nested_events() even if we reinjected a previous event
7081          * in order for caller to determine if it should require immediate-exit
7082          * from L2 to L1 due to pending L1 events which require exit
7083          * from L2 to L1.
7084          */
7085         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7086                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7087                 if (r != 0)
7088                         return r;
7089         }
7090
7091         /* try to inject new event if pending */
7092         if (vcpu->arch.exception.pending) {
7093                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7094                                         vcpu->arch.exception.has_error_code,
7095                                         vcpu->arch.exception.error_code);
7096
7097                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7098                 vcpu->arch.exception.pending = false;
7099                 vcpu->arch.exception.injected = true;
7100
7101                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7102                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7103                                              X86_EFLAGS_RF);
7104
7105                 if (vcpu->arch.exception.nr == DB_VECTOR &&
7106                     (vcpu->arch.dr7 & DR7_GD)) {
7107                         vcpu->arch.dr7 &= ~DR7_GD;
7108                         kvm_update_dr7(vcpu);
7109                 }
7110
7111                 kvm_x86_ops->queue_exception(vcpu);
7112         }
7113
7114         /* Don't consider new event if we re-injected an event */
7115         if (kvm_event_needs_reinjection(vcpu))
7116                 return 0;
7117
7118         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7119             kvm_x86_ops->smi_allowed(vcpu)) {
7120                 vcpu->arch.smi_pending = false;
7121                 ++vcpu->arch.smi_count;
7122                 enter_smm(vcpu);
7123         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7124                 --vcpu->arch.nmi_pending;
7125                 vcpu->arch.nmi_injected = true;
7126                 kvm_x86_ops->set_nmi(vcpu);
7127         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7128                 /*
7129                  * Because interrupts can be injected asynchronously, we are
7130                  * calling check_nested_events again here to avoid a race condition.
7131                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7132                  * proposal and current concerns.  Perhaps we should be setting
7133                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7134                  */
7135                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7136                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7137                         if (r != 0)
7138                                 return r;
7139                 }
7140                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7141                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7142                                             false);
7143                         kvm_x86_ops->set_irq(vcpu);
7144                 }
7145         }
7146
7147         return 0;
7148 }
7149
7150 static void process_nmi(struct kvm_vcpu *vcpu)
7151 {
7152         unsigned limit = 2;
7153
7154         /*
7155          * x86 is limited to one NMI running, and one NMI pending after it.
7156          * If an NMI is already in progress, limit further NMIs to just one.
7157          * Otherwise, allow two (and we'll inject the first one immediately).
7158          */
7159         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7160                 limit = 1;
7161
7162         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7163         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7164         kvm_make_request(KVM_REQ_EVENT, vcpu);
7165 }
7166
7167 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7168 {
7169         u32 flags = 0;
7170         flags |= seg->g       << 23;
7171         flags |= seg->db      << 22;
7172         flags |= seg->l       << 21;
7173         flags |= seg->avl     << 20;
7174         flags |= seg->present << 15;
7175         flags |= seg->dpl     << 13;
7176         flags |= seg->s       << 12;
7177         flags |= seg->type    << 8;
7178         return flags;
7179 }
7180
7181 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7182 {
7183         struct kvm_segment seg;
7184         int offset;
7185
7186         kvm_get_segment(vcpu, &seg, n);
7187         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7188
7189         if (n < 3)
7190                 offset = 0x7f84 + n * 12;
7191         else
7192                 offset = 0x7f2c + (n - 3) * 12;
7193
7194         put_smstate(u32, buf, offset + 8, seg.base);
7195         put_smstate(u32, buf, offset + 4, seg.limit);
7196         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7197 }
7198
7199 #ifdef CONFIG_X86_64
7200 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7201 {
7202         struct kvm_segment seg;
7203         int offset;
7204         u16 flags;
7205
7206         kvm_get_segment(vcpu, &seg, n);
7207         offset = 0x7e00 + n * 16;
7208
7209         flags = enter_smm_get_segment_flags(&seg) >> 8;
7210         put_smstate(u16, buf, offset, seg.selector);
7211         put_smstate(u16, buf, offset + 2, flags);
7212         put_smstate(u32, buf, offset + 4, seg.limit);
7213         put_smstate(u64, buf, offset + 8, seg.base);
7214 }
7215 #endif
7216
7217 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7218 {
7219         struct desc_ptr dt;
7220         struct kvm_segment seg;
7221         unsigned long val;
7222         int i;
7223
7224         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7225         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7226         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7227         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7228
7229         for (i = 0; i < 8; i++)
7230                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7231
7232         kvm_get_dr(vcpu, 6, &val);
7233         put_smstate(u32, buf, 0x7fcc, (u32)val);
7234         kvm_get_dr(vcpu, 7, &val);
7235         put_smstate(u32, buf, 0x7fc8, (u32)val);
7236
7237         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7238         put_smstate(u32, buf, 0x7fc4, seg.selector);
7239         put_smstate(u32, buf, 0x7f64, seg.base);
7240         put_smstate(u32, buf, 0x7f60, seg.limit);
7241         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7242
7243         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7244         put_smstate(u32, buf, 0x7fc0, seg.selector);
7245         put_smstate(u32, buf, 0x7f80, seg.base);
7246         put_smstate(u32, buf, 0x7f7c, seg.limit);
7247         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7248
7249         kvm_x86_ops->get_gdt(vcpu, &dt);
7250         put_smstate(u32, buf, 0x7f74, dt.address);
7251         put_smstate(u32, buf, 0x7f70, dt.size);
7252
7253         kvm_x86_ops->get_idt(vcpu, &dt);
7254         put_smstate(u32, buf, 0x7f58, dt.address);
7255         put_smstate(u32, buf, 0x7f54, dt.size);
7256
7257         for (i = 0; i < 6; i++)
7258                 enter_smm_save_seg_32(vcpu, buf, i);
7259
7260         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7261
7262         /* revision id */
7263         put_smstate(u32, buf, 0x7efc, 0x00020000);
7264         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7265 }
7266
7267 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7268 {
7269 #ifdef CONFIG_X86_64
7270         struct desc_ptr dt;
7271         struct kvm_segment seg;
7272         unsigned long val;
7273         int i;
7274
7275         for (i = 0; i < 16; i++)
7276                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7277
7278         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7279         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7280
7281         kvm_get_dr(vcpu, 6, &val);
7282         put_smstate(u64, buf, 0x7f68, val);
7283         kvm_get_dr(vcpu, 7, &val);
7284         put_smstate(u64, buf, 0x7f60, val);
7285
7286         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7287         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7288         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7289
7290         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7291
7292         /* revision id */
7293         put_smstate(u32, buf, 0x7efc, 0x00020064);
7294
7295         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7296
7297         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7298         put_smstate(u16, buf, 0x7e90, seg.selector);
7299         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7300         put_smstate(u32, buf, 0x7e94, seg.limit);
7301         put_smstate(u64, buf, 0x7e98, seg.base);
7302
7303         kvm_x86_ops->get_idt(vcpu, &dt);
7304         put_smstate(u32, buf, 0x7e84, dt.size);
7305         put_smstate(u64, buf, 0x7e88, dt.address);
7306
7307         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7308         put_smstate(u16, buf, 0x7e70, seg.selector);
7309         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7310         put_smstate(u32, buf, 0x7e74, seg.limit);
7311         put_smstate(u64, buf, 0x7e78, seg.base);
7312
7313         kvm_x86_ops->get_gdt(vcpu, &dt);
7314         put_smstate(u32, buf, 0x7e64, dt.size);
7315         put_smstate(u64, buf, 0x7e68, dt.address);
7316
7317         for (i = 0; i < 6; i++)
7318                 enter_smm_save_seg_64(vcpu, buf, i);
7319 #else
7320         WARN_ON_ONCE(1);
7321 #endif
7322 }
7323
7324 static void enter_smm(struct kvm_vcpu *vcpu)
7325 {
7326         struct kvm_segment cs, ds;
7327         struct desc_ptr dt;
7328         char buf[512];
7329         u32 cr0;
7330
7331         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7332         memset(buf, 0, 512);
7333         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7334                 enter_smm_save_state_64(vcpu, buf);
7335         else
7336                 enter_smm_save_state_32(vcpu, buf);
7337
7338         /*
7339          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7340          * vCPU state (e.g. leave guest mode) after we've saved the state into
7341          * the SMM state-save area.
