0c0ca599a353c0bc40d80dacaf22d83806337209
[linux-2.6-microblaze.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92
93 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
94
95 #define emul_to_vcpu(ctxt) \
96         ((struct kvm_vcpu *)(ctxt)->vcpu)
97
98 /* EFER defaults:
99  * - enable syscall per default because its emulated by KVM
100  * - enable LME and LMA per default on 64 bit KVM
101  */
102 #ifdef CONFIG_X86_64
103 static
104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
105 #else
106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
107 #endif
108
109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
110
111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
112
113 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
114
115 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
116                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
117
118 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
119 static void process_nmi(struct kvm_vcpu *vcpu);
120 static void process_smi(struct kvm_vcpu *vcpu);
121 static void enter_smm(struct kvm_vcpu *vcpu);
122 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
123 static void store_regs(struct kvm_vcpu *vcpu);
124 static int sync_regs(struct kvm_vcpu *vcpu);
125 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
126
127 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
128 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
129
130 struct kvm_x86_ops kvm_x86_ops __read_mostly;
131
132 #define KVM_X86_OP(func)                                             \
133         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
134                                 *(((struct kvm_x86_ops *)0)->func));
135 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
136 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
137 #include <asm/kvm-x86-ops.h>
138 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
139 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
140
141 static bool __read_mostly ignore_msrs = 0;
142 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
143
144 bool __read_mostly report_ignored_msrs = true;
145 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
146 EXPORT_SYMBOL_GPL(report_ignored_msrs);
147
148 unsigned int min_timer_period_us = 200;
149 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
150
151 static bool __read_mostly kvmclock_periodic_sync = true;
152 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
153
154 bool __read_mostly kvm_has_tsc_control;
155 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
156 u32  __read_mostly kvm_max_guest_tsc_khz;
157 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
158 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
159 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
160 u64  __read_mostly kvm_max_tsc_scaling_ratio;
161 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
162 u64 __read_mostly kvm_default_tsc_scaling_ratio;
163 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
164 bool __read_mostly kvm_has_bus_lock_exit;
165 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
166
167 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
168 static u32 __read_mostly tsc_tolerance_ppm = 250;
169 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
170
171 /*
172  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
173  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
174  * advancement entirely.  Any other value is used as-is and disables adaptive
175  * tuning, i.e. allows privileged userspace to set an exact advancement time.
176  */
177 static int __read_mostly lapic_timer_advance_ns = -1;
178 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
179
180 static bool __read_mostly vector_hashing = true;
181 module_param(vector_hashing, bool, S_IRUGO);
182
183 bool __read_mostly enable_vmware_backdoor = false;
184 module_param(enable_vmware_backdoor, bool, S_IRUGO);
185 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
186
187 static bool __read_mostly force_emulation_prefix = false;
188 module_param(force_emulation_prefix, bool, S_IRUGO);
189
190 int __read_mostly pi_inject_timer = -1;
191 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
192
193 /* Enable/disable PMU virtualization */
194 bool __read_mostly enable_pmu = true;
195 EXPORT_SYMBOL_GPL(enable_pmu);
196 module_param(enable_pmu, bool, 0444);
197
198 bool __read_mostly eager_page_split = true;
199 module_param(eager_page_split, bool, 0644);
200
201 /*
202  * Restoring the host value for MSRs that are only consumed when running in
203  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
204  * returns to userspace, i.e. the kernel can run with the guest's value.
205  */
206 #define KVM_MAX_NR_USER_RETURN_MSRS 16
207
208 struct kvm_user_return_msrs {
209         struct user_return_notifier urn;
210         bool registered;
211         struct kvm_user_return_msr_values {
212                 u64 host;
213                 u64 curr;
214         } values[KVM_MAX_NR_USER_RETURN_MSRS];
215 };
216
217 u32 __read_mostly kvm_nr_uret_msrs;
218 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
219 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
220 static struct kvm_user_return_msrs __percpu *user_return_msrs;
221
222 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
223                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
224                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
225                                 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
226
227 u64 __read_mostly host_efer;
228 EXPORT_SYMBOL_GPL(host_efer);
229
230 bool __read_mostly allow_smaller_maxphyaddr = 0;
231 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
232
233 bool __read_mostly enable_apicv = true;
234 EXPORT_SYMBOL_GPL(enable_apicv);
235
236 u64 __read_mostly host_xss;
237 EXPORT_SYMBOL_GPL(host_xss);
238 u64 __read_mostly supported_xss;
239 EXPORT_SYMBOL_GPL(supported_xss);
240
241 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
242         KVM_GENERIC_VM_STATS(),
243         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
244         STATS_DESC_COUNTER(VM, mmu_pte_write),
245         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
246         STATS_DESC_COUNTER(VM, mmu_flooded),
247         STATS_DESC_COUNTER(VM, mmu_recycled),
248         STATS_DESC_COUNTER(VM, mmu_cache_miss),
249         STATS_DESC_ICOUNTER(VM, mmu_unsync),
250         STATS_DESC_ICOUNTER(VM, pages_4k),
251         STATS_DESC_ICOUNTER(VM, pages_2m),
252         STATS_DESC_ICOUNTER(VM, pages_1g),
253         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
254         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
255         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
256 };
257
258 const struct kvm_stats_header kvm_vm_stats_header = {
259         .name_size = KVM_STATS_NAME_SIZE,
260         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
261         .id_offset = sizeof(struct kvm_stats_header),
262         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
263         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
264                        sizeof(kvm_vm_stats_desc),
265 };
266
267 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
268         KVM_GENERIC_VCPU_STATS(),
269         STATS_DESC_COUNTER(VCPU, pf_fixed),
270         STATS_DESC_COUNTER(VCPU, pf_guest),
271         STATS_DESC_COUNTER(VCPU, tlb_flush),
272         STATS_DESC_COUNTER(VCPU, invlpg),
273         STATS_DESC_COUNTER(VCPU, exits),
274         STATS_DESC_COUNTER(VCPU, io_exits),
275         STATS_DESC_COUNTER(VCPU, mmio_exits),
276         STATS_DESC_COUNTER(VCPU, signal_exits),
277         STATS_DESC_COUNTER(VCPU, irq_window_exits),
278         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
279         STATS_DESC_COUNTER(VCPU, l1d_flush),
280         STATS_DESC_COUNTER(VCPU, halt_exits),
281         STATS_DESC_COUNTER(VCPU, request_irq_exits),
282         STATS_DESC_COUNTER(VCPU, irq_exits),
283         STATS_DESC_COUNTER(VCPU, host_state_reload),
284         STATS_DESC_COUNTER(VCPU, fpu_reload),
285         STATS_DESC_COUNTER(VCPU, insn_emulation),
286         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
287         STATS_DESC_COUNTER(VCPU, hypercalls),
288         STATS_DESC_COUNTER(VCPU, irq_injections),
289         STATS_DESC_COUNTER(VCPU, nmi_injections),
290         STATS_DESC_COUNTER(VCPU, req_event),
291         STATS_DESC_COUNTER(VCPU, nested_run),
292         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
293         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
294         STATS_DESC_ICOUNTER(VCPU, guest_mode)
295 };
296
297 const struct kvm_stats_header kvm_vcpu_stats_header = {
298         .name_size = KVM_STATS_NAME_SIZE,
299         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
300         .id_offset = sizeof(struct kvm_stats_header),
301         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
302         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
303                        sizeof(kvm_vcpu_stats_desc),
304 };
305
306 u64 __read_mostly host_xcr0;
307 u64 __read_mostly supported_xcr0;
308 EXPORT_SYMBOL_GPL(supported_xcr0);
309
310 static struct kmem_cache *x86_emulator_cache;
311
312 /*
313  * When called, it means the previous get/set msr reached an invalid msr.
314  * Return true if we want to ignore/silent this failed msr access.
315  */
316 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
317 {
318         const char *op = write ? "wrmsr" : "rdmsr";
319
320         if (ignore_msrs) {
321                 if (report_ignored_msrs)
322                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
323                                       op, msr, data);
324                 /* Mask the error */
325                 return true;
326         } else {
327                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
328                                       op, msr, data);
329                 return false;
330         }
331 }
332
333 static struct kmem_cache *kvm_alloc_emulator_cache(void)
334 {
335         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
336         unsigned int size = sizeof(struct x86_emulate_ctxt);
337
338         return kmem_cache_create_usercopy("x86_emulator", size,
339                                           __alignof__(struct x86_emulate_ctxt),
340                                           SLAB_ACCOUNT, useroffset,
341                                           size - useroffset, NULL);
342 }
343
344 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
345
346 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
347 {
348         int i;
349         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
350                 vcpu->arch.apf.gfns[i] = ~0;
351 }
352
353 static void kvm_on_user_return(struct user_return_notifier *urn)
354 {
355         unsigned slot;
356         struct kvm_user_return_msrs *msrs
357                 = container_of(urn, struct kvm_user_return_msrs, urn);
358         struct kvm_user_return_msr_values *values;
359         unsigned long flags;
360
361         /*
362          * Disabling irqs at this point since the following code could be
363          * interrupted and executed through kvm_arch_hardware_disable()
364          */
365         local_irq_save(flags);
366         if (msrs->registered) {
367                 msrs->registered = false;
368                 user_return_notifier_unregister(urn);
369         }
370         local_irq_restore(flags);
371         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
372                 values = &msrs->values[slot];
373                 if (values->host != values->curr) {
374                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
375                         values->curr = values->host;
376                 }
377         }
378 }
379
380 static int kvm_probe_user_return_msr(u32 msr)
381 {
382         u64 val;
383         int ret;
384
385         preempt_disable();
386         ret = rdmsrl_safe(msr, &val);
387         if (ret)
388                 goto out;
389         ret = wrmsrl_safe(msr, val);
390 out:
391         preempt_enable();
392         return ret;
393 }
394
395 int kvm_add_user_return_msr(u32 msr)
396 {
397         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
398
399         if (kvm_probe_user_return_msr(msr))
400                 return -1;
401
402         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
403         return kvm_nr_uret_msrs++;
404 }
405 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
406
407 int kvm_find_user_return_msr(u32 msr)
408 {
409         int i;
410
411         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
412                 if (kvm_uret_msrs_list[i] == msr)
413                         return i;
414         }
415         return -1;
416 }
417 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
418
419 static void kvm_user_return_msr_cpu_online(void)
420 {
421         unsigned int cpu = smp_processor_id();
422         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
423         u64 value;
424         int i;
425
426         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
427                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
428                 msrs->values[i].host = value;
429                 msrs->values[i].curr = value;
430         }
431 }
432
433 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
434 {
435         unsigned int cpu = smp_processor_id();
436         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
437         int err;
438
439         value = (value & mask) | (msrs->values[slot].host & ~mask);
440         if (value == msrs->values[slot].curr)
441                 return 0;
442         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
443         if (err)
444                 return 1;
445
446         msrs->values[slot].curr = value;
447         if (!msrs->registered) {
448                 msrs->urn.on_user_return = kvm_on_user_return;
449                 user_return_notifier_register(&msrs->urn);
450                 msrs->registered = true;
451         }
452         return 0;
453 }
454 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
455
456 static void drop_user_return_notifiers(void)
457 {
458         unsigned int cpu = smp_processor_id();
459         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
460
461         if (msrs->registered)
462                 kvm_on_user_return(&msrs->urn);
463 }
464
465 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
466 {
467         return vcpu->arch.apic_base;
468 }
469 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
470
471 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
472 {
473         return kvm_apic_mode(kvm_get_apic_base(vcpu));
474 }
475 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
476
477 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
478 {
479         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
480         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
481         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
482                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
483
484         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
485                 return 1;
486         if (!msr_info->host_initiated) {
487                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
488                         return 1;
489                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
490                         return 1;
491         }
492
493         kvm_lapic_set_base(vcpu, msr_info->data);
494         kvm_recalculate_apic_map(vcpu->kvm);
495         return 0;
496 }
497 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
498
499 /*
500  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
501  *
502  * Hardware virtualization extension instructions may fault if a reboot turns
503  * off virtualization while processes are running.  Usually after catching the
504  * fault we just panic; during reboot instead the instruction is ignored.
