Merge tag 'lkdtm-next' of https://git.kernel.org/pub/scm/linux/kernel/git/kees/linux...
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92
93 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
94
95 #define emul_to_vcpu(ctxt) \
96         ((struct kvm_vcpu *)(ctxt)->vcpu)
97
98 /* EFER defaults:
99  * - enable syscall per default because its emulated by KVM
100  * - enable LME and LMA per default on 64 bit KVM
101  */
102 #ifdef CONFIG_X86_64
103 static
104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
105 #else
106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
107 #endif
108
109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
110
111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
112
113 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
114
115 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
116                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
117
118 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
119 static void process_nmi(struct kvm_vcpu *vcpu);
120 static void process_smi(struct kvm_vcpu *vcpu);
121 static void enter_smm(struct kvm_vcpu *vcpu);
122 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
123 static void store_regs(struct kvm_vcpu *vcpu);
124 static int sync_regs(struct kvm_vcpu *vcpu);
125 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
126
127 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
128 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
129
130 struct kvm_x86_ops kvm_x86_ops __read_mostly;
131
132 #define KVM_X86_OP(func)                                             \
133         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
134                                 *(((struct kvm_x86_ops *)0)->func));
135 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
136 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
137 #include <asm/kvm-x86-ops.h>
138 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
139 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
140
141 static bool __read_mostly ignore_msrs = 0;
142 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
143
144 bool __read_mostly report_ignored_msrs = true;
145 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
146 EXPORT_SYMBOL_GPL(report_ignored_msrs);
147
148 unsigned int min_timer_period_us = 200;
149 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
150
151 static bool __read_mostly kvmclock_periodic_sync = true;
152 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
153
154 bool __read_mostly kvm_has_tsc_control;
155 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
156 u32  __read_mostly kvm_max_guest_tsc_khz;
157 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
158 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
159 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
160 u64  __read_mostly kvm_max_tsc_scaling_ratio;
161 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
162 u64 __read_mostly kvm_default_tsc_scaling_ratio;
163 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
164 bool __read_mostly kvm_has_bus_lock_exit;
165 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
166
167 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
168 static u32 __read_mostly tsc_tolerance_ppm = 250;
169 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
170
171 /*
172  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
173  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
174  * advancement entirely.  Any other value is used as-is and disables adaptive
175  * tuning, i.e. allows privileged userspace to set an exact advancement time.
176  */
177 static int __read_mostly lapic_timer_advance_ns = -1;
178 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
179
180 static bool __read_mostly vector_hashing = true;
181 module_param(vector_hashing, bool, S_IRUGO);
182
183 bool __read_mostly enable_vmware_backdoor = false;
184 module_param(enable_vmware_backdoor, bool, S_IRUGO);
185 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
186
187 static bool __read_mostly force_emulation_prefix = false;
188 module_param(force_emulation_prefix, bool, S_IRUGO);
189
190 int __read_mostly pi_inject_timer = -1;
191 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
192
193 /* Enable/disable PMU virtualization */
194 bool __read_mostly enable_pmu = true;
195 EXPORT_SYMBOL_GPL(enable_pmu);
196 module_param(enable_pmu, bool, 0444);
197
198 bool __read_mostly eager_page_split = true;
199 module_param(eager_page_split, bool, 0644);
200
201 /*
202  * Restoring the host value for MSRs that are only consumed when running in
203  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
204  * returns to userspace, i.e. the kernel can run with the guest's value.
205  */
206 #define KVM_MAX_NR_USER_RETURN_MSRS 16
207
208 struct kvm_user_return_msrs {
209         struct user_return_notifier urn;
210         bool registered;
211         struct kvm_user_return_msr_values {
212                 u64 host;
213                 u64 curr;
214         } values[KVM_MAX_NR_USER_RETURN_MSRS];
215 };
216
217 u32 __read_mostly kvm_nr_uret_msrs;
218 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
219 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
220 static struct kvm_user_return_msrs __percpu *user_return_msrs;
221
222 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
223                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
224                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
225                                 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
226
227 u64 __read_mostly host_efer;
228 EXPORT_SYMBOL_GPL(host_efer);
229
230 bool __read_mostly allow_smaller_maxphyaddr = 0;
231 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
232
233 bool __read_mostly enable_apicv = true;
234 EXPORT_SYMBOL_GPL(enable_apicv);
235
236 u64 __read_mostly host_xss;
237 EXPORT_SYMBOL_GPL(host_xss);
238 u64 __read_mostly supported_xss;
239 EXPORT_SYMBOL_GPL(supported_xss);
240
241 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
242         KVM_GENERIC_VM_STATS(),
243         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
244         STATS_DESC_COUNTER(VM, mmu_pte_write),
245         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
246         STATS_DESC_COUNTER(VM, mmu_flooded),
247         STATS_DESC_COUNTER(VM, mmu_recycled),
248         STATS_DESC_COUNTER(VM, mmu_cache_miss),
249         STATS_DESC_ICOUNTER(VM, mmu_unsync),
250         STATS_DESC_ICOUNTER(VM, pages_4k),
251         STATS_DESC_ICOUNTER(VM, pages_2m),
252         STATS_DESC_ICOUNTER(VM, pages_1g),
253         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
254         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
255         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
256 };
257
258 const struct kvm_stats_header kvm_vm_stats_header = {
259         .name_size = KVM_STATS_NAME_SIZE,
260         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
261         .id_offset = sizeof(struct kvm_stats_header),
262         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
263         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
264                        sizeof(kvm_vm_stats_desc),
265 };
266
267 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
268         KVM_GENERIC_VCPU_STATS(),
269         STATS_DESC_COUNTER(VCPU, pf_fixed),
270         STATS_DESC_COUNTER(VCPU, pf_guest),
271         STATS_DESC_COUNTER(VCPU, tlb_flush),
272         STATS_DESC_COUNTER(VCPU, invlpg),
273         STATS_DESC_COUNTER(VCPU, exits),
274         STATS_DESC_COUNTER(VCPU, io_exits),
275         STATS_DESC_COUNTER(VCPU, mmio_exits),
276         STATS_DESC_COUNTER(VCPU, signal_exits),
277         STATS_DESC_COUNTER(VCPU, irq_window_exits),
278         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
279         STATS_DESC_COUNTER(VCPU, l1d_flush),
280         STATS_DESC_COUNTER(VCPU, halt_exits),
281         STATS_DESC_COUNTER(VCPU, request_irq_exits),
282         STATS_DESC_COUNTER(VCPU, irq_exits),
283         STATS_DESC_COUNTER(VCPU, host_state_reload),
284         STATS_DESC_COUNTER(VCPU, fpu_reload),
285         STATS_DESC_COUNTER(VCPU, insn_emulation),
286         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
287         STATS_DESC_COUNTER(VCPU, hypercalls),
288         STATS_DESC_COUNTER(VCPU, irq_injections),
289         STATS_DESC_COUNTER(VCPU, nmi_injections),
290         STATS_DESC_COUNTER(VCPU, req_event),
291         STATS_DESC_COUNTER(VCPU, nested_run),
292         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
293         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
294         STATS_DESC_ICOUNTER(VCPU, guest_mode)
295 };
296
297 const struct kvm_stats_header kvm_vcpu_stats_header = {
298         .name_size = KVM_STATS_NAME_SIZE,
299         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
300         .id_offset = sizeof(struct kvm_stats_header),
301         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
302         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
303                        sizeof(kvm_vcpu_stats_desc),
304 };
305
306 u64 __read_mostly host_xcr0;
307 u64 __read_mostly supported_xcr0;
308 EXPORT_SYMBOL_GPL(supported_xcr0);
309
310 static struct kmem_cache *x86_emulator_cache;
311
312 /*
313  * When called, it means the previous get/set msr reached an invalid msr.
314  * Return true if we want to ignore/silent this failed msr access.
315  */
316 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
317 {
318         const char *op = write ? "wrmsr" : "rdmsr";
319
320         if (ignore_msrs) {
321                 if (report_ignored_msrs)
322                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
323                                       op, msr, data);
324                 /* Mask the error */
325                 return true;
326         } else {
327                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
328                                       op, msr, data);
329                 return false;
330         }
331 }
332
333 static struct kmem_cache *kvm_alloc_emulator_cache(void)
334 {
335         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
336         unsigned int size = sizeof(struct x86_emulate_ctxt);
337
338         return kmem_cache_create_usercopy("x86_emulator", size,
339                                           __alignof__(struct x86_emulate_ctxt),
340                                           SLAB_ACCOUNT, useroffset,
341                                           size - useroffset, NULL);
342 }
343
344 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
345
346 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
347 {
348         int i;
349         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
350                 vcpu->arch.apf.gfns[i] = ~0;
351 }
352
353 static void kvm_on_user_return(struct user_return_notifier *urn)
354 {
355         unsigned slot;
356         struct kvm_user_return_msrs *msrs
357                 = container_of(urn, struct kvm_user_return_msrs, urn);
358         struct kvm_user_return_msr_values *values;
359         unsigned long flags;
360
361         /*
362          * Disabling irqs at this point since the following code could be
363          * interrupted and executed through kvm_arch_hardware_disable()
364          */
365         local_irq_save(flags);
366         if (msrs->registered) {
367                 msrs->registered = false;
368                 user_return_notifier_unregister(urn);
369         }
370         local_irq_restore(flags);
371         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
372                 values = &msrs->values[slot];
373                 if (values->host != values->curr) {
374                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
375                         values->curr = values->host;
376                 }
377         }
378 }
379
380 static int kvm_probe_user_return_msr(u32 msr)
381 {
382         u64 val;
383         int ret;
384
385         preempt_disable();
386         ret = rdmsrl_safe(msr, &val);
387         if (ret)
388                 goto out;
389         ret = wrmsrl_safe(msr, val);
390 out:
391         preempt_enable();
392         return ret;
393 }
394
395 int kvm_add_user_return_msr(u32 msr)
396 {
397         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
398
399         if (kvm_probe_user_return_msr(msr))
400                 return -1;
401
402         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
403         return kvm_nr_uret_msrs++;
404 }
405 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
406
407 int kvm_find_user_return_msr(u32 msr)
408 {
409         int i;
410
411         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
412                 if (kvm_uret_msrs_list[i] == msr)
413                         return i;
414         }
415         return -1;
416 }
417 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
418
419 static void kvm_user_return_msr_cpu_online(void)
420 {
421         unsigned int cpu = smp_processor_id();
422         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
423         u64 value;
424         int i;
425
426         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
427                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
428                 msrs->values[i].host = value;
429                 msrs->values[i].curr = value;
430         }
431 }
432
433 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
434 {
435         unsigned int cpu = smp_processor_id();
436         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
437         int err;
438
439         value = (value & mask) | (msrs->values[slot].host & ~mask);
440         if (value == msrs->values[slot].curr)
441                 return 0;
442         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
443         if (err)
444                 return 1;
445
446         msrs->values[slot].curr = value;
447         if (!msrs->registered) {
448                 msrs->urn.on_user_return = kvm_on_user_return;
449                 user_return_notifier_register(&msrs->urn);
450                 msrs->registered = true;
451         }
452         return 0;
453 }
454 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
455
456 static void drop_user_return_notifiers(void)
457 {
458         unsigned int cpu = smp_processor_id();
459         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
460
461         if (msrs->registered)
462                 kvm_on_user_return(&msrs->urn);
463 }
464
465 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
466 {
467         return vcpu->arch.apic_base;
468 }
469 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
470
471 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
472 {
473         return kvm_apic_mode(kvm_get_apic_base(vcpu));
474 }
475 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
476
477 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
478 {
479         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
480         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
481         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
482                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
483
484         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
485                 return 1;
486         if (!msr_info->host_initiated) {
487                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
488                         return 1;
489                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
490                         return 1;
491         }
492
493         kvm_lapic_set_base(vcpu, msr_info->data);
494         kvm_recalculate_apic_map(vcpu->kvm);
495         return 0;
496 }
497 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
498
499 /*
500  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
501  *
502  * Hardware virtualization extension instructions may fault if a reboot turns
503  * off virtualization while processes are running.  Usually after catching the
504  * fault we just panic; during reboot instead the instruction is ignored.
505  */
506 noinstr void kvm_spurious_fault(void)
507 {
508         /* Fault while not rebooting.  We want the trace. */
509         BUG_ON(!kvm_rebooting);
510 }
511 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
512
513 #define EXCPT_BENIGN            0
514 #define EXCPT_CONTRIBUTORY      1
515 #define EXCPT_PF                2
516
517 static int exception_class(int vector)
518 {
519         switch (vector) {
520         case PF_VECTOR:
521                 return EXCPT_PF;
522         case DE_VECTOR:
523         case TS_VECTOR:
524         case NP_VECTOR:
525         case SS_VECTOR:
526         case GP_VECTOR:
527                 return EXCPT_CONTRIBUTORY;
528         default:
529                 break;
530         }
531         return EXCPT_BENIGN;
532 }
533
534 #define EXCPT_FAULT             0
535 #define EXCPT_TRAP              1
536 #define EXCPT_ABORT             2
537 #define EXCPT_INTERRUPT         3
538
539 static int exception_type(int vector)
540 {
541         unsigned int mask;
542
543         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
544                 return EXCPT_INTERRUPT;
545
546         mask = 1 << vector;
547
548         /* #DB is trap, as instruction watchpoints are handled elsewhere */
549         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
550                 return EXCPT_TRAP;
551
552         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
553                 return EXCPT_ABORT;
554
555         /* Reserved exceptions will result in fault */
556         return EXCPT_FAULT;
557 }
558
559 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
560 {
561         unsigned nr = vcpu->arch.exception.nr;
562         bool has_payload = vcpu->arch.exception.has_payload;
563         unsigned long payload = vcpu->arch.exception.payload;
564
565         if (!has_payload)
566                 return;
567
568         switch (nr) {
569         case DB_VECTOR:
570                 /*
571                  * "Certain debug exceptions may clear bit 0-3.  The
572                  * remaining contents of the DR6 register are never
573                  * cleared by the processor".
574                  */
575                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
576                 /*
577                  * In order to reflect the #DB exception payload in guest
578                  * dr6, three components need to be considered: active low
579                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
580                  * DR6_BS and DR6_BT)
581                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
582                  * In the target guest dr6:
583                  * FIXED_1 bits should always be set.
584                  * Active low bits should be cleared if 1-setting in payload.
585                  * Active high bits should be set if 1-setting in payload.
586                  *
587                  * Note, the payload is compatible with the pending debug
588                  * exceptions/exit qualification under VMX, that active_low bits
589                  * are active high in payload.
590                  * So they need to be flipped for DR6.
591                  */
592                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
593                 vcpu->arch.dr6 |= payload;
594                 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
595
596                 /*
597                  * The #DB payload is defined as compatible with the 'pending
598                  * debug exceptions' field under VMX, not DR6. While bit 12 is
599                  * defined in the 'pending debug exceptions' field (enabled
600                  * breakpoint), it is reserved and must be zero in DR6.
601                  */
602                 vcpu->arch.dr6 &= ~BIT(12);
603                 break;
604         case PF_VECTOR:
605                 vcpu->arch.cr2 = payload;
606                 break;
607         }
608
609         vcpu->arch.exception.has_payload = false;
610         vcpu->arch.exception.payload = 0;
611 }
612 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
613
614 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
615                 unsigned nr, bool has_error, u32 error_code,
616                 bool has_payload, unsigned long payload, bool reinject)
617 {
618         u32 prev_nr;
619         int class1, class2;
620
621         kvm_make_request(KVM_REQ_EVENT, vcpu);
622
623         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
624         queue:
625                 if (reinject) {
626                         /*
627                          * On vmentry, vcpu->arch.exception.pending is only
628                          * true if an event injection was blocked by
629                          * nested_run_pending.  In that case, however,
630                          * vcpu_enter_guest requests an immediate exit,
631                          * and the guest shouldn't proceed far enough to
632                          * need reinjection.
633                          */
634                         WARN_ON_ONCE(vcpu->arch.exception.pending);
635                         vcpu->arch.exception.injected = true;
636                         if (WARN_ON_ONCE(has_payload)) {
637                                 /*
638                                  * A reinjected event has already
639                                  * delivered its payload.
640                                  */
641                                 has_payload = false;
642                                 payload = 0;
643                         }
644                 } else {
645                         vcpu->arch.exception.pending = true;
646                         vcpu->arch.exception.injected = false;
647                 }
648                 vcpu->arch.exception.has_error_code = has_error;
649                 vcpu->arch.exception.nr = nr;
650                 vcpu->arch.exception.error_code = error_code;
651                 vcpu->arch.exception.has_payload = has_payload;
652                 vcpu->arch.exception.payload = payload;
653                 if (!is_guest_mode(vcpu))
654                         kvm_deliver_exception_payload(vcpu);
655                 return;
656         }
657
658         /* to check exception */
659         prev_nr = vcpu->arch.exception.nr;
660         if (prev_nr == DF_VECTOR) {
661                 /* triple fault -> shutdown */
662                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
663                 return;
664         }
665         class1 = exception_class(prev_nr);
666         class2 = exception_class(nr);
667         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
668                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
669                 /*
670                  * Generate double fault per SDM Table 5-5.  Set
671                  * exception.pending = true so that the double fault
672                  * can trigger a nested vmexit.
673                  */
674                 vcpu->arch.exception.pending = true;
675                 vcpu->arch.exception.injected = false;
676                 vcpu->arch.exception.has_error_code = true;
677                 vcpu->arch.exception.nr = DF_VECTOR;
678                 vcpu->arch.exception.error_code = 0;
679                 vcpu->arch.exception.has_payload = false;
680                 vcpu->arch.exception.payload = 0;
681         } else
682                 /* replace previous exception with a new one in a hope
683                    that instruction re-execution will regenerate lost
684                    exception */
685                 goto queue;
686 }
687
688 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
689 {
690         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
691 }
692 EXPORT_SYMBOL_GPL(kvm_queue_exception);
693
694 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
695 {
696         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
697 }
698 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
699
700 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
701                            unsigned long payload)
702 {
703         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
704 }
705 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
706
707 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
708                                     u32 error_code, unsigned long payload)
709 {
710         kvm_multiple_exception(vcpu, nr, true, error_code,
711                                true, payload, false);
712 }
713
714 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
715 {
716         if (err)
717                 kvm_inject_gp(vcpu, 0);
718         else
719                 return kvm_skip_emulated_instruction(vcpu);
720
721         return 1;
722 }
723 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
724
725 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
726 {
727         if (err) {
728                 kvm_inject_gp(vcpu, 0);
729                 return 1;
730         }
731
732         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
733                                        EMULTYPE_COMPLETE_USER_EXIT);
734 }
735
736 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
737 {
738         ++vcpu->stat.pf_guest;
739         vcpu->arch.exception.nested_apf =
740                 is_guest_mode(vcpu) && fault->async_page_fault;
741         if (vcpu->arch.exception.nested_apf) {
742                 vcpu->arch.apf.nested_apf_token = fault->address;
743                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
744         } else {
745                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
746                                         fault->address);
747         }
748 }
749 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
750
751 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
752                                     struct x86_exception *fault)
753 {
754         struct kvm_mmu *fault_mmu;
755         WARN_ON_ONCE(fault->vector != PF_VECTOR);
756
757         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
758                                                vcpu->arch.walk_mmu;
759
760         /*
761          * Invalidate the TLB entry for the faulting address, if it exists,
762          * else the access will fault indefinitely (and to emulate hardware).
763          */
764         if ((fault->error_code & PFERR_PRESENT_MASK) &&
765             !(fault->error_code & PFERR_RSVD_MASK))
766                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
767                                        fault_mmu->root.hpa);
768
769         fault_mmu->inject_page_fault(vcpu, fault);
770         return fault->nested_page_fault;
771 }
772 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
773
774 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
775 {
776         atomic_inc(&vcpu->arch.nmi_queued);
777         kvm_make_request(KVM_REQ_NMI, vcpu);
778 }
779 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
780
781 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
782 {
783         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
784 }
785 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
786
787 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
788 {
789         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
790 }
791 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
792
793 /*
794  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
795  * a #GP and return false.
796  */
797 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
798 {
799         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
800                 return true;
801         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
802         return false;
803 }
804 EXPORT_SYMBOL_GPL(kvm_require_cpl);
805
806 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
807 {
808         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
809                 return true;
810
811         kvm_queue_exception(vcpu, UD_VECTOR);
812         return false;
813 }
814 EXPORT_SYMBOL_GPL(kvm_require_dr);
815
816 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
817 {
818         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
819 }
820
821 /*
822  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
823  */
824 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
825 {
826         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
827         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
828         gpa_t real_gpa;
829         int i;
830         int ret;
831         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
832
833         /*
834          * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
835          * to an L1 GPA.
836          */
837         real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
838                                      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
839         if (real_gpa == UNMAPPED_GVA)
840                 return 0;
841
842         /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
843         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
844                                        cr3 & GENMASK(11, 5), sizeof(pdpte));
845         if (ret < 0)
846                 return 0;
847
848         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
849                 if ((pdpte[i] & PT_PRESENT_MASK) &&
850                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
851                         return 0;
852                 }
853         }
854
855         /*
856          * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
857          * Shadow page roots need to be reconstructed instead.
858          */
859         if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
860                 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
861
862         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
863         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
864         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
865         vcpu->arch.pdptrs_from_userspace = false;
866
867         return 1;
868 }
869 EXPORT_SYMBOL_GPL(load_pdptrs);
870
871 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
872 {
873         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
874                 kvm_clear_async_pf_completion_queue(vcpu);
875                 kvm_async_pf_hash_reset(vcpu);
876
877                 /*
878                  * Clearing CR0.PG is defined to flush the TLB from the guest's
879                  * perspective.
880                  */
881                 if (!(cr0 & X86_CR0_PG))
882                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
883         }
884
885         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
886                 kvm_mmu_reset_context(vcpu);
887
888         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
889             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
890             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
891                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
892 }
893 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
894
895 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
896 {
897         unsigned long old_cr0 = kvm_read_cr0(vcpu);
898
899         cr0 |= X86_CR0_ET;
900
901 #ifdef CONFIG_X86_64
902         if (cr0 & 0xffffffff00000000UL)
903                 return 1;
904 #endif
905
906         cr0 &= ~CR0_RESERVED_BITS;
907
908         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
909                 return 1;
910
911         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
912                 return 1;
913
914 #ifdef CONFIG_X86_64
915         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
916             (cr0 & X86_CR0_PG)) {
917                 int cs_db, cs_l;
918
919                 if (!is_pae(vcpu))
920                         return 1;
921                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
922                 if (cs_l)
923                         return 1;
924         }
925 #endif
926         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
927             is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
928             !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
929                 return 1;
930
931         if (!(cr0 & X86_CR0_PG) &&
932             (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
933                 return 1;
934
935         static_call(kvm_x86_set_cr0)(vcpu, cr0);
936
937         kvm_post_set_cr0(vcpu, old_cr0, cr0);
938
939         return 0;
940 }
941 EXPORT_SYMBOL_GPL(kvm_set_cr0);
942
943 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
944 {
945         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
946 }
947 EXPORT_SYMBOL_GPL(kvm_lmsw);
948
949 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
950 {
951         if (vcpu->arch.guest_state_protected)
952                 return;
953
954         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
955
956                 if (vcpu->arch.xcr0 != host_xcr0)
957                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
958
959                 if (vcpu->arch.xsaves_enabled &&
960                     vcpu->arch.ia32_xss != host_xss)
961                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
962         }
963
964         if (static_cpu_has(X86_FEATURE_PKU) &&
965             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
966              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
967             vcpu->arch.pkru != vcpu->arch.host_pkru)
968                 write_pkru(vcpu->arch.pkru);
969 }
970 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
971
972 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
973 {
974         if (vcpu->arch.guest_state_protected)
975                 return;
976
977         if (static_cpu_has(X86_FEATURE_PKU) &&
978             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
979              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
980                 vcpu->arch.pkru = rdpkru();
981                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
982                         write_pkru(vcpu->arch.host_pkru);
983         }
984
985         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
986
987                 if (vcpu->arch.xcr0 != host_xcr0)
988                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
989
990                 if (vcpu->arch.xsaves_enabled &&
991                     vcpu->arch.ia32_xss != host_xss)
992                         wrmsrl(MSR_IA32_XSS, host_xss);
993         }
994
995 }
996 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
997
998 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu)
999 {
1000         return vcpu->arch.guest_fpu.fpstate->user_xfeatures;
1001 }
1002
1003 #ifdef CONFIG_X86_64
1004 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1005 {
1006         return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC;
1007 }
1008 #endif
1009
1010 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1011 {
1012         u64 xcr0 = xcr;
1013         u64 old_xcr0 = vcpu->arch.xcr0;
1014         u64 valid_bits;
1015
1016         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1017         if (index != XCR_XFEATURE_ENABLED_MASK)
1018                 return 1;
1019         if (!(xcr0 & XFEATURE_MASK_FP))
1020                 return 1;
1021         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1022                 return 1;
1023
1024         /*
1025          * Do not allow the guest to set bits that we do not support
1026          * saving.  However, xcr0 bit 0 is always set, even if the
1027          * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1028          */
1029         valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP;
1030         if (xcr0 & ~valid_bits)
1031                 return 1;
1032
1033         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1034             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1035                 return 1;
1036
1037         if (xcr0 & XFEATURE_MASK_AVX512) {
1038                 if (!(xcr0 & XFEATURE_MASK_YMM))
1039                         return 1;
1040                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1041                         return 1;
1042         }
1043
1044         if ((xcr0 & XFEATURE_MASK_XTILE) &&
1045             ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1046                 return 1;
1047
1048         vcpu->arch.xcr0 = xcr0;
1049
1050         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1051                 kvm_update_cpuid_runtime(vcpu);
1052         return 0;
1053 }
1054
1055 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1056 {
1057         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1058             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1059                 kvm_inject_gp(vcpu, 0);
1060                 return 1;
1061         }
1062
1063         return kvm_skip_emulated_instruction(vcpu);
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1066
1067 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1068 {
1069         if (cr4 & cr4_reserved_bits)
1070                 return false;
1071
1072         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1073                 return false;
1074
1075         return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1076 }
1077 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1078
1079 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1080 {
1081         if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1082                 kvm_mmu_reset_context(vcpu);
1083
1084         /*
1085          * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1086          * according to the SDM; however, stale prev_roots could be reused
1087          * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1088          * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1089          * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1090          * so fall through.
1091          */
1092         if (!tdp_enabled &&
1093             (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1094                 kvm_mmu_unload(vcpu);
1095
1096         /*
1097          * The TLB has to be flushed for all PCIDs if any of the following
1098          * (architecturally required) changes happen:
1099          * - CR4.PCIDE is changed from 1 to 0
1100          * - CR4.PGE is toggled
1101          *
1102          * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1103          */
1104         if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1105             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1106                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1107
1108         /*
1109          * The TLB has to be flushed for the current PCID if any of the
1110          * following (architecturally required) changes happen:
1111          * - CR4.SMEP is changed from 0 to 1
1112          * - CR4.PAE is toggled
1113          */
1114         else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1115                  ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1116                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1117
1118 }
1119 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1120
1121 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1122 {
1123         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1124
1125         if (!kvm_is_valid_cr4(vcpu, cr4))
1126                 return 1;
1127
1128         if (is_long_mode(vcpu)) {
1129                 if (!(cr4 & X86_CR4_PAE))
1130                         return 1;
1131                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1132                         return 1;
1133         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1134                    && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1135                    && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1136                 return 1;
1137
1138         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1139                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1140                         return 1;
1141
1142                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1143                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1144                         return 1;
1145         }
1146
1147         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1148
1149         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1150
1151         return 0;
1152 }
1153 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1154
1155 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1156 {
1157         struct kvm_mmu *mmu = vcpu->arch.mmu;
1158         unsigned long roots_to_free = 0;
1159         int i;
1160
1161         /*
1162          * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1163          * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1164          * also via the emulator.  KVM's TDP page tables are not in the scope of
1165          * the invalidation, but the guest's TLB entries need to be flushed as
1166          * the CPU may have cached entries in its TLB for the target PCID.
1167          */
1168         if (unlikely(tdp_enabled)) {
1169                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1170                 return;
1171         }
1172
1173         /*
1174          * If neither the current CR3 nor any of the prev_roots use the given
1175          * PCID, then nothing needs to be done here because a resync will
1176          * happen anyway before switching to any other CR3.
1177          */
1178         if (kvm_get_active_pcid(vcpu) == pcid) {
1179                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1180                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1181         }
1182
1183         /*
1184          * If PCID is disabled, there is no need to free prev_roots even if the
1185          * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1186          * with PCIDE=0.
1187          */
1188         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1189                 return;
1190
1191         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1192                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1193                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1194
1195         kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1196 }
1197
1198 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1199 {
1200         bool skip_tlb_flush = false;
1201         unsigned long pcid = 0;
1202 #ifdef CONFIG_X86_64
1203         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1204
1205         if (pcid_enabled) {
1206                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1207                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1208                 pcid = cr3 & X86_CR3_PCID_MASK;
1209         }
1210 #endif
1211
1212         /* PDPTRs are always reloaded for PAE paging. */
1213         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1214                 goto handle_tlb_flush;
1215
1216         /*
1217          * Do not condition the GPA check on long mode, this helper is used to
1218          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1219          * the current vCPU mode is accurate.
1220          */
1221         if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1222                 return 1;
1223
1224         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1225                 return 1;
1226
1227         if (cr3 != kvm_read_cr3(vcpu))
1228                 kvm_mmu_new_pgd(vcpu, cr3);
1229
1230         vcpu->arch.cr3 = cr3;
1231         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1232         /* Do not call post_set_cr3, we do not get here for confidential guests.  */
1233
1234 handle_tlb_flush:
1235         /*
1236          * A load of CR3 that flushes the TLB flushes only the current PCID,
1237          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1238          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1239          * and it's impossible to use a non-zero PCID when PCID is disabled,
1240          * i.e. only PCID=0 can be relevant.
1241          */
1242         if (!skip_tlb_flush)
1243                 kvm_invalidate_pcid(vcpu, pcid);
1244
1245         return 0;
1246 }
1247 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1248
1249 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1250 {
1251         if (cr8 & CR8_RESERVED_BITS)
1252                 return 1;
1253         if (lapic_in_kernel(vcpu))
1254                 kvm_lapic_set_tpr(vcpu, cr8);
1255         else
1256                 vcpu->arch.cr8 = cr8;
1257         return 0;
1258 }
1259 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1260
1261 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1262 {
1263         if (lapic_in_kernel(vcpu))
1264                 return kvm_lapic_get_cr8(vcpu);
1265         else
1266                 return vcpu->arch.cr8;
1267 }
1268 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1269
1270 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1271 {
1272         int i;
1273
1274         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1275                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1276                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1277         }
1278 }
1279
1280 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1281 {
1282         unsigned long dr7;
1283
1284         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1285                 dr7 = vcpu->arch.guest_debug_dr7;
1286         else
1287                 dr7 = vcpu->arch.dr7;
1288         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1289         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1290         if (dr7 & DR7_BP_EN_MASK)
1291                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1294
1295 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1296 {
1297         u64 fixed = DR6_FIXED_1;
1298
1299         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1300                 fixed |= DR6_RTM;
1301
1302         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1303                 fixed |= DR6_BUS_LOCK;
1304         return fixed;
1305 }
1306
1307 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1308 {
1309         size_t size = ARRAY_SIZE(vcpu->arch.db);
1310
1311         switch (dr) {
1312         case 0 ... 3:
1313                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1314                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1315                         vcpu->arch.eff_db[dr] = val;
1316                 break;
1317         case 4:
1318         case 6:
1319                 if (!kvm_dr6_valid(val))
1320                         return 1; /* #GP */
1321                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1322                 break;
1323         case 5:
1324         default: /* 7 */
1325                 if (!kvm_dr7_valid(val))
1326                         return 1; /* #GP */
1327                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1328                 kvm_update_dr7(vcpu);
1329                 break;
1330         }
1331
1332         return 0;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_set_dr);
1335
1336 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1337 {
1338         size_t size = ARRAY_SIZE(vcpu->arch.db);
1339
1340         switch (dr) {
1341         case 0 ... 3:
1342                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1343                 break;
1344         case 4:
1345         case 6:
1346                 *val = vcpu->arch.dr6;
1347                 break;
1348         case 5:
1349         default: /* 7 */
1350                 *val = vcpu->arch.dr7;
1351                 break;
1352         }
1353 }
1354 EXPORT_SYMBOL_GPL(kvm_get_dr);
1355
1356 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1357 {
1358         u32 ecx = kvm_rcx_read(vcpu);
1359         u64 data;
1360
1361         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1362                 kvm_inject_gp(vcpu, 0);
1363                 return 1;
1364         }
1365
1366         kvm_rax_write(vcpu, (u32)data);
1367         kvm_rdx_write(vcpu, data >> 32);
1368         return kvm_skip_emulated_instruction(vcpu);
1369 }
1370 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1371
1372 /*
1373  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1374  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1375  *
1376  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1377  * extract the supported MSRs from the related const lists.
1378  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1379  * capabilities of the host cpu. This capabilities test skips MSRs that are
1380  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1381  * may depend on host virtualization features rather than host cpu features.
1382  */
1383
1384 static const u32 msrs_to_save_all[] = {
1385         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1386         MSR_STAR,
1387 #ifdef CONFIG_X86_64
1388         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1389 #endif
1390         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1391         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1392         MSR_IA32_SPEC_CTRL,
1393         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1394         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1395         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1396         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1397         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1398         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1399         MSR_IA32_UMWAIT_CONTROL,
1400
1401         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1402         MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1403         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1404         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1405         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1406         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1407         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1408         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1409         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1410         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1411         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1412         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1413         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1414         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1415         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1416         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1417         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1418         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1419         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1420         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1421         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1422         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1423
1424         MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1425         MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1426         MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1427         MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1428         MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1429         MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1430         MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1431 };
1432
1433 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1434 static unsigned num_msrs_to_save;
1435
1436 static const u32 emulated_msrs_all[] = {
1437         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1438         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1439         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1440         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1441         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1442         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1443         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1444         HV_X64_MSR_RESET,
1445         HV_X64_MSR_VP_INDEX,
1446         HV_X64_MSR_VP_RUNTIME,
1447         HV_X64_MSR_SCONTROL,
1448         HV_X64_MSR_STIMER0_CONFIG,
1449         HV_X64_MSR_VP_ASSIST_PAGE,
1450         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1451         HV_X64_MSR_TSC_EMULATION_STATUS,
1452         HV_X64_MSR_SYNDBG_OPTIONS,
1453         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1454         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1455         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1456
1457         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1458         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1459
1460         MSR_IA32_TSC_ADJUST,
1461         MSR_IA32_TSC_DEADLINE,
1462         MSR_IA32_ARCH_CAPABILITIES,
1463         MSR_IA32_PERF_CAPABILITIES,
1464         MSR_IA32_MISC_ENABLE,
1465         MSR_IA32_MCG_STATUS,
1466         MSR_IA32_MCG_CTL,
1467         MSR_IA32_MCG_EXT_CTL,
1468         MSR_IA32_SMBASE,
1469         MSR_SMI_COUNT,
1470         MSR_PLATFORM_INFO,
1471         MSR_MISC_FEATURES_ENABLES,
1472         MSR_AMD64_VIRT_SPEC_CTRL,
1473         MSR_AMD64_TSC_RATIO,
1474         MSR_IA32_POWER_CTL,
1475         MSR_IA32_UCODE_REV,
1476
1477         /*
1478          * The following list leaves out MSRs whose values are determined
1479          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1480          * We always support the "true" VMX control MSRs, even if the host
1481          * processor does not, so I am putting these registers here rather
1482          * than in msrs_to_save_all.
1483          */
1484         MSR_IA32_VMX_BASIC,
1485         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1486         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1487         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1488         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1489         MSR_IA32_VMX_MISC,
1490         MSR_IA32_VMX_CR0_FIXED0,
1491         MSR_IA32_VMX_CR4_FIXED0,
1492         MSR_IA32_VMX_VMCS_ENUM,
1493         MSR_IA32_VMX_PROCBASED_CTLS2,
1494         MSR_IA32_VMX_EPT_VPID_CAP,
1495         MSR_IA32_VMX_VMFUNC,
1496
1497         MSR_K7_HWCR,
1498         MSR_KVM_POLL_CONTROL,
1499 };
1500
1501 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1502 static unsigned num_emulated_msrs;
1503
1504 /*
1505  * List of msr numbers which are used to expose MSR-based features that
1506  * can be used by a hypervisor to validate requested CPU features.
1507  */
1508 static const u32 msr_based_features_all[] = {
1509         MSR_IA32_VMX_BASIC,
1510         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1511         MSR_IA32_VMX_PINBASED_CTLS,
1512         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1513         MSR_IA32_VMX_PROCBASED_CTLS,
1514         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1515         MSR_IA32_VMX_EXIT_CTLS,
1516         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1517         MSR_IA32_VMX_ENTRY_CTLS,
1518         MSR_IA32_VMX_MISC,
1519         MSR_IA32_VMX_CR0_FIXED0,
1520         MSR_IA32_VMX_CR0_FIXED1,
1521         MSR_IA32_VMX_CR4_FIXED0,
1522         MSR_IA32_VMX_CR4_FIXED1,
1523         MSR_IA32_VMX_VMCS_ENUM,
1524         MSR_IA32_VMX_PROCBASED_CTLS2,
1525         MSR_IA32_VMX_EPT_VPID_CAP,
1526         MSR_IA32_VMX_VMFUNC,
1527
1528         MSR_F10H_DECFG,
1529         MSR_IA32_UCODE_REV,
1530         MSR_IA32_ARCH_CAPABILITIES,
1531         MSR_IA32_PERF_CAPABILITIES,
1532 };
1533
1534 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1535 static unsigned int num_msr_based_features;
1536
1537 static u64 kvm_get_arch_capabilities(void)
1538 {
1539         u64 data = 0;
1540
1541         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1542                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1543
1544         /*
1545          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1546          * the nested hypervisor runs with NX huge pages.  If it is not,
1547          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1548          * L1 guests, so it need not worry about its own (L2) guests.
1549          */
1550         data |= ARCH_CAP_PSCHANGE_MC_NO;
1551
1552         /*
1553          * If we're doing cache flushes (either "always" or "cond")
1554          * we will do one whenever the guest does a vmlaunch/vmresume.
1555          * If an outer hypervisor is doing the cache flush for us
1556          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1557          * capability to the guest too, and if EPT is disabled we're not
1558          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1559          * require a nested hypervisor to do a flush of its own.
1560          */
1561         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1562                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1563
1564         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1565                 data |= ARCH_CAP_RDCL_NO;
1566         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1567                 data |= ARCH_CAP_SSB_NO;
1568         if (!boot_cpu_has_bug(X86_BUG_MDS))
1569                 data |= ARCH_CAP_MDS_NO;
1570
1571         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1572                 /*
1573                  * If RTM=0 because the kernel has disabled TSX, the host might
1574                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1575                  * and therefore knows that there cannot be TAA) but keep
1576                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1577                  * and we want to allow migrating those guests to tsx=off hosts.
1578                  */
1579                 data &= ~ARCH_CAP_TAA_NO;
1580         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1581                 data |= ARCH_CAP_TAA_NO;
1582         } else {
1583                 /*
1584                  * Nothing to do here; we emulate TSX_CTRL if present on the
1585                  * host so the guest can choose between disabling TSX or
1586                  * using VERW to clear CPU buffers.
1587                  */
1588         }
1589
1590         return data;
1591 }
1592
1593 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1594 {
1595         switch (msr->index) {
1596         case MSR_IA32_ARCH_CAPABILITIES:
1597                 msr->data = kvm_get_arch_capabilities();
1598                 break;
1599         case MSR_IA32_UCODE_REV:
1600                 rdmsrl_safe(msr->index, &msr->data);
1601                 break;
1602         default:
1603                 return static_call(kvm_x86_get_msr_feature)(msr);
1604         }
1605         return 0;
1606 }
1607
1608 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1609 {
1610         struct kvm_msr_entry msr;
1611         int r;
1612
1613         msr.index = index;
1614         r = kvm_get_msr_feature(&msr);
1615
1616         if (r == KVM_MSR_RET_INVALID) {
1617                 /* Unconditionally clear the output for simplicity */
1618                 *data = 0;
1619                 if (kvm_msr_ignored_check(index, 0, false))
1620                         r = 0;
1621         }
1622
1623         if (r)
1624                 return r;
1625
1626         *data = msr.data;
1627
1628         return 0;
1629 }
1630
1631 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1632 {
1633         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1634                 return false;
1635
1636         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1637                 return false;
1638
1639         if (efer & (EFER_LME | EFER_LMA) &&
1640             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1641                 return false;
1642
1643         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1644                 return false;
1645
1646         return true;
1647
1648 }
1649 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1650 {
1651         if (efer & efer_reserved_bits)
1652                 return false;
1653
1654         return __kvm_valid_efer(vcpu, efer);
1655 }
1656 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1657
1658 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1659 {
1660         u64 old_efer = vcpu->arch.efer;
1661         u64 efer = msr_info->data;
1662         int r;
1663
1664         if (efer & efer_reserved_bits)
1665                 return 1;
1666
1667         if (!msr_info->host_initiated) {
1668                 if (!__kvm_valid_efer(vcpu, efer))
1669                         return 1;
1670
1671                 if (is_paging(vcpu) &&
1672                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1673                         return 1;
1674         }
1675
1676         efer &= ~EFER_LMA;
1677         efer |= vcpu->arch.efer & EFER_LMA;
1678
1679         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1680         if (r) {
1681                 WARN_ON(r > 0);
1682                 return r;
1683         }
1684
1685         if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1686                 kvm_mmu_reset_context(vcpu);
1687
1688         return 0;
1689 }
1690
1691 void kvm_enable_efer_bits(u64 mask)
1692 {
1693        efer_reserved_bits &= ~mask;
1694 }
1695 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1696
1697 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1698 {
1699         struct kvm_x86_msr_filter *msr_filter;
1700         struct msr_bitmap_range *ranges;
1701         struct kvm *kvm = vcpu->kvm;
1702         bool allowed;
1703         int idx;
1704         u32 i;
1705
1706         /* x2APIC MSRs do not support filtering. */
1707         if (index >= 0x800 && index <= 0x8ff)
1708                 return true;
1709
1710         idx = srcu_read_lock(&kvm->srcu);
1711
1712         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1713         if (!msr_filter) {
1714                 allowed = true;
1715                 goto out;
1716         }
1717
1718         allowed = msr_filter->default_allow;
1719         ranges = msr_filter->ranges;
1720
1721         for (i = 0; i < msr_filter->count; i++) {
1722                 u32 start = ranges[i].base;
1723                 u32 end = start + ranges[i].nmsrs;
1724                 u32 flags = ranges[i].flags;
1725                 unsigned long *bitmap = ranges[i].bitmap;
1726
1727                 if ((index >= start) && (index < end) && (flags & type)) {
1728                         allowed = !!test_bit(index - start, bitmap);
1729                         break;
1730                 }
1731         }
1732
1733 out:
1734         srcu_read_unlock(&kvm->srcu, idx);
1735
1736         return allowed;
1737 }
1738 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1739
1740 /*
1741  * Write @data into the MSR specified by @index.  Select MSR specific fault
1742  * checks are bypassed if @host_initiated is %true.
1743  * Returns 0 on success, non-0 otherwise.
1744  * Assumes vcpu_load() was already called.
1745  */
1746 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1747                          bool host_initiated)
1748 {
1749         struct msr_data msr;
1750
1751         switch (index) {
1752         case MSR_FS_BASE:
1753         case MSR_GS_BASE:
1754         case MSR_KERNEL_GS_BASE:
1755         case MSR_CSTAR:
1756         case MSR_LSTAR:
1757                 if (is_noncanonical_address(data, vcpu))
1758                         return 1;
1759                 break;
1760         case MSR_IA32_SYSENTER_EIP:
1761         case MSR_IA32_SYSENTER_ESP:
1762                 /*
1763                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1764                  * non-canonical address is written on Intel but not on
1765                  * AMD (which ignores the top 32-bits, because it does
1766                  * not implement 64-bit SYSENTER).
1767                  *
1768                  * 64-bit code should hence be able to write a non-canonical
1769                  * value on AMD.  Making the address canonical ensures that
1770                  * vmentry does not fail on Intel after writing a non-canonical
1771                  * value, and that something deterministic happens if the guest
1772                  * invokes 64-bit SYSENTER.
1773                  */
1774                 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1775                 break;
1776         case MSR_TSC_AUX:
1777                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1778                         return 1;
1779
1780                 if (!host_initiated &&
1781                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1782                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1783                         return 1;
1784
1785                 /*
1786                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1787                  * incomplete and conflicting architectural behavior.  Current
1788                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1789                  * reserved and always read as zeros.  Enforce Intel's reserved
1790                  * bits check if and only if the guest CPU is Intel, and clear
1791                  * the bits in all other cases.  This ensures cross-vendor
1792                  * migration will provide consistent behavior for the guest.