7342          */
7343         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7344
7345         vcpu->arch.hflags |= HF_SMM_MASK;
7346         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7347
7348         if (kvm_x86_ops->get_nmi_mask(vcpu))
7349                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7350         else
7351                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7352
7353         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7354         kvm_rip_write(vcpu, 0x8000);
7355
7356         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7357         kvm_x86_ops->set_cr0(vcpu, cr0);
7358         vcpu->arch.cr0 = cr0;
7359
7360         kvm_x86_ops->set_cr4(vcpu, 0);
7361
7362         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7363         dt.address = dt.size = 0;
7364         kvm_x86_ops->set_idt(vcpu, &dt);
7365
7366         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7367
7368         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7369         cs.base = vcpu->arch.smbase;
7370
7371         ds.selector = 0;
7372         ds.base = 0;
7373
7374         cs.limit    = ds.limit = 0xffffffff;
7375         cs.type     = ds.type = 0x3;
7376         cs.dpl      = ds.dpl = 0;
7377         cs.db       = ds.db = 0;
7378         cs.s        = ds.s = 1;
7379         cs.l        = ds.l = 0;
7380         cs.g        = ds.g = 1;
7381         cs.avl      = ds.avl = 0;
7382         cs.present  = ds.present = 1;
7383         cs.unusable = ds.unusable = 0;
7384         cs.padding  = ds.padding = 0;
7385
7386         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7387         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7388         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7389         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7390         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7391         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7392
7393         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7394                 kvm_x86_ops->set_efer(vcpu, 0);
7395
7396         kvm_update_cpuid(vcpu);
7397         kvm_mmu_reset_context(vcpu);
7398 }
7399
7400 static void process_smi(struct kvm_vcpu *vcpu)
7401 {
7402         vcpu->arch.smi_pending = true;
7403         kvm_make_request(KVM_REQ_EVENT, vcpu);
7404 }
7405
7406 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7407 {
7408         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7409 }
7410
7411 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7412 {
7413         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7414                 return;
7415
7416         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7417
7418         if (irqchip_split(vcpu->kvm))
7419                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7420         else {
7421                 if (vcpu->arch.apicv_active)
7422                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7423                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7424         }
7425
7426         if (is_guest_mode(vcpu))
7427                 vcpu->arch.load_eoi_exitmap_pending = true;
7428         else
7429                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7430 }
7431
7432 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7433 {
7434         u64 eoi_exit_bitmap[4];
7435
7436         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7437                 return;
7438
7439         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7440                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7441         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7442 }
7443
7444 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7445                 unsigned long start, unsigned long end,
7446                 bool blockable)
7447 {
7448         unsigned long apic_address;
7449
7450         /*
7451          * The physical address of apic access page is stored in the VMCS.
7452          * Update it when it becomes invalid.
7453          */
7454         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7455         if (start <= apic_address && apic_address < end)
7456                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7457
7458         return 0;
7459 }
7460
7461 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7462 {
7463         struct page *page = NULL;
7464
7465         if (!lapic_in_kernel(vcpu))
7466                 return;
7467
7468         if (!kvm_x86_ops->set_apic_access_page_addr)
7469                 return;
7470
7471         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7472         if (is_error_page(page))
7473                 return;
7474         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7475
7476         /*
7477          * Do not pin apic access page in memory, the MMU notifier
7478          * will call us again if it is migrated or swapped out.
7479          */
7480         put_page(page);
7481 }
7482 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7483
7484 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7485 {
7486         smp_send_reschedule(vcpu->cpu);
7487 }
7488 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7489
7490 /*
7491  * Returns 1 to let vcpu_run() continue the guest execution loop without
7492  * exiting to the userspace.  Otherwise, the value will be returned to the
7493  * userspace.
7494  */
7495 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7496 {
7497         int r;
7498         bool req_int_win =
7499                 dm_request_for_irq_injection(vcpu) &&
7500                 kvm_cpu_accept_dm_intr(vcpu);
7501
7502         bool req_immediate_exit = false;
7503
7504         if (kvm_request_pending(vcpu)) {
7505                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7506                         kvm_x86_ops->get_vmcs12_pages(vcpu);
7507                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7508                         kvm_mmu_unload(vcpu);
7509                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7510                         __kvm_migrate_timers(vcpu);
7511                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7512                         kvm_gen_update_masterclock(vcpu->kvm);
7513                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7514                         kvm_gen_kvmclock_update(vcpu);
7515                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7516                         r = kvm_guest_time_update(vcpu);
7517                         if (unlikely(r))
7518                                 goto out;
7519                 }
7520                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7521                         kvm_mmu_sync_roots(vcpu);
7522                 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7523                         kvm_mmu_load_cr3(vcpu);
7524                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7525                         kvm_vcpu_flush_tlb(vcpu, true);
7526                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7527                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7528                         r = 0;
7529                         goto out;
7530                 }
7531                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7532                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7533                         vcpu->mmio_needed = 0;
7534                         r = 0;
7535                         goto out;
7536                 }
7537                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7538                         /* Page is swapped out. Do synthetic halt */
7539                         vcpu->arch.apf.halted = true;
7540                         r = 1;
7541                         goto out;
7542                 }
7543                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7544                         record_steal_time(vcpu);
7545                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7546                         process_smi(vcpu);
7547                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7548                         process_nmi(vcpu);
7549                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7550                         kvm_pmu_handle_event(vcpu);
7551                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7552                         kvm_pmu_deliver_pmi(vcpu);
7553                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7554                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7555                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7556                                      vcpu->arch.ioapic_handled_vectors)) {
7557                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7558                                 vcpu->run->eoi.vector =
7559                                                 vcpu->arch.pending_ioapic_eoi;
7560                                 r = 0;
7561                                 goto out;
7562                         }
7563                 }
7564                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7565                         vcpu_scan_ioapic(vcpu);
7566                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7567                         vcpu_load_eoi_exitmap(vcpu);
7568                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7569                         kvm_vcpu_reload_apic_access_page(vcpu);
7570                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7571                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7572                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7573                         r = 0;
7574                         goto out;
7575                 }
7576                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7577                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7578                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7579                         r = 0;
7580                         goto out;
7581                 }
7582                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7583                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7584                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7585                         r = 0;
7586                         goto out;
7587                 }
7588
7589                 /*
7590                  * KVM_REQ_HV_STIMER has to be processed after
7591                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7592                  * depend on the guest clock being up-to-date
7593                  */
7594                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7595                         kvm_hv_process_stimers(vcpu);
7596         }
7597
7598         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7599                 ++vcpu->stat.req_event;
7600                 kvm_apic_accept_events(vcpu);
7601                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7602                         r = 1;
7603                         goto out;
7604                 }
7605
7606                 if (inject_pending_event(vcpu, req_int_win) != 0)
7607                         req_immediate_exit = true;
7608                 else {
7609                         /* Enable SMI/NMI/IRQ window open exits if needed.
7610                          *
7611                          * SMIs have three cases:
7612                          * 1) They can be nested, and then there is nothing to
7613                          *    do here because RSM will cause a vmexit anyway.
7614                          * 2) There is an ISA-specific reason why SMI cannot be
7615                          *    injected, and the moment when this changes can be
7616                          *    intercepted.
7617                          * 3) Or the SMI can be pending because
7618                          *    inject_pending_event has completed the injection
7619                          *    of an IRQ or NMI from the previous vmexit, and
7620                          *    then we request an immediate exit to inject the
7621                          *    SMI.
7622                          */
7623                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7624                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7625                                         req_immediate_exit = true;
7626                         if (vcpu->arch.nmi_pending)
7627                                 kvm_x86_ops->enable_nmi_window(vcpu);
7628                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7629                                 kvm_x86_ops->enable_irq_window(vcpu);
7630                         WARN_ON(vcpu->arch.exception.pending);
7631                 }
7632
7633                 if (kvm_lapic_enabled(vcpu)) {
7634                         update_cr8_intercept(vcpu);
7635                         kvm_lapic_sync_to_vapic(vcpu);
7636                 }
7637         }
7638
7639         r = kvm_mmu_reload(vcpu);
7640         if (unlikely(r)) {
7641                 goto cancel_injection;
7642         }
7643
7644         preempt_disable();
7645
7646         kvm_x86_ops->prepare_guest_switch(vcpu);
7647
7648         /*
7649          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7650          * IPI are then delayed after guest entry, which ensures that they
7651          * result in virtual interrupt delivery.
7652          */
7653         local_irq_disable();
7654         vcpu->mode = IN_GUEST_MODE;
7655
7656         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7657
7658         /*
7659          * 1) We should set ->mode before checking ->requests.  Please see
7660          * the comment in kvm_vcpu_exiting_guest_mode().
7661          *
7662          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7663          * pairs with the memory barrier implicit in pi_test_and_set_on
7664          * (see vmx_deliver_posted_interrupt).
7665          *
7666          * 3) This also orders the write to mode from any reads to the page
7667          * tables done while the VCPU is running.  Please see the comment
7668          * in kvm_flush_remote_tlbs.
7669          */
7670         smp_mb__after_srcu_read_unlock();
7671
7672         /*
7673          * This handles the case where a posted interrupt was
7674          * notified with kvm_vcpu_kick.
7675          */
7676         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7677                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7678
7679         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7680             || need_resched() || signal_pending(current)) {
7681                 vcpu->mode = OUTSIDE_GUEST_MODE;
7682                 smp_wmb();
7683                 local_irq_enable();
7684                 preempt_enable();
7685                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7686                 r = 1;
7687                 goto cancel_injection;
7688         }
7689
7690         kvm_load_guest_xcr0(vcpu);
7691
7692         if (req_immediate_exit) {
7693                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7694                 kvm_x86_ops->request_immediate_exit(vcpu);
7695         }
7696
7697         trace_kvm_entry(vcpu->vcpu_id);
7698         if (lapic_timer_advance_ns)
7699                 wait_lapic_expire(vcpu);
7700         guest_enter_irqoff();
7701
7702         if (unlikely(vcpu->arch.switch_db_regs)) {
7703                 set_debugreg(0, 7);
7704                 set_debugreg(vcpu->arch.eff_db[0], 0);
7705                 set_debugreg(vcpu->arch.eff_db[1], 1);
7706                 set_debugreg(vcpu->arch.eff_db[2], 2);
7707                 set_debugreg(vcpu->arch.eff_db[3], 3);
7708                 set_debugreg(vcpu->arch.dr6, 6);
7709                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7710         }
7711
7712         kvm_x86_ops->run(vcpu);
7713
7714         /*
7715          * Do this here before restoring debug registers on the host.  And
7716          * since we do this before handling the vmexit, a DR access vmexit
7717          * can (a) read the correct value of the debug registers, (b) set
7718          * KVM_DEBUGREG_WONT_EXIT again.