505  */
506 noinstr void kvm_spurious_fault(void)
507 {
508         /* Fault while not rebooting.  We want the trace. */
509         BUG_ON(!kvm_rebooting);
510 }
511 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
512
513 #define EXCPT_BENIGN            0
514 #define EXCPT_CONTRIBUTORY      1
515 #define EXCPT_PF                2
516
517 static int exception_class(int vector)
518 {
519         switch (vector) {
520         case PF_VECTOR:
521                 return EXCPT_PF;
522         case DE_VECTOR:
523         case TS_VECTOR:
524         case NP_VECTOR:
525         case SS_VECTOR:
526         case GP_VECTOR:
527                 return EXCPT_CONTRIBUTORY;
528         default:
529                 break;
530         }
531         return EXCPT_BENIGN;
532 }
533
534 #define EXCPT_FAULT             0
535 #define EXCPT_TRAP              1
536 #define EXCPT_ABORT             2
537 #define EXCPT_INTERRUPT         3
538
539 static int exception_type(int vector)
540 {
541         unsigned int mask;
542
543         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
544                 return EXCPT_INTERRUPT;
545
546         mask = 1 << vector;
547
548         /* #DB is trap, as instruction watchpoints are handled elsewhere */
549         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
550                 return EXCPT_TRAP;
551
552         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
553                 return EXCPT_ABORT;
554
555         /* Reserved exceptions will result in fault */
556         return EXCPT_FAULT;
557 }
558
559 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
560 {
561         unsigned nr = vcpu->arch.exception.nr;
562         bool has_payload = vcpu->arch.exception.has_payload;
563         unsigned long payload = vcpu->arch.exception.payload;
564
565         if (!has_payload)
566                 return;
567
568         switch (nr) {
569         case DB_VECTOR:
570                 /*
571                  * "Certain debug exceptions may clear bit 0-3.  The
572                  * remaining contents of the DR6 register are never
573                  * cleared by the processor".
574                  */
575                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
576                 /*
577                  * In order to reflect the #DB exception payload in guest
578                  * dr6, three components need to be considered: active low
579                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
580                  * DR6_BS and DR6_BT)
581                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
582                  * In the target guest dr6:
583                  * FIXED_1 bits should always be set.
584                  * Active low bits should be cleared if 1-setting in payload.
585                  * Active high bits should be set if 1-setting in payload.
586                  *
587                  * Note, the payload is compatible with the pending debug
588                  * exceptions/exit qualification under VMX, that active_low bits
589                  * are active high in payload.
590                  * So they need to be flipped for DR6.
591                  */
592                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
593                 vcpu->arch.dr6 |= payload;
594                 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
595
596                 /*
597                  * The #DB payload is defined as compatible with the 'pending
598                  * debug exceptions' field under VMX, not DR6. While bit 12 is
599                  * defined in the 'pending debug exceptions' field (enabled
600                  * breakpoint), it is reserved and must be zero in DR6.
601                  */
602                 vcpu->arch.dr6 &= ~BIT(12);
603                 break;
604         case PF_VECTOR:
605                 vcpu->arch.cr2 = payload;
606                 break;
607         }
608
609         vcpu->arch.exception.has_payload = false;
610         vcpu->arch.exception.payload = 0;
611 }
612 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
613
614 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
615                 unsigned nr, bool has_error, u32 error_code,
616                 bool has_payload, unsigned long payload, bool reinject)
617 {
618         u32 prev_nr;
619         int class1, class2;
620
621         kvm_make_request(KVM_REQ_EVENT, vcpu);
622
623         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
624         queue:
625                 if (reinject) {
626                         /*
627                          * On vmentry, vcpu->arch.exception.pending is only
628                          * true if an event injection was blocked by
629                          * nested_run_pending.  In that case, however,
630                          * vcpu_enter_guest requests an immediate exit,
631                          * and the guest shouldn't proceed far enough to
632                          * need reinjection.
633                          */
634                         WARN_ON_ONCE(vcpu->arch.exception.pending);
635                         vcpu->arch.exception.injected = true;
636                         if (WARN_ON_ONCE(has_payload)) {
637                                 /*
638                                  * A reinjected event has already
639                                  * delivered its payload.
640                                  */
641                                 has_payload = false;
642                                 payload = 0;
643                         }
644                 } else {
645                         vcpu->arch.exception.pending = true;
646                         vcpu->arch.exception.injected = false;
647                 }
648                 vcpu->arch.exception.has_error_code = has_error;
649                 vcpu->arch.exception.nr = nr;
650                 vcpu->arch.exception.error_code = error_code;
651                 vcpu->arch.exception.has_payload = has_payload;
652                 vcpu->arch.exception.payload = payload;
653                 if (!is_guest_mode(vcpu))
654                         kvm_deliver_exception_payload(vcpu);
655                 return;
656         }
657
658         /* to check exception */
659         prev_nr = vcpu->arch.exception.nr;
660         if (prev_nr == DF_VECTOR) {
661                 /* triple fault -> shutdown */
662                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
663                 return;
664         }
665         class1 = exception_class(prev_nr);
666         class2 = exception_class(nr);
667         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
668                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
669                 /*
670                  * Generate double fault per SDM Table 5-5.  Set
671                  * exception.pending = true so that the double fault
672                  * can trigger a nested vmexit.
673                  */
674                 vcpu->arch.exception.pending = true;
675                 vcpu->arch.exception.injected = false;
676                 vcpu->arch.exception.has_error_code = true;
677                 vcpu->arch.exception.nr = DF_VECTOR;
678                 vcpu->arch.exception.error_code = 0;
679                 vcpu->arch.exception.has_payload = false;
680                 vcpu->arch.exception.payload = 0;
681         } else
682                 /* replace previous exception with a new one in a hope
683                    that instruction re-execution will regenerate lost
684                    exception */
685                 goto queue;
686 }
687
688 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
689 {
690         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
691 }
692 EXPORT_SYMBOL_GPL(kvm_queue_exception);
693
694 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
695 {
696         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
697 }
698 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
699
700 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
701                            unsigned long payload)
702 {
703         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
704 }
705 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
706
707 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
708                                     u32 error_code, unsigned long payload)
709 {
710         kvm_multiple_exception(vcpu, nr, true, error_code,
711                                true, payload, false);
712 }
713
714 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
715 {
716         if (err)
717                 kvm_inject_gp(vcpu, 0);
718         else
719                 return kvm_skip_emulated_instruction(vcpu);
720
721         return 1;
722 }
723 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
724
725 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
726 {
727         if (err) {
728                 kvm_inject_gp(vcpu, 0);
729                 return 1;
730         }
731
732         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
733                                        EMULTYPE_COMPLETE_USER_EXIT);
734 }
735
736 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
737 {
738         ++vcpu->stat.pf_guest;
739         vcpu->arch.exception.nested_apf =
740                 is_guest_mode(vcpu) && fault->async_page_fault;
741         if (vcpu->arch.exception.nested_apf) {
742                 vcpu->arch.apf.nested_apf_token = fault->address;
743                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
744         } else {
745                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
746                                         fault->address);
747         }
748 }
749 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
750
751 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
752                                     struct x86_exception *fault)
753 {
754         struct kvm_mmu *fault_mmu;
755         WARN_ON_ONCE(fault->vector != PF_VECTOR);
756
757         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
758                                                vcpu->arch.walk_mmu;
759
760         /*
761          * Invalidate the TLB entry for the faulting address, if it exists,
762          * else the access will fault indefinitely (and to emulate hardware).
763          */
764         if ((fault->error_code & PFERR_PRESENT_MASK) &&
765             !(fault->error_code & PFERR_RSVD_MASK))
766                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
767                                        fault_mmu->root.hpa);
768
769         fault_mmu->inject_page_fault(vcpu, fault);
770         return fault->nested_page_fault;
771 }
772 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
773
774 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
775 {
776         atomic_inc(&vcpu->arch.nmi_queued);
777         kvm_make_request(KVM_REQ_NMI, vcpu);
778 }
779 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
780
781 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
782 {
783         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
784 }
785 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
786
787 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
788 {
789         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
790 }
791 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
792
793 /*
794  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
795  * a #GP and return false.
796  */
797 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
798 {
799         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
800                 return true;
801         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
802         return false;
803 }
804 EXPORT_SYMBOL_GPL(kvm_require_cpl);
805
806 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
807 {
808         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
809                 return true;
810
811         kvm_queue_exception(vcpu, UD_VECTOR);
812         return false;
813 }
814 EXPORT_SYMBOL_GPL(kvm_require_dr);
815
816 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
817 {
818         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
819 }
820
821 /*
822  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
823  */
824 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
825 {
826         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
827         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
828         gpa_t real_gpa;
829         int i;
830         int ret;
831         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
832
833         /*
834          * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
835          * to an L1 GPA.