1793                  */
1794                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1795                         return 1;
1796
1797                 data = (u32)data;
1798                 break;
1799         }
1800
1801         msr.data = data;
1802         msr.index = index;
1803         msr.host_initiated = host_initiated;
1804
1805         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1806 }
1807
1808 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1809                                      u32 index, u64 data, bool host_initiated)
1810 {
1811         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1812
1813         if (ret == KVM_MSR_RET_INVALID)
1814                 if (kvm_msr_ignored_check(index, data, true))
1815                         ret = 0;
1816
1817         return ret;
1818 }
1819
1820 /*
1821  * Read the MSR specified by @index into @data.  Select MSR specific fault
1822  * checks are bypassed if @host_initiated is %true.
1823  * Returns 0 on success, non-0 otherwise.
1824  * Assumes vcpu_load() was already called.
1825  */
1826 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1827                   bool host_initiated)
1828 {
1829         struct msr_data msr;
1830         int ret;
1831
1832         switch (index) {
1833         case MSR_TSC_AUX:
1834                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1835                         return 1;
1836
1837                 if (!host_initiated &&
1838                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1839                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1840                         return 1;
1841                 break;
1842         }
1843
1844         msr.index = index;
1845         msr.host_initiated = host_initiated;
1846
1847         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1848         if (!ret)
1849                 *data = msr.data;
1850         return ret;
1851 }
1852
1853 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1854                                      u32 index, u64 *data, bool host_initiated)
1855 {
1856         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1857
1858         if (ret == KVM_MSR_RET_INVALID) {
1859                 /* Unconditionally clear *data for simplicity */
1860                 *data = 0;
1861                 if (kvm_msr_ignored_check(index, 0, false))
1862                         ret = 0;
1863         }
1864
1865         return ret;
1866 }
1867
1868 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1869 {
1870         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1871                 return KVM_MSR_RET_FILTERED;
1872         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1873 }
1874
1875 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1876 {
1877         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1878                 return KVM_MSR_RET_FILTERED;
1879         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1880 }
1881
1882 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1883 {
1884         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1885 }
1886 EXPORT_SYMBOL_GPL(kvm_get_msr);
1887
1888 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1889 {
1890         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1891 }
1892 EXPORT_SYMBOL_GPL(kvm_set_msr);
1893
1894 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1895 {
1896         if (!vcpu->run->msr.error) {
1897                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1898                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1899         }
1900 }
1901
1902 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1903 {
1904         return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1905 }
1906
1907 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1908 {
1909         complete_userspace_rdmsr(vcpu);
1910         return complete_emulated_msr_access(vcpu);
1911 }
1912
1913 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1914 {
1915         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1916 }
1917
1918 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1919 {
1920         complete_userspace_rdmsr(vcpu);
1921         return complete_fast_msr_access(vcpu);
1922 }
1923
1924 static u64 kvm_msr_reason(int r)
1925 {
1926         switch (r) {
1927         case KVM_MSR_RET_INVALID:
1928                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1929         case KVM_MSR_RET_FILTERED:
1930                 return KVM_MSR_EXIT_REASON_FILTER;
1931         default:
1932                 return KVM_MSR_EXIT_REASON_INVAL;
1933         }
1934 }
1935
1936 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1937                               u32 exit_reason, u64 data,
1938                               int (*completion)(struct kvm_vcpu *vcpu),
1939                               int r)
1940 {
1941         u64 msr_reason = kvm_msr_reason(r);
1942
1943         /* Check if the user wanted to know about this MSR fault */
1944         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1945                 return 0;
1946
1947         vcpu->run->exit_reason = exit_reason;
1948         vcpu->run->msr.error = 0;
1949         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1950         vcpu->run->msr.reason = msr_reason;
1951         vcpu->run->msr.index = index;
1952         vcpu->run->msr.data = data;
1953         vcpu->arch.complete_userspace_io = completion;
1954
1955         return 1;
1956 }
1957
1958 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1959 {
1960         u32 ecx = kvm_rcx_read(vcpu);
1961         u64 data;
1962         int r;
1963
1964         r = kvm_get_msr_with_filter(vcpu, ecx, &data);
1965
1966         if (!r) {
1967                 trace_kvm_msr_read(ecx, data);
1968
1969                 kvm_rax_write(vcpu, data & -1u);
1970                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1971         } else {
1972                 /* MSR read failed? See if we should ask user space */
1973                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
1974                                        complete_fast_rdmsr, r))
1975                         return 0;
1976                 trace_kvm_msr_read_ex(ecx);
1977         }
1978
1979         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1980 }
1981 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1982
1983 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1984 {
1985         u32 ecx = kvm_rcx_read(vcpu);
1986         u64 data = kvm_read_edx_eax(vcpu);
1987         int r;
1988
1989         r = kvm_set_msr_with_filter(vcpu, ecx, data);
1990
1991         if (!r) {
1992                 trace_kvm_msr_write(ecx, data);
1993         } else {
1994                 /* MSR write failed? See if we should ask user space */
1995                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
1996                                        complete_fast_msr_access, r))
1997                         return 0;
1998                 /* Signal all other negative errors to userspace */
1999                 if (r < 0)
2000                         return r;
2001                 trace_kvm_msr_write_ex(ecx, data);
2002         }
2003
2004         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2005 }
2006 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2007
2008 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2009 {
2010         return kvm_skip_emulated_instruction(vcpu);
2011 }
2012 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2013
2014 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2015 {
2016         /* Treat an INVD instruction as a NOP and just skip it. */
2017         return kvm_emulate_as_nop(vcpu);
2018 }
2019 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2020
2021 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2022 {
2023         pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
2024         return kvm_emulate_as_nop(vcpu);
2025 }
2026 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2027
2028 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2029 {
2030         kvm_queue_exception(vcpu, UD_VECTOR);
2031         return 1;
2032 }
2033 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2034
2035 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2036 {
2037         pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
2038         return kvm_emulate_as_nop(vcpu);
2039 }
2040 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2041
2042 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2043 {
2044         xfer_to_guest_mode_prepare();
2045         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2046                 xfer_to_guest_mode_work_pending();
2047 }
2048
2049 /*
2050  * The fast path for frequent and performance sensitive wrmsr emulation,
2051  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2052  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2053  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2054  * other cases which must be called after interrupts are enabled on the host.
2055  */
2056 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2057 {
2058         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2059                 return 1;
2060
2061         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2062             ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2063             ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2064             ((u32)(data >> 32) != X2APIC_BROADCAST))
2065                 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2066
2067         return 1;
2068 }
2069
2070 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2071 {
2072         if (!kvm_can_use_hv_timer(vcpu))
2073                 return 1;
2074
2075         kvm_set_lapic_tscdeadline_msr(vcpu, data);
2076         return 0;
2077 }
2078
2079 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2080 {
2081         u32 msr = kvm_rcx_read(vcpu);
2082         u64 data;
2083         fastpath_t ret = EXIT_FASTPATH_NONE;
2084
2085         switch (msr) {
2086         case APIC_BASE_MSR + (APIC_ICR >> 4):
2087                 data = kvm_read_edx_eax(vcpu);
2088                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2089                         kvm_skip_emulated_instruction(vcpu);
2090                         ret = EXIT_FASTPATH_EXIT_HANDLED;
2091                 }
2092                 break;
2093         case MSR_IA32_TSC_DEADLINE:
2094                 data = kvm_read_edx_eax(vcpu);
2095                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2096                         kvm_skip_emulated_instruction(vcpu);
2097                         ret = EXIT_FASTPATH_REENTER_GUEST;
2098                 }
2099                 break;
2100         default:
2101                 break;
2102         }
2103
2104         if (ret != EXIT_FASTPATH_NONE)
2105                 trace_kvm_msr_write(msr, data);
2106
2107         return ret;
2108 }
2109 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2110
2111 /*
2112  * Adapt set_msr() to msr_io()'s calling convention
2113  */
2114 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2115 {
2116         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2117 }
2118
2119 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2120 {
2121         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2122 }
2123
2124 #ifdef CONFIG_X86_64
2125 struct pvclock_clock {
2126         int vclock_mode;
2127         u64 cycle_last;
2128         u64 mask;
2129         u32 mult;
2130         u32 shift;
2131         u64 base_cycles;
2132         u64 offset;
2133 };
2134
2135 struct pvclock_gtod_data {
2136         seqcount_t      seq;
2137
2138         struct pvclock_clock clock; /* extract of a clocksource struct */
2139         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2140
2141         ktime_t         offs_boot;
2142         u64             wall_time_sec;
2143 };
2144
2145 static struct pvclock_gtod_data pvclock_gtod_data;
2146
2147 static void update_pvclock_gtod(struct timekeeper *tk)
2148 {
2149         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2150
2151         write_seqcount_begin(&vdata->seq);
2152
2153         /* copy pvclock gtod data */
2154         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2155         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2156         vdata->clock.mask               = tk->tkr_mono.mask;
2157         vdata->clock.mult               = tk->tkr_mono.mult;
2158         vdata->clock.shift              = tk->tkr_mono.shift;
2159         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2160         vdata->clock.offset             = tk->tkr_mono.base;
2161
2162         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2163         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2164         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2165         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2166         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2167         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2168         vdata->raw_clock.offset         = tk->tkr_raw.base;
2169
2170         vdata->wall_time_sec            = tk->xtime_sec;
2171
2172         vdata->offs_boot                = tk->offs_boot;
2173
2174         write_seqcount_end(&vdata->seq);
2175 }
2176
2177 static s64 get_kvmclock_base_ns(void)
2178 {
2179         /* Count up from boot time, but with the frequency of the raw clock.  */
2180         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2181 }
2182 #else
2183 static s64 get_kvmclock_base_ns(void)
2184 {
2185         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2186         return ktime_get_boottime_ns();
2187 }
2188 #endif
2189
2190 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2191 {
2192         int version;
2193         int r;
2194         struct pvclock_wall_clock wc;
2195         u32 wc_sec_hi;
2196         u64 wall_nsec;
2197
2198         if (!wall_clock)
2199                 return;
2200
2201         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2202         if (r)
2203                 return;
2204
2205         if (version & 1)
2206                 ++version;  /* first time write, random junk */
2207
2208         ++version;
2209
2210         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2211                 return;
2212
2213         /*
2214          * The guest calculates current wall clock time by adding
2215          * system time (updated by kvm_guest_time_update below) to the
2216          * wall clock specified here.  We do the reverse here.
2217          */
2218         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2219
2220         wc.nsec = do_div(wall_nsec, 1000000000);
2221         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2222         wc.version = version;
2223
2224         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2225
2226         if (sec_hi_ofs) {
2227                 wc_sec_hi = wall_nsec >> 32;
2228                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2229                                 &wc_sec_hi, sizeof(wc_sec_hi));
2230         }
2231
2232         version++;
2233         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2234 }
2235
2236 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2237                                   bool old_msr, bool host_initiated)
2238 {
2239         struct kvm_arch *ka = &vcpu->kvm->arch;
2240
2241         if (vcpu->vcpu_id == 0 && !host_initiated) {
2242                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2243                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2244
2245                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2246         }
2247
2248         vcpu->arch.time = system_time;
2249         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2250
2251         /* we verify if the enable bit is set... */
2252         vcpu->arch.pv_time_enabled = false;
2253         if (!(system_time & 1))
2254                 return;
2255
2256         if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2257                                        &vcpu->arch.pv_time, system_time & ~1ULL,
2258                                        sizeof(struct pvclock_vcpu_time_info)))
2259                 vcpu->arch.pv_time_enabled = true;
2260
2261         return;
2262 }
2263
2264 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2265 {
2266         do_shl32_div32(dividend, divisor);
2267         return dividend;
2268 }
2269
2270 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2271                                s8 *pshift, u32 *pmultiplier)
2272 {
2273         uint64_t scaled64;
2274         int32_t  shift = 0;
2275         uint64_t tps64;
2276         uint32_t tps32;
2277
2278         tps64 = base_hz;
2279         scaled64 = scaled_hz;
2280         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2281                 tps64 >>= 1;
2282                 shift--;
2283         }
2284
2285         tps32 = (uint32_t)tps64;
2286         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2287                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2288                         scaled64 >>= 1;
2289                 else
2290                         tps32 <<= 1;
2291                 shift++;
2292         }
2293
2294         *pshift = shift;
2295         *pmultiplier = div_frac(scaled64, tps32);
2296 }
2297
2298 #ifdef CONFIG_X86_64
2299 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2300 #endif
2301
2302 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2303 static unsigned long max_tsc_khz;
2304
2305 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2306 {
2307         u64 v = (u64)khz * (1000000 + ppm);
2308         do_div(v, 1000000);
2309         return v;
2310 }
2311
2312 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2313
2314 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2315 {
2316         u64 ratio;
2317
2318         /* Guest TSC same frequency as host TSC? */
2319         if (!scale) {
2320                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2321                 return 0;
2322         }
2323
2324         /* TSC scaling supported? */
2325         if (!kvm_has_tsc_control) {
2326                 if (user_tsc_khz > tsc_khz) {
2327                         vcpu->arch.tsc_catchup = 1;
2328                         vcpu->arch.tsc_always_catchup = 1;
2329                         return 0;
2330                 } else {
2331                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2332                         return -1;
2333                 }
2334         }
2335
2336         /* TSC scaling required  - calculate ratio */
2337         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2338                                 user_tsc_khz, tsc_khz);
2339
2340         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2341                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2342                                     user_tsc_khz);
2343                 return -1;
2344         }
2345
2346         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2347         return 0;
2348 }
2349
2350 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2351 {
2352         u32 thresh_lo, thresh_hi;
2353         int use_scaling = 0;
2354
2355         /* tsc_khz can be zero if TSC calibration fails */
2356         if (user_tsc_khz == 0) {
2357                 /* set tsc_scaling_ratio to a safe value */
2358                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2359                 return -1;
2360         }
2361
2362         /* Compute a scale to convert nanoseconds in TSC cycles */
2363         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2364                            &vcpu->arch.virtual_tsc_shift,
2365                            &vcpu->arch.virtual_tsc_mult);
2366         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2367
2368         /*
2369          * Compute the variation in TSC rate which is acceptable
2370          * within the range of tolerance and decide if the
2371          * rate being applied is within that bounds of the hardware
2372          * rate.  If so, no scaling or compensation need be done.
2373          */
2374         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2375         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2376         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2377                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2378                 use_scaling = 1;
2379         }
2380         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2381 }
2382
2383 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2384 {
2385         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2386                                       vcpu->arch.virtual_tsc_mult,
2387                                       vcpu->arch.virtual_tsc_shift);
2388         tsc += vcpu->arch.this_tsc_write;
2389         return tsc;
2390 }
2391
2392 #ifdef CONFIG_X86_64
2393 static inline int gtod_is_based_on_tsc(int mode)
2394 {
2395         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2396 }
2397 #endif
2398
2399 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2400 {
2401 #ifdef CONFIG_X86_64
2402         bool vcpus_matched;
2403         struct kvm_arch *ka = &vcpu->kvm->arch;
2404         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2405
2406         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2407                          atomic_read(&vcpu->kvm->online_vcpus));
2408
2409         /*
2410          * Once the masterclock is enabled, always perform request in
2411          * order to update it.
2412          *
2413          * In order to enable masterclock, the host clocksource must be TSC
2414          * and the vcpus need to have matched TSCs.  When that happens,
2415          * perform request to enable masterclock.
2416          */
2417         if (ka->use_master_clock ||
2418             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2419                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2420
2421         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2422                             atomic_read(&vcpu->kvm->online_vcpus),
2423                             ka->use_master_clock, gtod->clock.vclock_mode);
2424 #endif
2425 }
2426
2427 /*
2428  * Multiply tsc by a fixed point number represented by ratio.
2429  *
2430  * The most significant 64-N bits (mult) of ratio represent the
2431  * integral part of the fixed point number; the remaining N bits
2432  * (frac) represent the fractional part, ie. ratio represents a fixed
2433  * point number (mult + frac * 2^(-N)).
2434  *
2435  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2436  */
2437 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2438 {
2439         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2440 }
2441
2442 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2443 {
2444         u64 _tsc = tsc;
2445
2446         if (ratio != kvm_default_tsc_scaling_ratio)
2447                 _tsc = __scale_tsc(ratio, tsc);
2448
2449         return _tsc;
2450 }
2451 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2452
2453 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2454 {
2455         u64 tsc;
2456
2457         tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2458
2459         return target_tsc - tsc;
2460 }
2461
2462 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2463 {
2464         return vcpu->arch.l1_tsc_offset +
2465                 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2466 }
2467 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2468
2469 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2470 {
2471         u64 nested_offset;
2472
2473         if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2474                 nested_offset = l1_offset;
2475         else
2476                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2477                                                 kvm_tsc_scaling_ratio_frac_bits);
2478
2479         nested_offset += l2_offset;
2480         return nested_offset;
2481 }
2482 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2483
2484 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2485 {
2486         if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2487                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2488                                        kvm_tsc_scaling_ratio_frac_bits);
2489
2490         return l1_multiplier;
2491 }
2492 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2493
2494 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2495 {
2496         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2497                                    vcpu->arch.l1_tsc_offset,
2498                                    l1_offset);
2499
2500         vcpu->arch.l1_tsc_offset = l1_offset;
2501
2502         /*
2503          * If we are here because L1 chose not to trap WRMSR to TSC then
2504          * according to the spec this should set L1's TSC (as opposed to
2505          * setting L1's offset for L2).
2506          */
2507         if (is_guest_mode(vcpu))
2508                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2509                         l1_offset,
2510                         static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2511                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2512         else
2513                 vcpu->arch.tsc_offset = l1_offset;
2514
2515         static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2516 }
2517
2518 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2519 {
2520         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2521
2522         /* Userspace is changing the multiplier while L2 is active */
2523         if (is_guest_mode(vcpu))
2524                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2525                         l1_multiplier,
2526                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2527         else
2528                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2529
2530         if (kvm_has_tsc_control)
2531                 static_call(kvm_x86_write_tsc_multiplier)(
2532                         vcpu, vcpu->arch.tsc_scaling_ratio);
2533 }
2534
2535 static inline bool kvm_check_tsc_unstable(void)
2536 {
2537 #ifdef CONFIG_X86_64
2538         /*
2539          * TSC is marked unstable when we're running on Hyper-V,
2540          * 'TSC page' clocksource is good.
2541          */
2542         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2543                 return false;
2544 #endif
2545         return check_tsc_unstable();
2546 }
2547
2548 /*
2549  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2550  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2551  * participates in.
2552  */
2553 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2554                                   u64 ns, bool matched)
2555 {
2556         struct kvm *kvm = vcpu->kvm;
2557
2558         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2559
2560         /*
2561          * We also track th most recent recorded KHZ, write and time to
2562          * allow the matching interval to be extended at each write.
2563          */
2564         kvm->arch.last_tsc_nsec = ns;
2565         kvm->arch.last_tsc_write = tsc;
2566         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2567         kvm->arch.last_tsc_offset = offset;
2568
2569         vcpu->arch.last_guest_tsc = tsc;
2570
2571         kvm_vcpu_write_tsc_offset(vcpu, offset);
2572
2573         if (!matched) {
2574                 /*
2575                  * We split periods of matched TSC writes into generations.
2576                  * For each generation, we track the original measured
2577                  * nanosecond time, offset, and write, so if TSCs are in
2578                  * sync, we can match exact offset, and if not, we can match
2579                  * exact software computation in compute_guest_tsc()
2580                  *
2581                  * These values are tracked in kvm->arch.cur_xxx variables.
2582                  */
2583                 kvm->arch.cur_tsc_generation++;
2584                 kvm->arch.cur_tsc_nsec = ns;
2585                 kvm->arch.cur_tsc_write = tsc;
2586                 kvm->arch.cur_tsc_offset = offset;
2587                 kvm->arch.nr_vcpus_matched_tsc = 0;
2588         } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2589                 kvm->arch.nr_vcpus_matched_tsc++;
2590         }
2591
2592         /* Keep track of which generation this VCPU has synchronized to */
2593         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2594         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2595         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2596
2597         kvm_track_tsc_matching(vcpu);
2598 }
2599
2600 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2601 {
2602         struct kvm *kvm = vcpu->kvm;
2603         u64 offset, ns, elapsed;
2604         unsigned long flags;
2605         bool matched = false;
2606         bool synchronizing = false;
2607
2608         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2609         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2610         ns = get_kvmclock_base_ns();
2611         elapsed = ns - kvm->arch.last_tsc_nsec;
2612
2613         if (vcpu->arch.virtual_tsc_khz) {
2614                 if (data == 0) {
2615                         /*
2616                          * detection of vcpu initialization -- need to sync
2617                          * with other vCPUs. This particularly helps to keep
2618                          * kvm_clock stable after CPU hotplug
2619                          */
2620                         synchronizing = true;
2621                 } else {
2622                         u64 tsc_exp = kvm->arch.last_tsc_write +
2623                                                 nsec_to_cycles(vcpu, elapsed);
2624                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2625                         /*
2626                          * Special case: TSC write with a small delta (1 second)
2627                          * of virtual cycle time against real time is
2628                          * interpreted as an attempt to synchronize the CPU.
2629                          */
2630                         synchronizing = data < tsc_exp + tsc_hz &&
2631                                         data + tsc_hz > tsc_exp;
2632                 }
2633         }
2634
2635         /*
2636          * For a reliable TSC, we can match TSC offsets, and for an unstable
2637          * TSC, we add elapsed time in this computation.  We could let the
2638          * compensation code attempt to catch up if we fall behind, but
2639          * it's better to try to match offsets from the beginning.
2640          */
2641         if (synchronizing &&
2642             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2643                 if (!kvm_check_tsc_unstable()) {
2644                         offset = kvm->arch.cur_tsc_offset;
2645                 } else {
2646                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2647                         data += delta;
2648                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2649                 }
2650                 matched = true;
2651         }
2652
2653         __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2654         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2655 }
2656
2657 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2658                                            s64 adjustment)
2659 {
2660         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2661         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2662 }
2663
2664 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2665 {
2666         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2667                 WARN_ON(adjustment < 0);
2668         adjustment = kvm_scale_tsc((u64) adjustment,
2669                                    vcpu->arch.l1_tsc_scaling_ratio);
2670         adjust_tsc_offset_guest(vcpu, adjustment);
2671 }
2672
2673 #ifdef CONFIG_X86_64
2674
2675 static u64 read_tsc(void)
2676 {
2677         u64 ret = (u64)rdtsc_ordered();
2678         u64 last = pvclock_gtod_data.clock.cycle_last;
2679
2680         if (likely(ret >= last))
2681                 return ret;
2682
2683         /*
2684          * GCC likes to generate cmov here, but this branch is extremely
2685          * predictable (it's just a function of time and the likely is
2686          * very likely) and there's a data dependence, so force GCC
2687          * to generate a branch instead.  I don't barrier() because
2688          * we don't actually need a barrier, and if this function
2689          * ever gets inlined it will generate worse code.
2690          */
2691         asm volatile ("");
2692         return last;
2693 }
2694
2695 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2696                           int *mode)
2697 {
2698         long v;
2699         u64 tsc_pg_val;
2700
2701         switch (clock->vclock_mode) {
2702         case VDSO_CLOCKMODE_HVCLOCK:
2703                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2704                                                   tsc_timestamp);
2705                 if (tsc_pg_val != U64_MAX) {
2706                         /* TSC page valid */
2707                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2708                         v = (tsc_pg_val - clock->cycle_last) &
2709                                 clock->mask;
2710                 } else {
2711                         /* TSC page invalid */
2712                         *mode = VDSO_CLOCKMODE_NONE;
2713                 }
2714                 break;
2715         case VDSO_CLOCKMODE_TSC:
2716                 *mode = VDSO_CLOCKMODE_TSC;
2717                 *tsc_timestamp = read_tsc();
2718                 v = (*tsc_timestamp - clock->cycle_last) &
2719                         clock->mask;
2720                 break;
2721         default:
2722                 *mode = VDSO_CLOCKMODE_NONE;
2723         }
2724
2725         if (*mode == VDSO_CLOCKMODE_NONE)
2726                 *tsc_timestamp = v = 0;
2727
2728         return v * clock->mult;
2729 }
2730
2731 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2732 {
2733         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2734         unsigned long seq;
2735         int mode;
2736         u64 ns;
2737
2738         do {
2739                 seq = read_seqcount_begin(&gtod->seq);
2740                 ns = gtod->raw_clock.base_cycles;
2741                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2742                 ns >>= gtod->raw_clock.shift;
2743                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2744         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2745         *t = ns;
2746
2747         return mode;
2748 }
2749
2750 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2751 {
2752         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2753         unsigned long seq;
2754         int mode;
2755         u64 ns;
2756
2757         do {
2758                 seq = read_seqcount_begin(&gtod->seq);
2759                 ts->tv_sec = gtod->wall_time_sec;
2760                 ns = gtod->clock.base_cycles;
2761                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2762                 ns >>= gtod->clock.shift;
2763         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2764
2765         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2766         ts->tv_nsec = ns;
2767
2768         return mode;
2769 }
2770
2771 /* returns true if host is using TSC based clocksource */
2772 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2773 {
2774         /* checked again under seqlock below */
2775         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2776                 return false;
2777
2778         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2779                                                       tsc_timestamp));
2780 }
2781
2782 /* returns true if host is using TSC based clocksource */
2783 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2784                                            u64 *tsc_timestamp)
2785 {
2786         /* checked again under seqlock below */
2787         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2788                 return false;
2789
2790         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2791 }
2792 #endif
2793
2794 /*
2795  *
2796  * Assuming a stable TSC across physical CPUS, and a stable TSC
2797  * across virtual CPUs, the following condition is possible.
2798  * Each numbered line represents an event visible to both
2799  * CPUs at the next numbered event.
2800  *
2801  * "timespecX" represents host monotonic time. "tscX" represents
2802  * RDTSC value.
2803  *
2804  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2805  *
2806  * 1.  read timespec0,tsc0
2807  * 2.                                   | timespec1 = timespec0 + N
2808  *                                      | tsc1 = tsc0 + M
2809  * 3. transition to guest               | transition to guest
2810  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2811  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2812  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2813  *
2814  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2815  *
2816  *      - ret0 < ret1
2817  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2818  *              ...
2819  *      - 0 < N - M => M < N
2820  *
2821  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2822  * always the case (the difference between two distinct xtime instances
2823  * might be smaller then the difference between corresponding TSC reads,
2824  * when updating guest vcpus pvclock areas).
2825  *
2826  * To avoid that problem, do not allow visibility of distinct
2827  * system_timestamp/tsc_timestamp values simultaneously: use a master
2828  * copy of host monotonic time values. Update that master copy
2829  * in lockstep.
2830  *
2831  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2832  *
2833  */
2834
2835 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2836 {
2837 #ifdef CONFIG_X86_64
2838         struct kvm_arch *ka = &kvm->arch;
2839         int vclock_mode;
2840         bool host_tsc_clocksource, vcpus_matched;
2841
2842         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2843         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2844                         atomic_read(&kvm->online_vcpus));
2845
2846         /*
2847          * If the host uses TSC clock, then passthrough TSC as stable
2848          * to the guest.
2849          */
2850         host_tsc_clocksource = kvm_get_time_and_clockread(
2851                                         &ka->master_kernel_ns,
2852                                         &ka->master_cycle_now);
2853
2854         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2855                                 && !ka->backwards_tsc_observed
2856                                 && !ka->boot_vcpu_runs_old_kvmclock;
2857
2858         if (ka->use_master_clock)
2859                 atomic_set(&kvm_guest_has_master_clock, 1);
2860
2861         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2862         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2863                                         vcpus_matched);
2864 #endif
2865 }
2866
2867 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2868 {
2869         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2870 }
2871
2872 static void __kvm_start_pvclock_update(struct kvm *kvm)
2873 {
2874         raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2875         write_seqcount_begin(&kvm->arch.pvclock_sc);
2876 }
2877
2878 static void kvm_start_pvclock_update(struct kvm *kvm)
2879 {
2880         kvm_make_mclock_inprogress_request(kvm);
2881
2882         /* no guest entries from this point */
2883         __kvm_start_pvclock_update(kvm);
2884 }
2885
2886 static void kvm_end_pvclock_update(struct kvm *kvm)
2887 {
2888         struct kvm_arch *ka = &kvm->arch;
2889         struct kvm_vcpu *vcpu;
2890         unsigned long i;
2891
2892         write_seqcount_end(&ka->pvclock_sc);
2893         raw_spin_unlock_irq(&ka->tsc_write_lock);
2894         kvm_for_each_vcpu(i, vcpu, kvm)
2895                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2896
2897         /* guest entries allowed */
2898         kvm_for_each_vcpu(i, vcpu, kvm)
2899                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2900 }
2901
2902 static void kvm_update_masterclock(struct kvm *kvm)
2903 {
2904         kvm_hv_request_tsc_page_update(kvm);
2905         kvm_start_pvclock_update(kvm);
2906         pvclock_update_vm_gtod_copy(kvm);
2907         kvm_end_pvclock_update(kvm);
2908 }
2909
2910 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2911 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2912 {
2913         struct kvm_arch *ka = &kvm->arch;
2914         struct pvclock_vcpu_time_info hv_clock;
2915
2916         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2917         get_cpu();
2918
2919         data->flags = 0;
2920         if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2921 #ifdef CONFIG_X86_64
2922                 struct timespec64 ts;
2923
2924                 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2925                         data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2926                         data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2927                 } else
2928 #endif
2929                 data->host_tsc = rdtsc();
2930
2931                 data->flags |= KVM_CLOCK_TSC_STABLE;
2932                 hv_clock.tsc_timestamp = ka->master_cycle_now;
2933                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2934                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2935                                    &hv_clock.tsc_shift,
2936                                    &hv_clock.tsc_to_system_mul);
2937                 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2938         } else {
2939                 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2940         }
2941
2942         put_cpu();
2943 }
2944
2945 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2946 {
2947         struct kvm_arch *ka = &kvm->arch;
2948         unsigned seq;
2949
2950         do {
2951                 seq = read_seqcount_begin(&ka->pvclock_sc);
2952                 __get_kvmclock(kvm, data);
2953         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
2954 }
2955
2956 u64 get_kvmclock_ns(struct kvm *kvm)
2957 {
2958         struct kvm_clock_data data;
2959
2960         get_kvmclock(kvm, &data);
2961         return data.clock;
2962 }
2963
2964 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2965                                    struct gfn_to_hva_cache *cache,
2966                                    unsigned int offset)
2967 {
2968         struct kvm_vcpu_arch *vcpu = &v->arch;
2969         struct pvclock_vcpu_time_info guest_hv_clock;
2970
2971         if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2972                 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2973                 return;
2974
2975         /* This VCPU is paused, but it's legal for a guest to read another
2976          * VCPU's kvmclock, so we really have to follow the specification where
2977          * it says that version is odd if data is being modified, and even after
2978          * it is consistent.
2979          *
2980          * Version field updates must be kept separate.  This is because
2981          * kvm_write_guest_cached might use a "rep movs" instruction, and
2982          * writes within a string instruction are weakly ordered.  So there
2983          * are three writes overall.
2984          *
2985          * As a small optimization, only write the version field in the first
2986          * and third write.  The vcpu->pv_time cache is still valid, because the
2987          * version field is the first in the struct.
2988          */
2989         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2990
2991         if (guest_hv_clock.version & 1)
2992                 ++guest_hv_clock.version;  /* first time write, random junk */
2993
2994         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2995         kvm_write_guest_offset_cached(v->kvm, cache,
2996                                       &vcpu->hv_clock, offset,
2997                                       sizeof(vcpu->hv_clock.version));
2998
2999         smp_wmb();
3000
3001         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3002         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
3003
3004         if (vcpu->pvclock_set_guest_stopped_request) {
3005                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3006                 vcpu->pvclock_set_guest_stopped_request = false;
3007         }
3008
3009         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3010
3011         kvm_write_guest_offset_cached(v->kvm, cache,
3012                                       &vcpu->hv_clock, offset,
3013                                       sizeof(vcpu->hv_clock));
3014
3015         smp_wmb();
3016
3017         vcpu->hv_clock.version++;
3018         kvm_write_guest_offset_cached(v->kvm, cache,
3019                                      &vcpu->hv_clock, offset,
3020                                      sizeof(vcpu->hv_clock.version));
3021 }
3022
3023 static int kvm_guest_time_update(struct kvm_vcpu *v)
3024 {
3025         unsigned long flags, tgt_tsc_khz;
3026         unsigned seq;
3027         struct kvm_vcpu_arch *vcpu = &v->arch;
3028         struct kvm_arch *ka = &v->kvm->arch;
3029         s64 kernel_ns;
3030         u64 tsc_timestamp, host_tsc;
3031         u8 pvclock_flags;
3032         bool use_master_clock;
3033
3034         kernel_ns = 0;
3035         host_tsc = 0;
3036
3037         /*
3038          * If the host uses TSC clock, then passthrough TSC as stable
3039          * to the guest.
3040          */
3041         do {
3042                 seq = read_seqcount_begin(&ka->pvclock_sc);
3043                 use_master_clock = ka->use_master_clock;
3044                 if (use_master_clock) {
3045                         host_tsc = ka->master_cycle_now;
3046                         kernel_ns = ka->master_kernel_ns;
3047                 }
3048         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3049
3050         /* Keep irq disabled to prevent changes to the clock */
3051         local_irq_save(flags);
3052         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3053         if (unlikely(tgt_tsc_khz == 0)) {
3054                 local_irq_restore(flags);
3055                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3056                 return 1;
3057         }
3058         if (!use_master_clock) {
3059                 host_tsc = rdtsc();
3060                 kernel_ns = get_kvmclock_base_ns();
3061         }
3062
3063         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3064
3065         /*
3066          * We may have to catch up the TSC to match elapsed wall clock
3067          * time for two reasons, even if kvmclock is used.
3068          *   1) CPU could have been running below the maximum TSC rate
3069          *   2) Broken TSC compensation resets the base at each VCPU
3070          *      entry to avoid unknown leaps of TSC even when running
3071          *      again on the same CPU.  This may cause apparent elapsed
3072          *      time to disappear, and the guest to stand still or run
3073          *      very slowly.
3074          */
3075         if (vcpu->tsc_catchup) {
3076                 u64 tsc = compute_guest_tsc(v, kernel_ns);
3077                 if (tsc > tsc_timestamp) {
3078                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3079                         tsc_timestamp = tsc;
3080                 }
3081         }
3082
3083         local_irq_restore(flags);
3084
3085         /* With all the info we got, fill in the values */
3086
3087         if (kvm_has_tsc_control)
3088                 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3089                                             v->arch.l1_tsc_scaling_ratio);
3090
3091         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3092                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3093                                    &vcpu->hv_clock.tsc_shift,
3094                                    &vcpu->hv_clock.tsc_to_system_mul);
3095                 vcpu->hw_tsc_khz = tgt_tsc_khz;
3096         }
3097
3098         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3099         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3100         vcpu->last_guest_tsc = tsc_timestamp;
3101
3102         /* If the host uses TSC clocksource, then it is stable */
3103         pvclock_flags = 0;
3104         if (use_master_clock)
3105                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3106
3107         vcpu->hv_clock.flags = pvclock_flags;
3108
3109         if (vcpu->pv_time_enabled)
3110                 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
3111         if (vcpu->xen.vcpu_info_set)
3112                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
3113                                        offsetof(struct compat_vcpu_info, time));
3114         if (vcpu->xen.vcpu_time_info_set)
3115                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
3116         kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3117         return 0;
3118 }
3119
3120 /*
3121  * kvmclock updates which are isolated to a given vcpu, such as
3122  * vcpu->cpu migration, should not allow system_timestamp from
3123  * the rest of the vcpus to remain static. Otherwise ntp frequency
3124  * correction applies to one vcpu's system_timestamp but not
3125  * the others.
3126  *
3127  * So in those cases, request a kvmclock update for all vcpus.
3128  * We need to rate-limit these requests though, as they can
3129  * considerably slow guests that have a large number of vcpus.
3130  * The time for a remote vcpu to update its kvmclock is bound
3131  * by the delay we use to rate-limit the updates.
3132  */
3133
3134 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3135
3136 static void kvmclock_update_fn(struct work_struct *work)
3137 {
3138         unsigned long i;
3139         struct delayed_work *dwork = to_delayed_work(work);
3140         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3141                                            kvmclock_update_work);
3142         struct kvm *kvm = container_of(ka, struct kvm, arch);
3143         struct kvm_vcpu *vcpu;
3144
3145         kvm_for_each_vcpu(i, vcpu, kvm) {
3146                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3147                 kvm_vcpu_kick(vcpu);
3148         }
3149 }
3150
3151 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3152 {
3153         struct kvm *kvm = v->kvm;
3154
3155         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3156         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3157                                         KVMCLOCK_UPDATE_DELAY);
3158 }
3159
3160 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3161
3162 static void kvmclock_sync_fn(struct work_struct *work)
3163 {
3164         struct delayed_work *dwork = to_delayed_work(work);
3165         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3166                                            kvmclock_sync_work);
3167         struct kvm *kvm = container_of(ka, struct kvm, arch);
3168
3169         if (!kvmclock_periodic_sync)
3170                 return;
3171
3172         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3173         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3174                                         KVMCLOCK_SYNC_PERIOD);
3175 }
3176
3177 /*
3178  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3179  */
3180 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3181 {
3182         /* McStatusWrEn enabled? */
3183         if (guest_cpuid_is_amd_or_hygon(vcpu))
3184                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3185
3186         return false;
3187 }
3188
3189 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3190 {
3191         u64 mcg_cap = vcpu->arch.mcg_cap;
3192         unsigned bank_num = mcg_cap & 0xff;
3193         u32 msr = msr_info->index;
3194         u64 data = msr_info->data;
3195
3196         switch (msr) {
3197         case MSR_IA32_MCG_STATUS:
3198                 vcpu->arch.mcg_status = data;
3199                 break;
3200         case MSR_IA32_MCG_CTL:
3201                 if (!(mcg_cap & MCG_CTL_P) &&
3202                     (data || !msr_info->host_initiated))
3203                         return 1;
3204                 if (data != 0 && data != ~(u64)0)
3205                         return 1;
3206                 vcpu->arch.mcg_ctl = data;
3207                 break;
3208         default:
3209                 if (msr >= MSR_IA32_MC0_CTL &&
3210                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3211                         u32 offset = array_index_nospec(
3212                                 msr - MSR_IA32_MC0_CTL,
3213                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3214
3215                         /* only 0 or all 1s can be written to IA32_MCi_CTL
3216                          * some Linux kernels though clear bit 10 in bank 4 to
3217                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3218                          * this to avoid an uncatched #GP in the guest
3219                          */
3220                         if ((offset & 0x3) == 0 &&
3221                             data != 0 && (data | (1 << 10)) != ~(u64)0)
3222                                 return -1;
3223
3224                         /* MCi_STATUS */
3225                         if (!msr_info->host_initiated &&
3226                             (offset & 0x3) == 1 && data != 0) {
3227                                 if (!can_set_mci_status(vcpu))
3228                                         return -1;
3229                         }
3230
3231                         vcpu->arch.mce_banks[offset] = data;
3232                         break;
3233                 }
3234                 return 1;
3235         }
3236         return 0;
3237 }
3238
3239 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3240 {
3241         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3242
3243         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3244 }
3245
3246 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3247 {
3248         gpa_t gpa = data & ~0x3f;
3249
3250         /* Bits 4:5 are reserved, Should be zero */
3251         if (data & 0x30)
3252                 return 1;
3253
3254         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3255             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3256                 return 1;
3257
3258         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3259             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3260                 return 1;
3261
3262         if (!lapic_in_kernel(vcpu))
3263                 return data ? 1 : 0;
3264
3265         vcpu->arch.apf.msr_en_val = data;
3266
3267         if (!kvm_pv_async_pf_enabled(vcpu)) {
3268                 kvm_clear_async_pf_completion_queue(vcpu);
3269                 kvm_async_pf_hash_reset(vcpu);
3270                 return 0;
3271         }
3272
3273         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3274                                         sizeof(u64)))
3275                 return 1;
3276
3277         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3278         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3279
3280         kvm_async_pf_wakeup_all(vcpu);
3281
3282         return 0;
3283 }
3284
3285 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3286 {
3287         /* Bits 8-63 are reserved */
3288         if (data >> 8)
3289                 return 1;
3290
3291         if (!lapic_in_kernel(vcpu))
3292                 return 1;
3293
3294         vcpu->arch.apf.msr_int_val = data;
3295
3296         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3297
3298         return 0;
3299 }
3300
3301 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3302 {
3303         vcpu->arch.pv_time_enabled = false;
3304         vcpu->arch.time = 0;
3305 }
3306
3307 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3308 {
3309         ++vcpu->stat.tlb_flush;
3310         static_call(kvm_x86_flush_tlb_all)(vcpu);
3311 }
3312
3313 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3314 {
3315         ++vcpu->stat.tlb_flush;
3316
3317         if (!tdp_enabled) {
3318                 /*
3319                  * A TLB flush on behalf of the guest is equivalent to
3320                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3321                  * a forced sync of the shadow page tables.  Ensure all the
3322                  * roots are synced and the guest TLB in hardware is clean.
3323                  */
3324                 kvm_mmu_sync_roots(vcpu);
3325                 kvm_mmu_sync_prev_roots(vcpu);
3326         }
3327
3328         static_call(kvm_x86_flush_tlb_guest)(vcpu);
3329 }
3330
3331
3332 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3333 {
3334         ++vcpu->stat.tlb_flush;
3335         static_call(kvm_x86_flush_tlb_current)(vcpu);
3336 }
3337
3338 /*
3339  * Service "local" TLB flush requests, which are specific to the current MMU
3340  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3341  * TLB flushes that are targeted at an MMU context also need to be serviced
3342  * prior before nested VM-Enter/VM-Exit.
3343  */
3344 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3345 {
3346         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3347                 kvm_vcpu_flush_tlb_current(vcpu);
3348
3349         if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3350                 kvm_vcpu_flush_tlb_guest(vcpu);
3351 }
3352 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3353
3354 static void record_steal_time(struct kvm_vcpu *vcpu)
3355 {
3356         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3357         struct kvm_steal_time __user *st;
3358         struct kvm_memslots *slots;
3359         u64 steal;
3360         u32 version;
3361
3362         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3363                 kvm_xen_runstate_set_running(vcpu);
3364                 return;
3365         }
3366
3367         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3368                 return;
3369
3370         if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3371                 return;
3372
3373         slots = kvm_memslots(vcpu->kvm);
3374
3375         if (unlikely(slots->generation != ghc->generation ||
3376                      kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3377                 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3378
3379                 /* We rely on the fact that it fits in a single page. */
3380                 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3381
3382                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3383                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3384                         return;
3385         }
3386
3387         st = (struct kvm_steal_time __user *)ghc->hva;
3388         /*
3389          * Doing a TLB flush here, on the guest's behalf, can avoid
3390          * expensive IPIs.