7719          */
7720         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7721                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7722                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7723                 kvm_update_dr0123(vcpu);
7724                 kvm_update_dr6(vcpu);
7725                 kvm_update_dr7(vcpu);
7726                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7727         }
7728
7729         /*
7730          * If the guest has used debug registers, at least dr7
7731          * will be disabled while returning to the host.
7732          * If we don't have active breakpoints in the host, we don't
7733          * care about the messed up debug address registers. But if
7734          * we have some of them active, restore the old state.
7735          */
7736         if (hw_breakpoint_active())
7737                 hw_breakpoint_restore();
7738
7739         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7740
7741         vcpu->mode = OUTSIDE_GUEST_MODE;
7742         smp_wmb();
7743
7744         kvm_put_guest_xcr0(vcpu);
7745
7746         kvm_before_interrupt(vcpu);
7747         kvm_x86_ops->handle_external_intr(vcpu);
7748         kvm_after_interrupt(vcpu);
7749
7750         ++vcpu->stat.exits;
7751
7752         guest_exit_irqoff();
7753
7754         local_irq_enable();
7755         preempt_enable();
7756
7757         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7758
7759         /*
7760          * Profile KVM exit RIPs:
7761          */
7762         if (unlikely(prof_on == KVM_PROFILING)) {
7763                 unsigned long rip = kvm_rip_read(vcpu);
7764                 profile_hit(KVM_PROFILING, (void *)rip);
7765         }
7766
7767         if (unlikely(vcpu->arch.tsc_always_catchup))
7768                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7769
7770         if (vcpu->arch.apic_attention)
7771                 kvm_lapic_sync_from_vapic(vcpu);
7772
7773         vcpu->arch.gpa_available = false;
7774         r = kvm_x86_ops->handle_exit(vcpu);
7775         return r;
7776
7777 cancel_injection:
7778         kvm_x86_ops->cancel_injection(vcpu);
7779         if (unlikely(vcpu->arch.apic_attention))
7780                 kvm_lapic_sync_from_vapic(vcpu);
7781 out:
7782         return r;
7783 }
7784
7785 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7786 {
7787         if (!kvm_arch_vcpu_runnable(vcpu) &&
7788             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7789                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7790                 kvm_vcpu_block(vcpu);
7791                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7792
7793                 if (kvm_x86_ops->post_block)
7794                         kvm_x86_ops->post_block(vcpu);
7795
7796                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7797                         return 1;
7798         }
7799
7800         kvm_apic_accept_events(vcpu);
7801         switch(vcpu->arch.mp_state) {
7802         case KVM_MP_STATE_HALTED:
7803                 vcpu->arch.pv.pv_unhalted = false;
7804                 vcpu->arch.mp_state =
7805                         KVM_MP_STATE_RUNNABLE;
7806         case KVM_MP_STATE_RUNNABLE:
7807                 vcpu->arch.apf.halted = false;
7808                 break;
7809         case KVM_MP_STATE_INIT_RECEIVED:
7810                 break;
7811         default:
7812                 return -EINTR;
7813                 break;
7814         }
7815         return 1;
7816 }
7817
7818 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7819 {
7820         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7821                 kvm_x86_ops->check_nested_events(vcpu, false);
7822
7823         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7824                 !vcpu->arch.apf.halted);
7825 }
7826
7827 static int vcpu_run(struct kvm_vcpu *vcpu)
7828 {
7829         int r;
7830         struct kvm *kvm = vcpu->kvm;
7831
7832         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7833         vcpu->arch.l1tf_flush_l1d = true;
7834
7835         for (;;) {
7836                 if (kvm_vcpu_running(vcpu)) {
7837                         r = vcpu_enter_guest(vcpu);
7838                 } else {
7839                         r = vcpu_block(kvm, vcpu);
7840                 }
7841
7842                 if (r <= 0)
7843                         break;
7844
7845                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7846                 if (kvm_cpu_has_pending_timer(vcpu))
7847                         kvm_inject_pending_timer_irqs(vcpu);
7848
7849                 if (dm_request_for_irq_injection(vcpu) &&
7850                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7851                         r = 0;
7852                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7853                         ++vcpu->stat.request_irq_exits;
7854                         break;
7855                 }
7856
7857                 kvm_check_async_pf_completion(vcpu);
7858
7859                 if (signal_pending(current)) {
7860                         r = -EINTR;
7861                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7862                         ++vcpu->stat.signal_exits;
7863                         break;
7864                 }
7865                 if (need_resched()) {
7866                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7867                         cond_resched();
7868                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7869                 }
7870         }
7871
7872         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7873
7874         return r;
7875 }
7876
7877 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7878 {
7879         int r;
7880         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7881         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7882         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7883         if (r != EMULATE_DONE)
7884                 return 0;
7885         return 1;
7886 }
7887
7888 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7889 {
7890         BUG_ON(!vcpu->arch.pio.count);
7891
7892         return complete_emulated_io(vcpu);
7893 }
7894
7895 /*
7896  * Implements the following, as a state machine:
7897  *
7898  * read:
7899  *   for each fragment
7900  *     for each mmio piece in the fragment
7901  *       write gpa, len
7902  *       exit
7903  *       copy data
7904  *   execute insn
7905  *
7906  * write:
7907  *   for each fragment
7908  *     for each mmio piece in the fragment
7909  *       write gpa, len
7910  *       copy data
7911  *       exit
7912  */
7913 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7914 {
7915         struct kvm_run *run = vcpu->run;
7916         struct kvm_mmio_fragment *frag;
7917         unsigned len;
7918
7919         BUG_ON(!vcpu->mmio_needed);
7920
7921         /* Complete previous fragment */
7922         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7923         len = min(8u, frag->len);
7924         if (!vcpu->mmio_is_write)
7925                 memcpy(frag->data, run->mmio.data, len);
7926
7927         if (frag->len <= 8) {
7928                 /* Switch to the next fragment. */
7929                 frag++;
7930                 vcpu->mmio_cur_fragment++;
7931         } else {
7932                 /* Go forward to the next mmio piece. */
7933                 frag->data += len;
7934                 frag->gpa += len;
7935                 frag->len -= len;
7936         }
7937
7938         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7939                 vcpu->mmio_needed = 0;
7940
7941                 /* FIXME: return into emulator if single-stepping.  */
7942                 if (vcpu->mmio_is_write)
7943                         return 1;
7944                 vcpu->mmio_read_completed = 1;
7945                 return complete_emulated_io(vcpu);
7946         }
7947
7948         run->exit_reason = KVM_EXIT_MMIO;
7949         run->mmio.phys_addr = frag->gpa;
7950         if (vcpu->mmio_is_write)
7951                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7952         run->mmio.len = min(8u, frag->len);
7953         run->mmio.is_write = vcpu->mmio_is_write;
7954         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7955         return 0;
7956 }
7957
7958 /* Swap (qemu) user FPU context for the guest FPU context. */
7959 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7960 {
7961         preempt_disable();
7962         copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
7963         /* PKRU is separately restored in kvm_x86_ops->run.  */
7964         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7965                                 ~XFEATURE_MASK_PKRU);
7966         preempt_enable();
7967         trace_kvm_fpu(1);
7968 }
7969
7970 /* When vcpu_run ends, restore user space FPU context. */
7971 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7972 {
7973         preempt_disable();
7974         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7975         copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
7976         preempt_enable();
7977         ++vcpu->stat.fpu_reload;
7978         trace_kvm_fpu(0);
7979 }
7980
7981 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7982 {
7983         int r;
7984
7985         vcpu_load(vcpu);
7986         kvm_sigset_activate(vcpu);
7987         kvm_load_guest_fpu(vcpu);
7988
7989         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7990                 if (kvm_run->immediate_exit) {
7991                         r = -EINTR;
7992                         goto out;
7993                 }
7994                 kvm_vcpu_block(vcpu);
7995                 kvm_apic_accept_events(vcpu);
7996                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7997                 r = -EAGAIN;
7998                 if (signal_pending(current)) {
7999                         r = -EINTR;
8000                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8001                         ++vcpu->stat.signal_exits;
8002                 }
8003                 goto out;
8004         }
8005
8006         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8007                 r = -EINVAL;
8008                 goto out;
8009         }
8010
8011         if (vcpu->run->kvm_dirty_regs) {
8012                 r = sync_regs(vcpu);
8013                 if (r != 0)
8014                         goto out;
8015         }
8016
8017         /* re-sync apic's tpr */
8018         if (!lapic_in_kernel(vcpu)) {
8019                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8020                         r = -EINVAL;
8021                         goto out;
8022                 }
8023         }
8024
8025         if (unlikely(vcpu->arch.complete_userspace_io)) {
8026                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8027                 vcpu->arch.complete_userspace_io = NULL;
8028                 r = cui(vcpu);
8029                 if (r <= 0)
8030                         goto out;
8031         } else
8032                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8033
8034         if (kvm_run->immediate_exit)
8035                 r = -EINTR;
8036         else
8037                 r = vcpu_run(vcpu);
8038
8039 out:
8040         kvm_put_guest_fpu(vcpu);
8041         if (vcpu->run->kvm_valid_regs)
8042                 store_regs(vcpu);
8043         post_kvm_run_save(vcpu);
8044         kvm_sigset_deactivate(vcpu);
8045
8046         vcpu_put(vcpu);
8047         return r;
8048 }
8049
8050 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8051 {
8052         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8053                 /*
8054                  * We are here if userspace calls get_regs() in the middle of
8055                  * instruction emulation. Registers state needs to be copied
8056                  * back from emulation context to vcpu. Userspace shouldn't do
8057                  * that usually, but some bad designed PV devices (vmware
8058                  * backdoor interface) need this to work
8059                  */
8060                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8061                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8062         }
8063         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
8064         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
8065         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
8066         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
8067         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
8068         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
8069         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8070         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