836          */
837         real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
838                                      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
839         if (real_gpa == UNMAPPED_GVA)
840                 return 0;
841
842         /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
843         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
844                                        cr3 & GENMASK(11, 5), sizeof(pdpte));
845         if (ret < 0)
846                 return 0;
847
848         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
849                 if ((pdpte[i] & PT_PRESENT_MASK) &&
850                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
851                         return 0;
852                 }
853         }
854
855         /*
856          * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
857          * Shadow page roots need to be reconstructed instead.
858          */
859         if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
860                 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
861
862         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
863         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
864         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
865         vcpu->arch.pdptrs_from_userspace = false;
866
867         return 1;
868 }
869 EXPORT_SYMBOL_GPL(load_pdptrs);
870
871 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
872 {
873         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
874                 kvm_clear_async_pf_completion_queue(vcpu);
875                 kvm_async_pf_hash_reset(vcpu);
876
877                 /*
878                  * Clearing CR0.PG is defined to flush the TLB from the guest's
879                  * perspective.
880                  */
881                 if (!(cr0 & X86_CR0_PG))
882                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
883         }
884
885         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
886                 kvm_mmu_reset_context(vcpu);
887
888         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
889             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
890             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
891                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
892 }
893 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
894
895 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
896 {
897         unsigned long old_cr0 = kvm_read_cr0(vcpu);
898
899         cr0 |= X86_CR0_ET;
900
901 #ifdef CONFIG_X86_64
902         if (cr0 & 0xffffffff00000000UL)
903                 return 1;
904 #endif
905
906         cr0 &= ~CR0_RESERVED_BITS;
907
908         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
909                 return 1;
910
911         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
912                 return 1;
913
914 #ifdef CONFIG_X86_64
915         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
916             (cr0 & X86_CR0_PG)) {
917                 int cs_db, cs_l;
918
919                 if (!is_pae(vcpu))
920                         return 1;
921                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
922                 if (cs_l)
923                         return 1;
924         }
925 #endif
926         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
927             is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
928             !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
929                 return 1;
930
931         if (!(cr0 & X86_CR0_PG) &&
932             (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
933                 return 1;
934
935         static_call(kvm_x86_set_cr0)(vcpu, cr0);
936
937         kvm_post_set_cr0(vcpu, old_cr0, cr0);
938
939         return 0;
940 }
941 EXPORT_SYMBOL_GPL(kvm_set_cr0);
942
943 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
944 {
945         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
946 }
947 EXPORT_SYMBOL_GPL(kvm_lmsw);
948
949 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
950 {
951         if (vcpu->arch.guest_state_protected)
952                 return;
953
954         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
955
956                 if (vcpu->arch.xcr0 != host_xcr0)
957                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
958
959                 if (vcpu->arch.xsaves_enabled &&
960                     vcpu->arch.ia32_xss != host_xss)
961                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
962         }
963
964         if (static_cpu_has(X86_FEATURE_PKU) &&
965             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
966              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
967             vcpu->arch.pkru != vcpu->arch.host_pkru)
968                 write_pkru(vcpu->arch.pkru);
969 }
970 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
971
972 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
973 {
974         if (vcpu->arch.guest_state_protected)
975                 return;
976
977         if (static_cpu_has(X86_FEATURE_PKU) &&
978             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
979              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
980                 vcpu->arch.pkru = rdpkru();
981                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
982                         write_pkru(vcpu->arch.host_pkru);
983         }
984
985         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
986
987                 if (vcpu->arch.xcr0 != host_xcr0)
988                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
989
990                 if (vcpu->arch.xsaves_enabled &&
991                     vcpu->arch.ia32_xss != host_xss)
992                         wrmsrl(MSR_IA32_XSS, host_xss);
993         }
994
995 }
996 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
997
998 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu)
999 {
1000         return vcpu->arch.guest_fpu.fpstate->user_xfeatures;
1001 }
1002
1003 #ifdef CONFIG_X86_64
1004 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1005 {
1006         return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC;
1007 }
1008 #endif
1009
1010 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1011 {
1012         u64 xcr0 = xcr;
1013         u64 old_xcr0 = vcpu->arch.xcr0;
1014         u64 valid_bits;
1015
1016         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1017         if (index != XCR_XFEATURE_ENABLED_MASK)
1018                 return 1;
1019         if (!(xcr0 & XFEATURE_MASK_FP))
1020                 return 1;
1021         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1022                 return 1;
1023
1024         /*
1025          * Do not allow the guest to set bits that we do not support
1026          * saving.  However, xcr0 bit 0 is always set, even if the
1027          * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1028          */
1029         valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP;
1030         if (xcr0 & ~valid_bits)
1031                 return 1;
1032
1033         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1034             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1035                 return 1;
1036
1037         if (xcr0 & XFEATURE_MASK_AVX512) {
1038                 if (!(xcr0 & XFEATURE_MASK_YMM))
1039                         return 1;
1040                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1041                         return 1;
1042         }
1043
1044         if ((xcr0 & XFEATURE_MASK_XTILE) &&
1045             ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1046                 return 1;
1047
1048         vcpu->arch.xcr0 = xcr0;
1049
1050         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1051                 kvm_update_cpuid_runtime(vcpu);
1052         return 0;
1053 }
1054
1055 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1056 {
1057         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1058             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1059                 kvm_inject_gp(vcpu, 0);
1060                 return 1;
1061         }
1062
1063         return kvm_skip_emulated_instruction(vcpu);
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1066
1067 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1068 {
1069         if (cr4 & cr4_reserved_bits)
1070                 return false;
1071
1072         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1073                 return false;
1074
1075         return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1076 }
1077 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1078
1079 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1080 {
1081         if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1082                 kvm_mmu_reset_context(vcpu);
1083
1084         /*
1085          * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1086          * according to the SDM; however, stale prev_roots could be reused
1087          * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1088          * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1089          * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1090          * so fall through.
1091          */
1092         if (!tdp_enabled &&
1093             (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1094                 kvm_mmu_unload(vcpu);
1095
1096         /*
1097          * The TLB has to be flushed for all PCIDs if any of the following
1098          * (architecturally required) changes happen:
1099          * - CR4.PCIDE is changed from 1 to 0
1100          * - CR4.PGE is toggled
1101          *
1102          * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1103          */
1104         if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1105             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1106                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1107
1108         /*
1109          * The TLB has to be flushed for the current PCID if any of the
1110          * following (architecturally required) changes happen:
1111          * - CR4.SMEP is changed from 0 to 1
1112          * - CR4.PAE is toggled
1113          */
1114         else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1115                  ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1116                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1117
1118 }
1119 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1120
1121 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1122 {
1123         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1124
1125         if (!kvm_is_valid_cr4(vcpu, cr4))
1126                 return 1;
1127
1128         if (is_long_mode(vcpu)) {
1129                 if (!(cr4 & X86_CR4_PAE))
1130                         return 1;
1131                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1132                         return 1;
1133         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1134                    && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1135                    && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1136                 return 1;
1137
1138         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1139                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1140                         return 1;
1141
1142                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1143                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1144                         return 1;
1145         }
1146
1147         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1148
1149         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1150
1151         return 0;
1152 }
1153 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1154
1155 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1156 {
1157         struct kvm_mmu *mmu = vcpu->arch.mmu;
1158         unsigned long roots_to_free = 0;
1159         int i;
1160
1161         /*
1162          * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1163          * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1164          * also via the emulator.  KVM's TDP page tables are not in the scope of
1165          * the invalidation, but the guest's TLB entries need to be flushed as
1166          * the CPU may have cached entries in its TLB for the target PCID.
1167          */
1168         if (unlikely(tdp_enabled)) {
1169                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1170                 return;
1171         }
1172
1173         /*
1174          * If neither the current CR3 nor any of the prev_roots use the given
1175          * PCID, then nothing needs to be done here because a resync will
1176          * happen anyway before switching to any other CR3.
1177          */
1178         if (kvm_get_active_pcid(vcpu) == pcid) {
1179                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1180                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1181         }
1182
1183         /*
1184          * If PCID is disabled, there is no need to free prev_roots even if the
1185          * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1186          * with PCIDE=0.
1187          */
1188         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1189                 return;
1190
1191         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1192                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1193                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1194
1195         kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1196 }
1197
1198 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1199 {
1200         bool skip_tlb_flush = false;
1201         unsigned long pcid = 0;
1202 #ifdef CONFIG_X86_64
1203         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1204
1205         if (pcid_enabled) {
1206                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1207                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1208                 pcid = cr3 & X86_CR3_PCID_MASK;
1209         }
1210 #endif
1211
1212         /* PDPTRs are always reloaded for PAE paging. */
1213         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1214                 goto handle_tlb_flush;
1215
1216         /*
1217          * Do not condition the GPA check on long mode, this helper is used to
1218          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1219          * the current vCPU mode is accurate.
1220          */
1221         if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1222                 return 1;
1223
1224         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1225                 return 1;
1226
1227         if (cr3 != kvm_read_cr3(vcpu))
1228                 kvm_mmu_new_pgd(vcpu, cr3);
1229
1230         vcpu->arch.cr3 = cr3;
1231         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1232         /* Do not call post_set_cr3, we do not get here for confidential guests.  */
1233
1234 handle_tlb_flush:
1235         /*
1236          * A load of CR3 that flushes the TLB flushes only the current PCID,
1237          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1238          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1239          * and it's impossible to use a non-zero PCID when PCID is disabled,
1240          * i.e. only PCID=0 can be relevant.