3391          */
3392         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3393                 u8 st_preempted = 0;
3394                 int err = -EFAULT;
3395
3396                 if (!user_access_begin(st, sizeof(*st)))
3397                         return;
3398
3399                 asm volatile("1: xchgb %0, %2\n"
3400                              "xor %1, %1\n"
3401                              "2:\n"
3402                              _ASM_EXTABLE_UA(1b, 2b)
3403                              : "+q" (st_preempted),
3404                                "+&r" (err),
3405                                "+m" (st->preempted));
3406                 if (err)
3407                         goto out;
3408
3409                 user_access_end();
3410
3411                 vcpu->arch.st.preempted = 0;
3412
3413                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3414                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3415                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3416                         kvm_vcpu_flush_tlb_guest(vcpu);
3417
3418                 if (!user_access_begin(st, sizeof(*st)))
3419                         goto dirty;
3420         } else {
3421                 if (!user_access_begin(st, sizeof(*st)))
3422                         return;
3423
3424                 unsafe_put_user(0, &st->preempted, out);
3425                 vcpu->arch.st.preempted = 0;
3426         }
3427
3428         unsafe_get_user(version, &st->version, out);
3429         if (version & 1)
3430                 version += 1;  /* first time write, random junk */
3431
3432         version += 1;
3433         unsafe_put_user(version, &st->version, out);
3434
3435         smp_wmb();
3436
3437         unsafe_get_user(steal, &st->steal, out);
3438         steal += current->sched_info.run_delay -
3439                 vcpu->arch.st.last_steal;
3440         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3441         unsafe_put_user(steal, &st->steal, out);
3442
3443         version += 1;
3444         unsafe_put_user(version, &st->version, out);
3445
3446  out:
3447         user_access_end();
3448  dirty:
3449         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3450 }
3451
3452 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3453 {
3454         bool pr = false;
3455         u32 msr = msr_info->index;
3456         u64 data = msr_info->data;
3457
3458         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3459                 return kvm_xen_write_hypercall_page(vcpu, data);
3460
3461         switch (msr) {
3462         case MSR_AMD64_NB_CFG:
3463         case MSR_IA32_UCODE_WRITE:
3464         case MSR_VM_HSAVE_PA:
3465         case MSR_AMD64_PATCH_LOADER:
3466         case MSR_AMD64_BU_CFG2:
3467         case MSR_AMD64_DC_CFG:
3468         case MSR_F15H_EX_CFG:
3469                 break;
3470
3471         case MSR_IA32_UCODE_REV:
3472                 if (msr_info->host_initiated)
3473                         vcpu->arch.microcode_version = data;
3474                 break;
3475         case MSR_IA32_ARCH_CAPABILITIES:
3476                 if (!msr_info->host_initiated)
3477                         return 1;
3478                 vcpu->arch.arch_capabilities = data;
3479                 break;
3480         case MSR_IA32_PERF_CAPABILITIES: {
3481                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3482
3483                 if (!msr_info->host_initiated)
3484                         return 1;
3485                 if (kvm_get_msr_feature(&msr_ent))
3486                         return 1;
3487                 if (data & ~msr_ent.data)
3488                         return 1;
3489
3490                 vcpu->arch.perf_capabilities = data;
3491
3492                 return 0;
3493                 }
3494         case MSR_EFER:
3495                 return set_efer(vcpu, msr_info);
3496         case MSR_K7_HWCR:
3497                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3498                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3499                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3500
3501                 /* Handle McStatusWrEn */
3502                 if (data == BIT_ULL(18)) {
3503                         vcpu->arch.msr_hwcr = data;
3504                 } else if (data != 0) {
3505                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3506                                     data);
3507                         return 1;
3508                 }
3509                 break;
3510         case MSR_FAM10H_MMIO_CONF_BASE:
3511                 if (data != 0) {
3512                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3513                                     "0x%llx\n", data);
3514                         return 1;
3515                 }
3516                 break;
3517         case 0x200 ... 0x2ff:
3518                 return kvm_mtrr_set_msr(vcpu, msr, data);
3519         case MSR_IA32_APICBASE:
3520                 return kvm_set_apic_base(vcpu, msr_info);
3521         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3522                 return kvm_x2apic_msr_write(vcpu, msr, data);
3523         case MSR_IA32_TSC_DEADLINE:
3524                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3525                 break;
3526         case MSR_IA32_TSC_ADJUST:
3527                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3528                         if (!msr_info->host_initiated) {
3529                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3530                                 adjust_tsc_offset_guest(vcpu, adj);
3531                                 /* Before back to guest, tsc_timestamp must be adjusted
3532                                  * as well, otherwise guest's percpu pvclock time could jump.
3533                                  */
3534                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3535                         }
3536                         vcpu->arch.ia32_tsc_adjust_msr = data;
3537                 }
3538                 break;
3539         case MSR_IA32_MISC_ENABLE:
3540                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3541                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3542                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3543                                 return 1;
3544                         vcpu->arch.ia32_misc_enable_msr = data;
3545                         kvm_update_cpuid_runtime(vcpu);
3546                 } else {
3547                         vcpu->arch.ia32_misc_enable_msr = data;
3548                 }
3549                 break;
3550         case MSR_IA32_SMBASE:
3551                 if (!msr_info->host_initiated)
3552                         return 1;
3553                 vcpu->arch.smbase = data;
3554                 break;
3555         case MSR_IA32_POWER_CTL:
3556                 vcpu->arch.msr_ia32_power_ctl = data;
3557                 break;
3558         case MSR_IA32_TSC:
3559                 if (msr_info->host_initiated) {
3560                         kvm_synchronize_tsc(vcpu, data);
3561                 } else {
3562                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3563                         adjust_tsc_offset_guest(vcpu, adj);
3564                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3565                 }
3566                 break;
3567         case MSR_IA32_XSS:
3568                 if (!msr_info->host_initiated &&
3569                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3570                         return 1;
3571                 /*
3572                  * KVM supports exposing PT to the guest, but does not support
3573                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3574                  * XSAVES/XRSTORS to save/restore PT MSRs.
3575                  */
3576                 if (data & ~supported_xss)
3577                         return 1;
3578                 vcpu->arch.ia32_xss = data;
3579                 kvm_update_cpuid_runtime(vcpu);
3580                 break;
3581         case MSR_SMI_COUNT:
3582                 if (!msr_info->host_initiated)
3583                         return 1;
3584                 vcpu->arch.smi_count = data;
3585                 break;
3586         case MSR_KVM_WALL_CLOCK_NEW:
3587                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3588                         return 1;
3589
3590                 vcpu->kvm->arch.wall_clock = data;
3591                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3592                 break;
3593         case MSR_KVM_WALL_CLOCK:
3594                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3595                         return 1;
3596
3597                 vcpu->kvm->arch.wall_clock = data;
3598                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3599                 break;
3600         case MSR_KVM_SYSTEM_TIME_NEW:
3601                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3602                         return 1;
3603
3604                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3605                 break;
3606         case MSR_KVM_SYSTEM_TIME:
3607                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3608                         return 1;
3609
3610                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3611                 break;
3612         case MSR_KVM_ASYNC_PF_EN:
3613                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3614                         return 1;
3615
3616                 if (kvm_pv_enable_async_pf(vcpu, data))
3617                         return 1;
3618                 break;
3619         case MSR_KVM_ASYNC_PF_INT:
3620                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3621                         return 1;
3622
3623                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3624                         return 1;
3625                 break;
3626         case MSR_KVM_ASYNC_PF_ACK:
3627                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3628                         return 1;
3629                 if (data & 0x1) {
3630                         vcpu->arch.apf.pageready_pending = false;
3631                         kvm_check_async_pf_completion(vcpu);
3632                 }
3633                 break;
3634         case MSR_KVM_STEAL_TIME:
3635                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3636                         return 1;
3637
3638                 if (unlikely(!sched_info_on()))
3639                         return 1;
3640
3641                 if (data & KVM_STEAL_RESERVED_MASK)
3642                         return 1;
3643
3644                 vcpu->arch.st.msr_val = data;
3645
3646                 if (!(data & KVM_MSR_ENABLED))
3647                         break;
3648
3649                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3650
3651                 break;
3652         case MSR_KVM_PV_EOI_EN:
3653                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3654                         return 1;
3655
3656                 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3657                         return 1;
3658                 break;
3659
3660         case MSR_KVM_POLL_CONTROL:
3661                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3662                         return 1;
3663
3664                 /* only enable bit supported */
3665                 if (data & (-1ULL << 1))
3666                         return 1;
3667
3668                 vcpu->arch.msr_kvm_poll_control = data;
3669                 break;
3670
3671         case MSR_IA32_MCG_CTL:
3672         case MSR_IA32_MCG_STATUS:
3673         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3674                 return set_msr_mce(vcpu, msr_info);
3675
3676         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3677         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3678                 pr = true;
3679                 fallthrough;
3680         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3681         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3682                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3683                         return kvm_pmu_set_msr(vcpu, msr_info);
3684
3685                 if (pr || data != 0)
3686                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3687                                     "0x%x data 0x%llx\n", msr, data);
3688                 break;
3689         case MSR_K7_CLK_CTL:
3690                 /*
3691                  * Ignore all writes to this no longer documented MSR.
3692                  * Writes are only relevant for old K7 processors,
3693                  * all pre-dating SVM, but a recommended workaround from
3694                  * AMD for these chips. It is possible to specify the
3695                  * affected processor models on the command line, hence
3696                  * the need to ignore the workaround.
3697                  */
3698                 break;
3699         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3700         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3701         case HV_X64_MSR_SYNDBG_OPTIONS:
3702         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3703         case HV_X64_MSR_CRASH_CTL:
3704         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3705         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3706         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3707         case HV_X64_MSR_TSC_EMULATION_STATUS:
3708                 return kvm_hv_set_msr_common(vcpu, msr, data,
3709                                              msr_info->host_initiated);
3710         case MSR_IA32_BBL_CR_CTL3:
3711                 /* Drop writes to this legacy MSR -- see rdmsr
3712                  * counterpart for further detail.
3713                  */
3714                 if (report_ignored_msrs)
3715                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3716                                 msr, data);
3717                 break;
3718         case MSR_AMD64_OSVW_ID_LENGTH:
3719                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3720                         return 1;
3721                 vcpu->arch.osvw.length = data;
3722                 break;
3723         case MSR_AMD64_OSVW_STATUS:
3724                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3725                         return 1;
3726                 vcpu->arch.osvw.status = data;
3727                 break;
3728         case MSR_PLATFORM_INFO:
3729                 if (!msr_info->host_initiated ||
3730                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3731                      cpuid_fault_enabled(vcpu)))
3732                         return 1;
3733                 vcpu->arch.msr_platform_info = data;
3734                 break;
3735         case MSR_MISC_FEATURES_ENABLES:
3736                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3737                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3738                      !supports_cpuid_fault(vcpu)))
3739                         return 1;
3740                 vcpu->arch.msr_misc_features_enables = data;
3741                 break;
3742 #ifdef CONFIG_X86_64
3743         case MSR_IA32_XFD:
3744                 if (!msr_info->host_initiated &&
3745                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3746                         return 1;
3747
3748                 if (data & ~kvm_guest_supported_xfd(vcpu))
3749                         return 1;
3750
3751                 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3752                 break;
3753         case MSR_IA32_XFD_ERR:
3754                 if (!msr_info->host_initiated &&
3755                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3756                         return 1;
3757
3758                 if (data & ~kvm_guest_supported_xfd(vcpu))
3759                         return 1;
3760
3761                 vcpu->arch.guest_fpu.xfd_err = data;
3762                 break;
3763 #endif
3764         default:
3765                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3766                         return kvm_pmu_set_msr(vcpu, msr_info);
3767                 return KVM_MSR_RET_INVALID;
3768         }
3769         return 0;
3770 }
3771 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3772
3773 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3774 {
3775         u64 data;
3776         u64 mcg_cap = vcpu->arch.mcg_cap;
3777         unsigned bank_num = mcg_cap & 0xff;
3778
3779         switch (msr) {
3780         case MSR_IA32_P5_MC_ADDR:
3781         case MSR_IA32_P5_MC_TYPE:
3782                 data = 0;
3783                 break;
3784         case MSR_IA32_MCG_CAP:
3785                 data = vcpu->arch.mcg_cap;
3786                 break;
3787         case MSR_IA32_MCG_CTL:
3788                 if (!(mcg_cap & MCG_CTL_P) && !host)
3789                         return 1;
3790                 data = vcpu->arch.mcg_ctl;
3791                 break;
3792         case MSR_IA32_MCG_STATUS:
3793                 data = vcpu->arch.mcg_status;
3794                 break;
3795         default:
3796                 if (msr >= MSR_IA32_MC0_CTL &&
3797                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3798                         u32 offset = array_index_nospec(
3799                                 msr - MSR_IA32_MC0_CTL,
3800                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3801
3802                         data = vcpu->arch.mce_banks[offset];
3803                         break;
3804                 }
3805                 return 1;
3806         }
3807         *pdata = data;
3808         return 0;
3809 }
3810
3811 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3812 {
3813         switch (msr_info->index) {
3814         case MSR_IA32_PLATFORM_ID:
3815         case MSR_IA32_EBL_CR_POWERON:
3816         case MSR_IA32_LASTBRANCHFROMIP:
3817         case MSR_IA32_LASTBRANCHTOIP:
3818         case MSR_IA32_LASTINTFROMIP:
3819         case MSR_IA32_LASTINTTOIP:
3820         case MSR_AMD64_SYSCFG:
3821         case MSR_K8_TSEG_ADDR:
3822         case MSR_K8_TSEG_MASK:
3823         case MSR_VM_HSAVE_PA:
3824         case MSR_K8_INT_PENDING_MSG:
3825         case MSR_AMD64_NB_CFG:
3826         case MSR_FAM10H_MMIO_CONF_BASE:
3827         case MSR_AMD64_BU_CFG2:
3828         case MSR_IA32_PERF_CTL:
3829         case MSR_AMD64_DC_CFG:
3830         case MSR_F15H_EX_CFG:
3831         /*
3832          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3833          * limit) MSRs. Just return 0, as we do not want to expose the host
3834          * data here. Do not conditionalize this on CPUID, as KVM does not do
3835          * so for existing CPU-specific MSRs.
3836          */
3837         case MSR_RAPL_POWER_UNIT:
3838         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3839         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3840         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3841         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3842                 msr_info->data = 0;
3843                 break;
3844         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3845                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3846                         return kvm_pmu_get_msr(vcpu, msr_info);
3847                 if (!msr_info->host_initiated)
3848                         return 1;
3849                 msr_info->data = 0;
3850                 break;
3851         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3852         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3853         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3854         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3855                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3856                         return kvm_pmu_get_msr(vcpu, msr_info);
3857                 msr_info->data = 0;
3858                 break;
3859         case MSR_IA32_UCODE_REV:
3860                 msr_info->data = vcpu->arch.microcode_version;
3861                 break;
3862         case MSR_IA32_ARCH_CAPABILITIES:
3863                 if (!msr_info->host_initiated &&
3864                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3865                         return 1;
3866                 msr_info->data = vcpu->arch.arch_capabilities;
3867                 break;
3868         case MSR_IA32_PERF_CAPABILITIES:
3869                 if (!msr_info->host_initiated &&
3870                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3871                         return 1;
3872                 msr_info->data = vcpu->arch.perf_capabilities;
3873                 break;
3874         case MSR_IA32_POWER_CTL:
3875                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3876                 break;
3877         case MSR_IA32_TSC: {
3878                 /*
3879                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3880                  * even when not intercepted. AMD manual doesn't explicitly
3881                  * state this but appears to behave the same.
3882                  *
3883                  * On userspace reads and writes, however, we unconditionally
3884                  * return L1's TSC value to ensure backwards-compatible
3885                  * behavior for migration.
3886                  */
3887                 u64 offset, ratio;
3888
3889                 if (msr_info->host_initiated) {
3890                         offset = vcpu->arch.l1_tsc_offset;
3891                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
3892                 } else {
3893                         offset = vcpu->arch.tsc_offset;
3894                         ratio = vcpu->arch.tsc_scaling_ratio;
3895                 }
3896
3897                 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
3898                 break;
3899         }
3900         case MSR_MTRRcap:
3901         case 0x200 ... 0x2ff:
3902                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3903         case 0xcd: /* fsb frequency */
3904                 msr_info->data = 3;
3905                 break;
3906                 /*
3907                  * MSR_EBC_FREQUENCY_ID
3908                  * Conservative value valid for even the basic CPU models.
3909                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3910                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3911                  * and 266MHz for model 3, or 4. Set Core Clock
3912                  * Frequency to System Bus Frequency Ratio to 1 (bits
3913                  * 31:24) even though these are only valid for CPU
3914                  * models > 2, however guests may end up dividing or
3915                  * multiplying by zero otherwise.
3916                  */
3917         case MSR_EBC_FREQUENCY_ID:
3918                 msr_info->data = 1 << 24;
3919                 break;
3920         case MSR_IA32_APICBASE:
3921                 msr_info->data = kvm_get_apic_base(vcpu);
3922                 break;
3923         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3924                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3925         case MSR_IA32_TSC_DEADLINE:
3926                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3927                 break;
3928         case MSR_IA32_TSC_ADJUST:
3929                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3930                 break;
3931         case MSR_IA32_MISC_ENABLE:
3932                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3933                 break;
3934         case MSR_IA32_SMBASE:
3935                 if (!msr_info->host_initiated)
3936                         return 1;
3937                 msr_info->data = vcpu->arch.smbase;
3938                 break;
3939         case MSR_SMI_COUNT:
3940                 msr_info->data = vcpu->arch.smi_count;
3941                 break;
3942         case MSR_IA32_PERF_STATUS:
3943                 /* TSC increment by tick */
3944                 msr_info->data = 1000ULL;
3945                 /* CPU multiplier */
3946                 msr_info->data |= (((uint64_t)4ULL) << 40);
3947                 break;
3948         case MSR_EFER:
3949                 msr_info->data = vcpu->arch.efer;
3950                 break;
3951         case MSR_KVM_WALL_CLOCK:
3952                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3953                         return 1;
3954
3955                 msr_info->data = vcpu->kvm->arch.wall_clock;
3956                 break;
3957         case MSR_KVM_WALL_CLOCK_NEW:
3958                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3959                         return 1;
3960
3961                 msr_info->data = vcpu->kvm->arch.wall_clock;
3962                 break;
3963         case MSR_KVM_SYSTEM_TIME:
3964                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3965                         return 1;
3966
3967                 msr_info->data = vcpu->arch.time;
3968                 break;
3969         case MSR_KVM_SYSTEM_TIME_NEW:
3970                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3971                         return 1;
3972
3973                 msr_info->data = vcpu->arch.time;
3974                 break;
3975         case MSR_KVM_ASYNC_PF_EN:
3976                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3977                         return 1;
3978
3979                 msr_info->data = vcpu->arch.apf.msr_en_val;
3980                 break;
3981         case MSR_KVM_ASYNC_PF_INT:
3982                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3983                         return 1;
3984
3985                 msr_info->data = vcpu->arch.apf.msr_int_val;
3986                 break;
3987         case MSR_KVM_ASYNC_PF_ACK:
3988                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3989                         return 1;
3990
3991                 msr_info->data = 0;
3992                 break;
3993         case MSR_KVM_STEAL_TIME:
3994                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3995                         return 1;
3996
3997                 msr_info->data = vcpu->arch.st.msr_val;
3998                 break;
3999         case MSR_KVM_PV_EOI_EN:
4000                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4001                         return 1;
4002
4003                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4004                 break;
4005         case MSR_KVM_POLL_CONTROL:
4006                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4007                         return 1;
4008
4009                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4010                 break;
4011         case MSR_IA32_P5_MC_ADDR:
4012         case MSR_IA32_P5_MC_TYPE:
4013         case MSR_IA32_MCG_CAP:
4014         case MSR_IA32_MCG_CTL:
4015         case MSR_IA32_MCG_STATUS:
4016         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4017                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4018                                    msr_info->host_initiated);
4019         case MSR_IA32_XSS:
4020                 if (!msr_info->host_initiated &&
4021                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4022                         return 1;
4023                 msr_info->data = vcpu->arch.ia32_xss;
4024                 break;
4025         case MSR_K7_CLK_CTL:
4026                 /*
4027                  * Provide expected ramp-up count for K7. All other
4028                  * are set to zero, indicating minimum divisors for
4029                  * every field.
4030                  *
4031                  * This prevents guest kernels on AMD host with CPU
4032                  * type 6, model 8 and higher from exploding due to
4033                  * the rdmsr failing.
4034                  */
4035                 msr_info->data = 0x20000000;
4036                 break;
4037         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4038         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4039         case HV_X64_MSR_SYNDBG_OPTIONS:
4040         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4041         case HV_X64_MSR_CRASH_CTL:
4042         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4043         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4044         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4045         case HV_X64_MSR_TSC_EMULATION_STATUS:
4046                 return kvm_hv_get_msr_common(vcpu,
4047                                              msr_info->index, &msr_info->data,
4048                                              msr_info->host_initiated);
4049         case MSR_IA32_BBL_CR_CTL3:
4050                 /* This legacy MSR exists but isn't fully documented in current
4051                  * silicon.  It is however accessed by winxp in very narrow
4052                  * scenarios where it sets bit #19, itself documented as
4053                  * a "reserved" bit.  Best effort attempt to source coherent
4054                  * read data here should the balance of the register be
4055                  * interpreted by the guest:
4056                  *
4057                  * L2 cache control register 3: 64GB range, 256KB size,
4058                  * enabled, latency 0x1, configured
4059                  */
4060                 msr_info->data = 0xbe702111;
4061                 break;
4062         case MSR_AMD64_OSVW_ID_LENGTH:
4063                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4064                         return 1;
4065                 msr_info->data = vcpu->arch.osvw.length;
4066                 break;
4067         case MSR_AMD64_OSVW_STATUS:
4068                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4069                         return 1;
4070                 msr_info->data = vcpu->arch.osvw.status;
4071                 break;
4072         case MSR_PLATFORM_INFO:
4073                 if (!msr_info->host_initiated &&
4074                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4075                         return 1;
4076                 msr_info->data = vcpu->arch.msr_platform_info;
4077                 break;
4078         case MSR_MISC_FEATURES_ENABLES:
4079                 msr_info->data = vcpu->arch.msr_misc_features_enables;
4080                 break;
4081         case MSR_K7_HWCR:
4082                 msr_info->data = vcpu->arch.msr_hwcr;
4083                 break;
4084 #ifdef CONFIG_X86_64
4085         case MSR_IA32_XFD:
4086                 if (!msr_info->host_initiated &&
4087                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4088                         return 1;
4089
4090                 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4091                 break;
4092         case MSR_IA32_XFD_ERR:
4093                 if (!msr_info->host_initiated &&
4094                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4095                         return 1;
4096
4097                 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4098                 break;
4099 #endif
4100         default:
4101                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4102                         return kvm_pmu_get_msr(vcpu, msr_info);
4103                 return KVM_MSR_RET_INVALID;
4104         }
4105         return 0;
4106 }
4107 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4108
4109 /*
4110  * Read or write a bunch of msrs. All parameters are kernel addresses.
4111  *
4112  * @return number of msrs set successfully.
4113  */
4114 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4115                     struct kvm_msr_entry *entries,
4116                     int (*do_msr)(struct kvm_vcpu *vcpu,
4117                                   unsigned index, u64 *data))
4118 {
4119         int i;
4120
4121         for (i = 0; i < msrs->nmsrs; ++i)
4122                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4123                         break;
4124
4125         return i;
4126 }
4127
4128 /*
4129  * Read or write a bunch of msrs. Parameters are user addresses.
4130  *
4131  * @return number of msrs set successfully.
4132  */
4133 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4134                   int (*do_msr)(struct kvm_vcpu *vcpu,
4135                                 unsigned index, u64 *data),
4136                   int writeback)
4137 {
4138         struct kvm_msrs msrs;
4139         struct kvm_msr_entry *entries;
4140         int r, n;
4141         unsigned size;
4142
4143         r = -EFAULT;
4144         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4145                 goto out;
4146
4147         r = -E2BIG;
4148         if (msrs.nmsrs >= MAX_IO_MSRS)
4149                 goto out;
4150
4151         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4152         entries = memdup_user(user_msrs->entries, size);
4153         if (IS_ERR(entries)) {
4154                 r = PTR_ERR(entries);
4155                 goto out;
4156         }
4157
4158         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4159         if (r < 0)
4160                 goto out_free;
4161
4162         r = -EFAULT;
4163         if (writeback && copy_to_user(user_msrs->entries, entries, size))
4164                 goto out_free;
4165
4166         r = n;
4167
4168 out_free:
4169         kfree(entries);
4170 out:
4171         return r;
4172 }
4173
4174 static inline bool kvm_can_mwait_in_guest(void)
4175 {
4176         return boot_cpu_has(X86_FEATURE_MWAIT) &&
4177                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4178                 boot_cpu_has(X86_FEATURE_ARAT);
4179 }
4180
4181 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4182                                             struct kvm_cpuid2 __user *cpuid_arg)
4183 {
4184         struct kvm_cpuid2 cpuid;
4185         int r;
4186
4187         r = -EFAULT;
4188         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4189                 return r;
4190
4191         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4192         if (r)
4193                 return r;
4194
4195         r = -EFAULT;
4196         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4197                 return r;
4198
4199         return 0;
4200 }
4201
4202 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4203 {
4204         int r = 0;
4205
4206         switch (ext) {
4207         case KVM_CAP_IRQCHIP:
4208         case KVM_CAP_HLT:
4209         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4210         case KVM_CAP_SET_TSS_ADDR:
4211         case KVM_CAP_EXT_CPUID:
4212         case KVM_CAP_EXT_EMUL_CPUID:
4213         case KVM_CAP_CLOCKSOURCE:
4214         case KVM_CAP_PIT:
4215         case KVM_CAP_NOP_IO_DELAY:
4216         case KVM_CAP_MP_STATE:
4217         case KVM_CAP_SYNC_MMU:
4218         case KVM_CAP_USER_NMI:
4219         case KVM_CAP_REINJECT_CONTROL:
4220         case KVM_CAP_IRQ_INJECT_STATUS:
4221         case KVM_CAP_IOEVENTFD:
4222         case KVM_CAP_IOEVENTFD_NO_LENGTH:
4223         case KVM_CAP_PIT2:
4224         case KVM_CAP_PIT_STATE2:
4225         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4226         case KVM_CAP_VCPU_EVENTS:
4227         case KVM_CAP_HYPERV:
4228         case KVM_CAP_HYPERV_VAPIC:
4229         case KVM_CAP_HYPERV_SPIN:
4230         case KVM_CAP_HYPERV_SYNIC:
4231         case KVM_CAP_HYPERV_SYNIC2:
4232         case KVM_CAP_HYPERV_VP_INDEX:
4233         case KVM_CAP_HYPERV_EVENTFD:
4234         case KVM_CAP_HYPERV_TLBFLUSH:
4235         case KVM_CAP_HYPERV_SEND_IPI:
4236         case KVM_CAP_HYPERV_CPUID:
4237         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4238         case KVM_CAP_SYS_HYPERV_CPUID:
4239         case KVM_CAP_PCI_SEGMENT:
4240         case KVM_CAP_DEBUGREGS:
4241         case KVM_CAP_X86_ROBUST_SINGLESTEP:
4242         case KVM_CAP_XSAVE:
4243         case KVM_CAP_ASYNC_PF:
4244         case KVM_CAP_ASYNC_PF_INT:
4245         case KVM_CAP_GET_TSC_KHZ:
4246         case KVM_CAP_KVMCLOCK_CTRL:
4247         case KVM_CAP_READONLY_MEM:
4248         case KVM_CAP_HYPERV_TIME:
4249         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4250         case KVM_CAP_TSC_DEADLINE_TIMER:
4251         case KVM_CAP_DISABLE_QUIRKS:
4252         case KVM_CAP_SET_BOOT_CPU_ID:
4253         case KVM_CAP_SPLIT_IRQCHIP:
4254         case KVM_CAP_IMMEDIATE_EXIT:
4255         case KVM_CAP_PMU_EVENT_FILTER:
4256         case KVM_CAP_GET_MSR_FEATURES:
4257         case KVM_CAP_MSR_PLATFORM_INFO:
4258         case KVM_CAP_EXCEPTION_PAYLOAD:
4259         case KVM_CAP_SET_GUEST_DEBUG:
4260         case KVM_CAP_LAST_CPU:
4261         case KVM_CAP_X86_USER_SPACE_MSR:
4262         case KVM_CAP_X86_MSR_FILTER:
4263         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4264 #ifdef CONFIG_X86_SGX_KVM
4265         case KVM_CAP_SGX_ATTRIBUTE:
4266 #endif
4267         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4268         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4269         case KVM_CAP_SREGS2:
4270         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4271         case KVM_CAP_VCPU_ATTRIBUTES:
4272         case KVM_CAP_SYS_ATTRIBUTES:
4273         case KVM_CAP_VAPIC:
4274         case KVM_CAP_ENABLE_CAP:
4275                 r = 1;
4276                 break;
4277         case KVM_CAP_EXIT_HYPERCALL:
4278                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4279                 break;
4280         case KVM_CAP_SET_GUEST_DEBUG2:
4281                 return KVM_GUESTDBG_VALID_MASK;
4282 #ifdef CONFIG_KVM_XEN
4283         case KVM_CAP_XEN_HVM:
4284                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4285                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4286                     KVM_XEN_HVM_CONFIG_SHARED_INFO |
4287                     KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL;
4288                 if (sched_info_on())
4289                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4290                 break;
4291 #endif
4292         case KVM_CAP_SYNC_REGS:
4293                 r = KVM_SYNC_X86_VALID_FIELDS;
4294                 break;
4295         case KVM_CAP_ADJUST_CLOCK:
4296                 r = KVM_CLOCK_VALID_FLAGS;
4297                 break;
4298         case KVM_CAP_X86_DISABLE_EXITS:
4299                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4300                       KVM_X86_DISABLE_EXITS_CSTATE;
4301                 if(kvm_can_mwait_in_guest())
4302                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
4303                 break;
4304         case KVM_CAP_X86_SMM:
4305                 /* SMBASE is usually relocated above 1M on modern chipsets,
4306                  * and SMM handlers might indeed rely on 4G segment limits,
4307                  * so do not report SMM to be available if real mode is
4308                  * emulated via vm86 mode.  Still, do not go to great lengths
4309                  * to avoid userspace's usage of the feature, because it is a
4310                  * fringe case that is not enabled except via specific settings
4311                  * of the module parameters.
4312                  */
4313                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4314                 break;
4315         case KVM_CAP_NR_VCPUS:
4316                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4317                 break;
4318         case KVM_CAP_MAX_VCPUS:
4319                 r = KVM_MAX_VCPUS;
4320                 break;
4321         case KVM_CAP_MAX_VCPU_ID:
4322                 r = KVM_MAX_VCPU_IDS;
4323                 break;
4324         case KVM_CAP_PV_MMU:    /* obsolete */
4325                 r = 0;
4326                 break;
4327         case KVM_CAP_MCE:
4328                 r = KVM_MAX_MCE_BANKS;
4329                 break;
4330         case KVM_CAP_XCRS:
4331                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4332                 break;
4333         case KVM_CAP_TSC_CONTROL:
4334                 r = kvm_has_tsc_control;
4335                 break;
4336         case KVM_CAP_X2APIC_API:
4337                 r = KVM_X2APIC_API_VALID_FLAGS;
4338                 break;
4339         case KVM_CAP_NESTED_STATE:
4340                 r = kvm_x86_ops.nested_ops->get_state ?
4341                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4342                 break;
4343         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4344                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4345                 break;
4346         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4347                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4348                 break;
4349         case KVM_CAP_SMALLER_MAXPHYADDR:
4350                 r = (int) allow_smaller_maxphyaddr;
4351                 break;
4352         case KVM_CAP_STEAL_TIME:
4353                 r = sched_info_on();
4354                 break;
4355         case KVM_CAP_X86_BUS_LOCK_EXIT:
4356                 if (kvm_has_bus_lock_exit)
4357                         r = KVM_BUS_LOCK_DETECTION_OFF |
4358                             KVM_BUS_LOCK_DETECTION_EXIT;
4359                 else
4360                         r = 0;
4361                 break;
4362         case KVM_CAP_XSAVE2: {
4363                 u64 guest_perm = xstate_get_guest_group_perm();
4364
4365                 r = xstate_required_size(supported_xcr0 & guest_perm, false);
4366                 if (r < sizeof(struct kvm_xsave))
4367                         r = sizeof(struct kvm_xsave);
4368                 break;
4369         case KVM_CAP_PMU_CAPABILITY:
4370                 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4371                 break;
4372         }
4373         case KVM_CAP_DISABLE_QUIRKS2:
4374                 r = KVM_X86_VALID_QUIRKS;
4375                 break;
4376         default:
4377                 break;
4378         }
4379         return r;
4380 }
4381
4382 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4383 {
4384         void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4385
4386         if ((u64)(unsigned long)uaddr != attr->addr)
4387                 return ERR_PTR_USR(-EFAULT);
4388         return uaddr;
4389 }
4390
4391 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4392 {
4393         u64 __user *uaddr = kvm_get_attr_addr(attr);
4394
4395         if (attr->group)
4396                 return -ENXIO;
4397
4398         if (IS_ERR(uaddr))
4399                 return PTR_ERR(uaddr);
4400
4401         switch (attr->attr) {
4402         case KVM_X86_XCOMP_GUEST_SUPP:
4403                 if (put_user(supported_xcr0, uaddr))
4404                         return -EFAULT;
4405                 return 0;
4406         default:
4407                 return -ENXIO;
4408                 break;
4409         }
4410 }
4411
4412 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4413 {
4414         if (attr->group)
4415                 return -ENXIO;
4416
4417         switch (attr->attr) {
4418         case KVM_X86_XCOMP_GUEST_SUPP:
4419                 return 0;
4420         default:
4421                 return -ENXIO;
4422         }
4423 }
4424
4425 long kvm_arch_dev_ioctl(struct file *filp,
4426                         unsigned int ioctl, unsigned long arg)
4427 {
4428         void __user *argp = (void __user *)arg;
4429         long r;
4430
4431         switch (ioctl) {
4432         case KVM_GET_MSR_INDEX_LIST: {
4433                 struct kvm_msr_list __user *user_msr_list = argp;
4434                 struct kvm_msr_list msr_list;
4435                 unsigned n;
4436
4437                 r = -EFAULT;
4438                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4439                         goto out;
4440                 n = msr_list.nmsrs;
4441                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4442                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4443                         goto out;
4444                 r = -E2BIG;
4445                 if (n < msr_list.nmsrs)
4446                         goto out;
4447                 r = -EFAULT;
4448                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4449                                  num_msrs_to_save * sizeof(u32)))
4450                         goto out;
4451                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4452                                  &emulated_msrs,
4453                                  num_emulated_msrs * sizeof(u32)))
4454                         goto out;
4455                 r = 0;
4456                 break;
4457         }
4458         case KVM_GET_SUPPORTED_CPUID:
4459         case KVM_GET_EMULATED_CPUID: {
4460                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4461                 struct kvm_cpuid2 cpuid;
4462
4463                 r = -EFAULT;
4464                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4465                         goto out;
4466
4467                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4468                                             ioctl);
4469                 if (r)
4470                         goto out;
4471
4472                 r = -EFAULT;
4473                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4474                         goto out;
4475                 r = 0;
4476                 break;
4477         }
4478         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4479                 r = -EFAULT;
4480                 if (copy_to_user(argp, &kvm_mce_cap_supported,
4481                                  sizeof(kvm_mce_cap_supported)))
4482                         goto out;
4483                 r = 0;
4484                 break;
4485         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4486                 struct kvm_msr_list __user *user_msr_list = argp;
4487                 struct kvm_msr_list msr_list;
4488                 unsigned int n;
4489
4490                 r = -EFAULT;
4491                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4492                         goto out;
4493                 n = msr_list.nmsrs;
4494                 msr_list.nmsrs = num_msr_based_features;
4495                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4496                         goto out;
4497                 r = -E2BIG;
4498                 if (n < msr_list.nmsrs)
4499                         goto out;
4500                 r = -EFAULT;
4501                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4502                                  num_msr_based_features * sizeof(u32)))
4503                         goto out;
4504                 r = 0;
4505                 break;
4506         }
4507         case KVM_GET_MSRS:
4508                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4509                 break;
4510         case KVM_GET_SUPPORTED_HV_CPUID:
4511                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4512                 break;
4513         case KVM_GET_DEVICE_ATTR: {
4514                 struct kvm_device_attr attr;
4515                 r = -EFAULT;
4516                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4517                         break;
4518                 r = kvm_x86_dev_get_attr(&attr);
4519                 break;
4520         }
4521         case KVM_HAS_DEVICE_ATTR: {
4522                 struct kvm_device_attr attr;
4523                 r = -EFAULT;
4524                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4525                         break;
4526                 r = kvm_x86_dev_has_attr(&attr);
4527                 break;
4528         }
4529         default:
4530                 r = -EINVAL;
4531                 break;
4532         }
4533 out:
4534         return r;
4535 }
4536
4537 static void wbinvd_ipi(void *garbage)
4538 {
4539         wbinvd();
4540 }
4541
4542 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4543 {
4544         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4545 }
4546
4547 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4548 {
4549         /* Address WBINVD may be executed by guest */
4550         if (need_emulate_wbinvd(vcpu)) {
4551                 if (static_call(kvm_x86_has_wbinvd_exit)())
4552                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4553                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4554                         smp_call_function_single(vcpu->cpu,
4555                                         wbinvd_ipi, NULL, 1);
4556         }
4557
4558         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4559
4560         /* Save host pkru register if supported */
4561         vcpu->arch.host_pkru = read_pkru();
4562
4563         /* Apply any externally detected TSC adjustments (due to suspend) */
4564         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4565                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4566                 vcpu->arch.tsc_offset_adjustment = 0;
4567                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4568         }
4569
4570         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4571                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4572                                 rdtsc() - vcpu->arch.last_host_tsc;
4573                 if (tsc_delta < 0)
4574                         mark_tsc_unstable("KVM discovered backwards TSC");
4575
4576                 if (kvm_check_tsc_unstable()) {
4577                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4578                                                 vcpu->arch.last_guest_tsc);
4579                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4580                         vcpu->arch.tsc_catchup = 1;
4581                 }
4582
4583                 if (kvm_lapic_hv_timer_in_use(vcpu))
4584                         kvm_lapic_restart_hv_timer(vcpu);
4585
4586                 /*
4587                  * On a host with synchronized TSC, there is no need to update
4588                  * kvmclock on vcpu->cpu migration
4589                  */
4590                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4591                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4592                 if (vcpu->cpu != cpu)
4593                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4594                 vcpu->cpu = cpu;
4595         }
4596
4597         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4598 }
4599
4600 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4601 {
4602         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4603         struct kvm_steal_time __user *st;
4604         struct kvm_memslots *slots;
4605         static const u8 preempted = KVM_VCPU_PREEMPTED;
4606
4607         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4608                 return;
4609
4610         if (vcpu->arch.st.preempted)
4611                 return;
4612
4613         /* This happens on process exit */
4614         if (unlikely(current->mm != vcpu->kvm->mm))
4615                 return;
4616
4617         slots = kvm_memslots(vcpu->kvm);
4618
4619         if (unlikely(slots->generation != ghc->generation ||
4620                      kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4621                 return;
4622
4623         st = (struct kvm_steal_time __user *)ghc->hva;
4624         BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4625
4626         if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4627                 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4628
4629         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4630 }
4631
4632 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4633 {
4634         int idx;
4635
4636         if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4637                 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4638
4639         /*
4640          * Take the srcu lock as memslots will be accessed to check the gfn
4641          * cache generation against the memslots generation.
4642          */
4643         idx = srcu_read_lock(&vcpu->kvm->srcu);
4644         if (kvm_xen_msr_enabled(vcpu->kvm))
4645                 kvm_xen_runstate_set_preempted(vcpu);
4646         else
4647                 kvm_steal_time_set_preempted(vcpu);
4648         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4649
4650         static_call(kvm_x86_vcpu_put)(vcpu);
4651         vcpu->arch.last_host_tsc = rdtsc();
4652 }
4653
4654 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4655                                     struct kvm_lapic_state *s)
4656 {
4657         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4658
4659         return kvm_apic_get_state(vcpu, s);
4660 }
4661
4662 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4663                                     struct kvm_lapic_state *s)
4664 {
4665         int r;
4666
4667         r = kvm_apic_set_state(vcpu, s);
4668         if (r)
4669                 return r;
4670         update_cr8_intercept(vcpu);
4671
4672         return 0;
4673 }
4674
4675 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4676 {
4677         /*
4678          * We can accept userspace's request for interrupt injection
4679          * as long as we have a place to store the interrupt number.
4680          * The actual injection will happen when the CPU is able to
4681          * deliver the interrupt.
4682          */
4683         if (kvm_cpu_has_extint(vcpu))
4684                 return false;
4685
4686         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4687         return (!lapic_in_kernel(vcpu) ||
4688                 kvm_apic_accept_pic_intr(vcpu));
4689 }
4690
4691 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4692 {
4693         /*
4694          * Do not cause an interrupt window exit if an exception
4695          * is pending or an event needs reinjection; userspace
4696          * might want to inject the interrupt manually using KVM_SET_REGS
4697          * or KVM_SET_SREGS.  For that to work, we must be at an
4698          * instruction boundary and with no events half-injected.
4699          */
4700         return (kvm_arch_interrupt_allowed(vcpu) &&
4701                 kvm_cpu_accept_dm_intr(vcpu) &&
4702                 !kvm_event_needs_reinjection(vcpu) &&
4703                 !vcpu->arch.exception.pending);
4704 }
4705
4706 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4707                                     struct kvm_interrupt *irq)
4708 {
4709         if (irq->irq >= KVM_NR_INTERRUPTS)
4710                 return -EINVAL;
4711
4712         if (!irqchip_in_kernel(vcpu->kvm)) {
4713                 kvm_queue_interrupt(vcpu, irq->irq, false);
4714                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4715                 return 0;
4716         }
4717
4718         /*
4719          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4720          * fail for in-kernel 8259.
4721          */
4722         if (pic_in_kernel(vcpu->kvm))
4723                 return -ENXIO;
4724
4725         if (vcpu->arch.pending_external_vector != -1)
4726                 return -EEXIST;
4727
4728         vcpu->arch.pending_external_vector = irq->irq;
4729         kvm_make_request(KVM_REQ_EVENT, vcpu);
4730         return 0;
4731 }
4732
4733 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4734 {
4735         kvm_inject_nmi(vcpu);
4736
4737         return 0;
4738 }
4739
4740 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4741 {
4742         kvm_make_request(KVM_REQ_SMI, vcpu);
4743
4744         return 0;
4745 }
4746
4747 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4748                                            struct kvm_tpr_access_ctl *tac)
4749 {
4750         if (tac->flags)
4751                 return -EINVAL;
4752         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4753         return 0;
4754 }
4755
4756 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4757                                         u64 mcg_cap)
4758 {
4759         int r;
4760         unsigned bank_num = mcg_cap & 0xff, bank;
4761
4762         r = -EINVAL;
4763         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4764                 goto out;
4765         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4766                 goto out;
4767         r = 0;
4768         vcpu->arch.mcg_cap = mcg_cap;
4769         /* Init IA32_MCG_CTL to all 1s */
4770         if (mcg_cap & MCG_CTL_P)
4771                 vcpu->arch.mcg_ctl = ~(u64)0;
4772         /* Init IA32_MCi_CTL to all 1s */
4773         for (bank = 0; bank < bank_num; bank++)
4774                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4775
4776         static_call(kvm_x86_setup_mce)(vcpu);
4777 out:
4778         return r;
4779 }
4780
4781 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4782                                       struct kvm_x86_mce *mce)
4783 {
4784         u64 mcg_cap = vcpu->arch.mcg_cap;
4785         unsigned bank_num = mcg_cap & 0xff;
4786         u64 *banks = vcpu->arch.mce_banks;
4787
4788         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4789                 return -EINVAL;
4790         /*
4791          * if IA32_MCG_CTL is not all 1s, the uncorrected error
4792          * reporting is disabled
4793          */
4794         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4795             vcpu->arch.mcg_ctl != ~(u64)0)
4796                 return 0;
4797         banks += 4 * mce->bank;
4798         /*
4799          * if IA32_MCi_CTL is not all 1s, the uncorrected error
4800          * reporting is disabled for the bank
4801          */
4802         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4803                 return 0;
4804         if (mce->status & MCI_STATUS_UC) {
4805                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4806                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4807                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4808                         return 0;
4809                 }
4810                 if (banks[1] & MCI_STATUS_VAL)
4811                         mce->status |= MCI_STATUS_OVER;
4812                 banks[2] = mce->addr;
4813                 banks[3] = mce->misc;
4814                 vcpu->arch.mcg_status = mce->mcg_status;
4815                 banks[1] = mce->status;
4816                 kvm_queue_exception(vcpu, MC_VECTOR);
4817         } else if (!(banks[1] & MCI_STATUS_VAL)
4818                    || !(banks[1] & MCI_STATUS_UC)) {
4819                 if (banks[1] & MCI_STATUS_VAL)
4820                         mce->status |= MCI_STATUS_OVER;
4821                 banks[2] = mce->addr;
4822                 banks[3] = mce->misc;
4823                 banks[1] = mce->status;
4824         } else
4825                 banks[1] |= MCI_STATUS_OVER;
4826         return 0;
4827 }
4828
4829 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4830                                                struct kvm_vcpu_events *events)
4831 {
4832         process_nmi(vcpu);
4833
4834         if (kvm_check_request(KVM_REQ_SMI, vcpu))
4835                 process_smi(vcpu);
4836
4837         /*
4838          * In guest mode, payload delivery should be deferred,
4839          * so that the L1 hypervisor can intercept #PF before
4840          * CR2 is modified (or intercept #DB before DR6 is
4841          * modified under nVMX). Unless the per-VM capability,
4842          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4843          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4844          * opportunistically defer the exception payload, deliver it if the
4845          * capability hasn't been requested before processing a
4846          * KVM_GET_VCPU_EVENTS.
4847          */
4848         if (!vcpu->kvm->arch.exception_payload_enabled &&
4849             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4850                 kvm_deliver_exception_payload(vcpu);
4851
4852         /*
4853          * The API doesn't provide the instruction length for software
4854          * exceptions, so don't report them. As long as the guest RIP
4855          * isn't advanced, we should expect to encounter the exception
4856          * again.