8071 #ifdef CONFIG_X86_64
8072         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
8073         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
8074         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
8075         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
8076         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
8077         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
8078         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
8079         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
8080 #endif
8081
8082         regs->rip = kvm_rip_read(vcpu);
8083         regs->rflags = kvm_get_rflags(vcpu);
8084 }
8085
8086 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8087 {
8088         vcpu_load(vcpu);
8089         __get_regs(vcpu, regs);
8090         vcpu_put(vcpu);
8091         return 0;
8092 }
8093
8094 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8095 {
8096         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8097         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8098
8099         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
8100         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
8101         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
8102         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
8103         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
8104         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
8105         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
8106         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
8107 #ifdef CONFIG_X86_64
8108         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
8109         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
8110         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
8111         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
8112         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
8113         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
8114         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
8115         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
8116 #endif
8117
8118         kvm_rip_write(vcpu, regs->rip);
8119         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8120
8121         vcpu->arch.exception.pending = false;
8122
8123         kvm_make_request(KVM_REQ_EVENT, vcpu);
8124 }
8125
8126 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8127 {
8128         vcpu_load(vcpu);
8129         __set_regs(vcpu, regs);
8130         vcpu_put(vcpu);
8131         return 0;
8132 }
8133
8134 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8135 {
8136         struct kvm_segment cs;
8137
8138         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8139         *db = cs.db;
8140         *l = cs.l;
8141 }
8142 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8143
8144 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8145 {
8146         struct desc_ptr dt;
8147
8148         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8149         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8150         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8151         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8152         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8153         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8154
8155         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8156         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8157
8158         kvm_x86_ops->get_idt(vcpu, &dt);
8159         sregs->idt.limit = dt.size;
8160         sregs->idt.base = dt.address;
8161         kvm_x86_ops->get_gdt(vcpu, &dt);
8162         sregs->gdt.limit = dt.size;
8163         sregs->gdt.base = dt.address;
8164
8165         sregs->cr0 = kvm_read_cr0(vcpu);
8166         sregs->cr2 = vcpu->arch.cr2;
8167         sregs->cr3 = kvm_read_cr3(vcpu);
8168         sregs->cr4 = kvm_read_cr4(vcpu);
8169         sregs->cr8 = kvm_get_cr8(vcpu);
8170         sregs->efer = vcpu->arch.efer;
8171         sregs->apic_base = kvm_get_apic_base(vcpu);
8172
8173         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
8174
8175         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8176                 set_bit(vcpu->arch.interrupt.nr,
8177                         (unsigned long *)sregs->interrupt_bitmap);
8178 }
8179
8180 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8181                                   struct kvm_sregs *sregs)
8182 {
8183         vcpu_load(vcpu);
8184         __get_sregs(vcpu, sregs);
8185         vcpu_put(vcpu);
8186         return 0;
8187 }
8188
8189 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8190                                     struct kvm_mp_state *mp_state)
8191 {
8192         vcpu_load(vcpu);
8193
8194         kvm_apic_accept_events(vcpu);
8195         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8196                                         vcpu->arch.pv.pv_unhalted)
8197                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8198         else
8199                 mp_state->mp_state = vcpu->arch.mp_state;
8200
8201         vcpu_put(vcpu);
8202         return 0;
8203 }
8204
8205 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8206                                     struct kvm_mp_state *mp_state)
8207 {
8208         int ret = -EINVAL;
8209
8210         vcpu_load(vcpu);
8211
8212         if (!lapic_in_kernel(vcpu) &&
8213             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8214                 goto out;
8215
8216         /* INITs are latched while in SMM */
8217         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8218             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8219              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8220                 goto out;
8221
8222         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8223                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8224                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8225         } else
8226                 vcpu->arch.mp_state = mp_state->mp_state;
8227         kvm_make_request(KVM_REQ_EVENT, vcpu);
8228
8229         ret = 0;
8230 out:
8231         vcpu_put(vcpu);
8232         return ret;
8233 }
8234
8235 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8236                     int reason, bool has_error_code, u32 error_code)
8237 {
8238         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8239         int ret;
8240
8241         init_emulate_ctxt(vcpu);
8242
8243         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8244                                    has_error_code, error_code);
8245
8246         if (ret)
8247                 return EMULATE_FAIL;
8248
8249         kvm_rip_write(vcpu, ctxt->eip);
8250         kvm_set_rflags(vcpu, ctxt->eflags);
8251         kvm_make_request(KVM_REQ_EVENT, vcpu);
8252         return EMULATE_DONE;
8253 }
8254 EXPORT_SYMBOL_GPL(kvm_task_switch);
8255
8256 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8257 {
8258         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8259                         (sregs->cr4 & X86_CR4_OSXSAVE))
8260                 return  -EINVAL;
8261
8262         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8263                 /*
8264                  * When EFER.LME and CR0.PG are set, the processor is in
8265                  * 64-bit mode (though maybe in a 32-bit code segment).
8266                  * CR4.PAE and EFER.LMA must be set.
8267                  */
8268                 if (!(sregs->cr4 & X86_CR4_PAE)
8269                     || !(sregs->efer & EFER_LMA))
8270                         return -EINVAL;
8271         } else {
8272                 /*
8273                  * Not in 64-bit mode: EFER.LMA is clear and the code
8274                  * segment cannot be 64-bit.
8275                  */
8276                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8277                         return -EINVAL;
8278         }
8279
8280         return 0;
8281 }
8282
8283 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8284 {
8285         struct msr_data apic_base_msr;
8286         int mmu_reset_needed = 0;
8287         int cpuid_update_needed = 0;
8288         int pending_vec, max_bits, idx;
8289         struct desc_ptr dt;
8290         int ret = -EINVAL;
8291
8292         if (kvm_valid_sregs(vcpu, sregs))
8293                 goto out;
8294
8295         apic_base_msr.data = sregs->apic_base;
8296         apic_base_msr.host_initiated = true;
8297         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8298                 goto out;
8299
8300         dt.size = sregs->idt.limit;
8301         dt.address = sregs->idt.base;
8302         kvm_x86_ops->set_idt(vcpu, &dt);
8303         dt.size = sregs->gdt.limit;
8304         dt.address = sregs->gdt.base;
8305         kvm_x86_ops->set_gdt(vcpu, &dt);
8306
8307         vcpu->arch.cr2 = sregs->cr2;
8308         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8309         vcpu->arch.cr3 = sregs->cr3;
8310         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8311
8312         kvm_set_cr8(vcpu, sregs->cr8);
8313
8314         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8315         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8316
8317         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8318         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8319         vcpu->arch.cr0 = sregs->cr0;
8320
8321         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8322         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8323                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8324         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8325         if (cpuid_update_needed)
8326                 kvm_update_cpuid(vcpu);
8327
8328         idx = srcu_read_lock(&vcpu->kvm->srcu);
8329         if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8330                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8331                 mmu_reset_needed = 1;
8332         }
8333         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8334
8335         if (mmu_reset_needed)
8336                 kvm_mmu_reset_context(vcpu);
8337
8338         max_bits = KVM_NR_INTERRUPTS;
8339         pending_vec = find_first_bit(
8340                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8341         if (pending_vec < max_bits) {
8342                 kvm_queue_interrupt(vcpu, pending_vec, false);
8343                 pr_debug("Set back pending irq %d\n", pending_vec);
8344         }
8345
8346         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8347         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8348         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8349         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8350         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8351         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8352
8353         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8354         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8355
8356         update_cr8_intercept(vcpu);
8357
8358         /* Older userspace won't unhalt the vcpu on reset. */
8359         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8360             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8361             !is_protmode(vcpu))
8362                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8363
8364         kvm_make_request(KVM_REQ_EVENT, vcpu);
8365
8366         ret = 0;
8367 out:
8368         return ret;
8369 }
8370
8371 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8372                                   struct kvm_sregs *sregs)
8373 {
8374         int ret;
8375
8376         vcpu_load(vcpu);
8377         ret = __set_sregs(vcpu, sregs);
8378         vcpu_put(vcpu);
8379         return ret;
8380 }
8381
8382 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8383                                         struct kvm_guest_debug *dbg)
8384 {
8385         unsigned long rflags;
8386         int i, r;
8387
8388         vcpu_load(vcpu);
8389
8390         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8391                 r = -EBUSY;
8392                 if (vcpu->arch.exception.pending)
8393                         goto out;
8394                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8395                         kvm_queue_exception(vcpu, DB_VECTOR);
8396                 else
8397                         kvm_queue_exception(vcpu, BP_VECTOR);
8398         }
8399
8400         /*
8401          * Read rflags as long as potentially injected trace flags are still
8402          * filtered out.