1241          */
1242         if (!skip_tlb_flush)
1243                 kvm_invalidate_pcid(vcpu, pcid);
1244
1245         return 0;
1246 }
1247 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1248
1249 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1250 {
1251         if (cr8 & CR8_RESERVED_BITS)
1252                 return 1;
1253         if (lapic_in_kernel(vcpu))
1254                 kvm_lapic_set_tpr(vcpu, cr8);
1255         else
1256                 vcpu->arch.cr8 = cr8;
1257         return 0;
1258 }
1259 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1260
1261 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1262 {
1263         if (lapic_in_kernel(vcpu))
1264                 return kvm_lapic_get_cr8(vcpu);
1265         else
1266                 return vcpu->arch.cr8;
1267 }
1268 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1269
1270 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1271 {
1272         int i;
1273
1274         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1275                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1276                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1277         }
1278 }
1279
1280 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1281 {
1282         unsigned long dr7;
1283
1284         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1285                 dr7 = vcpu->arch.guest_debug_dr7;
1286         else
1287                 dr7 = vcpu->arch.dr7;
1288         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1289         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1290         if (dr7 & DR7_BP_EN_MASK)
1291                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1294
1295 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1296 {
1297         u64 fixed = DR6_FIXED_1;
1298
1299         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1300                 fixed |= DR6_RTM;
1301
1302         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1303                 fixed |= DR6_BUS_LOCK;
1304         return fixed;
1305 }
1306
1307 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1308 {
1309         size_t size = ARRAY_SIZE(vcpu->arch.db);
1310
1311         switch (dr) {
1312         case 0 ... 3:
1313                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1314                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1315                         vcpu->arch.eff_db[dr] = val;
1316                 break;
1317         case 4:
1318         case 6:
1319                 if (!kvm_dr6_valid(val))
1320                         return 1; /* #GP */
1321                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1322                 break;
1323         case 5:
1324         default: /* 7 */
1325                 if (!kvm_dr7_valid(val))
1326                         return 1; /* #GP */
1327                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1328                 kvm_update_dr7(vcpu);
1329                 break;
1330         }
1331
1332         return 0;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_set_dr);
1335
1336 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1337 {
1338         size_t size = ARRAY_SIZE(vcpu->arch.db);
1339
1340         switch (dr) {
1341         case 0 ... 3:
1342                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1343                 break;
1344         case 4:
1345         case 6:
1346                 *val = vcpu->arch.dr6;
1347                 break;
1348         case 5:
1349         default: /* 7 */
1350                 *val = vcpu->arch.dr7;
1351                 break;
1352         }
1353 }
1354 EXPORT_SYMBOL_GPL(kvm_get_dr);
1355
1356 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1357 {
1358         u32 ecx = kvm_rcx_read(vcpu);
1359         u64 data;
1360
1361         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1362                 kvm_inject_gp(vcpu, 0);
1363                 return 1;
1364         }
1365
1366         kvm_rax_write(vcpu, (u32)data);
1367         kvm_rdx_write(vcpu, data >> 32);
1368         return kvm_skip_emulated_instruction(vcpu);
1369 }
1370 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1371
1372 /*
1373  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1374  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1375  *
1376  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1377  * extract the supported MSRs from the related const lists.
1378  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1379  * capabilities of the host cpu. This capabilities test skips MSRs that are
1380  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1381  * may depend on host virtualization features rather than host cpu features.
1382  */
1383
1384 static const u32 msrs_to_save_all[] = {
1385         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1386         MSR_STAR,
1387 #ifdef CONFIG_X86_64
1388         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1389 #endif
1390         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1391         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1392         MSR_IA32_SPEC_CTRL,
1393         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1394         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1395         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1396         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1397         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1398         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1399         MSR_IA32_UMWAIT_CONTROL,
1400
1401         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1402         MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1403         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1404         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1405         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1406         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1407         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1408         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1409         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1410         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1411         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1412         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1413         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1414         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1415         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1416         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1417         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1418         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1419         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1420         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1421         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1422         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1423
1424         MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1425         MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1426         MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1427         MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1428         MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1429         MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1430         MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1431 };
1432
1433 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1434 static unsigned num_msrs_to_save;
1435
1436 static const u32 emulated_msrs_all[] = {
1437         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1438         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1439         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1440         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1441         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1442         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1443         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1444         HV_X64_MSR_RESET,
1445         HV_X64_MSR_VP_INDEX,
1446         HV_X64_MSR_VP_RUNTIME,
1447         HV_X64_MSR_SCONTROL,
1448         HV_X64_MSR_STIMER0_CONFIG,
1449         HV_X64_MSR_VP_ASSIST_PAGE,
1450         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1451         HV_X64_MSR_TSC_EMULATION_STATUS,
1452         HV_X64_MSR_SYNDBG_OPTIONS,
1453         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1454         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1455         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1456
1457         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1458         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1459
1460         MSR_IA32_TSC_ADJUST,
1461         MSR_IA32_TSC_DEADLINE,
1462         MSR_IA32_ARCH_CAPABILITIES,
1463         MSR_IA32_PERF_CAPABILITIES,
1464         MSR_IA32_MISC_ENABLE,
1465         MSR_IA32_MCG_STATUS,
1466         MSR_IA32_MCG_CTL,
1467         MSR_IA32_MCG_EXT_CTL,
1468         MSR_IA32_SMBASE,
1469         MSR_SMI_COUNT,
1470         MSR_PLATFORM_INFO,
1471         MSR_MISC_FEATURES_ENABLES,
1472         MSR_AMD64_VIRT_SPEC_CTRL,
1473         MSR_AMD64_TSC_RATIO,
1474         MSR_IA32_POWER_CTL,
1475         MSR_IA32_UCODE_REV,
1476
1477         /*
1478          * The following list leaves out MSRs whose values are determined
1479          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1480          * We always support the "true" VMX control MSRs, even if the host
1481          * processor does not, so I am putting these registers here rather
1482          * than in msrs_to_save_all.
1483          */
1484         MSR_IA32_VMX_BASIC,
1485         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1486         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1487         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1488         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1489         MSR_IA32_VMX_MISC,
1490         MSR_IA32_VMX_CR0_FIXED0,
1491         MSR_IA32_VMX_CR4_FIXED0,
1492         MSR_IA32_VMX_VMCS_ENUM,
1493         MSR_IA32_VMX_PROCBASED_CTLS2,
1494         MSR_IA32_VMX_EPT_VPID_CAP,
1495         MSR_IA32_VMX_VMFUNC,
1496
1497         MSR_K7_HWCR,
1498         MSR_KVM_POLL_CONTROL,
1499 };
1500
1501 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1502 static unsigned num_emulated_msrs;
1503
1504 /*
1505  * List of msr numbers which are used to expose MSR-based features that
1506  * can be used by a hypervisor to validate requested CPU features.
1507  */
1508 static const u32 msr_based_features_all[] = {
1509         MSR_IA32_VMX_BASIC,
1510         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1511         MSR_IA32_VMX_PINBASED_CTLS,
1512         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1513         MSR_IA32_VMX_PROCBASED_CTLS,
1514         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1515         MSR_IA32_VMX_EXIT_CTLS,
1516         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1517         MSR_IA32_VMX_ENTRY_CTLS,
1518         MSR_IA32_VMX_MISC,
1519         MSR_IA32_VMX_CR0_FIXED0,
1520         MSR_IA32_VMX_CR0_FIXED1,
1521         MSR_IA32_VMX_CR4_FIXED0,
1522         MSR_IA32_VMX_CR4_FIXED1,
1523         MSR_IA32_VMX_VMCS_ENUM,
1524         MSR_IA32_VMX_PROCBASED_CTLS2,
1525         MSR_IA32_VMX_EPT_VPID_CAP,
1526         MSR_IA32_VMX_VMFUNC,
1527
1528         MSR_F10H_DECFG,
1529         MSR_IA32_UCODE_REV,
1530         MSR_IA32_ARCH_CAPABILITIES,
1531         MSR_IA32_PERF_CAPABILITIES,
1532 };
1533
1534 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1535 static unsigned int num_msr_based_features;
1536
1537 static u64 kvm_get_arch_capabilities(void)
1538 {
1539         u64 data = 0;
1540
1541         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1542                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1543
1544         /*
1545          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1546          * the nested hypervisor runs with NX huge pages.  If it is not,
1547          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1548          * L1 guests, so it need not worry about its own (L2) guests.
1549          */
1550         data |= ARCH_CAP_PSCHANGE_MC_NO;
1551
1552         /*
1553          * If we're doing cache flushes (either "always" or "cond")
1554          * we will do one whenever the guest does a vmlaunch/vmresume.
1555          * If an outer hypervisor is doing the cache flush for us
1556          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1557          * capability to the guest too, and if EPT is disabled we're not
1558          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1559          * require a nested hypervisor to do a flush of its own.
1560          */
1561         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1562                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1563
1564         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1565                 data |= ARCH_CAP_RDCL_NO;
1566         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1567                 data |= ARCH_CAP_SSB_NO;
1568         if (!boot_cpu_has_bug(X86_BUG_MDS))
1569                 data |= ARCH_CAP_MDS_NO;
1570
1571         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1572                 /*
1573                  * If RTM=0 because the kernel has disabled TSX, the host might
1574                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1575                  * and therefore knows that there cannot be TAA) but keep
1576                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1577                  * and we want to allow migrating those guests to tsx=off hosts.
1578                  */
1579                 data &= ~ARCH_CAP_TAA_NO;
1580         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1581                 data |= ARCH_CAP_TAA_NO;
1582         } else {
1583                 /*
1584                  * Nothing to do here; we emulate TSX_CTRL if present on the
1585                  * host so the guest can choose between disabling TSX or
1586                  * using VERW to clear CPU buffers.