4857          */
4858         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4859                 events->exception.injected = 0;
4860                 events->exception.pending = 0;
4861         } else {
4862                 events->exception.injected = vcpu->arch.exception.injected;
4863                 events->exception.pending = vcpu->arch.exception.pending;
4864                 /*
4865                  * For ABI compatibility, deliberately conflate
4866                  * pending and injected exceptions when
4867                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4868                  */
4869                 if (!vcpu->kvm->arch.exception_payload_enabled)
4870                         events->exception.injected |=
4871                                 vcpu->arch.exception.pending;
4872         }
4873         events->exception.nr = vcpu->arch.exception.nr;
4874         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4875         events->exception.error_code = vcpu->arch.exception.error_code;
4876         events->exception_has_payload = vcpu->arch.exception.has_payload;
4877         events->exception_payload = vcpu->arch.exception.payload;
4878
4879         events->interrupt.injected =
4880                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4881         events->interrupt.nr = vcpu->arch.interrupt.nr;
4882         events->interrupt.soft = 0;
4883         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4884
4885         events->nmi.injected = vcpu->arch.nmi_injected;
4886         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4887         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4888         events->nmi.pad = 0;
4889
4890         events->sipi_vector = 0; /* never valid when reporting to user space */
4891
4892         events->smi.smm = is_smm(vcpu);
4893         events->smi.pending = vcpu->arch.smi_pending;
4894         events->smi.smm_inside_nmi =
4895                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4896         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4897
4898         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4899                          | KVM_VCPUEVENT_VALID_SHADOW
4900                          | KVM_VCPUEVENT_VALID_SMM);
4901         if (vcpu->kvm->arch.exception_payload_enabled)
4902                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4903
4904         memset(&events->reserved, 0, sizeof(events->reserved));
4905 }
4906
4907 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4908
4909 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4910                                               struct kvm_vcpu_events *events)
4911 {
4912         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4913                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4914                               | KVM_VCPUEVENT_VALID_SHADOW
4915                               | KVM_VCPUEVENT_VALID_SMM
4916                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4917                 return -EINVAL;
4918
4919         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4920                 if (!vcpu->kvm->arch.exception_payload_enabled)
4921                         return -EINVAL;
4922                 if (events->exception.pending)
4923                         events->exception.injected = 0;
4924                 else
4925                         events->exception_has_payload = 0;
4926         } else {
4927                 events->exception.pending = 0;
4928                 events->exception_has_payload = 0;
4929         }
4930
4931         if ((events->exception.injected || events->exception.pending) &&
4932             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4933                 return -EINVAL;
4934
4935         /* INITs are latched while in SMM */
4936         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4937             (events->smi.smm || events->smi.pending) &&
4938             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4939                 return -EINVAL;
4940
4941         process_nmi(vcpu);
4942         vcpu->arch.exception.injected = events->exception.injected;
4943         vcpu->arch.exception.pending = events->exception.pending;
4944         vcpu->arch.exception.nr = events->exception.nr;
4945         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4946         vcpu->arch.exception.error_code = events->exception.error_code;
4947         vcpu->arch.exception.has_payload = events->exception_has_payload;
4948         vcpu->arch.exception.payload = events->exception_payload;
4949
4950         vcpu->arch.interrupt.injected = events->interrupt.injected;
4951         vcpu->arch.interrupt.nr = events->interrupt.nr;
4952         vcpu->arch.interrupt.soft = events->interrupt.soft;
4953         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4954                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4955                                                 events->interrupt.shadow);
4956
4957         vcpu->arch.nmi_injected = events->nmi.injected;
4958         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4959                 vcpu->arch.nmi_pending = events->nmi.pending;
4960         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4961
4962         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4963             lapic_in_kernel(vcpu))
4964                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4965
4966         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4967                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4968                         kvm_x86_ops.nested_ops->leave_nested(vcpu);
4969                         kvm_smm_changed(vcpu, events->smi.smm);
4970                 }
4971
4972                 vcpu->arch.smi_pending = events->smi.pending;
4973
4974                 if (events->smi.smm) {
4975                         if (events->smi.smm_inside_nmi)
4976                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4977                         else
4978                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4979                 }
4980
4981                 if (lapic_in_kernel(vcpu)) {
4982                         if (events->smi.latched_init)
4983                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4984                         else
4985                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4986                 }
4987         }
4988
4989         kvm_make_request(KVM_REQ_EVENT, vcpu);
4990
4991         return 0;
4992 }
4993
4994 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4995                                              struct kvm_debugregs *dbgregs)
4996 {
4997         unsigned long val;
4998
4999         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5000         kvm_get_dr(vcpu, 6, &val);
5001         dbgregs->dr6 = val;
5002         dbgregs->dr7 = vcpu->arch.dr7;
5003         dbgregs->flags = 0;
5004         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5005 }
5006
5007 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5008                                             struct kvm_debugregs *dbgregs)
5009 {
5010         if (dbgregs->flags)
5011                 return -EINVAL;
5012
5013         if (!kvm_dr6_valid(dbgregs->dr6))
5014                 return -EINVAL;
5015         if (!kvm_dr7_valid(dbgregs->dr7))
5016                 return -EINVAL;
5017
5018         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5019         kvm_update_dr0123(vcpu);
5020         vcpu->arch.dr6 = dbgregs->dr6;
5021         vcpu->arch.dr7 = dbgregs->dr7;
5022         kvm_update_dr7(vcpu);
5023
5024         return 0;
5025 }
5026
5027 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5028                                          struct kvm_xsave *guest_xsave)
5029 {
5030         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5031                 return;
5032
5033         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5034                                        guest_xsave->region,
5035                                        sizeof(guest_xsave->region),
5036                                        vcpu->arch.pkru);
5037 }
5038
5039 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5040                                           u8 *state, unsigned int size)
5041 {
5042         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5043                 return;
5044
5045         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5046                                        state, size, vcpu->arch.pkru);
5047 }
5048
5049 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5050                                         struct kvm_xsave *guest_xsave)
5051 {
5052         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5053                 return 0;
5054
5055         return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5056                                               guest_xsave->region,
5057                                               supported_xcr0, &vcpu->arch.pkru);
5058 }
5059
5060 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5061                                         struct kvm_xcrs *guest_xcrs)
5062 {
5063         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5064                 guest_xcrs->nr_xcrs = 0;
5065                 return;
5066         }
5067
5068         guest_xcrs->nr_xcrs = 1;
5069         guest_xcrs->flags = 0;
5070         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5071         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5072 }
5073
5074 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5075                                        struct kvm_xcrs *guest_xcrs)
5076 {
5077         int i, r = 0;
5078
5079         if (!boot_cpu_has(X86_FEATURE_XSAVE))
5080                 return -EINVAL;
5081
5082         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5083                 return -EINVAL;
5084
5085         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5086                 /* Only support XCR0 currently */
5087                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5088                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5089                                 guest_xcrs->xcrs[i].value);
5090                         break;
5091                 }
5092         if (r)
5093                 r = -EINVAL;
5094         return r;
5095 }
5096
5097 /*
5098  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5099  * stopped by the hypervisor.  This function will be called from the host only.
5100  * EINVAL is returned when the host attempts to set the flag for a guest that
5101  * does not support pv clocks.
5102  */
5103 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5104 {
5105         if (!vcpu->arch.pv_time_enabled)
5106                 return -EINVAL;
5107         vcpu->arch.pvclock_set_guest_stopped_request = true;
5108         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5109         return 0;
5110 }
5111
5112 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5113                                  struct kvm_device_attr *attr)
5114 {
5115         int r;
5116
5117         switch (attr->attr) {
5118         case KVM_VCPU_TSC_OFFSET:
5119                 r = 0;
5120                 break;
5121         default:
5122                 r = -ENXIO;
5123         }
5124
5125         return r;
5126 }
5127
5128 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5129                                  struct kvm_device_attr *attr)
5130 {
5131         u64 __user *uaddr = kvm_get_attr_addr(attr);
5132         int r;
5133
5134         if (IS_ERR(uaddr))
5135                 return PTR_ERR(uaddr);
5136
5137         switch (attr->attr) {
5138         case KVM_VCPU_TSC_OFFSET:
5139                 r = -EFAULT;
5140                 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5141                         break;
5142                 r = 0;
5143                 break;
5144         default:
5145                 r = -ENXIO;
5146         }
5147
5148         return r;
5149 }
5150
5151 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5152                                  struct kvm_device_attr *attr)
5153 {
5154         u64 __user *uaddr = kvm_get_attr_addr(attr);
5155         struct kvm *kvm = vcpu->kvm;
5156         int r;
5157
5158         if (IS_ERR(uaddr))
5159                 return PTR_ERR(uaddr);
5160
5161         switch (attr->attr) {
5162         case KVM_VCPU_TSC_OFFSET: {
5163                 u64 offset, tsc, ns;
5164                 unsigned long flags;
5165                 bool matched;
5166
5167                 r = -EFAULT;
5168                 if (get_user(offset, uaddr))
5169                         break;
5170
5171                 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5172
5173                 matched = (vcpu->arch.virtual_tsc_khz &&
5174                            kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5175                            kvm->arch.last_tsc_offset == offset);
5176
5177                 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5178                 ns = get_kvmclock_base_ns();
5179
5180                 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5181                 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5182
5183                 r = 0;
5184                 break;
5185         }
5186         default:
5187                 r = -ENXIO;
5188         }
5189
5190         return r;
5191 }
5192
5193 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5194                                       unsigned int ioctl,
5195                                       void __user *argp)
5196 {
5197         struct kvm_device_attr attr;
5198         int r;
5199
5200         if (copy_from_user(&attr, argp, sizeof(attr)))
5201                 return -EFAULT;
5202
5203         if (attr.group != KVM_VCPU_TSC_CTRL)
5204                 return -ENXIO;
5205
5206         switch (ioctl) {
5207         case KVM_HAS_DEVICE_ATTR:
5208                 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5209                 break;
5210         case KVM_GET_DEVICE_ATTR:
5211                 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5212                 break;
5213         case KVM_SET_DEVICE_ATTR:
5214                 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5215                 break;
5216         }
5217
5218         return r;
5219 }
5220
5221 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5222                                      struct kvm_enable_cap *cap)
5223 {
5224         int r;
5225         uint16_t vmcs_version;
5226         void __user *user_ptr;
5227
5228         if (cap->flags)
5229                 return -EINVAL;
5230
5231         switch (cap->cap) {
5232         case KVM_CAP_HYPERV_SYNIC2:
5233                 if (cap->args[0])
5234                         return -EINVAL;
5235                 fallthrough;
5236
5237         case KVM_CAP_HYPERV_SYNIC:
5238                 if (!irqchip_in_kernel(vcpu->kvm))
5239                         return -EINVAL;
5240                 return kvm_hv_activate_synic(vcpu, cap->cap ==
5241                                              KVM_CAP_HYPERV_SYNIC2);
5242         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5243                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5244                         return -ENOTTY;
5245                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5246                 if (!r) {
5247                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
5248                         if (copy_to_user(user_ptr, &vmcs_version,
5249                                          sizeof(vmcs_version)))
5250                                 r = -EFAULT;
5251                 }
5252                 return r;
5253         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5254                 if (!kvm_x86_ops.enable_direct_tlbflush)
5255                         return -ENOTTY;
5256
5257                 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5258
5259         case KVM_CAP_HYPERV_ENFORCE_CPUID:
5260                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5261
5262         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5263                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5264                 if (vcpu->arch.pv_cpuid.enforce)
5265                         kvm_update_pv_runtime(vcpu);
5266
5267                 return 0;
5268         default:
5269                 return -EINVAL;
5270         }
5271 }
5272
5273 long kvm_arch_vcpu_ioctl(struct file *filp,
5274                          unsigned int ioctl, unsigned long arg)
5275 {
5276         struct kvm_vcpu *vcpu = filp->private_data;
5277         void __user *argp = (void __user *)arg;
5278         int r;
5279         union {
5280                 struct kvm_sregs2 *sregs2;
5281                 struct kvm_lapic_state *lapic;
5282                 struct kvm_xsave *xsave;
5283                 struct kvm_xcrs *xcrs;
5284                 void *buffer;
5285         } u;
5286
5287         vcpu_load(vcpu);
5288
5289         u.buffer = NULL;
5290         switch (ioctl) {
5291         case KVM_GET_LAPIC: {
5292                 r = -EINVAL;
5293                 if (!lapic_in_kernel(vcpu))
5294                         goto out;
5295                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5296                                 GFP_KERNEL_ACCOUNT);
5297
5298                 r = -ENOMEM;
5299                 if (!u.lapic)
5300                         goto out;
5301                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5302                 if (r)
5303                         goto out;
5304                 r = -EFAULT;
5305                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5306                         goto out;
5307                 r = 0;
5308                 break;
5309         }
5310         case KVM_SET_LAPIC: {
5311                 r = -EINVAL;
5312                 if (!lapic_in_kernel(vcpu))
5313                         goto out;
5314                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5315                 if (IS_ERR(u.lapic)) {
5316                         r = PTR_ERR(u.lapic);
5317                         goto out_nofree;
5318                 }
5319
5320                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5321                 break;
5322         }
5323         case KVM_INTERRUPT: {
5324                 struct kvm_interrupt irq;
5325
5326                 r = -EFAULT;
5327                 if (copy_from_user(&irq, argp, sizeof(irq)))
5328                         goto out;
5329                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5330                 break;
5331         }
5332         case KVM_NMI: {
5333                 r = kvm_vcpu_ioctl_nmi(vcpu);
5334                 break;
5335         }
5336         case KVM_SMI: {
5337                 r = kvm_vcpu_ioctl_smi(vcpu);
5338                 break;
5339         }
5340         case KVM_SET_CPUID: {
5341                 struct kvm_cpuid __user *cpuid_arg = argp;
5342                 struct kvm_cpuid cpuid;
5343
5344                 r = -EFAULT;
5345                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5346                         goto out;
5347                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5348                 break;
5349         }
5350         case KVM_SET_CPUID2: {
5351                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5352                 struct kvm_cpuid2 cpuid;
5353
5354                 r = -EFAULT;
5355                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5356                         goto out;
5357                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5358                                               cpuid_arg->entries);
5359                 break;
5360         }
5361         case KVM_GET_CPUID2: {
5362                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5363                 struct kvm_cpuid2 cpuid;
5364
5365                 r = -EFAULT;
5366                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5367                         goto out;
5368                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5369                                               cpuid_arg->entries);
5370                 if (r)
5371                         goto out;
5372                 r = -EFAULT;
5373                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5374                         goto out;
5375                 r = 0;
5376                 break;
5377         }
5378         case KVM_GET_MSRS: {
5379                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5380                 r = msr_io(vcpu, argp, do_get_msr, 1);
5381                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5382                 break;
5383         }
5384         case KVM_SET_MSRS: {
5385                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5386                 r = msr_io(vcpu, argp, do_set_msr, 0);
5387                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5388                 break;
5389         }
5390         case KVM_TPR_ACCESS_REPORTING: {
5391                 struct kvm_tpr_access_ctl tac;
5392
5393                 r = -EFAULT;
5394                 if (copy_from_user(&tac, argp, sizeof(tac)))
5395                         goto out;
5396                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5397                 if (r)
5398                         goto out;
5399                 r = -EFAULT;
5400                 if (copy_to_user(argp, &tac, sizeof(tac)))
5401                         goto out;
5402                 r = 0;
5403                 break;
5404         };
5405         case KVM_SET_VAPIC_ADDR: {
5406                 struct kvm_vapic_addr va;
5407                 int idx;
5408
5409                 r = -EINVAL;
5410                 if (!lapic_in_kernel(vcpu))
5411                         goto out;
5412                 r = -EFAULT;
5413                 if (copy_from_user(&va, argp, sizeof(va)))
5414                         goto out;
5415                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5416                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5417                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5418                 break;
5419         }
5420         case KVM_X86_SETUP_MCE: {
5421                 u64 mcg_cap;
5422
5423                 r = -EFAULT;
5424                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5425                         goto out;
5426                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5427                 break;
5428         }
5429         case KVM_X86_SET_MCE: {
5430                 struct kvm_x86_mce mce;
5431
5432                 r = -EFAULT;
5433                 if (copy_from_user(&mce, argp, sizeof(mce)))
5434                         goto out;
5435                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5436                 break;
5437         }
5438         case KVM_GET_VCPU_EVENTS: {
5439                 struct kvm_vcpu_events events;
5440
5441                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5442
5443                 r = -EFAULT;
5444                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5445                         break;
5446                 r = 0;
5447                 break;
5448         }
5449         case KVM_SET_VCPU_EVENTS: {
5450                 struct kvm_vcpu_events events;
5451
5452                 r = -EFAULT;
5453                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5454                         break;
5455
5456                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5457                 break;
5458         }
5459         case KVM_GET_DEBUGREGS: {
5460                 struct kvm_debugregs dbgregs;
5461
5462                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5463
5464                 r = -EFAULT;
5465                 if (copy_to_user(argp, &dbgregs,
5466                                  sizeof(struct kvm_debugregs)))
5467                         break;
5468                 r = 0;
5469                 break;
5470         }
5471         case KVM_SET_DEBUGREGS: {
5472                 struct kvm_debugregs dbgregs;
5473
5474                 r = -EFAULT;
5475                 if (copy_from_user(&dbgregs, argp,
5476                                    sizeof(struct kvm_debugregs)))
5477                         break;
5478
5479                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5480                 break;
5481         }
5482         case KVM_GET_XSAVE: {
5483                 r = -EINVAL;
5484                 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5485                         break;
5486
5487                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5488                 r = -ENOMEM;
5489                 if (!u.xsave)
5490                         break;
5491
5492                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5493
5494                 r = -EFAULT;
5495                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5496                         break;
5497                 r = 0;
5498                 break;
5499         }
5500         case KVM_SET_XSAVE: {
5501                 int size = vcpu->arch.guest_fpu.uabi_size;
5502
5503                 u.xsave = memdup_user(argp, size);
5504                 if (IS_ERR(u.xsave)) {
5505                         r = PTR_ERR(u.xsave);
5506                         goto out_nofree;
5507                 }
5508
5509                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5510                 break;
5511         }
5512
5513         case KVM_GET_XSAVE2: {
5514                 int size = vcpu->arch.guest_fpu.uabi_size;
5515
5516                 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5517                 r = -ENOMEM;
5518                 if (!u.xsave)
5519                         break;
5520
5521                 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5522
5523                 r = -EFAULT;
5524                 if (copy_to_user(argp, u.xsave, size))
5525                         break;
5526
5527                 r = 0;
5528                 break;
5529         }
5530
5531         case KVM_GET_XCRS: {
5532                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5533                 r = -ENOMEM;
5534                 if (!u.xcrs)
5535                         break;
5536
5537                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5538
5539                 r = -EFAULT;
5540                 if (copy_to_user(argp, u.xcrs,
5541                                  sizeof(struct kvm_xcrs)))
5542                         break;
5543                 r = 0;
5544                 break;
5545         }
5546         case KVM_SET_XCRS: {
5547                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5548                 if (IS_ERR(u.xcrs)) {
5549                         r = PTR_ERR(u.xcrs);
5550                         goto out_nofree;
5551                 }
5552
5553                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5554                 break;
5555         }
5556         case KVM_SET_TSC_KHZ: {
5557                 u32 user_tsc_khz;
5558
5559                 r = -EINVAL;
5560                 user_tsc_khz = (u32)arg;
5561
5562                 if (kvm_has_tsc_control &&
5563                     user_tsc_khz >= kvm_max_guest_tsc_khz)
5564                         goto out;
5565
5566                 if (user_tsc_khz == 0)
5567                         user_tsc_khz = tsc_khz;
5568
5569                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5570                         r = 0;
5571
5572                 goto out;
5573         }
5574         case KVM_GET_TSC_KHZ: {
5575                 r = vcpu->arch.virtual_tsc_khz;
5576                 goto out;
5577         }
5578         case KVM_KVMCLOCK_CTRL: {
5579                 r = kvm_set_guest_paused(vcpu);
5580                 goto out;
5581         }
5582         case KVM_ENABLE_CAP: {
5583                 struct kvm_enable_cap cap;
5584
5585                 r = -EFAULT;
5586                 if (copy_from_user(&cap, argp, sizeof(cap)))
5587                         goto out;
5588                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5589                 break;
5590         }
5591         case KVM_GET_NESTED_STATE: {
5592                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5593                 u32 user_data_size;
5594
5595                 r = -EINVAL;
5596                 if (!kvm_x86_ops.nested_ops->get_state)
5597                         break;
5598
5599                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5600                 r = -EFAULT;
5601                 if (get_user(user_data_size, &user_kvm_nested_state->size))
5602                         break;
5603
5604                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5605                                                      user_data_size);
5606                 if (r < 0)
5607                         break;
5608
5609                 if (r > user_data_size) {
5610                         if (put_user(r, &user_kvm_nested_state->size))
5611                                 r = -EFAULT;
5612                         else
5613                                 r = -E2BIG;
5614                         break;
5615                 }
5616
5617                 r = 0;
5618                 break;
5619         }
5620         case KVM_SET_NESTED_STATE: {
5621                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5622                 struct kvm_nested_state kvm_state;
5623                 int idx;
5624
5625                 r = -EINVAL;
5626                 if (!kvm_x86_ops.nested_ops->set_state)
5627                         break;
5628
5629                 r = -EFAULT;
5630                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5631                         break;
5632
5633                 r = -EINVAL;
5634                 if (kvm_state.size < sizeof(kvm_state))
5635                         break;
5636
5637                 if (kvm_state.flags &
5638                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5639                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5640                       | KVM_STATE_NESTED_GIF_SET))
5641                         break;
5642
5643                 /* nested_run_pending implies guest_mode.  */
5644                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5645                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5646                         break;
5647
5648                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5649                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5650                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5651                 break;
5652         }
5653         case KVM_GET_SUPPORTED_HV_CPUID:
5654                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5655                 break;
5656 #ifdef CONFIG_KVM_XEN
5657         case KVM_XEN_VCPU_GET_ATTR: {
5658                 struct kvm_xen_vcpu_attr xva;
5659
5660                 r = -EFAULT;
5661                 if (copy_from_user(&xva, argp, sizeof(xva)))
5662                         goto out;
5663                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5664                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5665                         r = -EFAULT;
5666                 break;
5667         }
5668         case KVM_XEN_VCPU_SET_ATTR: {
5669                 struct kvm_xen_vcpu_attr xva;
5670
5671                 r = -EFAULT;
5672                 if (copy_from_user(&xva, argp, sizeof(xva)))
5673                         goto out;
5674                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5675                 break;
5676         }
5677 #endif
5678         case KVM_GET_SREGS2: {
5679                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5680                 r = -ENOMEM;
5681                 if (!u.sregs2)
5682                         goto out;
5683                 __get_sregs2(vcpu, u.sregs2);
5684                 r = -EFAULT;
5685                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5686                         goto out;
5687                 r = 0;
5688                 break;
5689         }
5690         case KVM_SET_SREGS2: {
5691                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5692                 if (IS_ERR(u.sregs2)) {
5693                         r = PTR_ERR(u.sregs2);
5694                         u.sregs2 = NULL;
5695                         goto out;
5696                 }
5697                 r = __set_sregs2(vcpu, u.sregs2);
5698                 break;
5699         }
5700         case KVM_HAS_DEVICE_ATTR:
5701         case KVM_GET_DEVICE_ATTR:
5702         case KVM_SET_DEVICE_ATTR:
5703                 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5704                 break;
5705         default:
5706                 r = -EINVAL;
5707         }
5708 out:
5709         kfree(u.buffer);
5710 out_nofree:
5711         vcpu_put(vcpu);
5712         return r;
5713 }
5714
5715 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5716 {
5717         return VM_FAULT_SIGBUS;
5718 }
5719
5720 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5721 {
5722         int ret;
5723
5724         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5725                 return -EINVAL;
5726         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5727         return ret;
5728 }
5729
5730 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5731                                               u64 ident_addr)
5732 {
5733         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5734 }
5735
5736 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5737                                          unsigned long kvm_nr_mmu_pages)
5738 {
5739         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5740                 return -EINVAL;
5741
5742         mutex_lock(&kvm->slots_lock);
5743
5744         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5745         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5746
5747         mutex_unlock(&kvm->slots_lock);
5748         return 0;
5749 }
5750
5751 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5752 {
5753         return kvm->arch.n_max_mmu_pages;
5754 }
5755
5756 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5757 {
5758         struct kvm_pic *pic = kvm->arch.vpic;
5759         int r;
5760
5761         r = 0;
5762         switch (chip->chip_id) {
5763         case KVM_IRQCHIP_PIC_MASTER:
5764                 memcpy(&chip->chip.pic, &pic->pics[0],
5765                         sizeof(struct kvm_pic_state));
5766                 break;
5767         case KVM_IRQCHIP_PIC_SLAVE:
5768                 memcpy(&chip->chip.pic, &pic->pics[1],
5769                         sizeof(struct kvm_pic_state));
5770                 break;
5771         case KVM_IRQCHIP_IOAPIC:
5772                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5773                 break;
5774         default:
5775                 r = -EINVAL;
5776                 break;
5777         }
5778         return r;
5779 }
5780
5781 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5782 {
5783         struct kvm_pic *pic = kvm->arch.vpic;
5784         int r;
5785
5786         r = 0;
5787         switch (chip->chip_id) {
5788         case KVM_IRQCHIP_PIC_MASTER:
5789                 spin_lock(&pic->lock);
5790                 memcpy(&pic->pics[0], &chip->chip.pic,
5791                         sizeof(struct kvm_pic_state));
5792                 spin_unlock(&pic->lock);
5793                 break;
5794         case KVM_IRQCHIP_PIC_SLAVE:
5795                 spin_lock(&pic->lock);
5796                 memcpy(&pic->pics[1], &chip->chip.pic,
5797                         sizeof(struct kvm_pic_state));
5798                 spin_unlock(&pic->lock);
5799                 break;
5800         case KVM_IRQCHIP_IOAPIC:
5801                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5802                 break;
5803         default:
5804                 r = -EINVAL;
5805                 break;
5806         }
5807         kvm_pic_update_irq(pic);
5808         return r;
5809 }
5810
5811 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5812 {
5813         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5814
5815         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5816
5817         mutex_lock(&kps->lock);
5818         memcpy(ps, &kps->channels, sizeof(*ps));
5819         mutex_unlock(&kps->lock);
5820         return 0;
5821 }
5822
5823 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5824 {
5825         int i;
5826         struct kvm_pit *pit = kvm->arch.vpit;
5827
5828         mutex_lock(&pit->pit_state.lock);
5829         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5830         for (i = 0; i < 3; i++)
5831                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5832         mutex_unlock(&pit->pit_state.lock);
5833         return 0;
5834 }
5835
5836 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5837 {
5838         mutex_lock(&kvm->arch.vpit->pit_state.lock);
5839         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5840                 sizeof(ps->channels));
5841         ps->flags = kvm->arch.vpit->pit_state.flags;
5842         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5843         memset(&ps->reserved, 0, sizeof(ps->reserved));
5844         return 0;
5845 }
5846
5847 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5848 {
5849         int start = 0;
5850         int i;
5851         u32 prev_legacy, cur_legacy;
5852         struct kvm_pit *pit = kvm->arch.vpit;
5853
5854         mutex_lock(&pit->pit_state.lock);
5855         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5856         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5857         if (!prev_legacy && cur_legacy)
5858                 start = 1;
5859         memcpy(&pit->pit_state.channels, &ps->channels,
5860                sizeof(pit->pit_state.channels));
5861         pit->pit_state.flags = ps->flags;
5862         for (i = 0; i < 3; i++)
5863                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5864                                    start && i == 0);
5865         mutex_unlock(&pit->pit_state.lock);
5866         return 0;
5867 }
5868
5869 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5870                                  struct kvm_reinject_control *control)
5871 {
5872         struct kvm_pit *pit = kvm->arch.vpit;
5873
5874         /* pit->pit_state.lock was overloaded to prevent userspace from getting
5875          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5876          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5877          */
5878         mutex_lock(&pit->pit_state.lock);
5879         kvm_pit_set_reinject(pit, control->pit_reinject);
5880         mutex_unlock(&pit->pit_state.lock);
5881
5882         return 0;
5883 }
5884
5885 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5886 {
5887
5888         /*
5889          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5890          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5891          * on all VM-Exits, thus we only need to kick running vCPUs to force a
5892          * VM-Exit.
5893          */
5894         struct kvm_vcpu *vcpu;
5895         unsigned long i;
5896
5897         kvm_for_each_vcpu(i, vcpu, kvm)
5898                 kvm_vcpu_kick(vcpu);
5899 }
5900
5901 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5902                         bool line_status)
5903 {
5904         if (!irqchip_in_kernel(kvm))
5905                 return -ENXIO;
5906
5907         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5908                                         irq_event->irq, irq_event->level,
5909                                         line_status);
5910         return 0;
5911 }
5912
5913 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5914                             struct kvm_enable_cap *cap)
5915 {
5916         int r;
5917
5918         if (cap->flags)
5919                 return -EINVAL;
5920
5921         switch (cap->cap) {
5922         case KVM_CAP_DISABLE_QUIRKS2:
5923                 r = -EINVAL;
5924                 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
5925                         break;
5926                 fallthrough;
5927         case KVM_CAP_DISABLE_QUIRKS:
5928                 kvm->arch.disabled_quirks = cap->args[0];
5929                 r = 0;
5930                 break;
5931         case KVM_CAP_SPLIT_IRQCHIP: {
5932                 mutex_lock(&kvm->lock);
5933                 r = -EINVAL;
5934                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5935                         goto split_irqchip_unlock;
5936                 r = -EEXIST;
5937                 if (irqchip_in_kernel(kvm))
5938                         goto split_irqchip_unlock;
5939                 if (kvm->created_vcpus)
5940                         goto split_irqchip_unlock;
5941                 r = kvm_setup_empty_irq_routing(kvm);
5942                 if (r)
5943                         goto split_irqchip_unlock;
5944                 /* Pairs with irqchip_in_kernel. */
5945                 smp_wmb();
5946                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5947                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5948                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
5949                 r = 0;
5950 split_irqchip_unlock:
5951                 mutex_unlock(&kvm->lock);
5952                 break;
5953         }
5954         case KVM_CAP_X2APIC_API:
5955                 r = -EINVAL;
5956                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5957                         break;
5958
5959                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5960                         kvm->arch.x2apic_format = true;
5961                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5962                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
5963
5964                 r = 0;
5965                 break;
5966         case KVM_CAP_X86_DISABLE_EXITS:
5967                 r = -EINVAL;
5968                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5969                         break;
5970
5971                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5972                         kvm_can_mwait_in_guest())
5973                         kvm->arch.mwait_in_guest = true;
5974                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5975                         kvm->arch.hlt_in_guest = true;
5976                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5977                         kvm->arch.pause_in_guest = true;
5978                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5979                         kvm->arch.cstate_in_guest = true;
5980                 r = 0;
5981                 break;
5982         case KVM_CAP_MSR_PLATFORM_INFO:
5983                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5984                 r = 0;
5985                 break;
5986         case KVM_CAP_EXCEPTION_PAYLOAD:
5987                 kvm->arch.exception_payload_enabled = cap->args[0];
5988                 r = 0;
5989                 break;
5990         case KVM_CAP_X86_USER_SPACE_MSR:
5991                 kvm->arch.user_space_msr_mask = cap->args[0];
5992                 r = 0;
5993                 break;
5994         case KVM_CAP_X86_BUS_LOCK_EXIT:
5995                 r = -EINVAL;
5996                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5997                         break;
5998
5999                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6000                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6001                         break;
6002
6003                 if (kvm_has_bus_lock_exit &&
6004                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6005                         kvm->arch.bus_lock_detection_enabled = true;
6006                 r = 0;
6007                 break;
6008 #ifdef CONFIG_X86_SGX_KVM
6009         case KVM_CAP_SGX_ATTRIBUTE: {
6010                 unsigned long allowed_attributes = 0;
6011
6012                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6013                 if (r)
6014                         break;
6015
6016                 /* KVM only supports the PROVISIONKEY privileged attribute. */
6017                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6018                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6019                         kvm->arch.sgx_provisioning_allowed = true;
6020                 else
6021                         r = -EINVAL;
6022                 break;
6023         }
6024 #endif
6025         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6026                 r = -EINVAL;
6027                 if (!kvm_x86_ops.vm_copy_enc_context_from)
6028                         break;
6029
6030                 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6031                 break;
6032         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6033                 r = -EINVAL;
6034                 if (!kvm_x86_ops.vm_move_enc_context_from)
6035                         break;
6036
6037                 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6038                 break;
6039         case KVM_CAP_EXIT_HYPERCALL:
6040                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6041                         r = -EINVAL;
6042                         break;
6043                 }
6044                 kvm->arch.hypercall_exit_enabled = cap->args[0];
6045                 r = 0;
6046                 break;
6047         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6048                 r = -EINVAL;
6049                 if (cap->args[0] & ~1)
6050                         break;
6051                 kvm->arch.exit_on_emulation_error = cap->args[0];
6052                 r = 0;
6053                 break;
6054         case KVM_CAP_PMU_CAPABILITY:
6055                 r = -EINVAL;
6056                 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6057                         break;
6058
6059                 mutex_lock(&kvm->lock);
6060                 if (!kvm->created_vcpus) {
6061                         kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6062                         r = 0;
6063                 }
6064                 mutex_unlock(&kvm->lock);
6065                 break;
6066         default:
6067                 r = -EINVAL;
6068                 break;
6069         }
6070         return r;
6071 }
6072
6073 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6074 {
6075         struct kvm_x86_msr_filter *msr_filter;
6076
6077         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6078         if (!msr_filter)
6079                 return NULL;
6080
6081         msr_filter->default_allow = default_allow;
6082         return msr_filter;
6083 }
6084
6085 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6086 {
6087         u32 i;
6088
6089         if (!msr_filter)
6090                 return;
6091
6092         for (i = 0; i < msr_filter->count; i++)
6093                 kfree(msr_filter->ranges[i].bitmap);
6094
6095         kfree(msr_filter);
6096 }
6097
6098 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6099                               struct kvm_msr_filter_range *user_range)
6100 {
6101         unsigned long *bitmap = NULL;
6102         size_t bitmap_size;
6103
6104         if (!user_range->nmsrs)
6105                 return 0;
6106
6107         if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6108                 return -EINVAL;
6109
6110         if (!user_range->flags)
6111                 return -EINVAL;
6112
6113         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6114         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6115                 return -EINVAL;
6116
6117         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6118         if (IS_ERR(bitmap))
6119                 return PTR_ERR(bitmap);
6120
6121         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6122                 .flags = user_range->flags,
6123                 .base = user_range->base,
6124                 .nmsrs = user_range->nmsrs,
6125                 .bitmap = bitmap,
6126         };
6127
6128         msr_filter->count++;
6129         return 0;
6130 }
6131
6132 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6133 {
6134         struct kvm_msr_filter __user *user_msr_filter = argp;
6135         struct kvm_x86_msr_filter *new_filter, *old_filter;
6136         struct kvm_msr_filter filter;
6137         bool default_allow;
6138         bool empty = true;
6139         int r = 0;
6140         u32 i;
6141
6142         if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6143                 return -EFAULT;
6144
6145         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6146                 empty &= !filter.ranges[i].nmsrs;
6147
6148         default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6149         if (empty && !default_allow)
6150                 return -EINVAL;
6151
6152         new_filter = kvm_alloc_msr_filter(default_allow);
6153         if (!new_filter)
6154                 return -ENOMEM;
6155
6156         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6157                 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6158                 if (r) {
6159                         kvm_free_msr_filter(new_filter);
6160                         return r;
6161                 }
6162         }
6163
6164         mutex_lock(&kvm->lock);
6165
6166         /* The per-VM filter is protected by kvm->lock... */
6167         old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6168
6169         rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6170         synchronize_srcu(&kvm->srcu);
6171
6172         kvm_free_msr_filter(old_filter);
6173
6174         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6175         mutex_unlock(&kvm->lock);
6176
6177         return 0;
6178 }
6179
6180 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6181 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6182 {
6183         struct kvm_vcpu *vcpu;
6184         unsigned long i;
6185         int ret = 0;
6186
6187         mutex_lock(&kvm->lock);
6188         kvm_for_each_vcpu(i, vcpu, kvm) {
6189                 if (!vcpu->arch.pv_time_enabled)
6190                         continue;
6191
6192                 ret = kvm_set_guest_paused(vcpu);
6193                 if (ret) {
6194                         kvm_err("Failed to pause guest VCPU%d: %d\n",
6195                                 vcpu->vcpu_id, ret);
6196                         break;
6197                 }
6198         }
6199         mutex_unlock(&kvm->lock);
6200
6201         return ret ? NOTIFY_BAD : NOTIFY_DONE;
6202 }
6203
6204 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6205 {
6206         switch (state) {
6207         case PM_HIBERNATION_PREPARE:
6208         case PM_SUSPEND_PREPARE:
6209                 return kvm_arch_suspend_notifier(kvm);
6210         }
6211
6212         return NOTIFY_DONE;
6213 }
6214 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6215
6216 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6217 {
6218         struct kvm_clock_data data = { 0 };
6219
6220         get_kvmclock(kvm, &data);
6221         if (copy_to_user(argp, &data, sizeof(data)))
6222                 return -EFAULT;
6223
6224         return 0;
6225 }
6226
6227 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6228 {
6229         struct kvm_arch *ka = &kvm->arch;
6230         struct kvm_clock_data data;
6231         u64 now_raw_ns;
6232
6233         if (copy_from_user(&data, argp, sizeof(data)))
6234                 return -EFAULT;
6235
6236         /*
6237          * Only KVM_CLOCK_REALTIME is used, but allow passing the
6238          * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6239          */
6240         if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6241                 return -EINVAL;
6242
6243         kvm_hv_request_tsc_page_update(kvm);
6244         kvm_start_pvclock_update(kvm);
6245         pvclock_update_vm_gtod_copy(kvm);
6246
6247         /*
6248          * This pairs with kvm_guest_time_update(): when masterclock is
6249          * in use, we use master_kernel_ns + kvmclock_offset to set
6250          * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6251          * is slightly ahead) here we risk going negative on unsigned
6252          * 'system_time' when 'data.clock' is very small.
6253          */
6254         if (data.flags & KVM_CLOCK_REALTIME) {
6255                 u64 now_real_ns = ktime_get_real_ns();
6256
6257                 /*
6258                  * Avoid stepping the kvmclock backwards.
6259                  */
6260                 if (now_real_ns > data.realtime)
6261                         data.clock += now_real_ns - data.realtime;
6262         }
6263
6264         if (ka->use_master_clock)
6265                 now_raw_ns = ka->master_kernel_ns;
6266         else
6267                 now_raw_ns = get_kvmclock_base_ns();
6268         ka->kvmclock_offset = data.clock - now_raw_ns;
6269         kvm_end_pvclock_update(kvm);
6270         return 0;
6271 }
6272
6273 long kvm_arch_vm_ioctl(struct file *filp,
6274                        unsigned int ioctl, unsigned long arg)
6275 {
6276         struct kvm *kvm = filp->private_data;
6277         void __user *argp = (void __user *)arg;
6278         int r = -ENOTTY;
6279         /*
6280          * This union makes it completely explicit to gcc-3.x
6281          * that these two variables' stack usage should be
6282          * combined, not added together.
6283          */
6284         union {
6285                 struct kvm_pit_state ps;
6286                 struct kvm_pit_state2 ps2;
6287                 struct kvm_pit_config pit_config;
6288         } u;
6289
6290         switch (ioctl) {
6291         case KVM_SET_TSS_ADDR:
6292                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6293                 break;
6294         case KVM_SET_IDENTITY_MAP_ADDR: {
6295                 u64 ident_addr;
6296
6297                 mutex_lock(&kvm->lock);
6298                 r = -EINVAL;
6299                 if (kvm->created_vcpus)
6300                         goto set_identity_unlock;
6301                 r = -EFAULT;
6302                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6303                         goto set_identity_unlock;
6304                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6305 set_identity_unlock:
6306                 mutex_unlock(&kvm->lock);
6307                 break;
6308         }
6309         case KVM_SET_NR_MMU_PAGES:
6310                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6311                 break;
6312         case KVM_GET_NR_MMU_PAGES:
6313                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6314                 break;
6315         case KVM_CREATE_IRQCHIP: {
6316                 mutex_lock(&kvm->lock);
6317
6318                 r = -EEXIST;
6319                 if (irqchip_in_kernel(kvm))
6320                         goto create_irqchip_unlock;
6321
6322                 r = -EINVAL;
6323                 if (kvm->created_vcpus)
6324                         goto create_irqchip_unlock;
6325
6326                 r = kvm_pic_init(kvm);
6327                 if (r)
6328                         goto create_irqchip_unlock;
6329
6330                 r = kvm_ioapic_init(kvm);
6331                 if (r) {
6332                         kvm_pic_destroy(kvm);
6333                         goto create_irqchip_unlock;
6334                 }
6335
6336                 r = kvm_setup_default_irq_routing(kvm);
6337                 if (r) {
6338                         kvm_ioapic_destroy(kvm);
6339                         kvm_pic_destroy(kvm);
6340                         goto create_irqchip_unlock;
6341                 }
6342                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6343                 smp_wmb();
6344                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6345                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6346         create_irqchip_unlock:
6347                 mutex_unlock(&kvm->lock);
6348                 break;
6349         }
6350         case KVM_CREATE_PIT:
6351                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6352                 goto create_pit;
6353         case KVM_CREATE_PIT2:
6354                 r = -EFAULT;
6355                 if (copy_from_user(&u.pit_config, argp,
6356                                    sizeof(struct kvm_pit_config)))
6357                         goto out;
6358         create_pit:
6359                 mutex_lock(&kvm->lock);
6360                 r = -EEXIST;
6361                 if (kvm->arch.vpit)
6362                         goto create_pit_unlock;
6363                 r = -ENOMEM;
6364                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6365                 if (kvm->arch.vpit)
6366                         r = 0;
6367         create_pit_unlock:
6368                 mutex_unlock(&kvm->lock);
6369                 break;
6370         case KVM_GET_IRQCHIP: {
6371                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6372                 struct kvm_irqchip *chip;
6373
6374                 chip = memdup_user(argp, sizeof(*chip));
6375                 if (IS_ERR(chip)) {
6376                         r = PTR_ERR(chip);
6377                         goto out;
6378                 }
6379
6380                 r = -ENXIO;
6381                 if (!irqchip_kernel(kvm))
6382                         goto get_irqchip_out;
6383                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6384                 if (r)
6385                         goto get_irqchip_out;
6386                 r = -EFAULT;
6387                 if (copy_to_user(argp, chip, sizeof(*chip)))
6388                         goto get_irqchip_out;
6389                 r = 0;
6390         get_irqchip_out:
6391                 kfree(chip);
6392                 break;
6393         }
6394         case KVM_SET_IRQCHIP: {
6395                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6396                 struct kvm_irqchip *chip;
6397
6398                 chip = memdup_user(argp, sizeof(*chip));
6399                 if (IS_ERR(chip)) {
6400                         r = PTR_ERR(chip);
6401                         goto out;
6402                 }
6403
6404                 r = -ENXIO;
6405                 if (!irqchip_kernel(kvm))
6406                         goto set_irqchip_out;
6407                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6408         set_irqchip_out:
6409                 kfree(chip);
6410                 break;
6411         }
6412         case KVM_GET_PIT: {
6413                 r = -EFAULT;
6414                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6415                         goto out;
6416                 r = -ENXIO;
6417                 if (!kvm->arch.vpit)
6418                         goto out;
6419                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6420                 if (r)
6421                         goto out;
6422                 r = -EFAULT;
6423                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6424                         goto out;
6425                 r = 0;
6426                 break;
6427         }
6428         case KVM_SET_PIT: {
6429                 r = -EFAULT;
6430                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6431                         goto out;
6432                 mutex_lock(&kvm->lock);
6433                 r = -ENXIO;
6434                 if (!kvm->arch.vpit)
6435                         goto set_pit_out;
6436                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6437 set_pit_out:
6438                 mutex_unlock(&kvm->lock);
6439                 break;
6440         }
6441         case KVM_GET_PIT2: {
6442                 r = -ENXIO;
6443                 if (!kvm->arch.vpit)
6444                         goto out;
6445                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6446                 if (r)
6447                         goto out;
6448                 r = -EFAULT;
6449                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6450                         goto out;
6451                 r = 0;
6452                 break;
6453         }
6454         case KVM_SET_PIT2: {
6455                 r = -EFAULT;
6456                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6457                         goto out;
6458                 mutex_lock(&kvm->lock);
6459                 r = -ENXIO;
6460                 if (!kvm->arch.vpit)
6461                         goto set_pit2_out;
6462                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6463 set_pit2_out:
6464                 mutex_unlock(&kvm->lock);
6465                 break;
6466         }
6467         case KVM_REINJECT_CONTROL: {
6468                 struct kvm_reinject_control control;
6469                 r =  -EFAULT;
6470                 if (copy_from_user(&control, argp, sizeof(control)))
6471                         goto out;
6472                 r = -ENXIO;
6473                 if (!kvm->arch.vpit)
6474                         goto out;
6475                 r = kvm_vm_ioctl_reinject(kvm, &control);
6476                 break;
6477         }
6478         case KVM_SET_BOOT_CPU_ID:
6479                 r = 0;
6480                 mutex_lock(&kvm->lock);
6481                 if (kvm->created_vcpus)
6482                         r = -EBUSY;
6483                 else
6484                         kvm->arch.bsp_vcpu_id = arg;
6485                 mutex_unlock(&kvm->lock);
6486                 break;
6487 #ifdef CONFIG_KVM_XEN
6488         case KVM_XEN_HVM_CONFIG: {
6489                 struct kvm_xen_hvm_config xhc;
6490                 r = -EFAULT;
6491                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6492                         goto out;
6493                 r = kvm_xen_hvm_config(kvm, &xhc);
6494                 break;
6495         }
6496         case KVM_XEN_HVM_GET_ATTR: {
6497                 struct kvm_xen_hvm_attr xha;
6498
6499                 r = -EFAULT;
6500                 if (copy_from_user(&xha, argp, sizeof(xha)))
6501                         goto out;
6502                 r = kvm_xen_hvm_get_attr(kvm, &xha);
6503                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6504                         r = -EFAULT;
6505                 break;
6506         }
6507         case KVM_XEN_HVM_SET_ATTR: {
6508                 struct kvm_xen_hvm_attr xha;
6509
6510                 r = -EFAULT;
6511                 if (copy_from_user(&xha, argp, sizeof(xha)))
6512                         goto out;
6513                 r = kvm_xen_hvm_set_attr(kvm, &xha);
6514                 break;
6515         }
6516 #endif
6517         case KVM_SET_CLOCK:
6518                 r = kvm_vm_ioctl_set_clock(kvm, argp);
6519                 break;
6520         case KVM_GET_CLOCK:
6521                 r = kvm_vm_ioctl_get_clock(kvm, argp);
6522                 break;
6523         case KVM_MEMORY_ENCRYPT_OP: {
6524                 r = -ENOTTY;
6525                 if (!kvm_x86_ops.mem_enc_ioctl)
6526                         goto out;
6527
6528                 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6529                 break;
6530         }
6531         case KVM_MEMORY_ENCRYPT_REG_REGION: {
6532                 struct kvm_enc_region region;
6533
6534                 r = -EFAULT;
6535                 if (copy_from_user(&region, argp, sizeof(region)))
6536                         goto out;
6537
6538                 r = -ENOTTY;
6539                 if (!kvm_x86_ops.mem_enc_register_region)
6540                         goto out;
6541
6542                 r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6543                 break;
6544         }
6545         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6546                 struct kvm_enc_region region;
6547
6548                 r = -EFAULT;
6549                 if (copy_from_user(&region, argp, sizeof(region)))
6550                         goto out;
6551
6552                 r = -ENOTTY;
6553                 if (!kvm_x86_ops.mem_enc_unregister_region)
6554                         goto out;
6555
6556                 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6557                 break;
6558         }
6559         case KVM_HYPERV_EVENTFD: {
6560                 struct kvm_hyperv_eventfd hvevfd;
6561
6562                 r = -EFAULT;
6563                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6564                         goto out;
6565                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6566                 break;
6567         }
6568         case KVM_SET_PMU_EVENT_FILTER:
6569                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6570                 break;
6571         case KVM_X86_SET_MSR_FILTER:
6572                 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6573                 break;
6574         default:
6575                 r = -ENOTTY;
6576         }
6577 out:
6578         return r;
6579 }
6580
6581 static void kvm_init_msr_list(void)
6582 {
6583         struct x86_pmu_capability x86_pmu;
6584         u32 dummy[2];
6585         unsigned i;
6586
6587         BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6588                          "Please update the fixed PMCs in msrs_to_saved_all[]");
6589
6590         perf_get_x86_pmu_capability(&x86_pmu);
6591
6592         num_msrs_to_save = 0;
6593         num_emulated_msrs = 0;
6594         num_msr_based_features = 0;
6595
6596         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6597                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6598                         continue;
6599
6600                 /*
6601                  * Even MSRs that are valid in the host may not be exposed
6602                  * to the guests in some cases.