8403          */
8404         rflags = kvm_get_rflags(vcpu);
8405
8406         vcpu->guest_debug = dbg->control;
8407         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8408                 vcpu->guest_debug = 0;
8409
8410         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8411                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8412                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8413                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8414         } else {
8415                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8416                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8417         }
8418         kvm_update_dr7(vcpu);
8419
8420         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8421                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8422                         get_segment_base(vcpu, VCPU_SREG_CS);
8423
8424         /*
8425          * Trigger an rflags update that will inject or remove the trace
8426          * flags.
8427          */
8428         kvm_set_rflags(vcpu, rflags);
8429
8430         kvm_x86_ops->update_bp_intercept(vcpu);
8431
8432         r = 0;
8433
8434 out:
8435         vcpu_put(vcpu);
8436         return r;
8437 }
8438
8439 /*
8440  * Translate a guest virtual address to a guest physical address.
8441  */
8442 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8443                                     struct kvm_translation *tr)
8444 {
8445         unsigned long vaddr = tr->linear_address;
8446         gpa_t gpa;
8447         int idx;
8448
8449         vcpu_load(vcpu);
8450
8451         idx = srcu_read_lock(&vcpu->kvm->srcu);
8452         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8453         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8454         tr->physical_address = gpa;
8455         tr->valid = gpa != UNMAPPED_GVA;
8456         tr->writeable = 1;
8457         tr->usermode = 0;
8458
8459         vcpu_put(vcpu);
8460         return 0;
8461 }
8462
8463 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8464 {
8465         struct fxregs_state *fxsave;
8466
8467         vcpu_load(vcpu);
8468
8469         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8470         memcpy(fpu->fpr, fxsave->st_space, 128);
8471         fpu->fcw = fxsave->cwd;
8472         fpu->fsw = fxsave->swd;
8473         fpu->ftwx = fxsave->twd;
8474         fpu->last_opcode = fxsave->fop;
8475         fpu->last_ip = fxsave->rip;
8476         fpu->last_dp = fxsave->rdp;
8477         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
8478
8479         vcpu_put(vcpu);
8480         return 0;
8481 }
8482
8483 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8484 {
8485         struct fxregs_state *fxsave;
8486
8487         vcpu_load(vcpu);
8488
8489         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8490
8491         memcpy(fxsave->st_space, fpu->fpr, 128);
8492         fxsave->cwd = fpu->fcw;
8493         fxsave->swd = fpu->fsw;
8494         fxsave->twd = fpu->ftwx;
8495         fxsave->fop = fpu->last_opcode;
8496         fxsave->rip = fpu->last_ip;
8497         fxsave->rdp = fpu->last_dp;
8498         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
8499
8500         vcpu_put(vcpu);
8501         return 0;
8502 }
8503
8504 static void store_regs(struct kvm_vcpu *vcpu)
8505 {
8506         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8507
8508         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8509                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8510
8511         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8512                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8513
8514         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8515                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8516                                 vcpu, &vcpu->run->s.regs.events);
8517 }
8518
8519 static int sync_regs(struct kvm_vcpu *vcpu)
8520 {
8521         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8522                 return -EINVAL;
8523
8524         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8525                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8526                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8527         }
8528         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8529                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8530                         return -EINVAL;
8531                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8532         }
8533         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8534                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8535                                 vcpu, &vcpu->run->s.regs.events))
8536                         return -EINVAL;
8537                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8538         }
8539
8540         return 0;
8541 }
8542
8543 static void fx_init(struct kvm_vcpu *vcpu)
8544 {
8545         fpstate_init(&vcpu->arch.guest_fpu.state);
8546         if (boot_cpu_has(X86_FEATURE_XSAVES))
8547                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8548                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8549
8550         /*
8551          * Ensure guest xcr0 is valid for loading
8552          */
8553         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8554
8555         vcpu->arch.cr0 |= X86_CR0_ET;
8556 }
8557
8558 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8559 {
8560         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8561
8562         kvmclock_reset(vcpu);
8563
8564         kvm_x86_ops->vcpu_free(vcpu);
8565         free_cpumask_var(wbinvd_dirty_mask);
8566 }
8567
8568 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8569                                                 unsigned int id)
8570 {
8571         struct kvm_vcpu *vcpu;
8572
8573         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8574                 printk_once(KERN_WARNING
8575                 "kvm: SMP vm created on host with unstable TSC; "
8576                 "guest TSC will not be reliable\n");
8577
8578         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8579
8580         return vcpu;
8581 }
8582
8583 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8584 {
8585         kvm_vcpu_mtrr_init(vcpu);
8586         vcpu_load(vcpu);
8587         kvm_vcpu_reset(vcpu, false);
8588         kvm_init_mmu(vcpu, false);
8589         vcpu_put(vcpu);
8590         return 0;
8591 }
8592
8593 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8594 {
8595         struct msr_data msr;
8596         struct kvm *kvm = vcpu->kvm;
8597
8598         kvm_hv_vcpu_postcreate(vcpu);
8599
8600         if (mutex_lock_killable(&vcpu->mutex))
8601                 return;
8602         vcpu_load(vcpu);
8603         msr.data = 0x0;
8604         msr.index = MSR_IA32_TSC;
8605         msr.host_initiated = true;
8606         kvm_write_tsc(vcpu, &msr);
8607         vcpu_put(vcpu);
8608         mutex_unlock(&vcpu->mutex);
8609
8610         if (!kvmclock_periodic_sync)
8611                 return;
8612
8613         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8614                                         KVMCLOCK_SYNC_PERIOD);
8615 }
8616
8617 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8618 {
8619         vcpu->arch.apf.msr_val = 0;
8620
8621         vcpu_load(vcpu);
8622         kvm_mmu_unload(vcpu);
8623         vcpu_put(vcpu);
8624
8625         kvm_x86_ops->vcpu_free(vcpu);
8626 }
8627
8628 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8629 {
8630         kvm_lapic_reset(vcpu, init_event);
8631
8632         vcpu->arch.hflags = 0;
8633
8634         vcpu->arch.smi_pending = 0;
8635         vcpu->arch.smi_count = 0;
8636         atomic_set(&vcpu->arch.nmi_queued, 0);
8637         vcpu->arch.nmi_pending = 0;
8638         vcpu->arch.nmi_injected = false;
8639         kvm_clear_interrupt_queue(vcpu);
8640         kvm_clear_exception_queue(vcpu);
8641         vcpu->arch.exception.pending = false;
8642
8643         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8644         kvm_update_dr0123(vcpu);
8645         vcpu->arch.dr6 = DR6_INIT;
8646         kvm_update_dr6(vcpu);
8647         vcpu->arch.dr7 = DR7_FIXED_1;
8648         kvm_update_dr7(vcpu);
8649
8650         vcpu->arch.cr2 = 0;
8651
8652         kvm_make_request(KVM_REQ_EVENT, vcpu);
8653         vcpu->arch.apf.msr_val = 0;
8654         vcpu->arch.st.msr_val = 0;
8655
8656         kvmclock_reset(vcpu);
8657
8658         kvm_clear_async_pf_completion_queue(vcpu);
8659         kvm_async_pf_hash_reset(vcpu);
8660         vcpu->arch.apf.halted = false;
8661
8662         if (kvm_mpx_supported()) {
8663                 void *mpx_state_buffer;
8664
8665                 /*
8666                  * To avoid have the INIT path from kvm_apic_has_events() that be
8667                  * called with loaded FPU and does not let userspace fix the state.