1587                  */
1588         }
1589
1590         return data;
1591 }
1592
1593 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1594 {
1595         switch (msr->index) {
1596         case MSR_IA32_ARCH_CAPABILITIES:
1597                 msr->data = kvm_get_arch_capabilities();
1598                 break;
1599         case MSR_IA32_UCODE_REV:
1600                 rdmsrl_safe(msr->index, &msr->data);
1601                 break;
1602         default:
1603                 return static_call(kvm_x86_get_msr_feature)(msr);
1604         }
1605         return 0;
1606 }
1607
1608 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1609 {
1610         struct kvm_msr_entry msr;
1611         int r;
1612
1613         msr.index = index;
1614         r = kvm_get_msr_feature(&msr);
1615
1616         if (r == KVM_MSR_RET_INVALID) {
1617                 /* Unconditionally clear the output for simplicity */
1618                 *data = 0;
1619                 if (kvm_msr_ignored_check(index, 0, false))
1620                         r = 0;
1621         }
1622
1623         if (r)
1624                 return r;
1625
1626         *data = msr.data;
1627
1628         return 0;
1629 }
1630
1631 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1632 {
1633         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1634                 return false;
1635
1636         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1637                 return false;
1638
1639         if (efer & (EFER_LME | EFER_LMA) &&
1640             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1641                 return false;
1642
1643         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1644                 return false;
1645
1646         return true;
1647
1648 }
1649 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1650 {
1651         if (efer & efer_reserved_bits)
1652                 return false;
1653
1654         return __kvm_valid_efer(vcpu, efer);
1655 }
1656 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1657
1658 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1659 {
1660         u64 old_efer = vcpu->arch.efer;
1661         u64 efer = msr_info->data;
1662         int r;
1663
1664         if (efer & efer_reserved_bits)
1665                 return 1;
1666
1667         if (!msr_info->host_initiated) {
1668                 if (!__kvm_valid_efer(vcpu, efer))
1669                         return 1;
1670
1671                 if (is_paging(vcpu) &&
1672                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1673                         return 1;
1674         }
1675
1676         efer &= ~EFER_LMA;
1677         efer |= vcpu->arch.efer & EFER_LMA;
1678
1679         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1680         if (r) {
1681                 WARN_ON(r > 0);
1682                 return r;
1683         }
1684
1685         if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1686                 kvm_mmu_reset_context(vcpu);
1687
1688         return 0;
1689 }
1690
1691 void kvm_enable_efer_bits(u64 mask)
1692 {
1693        efer_reserved_bits &= ~mask;
1694 }
1695 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1696
1697 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1698 {
1699         struct kvm_x86_msr_filter *msr_filter;
1700         struct msr_bitmap_range *ranges;
1701         struct kvm *kvm = vcpu->kvm;
1702         bool allowed;
1703         int idx;
1704         u32 i;
1705
1706         /* x2APIC MSRs do not support filtering. */
1707         if (index >= 0x800 && index <= 0x8ff)
1708                 return true;
1709
1710         idx = srcu_read_lock(&kvm->srcu);
1711
1712         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1713         if (!msr_filter) {
1714                 allowed = true;
1715                 goto out;
1716         }
1717
1718         allowed = msr_filter->default_allow;
1719         ranges = msr_filter->ranges;
1720
1721         for (i = 0; i < msr_filter->count; i++) {
1722                 u32 start = ranges[i].base;
1723                 u32 end = start + ranges[i].nmsrs;
1724                 u32 flags = ranges[i].flags;
1725                 unsigned long *bitmap = ranges[i].bitmap;
1726
1727                 if ((index >= start) && (index < end) && (flags & type)) {
1728                         allowed = !!test_bit(index - start, bitmap);
1729                         break;
1730                 }
1731         }
1732
1733 out:
1734         srcu_read_unlock(&kvm->srcu, idx);
1735
1736         return allowed;
1737 }
1738 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1739
1740 /*
1741  * Write @data into the MSR specified by @index.  Select MSR specific fault
1742  * checks are bypassed if @host_initiated is %true.
1743  * Returns 0 on success, non-0 otherwise.
1744  * Assumes vcpu_load() was already called.
1745  */
1746 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1747                          bool host_initiated)
1748 {
1749         struct msr_data msr;
1750
1751         switch (index) {
1752         case MSR_FS_BASE:
1753         case MSR_GS_BASE:
1754         case MSR_KERNEL_GS_BASE:
1755         case MSR_CSTAR:
1756         case MSR_LSTAR:
1757                 if (is_noncanonical_address(data, vcpu))
1758                         return 1;
1759                 break;
1760         case MSR_IA32_SYSENTER_EIP:
1761         case MSR_IA32_SYSENTER_ESP:
1762                 /*
1763                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1764                  * non-canonical address is written on Intel but not on
1765                  * AMD (which ignores the top 32-bits, because it does
1766                  * not implement 64-bit SYSENTER).
1767                  *
1768                  * 64-bit code should hence be able to write a non-canonical
1769                  * value on AMD.  Making the address canonical ensures that
1770                  * vmentry does not fail on Intel after writing a non-canonical
1771                  * value, and that something deterministic happens if the guest
1772                  * invokes 64-bit SYSENTER.
1773                  */
1774                 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1775                 break;
1776         case MSR_TSC_AUX:
1777                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1778                         return 1;
1779
1780                 if (!host_initiated &&
1781                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1782                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1783                         return 1;
1784
1785                 /*
1786                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1787                  * incomplete and conflicting architectural behavior.  Current
1788                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1789                  * reserved and always read as zeros.  Enforce Intel's reserved
1790                  * bits check if and only if the guest CPU is Intel, and clear
1791                  * the bits in all other cases.  This ensures cross-vendor
1792                  * migration will provide consistent behavior for the guest.
1793                  */
1794                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1795                         return 1;
1796
1797                 data = (u32)data;
1798                 break;
1799         }
1800
1801         msr.data = data;
1802         msr.index = index;
1803         msr.host_initiated = host_initiated;
1804
1805         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1806 }
1807
1808 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1809                                      u32 index, u64 data, bool host_initiated)
1810 {
1811         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1812
1813         if (ret == KVM_MSR_RET_INVALID)
1814                 if (kvm_msr_ignored_check(index, data, true))
1815                         ret = 0;
1816
1817         return ret;
1818 }
1819
1820 /*
1821  * Read the MSR specified by @index into @data.  Select MSR specific fault
1822  * checks are bypassed if @host_initiated is %true.
1823  * Returns 0 on success, non-0 otherwise.
1824  * Assumes vcpu_load() was already called.
1825  */
1826 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1827                   bool host_initiated)
1828 {
1829         struct msr_data msr;
1830         int ret;
1831
1832         switch (index) {
1833         case MSR_TSC_AUX:
1834                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1835                         return 1;
1836
1837                 if (!host_initiated &&
1838                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1839                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1840                         return 1;
1841                 break;
1842         }
1843
1844         msr.index = index;
1845         msr.host_initiated = host_initiated;
1846
1847         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1848         if (!ret)
1849                 *data = msr.data;
1850         return ret;
1851 }
1852
1853 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1854                                      u32 index, u64 *data, bool host_initiated)
1855 {
1856         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1857
1858         if (ret == KVM_MSR_RET_INVALID) {
1859                 /* Unconditionally clear *data for simplicity */
1860                 *data = 0;
1861                 if (kvm_msr_ignored_check(index, 0, false))
1862                         ret = 0;
1863         }
1864
1865         return ret;
1866 }
1867
1868 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1869 {
1870         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1871                 return KVM_MSR_RET_FILTERED;
1872         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1873 }
1874
1875 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1876 {
1877         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1878                 return KVM_MSR_RET_FILTERED;
1879         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1880 }
1881
1882 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1883 {
1884         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1885 }
1886 EXPORT_SYMBOL_GPL(kvm_get_msr);
1887
1888 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1889 {
1890         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1891 }
1892 EXPORT_SYMBOL_GPL(kvm_set_msr);
1893
1894 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1895 {
1896         if (!vcpu->run->msr.error) {
1897                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1898                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1899         }
1900 }
1901
1902 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1903 {
1904         return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1905 }
1906
1907 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1908 {
1909         complete_userspace_rdmsr(vcpu);
1910         return complete_emulated_msr_access(vcpu);
1911 }
1912
1913 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1914 {
1915         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1916 }
1917
1918 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1919 {
1920         complete_userspace_rdmsr(vcpu);
1921         return complete_fast_msr_access(vcpu);
1922 }
1923
1924 static u64 kvm_msr_reason(int r)
1925 {
1926         switch (r) {
1927         case KVM_MSR_RET_INVALID:
1928                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1929         case KVM_MSR_RET_FILTERED:
1930                 return KVM_MSR_EXIT_REASON_FILTER;
1931         default:
1932                 return KVM_MSR_EXIT_REASON_INVAL;
1933         }
1934 }
1935
1936 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1937                               u32 exit_reason, u64 data,
1938                               int (*completion)(struct kvm_vcpu *vcpu),
1939                               int r)
1940 {
1941         u64 msr_reason = kvm_msr_reason(r);
1942
1943         /* Check if the user wanted to know about this MSR fault */
1944         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1945                 return 0;
1946
1947         vcpu->run->exit_reason = exit_reason;
1948         vcpu->run->msr.error = 0;
1949         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1950         vcpu->run->msr.reason = msr_reason;
1951         vcpu->run->msr.index = index;
1952         vcpu->run->msr.data = data;
1953         vcpu->arch.complete_userspace_io = completion;
1954
1955         return 1;
1956 }
1957
1958 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1959 {
1960         u32 ecx = kvm_rcx_read(vcpu);
1961         u64 data;
1962         int r;
1963
1964         r = kvm_get_msr_with_filter(vcpu, ecx, &data);
1965
1966         if (!r) {
1967                 trace_kvm_msr_read(ecx, data);
1968
1969                 kvm_rax_write(vcpu, data & -1u);
1970                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1971         } else {
1972                 /* MSR read failed? See if we should ask user space */
1973                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
1974                                        complete_fast_rdmsr, r))
1975                         return 0;
1976                 trace_kvm_msr_read_ex(ecx);
1977         }
1978
1979         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1980 }
1981 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1982
1983 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1984 {
1985         u32 ecx = kvm_rcx_read(vcpu);
1986         u64 data = kvm_read_edx_eax(vcpu);
1987         int r;
1988
1989         r = kvm_set_msr_with_filter(vcpu, ecx, data);
1990
1991         if (!r) {
1992                 trace_kvm_msr_write(ecx, data);
1993         } else {
1994                 /* MSR write failed? See if we should ask user space */
1995                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
1996                                        complete_fast_msr_access, r))
1997                         return 0;
1998                 /* Signal all other negative errors to userspace */
1999                 if (r < 0)
2000                         return r;
2001                 trace_kvm_msr_write_ex(ecx, data);
2002         }
2003
2004         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2005 }
2006 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2007
2008 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2009 {
2010         return kvm_skip_emulated_instruction(vcpu);
2011 }
2012 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2013
2014 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2015 {
2016         /* Treat an INVD instruction as a NOP and just skip it. */
2017         return kvm_emulate_as_nop(vcpu);
2018 }
2019 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2020
2021 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2022 {
2023         pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
2024         return kvm_emulate_as_nop(vcpu);
2025 }
2026 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2027
2028 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2029 {
2030         kvm_queue_exception(vcpu, UD_VECTOR);
2031         return 1;
2032 }
2033 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2034
2035 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2036 {
2037         pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
2038         return kvm_emulate_as_nop(vcpu);
2039 }
2040 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2041
2042 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2043 {
2044         xfer_to_guest_mode_prepare();
2045         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2046                 xfer_to_guest_mode_work_pending();
2047 }
2048
2049 /*
2050  * The fast path for frequent and performance sensitive wrmsr emulation,
2051  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2052  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2053  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2054  * other cases which must be called after interrupts are enabled on the host.