6603                  */
6604                 switch (msrs_to_save_all[i]) {
6605                 case MSR_IA32_BNDCFGS:
6606                         if (!kvm_mpx_supported())
6607                                 continue;
6608                         break;
6609                 case MSR_TSC_AUX:
6610                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6611                             !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6612                                 continue;
6613                         break;
6614                 case MSR_IA32_UMWAIT_CONTROL:
6615                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6616                                 continue;
6617                         break;
6618                 case MSR_IA32_RTIT_CTL:
6619                 case MSR_IA32_RTIT_STATUS:
6620                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6621                                 continue;
6622                         break;
6623                 case MSR_IA32_RTIT_CR3_MATCH:
6624                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6625                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6626                                 continue;
6627                         break;
6628                 case MSR_IA32_RTIT_OUTPUT_BASE:
6629                 case MSR_IA32_RTIT_OUTPUT_MASK:
6630                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6631                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6632                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6633                                 continue;
6634                         break;
6635                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6636                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6637                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6638                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6639                                 continue;
6640                         break;
6641                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6642                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6643                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6644                                 continue;
6645                         break;
6646                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6647                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6648                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6649                                 continue;
6650                         break;
6651                 case MSR_IA32_XFD:
6652                 case MSR_IA32_XFD_ERR:
6653                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6654                                 continue;
6655                         break;
6656                 default:
6657                         break;
6658                 }
6659
6660                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6661         }
6662
6663         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6664                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6665                         continue;
6666
6667                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6668         }
6669
6670         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6671                 struct kvm_msr_entry msr;
6672
6673                 msr.index = msr_based_features_all[i];
6674                 if (kvm_get_msr_feature(&msr))
6675                         continue;
6676
6677                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6678         }
6679 }
6680
6681 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6682                            const void *v)
6683 {
6684         int handled = 0;
6685         int n;
6686
6687         do {
6688                 n = min(len, 8);
6689                 if (!(lapic_in_kernel(vcpu) &&
6690                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6691                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6692                         break;
6693                 handled += n;
6694                 addr += n;
6695                 len -= n;
6696                 v += n;
6697         } while (len);
6698
6699         return handled;
6700 }
6701
6702 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6703 {
6704         int handled = 0;
6705         int n;
6706
6707         do {
6708                 n = min(len, 8);
6709                 if (!(lapic_in_kernel(vcpu) &&
6710                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6711                                          addr, n, v))
6712                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6713                         break;
6714                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6715                 handled += n;
6716                 addr += n;
6717                 len -= n;
6718                 v += n;
6719         } while (len);
6720
6721         return handled;
6722 }
6723
6724 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6725                         struct kvm_segment *var, int seg)
6726 {
6727         static_call(kvm_x86_set_segment)(vcpu, var, seg);
6728 }
6729
6730 void kvm_get_segment(struct kvm_vcpu *vcpu,
6731                      struct kvm_segment *var, int seg)
6732 {
6733         static_call(kvm_x86_get_segment)(vcpu, var, seg);
6734 }
6735
6736 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
6737                            struct x86_exception *exception)
6738 {
6739         struct kvm_mmu *mmu = vcpu->arch.mmu;
6740         gpa_t t_gpa;
6741
6742         BUG_ON(!mmu_is_nested(vcpu));
6743
6744         /* NPT walks are always user-walks */
6745         access |= PFERR_USER_MASK;
6746         t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6747
6748         return t_gpa;
6749 }
6750
6751 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6752                               struct x86_exception *exception)
6753 {
6754         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6755
6756         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6757         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6758 }
6759 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6760
6761  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6762                                 struct x86_exception *exception)
6763 {
6764         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6765
6766         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6767         access |= PFERR_FETCH_MASK;
6768         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6769 }
6770
6771 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6772                                struct x86_exception *exception)
6773 {
6774         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6775
6776         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6777         access |= PFERR_WRITE_MASK;
6778         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6779 }
6780 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6781
6782 /* uses this to access any guest's mapped memory without checking CPL */
6783 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6784                                 struct x86_exception *exception)
6785 {
6786         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6787
6788         return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6789 }
6790
6791 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6792                                       struct kvm_vcpu *vcpu, u64 access,
6793                                       struct x86_exception *exception)
6794 {
6795         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6796         void *data = val;
6797         int r = X86EMUL_CONTINUE;
6798
6799         while (bytes) {
6800                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6801                 unsigned offset = addr & (PAGE_SIZE-1);
6802                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6803                 int ret;
6804
6805                 if (gpa == UNMAPPED_GVA)
6806                         return X86EMUL_PROPAGATE_FAULT;
6807                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6808                                                offset, toread);
6809                 if (ret < 0) {
6810                         r = X86EMUL_IO_NEEDED;
6811                         goto out;
6812                 }
6813
6814                 bytes -= toread;
6815                 data += toread;
6816                 addr += toread;
6817         }
6818 out:
6819         return r;
6820 }
6821
6822 /* used for instruction fetching */
6823 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6824                                 gva_t addr, void *val, unsigned int bytes,
6825                                 struct x86_exception *exception)
6826 {
6827         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6828         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6829         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6830         unsigned offset;
6831         int ret;
6832
6833         /* Inline kvm_read_guest_virt_helper for speed.  */
6834         gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6835                                     exception);
6836         if (unlikely(gpa == UNMAPPED_GVA))
6837                 return X86EMUL_PROPAGATE_FAULT;
6838
6839         offset = addr & (PAGE_SIZE-1);
6840         if (WARN_ON(offset + bytes > PAGE_SIZE))
6841                 bytes = (unsigned)PAGE_SIZE - offset;
6842         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6843                                        offset, bytes);
6844         if (unlikely(ret < 0))
6845                 return X86EMUL_IO_NEEDED;
6846
6847         return X86EMUL_CONTINUE;
6848 }
6849
6850 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6851                                gva_t addr, void *val, unsigned int bytes,
6852                                struct x86_exception *exception)
6853 {
6854         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6855
6856         /*
6857          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6858          * is returned, but our callers are not ready for that and they blindly
6859          * call kvm_inject_page_fault.  Ensure that they at least do not leak
6860          * uninitialized kernel stack memory into cr2 and error code.
6861          */
6862         memset(exception, 0, sizeof(*exception));
6863         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6864                                           exception);
6865 }
6866 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6867
6868 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6869                              gva_t addr, void *val, unsigned int bytes,
6870                              struct x86_exception *exception, bool system)
6871 {
6872         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6873         u64 access = 0;
6874
6875         if (system)
6876                 access |= PFERR_IMPLICIT_ACCESS;
6877         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
6878                 access |= PFERR_USER_MASK;
6879
6880         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6881 }
6882
6883 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6884                 unsigned long addr, void *val, unsigned int bytes)
6885 {
6886         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6887         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6888
6889         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6890 }
6891
6892 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6893                                       struct kvm_vcpu *vcpu, u64 access,
6894                                       struct x86_exception *exception)
6895 {
6896         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6897         void *data = val;
6898         int r = X86EMUL_CONTINUE;
6899
6900         while (bytes) {
6901                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6902                 unsigned offset = addr & (PAGE_SIZE-1);
6903                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6904                 int ret;
6905
6906                 if (gpa == UNMAPPED_GVA)
6907                         return X86EMUL_PROPAGATE_FAULT;
6908                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6909                 if (ret < 0) {
6910                         r = X86EMUL_IO_NEEDED;
6911                         goto out;
6912                 }
6913
6914                 bytes -= towrite;
6915                 data += towrite;
6916                 addr += towrite;
6917         }
6918 out:
6919         return r;
6920 }
6921
6922 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6923                               unsigned int bytes, struct x86_exception *exception,
6924                               bool system)
6925 {
6926         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6927         u64 access = PFERR_WRITE_MASK;
6928
6929         if (system)
6930                 access |= PFERR_IMPLICIT_ACCESS;
6931         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
6932                 access |= PFERR_USER_MASK;
6933
6934         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6935                                            access, exception);
6936 }
6937
6938 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6939                                 unsigned int bytes, struct x86_exception *exception)
6940 {
6941         /* kvm_write_guest_virt_system can pull in tons of pages. */
6942         vcpu->arch.l1tf_flush_l1d = true;
6943
6944         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6945                                            PFERR_WRITE_MASK, exception);
6946 }
6947 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6948
6949 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
6950                                 void *insn, int insn_len)
6951 {
6952         return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
6953                                                             insn, insn_len);
6954 }
6955
6956 int handle_ud(struct kvm_vcpu *vcpu)
6957 {
6958         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6959         int emul_type = EMULTYPE_TRAP_UD;
6960         char sig[5]; /* ud2; .ascii "kvm" */
6961         struct x86_exception e;
6962
6963         if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
6964                 return 1;
6965
6966         if (force_emulation_prefix &&
6967             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6968                                 sig, sizeof(sig), &e) == 0 &&
6969             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6970                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6971                 emul_type = EMULTYPE_TRAP_UD_FORCED;
6972         }
6973
6974         return kvm_emulate_instruction(vcpu, emul_type);
6975 }
6976 EXPORT_SYMBOL_GPL(handle_ud);
6977
6978 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6979                             gpa_t gpa, bool write)
6980 {
6981         /* For APIC access vmexit */
6982         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6983                 return 1;
6984
6985         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6986                 trace_vcpu_match_mmio(gva, gpa, write, true);
6987                 return 1;
6988         }
6989
6990         return 0;
6991 }
6992
6993 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6994                                 gpa_t *gpa, struct x86_exception *exception,
6995                                 bool write)
6996 {
6997         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6998         u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6999                 | (write ? PFERR_WRITE_MASK : 0);
7000
7001         /*
7002          * currently PKRU is only applied to ept enabled guest so
7003          * there is no pkey in EPT page table for L1 guest or EPT
7004          * shadow page table for L2 guest.
7005          */
7006         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7007             !permission_fault(vcpu, vcpu->arch.walk_mmu,
7008                               vcpu->arch.mmio_access, 0, access))) {
7009                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7010                                         (gva & (PAGE_SIZE - 1));
7011                 trace_vcpu_match_mmio(gva, *gpa, write, false);
7012                 return 1;
7013         }
7014
7015         *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7016
7017         if (*gpa == UNMAPPED_GVA)
7018                 return -1;
7019
7020         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7021 }
7022
7023 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7024                         const void *val, int bytes)
7025 {
7026         int ret;
7027
7028         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7029         if (ret < 0)
7030                 return 0;
7031         kvm_page_track_write(vcpu, gpa, val, bytes);
7032         return 1;
7033 }
7034
7035 struct read_write_emulator_ops {
7036         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7037                                   int bytes);
7038         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7039                                   void *val, int bytes);
7040         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7041                                int bytes, void *val);
7042         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7043                                     void *val, int bytes);
7044         bool write;
7045 };
7046
7047 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7048 {
7049         if (vcpu->mmio_read_completed) {
7050                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7051                                vcpu->mmio_fragments[0].gpa, val);
7052                 vcpu->mmio_read_completed = 0;
7053                 return 1;
7054         }
7055
7056         return 0;
7057 }
7058
7059 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7060                         void *val, int bytes)
7061 {
7062         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7063 }
7064
7065 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7066                          void *val, int bytes)
7067 {
7068         return emulator_write_phys(vcpu, gpa, val, bytes);
7069 }
7070
7071 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7072 {
7073         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7074         return vcpu_mmio_write(vcpu, gpa, bytes, val);
7075 }
7076
7077 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7078                           void *val, int bytes)
7079 {
7080         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7081         return X86EMUL_IO_NEEDED;
7082 }
7083
7084 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7085                            void *val, int bytes)
7086 {
7087         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7088
7089         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7090         return X86EMUL_CONTINUE;
7091 }
7092
7093 static const struct read_write_emulator_ops read_emultor = {
7094         .read_write_prepare = read_prepare,
7095         .read_write_emulate = read_emulate,
7096         .read_write_mmio = vcpu_mmio_read,
7097         .read_write_exit_mmio = read_exit_mmio,
7098 };
7099
7100 static const struct read_write_emulator_ops write_emultor = {
7101         .read_write_emulate = write_emulate,
7102         .read_write_mmio = write_mmio,
7103         .read_write_exit_mmio = write_exit_mmio,
7104         .write = true,
7105 };
7106
7107 static int emulator_read_write_onepage(unsigned long addr, void *val,
7108                                        unsigned int bytes,
7109                                        struct x86_exception *exception,
7110                                        struct kvm_vcpu *vcpu,
7111                                        const struct read_write_emulator_ops *ops)
7112 {
7113         gpa_t gpa;
7114         int handled, ret;
7115         bool write = ops->write;
7116         struct kvm_mmio_fragment *frag;
7117         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7118
7119         /*
7120          * If the exit was due to a NPF we may already have a GPA.
7121          * If the GPA is present, use it to avoid the GVA to GPA table walk.
7122          * Note, this cannot be used on string operations since string
7123          * operation using rep will only have the initial GPA from the NPF
7124          * occurred.
7125          */
7126         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7127             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7128                 gpa = ctxt->gpa_val;
7129                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7130         } else {
7131                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7132                 if (ret < 0)
7133                         return X86EMUL_PROPAGATE_FAULT;
7134         }
7135
7136         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7137                 return X86EMUL_CONTINUE;
7138
7139         /*
7140          * Is this MMIO handled locally?
7141          */
7142         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7143         if (handled == bytes)
7144                 return X86EMUL_CONTINUE;
7145
7146         gpa += handled;
7147         bytes -= handled;
7148         val += handled;
7149
7150         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7151         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7152         frag->gpa = gpa;
7153         frag->data = val;
7154         frag->len = bytes;
7155         return X86EMUL_CONTINUE;
7156 }
7157
7158 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7159                         unsigned long addr,
7160                         void *val, unsigned int bytes,
7161                         struct x86_exception *exception,
7162                         const struct read_write_emulator_ops *ops)
7163 {
7164         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7165         gpa_t gpa;
7166         int rc;
7167
7168         if (ops->read_write_prepare &&
7169                   ops->read_write_prepare(vcpu, val, bytes))
7170                 return X86EMUL_CONTINUE;
7171
7172         vcpu->mmio_nr_fragments = 0;
7173
7174         /* Crossing a page boundary? */
7175         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7176                 int now;
7177
7178                 now = -addr & ~PAGE_MASK;
7179                 rc = emulator_read_write_onepage(addr, val, now, exception,
7180                                                  vcpu, ops);
7181
7182                 if (rc != X86EMUL_CONTINUE)
7183                         return rc;
7184                 addr += now;
7185                 if (ctxt->mode != X86EMUL_MODE_PROT64)
7186                         addr = (u32)addr;
7187                 val += now;
7188                 bytes -= now;
7189         }
7190
7191         rc = emulator_read_write_onepage(addr, val, bytes, exception,
7192                                          vcpu, ops);
7193         if (rc != X86EMUL_CONTINUE)
7194                 return rc;
7195
7196         if (!vcpu->mmio_nr_fragments)
7197                 return rc;
7198
7199         gpa = vcpu->mmio_fragments[0].gpa;
7200
7201         vcpu->mmio_needed = 1;
7202         vcpu->mmio_cur_fragment = 0;
7203
7204         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7205         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7206         vcpu->run->exit_reason = KVM_EXIT_MMIO;
7207         vcpu->run->mmio.phys_addr = gpa;
7208
7209         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7210 }
7211
7212 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7213                                   unsigned long addr,
7214                                   void *val,
7215                                   unsigned int bytes,
7216                                   struct x86_exception *exception)
7217 {
7218         return emulator_read_write(ctxt, addr, val, bytes,
7219                                    exception, &read_emultor);
7220 }
7221
7222 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7223                             unsigned long addr,
7224                             const void *val,
7225                             unsigned int bytes,
7226                             struct x86_exception *exception)
7227 {
7228         return emulator_read_write(ctxt, addr, (void *)val, bytes,
7229                                    exception, &write_emultor);
7230 }
7231
7232 #define CMPXCHG_TYPE(t, ptr, old, new) \
7233         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
7234
7235 #ifdef CONFIG_X86_64
7236 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
7237 #else
7238 #  define CMPXCHG64(ptr, old, new) \
7239         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
7240 #endif
7241
7242 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7243                                      unsigned long addr,
7244                                      const void *old,
7245                                      const void *new,
7246                                      unsigned int bytes,
7247                                      struct x86_exception *exception)
7248 {
7249         struct kvm_host_map map;
7250         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7251         u64 page_line_mask;
7252         gpa_t gpa;
7253         char *kaddr;
7254         bool exchanged;
7255
7256         /* guests cmpxchg8b have to be emulated atomically */
7257         if (bytes > 8 || (bytes & (bytes - 1)))
7258                 goto emul_write;
7259
7260         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7261
7262         if (gpa == UNMAPPED_GVA ||
7263             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7264                 goto emul_write;
7265
7266         /*
7267          * Emulate the atomic as a straight write to avoid #AC if SLD is
7268          * enabled in the host and the access splits a cache line.
7269          */
7270         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7271                 page_line_mask = ~(cache_line_size() - 1);
7272         else
7273                 page_line_mask = PAGE_MASK;
7274
7275         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7276                 goto emul_write;
7277
7278         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
7279                 goto emul_write;
7280
7281         kaddr = map.hva + offset_in_page(gpa);
7282
7283         switch (bytes) {
7284         case 1:
7285                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
7286                 break;
7287         case 2:
7288                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
7289                 break;
7290         case 4:
7291                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
7292                 break;
7293         case 8:
7294                 exchanged = CMPXCHG64(kaddr, old, new);
7295                 break;
7296         default:
7297                 BUG();
7298         }
7299
7300         kvm_vcpu_unmap(vcpu, &map, true);
7301
7302         if (!exchanged)
7303                 return X86EMUL_CMPXCHG_FAILED;
7304
7305         kvm_page_track_write(vcpu, gpa, new, bytes);
7306
7307         return X86EMUL_CONTINUE;
7308
7309 emul_write:
7310         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7311
7312         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7313 }
7314
7315 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7316 {
7317         int r = 0, i;
7318
7319         for (i = 0; i < vcpu->arch.pio.count; i++) {
7320                 if (vcpu->arch.pio.in)
7321                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7322                                             vcpu->arch.pio.size, pd);
7323                 else
7324                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7325                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
7326                                              pd);
7327                 if (r)
7328                         break;
7329                 pd += vcpu->arch.pio.size;
7330         }
7331         return r;
7332 }
7333
7334 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7335                                unsigned short port,
7336                                unsigned int count, bool in)
7337 {
7338         vcpu->arch.pio.port = port;
7339         vcpu->arch.pio.in = in;
7340         vcpu->arch.pio.count  = count;
7341         vcpu->arch.pio.size = size;
7342
7343         if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7344                 return 1;
7345
7346         vcpu->run->exit_reason = KVM_EXIT_IO;
7347         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7348         vcpu->run->io.size = size;
7349         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7350         vcpu->run->io.count = count;
7351         vcpu->run->io.port = port;
7352
7353         return 0;
7354 }
7355
7356 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7357                              unsigned short port, unsigned int count)
7358 {
7359         WARN_ON(vcpu->arch.pio.count);
7360         memset(vcpu->arch.pio_data, 0, size * count);
7361         return emulator_pio_in_out(vcpu, size, port, count, true);
7362 }
7363
7364 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7365 {
7366         int size = vcpu->arch.pio.size;
7367         unsigned count = vcpu->arch.pio.count;
7368         memcpy(val, vcpu->arch.pio_data, size * count);
7369         trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7370         vcpu->arch.pio.count = 0;
7371 }
7372
7373 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7374                            unsigned short port, void *val, unsigned int count)
7375 {
7376         if (vcpu->arch.pio.count) {
7377                 /*
7378                  * Complete a previous iteration that required userspace I/O.
7379                  * Note, @count isn't guaranteed to match pio.count as userspace
7380                  * can modify ECX before rerunning the vCPU.  Ignore any such
7381                  * shenanigans as KVM doesn't support modifying the rep count,
7382                  * and the emulator ensures @count doesn't overflow the buffer.
7383                  */
7384         } else {
7385                 int r = __emulator_pio_in(vcpu, size, port, count);
7386                 if (!r)
7387                         return r;
7388
7389                 /* Results already available, fall through.  */
7390         }
7391
7392         complete_emulator_pio_in(vcpu, val);
7393         return 1;
7394 }
7395
7396 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7397                                     int size, unsigned short port, void *val,
7398                                     unsigned int count)
7399 {
7400         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7401
7402 }
7403
7404 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7405                             unsigned short port, const void *val,
7406                             unsigned int count)
7407 {
7408         int ret;
7409
7410         memcpy(vcpu->arch.pio_data, val, size * count);
7411         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7412         ret = emulator_pio_in_out(vcpu, size, port, count, false);
7413         if (ret)
7414                 vcpu->arch.pio.count = 0;
7415
7416         return ret;
7417 }
7418
7419 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7420                                      int size, unsigned short port,
7421                                      const void *val, unsigned int count)
7422 {
7423         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7424 }
7425
7426 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7427 {
7428         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7429 }
7430
7431 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7432 {
7433         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7434 }
7435
7436 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7437 {
7438         if (!need_emulate_wbinvd(vcpu))
7439                 return X86EMUL_CONTINUE;
7440
7441         if (static_call(kvm_x86_has_wbinvd_exit)()) {
7442                 int cpu = get_cpu();
7443
7444                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7445                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7446                                 wbinvd_ipi, NULL, 1);
7447                 put_cpu();
7448                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7449         } else
7450                 wbinvd();
7451         return X86EMUL_CONTINUE;
7452 }
7453
7454 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7455 {
7456         kvm_emulate_wbinvd_noskip(vcpu);
7457         return kvm_skip_emulated_instruction(vcpu);
7458 }
7459 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7460
7461
7462
7463 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7464 {
7465         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7466 }
7467
7468 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7469                             unsigned long *dest)
7470 {
7471         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7472 }
7473
7474 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7475                            unsigned long value)
7476 {
7477
7478         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7479 }
7480
7481 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7482 {
7483         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7484 }
7485
7486 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7487 {
7488         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7489         unsigned long value;
7490
7491         switch (cr) {
7492         case 0:
7493                 value = kvm_read_cr0(vcpu);
7494                 break;
7495         case 2:
7496                 value = vcpu->arch.cr2;
7497                 break;
7498         case 3:
7499                 value = kvm_read_cr3(vcpu);
7500                 break;
7501         case 4:
7502                 value = kvm_read_cr4(vcpu);
7503                 break;
7504         case 8:
7505                 value = kvm_get_cr8(vcpu);
7506                 break;
7507         default:
7508                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7509                 return 0;
7510         }
7511
7512         return value;
7513 }
7514
7515 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7516 {
7517         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7518         int res = 0;
7519
7520         switch (cr) {
7521         case 0:
7522                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7523                 break;
7524         case 2:
7525                 vcpu->arch.cr2 = val;
7526                 break;
7527         case 3:
7528                 res = kvm_set_cr3(vcpu, val);
7529                 break;
7530         case 4:
7531                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7532                 break;
7533         case 8:
7534                 res = kvm_set_cr8(vcpu, val);
7535                 break;
7536         default:
7537                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7538                 res = -1;
7539         }
7540
7541         return res;
7542 }
7543
7544 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7545 {
7546         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7547 }
7548
7549 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7550 {
7551         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7552 }
7553
7554 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7555 {
7556         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7557 }
7558
7559 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7560 {
7561         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7562 }
7563
7564 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7565 {
7566         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7567 }
7568
7569 static unsigned long emulator_get_cached_segment_base(
7570         struct x86_emulate_ctxt *ctxt, int seg)
7571 {
7572         return get_segment_base(emul_to_vcpu(ctxt), seg);
7573 }
7574
7575 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7576                                  struct desc_struct *desc, u32 *base3,
7577                                  int seg)
7578 {
7579         struct kvm_segment var;
7580
7581         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7582         *selector = var.selector;
7583
7584         if (var.unusable) {
7585                 memset(desc, 0, sizeof(*desc));
7586                 if (base3)
7587                         *base3 = 0;
7588                 return false;
7589         }
7590
7591         if (var.g)
7592                 var.limit >>= 12;
7593         set_desc_limit(desc, var.limit);
7594         set_desc_base(desc, (unsigned long)var.base);
7595 #ifdef CONFIG_X86_64
7596         if (base3)
7597                 *base3 = var.base >> 32;
7598 #endif
7599         desc->type = var.type;
7600         desc->s = var.s;
7601         desc->dpl = var.dpl;
7602         desc->p = var.present;
7603         desc->avl = var.avl;
7604         desc->l = var.l;
7605         desc->d = var.db;
7606         desc->g = var.g;
7607
7608         return true;
7609 }
7610
7611 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7612                                  struct desc_struct *desc, u32 base3,
7613                                  int seg)
7614 {
7615         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7616         struct kvm_segment var;
7617
7618         var.selector = selector;
7619         var.base = get_desc_base(desc);
7620 #ifdef CONFIG_X86_64
7621         var.base |= ((u64)base3) << 32;
7622 #endif
7623         var.limit = get_desc_limit(desc);
7624         if (desc->g)
7625                 var.limit = (var.limit << 12) | 0xfff;
7626         var.type = desc->type;
7627         var.dpl = desc->dpl;
7628         var.db = desc->d;
7629         var.s = desc->s;
7630         var.l = desc->l;
7631         var.g = desc->g;
7632         var.avl = desc->avl;
7633         var.present = desc->p;
7634         var.unusable = !var.present;
7635         var.padding = 0;
7636
7637         kvm_set_segment(vcpu, &var, seg);
7638         return;
7639 }
7640
7641 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7642                                         u32 msr_index, u64 *pdata)
7643 {
7644         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7645         int r;
7646
7647         r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
7648
7649         if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7650                                     complete_emulated_rdmsr, r)) {
7651                 /* Bounce to user space */
7652                 return X86EMUL_IO_NEEDED;
7653         }
7654
7655         return r;
7656 }
7657
7658 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7659                                         u32 msr_index, u64 data)
7660 {
7661         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7662         int r;
7663
7664         r = kvm_set_msr_with_filter(vcpu, msr_index, data);
7665
7666         if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7667                                     complete_emulated_msr_access, r)) {
7668                 /* Bounce to user space */
7669                 return X86EMUL_IO_NEEDED;
7670         }
7671
7672         return r;
7673 }
7674
7675 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7676                             u32 msr_index, u64 *pdata)
7677 {
7678         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
7679 }
7680
7681 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7682                             u32 msr_index, u64 data)
7683 {
7684         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
7685 }
7686
7687 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7688 {
7689         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7690
7691         return vcpu->arch.smbase;
7692 }
7693
7694 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7695 {
7696         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7697
7698         vcpu->arch.smbase = smbase;
7699 }
7700
7701 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7702                               u32 pmc)
7703 {
7704         if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7705                 return 0;
7706         return -EINVAL;
7707 }
7708
7709 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7710                              u32 pmc, u64 *pdata)
7711 {
7712         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7713 }
7714
7715 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7716 {
7717         emul_to_vcpu(ctxt)->arch.halt_request = 1;
7718 }
7719
7720 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7721                               struct x86_instruction_info *info,
7722                               enum x86_intercept_stage stage)
7723 {
7724         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7725                                             &ctxt->exception);
7726 }
7727
7728 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7729                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7730                               bool exact_only)
7731 {
7732         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7733 }
7734
7735 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7736 {
7737         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7738 }
7739
7740 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7741 {
7742         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7743 }
7744
7745 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7746 {
7747         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7748 }
7749
7750 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
7751 {
7752         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
7753 }
7754
7755 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7756 {
7757         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7758 }
7759
7760 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7761 {
7762         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7763 }
7764
7765 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7766 {
7767         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7768 }
7769
7770 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7771 {
7772         return emul_to_vcpu(ctxt)->arch.hflags;
7773 }
7774
7775 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7776 {
7777         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7778
7779         kvm_smm_changed(vcpu, false);
7780 }
7781
7782 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7783                                   const char *smstate)
7784 {
7785         return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7786 }
7787
7788 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7789 {
7790         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7791 }
7792
7793 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7794 {
7795         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7796 }
7797
7798 static const struct x86_emulate_ops emulate_ops = {
7799         .read_gpr            = emulator_read_gpr,
7800         .write_gpr           = emulator_write_gpr,
7801         .read_std            = emulator_read_std,
7802         .write_std           = emulator_write_std,
7803         .read_phys           = kvm_read_guest_phys_system,
7804         .fetch               = kvm_fetch_guest_virt,
7805         .read_emulated       = emulator_read_emulated,
7806         .write_emulated      = emulator_write_emulated,
7807         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
7808         .invlpg              = emulator_invlpg,
7809         .pio_in_emulated     = emulator_pio_in_emulated,
7810         .pio_out_emulated    = emulator_pio_out_emulated,
7811         .get_segment         = emulator_get_segment,
7812         .set_segment         = emulator_set_segment,
7813         .get_cached_segment_base = emulator_get_cached_segment_base,
7814         .get_gdt             = emulator_get_gdt,
7815         .get_idt             = emulator_get_idt,
7816         .set_gdt             = emulator_set_gdt,
7817         .set_idt             = emulator_set_idt,
7818         .get_cr              = emulator_get_cr,
7819         .set_cr              = emulator_set_cr,
7820         .cpl                 = emulator_get_cpl,
7821         .get_dr              = emulator_get_dr,
7822         .set_dr              = emulator_set_dr,
7823         .get_smbase          = emulator_get_smbase,
7824         .set_smbase          = emulator_set_smbase,
7825         .set_msr_with_filter = emulator_set_msr_with_filter,
7826         .get_msr_with_filter = emulator_get_msr_with_filter,
7827         .set_msr             = emulator_set_msr,
7828         .get_msr             = emulator_get_msr,
7829         .check_pmc           = emulator_check_pmc,
7830         .read_pmc            = emulator_read_pmc,
7831         .halt                = emulator_halt,
7832         .wbinvd              = emulator_wbinvd,
7833         .fix_hypercall       = emulator_fix_hypercall,
7834         .intercept           = emulator_intercept,
7835         .get_cpuid           = emulator_get_cpuid,
7836         .guest_has_long_mode = emulator_guest_has_long_mode,
7837         .guest_has_movbe     = emulator_guest_has_movbe,
7838         .guest_has_fxsr      = emulator_guest_has_fxsr,
7839         .guest_has_rdpid     = emulator_guest_has_rdpid,
7840         .set_nmi_mask        = emulator_set_nmi_mask,
7841         .get_hflags          = emulator_get_hflags,
7842         .exiting_smm         = emulator_exiting_smm,
7843         .leave_smm           = emulator_leave_smm,
7844         .triple_fault        = emulator_triple_fault,
7845         .set_xcr             = emulator_set_xcr,
7846 };
7847
7848 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7849 {
7850         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7851         /*
7852          * an sti; sti; sequence only disable interrupts for the first
7853          * instruction. So, if the last instruction, be it emulated or
7854          * not, left the system with the INT_STI flag enabled, it
7855          * means that the last instruction is an sti. We should not
7856          * leave the flag on in this case. The same goes for mov ss
7857          */
7858         if (int_shadow & mask)
7859                 mask = 0;
7860         if (unlikely(int_shadow || mask)) {
7861                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7862                 if (!mask)
7863                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7864         }
7865 }
7866
7867 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7868 {
7869         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7870         if (ctxt->exception.vector == PF_VECTOR)
7871                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7872
7873         if (ctxt->exception.error_code_valid)
7874                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7875                                       ctxt->exception.error_code);
7876         else
7877                 kvm_queue_exception(vcpu, ctxt->exception.vector);
7878         return false;
7879 }
7880
7881 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7882 {
7883         struct x86_emulate_ctxt *ctxt;
7884
7885         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7886         if (!ctxt) {
7887                 pr_err("kvm: failed to allocate vcpu's emulator\n");
7888                 return NULL;
7889         }
7890
7891         ctxt->vcpu = vcpu;
7892         ctxt->ops = &emulate_ops;
7893         vcpu->arch.emulate_ctxt = ctxt;
7894
7895         return ctxt;
7896 }
7897
7898 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7899 {
7900         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7901         int cs_db, cs_l;
7902
7903         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7904
7905         ctxt->gpa_available = false;
7906         ctxt->eflags = kvm_get_rflags(vcpu);
7907         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7908
7909         ctxt->eip = kvm_rip_read(vcpu);
7910         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
7911                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
7912                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
7913                      cs_db                              ? X86EMUL_MODE_PROT32 :
7914                                                           X86EMUL_MODE_PROT16;
7915         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7916         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7917         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7918
7919         ctxt->interruptibility = 0;
7920         ctxt->have_exception = false;
7921         ctxt->exception.vector = -1;
7922         ctxt->perm_ok = false;
7923
7924         init_decode_cache(ctxt);
7925         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7926 }
7927
7928 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7929 {
7930         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7931         int ret;
7932
7933         init_emulate_ctxt(vcpu);
7934
7935         ctxt->op_bytes = 2;
7936         ctxt->ad_bytes = 2;
7937         ctxt->_eip = ctxt->eip + inc_eip;
7938         ret = emulate_int_real(ctxt, irq);
7939
7940         if (ret != X86EMUL_CONTINUE) {
7941                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7942         } else {
7943                 ctxt->eip = ctxt->_eip;
7944                 kvm_rip_write(vcpu, ctxt->eip);
7945                 kvm_set_rflags(vcpu, ctxt->eflags);
7946         }
7947 }
7948 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7949
7950 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7951                                            u8 ndata, u8 *insn_bytes, u8 insn_size)
7952 {
7953         struct kvm_run *run = vcpu->run;
7954         u64 info[5];
7955         u8 info_start;
7956
7957         /*
7958          * Zero the whole array used to retrieve the exit info, as casting to
7959          * u32 for select entries will leave some chunks uninitialized.
7960          */
7961         memset(&info, 0, sizeof(info));
7962
7963         static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
7964                                            &info[2], (u32 *)&info[3],
7965                                            (u32 *)&info[4]);
7966
7967         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7968         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7969
7970         /*
7971          * There's currently space for 13 entries, but 5 are used for the exit
7972          * reason and info.  Restrict to 4 to reduce the maintenance burden
7973          * when expanding kvm_run.emulation_failure in the future.
7974          */
7975         if (WARN_ON_ONCE(ndata > 4))
7976                 ndata = 4;
7977
7978         /* Always include the flags as a 'data' entry. */
7979         info_start = 1;
7980         run->emulation_failure.flags = 0;
7981
7982         if (insn_size) {
7983                 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
7984                               sizeof(run->emulation_failure.insn_bytes) != 16));
7985                 info_start += 2;
7986                 run->emulation_failure.flags |=
7987                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7988                 run->emulation_failure.insn_size = insn_size;
7989                 memset(run->emulation_failure.insn_bytes, 0x90,
7990                        sizeof(run->emulation_failure.insn_bytes));
7991                 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
7992         }
7993
7994         memcpy(&run->internal.data[info_start], info, sizeof(info));
7995         memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
7996                ndata * sizeof(data[0]));
7997
7998         run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
7999 }
8000
8001 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8002 {
8003         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8004
8005         prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8006                                        ctxt->fetch.end - ctxt->fetch.data);
8007 }
8008
8009 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8010                                           u8 ndata)
8011 {
8012         prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8013 }
8014 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8015
8016 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8017 {
8018         __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8019 }
8020 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8021
8022 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8023 {
8024         struct kvm *kvm = vcpu->kvm;
8025
8026         ++vcpu->stat.insn_emulation_fail;
8027         trace_kvm_emulate_insn_failed(vcpu);
8028
8029         if (emulation_type & EMULTYPE_VMWARE_GP) {
8030                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8031                 return 1;
8032         }
8033
8034         if (kvm->arch.exit_on_emulation_error ||
8035             (emulation_type & EMULTYPE_SKIP)) {
8036                 prepare_emulation_ctxt_failure_exit(vcpu);
8037                 return 0;
8038         }
8039
8040         kvm_queue_exception(vcpu, UD_VECTOR);
8041
8042         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8043                 prepare_emulation_ctxt_failure_exit(vcpu);
8044                 return 0;
8045         }
8046
8047         return 1;
8048 }
8049
8050 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8051                                   bool write_fault_to_shadow_pgtable,
8052                                   int emulation_type)
8053 {
8054         gpa_t gpa = cr2_or_gpa;
8055         kvm_pfn_t pfn;
8056
8057         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8058                 return false;
8059
8060         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8061             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8062                 return false;
8063
8064         if (!vcpu->arch.mmu->direct_map) {
8065                 /*
8066                  * Write permission should be allowed since only
8067                  * write access need to be emulated.
8068                  */
8069                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8070
8071                 /*
8072                  * If the mapping is invalid in guest, let cpu retry
8073                  * it to generate fault.
8074                  */
8075                 if (gpa == UNMAPPED_GVA)
8076                         return true;
8077         }
8078
8079         /*
8080          * Do not retry the unhandleable instruction if it faults on the
8081          * readonly host memory, otherwise it will goto a infinite loop:
8082          * retry instruction -> write #PF -> emulation fail -> retry
8083          * instruction -> ...
8084          */
8085         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8086
8087         /*
8088          * If the instruction failed on the error pfn, it can not be fixed,
8089          * report the error to userspace.
8090          */
8091         if (is_error_noslot_pfn(pfn))
8092                 return false;
8093
8094         kvm_release_pfn_clean(pfn);
8095
8096         /* The instructions are well-emulated on direct mmu. */
8097         if (vcpu->arch.mmu->direct_map) {
8098                 unsigned int indirect_shadow_pages;
8099
8100                 write_lock(&vcpu->kvm->mmu_lock);
8101                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8102                 write_unlock(&vcpu->kvm->mmu_lock);
8103
8104                 if (indirect_shadow_pages)
8105                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8106
8107                 return true;
8108         }
8109
8110         /*
8111          * if emulation was due to access to shadowed page table
8112          * and it failed try to unshadow page and re-enter the
8113          * guest to let CPU execute the instruction.
8114          */
8115         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8116
8117         /*
8118          * If the access faults on its page table, it can not
8119          * be fixed by unprotecting shadow page and it should
8120          * be reported to userspace.
8121          */
8122         return !write_fault_to_shadow_pgtable;
8123 }
8124
8125 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8126                               gpa_t cr2_or_gpa,  int emulation_type)
8127 {
8128         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8129         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8130
8131         last_retry_eip = vcpu->arch.last_retry_eip;
8132         last_retry_addr = vcpu->arch.last_retry_addr;
8133
8134         /*
8135          * If the emulation is caused by #PF and it is non-page_table
8136          * writing instruction, it means the VM-EXIT is caused by shadow
8137          * page protected, we can zap the shadow page and retry this
8138          * instruction directly.
8139          *
8140          * Note: if the guest uses a non-page-table modifying instruction
8141          * on the PDE that points to the instruction, then we will unmap
8142          * the instruction and go to an infinite loop. So, we cache the
8143          * last retried eip and the last fault address, if we meet the eip
8144          * and the address again, we can break out of the potential infinite
8145          * loop.
8146          */
8147         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8148
8149         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8150                 return false;
8151
8152         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8153             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8154                 return false;
8155
8156         if (x86_page_table_writing_insn(ctxt))
8157                 return false;
8158
8159         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8160                 return false;
8161
8162         vcpu->arch.last_retry_eip = ctxt->eip;
8163         vcpu->arch.last_retry_addr = cr2_or_gpa;
8164
8165         if (!vcpu->arch.mmu->direct_map)
8166                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8167
8168         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8169
8170         return true;
8171 }
8172
8173 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8174 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8175
8176 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8177 {
8178         trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8179
8180         if (entering_smm) {
8181                 vcpu->arch.hflags |= HF_SMM_MASK;
8182         } else {
8183                 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8184
8185                 /* Process a latched INIT or SMI, if any.  */
8186                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8187
8188                 /*
8189                  * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8190                  * on SMM exit we still need to reload them from
8191                  * guest memory
8192                  */
8193                 vcpu->arch.pdptrs_from_userspace = false;
8194         }
8195
8196         kvm_mmu_reset_context(vcpu);
8197 }
8198
8199 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8200                                 unsigned long *db)
8201 {
8202         u32 dr6 = 0;
8203         int i;
8204         u32 enable, rwlen;
8205
8206         enable = dr7;
8207         rwlen = dr7 >> 16;
8208         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8209                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8210                         dr6 |= (1 << i);
8211         return dr6;
8212 }
8213
8214 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8215 {
8216         struct kvm_run *kvm_run = vcpu->run;
8217
8218         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8219                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8220                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8221                 kvm_run->debug.arch.exception = DB_VECTOR;
8222                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8223                 return 0;
8224         }
8225         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8226         return 1;
8227 }
8228
8229 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8230 {
8231         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8232         int r;
8233
8234         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8235         if (unlikely(!r))
8236                 return 0;
8237
8238         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8239
8240         /*
8241          * rflags is the old, "raw" value of the flags.  The new value has
8242          * not been saved yet.
8243          *
8244          * This is correct even for TF set by the guest, because "the
8245          * processor will not generate this exception after the instruction
8246          * that sets the TF flag".