8668                  */
8669                 if (init_event)
8670                         kvm_put_guest_fpu(vcpu);
8671                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8672                                         XFEATURE_MASK_BNDREGS);
8673                 if (mpx_state_buffer)
8674                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8675                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8676                                         XFEATURE_MASK_BNDCSR);
8677                 if (mpx_state_buffer)
8678                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8679                 if (init_event)
8680                         kvm_load_guest_fpu(vcpu);
8681         }
8682
8683         if (!init_event) {
8684                 kvm_pmu_reset(vcpu);
8685                 vcpu->arch.smbase = 0x30000;
8686
8687                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8688                 vcpu->arch.msr_misc_features_enables = 0;
8689
8690                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8691         }
8692
8693         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8694         vcpu->arch.regs_avail = ~0;
8695         vcpu->arch.regs_dirty = ~0;
8696
8697         vcpu->arch.ia32_xss = 0;
8698
8699         kvm_x86_ops->vcpu_reset(vcpu, init_event);
8700 }
8701
8702 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8703 {
8704         struct kvm_segment cs;
8705
8706         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8707         cs.selector = vector << 8;
8708         cs.base = vector << 12;
8709         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8710         kvm_rip_write(vcpu, 0);
8711 }
8712
8713 int kvm_arch_hardware_enable(void)
8714 {
8715         struct kvm *kvm;
8716         struct kvm_vcpu *vcpu;
8717         int i;
8718         int ret;
8719         u64 local_tsc;
8720         u64 max_tsc = 0;
8721         bool stable, backwards_tsc = false;
8722
8723         kvm_shared_msr_cpu_online();
8724         ret = kvm_x86_ops->hardware_enable();
8725         if (ret != 0)
8726                 return ret;
8727
8728         local_tsc = rdtsc();
8729         stable = !kvm_check_tsc_unstable();
8730         list_for_each_entry(kvm, &vm_list, vm_list) {
8731                 kvm_for_each_vcpu(i, vcpu, kvm) {
8732                         if (!stable && vcpu->cpu == smp_processor_id())
8733                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8734                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8735                                 backwards_tsc = true;
8736                                 if (vcpu->arch.last_host_tsc > max_tsc)
8737                                         max_tsc = vcpu->arch.last_host_tsc;
8738                         }
8739                 }
8740         }
8741
8742         /*
8743          * Sometimes, even reliable TSCs go backwards.  This happens on
8744          * platforms that reset TSC during suspend or hibernate actions, but
8745          * maintain synchronization.  We must compensate.  Fortunately, we can
8746          * detect that condition here, which happens early in CPU bringup,
8747          * before any KVM threads can be running.  Unfortunately, we can't
8748          * bring the TSCs fully up to date with real time, as we aren't yet far
8749          * enough into CPU bringup that we know how much real time has actually
8750          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8751          * variables that haven't been updated yet.
8752          *
8753          * So we simply find the maximum observed TSC above, then record the
8754          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8755          * the adjustment will be applied.  Note that we accumulate
8756          * adjustments, in case multiple suspend cycles happen before some VCPU
8757          * gets a chance to run again.  In the event that no KVM threads get a
8758          * chance to run, we will miss the entire elapsed period, as we'll have
8759          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8760          * loose cycle time.  This isn't too big a deal, since the loss will be
8761          * uniform across all VCPUs (not to mention the scenario is extremely
8762          * unlikely). It is possible that a second hibernate recovery happens
8763          * much faster than a first, causing the observed TSC here to be
8764          * smaller; this would require additional padding adjustment, which is
8765          * why we set last_host_tsc to the local tsc observed here.
8766          *
8767          * N.B. - this code below runs only on platforms with reliable TSC,
8768          * as that is the only way backwards_tsc is set above.  Also note
8769          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8770          * have the same delta_cyc adjustment applied if backwards_tsc
8771          * is detected.  Note further, this adjustment is only done once,
8772          * as we reset last_host_tsc on all VCPUs to stop this from being
8773          * called multiple times (one for each physical CPU bringup).
8774          *
8775          * Platforms with unreliable TSCs don't have to deal with this, they
8776          * will be compensated by the logic in vcpu_load, which sets the TSC to
8777          * catchup mode.  This will catchup all VCPUs to real time, but cannot
8778          * guarantee that they stay in perfect synchronization.
8779          */
8780         if (backwards_tsc) {
8781                 u64 delta_cyc = max_tsc - local_tsc;
8782                 list_for_each_entry(kvm, &vm_list, vm_list) {
8783                         kvm->arch.backwards_tsc_observed = true;
8784                         kvm_for_each_vcpu(i, vcpu, kvm) {
8785                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8786                                 vcpu->arch.last_host_tsc = local_tsc;
8787                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8788                         }
8789
8790                         /*
8791                          * We have to disable TSC offset matching.. if you were
8792                          * booting a VM while issuing an S4 host suspend....
8793                          * you may have some problem.  Solving this issue is
8794                          * left as an exercise to the reader.
8795                          */
8796                         kvm->arch.last_tsc_nsec = 0;
8797                         kvm->arch.last_tsc_write = 0;
8798                 }
8799
8800         }
8801         return 0;
8802 }
8803
8804 void kvm_arch_hardware_disable(void)
8805 {
8806         kvm_x86_ops->hardware_disable();
8807         drop_user_return_notifiers();
8808 }
8809
8810 int kvm_arch_hardware_setup(void)
8811 {
8812         int r;
8813
8814         r = kvm_x86_ops->hardware_setup();
8815         if (r != 0)
8816                 return r;
8817
8818         if (kvm_has_tsc_control) {
8819                 /*
8820                  * Make sure the user can only configure tsc_khz values that
8821                  * fit into a signed integer.
8822                  * A min value is not calculated because it will always
8823                  * be 1 on all machines.
8824                  */
8825                 u64 max = min(0x7fffffffULL,
8826                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8827                 kvm_max_guest_tsc_khz = max;
8828
8829                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8830         }
8831
8832         kvm_init_msr_list();
8833         return 0;
8834 }
8835
8836 void kvm_arch_hardware_unsetup(void)
8837 {
8838         kvm_x86_ops->hardware_unsetup();
8839 }
8840
8841 void kvm_arch_check_processor_compat(void *rtn)
8842 {
8843         kvm_x86_ops->check_processor_compatibility(rtn);
8844 }
8845
8846 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8847 {
8848         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8849 }
8850 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8851
8852 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8853 {
8854         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8855 }
8856
8857 struct static_key kvm_no_apic_vcpu __read_mostly;
8858 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8859
8860 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8861 {
8862         struct page *page;
8863         int r;
8864
8865         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8866         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8867         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8868                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8869         else
8870                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8871
8872         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8873         if (!page) {
8874                 r = -ENOMEM;
8875                 goto fail;
8876         }
8877         vcpu->arch.pio_data = page_address(page);
8878
8879         kvm_set_tsc_khz(vcpu, max_tsc_khz);
8880
8881         r = kvm_mmu_create(vcpu);
8882         if (r < 0)
8883                 goto fail_free_pio_data;
8884
8885         if (irqchip_in_kernel(vcpu->kvm)) {
8886                 r = kvm_create_lapic(vcpu);
8887                 if (r < 0)
8888                         goto fail_mmu_destroy;
8889         } else
8890                 static_key_slow_inc(&kvm_no_apic_vcpu);
8891
8892         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8893                                        GFP_KERNEL);
8894         if (!vcpu->arch.mce_banks) {
8895                 r = -ENOMEM;
8896                 goto fail_free_lapic;
8897         }
8898         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8899
8900         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8901                 r = -ENOMEM;
8902                 goto fail_free_mce_banks;
8903         }
8904
8905         fx_init(vcpu);
8906
8907         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8908
8909         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8910
8911         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8912
8913         kvm_async_pf_hash_reset(vcpu);
8914         kvm_pmu_init(vcpu);
8915
8916         vcpu->arch.pending_external_vector = -1;
8917         vcpu->arch.preempted_in_kernel = false;
8918
8919         kvm_hv_vcpu_init(vcpu);
8920
8921         return 0;
8922
8923 fail_free_mce_banks:
8924         kfree(vcpu->arch.mce_banks);
8925 fail_free_lapic:
8926         kvm_free_lapic(vcpu);
8927 fail_mmu_destroy:
8928         kvm_mmu_destroy(vcpu);
8929 fail_free_pio_data:
8930         free_page((unsigned long)vcpu->arch.pio_data);
8931 fail:
8932         return r;
8933 }
8934
8935 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8936 {
8937         int idx;
8938
8939         kvm_hv_vcpu_uninit(vcpu);
8940         kvm_pmu_destroy(vcpu);
8941         kfree(vcpu->arch.mce_banks);
8942         kvm_free_lapic(vcpu);
8943         idx = srcu_read_lock(&vcpu->kvm->srcu);
8944         kvm_mmu_destroy(vcpu);
8945         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8946         free_page((unsigned long)vcpu->arch.pio_data);
8947         if (!lapic_in_kernel(vcpu))
8948                 static_key_slow_dec(&kvm_no_apic_vcpu);
8949 }
8950
8951 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8952 {
8953         vcpu->arch.l1tf_flush_l1d = true;
8954         kvm_x86_ops->sched_in(vcpu, cpu);
8955 }
8956
8957 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8958 {
8959         if (type)
8960                 return -EINVAL;
8961
8962         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8963         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8964         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8965         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8966         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8967
8968         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8969         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8970         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8971         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8972                 &kvm->arch.irq_sources_bitmap);
8973
8974         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8975         mutex_init(&kvm->arch.apic_map_lock);
8976         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8977
8978         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8979         pvclock_update_vm_gtod_copy(kvm);
8980
8981         kvm->arch.guest_can_read_msr_platform_info = true;
8982
8983         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8984         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8985
8986         kvm_hv_init_vm(kvm);
8987         kvm_page_track_init(kvm);
8988         kvm_mmu_init_vm(kvm);
8989
8990         if (kvm_x86_ops->vm_init)
8991                 return kvm_x86_ops->vm_init(kvm);
8992
8993         return 0;
8994 }
8995
8996 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8997 {
8998         vcpu_load(vcpu);
8999         kvm_mmu_unload(vcpu);
9000         vcpu_put(vcpu);
9001 }
9002
9003 static void kvm_free_vcpus(struct kvm *kvm)
9004 {
9005         unsigned int i;
9006         struct kvm_vcpu *vcpu;
9007
9008         /*
9009          * Unpin any mmu pages first.