2055  */
2056 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2057 {
2058         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2059                 return 1;
2060
2061         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2062             ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2063             ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2064             ((u32)(data >> 32) != X2APIC_BROADCAST))
2065                 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2066
2067         return 1;
2068 }
2069
2070 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2071 {
2072         if (!kvm_can_use_hv_timer(vcpu))
2073                 return 1;
2074
2075         kvm_set_lapic_tscdeadline_msr(vcpu, data);
2076         return 0;
2077 }
2078
2079 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2080 {
2081         u32 msr = kvm_rcx_read(vcpu);
2082         u64 data;
2083         fastpath_t ret = EXIT_FASTPATH_NONE;
2084
2085         switch (msr) {
2086         case APIC_BASE_MSR + (APIC_ICR >> 4):
2087                 data = kvm_read_edx_eax(vcpu);
2088                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2089                         kvm_skip_emulated_instruction(vcpu);
2090                         ret = EXIT_FASTPATH_EXIT_HANDLED;
2091                 }
2092                 break;
2093         case MSR_IA32_TSC_DEADLINE:
2094                 data = kvm_read_edx_eax(vcpu);
2095                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2096                         kvm_skip_emulated_instruction(vcpu);
2097                         ret = EXIT_FASTPATH_REENTER_GUEST;
2098                 }
2099                 break;
2100         default:
2101                 break;
2102         }
2103
2104         if (ret != EXIT_FASTPATH_NONE)
2105                 trace_kvm_msr_write(msr, data);
2106
2107         return ret;
2108 }
2109 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2110
2111 /*
2112  * Adapt set_msr() to msr_io()'s calling convention
2113  */
2114 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2115 {
2116         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2117 }
2118
2119 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2120 {
2121         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2122 }
2123
2124 #ifdef CONFIG_X86_64
2125 struct pvclock_clock {
2126         int vclock_mode;
2127         u64 cycle_last;
2128         u64 mask;
2129         u32 mult;
2130         u32 shift;
2131         u64 base_cycles;
2132         u64 offset;
2133 };
2134
2135 struct pvclock_gtod_data {
2136         seqcount_t      seq;
2137
2138         struct pvclock_clock clock; /* extract of a clocksource struct */
2139         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2140
2141         ktime_t         offs_boot;
2142         u64             wall_time_sec;
2143 };
2144
2145 static struct pvclock_gtod_data pvclock_gtod_data;
2146
2147 static void update_pvclock_gtod(struct timekeeper *tk)
2148 {
2149         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2150
2151         write_seqcount_begin(&vdata->seq);
2152
2153         /* copy pvclock gtod data */
2154         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2155         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2156         vdata->clock.mask               = tk->tkr_mono.mask;
2157         vdata->clock.mult               = tk->tkr_mono.mult;
2158         vdata->clock.shift              = tk->tkr_mono.shift;
2159         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2160         vdata->clock.offset             = tk->tkr_mono.base;
2161
2162         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2163         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2164         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2165         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2166         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2167         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2168         vdata->raw_clock.offset         = tk->tkr_raw.base;
2169
2170         vdata->wall_time_sec            = tk->xtime_sec;
2171
2172         vdata->offs_boot                = tk->offs_boot;
2173
2174         write_seqcount_end(&vdata->seq);
2175 }
2176
2177 static s64 get_kvmclock_base_ns(void)
2178 {
2179         /* Count up from boot time, but with the frequency of the raw clock.  */
2180         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2181 }
2182 #else
2183 static s64 get_kvmclock_base_ns(void)
2184 {
2185         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2186         return ktime_get_boottime_ns();
2187 }
2188 #endif
2189
2190 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2191 {
2192         int version;
2193         int r;
2194         struct pvclock_wall_clock wc;
2195         u32 wc_sec_hi;
2196         u64 wall_nsec;
2197
2198         if (!wall_clock)
2199                 return;
2200
2201         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2202         if (r)
2203                 return;
2204
2205         if (version & 1)
2206                 ++version;  /* first time write, random junk */
2207
2208         ++version;
2209
2210         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2211                 return;
2212
2213         /*
2214          * The guest calculates current wall clock time by adding
2215          * system time (updated by kvm_guest_time_update below) to the
2216          * wall clock specified here.  We do the reverse here.
2217          */
2218         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2219
2220         wc.nsec = do_div(wall_nsec, 1000000000);
2221         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2222         wc.version = version;
2223
2224         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2225
2226         if (sec_hi_ofs) {
2227                 wc_sec_hi = wall_nsec >> 32;
2228                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2229                                 &wc_sec_hi, sizeof(wc_sec_hi));
2230         }
2231
2232         version++;
2233         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2234 }
2235
2236 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2237                                   bool old_msr, bool host_initiated)
2238 {
2239         struct kvm_arch *ka = &vcpu->kvm->arch;
2240
2241         if (vcpu->vcpu_id == 0 && !host_initiated) {
2242                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2243                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2244
2245                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2246         }
2247
2248         vcpu->arch.time = system_time;
2249         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2250
2251         /* we verify if the enable bit is set... */
2252         vcpu->arch.pv_time_enabled = false;
2253         if (!(system_time & 1))
2254                 return;
2255
2256         if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2257                                        &vcpu->arch.pv_time, system_time & ~1ULL,
2258                                        sizeof(struct pvclock_vcpu_time_info)))
2259                 vcpu->arch.pv_time_enabled = true;
2260
2261         return;
2262 }
2263
2264 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2265 {
2266         do_shl32_div32(dividend, divisor);
2267         return dividend;
2268 }
2269
2270 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2271                                s8 *pshift, u32 *pmultiplier)
2272 {
2273         uint64_t scaled64;
2274         int32_t  shift = 0;
2275         uint64_t tps64;
2276         uint32_t tps32;
2277
2278         tps64 = base_hz;
2279         scaled64 = scaled_hz;
2280         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2281                 tps64 >>= 1;
2282                 shift--;
2283         }
2284
2285         tps32 = (uint32_t)tps64;
2286         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2287                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2288                         scaled64 >>= 1;
2289                 else
2290                         tps32 <<= 1;
2291                 shift++;
2292         }
2293
2294         *pshift = shift;
2295         *pmultiplier = div_frac(scaled64, tps32);
2296 }
2297
2298 #ifdef CONFIG_X86_64
2299 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2300 #endif
2301
2302 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2303 static unsigned long max_tsc_khz;
2304
2305 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2306 {
2307         u64 v = (u64)khz * (1000000 + ppm);
2308         do_div(v, 1000000);
2309         return v;
2310 }
2311
2312 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2313
2314 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2315 {
2316         u64 ratio;
2317
2318         /* Guest TSC same frequency as host TSC? */
2319         if (!scale) {
2320                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2321                 return 0;
2322         }
2323
2324         /* TSC scaling supported? */
2325         if (!kvm_has_tsc_control) {
2326                 if (user_tsc_khz > tsc_khz) {
2327                         vcpu->arch.tsc_catchup = 1;
2328                         vcpu->arch.tsc_always_catchup = 1;
2329                         return 0;
2330                 } else {
2331                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2332                         return -1;
2333                 }
2334         }
2335
2336         /* TSC scaling required  - calculate ratio */
2337         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2338                                 user_tsc_khz, tsc_khz);
2339
2340         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2341                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2342                                     user_tsc_khz);
2343                 return -1;
2344         }
2345
2346         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2347         return 0;
2348 }
2349
2350 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2351 {
2352         u32 thresh_lo, thresh_hi;
2353         int use_scaling = 0;
2354
2355         /* tsc_khz can be zero if TSC calibration fails */
2356         if (user_tsc_khz == 0) {
2357                 /* set tsc_scaling_ratio to a safe value */
2358                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2359                 return -1;
2360         }
2361
2362         /* Compute a scale to convert nanoseconds in TSC cycles */
2363         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2364                            &vcpu->arch.virtual_tsc_shift,
2365                            &vcpu->arch.virtual_tsc_mult);
2366         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2367
2368         /*
2369          * Compute the variation in TSC rate which is acceptable
2370          * within the range of tolerance and decide if the
2371          * rate being applied is within that bounds of the hardware
2372          * rate.  If so, no scaling or compensation need be done.
2373          */
2374         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2375         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2376         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2377                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2378                 use_scaling = 1;
2379         }
2380         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2381 }
2382
2383 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2384 {
2385         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2386                                       vcpu->arch.virtual_tsc_mult,
2387                                       vcpu->arch.virtual_tsc_shift);
2388         tsc += vcpu->arch.this_tsc_write;
2389         return tsc;
2390 }
2391
2392 #ifdef CONFIG_X86_64
2393 static inline int gtod_is_based_on_tsc(int mode)
2394 {
2395         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2396 }
2397 #endif
2398
2399 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2400 {
2401 #ifdef CONFIG_X86_64
2402         bool vcpus_matched;
2403         struct kvm_arch *ka = &vcpu->kvm->arch;
2404         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2405
2406         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2407                          atomic_read(&vcpu->kvm->online_vcpus));
2408
2409         /*
2410          * Once the masterclock is enabled, always perform request in
2411          * order to update it.
2412          *
2413          * In order to enable masterclock, the host clocksource must be TSC
2414          * and the vcpus need to have matched TSCs.  When that happens,
2415          * perform request to enable masterclock.
2416          */
2417         if (ka->use_master_clock ||
2418             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2419                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2420
2421         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2422                             atomic_read(&vcpu->kvm->online_vcpus),
2423                             ka->use_master_clock, gtod->clock.vclock_mode);
2424 #endif
2425 }
2426
2427 /*
2428  * Multiply tsc by a fixed point number represented by ratio.
2429  *
2430  * The most significant 64-N bits (mult) of ratio represent the
2431  * integral part of the fixed point number; the remaining N bits
2432  * (frac) represent the fractional part, ie. ratio represents a fixed
2433  * point number (mult + frac * 2^(-N)).
2434  *
2435  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2436  */
2437 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2438 {
2439         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2440 }
2441
2442 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2443 {
2444         u64 _tsc = tsc;
2445
2446         if (ratio != kvm_default_tsc_scaling_ratio)
2447                 _tsc = __scale_tsc(ratio, tsc);
2448
2449         return _tsc;
2450 }
2451 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2452
2453 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2454 {
2455         u64 tsc;
2456
2457         tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2458
2459         return target_tsc - tsc;
2460 }
2461
2462 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2463 {
2464         return vcpu->arch.l1_tsc_offset +
2465                 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2466 }
2467 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2468
2469 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2470 {
2471         u64 nested_offset;
2472
2473         if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2474                 nested_offset = l1_offset;
2475         else
2476                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2477                                                 kvm_tsc_scaling_ratio_frac_bits);
2478
2479         nested_offset += l2_offset;
2480         return nested_offset;
2481 }
2482 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2483
2484 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2485 {
2486         if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2487                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2488                                        kvm_tsc_scaling_ratio_frac_bits);
2489
2490         return l1_multiplier;
2491 }
2492 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2493
2494 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2495 {
2496         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2497                                    vcpu->arch.l1_tsc_offset,
2498                                    l1_offset);
2499
2500         vcpu->arch.l1_tsc_offset = l1_offset;
2501
2502         /*
2503          * If we are here because L1 chose not to trap WRMSR to TSC then
2504          * according to the spec this should set L1's TSC (as opposed to
2505          * setting L1's offset for L2).