8247          */
8248         if (unlikely(rflags & X86_EFLAGS_TF))
8249                 r = kvm_vcpu_do_singlestep(vcpu);
8250         return r;
8251 }
8252 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8253
8254 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
8255 {
8256         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8257             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8258                 struct kvm_run *kvm_run = vcpu->run;
8259                 unsigned long eip = kvm_get_linear_rip(vcpu);
8260                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8261                                            vcpu->arch.guest_debug_dr7,
8262                                            vcpu->arch.eff_db);
8263
8264                 if (dr6 != 0) {
8265                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8266                         kvm_run->debug.arch.pc = eip;
8267                         kvm_run->debug.arch.exception = DB_VECTOR;
8268                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
8269                         *r = 0;
8270                         return true;
8271                 }
8272         }
8273
8274         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8275             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8276                 unsigned long eip = kvm_get_linear_rip(vcpu);
8277                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8278                                            vcpu->arch.dr7,
8279                                            vcpu->arch.db);
8280
8281                 if (dr6 != 0) {
8282                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8283                         *r = 1;
8284                         return true;
8285                 }
8286         }
8287
8288         return false;
8289 }
8290
8291 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8292 {
8293         switch (ctxt->opcode_len) {
8294         case 1:
8295                 switch (ctxt->b) {
8296                 case 0xe4:      /* IN */
8297                 case 0xe5:
8298                 case 0xec:
8299                 case 0xed:
8300                 case 0xe6:      /* OUT */
8301                 case 0xe7:
8302                 case 0xee:
8303                 case 0xef:
8304                 case 0x6c:      /* INS */
8305                 case 0x6d:
8306                 case 0x6e:      /* OUTS */
8307                 case 0x6f:
8308                         return true;
8309                 }
8310                 break;
8311         case 2:
8312                 switch (ctxt->b) {
8313                 case 0x33:      /* RDPMC */
8314                         return true;
8315                 }
8316                 break;
8317         }
8318
8319         return false;
8320 }
8321
8322 /*
8323  * Decode to be emulated instruction. Return EMULATION_OK if success.
8324  */
8325 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8326                                     void *insn, int insn_len)
8327 {
8328         int r = EMULATION_OK;
8329         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8330
8331         init_emulate_ctxt(vcpu);
8332
8333         /*
8334          * We will reenter on the same instruction since we do not set
8335          * complete_userspace_io. This does not handle watchpoints yet,
8336          * those would be handled in the emulate_ops.
8337          */
8338         if (!(emulation_type & EMULTYPE_SKIP) &&
8339             kvm_vcpu_check_breakpoint(vcpu, &r))
8340                 return r;
8341
8342         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8343
8344         trace_kvm_emulate_insn_start(vcpu);
8345         ++vcpu->stat.insn_emulation;
8346
8347         return r;
8348 }
8349 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8350
8351 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8352                             int emulation_type, void *insn, int insn_len)
8353 {
8354         int r;
8355         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8356         bool writeback = true;
8357         bool write_fault_to_spt;
8358
8359         if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8360                 return 1;
8361
8362         vcpu->arch.l1tf_flush_l1d = true;
8363
8364         /*
8365          * Clear write_fault_to_shadow_pgtable here to ensure it is
8366          * never reused.
8367          */
8368         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8369         vcpu->arch.write_fault_to_shadow_pgtable = false;
8370
8371         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8372                 kvm_clear_exception_queue(vcpu);
8373
8374                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8375                                                     insn, insn_len);
8376                 if (r != EMULATION_OK)  {
8377                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
8378                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8379                                 kvm_queue_exception(vcpu, UD_VECTOR);
8380                                 return 1;
8381                         }
8382                         if (reexecute_instruction(vcpu, cr2_or_gpa,
8383                                                   write_fault_to_spt,
8384                                                   emulation_type))
8385                                 return 1;
8386                         if (ctxt->have_exception) {
8387                                 /*
8388                                  * #UD should result in just EMULATION_FAILED, and trap-like
8389                                  * exception should not be encountered during decode.
8390                                  */
8391                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8392                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8393                                 inject_emulated_exception(vcpu);
8394                                 return 1;
8395                         }
8396                         return handle_emulation_failure(vcpu, emulation_type);
8397                 }
8398         }
8399
8400         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8401             !is_vmware_backdoor_opcode(ctxt)) {
8402                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8403                 return 1;
8404         }
8405
8406         /*
8407          * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8408          * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8409          * The caller is responsible for updating interruptibility state and
8410          * injecting single-step #DBs.
8411          */
8412         if (emulation_type & EMULTYPE_SKIP) {
8413                 if (ctxt->mode != X86EMUL_MODE_PROT64)
8414                         ctxt->eip = (u32)ctxt->_eip;
8415                 else
8416                         ctxt->eip = ctxt->_eip;
8417
8418                 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8419                         r = 1;
8420                         goto writeback;
8421                 }
8422
8423                 kvm_rip_write(vcpu, ctxt->eip);
8424                 if (ctxt->eflags & X86_EFLAGS_RF)
8425                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8426                 return 1;
8427         }
8428
8429         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8430                 return 1;
8431
8432         /* this is needed for vmware backdoor interface to work since it
8433            changes registers values  during IO operation */
8434         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8435                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8436                 emulator_invalidate_register_cache(ctxt);
8437         }
8438
8439 restart:
8440         if (emulation_type & EMULTYPE_PF) {
8441                 /* Save the faulting GPA (cr2) in the address field */
8442                 ctxt->exception.address = cr2_or_gpa;
8443
8444                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8445                 if (vcpu->arch.mmu->direct_map) {
8446                         ctxt->gpa_available = true;
8447                         ctxt->gpa_val = cr2_or_gpa;
8448                 }
8449         } else {
8450                 /* Sanitize the address out of an abundance of paranoia. */
8451                 ctxt->exception.address = 0;
8452         }
8453
8454         r = x86_emulate_insn(ctxt);
8455
8456         if (r == EMULATION_INTERCEPTED)
8457                 return 1;
8458
8459         if (r == EMULATION_FAILED) {
8460                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8461                                         emulation_type))
8462                         return 1;
8463
8464                 return handle_emulation_failure(vcpu, emulation_type);
8465         }
8466
8467         if (ctxt->have_exception) {
8468                 r = 1;
8469                 if (inject_emulated_exception(vcpu))
8470                         return r;
8471         } else if (vcpu->arch.pio.count) {
8472                 if (!vcpu->arch.pio.in) {
8473                         /* FIXME: return into emulator if single-stepping.  */
8474                         vcpu->arch.pio.count = 0;
8475                 } else {
8476                         writeback = false;
8477                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
8478                 }
8479                 r = 0;
8480         } else if (vcpu->mmio_needed) {
8481                 ++vcpu->stat.mmio_exits;
8482
8483                 if (!vcpu->mmio_is_write)
8484                         writeback = false;
8485                 r = 0;
8486                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8487         } else if (vcpu->arch.complete_userspace_io) {
8488                 writeback = false;
8489                 r = 0;
8490         } else if (r == EMULATION_RESTART)
8491                 goto restart;
8492         else
8493                 r = 1;
8494
8495 writeback:
8496         if (writeback) {
8497                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8498                 toggle_interruptibility(vcpu, ctxt->interruptibility);
8499                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8500                 if (!ctxt->have_exception ||
8501                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8502                         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8503                         if (ctxt->is_branch)
8504                                 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8505                         kvm_rip_write(vcpu, ctxt->eip);
8506                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8507                                 r = kvm_vcpu_do_singlestep(vcpu);
8508                         static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8509                         __kvm_set_rflags(vcpu, ctxt->eflags);
8510                 }
8511
8512                 /*
8513                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8514                  * do nothing, and it will be requested again as soon as
8515                  * the shadow expires.  But we still need to check here,
8516                  * because POPF has no interrupt shadow.
8517                  */
8518                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8519                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8520         } else
8521                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8522
8523         return r;
8524 }
8525
8526 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8527 {
8528         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8529 }
8530 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8531
8532 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8533                                         void *insn, int insn_len)
8534 {
8535         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8536 }
8537 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8538
8539 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8540 {
8541         vcpu->arch.pio.count = 0;
8542         return 1;
8543 }
8544
8545 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8546 {
8547         vcpu->arch.pio.count = 0;
8548
8549         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8550                 return 1;
8551
8552         return kvm_skip_emulated_instruction(vcpu);
8553 }
8554
8555 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8556                             unsigned short port)
8557 {
8558         unsigned long val = kvm_rax_read(vcpu);
8559         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8560
8561         if (ret)
8562                 return ret;
8563
8564         /*
8565          * Workaround userspace that relies on old KVM behavior of %rip being
8566          * incremented prior to exiting to userspace to handle "OUT 0x7e".
8567          */
8568         if (port == 0x7e &&
8569             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8570                 vcpu->arch.complete_userspace_io =
8571                         complete_fast_pio_out_port_0x7e;
8572                 kvm_skip_emulated_instruction(vcpu);
8573         } else {
8574                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8575                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8576         }
8577         return 0;
8578 }
8579
8580 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8581 {
8582         unsigned long val;
8583
8584         /* We should only ever be called with arch.pio.count equal to 1 */
8585         BUG_ON(vcpu->arch.pio.count != 1);
8586
8587         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8588                 vcpu->arch.pio.count = 0;
8589                 return 1;
8590         }
8591
8592         /* For size less than 4 we merge, else we zero extend */
8593         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8594
8595         /*
8596          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8597          * the copy and tracing
8598          */
8599         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8600         kvm_rax_write(vcpu, val);
8601
8602         return kvm_skip_emulated_instruction(vcpu);
8603 }
8604
8605 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8606                            unsigned short port)
8607 {
8608         unsigned long val;
8609         int ret;
8610
8611         /* For size less than 4 we merge, else we zero extend */
8612         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8613
8614         ret = emulator_pio_in(vcpu, size, port, &val, 1);
8615         if (ret) {
8616                 kvm_rax_write(vcpu, val);
8617                 return ret;
8618         }
8619
8620         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8621         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8622
8623         return 0;
8624 }
8625
8626 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8627 {
8628         int ret;
8629
8630         if (in)
8631                 ret = kvm_fast_pio_in(vcpu, size, port);
8632         else
8633                 ret = kvm_fast_pio_out(vcpu, size, port);
8634         return ret && kvm_skip_emulated_instruction(vcpu);
8635 }
8636 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8637
8638 static int kvmclock_cpu_down_prep(unsigned int cpu)
8639 {
8640         __this_cpu_write(cpu_tsc_khz, 0);
8641         return 0;
8642 }
8643
8644 static void tsc_khz_changed(void *data)
8645 {
8646         struct cpufreq_freqs *freq = data;
8647         unsigned long khz = 0;
8648
8649         if (data)
8650                 khz = freq->new;
8651         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8652                 khz = cpufreq_quick_get(raw_smp_processor_id());
8653         if (!khz)
8654                 khz = tsc_khz;
8655         __this_cpu_write(cpu_tsc_khz, khz);
8656 }
8657
8658 #ifdef CONFIG_X86_64
8659 static void kvm_hyperv_tsc_notifier(void)
8660 {
8661         struct kvm *kvm;
8662         int cpu;
8663
8664         mutex_lock(&kvm_lock);
8665         list_for_each_entry(kvm, &vm_list, vm_list)
8666                 kvm_make_mclock_inprogress_request(kvm);
8667
8668         /* no guest entries from this point */
8669         hyperv_stop_tsc_emulation();
8670
8671         /* TSC frequency always matches when on Hyper-V */
8672         for_each_present_cpu(cpu)
8673                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8674         kvm_max_guest_tsc_khz = tsc_khz;
8675
8676         list_for_each_entry(kvm, &vm_list, vm_list) {
8677                 __kvm_start_pvclock_update(kvm);
8678                 pvclock_update_vm_gtod_copy(kvm);
8679                 kvm_end_pvclock_update(kvm);
8680         }
8681
8682         mutex_unlock(&kvm_lock);
8683 }
8684 #endif
8685
8686 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8687 {
8688         struct kvm *kvm;
8689         struct kvm_vcpu *vcpu;
8690         int send_ipi = 0;
8691         unsigned long i;
8692
8693         /*
8694          * We allow guests to temporarily run on slowing clocks,
8695          * provided we notify them after, or to run on accelerating
8696          * clocks, provided we notify them before.  Thus time never
8697          * goes backwards.
8698          *
8699          * However, we have a problem.  We can't atomically update
8700          * the frequency of a given CPU from this function; it is
8701          * merely a notifier, which can be called from any CPU.
8702          * Changing the TSC frequency at arbitrary points in time
8703          * requires a recomputation of local variables related to
8704          * the TSC for each VCPU.  We must flag these local variables
8705          * to be updated and be sure the update takes place with the
8706          * new frequency before any guests proceed.
8707          *
8708          * Unfortunately, the combination of hotplug CPU and frequency
8709          * change creates an intractable locking scenario; the order
8710          * of when these callouts happen is undefined with respect to
8711          * CPU hotplug, and they can race with each other.  As such,
8712          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8713          * undefined; you can actually have a CPU frequency change take
8714          * place in between the computation of X and the setting of the
8715          * variable.  To protect against this problem, all updates of
8716          * the per_cpu tsc_khz variable are done in an interrupt
8717          * protected IPI, and all callers wishing to update the value
8718          * must wait for a synchronous IPI to complete (which is trivial
8719          * if the caller is on the CPU already).  This establishes the
8720          * necessary total order on variable updates.
8721          *
8722          * Note that because a guest time update may take place
8723          * anytime after the setting of the VCPU's request bit, the
8724          * correct TSC value must be set before the request.  However,
8725          * to ensure the update actually makes it to any guest which
8726          * starts running in hardware virtualization between the set
8727          * and the acquisition of the spinlock, we must also ping the
8728          * CPU after setting the request bit.
8729          *
8730          */
8731
8732         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8733
8734         mutex_lock(&kvm_lock);
8735         list_for_each_entry(kvm, &vm_list, vm_list) {
8736                 kvm_for_each_vcpu(i, vcpu, kvm) {
8737                         if (vcpu->cpu != cpu)
8738                                 continue;
8739                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8740                         if (vcpu->cpu != raw_smp_processor_id())
8741                                 send_ipi = 1;
8742                 }
8743         }
8744         mutex_unlock(&kvm_lock);
8745
8746         if (freq->old < freq->new && send_ipi) {
8747                 /*
8748                  * We upscale the frequency.  Must make the guest
8749                  * doesn't see old kvmclock values while running with
8750                  * the new frequency, otherwise we risk the guest sees
8751                  * time go backwards.
8752                  *
8753                  * In case we update the frequency for another cpu
8754                  * (which might be in guest context) send an interrupt
8755                  * to kick the cpu out of guest context.  Next time
8756                  * guest context is entered kvmclock will be updated,
8757                  * so the guest will not see stale values.
8758                  */
8759                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8760         }
8761 }
8762
8763 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8764                                      void *data)
8765 {
8766         struct cpufreq_freqs *freq = data;
8767         int cpu;
8768
8769         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8770                 return 0;
8771         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8772                 return 0;
8773
8774         for_each_cpu(cpu, freq->policy->cpus)
8775                 __kvmclock_cpufreq_notifier(freq, cpu);
8776
8777         return 0;
8778 }
8779
8780 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8781         .notifier_call  = kvmclock_cpufreq_notifier
8782 };
8783
8784 static int kvmclock_cpu_online(unsigned int cpu)
8785 {
8786         tsc_khz_changed(NULL);
8787         return 0;
8788 }
8789
8790 static void kvm_timer_init(void)
8791 {
8792         max_tsc_khz = tsc_khz;
8793
8794         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8795 #ifdef CONFIG_CPU_FREQ
8796                 struct cpufreq_policy *policy;
8797                 int cpu;
8798
8799                 cpu = get_cpu();
8800                 policy = cpufreq_cpu_get(cpu);
8801                 if (policy) {
8802                         if (policy->cpuinfo.max_freq)
8803                                 max_tsc_khz = policy->cpuinfo.max_freq;
8804                         cpufreq_cpu_put(policy);
8805                 }
8806                 put_cpu();
8807 #endif
8808                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8809                                           CPUFREQ_TRANSITION_NOTIFIER);
8810         }
8811
8812         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8813                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
8814 }
8815
8816 #ifdef CONFIG_X86_64
8817 static void pvclock_gtod_update_fn(struct work_struct *work)
8818 {
8819         struct kvm *kvm;
8820         struct kvm_vcpu *vcpu;
8821         unsigned long i;
8822
8823         mutex_lock(&kvm_lock);
8824         list_for_each_entry(kvm, &vm_list, vm_list)
8825                 kvm_for_each_vcpu(i, vcpu, kvm)
8826                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8827         atomic_set(&kvm_guest_has_master_clock, 0);
8828         mutex_unlock(&kvm_lock);
8829 }
8830
8831 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8832
8833 /*
8834  * Indirection to move queue_work() out of the tk_core.seq write held
8835  * region to prevent possible deadlocks against time accessors which
8836  * are invoked with work related locks held.
8837  */
8838 static void pvclock_irq_work_fn(struct irq_work *w)
8839 {
8840         queue_work(system_long_wq, &pvclock_gtod_work);
8841 }
8842
8843 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8844
8845 /*
8846  * Notification about pvclock gtod data update.
8847  */
8848 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8849                                void *priv)
8850 {
8851         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8852         struct timekeeper *tk = priv;
8853
8854         update_pvclock_gtod(tk);
8855
8856         /*
8857          * Disable master clock if host does not trust, or does not use,
8858          * TSC based clocksource. Delegate queue_work() to irq_work as
8859          * this is invoked with tk_core.seq write held.
8860          */
8861         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8862             atomic_read(&kvm_guest_has_master_clock) != 0)
8863                 irq_work_queue(&pvclock_irq_work);
8864         return 0;
8865 }
8866
8867 static struct notifier_block pvclock_gtod_notifier = {
8868         .notifier_call = pvclock_gtod_notify,
8869 };
8870 #endif
8871
8872 int kvm_arch_init(void *opaque)
8873 {
8874         struct kvm_x86_init_ops *ops = opaque;
8875         int r;
8876
8877         if (kvm_x86_ops.hardware_enable) {
8878                 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8879                 r = -EEXIST;
8880                 goto out;
8881         }
8882
8883         if (!ops->cpu_has_kvm_support()) {
8884                 pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8885                                    ops->runtime_ops->name);
8886                 r = -EOPNOTSUPP;
8887                 goto out;
8888         }
8889         if (ops->disabled_by_bios()) {
8890                 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8891                                    ops->runtime_ops->name);
8892                 r = -EOPNOTSUPP;
8893                 goto out;
8894         }
8895
8896         /*
8897          * KVM explicitly assumes that the guest has an FPU and
8898          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8899          * vCPU's FPU state as a fxregs_state struct.
8900          */
8901         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8902                 printk(KERN_ERR "kvm: inadequate fpu\n");
8903                 r = -EOPNOTSUPP;
8904                 goto out;
8905         }
8906
8907         if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8908                 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
8909                 r = -EOPNOTSUPP;
8910                 goto out;
8911         }
8912
8913         r = -ENOMEM;
8914
8915         x86_emulator_cache = kvm_alloc_emulator_cache();
8916         if (!x86_emulator_cache) {
8917                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8918                 goto out;
8919         }
8920
8921         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8922         if (!user_return_msrs) {
8923                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8924                 goto out_free_x86_emulator_cache;
8925         }
8926         kvm_nr_uret_msrs = 0;
8927
8928         r = kvm_mmu_vendor_module_init();
8929         if (r)
8930                 goto out_free_percpu;
8931
8932         kvm_timer_init();
8933
8934         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8935                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8936                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8937         }
8938
8939         if (pi_inject_timer == -1)
8940                 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
8941 #ifdef CONFIG_X86_64
8942         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8943
8944         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8945                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8946 #endif
8947
8948         return 0;
8949
8950 out_free_percpu:
8951         free_percpu(user_return_msrs);
8952 out_free_x86_emulator_cache:
8953         kmem_cache_destroy(x86_emulator_cache);
8954 out:
8955         return r;
8956 }
8957
8958 void kvm_arch_exit(void)
8959 {
8960 #ifdef CONFIG_X86_64
8961         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8962                 clear_hv_tscchange_cb();
8963 #endif
8964         kvm_lapic_exit();
8965
8966         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8967                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8968                                             CPUFREQ_TRANSITION_NOTIFIER);
8969         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8970 #ifdef CONFIG_X86_64
8971         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8972         irq_work_sync(&pvclock_irq_work);
8973         cancel_work_sync(&pvclock_gtod_work);
8974 #endif
8975         kvm_x86_ops.hardware_enable = NULL;
8976         kvm_mmu_vendor_module_exit();
8977         free_percpu(user_return_msrs);
8978         kmem_cache_destroy(x86_emulator_cache);
8979 #ifdef CONFIG_KVM_XEN
8980         static_key_deferred_flush(&kvm_xen_enabled);
8981         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8982 #endif
8983 }
8984
8985 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
8986 {
8987         /*
8988          * The vCPU has halted, e.g. executed HLT.  Update the run state if the
8989          * local APIC is in-kernel, the run loop will detect the non-runnable
8990          * state and halt the vCPU.  Exit to userspace if the local APIC is
8991          * managed by userspace, in which case userspace is responsible for
8992          * handling wake events.
8993          */
8994         ++vcpu->stat.halt_exits;
8995         if (lapic_in_kernel(vcpu)) {
8996                 vcpu->arch.mp_state = state;
8997                 return 1;
8998         } else {
8999                 vcpu->run->exit_reason = reason;
9000                 return 0;
9001         }
9002 }
9003
9004 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9005 {
9006         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9007 }
9008 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9009
9010 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9011 {
9012         int ret = kvm_skip_emulated_instruction(vcpu);
9013         /*
9014          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9015          * KVM_EXIT_DEBUG here.
9016          */
9017         return kvm_emulate_halt_noskip(vcpu) && ret;
9018 }
9019 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9020
9021 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9022 {
9023         int ret = kvm_skip_emulated_instruction(vcpu);
9024
9025         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9026                                         KVM_EXIT_AP_RESET_HOLD) && ret;
9027 }
9028 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9029
9030 #ifdef CONFIG_X86_64
9031 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9032                                 unsigned long clock_type)
9033 {
9034         struct kvm_clock_pairing clock_pairing;
9035         struct timespec64 ts;
9036         u64 cycle;
9037         int ret;
9038
9039         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9040                 return -KVM_EOPNOTSUPP;
9041
9042         /*
9043          * When tsc is in permanent catchup mode guests won't be able to use
9044          * pvclock_read_retry loop to get consistent view of pvclock
9045          */
9046         if (vcpu->arch.tsc_always_catchup)
9047                 return -KVM_EOPNOTSUPP;
9048
9049         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9050                 return -KVM_EOPNOTSUPP;
9051
9052         clock_pairing.sec = ts.tv_sec;
9053         clock_pairing.nsec = ts.tv_nsec;
9054         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9055         clock_pairing.flags = 0;
9056         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9057
9058         ret = 0;
9059         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9060                             sizeof(struct kvm_clock_pairing)))
9061                 ret = -KVM_EFAULT;
9062
9063         return ret;
9064 }
9065 #endif
9066
9067 /*
9068  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9069  *
9070  * @apicid - apicid of vcpu to be kicked.
9071  */
9072 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9073 {
9074         struct kvm_lapic_irq lapic_irq;
9075
9076         lapic_irq.shorthand = APIC_DEST_NOSHORT;
9077         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
9078         lapic_irq.level = 0;
9079         lapic_irq.dest_id = apicid;
9080         lapic_irq.msi_redir_hint = false;
9081
9082         lapic_irq.delivery_mode = APIC_DM_REMRD;
9083         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9084 }
9085
9086 bool kvm_apicv_activated(struct kvm *kvm)
9087 {
9088         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9089 }
9090 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9091
9092
9093 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9094                                        enum kvm_apicv_inhibit reason, bool set)
9095 {
9096         if (set)
9097                 __set_bit(reason, inhibits);
9098         else
9099                 __clear_bit(reason, inhibits);
9100
9101         trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9102 }
9103
9104 static void kvm_apicv_init(struct kvm *kvm)
9105 {
9106         unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9107
9108         init_rwsem(&kvm->arch.apicv_update_lock);
9109
9110         set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9111
9112         if (!enable_apicv)
9113                 set_or_clear_apicv_inhibit(inhibits,
9114                                            APICV_INHIBIT_REASON_DISABLE, true);
9115 }
9116
9117 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9118 {
9119         struct kvm_vcpu *target = NULL;
9120         struct kvm_apic_map *map;
9121
9122         vcpu->stat.directed_yield_attempted++;
9123
9124         if (single_task_running())
9125                 goto no_yield;
9126
9127         rcu_read_lock();
9128         map = rcu_dereference(vcpu->kvm->arch.apic_map);
9129
9130         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9131                 target = map->phys_map[dest_id]->vcpu;
9132
9133         rcu_read_unlock();
9134
9135         if (!target || !READ_ONCE(target->ready))
9136                 goto no_yield;
9137
9138         /* Ignore requests to yield to self */
9139         if (vcpu == target)
9140                 goto no_yield;
9141
9142         if (kvm_vcpu_yield_to(target) <= 0)
9143                 goto no_yield;
9144
9145         vcpu->stat.directed_yield_successful++;
9146
9147 no_yield:
9148         return;
9149 }
9150
9151 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9152 {
9153         u64 ret = vcpu->run->hypercall.ret;
9154
9155         if (!is_64_bit_mode(vcpu))
9156                 ret = (u32)ret;
9157         kvm_rax_write(vcpu, ret);
9158         ++vcpu->stat.hypercalls;
9159         return kvm_skip_emulated_instruction(vcpu);
9160 }
9161
9162 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9163 {
9164         unsigned long nr, a0, a1, a2, a3, ret;
9165         int op_64_bit;
9166
9167         if (kvm_xen_hypercall_enabled(vcpu->kvm))
9168                 return kvm_xen_hypercall(vcpu);
9169
9170         if (kvm_hv_hypercall_enabled(vcpu))
9171                 return kvm_hv_hypercall(vcpu);
9172
9173         nr = kvm_rax_read(vcpu);
9174         a0 = kvm_rbx_read(vcpu);
9175         a1 = kvm_rcx_read(vcpu);
9176         a2 = kvm_rdx_read(vcpu);
9177         a3 = kvm_rsi_read(vcpu);
9178
9179         trace_kvm_hypercall(nr, a0, a1, a2, a3);
9180
9181         op_64_bit = is_64_bit_hypercall(vcpu);
9182         if (!op_64_bit) {
9183                 nr &= 0xFFFFFFFF;
9184                 a0 &= 0xFFFFFFFF;
9185                 a1 &= 0xFFFFFFFF;
9186                 a2 &= 0xFFFFFFFF;
9187                 a3 &= 0xFFFFFFFF;
9188         }
9189
9190         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9191                 ret = -KVM_EPERM;
9192                 goto out;
9193         }
9194
9195         ret = -KVM_ENOSYS;
9196
9197         switch (nr) {
9198         case KVM_HC_VAPIC_POLL_IRQ:
9199                 ret = 0;
9200                 break;
9201         case KVM_HC_KICK_CPU:
9202                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9203                         break;
9204
9205                 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9206                 kvm_sched_yield(vcpu, a1);
9207                 ret = 0;
9208                 break;
9209 #ifdef CONFIG_X86_64
9210         case KVM_HC_CLOCK_PAIRING:
9211                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9212                 break;
9213 #endif
9214         case KVM_HC_SEND_IPI:
9215                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9216                         break;
9217
9218                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9219                 break;
9220         case KVM_HC_SCHED_YIELD:
9221                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9222                         break;
9223
9224                 kvm_sched_yield(vcpu, a0);
9225                 ret = 0;
9226                 break;
9227         case KVM_HC_MAP_GPA_RANGE: {
9228                 u64 gpa = a0, npages = a1, attrs = a2;
9229
9230                 ret = -KVM_ENOSYS;
9231                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9232                         break;
9233
9234                 if (!PAGE_ALIGNED(gpa) || !npages ||
9235                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9236                         ret = -KVM_EINVAL;
9237                         break;
9238                 }
9239
9240                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9241                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9242                 vcpu->run->hypercall.args[0]  = gpa;
9243                 vcpu->run->hypercall.args[1]  = npages;
9244                 vcpu->run->hypercall.args[2]  = attrs;
9245                 vcpu->run->hypercall.longmode = op_64_bit;
9246                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9247                 return 0;
9248         }
9249         default:
9250                 ret = -KVM_ENOSYS;
9251                 break;
9252         }
9253 out:
9254         if (!op_64_bit)
9255                 ret = (u32)ret;
9256         kvm_rax_write(vcpu, ret);
9257
9258         ++vcpu->stat.hypercalls;
9259         return kvm_skip_emulated_instruction(vcpu);
9260 }
9261 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9262
9263 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9264 {
9265         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9266         char instruction[3];
9267         unsigned long rip = kvm_rip_read(vcpu);
9268
9269         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9270
9271         return emulator_write_emulated(ctxt, rip, instruction, 3,
9272                 &ctxt->exception);
9273 }
9274
9275 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9276 {
9277         return vcpu->run->request_interrupt_window &&
9278                 likely(!pic_in_kernel(vcpu->kvm));
9279 }
9280
9281 /* Called within kvm->srcu read side.  */
9282 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9283 {
9284         struct kvm_run *kvm_run = vcpu->run;
9285
9286         kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9287         kvm_run->cr8 = kvm_get_cr8(vcpu);
9288         kvm_run->apic_base = kvm_get_apic_base(vcpu);
9289
9290         kvm_run->ready_for_interrupt_injection =
9291                 pic_in_kernel(vcpu->kvm) ||
9292                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9293
9294         if (is_smm(vcpu))
9295                 kvm_run->flags |= KVM_RUN_X86_SMM;
9296 }
9297
9298 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9299 {
9300         int max_irr, tpr;
9301
9302         if (!kvm_x86_ops.update_cr8_intercept)
9303                 return;
9304
9305         if (!lapic_in_kernel(vcpu))
9306                 return;
9307
9308         if (vcpu->arch.apicv_active)
9309                 return;
9310
9311         if (!vcpu->arch.apic->vapic_addr)
9312                 max_irr = kvm_lapic_find_highest_irr(vcpu);
9313         else
9314                 max_irr = -1;
9315
9316         if (max_irr != -1)
9317                 max_irr >>= 4;
9318
9319         tpr = kvm_lapic_get_cr8(vcpu);
9320
9321         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9322 }
9323
9324
9325 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9326 {
9327         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9328                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9329                 return 1;
9330         }
9331
9332         return kvm_x86_ops.nested_ops->check_events(vcpu);
9333 }
9334
9335 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9336 {
9337         if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9338                 vcpu->arch.exception.error_code = false;
9339         static_call(kvm_x86_queue_exception)(vcpu);
9340 }
9341
9342 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9343 {
9344         int r;
9345         bool can_inject = true;
9346
9347         /* try to reinject previous events if any */
9348
9349         if (vcpu->arch.exception.injected) {
9350                 kvm_inject_exception(vcpu);
9351                 can_inject = false;
9352         }
9353         /*
9354          * Do not inject an NMI or interrupt if there is a pending
9355          * exception.  Exceptions and interrupts are recognized at
9356          * instruction boundaries, i.e. the start of an instruction.
9357          * Trap-like exceptions, e.g. #DB, have higher priority than
9358          * NMIs and interrupts, i.e. traps are recognized before an
9359          * NMI/interrupt that's pending on the same instruction.
9360          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9361          * priority, but are only generated (pended) during instruction
9362          * execution, i.e. a pending fault-like exception means the
9363          * fault occurred on the *previous* instruction and must be
9364          * serviced prior to recognizing any new events in order to
9365          * fully complete the previous instruction.
9366          */
9367         else if (!vcpu->arch.exception.pending) {
9368                 if (vcpu->arch.nmi_injected) {
9369                         static_call(kvm_x86_inject_nmi)(vcpu);
9370                         can_inject = false;
9371                 } else if (vcpu->arch.interrupt.injected) {
9372                         static_call(kvm_x86_inject_irq)(vcpu);
9373                         can_inject = false;
9374                 }
9375         }
9376
9377         WARN_ON_ONCE(vcpu->arch.exception.injected &&
9378                      vcpu->arch.exception.pending);
9379
9380         /*
9381          * Call check_nested_events() even if we reinjected a previous event
9382          * in order for caller to determine if it should require immediate-exit
9383          * from L2 to L1 due to pending L1 events which require exit
9384          * from L2 to L1.
9385          */
9386         if (is_guest_mode(vcpu)) {
9387                 r = kvm_check_nested_events(vcpu);
9388                 if (r < 0)
9389                         goto out;
9390         }
9391
9392         /* try to inject new event if pending */
9393         if (vcpu->arch.exception.pending) {
9394                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
9395                                         vcpu->arch.exception.has_error_code,
9396                                         vcpu->arch.exception.error_code);
9397
9398                 vcpu->arch.exception.pending = false;
9399                 vcpu->arch.exception.injected = true;
9400
9401                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9402                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9403                                              X86_EFLAGS_RF);
9404
9405                 if (vcpu->arch.exception.nr == DB_VECTOR) {
9406                         kvm_deliver_exception_payload(vcpu);
9407                         if (vcpu->arch.dr7 & DR7_GD) {
9408                                 vcpu->arch.dr7 &= ~DR7_GD;
9409                                 kvm_update_dr7(vcpu);
9410                         }
9411                 }
9412
9413                 kvm_inject_exception(vcpu);
9414                 can_inject = false;
9415         }
9416
9417         /* Don't inject interrupts if the user asked to avoid doing so */
9418         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9419                 return 0;
9420
9421         /*
9422          * Finally, inject interrupt events.  If an event cannot be injected
9423          * due to architectural conditions (e.g. IF=0) a window-open exit
9424          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9425          * and can architecturally be injected, but we cannot do it right now:
9426          * an interrupt could have arrived just now and we have to inject it
9427          * as a vmexit, or there could already an event in the queue, which is
9428          * indicated by can_inject.  In that case we request an immediate exit
9429          * in order to make progress and get back here for another iteration.
9430          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9431          */
9432         if (vcpu->arch.smi_pending) {
9433                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9434                 if (r < 0)
9435                         goto out;
9436                 if (r) {
9437                         vcpu->arch.smi_pending = false;
9438                         ++vcpu->arch.smi_count;
9439                         enter_smm(vcpu);
9440                         can_inject = false;
9441                 } else
9442                         static_call(kvm_x86_enable_smi_window)(vcpu);
9443         }
9444
9445         if (vcpu->arch.nmi_pending) {
9446                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9447                 if (r < 0)
9448                         goto out;
9449                 if (r) {
9450                         --vcpu->arch.nmi_pending;
9451                         vcpu->arch.nmi_injected = true;
9452                         static_call(kvm_x86_inject_nmi)(vcpu);
9453                         can_inject = false;
9454                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9455                 }
9456                 if (vcpu->arch.nmi_pending)
9457                         static_call(kvm_x86_enable_nmi_window)(vcpu);
9458         }
9459
9460         if (kvm_cpu_has_injectable_intr(vcpu)) {
9461                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9462                 if (r < 0)
9463                         goto out;
9464                 if (r) {
9465                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9466                         static_call(kvm_x86_inject_irq)(vcpu);
9467                         WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9468                 }
9469                 if (kvm_cpu_has_injectable_intr(vcpu))
9470                         static_call(kvm_x86_enable_irq_window)(vcpu);
9471         }
9472
9473         if (is_guest_mode(vcpu) &&
9474             kvm_x86_ops.nested_ops->hv_timer_pending &&
9475             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9476                 *req_immediate_exit = true;
9477
9478         WARN_ON(vcpu->arch.exception.pending);
9479         return 0;
9480
9481 out:
9482         if (r == -EBUSY) {
9483                 *req_immediate_exit = true;
9484                 r = 0;
9485         }
9486         return r;
9487 }
9488
9489 static void process_nmi(struct kvm_vcpu *vcpu)
9490 {
9491         unsigned limit = 2;
9492
9493         /*
9494          * x86 is limited to one NMI running, and one NMI pending after it.
9495          * If an NMI is already in progress, limit further NMIs to just one.
9496          * Otherwise, allow two (and we'll inject the first one immediately).
9497          */
9498         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9499                 limit = 1;
9500
9501         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9502         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9503         kvm_make_request(KVM_REQ_EVENT, vcpu);
9504 }
9505
9506 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9507 {
9508         u32 flags = 0;
9509         flags |= seg->g       << 23;
9510         flags |= seg->db      << 22;
9511         flags |= seg->l       << 21;
9512         flags |= seg->avl     << 20;
9513         flags |= seg->present << 15;
9514         flags |= seg->dpl     << 13;
9515         flags |= seg->s       << 12;
9516         flags |= seg->type    << 8;
9517         return flags;
9518 }
9519
9520 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9521 {
9522         struct kvm_segment seg;
9523         int offset;
9524
9525         kvm_get_segment(vcpu, &seg, n);
9526         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9527
9528         if (n < 3)
9529                 offset = 0x7f84 + n * 12;
9530         else
9531                 offset = 0x7f2c + (n - 3) * 12;
9532
9533         put_smstate(u32, buf, offset + 8, seg.base);
9534         put_smstate(u32, buf, offset + 4, seg.limit);
9535         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9536 }
9537
9538 #ifdef CONFIG_X86_64
9539 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9540 {
9541         struct kvm_segment seg;
9542         int offset;
9543         u16 flags;
9544
9545         kvm_get_segment(vcpu, &seg, n);
9546         offset = 0x7e00 + n * 16;
9547
9548         flags = enter_smm_get_segment_flags(&seg) >> 8;
9549         put_smstate(u16, buf, offset, seg.selector);
9550         put_smstate(u16, buf, offset + 2, flags);
9551         put_smstate(u32, buf, offset + 4, seg.limit);
9552         put_smstate(u64, buf, offset + 8, seg.base);
9553 }
9554 #endif
9555
9556 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9557 {
9558         struct desc_ptr dt;
9559         struct kvm_segment seg;
9560         unsigned long val;
9561         int i;
9562
9563         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9564         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9565         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9566         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9567
9568         for (i = 0; i < 8; i++)
9569                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9570
9571         kvm_get_dr(vcpu, 6, &val);
9572         put_smstate(u32, buf, 0x7fcc, (u32)val);
9573         kvm_get_dr(vcpu, 7, &val);
9574         put_smstate(u32, buf, 0x7fc8, (u32)val);
9575
9576         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9577         put_smstate(u32, buf, 0x7fc4, seg.selector);
9578         put_smstate(u32, buf, 0x7f64, seg.base);
9579         put_smstate(u32, buf, 0x7f60, seg.limit);
9580         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9581
9582         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9583         put_smstate(u32, buf, 0x7fc0, seg.selector);
9584         put_smstate(u32, buf, 0x7f80, seg.base);
9585         put_smstate(u32, buf, 0x7f7c, seg.limit);
9586         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9587
9588         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9589         put_smstate(u32, buf, 0x7f74, dt.address);
9590         put_smstate(u32, buf, 0x7f70, dt.size);
9591
9592         static_call(kvm_x86_get_idt)(vcpu, &dt);
9593         put_smstate(u32, buf, 0x7f58, dt.address);
9594         put_smstate(u32, buf, 0x7f54, dt.size);
9595
9596         for (i = 0; i < 6; i++)
9597                 enter_smm_save_seg_32(vcpu, buf, i);
9598
9599         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9600
9601         /* revision id */
9602         put_smstate(u32, buf, 0x7efc, 0x00020000);
9603         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9604 }
9605
9606 #ifdef CONFIG_X86_64
9607 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9608 {
9609         struct desc_ptr dt;
9610         struct kvm_segment seg;
9611         unsigned long val;
9612         int i;
9613
9614         for (i = 0; i < 16; i++)
9615                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9616
9617         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9618         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9619
9620         kvm_get_dr(vcpu, 6, &val);
9621         put_smstate(u64, buf, 0x7f68, val);
9622         kvm_get_dr(vcpu, 7, &val);
9623         put_smstate(u64, buf, 0x7f60, val);
9624
9625         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9626         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9627         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9628
9629         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9630
9631         /* revision id */
9632         put_smstate(u32, buf, 0x7efc, 0x00020064);
9633
9634         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9635
9636         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9637         put_smstate(u16, buf, 0x7e90, seg.selector);
9638         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9639         put_smstate(u32, buf, 0x7e94, seg.limit);
9640         put_smstate(u64, buf, 0x7e98, seg.base);
9641
9642         static_call(kvm_x86_get_idt)(vcpu, &dt);
9643         put_smstate(u32, buf, 0x7e84, dt.size);
9644         put_smstate(u64, buf, 0x7e88, dt.address);
9645
9646         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9647         put_smstate(u16, buf, 0x7e70, seg.selector);
9648         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9649         put_smstate(u32, buf, 0x7e74, seg.limit);
9650         put_smstate(u64, buf, 0x7e78, seg.base);
9651
9652         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9653         put_smstate(u32, buf, 0x7e64, dt.size);
9654         put_smstate(u64, buf, 0x7e68, dt.address);
9655
9656         for (i = 0; i < 6; i++)
9657                 enter_smm_save_seg_64(vcpu, buf, i);
9658 }
9659 #endif
9660
9661 static void enter_smm(struct kvm_vcpu *vcpu)
9662 {
9663         struct kvm_segment cs, ds;
9664         struct desc_ptr dt;
9665         unsigned long cr0;
9666         char buf[512];
9667
9668         memset(buf, 0, 512);
9669 #ifdef CONFIG_X86_64
9670         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9671                 enter_smm_save_state_64(vcpu, buf);
9672         else
9673 #endif
9674                 enter_smm_save_state_32(vcpu, buf);
9675
9676         /*
9677          * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9678          * state (e.g. leave guest mode) after we've saved the state into the
9679          * SMM state-save area.
9680          */
9681         static_call(kvm_x86_enter_smm)(vcpu, buf);
9682
9683         kvm_smm_changed(vcpu, true);
9684         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9685
9686         if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9687                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9688         else
9689                 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9690
9691         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9692         kvm_rip_write(vcpu, 0x8000);
9693
9694         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9695         static_call(kvm_x86_set_cr0)(vcpu, cr0);
9696         vcpu->arch.cr0 = cr0;
9697
9698         static_call(kvm_x86_set_cr4)(vcpu, 0);
9699
9700         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
9701         dt.address = dt.size = 0;
9702         static_call(kvm_x86_set_idt)(vcpu, &dt);
9703
9704         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9705
9706         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9707         cs.base = vcpu->arch.smbase;
9708
9709         ds.selector = 0;
9710         ds.base = 0;
9711
9712         cs.limit    = ds.limit = 0xffffffff;
9713         cs.type     = ds.type = 0x3;
9714         cs.dpl      = ds.dpl = 0;
9715         cs.db       = ds.db = 0;
9716         cs.s        = ds.s = 1;
9717         cs.l        = ds.l = 0;
9718         cs.g        = ds.g = 1;
9719         cs.avl      = ds.avl = 0;
9720         cs.present  = ds.present = 1;
9721         cs.unusable = ds.unusable = 0;
9722         cs.padding  = ds.padding = 0;
9723
9724         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9725         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9726         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9727         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9728         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9729         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9730
9731 #ifdef CONFIG_X86_64
9732         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9733                 static_call(kvm_x86_set_efer)(vcpu, 0);
9734 #endif
9735
9736         kvm_update_cpuid_runtime(vcpu);
9737         kvm_mmu_reset_context(vcpu);
9738 }
9739
9740 static void process_smi(struct kvm_vcpu *vcpu)
9741 {
9742         vcpu->arch.smi_pending = true;
9743         kvm_make_request(KVM_REQ_EVENT, vcpu);
9744 }
9745
9746 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9747                                        unsigned long *vcpu_bitmap)
9748 {
9749         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9750 }
9751
9752 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9753 {
9754         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9755 }
9756
9757 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9758 {
9759         bool activate;
9760
9761         if (!lapic_in_kernel(vcpu))
9762                 return;
9763
9764         down_read(&vcpu->kvm->arch.apicv_update_lock);
9765
9766         activate = kvm_apicv_activated(vcpu->kvm);
9767         if (vcpu->arch.apicv_active == activate)
9768                 goto out;
9769
9770         vcpu->arch.apicv_active = activate;
9771         kvm_apic_update_apicv(vcpu);
9772         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9773
9774         /*
9775          * When APICv gets disabled, we may still have injected interrupts
9776          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9777          * still active when the interrupt got accepted. Make sure
9778          * inject_pending_event() is called to check for that.
9779          */
9780         if (!vcpu->arch.apicv_active)
9781                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9782
9783 out:
9784         up_read(&vcpu->kvm->arch.apicv_update_lock);
9785 }
9786 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9787
9788 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9789                                       enum kvm_apicv_inhibit reason, bool set)
9790 {
9791         unsigned long old, new;
9792
9793         lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9794
9795         if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
9796                 return;
9797
9798         old = new = kvm->arch.apicv_inhibit_reasons;
9799
9800         set_or_clear_apicv_inhibit(&new, reason, set);
9801
9802         if (!!old != !!new) {
9803                 /*
9804                  * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9805                  * false positives in the sanity check WARN in svm_vcpu_run().