9010          */
9011         kvm_for_each_vcpu(i, vcpu, kvm) {
9012                 kvm_clear_async_pf_completion_queue(vcpu);
9013                 kvm_unload_vcpu_mmu(vcpu);
9014         }
9015         kvm_for_each_vcpu(i, vcpu, kvm)
9016                 kvm_arch_vcpu_free(vcpu);
9017
9018         mutex_lock(&kvm->lock);
9019         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9020                 kvm->vcpus[i] = NULL;
9021
9022         atomic_set(&kvm->online_vcpus, 0);
9023         mutex_unlock(&kvm->lock);
9024 }
9025
9026 void kvm_arch_sync_events(struct kvm *kvm)
9027 {
9028         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9029         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9030         kvm_free_pit(kvm);
9031 }
9032
9033 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9034 {
9035         int i, r;
9036         unsigned long hva;
9037         struct kvm_memslots *slots = kvm_memslots(kvm);
9038         struct kvm_memory_slot *slot, old;
9039
9040         /* Called with kvm->slots_lock held.  */
9041         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9042                 return -EINVAL;
9043
9044         slot = id_to_memslot(slots, id);
9045         if (size) {
9046                 if (slot->npages)
9047                         return -EEXIST;
9048
9049                 /*
9050                  * MAP_SHARED to prevent internal slot pages from being moved
9051                  * by fork()/COW.
9052                  */
9053                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9054                               MAP_SHARED | MAP_ANONYMOUS, 0);
9055                 if (IS_ERR((void *)hva))
9056                         return PTR_ERR((void *)hva);
9057         } else {
9058                 if (!slot->npages)
9059                         return 0;
9060
9061                 hva = 0;
9062         }
9063
9064         old = *slot;
9065         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9066                 struct kvm_userspace_memory_region m;
9067
9068                 m.slot = id | (i << 16);
9069                 m.flags = 0;
9070                 m.guest_phys_addr = gpa;
9071                 m.userspace_addr = hva;
9072                 m.memory_size = size;
9073                 r = __kvm_set_memory_region(kvm, &m);
9074                 if (r < 0)
9075                         return r;
9076         }
9077
9078         if (!size)
9079                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9080
9081         return 0;
9082 }
9083 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9084
9085 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9086 {
9087         int r;
9088
9089         mutex_lock(&kvm->slots_lock);
9090         r = __x86_set_memory_region(kvm, id, gpa, size);
9091         mutex_unlock(&kvm->slots_lock);
9092
9093         return r;
9094 }
9095 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9096
9097 void kvm_arch_destroy_vm(struct kvm *kvm)
9098 {
9099         if (current->mm == kvm->mm) {
9100                 /*
9101                  * Free memory regions allocated on behalf of userspace,
9102                  * unless the the memory map has changed due to process exit
9103                  * or fd copying.
9104                  */
9105                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9106                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9107                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9108         }
9109         if (kvm_x86_ops->vm_destroy)
9110                 kvm_x86_ops->vm_destroy(kvm);
9111         kvm_pic_destroy(kvm);
9112         kvm_ioapic_destroy(kvm);
9113         kvm_free_vcpus(kvm);
9114         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9115         kvm_mmu_uninit_vm(kvm);
9116         kvm_page_track_cleanup(kvm);
9117         kvm_hv_destroy_vm(kvm);
9118 }
9119
9120 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9121                            struct kvm_memory_slot *dont)
9122 {
9123         int i;
9124
9125         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9126                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9127                         kvfree(free->arch.rmap[i]);
9128                         free->arch.rmap[i] = NULL;
9129                 }
9130                 if (i == 0)
9131                         continue;
9132
9133                 if (!dont || free->arch.lpage_info[i - 1] !=
9134                              dont->arch.lpage_info[i - 1]) {
9135                         kvfree(free->arch.lpage_info[i - 1]);
9136                         free->arch.lpage_info[i - 1] = NULL;
9137                 }
9138         }
9139
9140         kvm_page_track_free_memslot(free, dont);
9141 }
9142
9143 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9144                             unsigned long npages)
9145 {
9146         int i;
9147
9148         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9149                 struct kvm_lpage_info *linfo;
9150                 unsigned long ugfn;
9151                 int lpages;
9152                 int level = i + 1;
9153
9154                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9155                                       slot->base_gfn, level) + 1;
9156
9157                 slot->arch.rmap[i] =
9158                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9159                                  GFP_KERNEL);
9160                 if (!slot->arch.rmap[i])
9161                         goto out_free;
9162                 if (i == 0)
9163                         continue;
9164
9165                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL);
9166                 if (!linfo)
9167                         goto out_free;
9168
9169                 slot->arch.lpage_info[i - 1] = linfo;
9170
9171                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9172                         linfo[0].disallow_lpage = 1;
9173                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9174                         linfo[lpages - 1].disallow_lpage = 1;
9175                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9176                 /*
9177                  * If the gfn and userspace address are not aligned wrt each
9178                  * other, or if explicitly asked to, disable large page
9179                  * support for this slot
9180                  */
9181                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9182                     !kvm_largepages_enabled()) {
9183                         unsigned long j;
9184
9185                         for (j = 0; j < lpages; ++j)
9186                                 linfo[j].disallow_lpage = 1;
9187                 }
9188         }
9189
9190         if (kvm_page_track_create_memslot(slot, npages))
9191                 goto out_free;
9192
9193         return 0;
9194
9195 out_free:
9196         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9197                 kvfree(slot->arch.rmap[i]);
9198                 slot->arch.rmap[i] = NULL;
9199                 if (i == 0)
9200                         continue;
9201
9202                 kvfree(slot->arch.lpage_info[i - 1]);
9203                 slot->arch.lpage_info[i - 1] = NULL;
9204         }
9205         return -ENOMEM;
9206 }
9207
9208 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
9209 {
9210         /*
9211          * memslots->generation has been incremented.
9212          * mmio generation may have reached its maximum value.
9213          */
9214         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
9215 }
9216
9217 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9218                                 struct kvm_memory_slot *memslot,
9219                                 const struct kvm_userspace_memory_region *mem,
9220                                 enum kvm_mr_change change)
9221 {
9222         return 0;
9223 }
9224
9225 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9226                                      struct kvm_memory_slot *new)
9227 {
9228         /* Still write protect RO slot */
9229         if (new->flags & KVM_MEM_READONLY) {
9230                 kvm_mmu_slot_remove_write_access(kvm, new);
9231                 return;
9232         }
9233
9234         /*
9235          * Call kvm_x86_ops dirty logging hooks when they are valid.
9236          *
9237          * kvm_x86_ops->slot_disable_log_dirty is called when:
9238          *
9239          *  - KVM_MR_CREATE with dirty logging is disabled
9240          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9241          *
9242          * The reason is, in case of PML, we need to set D-bit for any slots
9243          * with dirty logging disabled in order to eliminate unnecessary GPA
9244          * logging in PML buffer (and potential PML buffer full VMEXT). This
9245          * guarantees leaving PML enabled during guest's lifetime won't have
9246          * any additonal overhead from PML when guest is running with dirty
9247          * logging disabled for memory slots.
9248          *
9249          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9250          * to dirty logging mode.
9251          *
9252          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9253          *
9254          * In case of write protect:
9255          *
9256          * Write protect all pages for dirty logging.
9257          *
9258          * All the sptes including the large sptes which point to this
9259          * slot are set to readonly. We can not create any new large
9260          * spte on this slot until the end of the logging.
9261          *
9262          * See the comments in fast_page_fault().
9263          */
9264         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9265                 if (kvm_x86_ops->slot_enable_log_dirty)
9266                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9267                 else
9268                         kvm_mmu_slot_remove_write_access(kvm, new);
9269         } else {
9270                 if (kvm_x86_ops->slot_disable_log_dirty)
9271                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9272         }
9273 }
9274
9275 void kvm_arch_commit_memory_region(struct kvm *kvm,
9276                                 const struct kvm_userspace_memory_region *mem,
9277                                 const struct kvm_memory_slot *old,
9278                                 const struct kvm_memory_slot *new,
9279                                 enum kvm_mr_change change)
9280 {
9281         int nr_mmu_pages = 0;
9282
9283         if (!kvm->arch.n_requested_mmu_pages)
9284                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9285
9286         if (nr_mmu_pages)
9287                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9288
9289         /*
9290          * Dirty logging tracks sptes in 4k granularity, meaning that large
9291          * sptes have to be split.  If live migration is successful, the guest
9292          * in the source machine will be destroyed and large sptes will be
9293          * created in the destination. However, if the guest continues to run
9294          * in the source machine (for example if live migration fails), small
9295          * sptes will remain around and cause bad performance.
9296          *
9297          * Scan sptes if dirty logging has been stopped, dropping those
9298          * which can be collapsed into a single large-page spte.  Later
9299          * page faults will create the large-page sptes.
9300          */
9301         if ((change != KVM_MR_DELETE) &&
9302                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9303                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9304                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9305
9306         /*
9307          * Set up write protection and/or dirty logging for the new slot.
9308          *
9309          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9310          * been zapped so no dirty logging staff is needed for old slot. For
9311          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9312          * new and it's also covered when dealing with the new slot.
9313          *
9314          * FIXME: const-ify all uses of struct kvm_memory_slot.