2506          */
2507         if (is_guest_mode(vcpu))
2508                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2509                         l1_offset,
2510                         static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2511                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2512         else
2513                 vcpu->arch.tsc_offset = l1_offset;
2514
2515         static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2516 }
2517
2518 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2519 {
2520         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2521
2522         /* Userspace is changing the multiplier while L2 is active */
2523         if (is_guest_mode(vcpu))
2524                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2525                         l1_multiplier,
2526                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2527         else
2528                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2529
2530         if (kvm_has_tsc_control)
2531                 static_call(kvm_x86_write_tsc_multiplier)(
2532                         vcpu, vcpu->arch.tsc_scaling_ratio);
2533 }
2534
2535 static inline bool kvm_check_tsc_unstable(void)
2536 {
2537 #ifdef CONFIG_X86_64
2538         /*
2539          * TSC is marked unstable when we're running on Hyper-V,
2540          * 'TSC page' clocksource is good.
2541          */
2542         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2543                 return false;
2544 #endif
2545         return check_tsc_unstable();
2546 }
2547
2548 /*
2549  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2550  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2551  * participates in.
2552  */
2553 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2554                                   u64 ns, bool matched)
2555 {
2556         struct kvm *kvm = vcpu->kvm;
2557
2558         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2559
2560         /*
2561          * We also track th most recent recorded KHZ, write and time to
2562          * allow the matching interval to be extended at each write.
2563          */
2564         kvm->arch.last_tsc_nsec = ns;
2565         kvm->arch.last_tsc_write = tsc;
2566         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2567         kvm->arch.last_tsc_offset = offset;
2568
2569         vcpu->arch.last_guest_tsc = tsc;
2570
2571         kvm_vcpu_write_tsc_offset(vcpu, offset);
2572
2573         if (!matched) {
2574                 /*
2575                  * We split periods of matched TSC writes into generations.
2576                  * For each generation, we track the original measured
2577                  * nanosecond time, offset, and write, so if TSCs are in
2578                  * sync, we can match exact offset, and if not, we can match
2579                  * exact software computation in compute_guest_tsc()
2580                  *
2581                  * These values are tracked in kvm->arch.cur_xxx variables.
2582                  */
2583                 kvm->arch.cur_tsc_generation++;
2584                 kvm->arch.cur_tsc_nsec = ns;
2585                 kvm->arch.cur_tsc_write = tsc;
2586                 kvm->arch.cur_tsc_offset = offset;
2587                 kvm->arch.nr_vcpus_matched_tsc = 0;
2588         } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2589                 kvm->arch.nr_vcpus_matched_tsc++;
2590         }
2591
2592         /* Keep track of which generation this VCPU has synchronized to */
2593         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2594         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2595         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2596
2597         kvm_track_tsc_matching(vcpu);
2598 }
2599
2600 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2601 {
2602         struct kvm *kvm = vcpu->kvm;
2603         u64 offset, ns, elapsed;
2604         unsigned long flags;
2605         bool matched = false;
2606         bool synchronizing = false;
2607
2608         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2609         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2610         ns = get_kvmclock_base_ns();
2611         elapsed = ns - kvm->arch.last_tsc_nsec;
2612
2613         if (vcpu->arch.virtual_tsc_khz) {
2614                 if (data == 0) {
2615                         /*
2616                          * detection of vcpu initialization -- need to sync
2617                          * with other vCPUs. This particularly helps to keep
2618                          * kvm_clock stable after CPU hotplug
2619                          */
2620                         synchronizing = true;
2621                 } else {
2622                         u64 tsc_exp = kvm->arch.last_tsc_write +
2623                                                 nsec_to_cycles(vcpu, elapsed);
2624                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2625                         /*
2626                          * Special case: TSC write with a small delta (1 second)
2627                          * of virtual cycle time against real time is
2628                          * interpreted as an attempt to synchronize the CPU.
2629                          */
2630                         synchronizing = data < tsc_exp + tsc_hz &&
2631                                         data + tsc_hz > tsc_exp;
2632                 }
2633         }
2634
2635         /*
2636          * For a reliable TSC, we can match TSC offsets, and for an unstable
2637          * TSC, we add elapsed time in this computation.  We could let the
2638          * compensation code attempt to catch up if we fall behind, but
2639          * it's better to try to match offsets from the beginning.
2640          */
2641         if (synchronizing &&
2642             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2643                 if (!kvm_check_tsc_unstable()) {
2644                         offset = kvm->arch.cur_tsc_offset;
2645                 } else {
2646                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2647                         data += delta;
2648                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2649                 }
2650                 matched = true;
2651         }
2652
2653         __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2654         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2655 }
2656
2657 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2658                                            s64 adjustment)
2659 {
2660         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2661         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2662 }
2663
2664 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2665 {
2666         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2667                 WARN_ON(adjustment < 0);
2668         adjustment = kvm_scale_tsc((u64) adjustment,
2669                                    vcpu->arch.l1_tsc_scaling_ratio);
2670         adjust_tsc_offset_guest(vcpu, adjustment);
2671 }
2672
2673 #ifdef CONFIG_X86_64
2674
2675 static u64 read_tsc(void)
2676 {
2677         u64 ret = (u64)rdtsc_ordered();
2678         u64 last = pvclock_gtod_data.clock.cycle_last;
2679
2680         if (likely(ret >= last))
2681                 return ret;
2682
2683         /*
2684          * GCC likes to generate cmov here, but this branch is extremely
2685          * predictable (it's just a function of time and the likely is
2686          * very likely) and there's a data dependence, so force GCC
2687          * to generate a branch instead.  I don't barrier() because
2688          * we don't actually need a barrier, and if this function
2689          * ever gets inlined it will generate worse code.
2690          */
2691         asm volatile ("");
2692         return last;
2693 }
2694
2695 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2696                           int *mode)
2697 {
2698         long v;
2699         u64 tsc_pg_val;
2700
2701         switch (clock->vclock_mode) {
2702         case VDSO_CLOCKMODE_HVCLOCK:
2703                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2704                                                   tsc_timestamp);
2705                 if (tsc_pg_val != U64_MAX) {
2706                         /* TSC page valid */
2707                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2708                         v = (tsc_pg_val - clock->cycle_last) &
2709                                 clock->mask;
2710                 } else {
2711                         /* TSC page invalid */
2712                         *mode = VDSO_CLOCKMODE_NONE;
2713                 }
2714                 break;
2715         case VDSO_CLOCKMODE_TSC:
2716                 *mode = VDSO_CLOCKMODE_TSC;
2717                 *tsc_timestamp = read_tsc();
2718                 v = (*tsc_timestamp - clock->cycle_last) &
2719                         clock->mask;
2720                 break;
2721         default:
2722                 *mode = VDSO_CLOCKMODE_NONE;
2723         }
2724
2725         if (*mode == VDSO_CLOCKMODE_NONE)
2726                 *tsc_timestamp = v = 0;
2727
2728         return v * clock->mult;
2729 }
2730
2731 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2732 {
2733         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2734         unsigned long seq;
2735         int mode;
2736         u64 ns;
2737
2738         do {
2739                 seq = read_seqcount_begin(&gtod->seq);
2740                 ns = gtod->raw_clock.base_cycles;
2741                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2742                 ns >>= gtod->raw_clock.shift;
2743                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2744         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2745         *t = ns;
2746
2747         return mode;
2748 }
2749
2750 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2751 {
2752         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2753         unsigned long seq;
2754         int mode;
2755         u64 ns;
2756
2757         do {
2758                 seq = read_seqcount_begin(&gtod->seq);
2759                 ts->tv_sec = gtod->wall_time_sec;
2760                 ns = gtod->clock.base_cycles;
2761                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2762                 ns >>= gtod->clock.shift;
2763         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2764
2765         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2766         ts->tv_nsec = ns;
2767
2768         return mode;
2769 }
2770
2771 /* returns true if host is using TSC based clocksource */
2772 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2773 {
2774         /* checked again under seqlock below */
2775         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2776                 return false;
2777
2778         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2779                                                       tsc_timestamp));
2780 }
2781
2782 /* returns true if host is using TSC based clocksource */
2783 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2784                                            u64 *tsc_timestamp)
2785 {
2786         /* checked again under seqlock below */
2787         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2788                 return false;
2789
2790         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2791 }
2792 #endif
2793
2794 /*
2795  *
2796  * Assuming a stable TSC across physical CPUS, and a stable TSC
2797  * across virtual CPUs, the following condition is possible.
2798  * Each numbered line represents an event visible to both
2799  * CPUs at the next numbered event.
2800  *
2801  * "timespecX" represents host monotonic time. "tscX" represents
2802  * RDTSC value.
2803  *
2804  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2805  *
2806  * 1.  read timespec0,tsc0
2807  * 2.                                   | timespec1 = timespec0 + N
2808  *                                      | tsc1 = tsc0 + M
2809  * 3. transition to guest               | transition to guest
2810  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2811  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2812  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2813  *
2814  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2815  *
2816  *      - ret0 < ret1
2817  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2818  *              ...
2819  *      - 0 < N - M => M < N
2820  *
2821  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2822  * always the case (the difference between two distinct xtime instances
2823  * might be smaller then the difference between corresponding TSC reads,
2824  * when updating guest vcpus pvclock areas).
2825  *
2826  * To avoid that problem, do not allow visibility of distinct
2827  * system_timestamp/tsc_timestamp values simultaneously: use a master
2828  * copy of host monotonic time values. Update that master copy
2829  * in lockstep.
2830  *
2831  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2832  *
2833  */
2834
2835 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2836 {
2837 #ifdef CONFIG_X86_64
2838         struct kvm_arch *ka = &kvm->arch;
2839         int vclock_mode;
2840         bool host_tsc_clocksource, vcpus_matched;
2841
2842         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2843         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2844                         atomic_read(&kvm->online_vcpus));
2845
2846         /*
2847          * If the host uses TSC clock, then passthrough TSC as stable
2848          * to the guest.