9806                  * This task will wait for all vCPUs to ack the kick IRQ before
9807                  * updating apicv_inhibit_reasons, and all other vCPUs will
9808                  * block on acquiring apicv_update_lock so that vCPUs can't
9809                  * redo svm_vcpu_run() without seeing the new inhibit state.
9810                  *
9811                  * Note, holding apicv_update_lock and taking it in the read
9812                  * side (handling the request) also prevents other vCPUs from
9813                  * servicing the request with a stale apicv_inhibit_reasons.
9814                  */
9815                 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9816                 kvm->arch.apicv_inhibit_reasons = new;
9817                 if (new) {
9818                         unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9819                         kvm_zap_gfn_range(kvm, gfn, gfn+1);
9820                 }
9821         } else {
9822                 kvm->arch.apicv_inhibit_reasons = new;
9823         }
9824 }
9825
9826 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9827                                     enum kvm_apicv_inhibit reason, bool set)
9828 {
9829         if (!enable_apicv)
9830                 return;
9831
9832         down_write(&kvm->arch.apicv_update_lock);
9833         __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
9834         up_write(&kvm->arch.apicv_update_lock);
9835 }
9836 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
9837
9838 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9839 {
9840         if (!kvm_apic_present(vcpu))
9841                 return;
9842
9843         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9844
9845         if (irqchip_split(vcpu->kvm))
9846                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9847         else {
9848                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9849                 if (ioapic_in_kernel(vcpu->kvm))
9850                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9851         }
9852
9853         if (is_guest_mode(vcpu))
9854                 vcpu->arch.load_eoi_exitmap_pending = true;
9855         else
9856                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9857 }
9858
9859 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9860 {
9861         u64 eoi_exit_bitmap[4];
9862
9863         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9864                 return;
9865
9866         if (to_hv_vcpu(vcpu)) {
9867                 bitmap_or((ulong *)eoi_exit_bitmap,
9868                           vcpu->arch.ioapic_handled_vectors,
9869                           to_hv_synic(vcpu)->vec_bitmap, 256);
9870                 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9871                 return;
9872         }
9873
9874         static_call_cond(kvm_x86_load_eoi_exitmap)(
9875                 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9876 }
9877
9878 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9879                                             unsigned long start, unsigned long end)
9880 {
9881         unsigned long apic_address;
9882
9883         /*
9884          * The physical address of apic access page is stored in the VMCS.
9885          * Update it when it becomes invalid.
9886          */
9887         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9888         if (start <= apic_address && apic_address < end)
9889                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9890 }
9891
9892 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
9893 {
9894         static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
9895 }
9896
9897 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9898 {
9899         if (!lapic_in_kernel(vcpu))
9900                 return;
9901
9902         static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
9903 }
9904
9905 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9906 {
9907         smp_send_reschedule(vcpu->cpu);
9908 }
9909 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9910
9911 /*
9912  * Called within kvm->srcu read side.
9913  * Returns 1 to let vcpu_run() continue the guest execution loop without
9914  * exiting to the userspace.  Otherwise, the value will be returned to the
9915  * userspace.
9916  */
9917 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9918 {
9919         int r;
9920         bool req_int_win =
9921                 dm_request_for_irq_injection(vcpu) &&
9922                 kvm_cpu_accept_dm_intr(vcpu);
9923         fastpath_t exit_fastpath;
9924
9925         bool req_immediate_exit = false;
9926
9927         /* Forbid vmenter if vcpu dirty ring is soft-full */
9928         if (unlikely(vcpu->kvm->dirty_ring_size &&
9929                      kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9930                 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9931                 trace_kvm_dirty_ring_exit(vcpu);
9932                 r = 0;
9933                 goto out;
9934         }
9935
9936         if (kvm_request_pending(vcpu)) {
9937                 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
9938                         r = -EIO;
9939                         goto out;
9940                 }
9941                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9942                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9943                                 r = 0;
9944                                 goto out;
9945                         }
9946                 }
9947                 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
9948                         kvm_mmu_free_obsolete_roots(vcpu);
9949                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9950                         __kvm_migrate_timers(vcpu);
9951                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9952                         kvm_update_masterclock(vcpu->kvm);
9953                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9954                         kvm_gen_kvmclock_update(vcpu);
9955                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9956                         r = kvm_guest_time_update(vcpu);
9957                         if (unlikely(r))
9958                                 goto out;
9959                 }
9960                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9961                         kvm_mmu_sync_roots(vcpu);
9962                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9963                         kvm_mmu_load_pgd(vcpu);
9964                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9965                         kvm_vcpu_flush_tlb_all(vcpu);
9966
9967                         /* Flushing all ASIDs flushes the current ASID... */
9968                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9969                 }
9970                 kvm_service_local_tlb_flush_requests(vcpu);
9971
9972                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9973                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9974                         r = 0;
9975                         goto out;
9976                 }
9977                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9978                         if (is_guest_mode(vcpu)) {
9979                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9980                         } else {
9981                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9982                                 vcpu->mmio_needed = 0;
9983                                 r = 0;
9984                                 goto out;
9985                         }
9986                 }
9987                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9988                         /* Page is swapped out. Do synthetic halt */
9989                         vcpu->arch.apf.halted = true;
9990                         r = 1;
9991                         goto out;
9992                 }
9993                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9994                         record_steal_time(vcpu);
9995                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9996                         process_smi(vcpu);
9997                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9998                         process_nmi(vcpu);
9999                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10000                         kvm_pmu_handle_event(vcpu);
10001                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10002                         kvm_pmu_deliver_pmi(vcpu);
10003                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10004                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10005                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
10006                                      vcpu->arch.ioapic_handled_vectors)) {
10007                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10008                                 vcpu->run->eoi.vector =
10009                                                 vcpu->arch.pending_ioapic_eoi;
10010                                 r = 0;
10011                                 goto out;
10012                         }
10013                 }
10014                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10015                         vcpu_scan_ioapic(vcpu);
10016                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10017                         vcpu_load_eoi_exitmap(vcpu);
10018                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10019                         kvm_vcpu_reload_apic_access_page(vcpu);
10020                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10021                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10022                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10023                         vcpu->run->system_event.ndata = 0;
10024                         r = 0;
10025                         goto out;
10026                 }
10027                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10028                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10029                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10030                         vcpu->run->system_event.ndata = 0;
10031                         r = 0;
10032                         goto out;
10033                 }
10034                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10035                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10036
10037                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10038                         vcpu->run->hyperv = hv_vcpu->exit;
10039                         r = 0;
10040                         goto out;
10041                 }
10042
10043                 /*
10044                  * KVM_REQ_HV_STIMER has to be processed after
10045                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10046                  * depend on the guest clock being up-to-date
10047                  */
10048                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10049                         kvm_hv_process_stimers(vcpu);
10050                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10051                         kvm_vcpu_update_apicv(vcpu);
10052                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10053                         kvm_check_async_pf_completion(vcpu);
10054                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10055                         static_call(kvm_x86_msr_filter_changed)(vcpu);
10056
10057                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10058                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10059         }
10060
10061         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10062             kvm_xen_has_interrupt(vcpu)) {
10063                 ++vcpu->stat.req_event;
10064                 r = kvm_apic_accept_events(vcpu);
10065                 if (r < 0) {
10066                         r = 0;
10067                         goto out;
10068                 }
10069                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10070                         r = 1;
10071                         goto out;
10072                 }
10073
10074                 r = inject_pending_event(vcpu, &req_immediate_exit);
10075                 if (r < 0) {
10076                         r = 0;
10077                         goto out;
10078                 }
10079                 if (req_int_win)
10080                         static_call(kvm_x86_enable_irq_window)(vcpu);
10081
10082                 if (kvm_lapic_enabled(vcpu)) {
10083                         update_cr8_intercept(vcpu);
10084                         kvm_lapic_sync_to_vapic(vcpu);
10085                 }
10086         }
10087
10088         r = kvm_mmu_reload(vcpu);
10089         if (unlikely(r)) {
10090                 goto cancel_injection;
10091         }
10092
10093         preempt_disable();
10094
10095         static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10096
10097         /*
10098          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10099          * IPI are then delayed after guest entry, which ensures that they
10100          * result in virtual interrupt delivery.
10101          */
10102         local_irq_disable();
10103
10104         /* Store vcpu->apicv_active before vcpu->mode.  */
10105         smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10106
10107         kvm_vcpu_srcu_read_unlock(vcpu);
10108
10109         /*
10110          * 1) We should set ->mode before checking ->requests.  Please see
10111          * the comment in kvm_vcpu_exiting_guest_mode().
10112          *
10113          * 2) For APICv, we should set ->mode before checking PID.ON. This
10114          * pairs with the memory barrier implicit in pi_test_and_set_on
10115          * (see vmx_deliver_posted_interrupt).
10116          *
10117          * 3) This also orders the write to mode from any reads to the page
10118          * tables done while the VCPU is running.  Please see the comment
10119          * in kvm_flush_remote_tlbs.
10120          */
10121         smp_mb__after_srcu_read_unlock();
10122
10123         /*
10124          * Process pending posted interrupts to handle the case where the
10125          * notification IRQ arrived in the host, or was never sent (because the
10126          * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10127          * status, KVM doesn't update assigned devices when APICv is inhibited,
10128          * i.e. they can post interrupts even if APICv is temporarily disabled.
10129          */
10130         if (kvm_lapic_enabled(vcpu))
10131                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10132
10133         if (kvm_vcpu_exit_request(vcpu)) {
10134                 vcpu->mode = OUTSIDE_GUEST_MODE;
10135                 smp_wmb();
10136                 local_irq_enable();
10137                 preempt_enable();
10138                 kvm_vcpu_srcu_read_lock(vcpu);
10139                 r = 1;
10140                 goto cancel_injection;
10141         }
10142
10143         if (req_immediate_exit) {
10144                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10145                 static_call(kvm_x86_request_immediate_exit)(vcpu);
10146         }
10147
10148         fpregs_assert_state_consistent();
10149         if (test_thread_flag(TIF_NEED_FPU_LOAD))
10150                 switch_fpu_return();
10151
10152         if (vcpu->arch.guest_fpu.xfd_err)
10153                 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10154
10155         if (unlikely(vcpu->arch.switch_db_regs)) {
10156                 set_debugreg(0, 7);
10157                 set_debugreg(vcpu->arch.eff_db[0], 0);
10158                 set_debugreg(vcpu->arch.eff_db[1], 1);
10159                 set_debugreg(vcpu->arch.eff_db[2], 2);
10160                 set_debugreg(vcpu->arch.eff_db[3], 3);
10161         } else if (unlikely(hw_breakpoint_active())) {
10162                 set_debugreg(0, 7);
10163         }
10164
10165         guest_timing_enter_irqoff();
10166
10167         for (;;) {
10168                 /*
10169                  * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10170                  * update must kick and wait for all vCPUs before toggling the
10171                  * per-VM state, and responsing vCPUs must wait for the update
10172                  * to complete before servicing KVM_REQ_APICV_UPDATE.
10173                  */
10174                 WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
10175
10176                 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10177                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10178                         break;
10179
10180                 if (kvm_lapic_enabled(vcpu))
10181                         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10182
10183                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10184                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10185                         break;
10186                 }
10187         }
10188
10189         /*
10190          * Do this here before restoring debug registers on the host.  And
10191          * since we do this before handling the vmexit, a DR access vmexit
10192          * can (a) read the correct value of the debug registers, (b) set
10193          * KVM_DEBUGREG_WONT_EXIT again.
10194          */
10195         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10196                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10197                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10198                 kvm_update_dr0123(vcpu);
10199                 kvm_update_dr7(vcpu);
10200         }
10201
10202         /*
10203          * If the guest has used debug registers, at least dr7
10204          * will be disabled while returning to the host.
10205          * If we don't have active breakpoints in the host, we don't
10206          * care about the messed up debug address registers. But if
10207          * we have some of them active, restore the old state.
10208          */
10209         if (hw_breakpoint_active())
10210                 hw_breakpoint_restore();
10211
10212         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10213         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10214
10215         vcpu->mode = OUTSIDE_GUEST_MODE;
10216         smp_wmb();
10217
10218         /*
10219          * Sync xfd before calling handle_exit_irqoff() which may
10220          * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10221          * in #NM irqoff handler).
10222          */
10223         if (vcpu->arch.xfd_no_write_intercept)
10224                 fpu_sync_guest_vmexit_xfd_state();
10225
10226         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10227
10228         if (vcpu->arch.guest_fpu.xfd_err)
10229                 wrmsrl(MSR_IA32_XFD_ERR, 0);
10230
10231         /*
10232          * Consume any pending interrupts, including the possible source of
10233          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10234          * An instruction is required after local_irq_enable() to fully unblock
10235          * interrupts on processors that implement an interrupt shadow, the
10236          * stat.exits increment will do nicely.
10237          */
10238         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10239         local_irq_enable();
10240         ++vcpu->stat.exits;
10241         local_irq_disable();
10242         kvm_after_interrupt(vcpu);
10243
10244         /*
10245          * Wait until after servicing IRQs to account guest time so that any
10246          * ticks that occurred while running the guest are properly accounted
10247          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10248          * of accounting via context tracking, but the loss of accuracy is
10249          * acceptable for all known use cases.
10250          */
10251         guest_timing_exit_irqoff();
10252
10253         if (lapic_in_kernel(vcpu)) {
10254                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
10255                 if (delta != S64_MIN) {
10256                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
10257                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
10258                 }
10259         }
10260
10261         local_irq_enable();
10262         preempt_enable();
10263
10264         kvm_vcpu_srcu_read_lock(vcpu);
10265
10266         /*
10267          * Profile KVM exit RIPs:
10268          */
10269         if (unlikely(prof_on == KVM_PROFILING)) {
10270                 unsigned long rip = kvm_rip_read(vcpu);
10271                 profile_hit(KVM_PROFILING, (void *)rip);
10272         }
10273
10274         if (unlikely(vcpu->arch.tsc_always_catchup))
10275                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10276
10277         if (vcpu->arch.apic_attention)
10278                 kvm_lapic_sync_from_vapic(vcpu);
10279
10280         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10281         return r;
10282
10283 cancel_injection:
10284         if (req_immediate_exit)
10285                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10286         static_call(kvm_x86_cancel_injection)(vcpu);
10287         if (unlikely(vcpu->arch.apic_attention))
10288                 kvm_lapic_sync_from_vapic(vcpu);
10289 out:
10290         return r;
10291 }
10292
10293 /* Called within kvm->srcu read side.  */
10294 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10295 {
10296         bool hv_timer;
10297
10298         if (!kvm_arch_vcpu_runnable(vcpu)) {
10299                 /*
10300                  * Switch to the software timer before halt-polling/blocking as
10301                  * the guest's timer may be a break event for the vCPU, and the
10302                  * hypervisor timer runs only when the CPU is in guest mode.
10303                  * Switch before halt-polling so that KVM recognizes an expired
10304                  * timer before blocking.
10305                  */
10306                 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10307                 if (hv_timer)
10308                         kvm_lapic_switch_to_sw_timer(vcpu);
10309
10310                 kvm_vcpu_srcu_read_unlock(vcpu);
10311                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10312                         kvm_vcpu_halt(vcpu);
10313                 else
10314                         kvm_vcpu_block(vcpu);
10315                 kvm_vcpu_srcu_read_lock(vcpu);
10316
10317                 if (hv_timer)
10318                         kvm_lapic_switch_to_hv_timer(vcpu);
10319
10320                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10321                         return 1;
10322         }
10323
10324         if (kvm_apic_accept_events(vcpu) < 0)
10325                 return 0;
10326         switch(vcpu->arch.mp_state) {
10327         case KVM_MP_STATE_HALTED:
10328         case KVM_MP_STATE_AP_RESET_HOLD:
10329                 vcpu->arch.pv.pv_unhalted = false;
10330                 vcpu->arch.mp_state =
10331                         KVM_MP_STATE_RUNNABLE;
10332                 fallthrough;
10333         case KVM_MP_STATE_RUNNABLE:
10334                 vcpu->arch.apf.halted = false;
10335                 break;
10336         case KVM_MP_STATE_INIT_RECEIVED:
10337                 break;
10338         default:
10339                 return -EINTR;
10340         }
10341         return 1;
10342 }
10343
10344 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10345 {
10346         if (is_guest_mode(vcpu))
10347                 kvm_check_nested_events(vcpu);
10348
10349         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10350                 !vcpu->arch.apf.halted);
10351 }
10352
10353 /* Called within kvm->srcu read side.  */
10354 static int vcpu_run(struct kvm_vcpu *vcpu)
10355 {
10356         int r;
10357
10358         vcpu->arch.l1tf_flush_l1d = true;
10359
10360         for (;;) {
10361                 if (kvm_vcpu_running(vcpu)) {
10362                         r = vcpu_enter_guest(vcpu);
10363                 } else {
10364                         r = vcpu_block(vcpu);
10365                 }
10366
10367                 if (r <= 0)
10368                         break;
10369
10370                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10371                 if (kvm_cpu_has_pending_timer(vcpu))
10372                         kvm_inject_pending_timer_irqs(vcpu);
10373
10374                 if (dm_request_for_irq_injection(vcpu) &&
10375                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10376                         r = 0;
10377                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10378                         ++vcpu->stat.request_irq_exits;
10379                         break;
10380                 }
10381
10382                 if (__xfer_to_guest_mode_work_pending()) {
10383                         kvm_vcpu_srcu_read_unlock(vcpu);
10384                         r = xfer_to_guest_mode_handle_work(vcpu);
10385                         kvm_vcpu_srcu_read_lock(vcpu);
10386                         if (r)
10387                                 return r;
10388                 }
10389         }
10390
10391         return r;
10392 }
10393
10394 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10395 {
10396         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10397 }
10398
10399 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10400 {
10401         BUG_ON(!vcpu->arch.pio.count);
10402
10403         return complete_emulated_io(vcpu);
10404 }
10405
10406 /*
10407  * Implements the following, as a state machine:
10408  *
10409  * read:
10410  *   for each fragment
10411  *     for each mmio piece in the fragment
10412  *       write gpa, len
10413  *       exit
10414  *       copy data
10415  *   execute insn
10416  *
10417  * write:
10418  *   for each fragment
10419  *     for each mmio piece in the fragment
10420  *       write gpa, len
10421  *       copy data
10422  *       exit
10423  */
10424 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10425 {
10426         struct kvm_run *run = vcpu->run;
10427         struct kvm_mmio_fragment *frag;
10428         unsigned len;
10429
10430         BUG_ON(!vcpu->mmio_needed);
10431
10432         /* Complete previous fragment */
10433         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10434         len = min(8u, frag->len);
10435         if (!vcpu->mmio_is_write)
10436                 memcpy(frag->data, run->mmio.data, len);
10437
10438         if (frag->len <= 8) {
10439                 /* Switch to the next fragment. */
10440                 frag++;
10441                 vcpu->mmio_cur_fragment++;
10442         } else {
10443                 /* Go forward to the next mmio piece. */
10444                 frag->data += len;
10445                 frag->gpa += len;
10446                 frag->len -= len;
10447         }
10448
10449         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10450                 vcpu->mmio_needed = 0;
10451
10452                 /* FIXME: return into emulator if single-stepping.  */
10453                 if (vcpu->mmio_is_write)
10454                         return 1;
10455                 vcpu->mmio_read_completed = 1;
10456                 return complete_emulated_io(vcpu);
10457         }
10458
10459         run->exit_reason = KVM_EXIT_MMIO;
10460         run->mmio.phys_addr = frag->gpa;
10461         if (vcpu->mmio_is_write)
10462                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10463         run->mmio.len = min(8u, frag->len);
10464         run->mmio.is_write = vcpu->mmio_is_write;
10465         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10466         return 0;
10467 }
10468
10469 /* Swap (qemu) user FPU context for the guest FPU context. */
10470 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10471 {
10472         /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10473         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10474         trace_kvm_fpu(1);
10475 }
10476
10477 /* When vcpu_run ends, restore user space FPU context. */
10478 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10479 {
10480         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10481         ++vcpu->stat.fpu_reload;
10482         trace_kvm_fpu(0);
10483 }
10484
10485 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10486 {
10487         struct kvm_run *kvm_run = vcpu->run;
10488         int r;
10489
10490         vcpu_load(vcpu);
10491         kvm_sigset_activate(vcpu);
10492         kvm_run->flags = 0;
10493         kvm_load_guest_fpu(vcpu);
10494
10495         kvm_vcpu_srcu_read_lock(vcpu);
10496         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10497                 if (kvm_run->immediate_exit) {
10498                         r = -EINTR;
10499                         goto out;
10500                 }
10501                 /*
10502                  * It should be impossible for the hypervisor timer to be in
10503                  * use before KVM has ever run the vCPU.
10504                  */
10505                 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10506
10507                 kvm_vcpu_srcu_read_unlock(vcpu);
10508                 kvm_vcpu_block(vcpu);
10509                 kvm_vcpu_srcu_read_lock(vcpu);
10510
10511                 if (kvm_apic_accept_events(vcpu) < 0) {
10512                         r = 0;
10513                         goto out;
10514                 }
10515                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10516                 r = -EAGAIN;
10517                 if (signal_pending(current)) {
10518                         r = -EINTR;
10519                         kvm_run->exit_reason = KVM_EXIT_INTR;
10520                         ++vcpu->stat.signal_exits;
10521                 }
10522                 goto out;
10523         }
10524
10525         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10526             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10527                 r = -EINVAL;
10528                 goto out;
10529         }
10530
10531         if (kvm_run->kvm_dirty_regs) {
10532                 r = sync_regs(vcpu);
10533                 if (r != 0)
10534                         goto out;
10535         }
10536
10537         /* re-sync apic's tpr */
10538         if (!lapic_in_kernel(vcpu)) {
10539                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10540                         r = -EINVAL;
10541                         goto out;
10542                 }
10543         }
10544
10545         if (unlikely(vcpu->arch.complete_userspace_io)) {
10546                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10547                 vcpu->arch.complete_userspace_io = NULL;
10548                 r = cui(vcpu);
10549                 if (r <= 0)
10550                         goto out;
10551         } else
10552                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10553
10554         if (kvm_run->immediate_exit) {
10555                 r = -EINTR;
10556                 goto out;
10557         }
10558
10559         r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10560         if (r <= 0)
10561                 goto out;
10562
10563         r = vcpu_run(vcpu);
10564
10565 out:
10566         kvm_put_guest_fpu(vcpu);
10567         if (kvm_run->kvm_valid_regs)
10568                 store_regs(vcpu);
10569         post_kvm_run_save(vcpu);
10570         kvm_vcpu_srcu_read_unlock(vcpu);
10571
10572         kvm_sigset_deactivate(vcpu);
10573         vcpu_put(vcpu);
10574         return r;
10575 }
10576
10577 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10578 {
10579         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10580                 /*
10581                  * We are here if userspace calls get_regs() in the middle of
10582                  * instruction emulation. Registers state needs to be copied
10583                  * back from emulation context to vcpu. Userspace shouldn't do
10584                  * that usually, but some bad designed PV devices (vmware
10585                  * backdoor interface) need this to work
10586                  */
10587                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10588                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10589         }
10590         regs->rax = kvm_rax_read(vcpu);
10591         regs->rbx = kvm_rbx_read(vcpu);
10592         regs->rcx = kvm_rcx_read(vcpu);
10593         regs->rdx = kvm_rdx_read(vcpu);
10594         regs->rsi = kvm_rsi_read(vcpu);
10595         regs->rdi = kvm_rdi_read(vcpu);
10596         regs->rsp = kvm_rsp_read(vcpu);
10597         regs->rbp = kvm_rbp_read(vcpu);
10598 #ifdef CONFIG_X86_64
10599         regs->r8 = kvm_r8_read(vcpu);
10600         regs->r9 = kvm_r9_read(vcpu);
10601         regs->r10 = kvm_r10_read(vcpu);
10602         regs->r11 = kvm_r11_read(vcpu);
10603         regs->r12 = kvm_r12_read(vcpu);
10604         regs->r13 = kvm_r13_read(vcpu);
10605         regs->r14 = kvm_r14_read(vcpu);
10606         regs->r15 = kvm_r15_read(vcpu);
10607 #endif
10608
10609         regs->rip = kvm_rip_read(vcpu);
10610         regs->rflags = kvm_get_rflags(vcpu);
10611 }
10612
10613 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10614 {
10615         vcpu_load(vcpu);
10616         __get_regs(vcpu, regs);
10617         vcpu_put(vcpu);
10618         return 0;
10619 }
10620
10621 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10622 {
10623         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10624         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10625
10626         kvm_rax_write(vcpu, regs->rax);
10627         kvm_rbx_write(vcpu, regs->rbx);
10628         kvm_rcx_write(vcpu, regs->rcx);
10629         kvm_rdx_write(vcpu, regs->rdx);
10630         kvm_rsi_write(vcpu, regs->rsi);
10631         kvm_rdi_write(vcpu, regs->rdi);
10632         kvm_rsp_write(vcpu, regs->rsp);
10633         kvm_rbp_write(vcpu, regs->rbp);
10634 #ifdef CONFIG_X86_64
10635         kvm_r8_write(vcpu, regs->r8);
10636         kvm_r9_write(vcpu, regs->r9);
10637         kvm_r10_write(vcpu, regs->r10);
10638         kvm_r11_write(vcpu, regs->r11);
10639         kvm_r12_write(vcpu, regs->r12);
10640         kvm_r13_write(vcpu, regs->r13);
10641         kvm_r14_write(vcpu, regs->r14);
10642         kvm_r15_write(vcpu, regs->r15);
10643 #endif
10644
10645         kvm_rip_write(vcpu, regs->rip);
10646         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10647
10648         vcpu->arch.exception.pending = false;
10649
10650         kvm_make_request(KVM_REQ_EVENT, vcpu);
10651 }
10652
10653 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10654 {
10655         vcpu_load(vcpu);
10656         __set_regs(vcpu, regs);
10657         vcpu_put(vcpu);
10658         return 0;
10659 }
10660
10661 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10662 {
10663         struct desc_ptr dt;
10664
10665         if (vcpu->arch.guest_state_protected)
10666                 goto skip_protected_regs;
10667
10668         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10669         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10670         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10671         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10672         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10673         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10674
10675         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10676         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10677
10678         static_call(kvm_x86_get_idt)(vcpu, &dt);
10679         sregs->idt.limit = dt.size;
10680         sregs->idt.base = dt.address;
10681         static_call(kvm_x86_get_gdt)(vcpu, &dt);
10682         sregs->gdt.limit = dt.size;
10683         sregs->gdt.base = dt.address;
10684
10685         sregs->cr2 = vcpu->arch.cr2;
10686         sregs->cr3 = kvm_read_cr3(vcpu);
10687
10688 skip_protected_regs:
10689         sregs->cr0 = kvm_read_cr0(vcpu);
10690         sregs->cr4 = kvm_read_cr4(vcpu);
10691         sregs->cr8 = kvm_get_cr8(vcpu);
10692         sregs->efer = vcpu->arch.efer;
10693         sregs->apic_base = kvm_get_apic_base(vcpu);
10694 }
10695
10696 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10697 {
10698         __get_sregs_common(vcpu, sregs);
10699
10700         if (vcpu->arch.guest_state_protected)
10701                 return;
10702
10703         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10704                 set_bit(vcpu->arch.interrupt.nr,
10705                         (unsigned long *)sregs->interrupt_bitmap);
10706 }
10707
10708 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10709 {
10710         int i;
10711
10712         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10713
10714         if (vcpu->arch.guest_state_protected)
10715                 return;
10716
10717         if (is_pae_paging(vcpu)) {
10718                 for (i = 0 ; i < 4 ; i++)
10719                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10720                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10721         }
10722 }
10723
10724 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10725                                   struct kvm_sregs *sregs)
10726 {
10727         vcpu_load(vcpu);
10728         __get_sregs(vcpu, sregs);
10729         vcpu_put(vcpu);
10730         return 0;
10731 }
10732
10733 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10734                                     struct kvm_mp_state *mp_state)
10735 {
10736         int r;
10737
10738         vcpu_load(vcpu);
10739         if (kvm_mpx_supported())
10740                 kvm_load_guest_fpu(vcpu);
10741
10742         r = kvm_apic_accept_events(vcpu);
10743         if (r < 0)
10744                 goto out;
10745         r = 0;
10746
10747         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10748              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10749             vcpu->arch.pv.pv_unhalted)
10750                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10751         else
10752                 mp_state->mp_state = vcpu->arch.mp_state;
10753
10754 out:
10755         if (kvm_mpx_supported())
10756                 kvm_put_guest_fpu(vcpu);
10757         vcpu_put(vcpu);
10758         return r;
10759 }
10760
10761 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10762                                     struct kvm_mp_state *mp_state)
10763 {
10764         int ret = -EINVAL;
10765
10766         vcpu_load(vcpu);
10767
10768         if (!lapic_in_kernel(vcpu) &&
10769             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10770                 goto out;
10771
10772         /*
10773          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10774          * INIT state; latched init should be reported using
10775          * KVM_SET_VCPU_EVENTS, so reject it here.
10776          */
10777         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10778             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10779              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10780                 goto out;
10781
10782         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10783                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10784                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10785         } else
10786                 vcpu->arch.mp_state = mp_state->mp_state;
10787         kvm_make_request(KVM_REQ_EVENT, vcpu);
10788
10789         ret = 0;
10790 out:
10791         vcpu_put(vcpu);
10792         return ret;
10793 }
10794
10795 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10796                     int reason, bool has_error_code, u32 error_code)
10797 {
10798         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10799         int ret;
10800
10801         init_emulate_ctxt(vcpu);
10802
10803         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10804                                    has_error_code, error_code);
10805         if (ret) {
10806                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10807                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10808                 vcpu->run->internal.ndata = 0;
10809                 return 0;
10810         }
10811
10812         kvm_rip_write(vcpu, ctxt->eip);
10813         kvm_set_rflags(vcpu, ctxt->eflags);
10814         return 1;
10815 }
10816 EXPORT_SYMBOL_GPL(kvm_task_switch);
10817
10818 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10819 {
10820         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10821                 /*
10822                  * When EFER.LME and CR0.PG are set, the processor is in
10823                  * 64-bit mode (though maybe in a 32-bit code segment).
10824                  * CR4.PAE and EFER.LMA must be set.
10825                  */
10826                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10827                         return false;
10828                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10829                         return false;
10830         } else {
10831                 /*
10832                  * Not in 64-bit mode: EFER.LMA is clear and the code
10833                  * segment cannot be 64-bit.
10834                  */
10835                 if (sregs->efer & EFER_LMA || sregs->cs.l)
10836                         return false;
10837         }
10838
10839         return kvm_is_valid_cr4(vcpu, sregs->cr4);
10840 }
10841
10842 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10843                 int *mmu_reset_needed, bool update_pdptrs)
10844 {
10845         struct msr_data apic_base_msr;
10846         int idx;
10847         struct desc_ptr dt;
10848
10849         if (!kvm_is_valid_sregs(vcpu, sregs))
10850                 return -EINVAL;
10851
10852         apic_base_msr.data = sregs->apic_base;
10853         apic_base_msr.host_initiated = true;
10854         if (kvm_set_apic_base(vcpu, &apic_base_msr))
10855                 return -EINVAL;
10856
10857         if (vcpu->arch.guest_state_protected)
10858                 return 0;
10859
10860         dt.size = sregs->idt.limit;
10861         dt.address = sregs->idt.base;
10862         static_call(kvm_x86_set_idt)(vcpu, &dt);
10863         dt.size = sregs->gdt.limit;
10864         dt.address = sregs->gdt.base;
10865         static_call(kvm_x86_set_gdt)(vcpu, &dt);
10866
10867         vcpu->arch.cr2 = sregs->cr2;
10868         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10869         vcpu->arch.cr3 = sregs->cr3;
10870         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10871         static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
10872
10873         kvm_set_cr8(vcpu, sregs->cr8);
10874
10875         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10876         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10877
10878         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10879         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10880         vcpu->arch.cr0 = sregs->cr0;
10881
10882         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10883         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10884
10885         if (update_pdptrs) {
10886                 idx = srcu_read_lock(&vcpu->kvm->srcu);
10887                 if (is_pae_paging(vcpu)) {
10888                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
10889                         *mmu_reset_needed = 1;
10890                 }
10891                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10892         }
10893
10894         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10895         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10896         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10897         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10898         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10899         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10900
10901         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10902         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10903
10904         update_cr8_intercept(vcpu);
10905
10906         /* Older userspace won't unhalt the vcpu on reset. */
10907         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10908             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10909             !is_protmode(vcpu))
10910                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10911
10912         return 0;
10913 }
10914
10915 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10916 {
10917         int pending_vec, max_bits;
10918         int mmu_reset_needed = 0;
10919         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10920
10921         if (ret)
10922                 return ret;
10923
10924         if (mmu_reset_needed)
10925                 kvm_mmu_reset_context(vcpu);
10926
10927         max_bits = KVM_NR_INTERRUPTS;
10928         pending_vec = find_first_bit(
10929                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10930
10931         if (pending_vec < max_bits) {
10932                 kvm_queue_interrupt(vcpu, pending_vec, false);
10933                 pr_debug("Set back pending irq %d\n", pending_vec);
10934                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10935         }
10936         return 0;
10937 }
10938
10939 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10940 {
10941         int mmu_reset_needed = 0;
10942         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10943         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10944                 !(sregs2->efer & EFER_LMA);
10945         int i, ret;
10946
10947         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10948                 return -EINVAL;
10949
10950         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10951                 return -EINVAL;
10952
10953         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10954                                  &mmu_reset_needed, !valid_pdptrs);
10955         if (ret)
10956                 return ret;
10957
10958         if (valid_pdptrs) {
10959                 for (i = 0; i < 4 ; i++)
10960                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10961
10962                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10963                 mmu_reset_needed = 1;
10964                 vcpu->arch.pdptrs_from_userspace = true;
10965         }
10966         if (mmu_reset_needed)
10967                 kvm_mmu_reset_context(vcpu);
10968         return 0;
10969 }
10970
10971 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10972                                   struct kvm_sregs *sregs)
10973 {
10974         int ret;
10975
10976         vcpu_load(vcpu);
10977         ret = __set_sregs(vcpu, sregs);
10978         vcpu_put(vcpu);
10979         return ret;
10980 }
10981
10982 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
10983 {
10984         bool set = false;
10985         struct kvm_vcpu *vcpu;
10986         unsigned long i;
10987
10988         if (!enable_apicv)
10989                 return;
10990
10991         down_write(&kvm->arch.apicv_update_lock);
10992
10993         kvm_for_each_vcpu(i, vcpu, kvm) {
10994                 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
10995                         set = true;
10996                         break;
10997                 }
10998         }
10999         __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11000         up_write(&kvm->arch.apicv_update_lock);
11001 }
11002
11003 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11004                                         struct kvm_guest_debug *dbg)
11005 {
11006         unsigned long rflags;
11007         int i, r;
11008
11009         if (vcpu->arch.guest_state_protected)
11010                 return -EINVAL;
11011
11012         vcpu_load(vcpu);
11013
11014         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11015                 r = -EBUSY;
11016                 if (vcpu->arch.exception.pending)
11017                         goto out;
11018                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11019                         kvm_queue_exception(vcpu, DB_VECTOR);
11020                 else
11021                         kvm_queue_exception(vcpu, BP_VECTOR);
11022         }
11023
11024         /*
11025          * Read rflags as long as potentially injected trace flags are still
11026          * filtered out.
11027          */
11028         rflags = kvm_get_rflags(vcpu);
11029
11030         vcpu->guest_debug = dbg->control;
11031         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11032                 vcpu->guest_debug = 0;
11033
11034         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11035                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11036                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11037                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11038         } else {
11039                 for (i = 0; i < KVM_NR_DB_REGS; i++)
11040                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11041         }
11042         kvm_update_dr7(vcpu);
11043
11044         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11045                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11046
11047         /*
11048          * Trigger an rflags update that will inject or remove the trace
11049          * flags.
11050          */
11051         kvm_set_rflags(vcpu, rflags);
11052
11053         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11054
11055         kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11056
11057         r = 0;
11058
11059 out:
11060         vcpu_put(vcpu);
11061         return r;
11062 }
11063
11064 /*
11065  * Translate a guest virtual address to a guest physical address.
11066  */
11067 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11068                                     struct kvm_translation *tr)
11069 {
11070         unsigned long vaddr = tr->linear_address;
11071         gpa_t gpa;
11072         int idx;
11073
11074         vcpu_load(vcpu);
11075
11076         idx = srcu_read_lock(&vcpu->kvm->srcu);
11077         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11078         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11079         tr->physical_address = gpa;
11080         tr->valid = gpa != UNMAPPED_GVA;
11081         tr->writeable = 1;
11082         tr->usermode = 0;
11083
11084         vcpu_put(vcpu);
11085         return 0;
11086 }
11087
11088 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11089 {
11090         struct fxregs_state *fxsave;
11091
11092         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11093                 return 0;
11094
11095         vcpu_load(vcpu);
11096
11097         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11098         memcpy(fpu->fpr, fxsave->st_space, 128);
11099         fpu->fcw = fxsave->cwd;
11100         fpu->fsw = fxsave->swd;
11101         fpu->ftwx = fxsave->twd;
11102         fpu->last_opcode = fxsave->fop;
11103         fpu->last_ip = fxsave->rip;
11104         fpu->last_dp = fxsave->rdp;
11105         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11106
11107         vcpu_put(vcpu);
11108         return 0;
11109 }
11110
11111 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11112 {
11113         struct fxregs_state *fxsave;
11114
11115         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11116                 return 0;
11117
11118         vcpu_load(vcpu);
11119
11120         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11121
11122         memcpy(fxsave->st_space, fpu->fpr, 128);
11123         fxsave->cwd = fpu->fcw;
11124         fxsave->swd = fpu->fsw;
11125         fxsave->twd = fpu->ftwx;
11126         fxsave->fop = fpu->last_opcode;
11127         fxsave->rip = fpu->last_ip;
11128         fxsave->rdp = fpu->last_dp;
11129         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11130
11131         vcpu_put(vcpu);
11132         return 0;
11133 }
11134
11135 static void store_regs(struct kvm_vcpu *vcpu)
11136 {
11137         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11138
11139         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11140                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11141
11142         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11143                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11144
11145         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11146                 kvm_vcpu_ioctl_x86_get_vcpu_events(
11147                                 vcpu, &vcpu->run->s.regs.events);
11148 }
11149
11150 static int sync_regs(struct kvm_vcpu *vcpu)
11151 {
11152         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11153                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11154                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11155         }
11156         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11157                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11158                         return -EINVAL;
11159                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11160         }
11161         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11162                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11163                                 vcpu, &vcpu->run->s.regs.events))
11164                         return -EINVAL;
11165                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11166         }
11167
11168         return 0;
11169 }
11170
11171 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11172 {
11173         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
11174                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11175                              "guest TSC will not be reliable\n");
11176
11177         return 0;
11178 }
11179
11180 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11181 {
11182         struct page *page;
11183         int r;
11184
11185         vcpu->arch.last_vmentry_cpu = -1;
11186         vcpu->arch.regs_avail = ~0;
11187         vcpu->arch.regs_dirty = ~0;
11188
11189         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11190                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11191         else
11192                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11193
11194         r = kvm_mmu_create(vcpu);
11195         if (r < 0)
11196                 return r;
11197
11198         if (irqchip_in_kernel(vcpu->kvm)) {
11199                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11200                 if (r < 0)
11201                         goto fail_mmu_destroy;
11202
11203                 /*
11204                  * Defer evaluating inhibits until the vCPU is first run, as
11205                  * this vCPU will not get notified of any changes until this
11206                  * vCPU is visible to other vCPUs (marked online and added to
11207                  * the set of vCPUs).  Opportunistically mark APICv active as
11208                  * VMX in particularly is highly unlikely to have inhibits.
11209                  * Ignore the current per-VM APICv state so that vCPU creation
11210                  * is guaranteed to run with a deterministic value, the request
11211                  * will ensure the vCPU gets the correct state before VM-Entry.
11212                  */
11213                 if (enable_apicv) {
11214                         vcpu->arch.apicv_active = true;
11215                         kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11216                 }
11217         } else
11218                 static_branch_inc(&kvm_has_noapic_vcpu);
11219
11220         r = -ENOMEM;
11221
11222         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11223         if (!page)
11224                 goto fail_free_lapic;
11225         vcpu->arch.pio_data = page_address(page);
11226
11227         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11228                                        GFP_KERNEL_ACCOUNT);
11229         if (!vcpu->arch.mce_banks)
11230                 goto fail_free_pio_data;
11231         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11232
11233         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11234                                 GFP_KERNEL_ACCOUNT))
11235                 goto fail_free_mce_banks;
11236
11237         if (!alloc_emulate_ctxt(vcpu))
11238                 goto free_wbinvd_dirty_mask;
11239
11240         if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11241                 pr_err("kvm: failed to allocate vcpu's fpu\n");
11242                 goto free_emulate_ctxt;
11243         }
11244
11245         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11246         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11247
11248         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11249
11250         kvm_async_pf_hash_reset(vcpu);
11251         kvm_pmu_init(vcpu);
11252
11253         vcpu->arch.pending_external_vector = -1;
11254         vcpu->arch.preempted_in_kernel = false;
11255
11256 #if IS_ENABLED(CONFIG_HYPERV)
11257         vcpu->arch.hv_root_tdp = INVALID_PAGE;
11258 #endif
11259
11260         r = static_call(kvm_x86_vcpu_create)(vcpu);
11261         if (r)
11262                 goto free_guest_fpu;
11263
11264         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11265         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11266         kvm_vcpu_mtrr_init(vcpu);
11267         vcpu_load(vcpu);
11268         kvm_set_tsc_khz(vcpu, max_tsc_khz);
11269         kvm_vcpu_reset(vcpu, false);
11270         kvm_init_mmu(vcpu);
11271         vcpu_put(vcpu);
11272         return 0;
11273
11274 free_guest_fpu:
11275         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11276 free_emulate_ctxt:
11277         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11278 free_wbinvd_dirty_mask:
11279         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11280 fail_free_mce_banks:
11281         kfree(vcpu->arch.mce_banks);
11282 fail_free_pio_data:
11283         free_page((unsigned long)vcpu->arch.pio_data);
11284 fail_free_lapic:
11285         kvm_free_lapic(vcpu);
11286 fail_mmu_destroy:
11287         kvm_mmu_destroy(vcpu);
11288         return r;
11289 }
11290
11291 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11292 {
11293         struct kvm *kvm = vcpu->kvm;
11294
11295         if (mutex_lock_killable(&vcpu->mutex))
11296                 return;
11297         vcpu_load(vcpu);
11298         kvm_synchronize_tsc(vcpu, 0);
11299         vcpu_put(vcpu);
11300
11301         /* poll control enabled by default */
11302         vcpu->arch.msr_kvm_poll_control = 1;
11303
11304         mutex_unlock(&vcpu->mutex);
11305
11306         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11307                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11308                                                 KVMCLOCK_SYNC_PERIOD);
11309 }
11310
11311 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11312 {
11313         int idx;
11314
11315         kvmclock_reset(vcpu);
11316
11317         static_call(kvm_x86_vcpu_free)(vcpu);
11318
11319         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11320         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11321         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11322
11323         kvm_hv_vcpu_uninit(vcpu);
11324         kvm_pmu_destroy(vcpu);
11325         kfree(vcpu->arch.mce_banks);
11326         kvm_free_lapic(vcpu);
11327         idx = srcu_read_lock(&vcpu->kvm->srcu);
11328         kvm_mmu_destroy(vcpu);
11329         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11330         free_page((unsigned long)vcpu->arch.pio_data);
11331         kvfree(vcpu->arch.cpuid_entries);
11332         if (!lapic_in_kernel(vcpu))
11333                 static_branch_dec(&kvm_has_noapic_vcpu);
11334 }
11335
11336 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11337 {
11338         struct kvm_cpuid_entry2 *cpuid_0x1;
11339         unsigned long old_cr0 = kvm_read_cr0(vcpu);
11340         unsigned long new_cr0;
11341
11342         /*
11343          * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11344          * to handle side effects.  RESET emulation hits those flows and relies
11345          * on emulated/virtualized registers, including those that are loaded
11346          * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11347          * to detect improper or missing initialization.