9315          */
9316         if (change != KVM_MR_DELETE)
9317                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9318 }
9319
9320 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9321 {
9322         kvm_mmu_invalidate_zap_all_pages(kvm);
9323 }
9324
9325 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9326                                    struct kvm_memory_slot *slot)
9327 {
9328         kvm_page_track_flush_slot(kvm, slot);
9329 }
9330
9331 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9332 {
9333         return (is_guest_mode(vcpu) &&
9334                         kvm_x86_ops->guest_apic_has_interrupt &&
9335                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9336 }
9337
9338 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9339 {
9340         if (!list_empty_careful(&vcpu->async_pf.done))
9341                 return true;
9342
9343         if (kvm_apic_has_events(vcpu))
9344                 return true;
9345
9346         if (vcpu->arch.pv.pv_unhalted)
9347                 return true;
9348
9349         if (vcpu->arch.exception.pending)
9350                 return true;
9351
9352         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9353             (vcpu->arch.nmi_pending &&
9354              kvm_x86_ops->nmi_allowed(vcpu)))
9355                 return true;
9356
9357         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9358             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9359                 return true;
9360
9361         if (kvm_arch_interrupt_allowed(vcpu) &&
9362             (kvm_cpu_has_interrupt(vcpu) ||
9363             kvm_guest_apic_has_interrupt(vcpu)))
9364                 return true;
9365
9366         if (kvm_hv_has_stimer_pending(vcpu))
9367                 return true;
9368
9369         return false;
9370 }
9371
9372 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9373 {
9374         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9375 }
9376
9377 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9378 {
9379         return vcpu->arch.preempted_in_kernel;
9380 }
9381
9382 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9383 {
9384         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9385 }
9386
9387 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9388 {
9389         return kvm_x86_ops->interrupt_allowed(vcpu);
9390 }
9391
9392 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9393 {
9394         if (is_64_bit_mode(vcpu))
9395                 return kvm_rip_read(vcpu);
9396         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9397                      kvm_rip_read(vcpu));
9398 }
9399 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9400
9401 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9402 {
9403         return kvm_get_linear_rip(vcpu) == linear_rip;
9404 }
9405 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9406
9407 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9408 {
9409         unsigned long rflags;
9410
9411         rflags = kvm_x86_ops->get_rflags(vcpu);
9412         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9413                 rflags &= ~X86_EFLAGS_TF;
9414         return rflags;
9415 }
9416 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9417
9418 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9419 {
9420         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9421             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9422                 rflags |= X86_EFLAGS_TF;
9423         kvm_x86_ops->set_rflags(vcpu, rflags);
9424 }
9425
9426 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9427 {
9428         __kvm_set_rflags(vcpu, rflags);
9429         kvm_make_request(KVM_REQ_EVENT, vcpu);
9430 }
9431 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9432
9433 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9434 {
9435         int r;
9436
9437         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9438               work->wakeup_all)
9439                 return;
9440
9441         r = kvm_mmu_reload(vcpu);
9442         if (unlikely(r))
9443                 return;
9444
9445         if (!vcpu->arch.mmu->direct_map &&
9446               work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9447                 return;
9448
9449         vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9450 }
9451
9452 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9453 {
9454         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9455 }
9456
9457 static inline u32 kvm_async_pf_next_probe(u32 key)
9458 {
9459         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9460 }
9461
9462 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9463 {
9464         u32 key = kvm_async_pf_hash_fn(gfn);
9465
9466         while (vcpu->arch.apf.gfns[key] != ~0)
9467                 key = kvm_async_pf_next_probe(key);
9468
9469         vcpu->arch.apf.gfns[key] = gfn;
9470 }
9471
9472 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9473 {
9474         int i;
9475         u32 key = kvm_async_pf_hash_fn(gfn);
9476
9477         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9478                      (vcpu->arch.apf.gfns[key] != gfn &&
9479                       vcpu->arch.apf.gfns[key] != ~0); i++)
9480                 key = kvm_async_pf_next_probe(key);
9481
9482         return key;
9483 }
9484
9485 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9486 {
9487         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9488 }
9489
9490 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9491 {
9492         u32 i, j, k;
9493
9494         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9495         while (true) {
9496                 vcpu->arch.apf.gfns[i] = ~0;
9497                 do {
9498                         j = kvm_async_pf_next_probe(j);
9499                         if (vcpu->arch.apf.gfns[j] == ~0)
9500                                 return;
9501                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9502                         /*
9503                          * k lies cyclically in ]i,j]
9504                          * |    i.k.j |
9505                          * |....j i.k.| or  |.k..j i...|
9506                          */
9507                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9508                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9509                 i = j;
9510         }
9511 }
9512
9513 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9514 {
9515
9516         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9517                                       sizeof(val));
9518 }
9519
9520 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9521 {
9522
9523         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9524                                       sizeof(u32));
9525 }
9526
9527 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9528                                      struct kvm_async_pf *work)
9529 {
9530         struct x86_exception fault;
9531
9532         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9533         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9534
9535         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9536             (vcpu->arch.apf.send_user_only &&
9537              kvm_x86_ops->get_cpl(vcpu) == 0))
9538                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9539         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9540                 fault.vector = PF_VECTOR;
9541                 fault.error_code_valid = true;
9542                 fault.error_code = 0;
9543                 fault.nested_page_fault = false;
9544                 fault.address = work->arch.token;
9545                 fault.async_page_fault = true;
9546                 kvm_inject_page_fault(vcpu, &fault);
9547         }
9548 }
9549
9550 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9551                                  struct kvm_async_pf *work)
9552 {
9553         struct x86_exception fault;
9554         u32 val;
9555
9556         if (work->wakeup_all)
9557                 work->arch.token = ~0; /* broadcast wakeup */
9558         else
9559                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9560         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9561
9562         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9563             !apf_get_user(vcpu, &val)) {
9564                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9565                     vcpu->arch.exception.pending &&
9566                     vcpu->arch.exception.nr == PF_VECTOR &&
9567                     !apf_put_user(vcpu, 0)) {
9568                         vcpu->arch.exception.injected = false;
9569                         vcpu->arch.exception.pending = false;
9570                         vcpu->arch.exception.nr = 0;
9571                         vcpu->arch.exception.has_error_code = false;
9572                         vcpu->arch.exception.error_code = 0;
9573                         vcpu->arch.exception.has_payload = false;
9574                         vcpu->arch.exception.payload = 0;
9575                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9576                         fault.vector = PF_VECTOR;
9577                         fault.error_code_valid = true;
9578                         fault.error_code = 0;
9579                         fault.nested_page_fault = false;
9580                         fault.address = work->arch.token;
9581                         fault.async_page_fault = true;
9582                         kvm_inject_page_fault(vcpu, &fault);
9583                 }
9584         }
9585         vcpu->arch.apf.halted = false;
9586         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9587 }
9588
9589 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9590 {
9591         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9592                 return true;
9593         else
9594                 return kvm_can_do_async_pf(vcpu);
9595 }
9596
9597 void kvm_arch_start_assignment(struct kvm *kvm)
9598 {
9599         atomic_inc(&kvm->arch.assigned_device_count);
9600 }
9601 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9602
9603 void kvm_arch_end_assignment(struct kvm *kvm)
9604 {
9605         atomic_dec(&kvm->arch.assigned_device_count);
9606 }
9607 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9608
9609 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9610 {
9611         return atomic_read(&kvm->arch.assigned_device_count);
9612 }
9613 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9614
9615 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9616 {
9617         atomic_inc(&kvm->arch.noncoherent_dma_count);
9618 }
9619 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9620
9621 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9622 {
9623         atomic_dec(&kvm->arch.noncoherent_dma_count);
9624 }
9625 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9626
9627 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9628 {
9629         return atomic_read(&kvm->arch.noncoherent_dma_count);
9630 }
9631 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9632
9633 bool kvm_arch_has_irq_bypass(void)
9634 {
9635         return kvm_x86_ops->update_pi_irte != NULL;
9636 }
9637
9638 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9639                                       struct irq_bypass_producer *prod)
9640 {
9641         struct kvm_kernel_irqfd *irqfd =
9642                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9643
9644         irqfd->producer = prod;
9645
9646         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9647                                            prod->irq, irqfd->gsi, 1);
9648 }
9649
9650 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9651                                       struct irq_bypass_producer *prod)
9652 {
9653         int ret;
9654         struct kvm_kernel_irqfd *irqfd =
9655                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9656
9657         WARN_ON(irqfd->producer != prod);
9658         irqfd->producer = NULL;
9659
9660         /*
9661          * When producer of consumer is unregistered, we change back to
9662          * remapped mode, so we can re-use the current implementation
9663          * when the irq is masked/disabled or the consumer side (KVM
9664          * int this case doesn't want to receive the interrupts.
9665         */
9666         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9667         if (ret)
9668                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9669                        " fails: %d\n", irqfd->consumer.token, ret);
9670 }
9671
9672 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9673                                    uint32_t guest_irq, bool set)
9674 {
9675         if (!kvm_x86_ops->update_pi_irte)
9676                 return -EINVAL;
9677
9678         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9679 }
9680
9681 bool kvm_vector_hashing_enabled(void)
9682 {
9683         return vector_hashing;
9684 }
9685 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9686
9687 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9694 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9695 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9699 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);