11348          */
11349         WARN_ON_ONCE(!init_event &&
11350                      (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11351
11352         kvm_lapic_reset(vcpu, init_event);
11353
11354         vcpu->arch.hflags = 0;
11355
11356         vcpu->arch.smi_pending = 0;
11357         vcpu->arch.smi_count = 0;
11358         atomic_set(&vcpu->arch.nmi_queued, 0);
11359         vcpu->arch.nmi_pending = 0;
11360         vcpu->arch.nmi_injected = false;
11361         kvm_clear_interrupt_queue(vcpu);
11362         kvm_clear_exception_queue(vcpu);
11363
11364         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11365         kvm_update_dr0123(vcpu);
11366         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11367         vcpu->arch.dr7 = DR7_FIXED_1;
11368         kvm_update_dr7(vcpu);
11369
11370         vcpu->arch.cr2 = 0;
11371
11372         kvm_make_request(KVM_REQ_EVENT, vcpu);
11373         vcpu->arch.apf.msr_en_val = 0;
11374         vcpu->arch.apf.msr_int_val = 0;
11375         vcpu->arch.st.msr_val = 0;
11376
11377         kvmclock_reset(vcpu);
11378
11379         kvm_clear_async_pf_completion_queue(vcpu);
11380         kvm_async_pf_hash_reset(vcpu);
11381         vcpu->arch.apf.halted = false;
11382
11383         if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11384                 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11385
11386                 /*
11387                  * To avoid have the INIT path from kvm_apic_has_events() that be
11388                  * called with loaded FPU and does not let userspace fix the state.
11389                  */
11390                 if (init_event)
11391                         kvm_put_guest_fpu(vcpu);
11392
11393                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11394                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11395
11396                 if (init_event)
11397                         kvm_load_guest_fpu(vcpu);
11398         }
11399
11400         if (!init_event) {
11401                 kvm_pmu_reset(vcpu);
11402                 vcpu->arch.smbase = 0x30000;
11403
11404                 vcpu->arch.msr_misc_features_enables = 0;
11405
11406                 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11407                 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11408         }
11409
11410         /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11411         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11412         kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11413
11414         /*
11415          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11416          * if no CPUID match is found.  Note, it's impossible to get a match at
11417          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11418          * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11419          * on RESET.  But, go through the motions in case that's ever remedied.
11420          */
11421         cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11422         kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11423
11424         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11425
11426         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11427         kvm_rip_write(vcpu, 0xfff0);
11428
11429         vcpu->arch.cr3 = 0;
11430         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11431
11432         /*
11433          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11434          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11435          * (or qualify) that with a footnote stating that CD/NW are preserved.
11436          */
11437         new_cr0 = X86_CR0_ET;
11438         if (init_event)
11439                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11440         else
11441                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11442
11443         static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11444         static_call(kvm_x86_set_cr4)(vcpu, 0);
11445         static_call(kvm_x86_set_efer)(vcpu, 0);
11446         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11447
11448         /*
11449          * On the standard CR0/CR4/EFER modification paths, there are several
11450          * complex conditions determining whether the MMU has to be reset and/or
11451          * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11452          * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11453          * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11454          * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11455          */
11456         if (old_cr0 & X86_CR0_PG) {
11457                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11458                 kvm_mmu_reset_context(vcpu);
11459         }
11460
11461         /*
11462          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11463          * APM states the TLBs are untouched by INIT, but it also states that
11464          * the TLBs are flushed on "External initialization of the processor."
11465          * Flush the guest TLB regardless of vendor, there is no meaningful
11466          * benefit in relying on the guest to flush the TLB immediately after
11467          * INIT.  A spurious TLB flush is benign and likely negligible from a
11468          * performance perspective.
11469          */
11470         if (init_event)
11471                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11472 }
11473 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11474
11475 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11476 {
11477         struct kvm_segment cs;
11478
11479         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11480         cs.selector = vector << 8;
11481         cs.base = vector << 12;
11482         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11483         kvm_rip_write(vcpu, 0);
11484 }
11485 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11486
11487 int kvm_arch_hardware_enable(void)
11488 {
11489         struct kvm *kvm;
11490         struct kvm_vcpu *vcpu;
11491         unsigned long i;
11492         int ret;
11493         u64 local_tsc;
11494         u64 max_tsc = 0;
11495         bool stable, backwards_tsc = false;
11496
11497         kvm_user_return_msr_cpu_online();
11498         ret = static_call(kvm_x86_hardware_enable)();
11499         if (ret != 0)
11500                 return ret;
11501
11502         local_tsc = rdtsc();
11503         stable = !kvm_check_tsc_unstable();
11504         list_for_each_entry(kvm, &vm_list, vm_list) {
11505                 kvm_for_each_vcpu(i, vcpu, kvm) {
11506                         if (!stable && vcpu->cpu == smp_processor_id())
11507                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11508                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11509                                 backwards_tsc = true;
11510                                 if (vcpu->arch.last_host_tsc > max_tsc)
11511                                         max_tsc = vcpu->arch.last_host_tsc;
11512                         }
11513                 }
11514         }
11515
11516         /*
11517          * Sometimes, even reliable TSCs go backwards.  This happens on
11518          * platforms that reset TSC during suspend or hibernate actions, but
11519          * maintain synchronization.  We must compensate.  Fortunately, we can
11520          * detect that condition here, which happens early in CPU bringup,
11521          * before any KVM threads can be running.  Unfortunately, we can't
11522          * bring the TSCs fully up to date with real time, as we aren't yet far
11523          * enough into CPU bringup that we know how much real time has actually
11524          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11525          * variables that haven't been updated yet.
11526          *
11527          * So we simply find the maximum observed TSC above, then record the
11528          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11529          * the adjustment will be applied.  Note that we accumulate
11530          * adjustments, in case multiple suspend cycles happen before some VCPU
11531          * gets a chance to run again.  In the event that no KVM threads get a
11532          * chance to run, we will miss the entire elapsed period, as we'll have
11533          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11534          * loose cycle time.  This isn't too big a deal, since the loss will be
11535          * uniform across all VCPUs (not to mention the scenario is extremely
11536          * unlikely). It is possible that a second hibernate recovery happens
11537          * much faster than a first, causing the observed TSC here to be
11538          * smaller; this would require additional padding adjustment, which is
11539          * why we set last_host_tsc to the local tsc observed here.
11540          *
11541          * N.B. - this code below runs only on platforms with reliable TSC,
11542          * as that is the only way backwards_tsc is set above.  Also note
11543          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11544          * have the same delta_cyc adjustment applied if backwards_tsc
11545          * is detected.  Note further, this adjustment is only done once,
11546          * as we reset last_host_tsc on all VCPUs to stop this from being
11547          * called multiple times (one for each physical CPU bringup).
11548          *
11549          * Platforms with unreliable TSCs don't have to deal with this, they
11550          * will be compensated by the logic in vcpu_load, which sets the TSC to
11551          * catchup mode.  This will catchup all VCPUs to real time, but cannot
11552          * guarantee that they stay in perfect synchronization.
11553          */
11554         if (backwards_tsc) {
11555                 u64 delta_cyc = max_tsc - local_tsc;
11556                 list_for_each_entry(kvm, &vm_list, vm_list) {
11557                         kvm->arch.backwards_tsc_observed = true;
11558                         kvm_for_each_vcpu(i, vcpu, kvm) {
11559                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11560                                 vcpu->arch.last_host_tsc = local_tsc;
11561                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11562                         }
11563
11564                         /*
11565                          * We have to disable TSC offset matching.. if you were
11566                          * booting a VM while issuing an S4 host suspend....
11567                          * you may have some problem.  Solving this issue is
11568                          * left as an exercise to the reader.
11569                          */
11570                         kvm->arch.last_tsc_nsec = 0;
11571                         kvm->arch.last_tsc_write = 0;
11572                 }
11573
11574         }
11575         return 0;
11576 }
11577
11578 void kvm_arch_hardware_disable(void)
11579 {
11580         static_call(kvm_x86_hardware_disable)();
11581         drop_user_return_notifiers();
11582 }
11583
11584 int kvm_arch_hardware_setup(void *opaque)
11585 {
11586         struct kvm_x86_init_ops *ops = opaque;
11587         int r;
11588
11589         rdmsrl_safe(MSR_EFER, &host_efer);
11590
11591         if (boot_cpu_has(X86_FEATURE_XSAVES))
11592                 rdmsrl(MSR_IA32_XSS, host_xss);
11593
11594         r = ops->hardware_setup();
11595         if (r != 0)
11596                 return r;
11597
11598         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11599         kvm_ops_static_call_update();
11600
11601         kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11602
11603         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11604                 supported_xss = 0;
11605
11606 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11607         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11608 #undef __kvm_cpu_cap_has
11609
11610         if (kvm_has_tsc_control) {
11611                 /*
11612                  * Make sure the user can only configure tsc_khz values that
11613                  * fit into a signed integer.
11614                  * A min value is not calculated because it will always
11615                  * be 1 on all machines.
11616                  */
11617                 u64 max = min(0x7fffffffULL,
11618                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11619                 kvm_max_guest_tsc_khz = max;
11620         }
11621         kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11622         kvm_init_msr_list();
11623         return 0;
11624 }
11625
11626 void kvm_arch_hardware_unsetup(void)
11627 {
11628         kvm_unregister_perf_callbacks();
11629
11630         static_call(kvm_x86_hardware_unsetup)();
11631 }
11632
11633 int kvm_arch_check_processor_compat(void *opaque)
11634 {
11635         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11636         struct kvm_x86_init_ops *ops = opaque;
11637
11638         WARN_ON(!irqs_disabled());
11639
11640         if (__cr4_reserved_bits(cpu_has, c) !=
11641             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11642                 return -EIO;
11643
11644         return ops->check_processor_compatibility();
11645 }
11646
11647 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11648 {
11649         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11650 }
11651 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11652
11653 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11654 {
11655         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11656 }
11657
11658 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11659 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11660
11661 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11662 {
11663         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11664
11665         vcpu->arch.l1tf_flush_l1d = true;
11666         if (pmu->version && unlikely(pmu->event_count)) {
11667                 pmu->need_cleanup = true;
11668                 kvm_make_request(KVM_REQ_PMU, vcpu);
11669         }
11670         static_call(kvm_x86_sched_in)(vcpu, cpu);
11671 }
11672
11673 void kvm_arch_free_vm(struct kvm *kvm)
11674 {
11675         kfree(to_kvm_hv(kvm)->hv_pa_pg);
11676         __kvm_arch_free_vm(kvm);
11677 }
11678
11679
11680 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11681 {
11682         int ret;
11683         unsigned long flags;
11684
11685         if (type)
11686                 return -EINVAL;
11687
11688         ret = kvm_page_track_init(kvm);
11689         if (ret)
11690                 goto out;
11691
11692         ret = kvm_mmu_init_vm(kvm);
11693         if (ret)
11694                 goto out_page_track;
11695
11696         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11697         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11698         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11699
11700         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11701         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11702         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11703         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11704                 &kvm->arch.irq_sources_bitmap);
11705
11706         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11707         mutex_init(&kvm->arch.apic_map_lock);
11708         seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11709         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11710
11711         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11712         pvclock_update_vm_gtod_copy(kvm);
11713         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11714
11715         kvm->arch.guest_can_read_msr_platform_info = true;
11716         kvm->arch.enable_pmu = enable_pmu;
11717
11718 #if IS_ENABLED(CONFIG_HYPERV)
11719         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11720         kvm->arch.hv_root_tdp = INVALID_PAGE;
11721 #endif
11722
11723         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11724         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11725
11726         kvm_apicv_init(kvm);
11727         kvm_hv_init_vm(kvm);
11728         kvm_xen_init_vm(kvm);
11729
11730         return static_call(kvm_x86_vm_init)(kvm);
11731
11732 out_page_track:
11733         kvm_page_track_cleanup(kvm);
11734 out:
11735         return ret;
11736 }
11737
11738 int kvm_arch_post_init_vm(struct kvm *kvm)
11739 {
11740         return kvm_mmu_post_init_vm(kvm);
11741 }
11742
11743 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11744 {
11745         vcpu_load(vcpu);
11746         kvm_mmu_unload(vcpu);
11747         vcpu_put(vcpu);
11748 }
11749
11750 static void kvm_free_vcpus(struct kvm *kvm)
11751 {
11752         unsigned long i;
11753         struct kvm_vcpu *vcpu;
11754
11755         /*
11756          * Unpin any mmu pages first.
11757          */
11758         kvm_for_each_vcpu(i, vcpu, kvm) {
11759                 kvm_clear_async_pf_completion_queue(vcpu);
11760                 kvm_unload_vcpu_mmu(vcpu);
11761         }
11762
11763         kvm_destroy_vcpus(kvm);
11764 }
11765
11766 void kvm_arch_sync_events(struct kvm *kvm)
11767 {
11768         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11769         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11770         kvm_free_pit(kvm);
11771 }
11772
11773 /**
11774  * __x86_set_memory_region: Setup KVM internal memory slot
11775  *
11776  * @kvm: the kvm pointer to the VM.
11777  * @id: the slot ID to setup.
11778  * @gpa: the GPA to install the slot (unused when @size == 0).
11779  * @size: the size of the slot. Set to zero to uninstall a slot.
11780  *
11781  * This function helps to setup a KVM internal memory slot.  Specify
11782  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11783  * slot.  The return code can be one of the following:
11784  *
11785  *   HVA:           on success (uninstall will return a bogus HVA)
11786  *   -errno:        on error
11787  *
11788  * The caller should always use IS_ERR() to check the return value
11789  * before use.  Note, the KVM internal memory slots are guaranteed to
11790  * remain valid and unchanged until the VM is destroyed, i.e., the
11791  * GPA->HVA translation will not change.  However, the HVA is a user
11792  * address, i.e. its accessibility is not guaranteed, and must be
11793  * accessed via __copy_{to,from}_user().
11794  */
11795 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11796                                       u32 size)
11797 {
11798         int i, r;
11799         unsigned long hva, old_npages;
11800         struct kvm_memslots *slots = kvm_memslots(kvm);
11801         struct kvm_memory_slot *slot;
11802
11803         /* Called with kvm->slots_lock held.  */
11804         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11805                 return ERR_PTR_USR(-EINVAL);
11806
11807         slot = id_to_memslot(slots, id);
11808         if (size) {
11809                 if (slot && slot->npages)
11810                         return ERR_PTR_USR(-EEXIST);
11811
11812                 /*
11813                  * MAP_SHARED to prevent internal slot pages from being moved
11814                  * by fork()/COW.
11815                  */
11816                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11817                               MAP_SHARED | MAP_ANONYMOUS, 0);
11818                 if (IS_ERR((void *)hva))
11819                         return (void __user *)hva;
11820         } else {
11821                 if (!slot || !slot->npages)
11822                         return NULL;
11823
11824                 old_npages = slot->npages;
11825                 hva = slot->userspace_addr;
11826         }
11827
11828         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11829                 struct kvm_userspace_memory_region m;
11830
11831                 m.slot = id | (i << 16);
11832                 m.flags = 0;
11833                 m.guest_phys_addr = gpa;
11834                 m.userspace_addr = hva;
11835                 m.memory_size = size;
11836                 r = __kvm_set_memory_region(kvm, &m);
11837                 if (r < 0)
11838                         return ERR_PTR_USR(r);
11839         }
11840
11841         if (!size)
11842                 vm_munmap(hva, old_npages * PAGE_SIZE);
11843
11844         return (void __user *)hva;
11845 }
11846 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11847
11848 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11849 {
11850         kvm_mmu_pre_destroy_vm(kvm);
11851 }
11852
11853 void kvm_arch_destroy_vm(struct kvm *kvm)
11854 {
11855         if (current->mm == kvm->mm) {
11856                 /*
11857                  * Free memory regions allocated on behalf of userspace,
11858                  * unless the the memory map has changed due to process exit
11859                  * or fd copying.
11860                  */
11861                 mutex_lock(&kvm->slots_lock);
11862                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11863                                         0, 0);
11864                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11865                                         0, 0);
11866                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11867                 mutex_unlock(&kvm->slots_lock);
11868         }
11869         static_call_cond(kvm_x86_vm_destroy)(kvm);
11870         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11871         kvm_pic_destroy(kvm);
11872         kvm_ioapic_destroy(kvm);
11873         kvm_free_vcpus(kvm);
11874         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11875         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11876         kvm_mmu_uninit_vm(kvm);
11877         kvm_page_track_cleanup(kvm);
11878         kvm_xen_destroy_vm(kvm);
11879         kvm_hv_destroy_vm(kvm);
11880 }
11881
11882 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11883 {
11884         int i;
11885
11886         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11887                 kvfree(slot->arch.rmap[i]);
11888                 slot->arch.rmap[i] = NULL;
11889         }
11890 }
11891
11892 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11893 {
11894         int i;
11895
11896         memslot_rmap_free(slot);
11897
11898         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11899                 kvfree(slot->arch.lpage_info[i - 1]);
11900                 slot->arch.lpage_info[i - 1] = NULL;
11901         }
11902
11903         kvm_page_track_free_memslot(slot);
11904 }
11905
11906 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
11907 {
11908         const int sz = sizeof(*slot->arch.rmap[0]);
11909         int i;
11910
11911         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11912                 int level = i + 1;
11913                 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11914
11915                 if (slot->arch.rmap[i])
11916                         continue;
11917
11918                 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11919                 if (!slot->arch.rmap[i]) {
11920                         memslot_rmap_free(slot);
11921                         return -ENOMEM;
11922                 }
11923         }
11924
11925         return 0;
11926 }
11927
11928 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11929                                       struct kvm_memory_slot *slot)
11930 {
11931         unsigned long npages = slot->npages;
11932         int i, r;
11933
11934         /*
11935          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
11936          * old arrays will be freed by __kvm_set_memory_region() if installing
11937          * the new memslot is successful.
11938          */
11939         memset(&slot->arch, 0, sizeof(slot->arch));
11940
11941         if (kvm_memslots_have_rmaps(kvm)) {
11942                 r = memslot_rmap_alloc(slot, npages);
11943                 if (r)
11944                         return r;
11945         }
11946
11947         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11948                 struct kvm_lpage_info *linfo;
11949                 unsigned long ugfn;
11950                 int lpages;
11951                 int level = i + 1;
11952
11953                 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11954
11955                 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11956                 if (!linfo)
11957                         goto out_free;
11958
11959                 slot->arch.lpage_info[i - 1] = linfo;
11960
11961                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11962                         linfo[0].disallow_lpage = 1;
11963                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11964                         linfo[lpages - 1].disallow_lpage = 1;
11965                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11966                 /*
11967                  * If the gfn and userspace address are not aligned wrt each
11968                  * other, disable large page support for this slot.
11969                  */
11970                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11971                         unsigned long j;
11972
11973                         for (j = 0; j < lpages; ++j)
11974                                 linfo[j].disallow_lpage = 1;
11975                 }
11976         }
11977
11978         if (kvm_page_track_create_memslot(kvm, slot, npages))
11979                 goto out_free;
11980
11981         return 0;
11982
11983 out_free:
11984         memslot_rmap_free(slot);
11985
11986         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11987                 kvfree(slot->arch.lpage_info[i - 1]);
11988                 slot->arch.lpage_info[i - 1] = NULL;
11989         }
11990         return -ENOMEM;
11991 }
11992
11993 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11994 {
11995         struct kvm_vcpu *vcpu;
11996         unsigned long i;
11997
11998         /*
11999          * memslots->generation has been incremented.
12000          * mmio generation may have reached its maximum value.
12001          */
12002         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12003
12004         /* Force re-initialization of steal_time cache */
12005         kvm_for_each_vcpu(i, vcpu, kvm)
12006                 kvm_vcpu_kick(vcpu);
12007 }
12008
12009 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12010                                    const struct kvm_memory_slot *old,
12011                                    struct kvm_memory_slot *new,
12012                                    enum kvm_mr_change change)
12013 {
12014         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12015                 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12016                         return -EINVAL;
12017
12018                 return kvm_alloc_memslot_metadata(kvm, new);
12019         }
12020
12021         if (change == KVM_MR_FLAGS_ONLY)
12022                 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12023         else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12024                 return -EIO;
12025
12026         return 0;
12027 }
12028
12029
12030 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12031 {
12032         struct kvm_arch *ka = &kvm->arch;
12033
12034         if (!kvm_x86_ops.cpu_dirty_log_size)
12035                 return;
12036
12037         if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12038             (!enable && --ka->cpu_dirty_logging_count == 0))
12039                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12040
12041         WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12042 }
12043
12044 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12045                                      struct kvm_memory_slot *old,
12046                                      const struct kvm_memory_slot *new,
12047                                      enum kvm_mr_change change)
12048 {
12049         u32 old_flags = old ? old->flags : 0;
12050         u32 new_flags = new ? new->flags : 0;
12051         bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12052
12053         /*
12054          * Update CPU dirty logging if dirty logging is being toggled.  This
12055          * applies to all operations.
12056          */
12057         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12058                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12059
12060         /*
12061          * Nothing more to do for RO slots (which can't be dirtied and can't be
12062          * made writable) or CREATE/MOVE/DELETE of a slot.
12063          *
12064          * For a memslot with dirty logging disabled:
12065          * CREATE:      No dirty mappings will already exist.
12066          * MOVE/DELETE: The old mappings will already have been cleaned up by
12067          *              kvm_arch_flush_shadow_memslot()
12068          *
12069          * For a memslot with dirty logging enabled:
12070          * CREATE:      No shadow pages exist, thus nothing to write-protect
12071          *              and no dirty bits to clear.
12072          * MOVE/DELETE: The old mappings will already have been cleaned up by
12073          *              kvm_arch_flush_shadow_memslot().
12074          */
12075         if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12076                 return;
12077
12078         /*
12079          * READONLY and non-flags changes were filtered out above, and the only
12080          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12081          * logging isn't being toggled on or off.
12082          */
12083         if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12084                 return;
12085
12086         if (!log_dirty_pages) {
12087                 /*
12088                  * Dirty logging tracks sptes in 4k granularity, meaning that
12089                  * large sptes have to be split.  If live migration succeeds,
12090                  * the guest in the source machine will be destroyed and large
12091                  * sptes will be created in the destination.  However, if the
12092                  * guest continues to run in the source machine (for example if
12093                  * live migration fails), small sptes will remain around and
12094                  * cause bad performance.
12095                  *
12096                  * Scan sptes if dirty logging has been stopped, dropping those
12097                  * which can be collapsed into a single large-page spte.  Later
12098                  * page faults will create the large-page sptes.
12099                  */
12100                 kvm_mmu_zap_collapsible_sptes(kvm, new);
12101         } else {
12102                 /*
12103                  * Initially-all-set does not require write protecting any page,
12104                  * because they're all assumed to be dirty.
12105                  */
12106                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12107                         return;
12108
12109                 if (READ_ONCE(eager_page_split))
12110                         kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12111
12112                 if (kvm_x86_ops.cpu_dirty_log_size) {
12113                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12114                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12115                 } else {
12116                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12117                 }
12118         }
12119 }
12120
12121 void kvm_arch_commit_memory_region(struct kvm *kvm,
12122                                 struct kvm_memory_slot *old,
12123                                 const struct kvm_memory_slot *new,
12124                                 enum kvm_mr_change change)
12125 {
12126         if (!kvm->arch.n_requested_mmu_pages &&
12127             (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12128                 unsigned long nr_mmu_pages;
12129
12130                 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12131                 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12132                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12133         }
12134
12135         kvm_mmu_slot_apply_flags(kvm, old, new, change);
12136
12137         /* Free the arrays associated with the old memslot. */
12138         if (change == KVM_MR_MOVE)
12139                 kvm_arch_free_memslot(kvm, old);
12140 }
12141
12142 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12143 {
12144         kvm_mmu_zap_all(kvm);
12145 }
12146
12147 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12148                                    struct kvm_memory_slot *slot)
12149 {
12150         kvm_page_track_flush_slot(kvm, slot);
12151 }
12152
12153 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12154 {
12155         return (is_guest_mode(vcpu) &&
12156                 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12157 }
12158
12159 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12160 {
12161         if (!list_empty_careful(&vcpu->async_pf.done))
12162                 return true;
12163
12164         if (kvm_apic_has_events(vcpu))
12165                 return true;
12166
12167         if (vcpu->arch.pv.pv_unhalted)
12168                 return true;
12169
12170         if (vcpu->arch.exception.pending)
12171                 return true;
12172
12173         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12174             (vcpu->arch.nmi_pending &&
12175              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12176                 return true;
12177
12178         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12179             (vcpu->arch.smi_pending &&
12180              static_call(kvm_x86_smi_allowed)(vcpu, false)))
12181                 return true;
12182
12183         if (kvm_arch_interrupt_allowed(vcpu) &&
12184             (kvm_cpu_has_interrupt(vcpu) ||
12185             kvm_guest_apic_has_interrupt(vcpu)))
12186                 return true;
12187
12188         if (kvm_hv_has_stimer_pending(vcpu))
12189                 return true;
12190
12191         if (is_guest_mode(vcpu) &&
12192             kvm_x86_ops.nested_ops->hv_timer_pending &&
12193             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12194                 return true;
12195
12196         return false;
12197 }
12198
12199 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12200 {
12201         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12202 }
12203
12204 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12205 {
12206         if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12207                 return true;
12208
12209         return false;
12210 }
12211
12212 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12213 {
12214         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12215                 return true;
12216
12217         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12218                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12219                  kvm_test_request(KVM_REQ_EVENT, vcpu))
12220                 return true;
12221
12222         return kvm_arch_dy_has_pending_interrupt(vcpu);
12223 }
12224
12225 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12226 {
12227         if (vcpu->arch.guest_state_protected)
12228                 return true;
12229
12230         return vcpu->arch.preempted_in_kernel;
12231 }
12232
12233 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12234 {
12235         return kvm_rip_read(vcpu);
12236 }
12237
12238 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12239 {
12240         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12241 }
12242
12243 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12244 {
12245         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12246 }
12247
12248 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12249 {
12250         /* Can't read the RIP when guest state is protected, just return 0 */
12251         if (vcpu->arch.guest_state_protected)
12252                 return 0;
12253
12254         if (is_64_bit_mode(vcpu))
12255                 return kvm_rip_read(vcpu);
12256         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12257                      kvm_rip_read(vcpu));
12258 }
12259 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12260
12261 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12262 {
12263         return kvm_get_linear_rip(vcpu) == linear_rip;
12264 }
12265 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12266
12267 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12268 {
12269         unsigned long rflags;
12270
12271         rflags = static_call(kvm_x86_get_rflags)(vcpu);
12272         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12273                 rflags &= ~X86_EFLAGS_TF;
12274         return rflags;
12275 }
12276 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12277
12278 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12279 {
12280         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12281             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12282                 rflags |= X86_EFLAGS_TF;
12283         static_call(kvm_x86_set_rflags)(vcpu, rflags);
12284 }
12285
12286 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12287 {
12288         __kvm_set_rflags(vcpu, rflags);
12289         kvm_make_request(KVM_REQ_EVENT, vcpu);
12290 }
12291 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12292
12293 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
12294 {
12295         int r;
12296
12297         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
12298               work->wakeup_all)
12299                 return;
12300
12301         r = kvm_mmu_reload(vcpu);
12302         if (unlikely(r))
12303                 return;
12304
12305         if (!vcpu->arch.mmu->direct_map &&
12306               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
12307                 return;
12308
12309         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
12310 }
12311
12312 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12313 {
12314         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12315
12316         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12317 }
12318
12319 static inline u32 kvm_async_pf_next_probe(u32 key)
12320 {
12321         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12322 }
12323
12324 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12325 {
12326         u32 key = kvm_async_pf_hash_fn(gfn);
12327
12328         while (vcpu->arch.apf.gfns[key] != ~0)
12329                 key = kvm_async_pf_next_probe(key);
12330
12331         vcpu->arch.apf.gfns[key] = gfn;
12332 }
12333
12334 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12335 {
12336         int i;
12337         u32 key = kvm_async_pf_hash_fn(gfn);
12338
12339         for (i = 0; i < ASYNC_PF_PER_VCPU &&
12340                      (vcpu->arch.apf.gfns[key] != gfn &&
12341                       vcpu->arch.apf.gfns[key] != ~0); i++)
12342                 key = kvm_async_pf_next_probe(key);
12343
12344         return key;
12345 }
12346
12347 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12348 {
12349         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12350 }
12351
12352 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12353 {
12354         u32 i, j, k;
12355
12356         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12357
12358         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12359                 return;
12360
12361         while (true) {
12362                 vcpu->arch.apf.gfns[i] = ~0;
12363                 do {
12364                         j = kvm_async_pf_next_probe(j);
12365                         if (vcpu->arch.apf.gfns[j] == ~0)
12366                                 return;
12367                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12368                         /*
12369                          * k lies cyclically in ]i,j]
12370                          * |    i.k.j |
12371                          * |....j i.k.| or  |.k..j i...|
12372                          */
12373                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12374                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12375                 i = j;
12376         }
12377 }
12378
12379 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12380 {
12381         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12382
12383         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12384                                       sizeof(reason));
12385 }
12386
12387 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12388 {
12389         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12390
12391         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12392                                              &token, offset, sizeof(token));
12393 }
12394
12395 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12396 {
12397         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12398         u32 val;
12399
12400         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12401                                          &val, offset, sizeof(val)))
12402                 return false;
12403
12404         return !val;
12405 }
12406
12407 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12408 {
12409
12410         if (!kvm_pv_async_pf_enabled(vcpu))
12411                 return false;
12412
12413         if (vcpu->arch.apf.send_user_only &&
12414             static_call(kvm_x86_get_cpl)(vcpu) == 0)
12415                 return false;
12416
12417         if (is_guest_mode(vcpu)) {
12418                 /*
12419                  * L1 needs to opt into the special #PF vmexits that are
12420                  * used to deliver async page faults.
12421                  */
12422                 return vcpu->arch.apf.delivery_as_pf_vmexit;
12423         } else {
12424                 /*
12425                  * Play it safe in case the guest temporarily disables paging.
12426                  * The real mode IDT in particular is unlikely to have a #PF
12427                  * exception setup.
12428                  */
12429                 return is_paging(vcpu);
12430         }
12431 }
12432
12433 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12434 {
12435         if (unlikely(!lapic_in_kernel(vcpu) ||
12436                      kvm_event_needs_reinjection(vcpu) ||
12437                      vcpu->arch.exception.pending))
12438                 return false;
12439
12440         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12441                 return false;
12442
12443         /*
12444          * If interrupts are off we cannot even use an artificial
12445          * halt state.
12446          */
12447         return kvm_arch_interrupt_allowed(vcpu);
12448 }
12449
12450 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12451                                      struct kvm_async_pf *work)
12452 {
12453         struct x86_exception fault;
12454
12455         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12456         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12457
12458         if (kvm_can_deliver_async_pf(vcpu) &&
12459             !apf_put_user_notpresent(vcpu)) {
12460                 fault.vector = PF_VECTOR;
12461                 fault.error_code_valid = true;
12462                 fault.error_code = 0;
12463                 fault.nested_page_fault = false;
12464                 fault.address = work->arch.token;
12465                 fault.async_page_fault = true;
12466                 kvm_inject_page_fault(vcpu, &fault);
12467                 return true;
12468         } else {
12469                 /*
12470                  * It is not possible to deliver a paravirtualized asynchronous
12471                  * page fault, but putting the guest in an artificial halt state
12472                  * can be beneficial nevertheless: if an interrupt arrives, we
12473                  * can deliver it timely and perhaps the guest will schedule
12474                  * another process.  When the instruction that triggered a page
12475                  * fault is retried, hopefully the page will be ready in the host.
12476                  */
12477                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12478                 return false;
12479         }
12480 }
12481
12482 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12483                                  struct kvm_async_pf *work)
12484 {
12485         struct kvm_lapic_irq irq = {
12486                 .delivery_mode = APIC_DM_FIXED,
12487                 .vector = vcpu->arch.apf.vec
12488         };
12489
12490         if (work->wakeup_all)
12491                 work->arch.token = ~0; /* broadcast wakeup */
12492         else
12493                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12494         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12495
12496         if ((work->wakeup_all || work->notpresent_injected) &&
12497             kvm_pv_async_pf_enabled(vcpu) &&
12498             !apf_put_user_ready(vcpu, work->arch.token)) {
12499                 vcpu->arch.apf.pageready_pending = true;
12500                 kvm_apic_set_irq(vcpu, &irq, NULL);
12501         }
12502
12503         vcpu->arch.apf.halted = false;
12504         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12505 }
12506
12507 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12508 {
12509         kvm_make_request(KVM_REQ_APF_READY, vcpu);
12510         if (!vcpu->arch.apf.pageready_pending)
12511                 kvm_vcpu_kick(vcpu);
12512 }
12513
12514 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12515 {
12516         if (!kvm_pv_async_pf_enabled(vcpu))
12517                 return true;
12518         else
12519                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12520 }
12521
12522 void kvm_arch_start_assignment(struct kvm *kvm)
12523 {
12524         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12525                 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12526 }
12527 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12528
12529 void kvm_arch_end_assignment(struct kvm *kvm)
12530 {
12531         atomic_dec(&kvm->arch.assigned_device_count);
12532 }
12533 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12534
12535 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12536 {
12537         return atomic_read(&kvm->arch.assigned_device_count);
12538 }
12539 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12540
12541 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12542 {
12543         atomic_inc(&kvm->arch.noncoherent_dma_count);
12544 }
12545 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12546
12547 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12548 {
12549         atomic_dec(&kvm->arch.noncoherent_dma_count);
12550 }
12551 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12552
12553 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12554 {
12555         return atomic_read(&kvm->arch.noncoherent_dma_count);
12556 }
12557 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12558
12559 bool kvm_arch_has_irq_bypass(void)
12560 {
12561         return true;
12562 }
12563
12564 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12565                                       struct irq_bypass_producer *prod)
12566 {
12567         struct kvm_kernel_irqfd *irqfd =
12568                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12569         int ret;
12570
12571         irqfd->producer = prod;
12572         kvm_arch_start_assignment(irqfd->kvm);
12573         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
12574                                          prod->irq, irqfd->gsi, 1);
12575
12576         if (ret)
12577                 kvm_arch_end_assignment(irqfd->kvm);
12578
12579         return ret;
12580 }
12581
12582 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12583                                       struct irq_bypass_producer *prod)
12584 {
12585         int ret;
12586         struct kvm_kernel_irqfd *irqfd =
12587                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12588
12589         WARN_ON(irqfd->producer != prod);
12590         irqfd->producer = NULL;
12591
12592         /*
12593          * When producer of consumer is unregistered, we change back to
12594          * remapped mode, so we can re-use the current implementation
12595          * when the irq is masked/disabled or the consumer side (KVM
12596          * int this case doesn't want to receive the interrupts.
12597         */
12598         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12599         if (ret)
12600                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12601                        " fails: %d\n", irqfd->consumer.token, ret);
12602
12603         kvm_arch_end_assignment(irqfd->kvm);
12604 }
12605
12606 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12607                                    uint32_t guest_irq, bool set)
12608 {
12609         return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
12610 }
12611
12612 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12613                                   struct kvm_kernel_irq_routing_entry *new)
12614 {
12615         if (new->type != KVM_IRQ_ROUTING_MSI)
12616                 return true;
12617
12618         return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12619 }
12620
12621 bool kvm_vector_hashing_enabled(void)
12622 {
12623         return vector_hashing;
12624 }
12625
12626 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12627 {
12628         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12629 }
12630 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12631
12632
12633 int kvm_spec_ctrl_test_value(u64 value)
12634 {
12635         /*
12636          * test that setting IA32_SPEC_CTRL to given value
12637          * is allowed by the host processor
12638          */
12639
12640         u64 saved_value;
12641         unsigned long flags;
12642         int ret = 0;
12643
12644         local_irq_save(flags);
12645
12646         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12647                 ret = 1;
12648         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12649                 ret = 1;
12650         else
12651                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12652
12653         local_irq_restore(flags);
12654
12655         return ret;
12656 }
12657 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12658
12659 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12660 {
12661         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12662         struct x86_exception fault;
12663         u64 access = error_code &
12664                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12665
12666         if (!(error_code & PFERR_PRESENT_MASK) ||
12667             mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12668                 /*
12669                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12670                  * tables probably do not match the TLB.  Just proceed
12671                  * with the error code that the processor gave.
12672                  */
12673                 fault.vector = PF_VECTOR;
12674                 fault.error_code_valid = true;
12675                 fault.error_code = error_code;
12676                 fault.nested_page_fault = false;
12677                 fault.address = gva;
12678         }
12679         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12680 }
12681 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12682
12683 /*
12684  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12685  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12686  * indicates whether exit to userspace is needed.
12687  */
12688 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12689                               struct x86_exception *e)
12690 {
12691         if (r == X86EMUL_PROPAGATE_FAULT) {
12692                 kvm_inject_emulated_page_fault(vcpu, e);
12693                 return 1;
12694         }
12695
12696         /*
12697          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12698          * while handling a VMX instruction KVM could've handled the request
12699          * correctly by exiting to userspace and performing I/O but there
12700          * doesn't seem to be a real use-case behind such requests, just return
12701          * KVM_EXIT_INTERNAL_ERROR for now.
12702          */
12703         kvm_prepare_emulation_failure_exit(vcpu);
12704
12705         return 0;
12706 }
12707 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12708
12709 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12710 {
12711         bool pcid_enabled;
12712         struct x86_exception e;
12713         struct {
12714                 u64 pcid;
12715                 u64 gla;
12716         } operand;
12717         int r;
12718
12719         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12720         if (r != X86EMUL_CONTINUE)
12721                 return kvm_handle_memory_failure(vcpu, r, &e);
12722
12723         if (operand.pcid >> 12 != 0) {
12724                 kvm_inject_gp(vcpu, 0);
12725                 return 1;
12726         }
12727
12728         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12729
12730         switch (type) {
12731         case INVPCID_TYPE_INDIV_ADDR:
12732                 if ((!pcid_enabled && (operand.pcid != 0)) ||
12733                     is_noncanonical_address(operand.gla, vcpu)) {
12734                         kvm_inject_gp(vcpu, 0);
12735                         return 1;
12736                 }
12737                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12738                 return kvm_skip_emulated_instruction(vcpu);
12739
12740         case INVPCID_TYPE_SINGLE_CTXT:
12741                 if (!pcid_enabled && (operand.pcid != 0)) {
12742                         kvm_inject_gp(vcpu, 0);
12743                         return 1;
12744                 }
12745
12746                 kvm_invalidate_pcid(vcpu, operand.pcid);
12747                 return kvm_skip_emulated_instruction(vcpu);
12748
12749         case INVPCID_TYPE_ALL_NON_GLOBAL:
12750                 /*
12751                  * Currently, KVM doesn't mark global entries in the shadow
12752                  * page tables, so a non-global flush just degenerates to a
12753                  * global flush. If needed, we could optimize this later by
12754                  * keeping track of global entries in shadow page tables.
12755                  */
12756
12757                 fallthrough;
12758         case INVPCID_TYPE_ALL_INCL_GLOBAL:
12759                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12760                 return kvm_skip_emulated_instruction(vcpu);
12761
12762         default:
12763                 kvm_inject_gp(vcpu, 0);
12764                 return 1;
12765         }
12766 }
12767 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12768
12769 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12770 {
12771         struct kvm_run *run = vcpu->run;
12772         struct kvm_mmio_fragment *frag;
12773         unsigned int len;
12774
12775         BUG_ON(!vcpu->mmio_needed);
12776
12777         /* Complete previous fragment */
12778         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12779         len = min(8u, frag->len);
12780         if (!vcpu->mmio_is_write)
12781                 memcpy(frag->data, run->mmio.data, len);
12782
12783         if (frag->len <= 8) {
12784                 /* Switch to the next fragment. */
12785                 frag++;
12786                 vcpu->mmio_cur_fragment++;
12787         } else {
12788                 /* Go forward to the next mmio piece. */
12789                 frag->data += len;
12790                 frag->gpa += len;
12791                 frag->len -= len;
12792         }
12793
12794         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12795                 vcpu->mmio_needed = 0;
12796
12797                 // VMG change, at this point, we're always done
12798                 // RIP has already been advanced
12799                 return 1;
12800         }
12801
12802         // More MMIO is needed
12803         run->mmio.phys_addr = frag->gpa;
12804         run->mmio.len = min(8u, frag->len);
12805         run->mmio.is_write = vcpu->mmio_is_write;
12806         if (run->mmio.is_write)
12807                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12808         run->exit_reason = KVM_EXIT_MMIO;
12809
12810         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12811
12812         return 0;
12813 }
12814
12815 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12816                           void *data)
12817 {
12818         int handled;
12819         struct kvm_mmio_fragment *frag;
12820
12821         if (!data)
12822                 return -EINVAL;
12823
12824         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12825         if (handled == bytes)
12826                 return 1;
12827
12828         bytes -= handled;
12829         gpa += handled;
12830         data += handled;
12831
12832         /*TODO: Check if need to increment number of frags */
12833         frag = vcpu->mmio_fragments;
12834         vcpu->mmio_nr_fragments = 1;
12835         frag->len = bytes;
12836         frag->gpa = gpa;
12837         frag->data = data;
12838
12839         vcpu->mmio_needed = 1;
12840         vcpu->mmio_cur_fragment = 0;
12841
12842         vcpu->run->mmio.phys_addr = gpa;
12843         vcpu->run->mmio.len = min(8u, frag->len);
12844         vcpu->run->mmio.is_write = 1;
12845         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12846         vcpu->run->exit_reason = KVM_EXIT_MMIO;
12847
12848         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12849
12850         return 0;
12851 }
12852 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12853
12854 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12855                          void *data)
12856 {
12857         int handled;
12858         struct kvm_mmio_fragment *frag;
12859
12860         if (!data)
12861                 return -EINVAL;
12862
12863         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12864         if (handled == bytes)
12865                 return 1;
12866
12867         bytes -= handled;
12868         gpa += handled;
12869         data += handled;
12870
12871         /*TODO: Check if need to increment number of frags */
12872         frag = vcpu->mmio_fragments;
12873         vcpu->mmio_nr_fragments = 1;
12874         frag->len = bytes;
12875         frag->gpa = gpa;
12876         frag->data = data;
12877
12878         vcpu->mmio_needed = 1;
12879         vcpu->mmio_cur_fragment = 0;
12880
12881         vcpu->run->mmio.phys_addr = gpa;
12882         vcpu->run->mmio.len = min(8u, frag->len);
12883         vcpu->run->mmio.is_write = 0;
12884         vcpu->run->exit_reason = KVM_EXIT_MMIO;
12885
12886         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12887
12888         return 0;
12889 }
12890 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12891
12892 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12893                            unsigned int port);
12894
12895 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12896 {
12897         int size = vcpu->arch.pio.size;
12898         int port = vcpu->arch.pio.port;
12899
12900         vcpu->arch.pio.count = 0;
12901         if (vcpu->arch.sev_pio_count)
12902                 return kvm_sev_es_outs(vcpu, size, port);
12903         return 1;
12904 }
12905
12906 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12907                            unsigned int port)
12908 {
12909         for (;;) {
12910                 unsigned int count =
12911                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12912                 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12913
12914                 /* memcpy done already by emulator_pio_out.  */
12915                 vcpu->arch.sev_pio_count -= count;
12916                 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12917                 if (!ret)
12918                         break;
12919
12920                 /* Emulation done by the kernel.  */
12921                 if (!vcpu->arch.sev_pio_count)
12922                         return 1;
12923         }
12924
12925         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12926         return 0;
12927 }
12928
12929 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12930                           unsigned int port);
12931
12932 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12933 {
12934         unsigned count = vcpu->arch.pio.count;
12935         complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12936         vcpu->arch.sev_pio_count -= count;
12937         vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12938 }
12939
12940 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12941 {
12942         int size = vcpu->arch.pio.size;
12943         int port = vcpu->arch.pio.port;
12944
12945         advance_sev_es_emulated_ins(vcpu);
12946         if (vcpu->arch.sev_pio_count)
12947                 return kvm_sev_es_ins(vcpu, size, port);
12948         return 1;
12949 }
12950
12951 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12952                           unsigned int port)
12953 {
12954         for (;;) {
12955                 unsigned int count =
12956                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12957                 if (!__emulator_pio_in(vcpu, size, port, count))
12958                         break;
12959
12960                 /* Emulation done by the kernel.  */
12961                 advance_sev_es_emulated_ins(vcpu);
12962                 if (!vcpu->arch.sev_pio_count)
12963                         return 1;
12964         }
12965
12966         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12967         return 0;
12968 }
12969
12970 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12971                          unsigned int port, void *data,  unsigned int count,
12972                          int in)
12973 {
12974         vcpu->arch.sev_pio_data = data;
12975         vcpu->arch.sev_pio_count = count;
12976         return in ? kvm_sev_es_ins(vcpu, size, port)
12977                   : kvm_sev_es_outs(vcpu, size, port);
12978 }
12979 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12980
12981 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12982 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12983 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12984 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12985 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12986 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12987 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12988 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12989 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12990 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12991 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12992 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12993 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12994 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12995 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12996 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12997 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12998 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12999 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13000 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13001 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13002 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13003 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13004 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13005 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13006 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13007 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13008
13009 static int __init kvm_x86_init(void)
13010 {
13011         kvm_mmu_x86_module_init();
13012         return 0;
13013 }
13014 module_init(kvm_x86_init);
13015
13016 static void __exit kvm_x86_exit(void)
13017 {
13018         /*
13019          * If module_init() is implemented, module_exit() must also be
13020          * implemented to allow module unload.
13021          */
13022 }
13023 module_exit(kvm_x86_exit);