2849          */
2850         host_tsc_clocksource = kvm_get_time_and_clockread(
2851                                         &ka->master_kernel_ns,
2852                                         &ka->master_cycle_now);
2853
2854         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2855                                 && !ka->backwards_tsc_observed
2856                                 && !ka->boot_vcpu_runs_old_kvmclock;
2857
2858         if (ka->use_master_clock)
2859                 atomic_set(&kvm_guest_has_master_clock, 1);
2860
2861         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2862         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2863                                         vcpus_matched);
2864 #endif
2865 }
2866
2867 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2868 {
2869         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2870 }
2871
2872 static void __kvm_start_pvclock_update(struct kvm *kvm)
2873 {
2874         raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2875         write_seqcount_begin(&kvm->arch.pvclock_sc);
2876 }
2877
2878 static void kvm_start_pvclock_update(struct kvm *kvm)
2879 {
2880         kvm_make_mclock_inprogress_request(kvm);
2881
2882         /* no guest entries from this point */
2883         __kvm_start_pvclock_update(kvm);
2884 }
2885
2886 static void kvm_end_pvclock_update(struct kvm *kvm)
2887 {
2888         struct kvm_arch *ka = &kvm->arch;
2889         struct kvm_vcpu *vcpu;
2890         unsigned long i;
2891
2892         write_seqcount_end(&ka->pvclock_sc);
2893         raw_spin_unlock_irq(&ka->tsc_write_lock);
2894         kvm_for_each_vcpu(i, vcpu, kvm)
2895                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2896
2897         /* guest entries allowed */
2898         kvm_for_each_vcpu(i, vcpu, kvm)
2899                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2900 }
2901
2902 static void kvm_update_masterclock(struct kvm *kvm)
2903 {
2904         kvm_hv_invalidate_tsc_page(kvm);
2905         kvm_start_pvclock_update(kvm);
2906         pvclock_update_vm_gtod_copy(kvm);
2907         kvm_end_pvclock_update(kvm);
2908 }
2909
2910 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2911 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2912 {
2913         struct kvm_arch *ka = &kvm->arch;
2914         struct pvclock_vcpu_time_info hv_clock;
2915
2916         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2917         get_cpu();
2918
2919         data->flags = 0;
2920         if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2921 #ifdef CONFIG_X86_64
2922                 struct timespec64 ts;
2923
2924                 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2925                         data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2926                         data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2927                 } else
2928 #endif
2929                 data->host_tsc = rdtsc();
2930
2931                 data->flags |= KVM_CLOCK_TSC_STABLE;
2932                 hv_clock.tsc_timestamp = ka->master_cycle_now;
2933                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2934                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2935                                    &hv_clock.tsc_shift,
2936                                    &hv_clock.tsc_to_system_mul);
2937                 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2938         } else {
2939                 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2940         }
2941
2942         put_cpu();
2943 }
2944
2945 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2946 {
2947         struct kvm_arch *ka = &kvm->arch;
2948         unsigned seq;
2949
2950         do {
2951                 seq = read_seqcount_begin(&ka->pvclock_sc);
2952                 __get_kvmclock(kvm, data);
2953         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
2954 }
2955
2956 u64 get_kvmclock_ns(struct kvm *kvm)
2957 {
2958         struct kvm_clock_data data;
2959
2960         get_kvmclock(kvm, &data);
2961         return data.clock;
2962 }
2963
2964 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2965                                    struct gfn_to_hva_cache *cache,
2966                                    unsigned int offset)
2967 {
2968         struct kvm_vcpu_arch *vcpu = &v->arch;
2969         struct pvclock_vcpu_time_info guest_hv_clock;
2970
2971         if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2972                 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2973                 return;
2974
2975         /* This VCPU is paused, but it's legal for a guest to read another
2976          * VCPU's kvmclock, so we really have to follow the specification where
2977          * it says that version is odd if data is being modified, and even after
2978          * it is consistent.
2979          *
2980          * Version field updates must be kept separate.  This is because
2981          * kvm_write_guest_cached might use a "rep movs" instruction, and
2982          * writes within a string instruction are weakly ordered.  So there
2983          * are three writes overall.
2984          *
2985          * As a small optimization, only write the version field in the first
2986          * and third write.  The vcpu->pv_time cache is still valid, because the
2987          * version field is the first in the struct.
2988          */
2989         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2990
2991         if (guest_hv_clock.version & 1)
2992                 ++guest_hv_clock.version;  /* first time write, random junk */
2993
2994         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2995         kvm_write_guest_offset_cached(v->kvm, cache,
2996                                       &vcpu->hv_clock, offset,
2997                                       sizeof(vcpu->hv_clock.version));
2998
2999         smp_wmb();
3000
3001         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3002         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
3003
3004         if (vcpu->pvclock_set_guest_stopped_request) {
3005                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3006                 vcpu->pvclock_set_guest_stopped_request = false;
3007         }
3008
3009         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3010
3011         kvm_write_guest_offset_cached(v->kvm, cache,
3012                                       &vcpu->hv_clock, offset,
3013                                       sizeof(vcpu->hv_clock));
3014
3015         smp_wmb();
3016
3017         vcpu->hv_clock.version++;
3018         kvm_write_guest_offset_cached(v->kvm, cache,
3019                                      &vcpu->hv_clock, offset,
3020                                      sizeof(vcpu->hv_clock.version));
3021 }
3022
3023 static int kvm_guest_time_update(struct kvm_vcpu *v)
3024 {
3025         unsigned long flags, tgt_tsc_khz;
3026         unsigned seq;
3027         struct kvm_vcpu_arch *vcpu = &v->arch;
3028         struct kvm_arch *ka = &v->kvm->arch;
3029         s64 kernel_ns;
3030         u64 tsc_timestamp, host_tsc;
3031         u8 pvclock_flags;
3032         bool use_master_clock;
3033
3034         kernel_ns = 0;
3035         host_tsc = 0;
3036
3037         /*
3038          * If the host uses TSC clock, then passthrough TSC as stable
3039          * to the guest.
3040          */
3041         do {
3042                 seq = read_seqcount_begin(&ka->pvclock_sc);
3043                 use_master_clock = ka->use_master_clock;
3044                 if (use_master_clock) {
3045                         host_tsc = ka->master_cycle_now;
3046                         kernel_ns = ka->master_kernel_ns;
3047                 }
3048         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3049
3050         /* Keep irq disabled to prevent changes to the clock */
3051         local_irq_save(flags);
3052         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3053         if (unlikely(tgt_tsc_khz == 0)) {
3054                 local_irq_restore(flags);
3055                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3056                 return 1;
3057         }
3058         if (!use_master_clock) {
3059                 host_tsc = rdtsc();
3060                 kernel_ns = get_kvmclock_base_ns();
3061         }
3062
3063         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3064
3065         /*
3066          * We may have to catch up the TSC to match elapsed wall clock
3067          * time for two reasons, even if kvmclock is used.
3068          *   1) CPU could have been running below the maximum TSC rate
3069          *   2) Broken TSC compensation resets the base at each VCPU
3070          *      entry to avoid unknown leaps of TSC even when running
3071          *      again on the same CPU.  This may cause apparent elapsed
3072          *      time to disappear, and the guest to stand still or run
3073          *      very slowly.
3074          */
3075         if (vcpu->tsc_catchup) {
3076                 u64 tsc = compute_guest_tsc(v, kernel_ns);
3077                 if (tsc > tsc_timestamp) {
3078                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3079                         tsc_timestamp = tsc;
3080                 }
3081         }
3082
3083         local_irq_restore(flags);
3084
3085         /* With all the info we got, fill in the values */
3086
3087         if (kvm_has_tsc_control)
3088                 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3089                                             v->arch.l1_tsc_scaling_ratio);
3090
3091         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3092                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3093                                    &vcpu->hv_clock.tsc_shift,
3094                                    &vcpu->hv_clock.tsc_to_system_mul);
3095                 vcpu->hw_tsc_khz = tgt_tsc_khz;
3096         }
3097
3098         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3099         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3100         vcpu->last_guest_tsc = tsc_timestamp;
3101
3102         /* If the host uses TSC clocksource, then it is stable */
3103         pvclock_flags = 0;
3104         if (use_master_clock)
3105                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3106
3107         vcpu->hv_clock.flags = pvclock_flags;
3108
3109         if (vcpu->pv_time_enabled)
3110                 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
3111         if (vcpu->xen.vcpu_info_set)
3112                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
3113                                        offsetof(struct compat_vcpu_info, time));
3114         if (vcpu->xen.vcpu_time_info_set)
3115                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
3116         if (!v->vcpu_idx)
3117                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3118         return 0;
3119 }
3120
3121 /*
3122  * kvmclock updates which are isolated to a given vcpu, such as
3123  * vcpu->cpu migration, should not allow system_timestamp from
3124  * the rest of the vcpus to remain static. Otherwise ntp frequency
3125  * correction applies to one vcpu's system_timestamp but not
3126  * the others.
3127  *
3128  * So in those cases, request a kvmclock update for all vcpus.
3129  * We need to rate-limit these requests though, as they can
3130  * considerably slow guests that have a large number of vcpus.
3131  * The time for a remote vcpu to update its kvmclock is bound
3132  * by the delay we use to rate-limit the updates.
3133  */
3134
3135 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3136
3137 static void kvmclock_update_fn(struct work_struct *work)
3138 {
3139         unsigned long i;
3140         struct delayed_work *dwork = to_delayed_work(work);
3141         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3142                                            kvmclock_update_work);
3143         struct kvm *kvm = container_of(ka, struct kvm, arch);
3144         struct kvm_vcpu *vcpu;
3145
3146         kvm_for_each_vcpu(i, vcpu, kvm) {
3147                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3148                 kvm_vcpu_kick(vcpu);
3149         }
3150 }
3151
3152 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3153 {
3154         struct kvm *kvm = v->kvm;
3155
3156         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3157         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3158                                         KVMCLOCK_UPDATE_DELAY);
3159 }
3160
3161 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3162
3163 static void kvmclock_sync_fn(struct work_struct *work)
3164 {
3165         struct delayed_work *dwork = to_delayed_work(work);
3166         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3167                                            kvmclock_sync_work);
3168         struct kvm *kvm = container_of(ka, struct kvm, arch);
3169
3170         if (!kvmclock_periodic_sync)
3171                 return;
3172
3173         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3174         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3175                                         KVMCLOCK_SYNC_PERIOD);
3176 }
3177
3178 /*
3179  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3180  */
3181 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3182 {
3183         /* McStatusWrEn enabled? */
3184         if (guest_cpuid_is_amd_or_hygon(vcpu))
3185                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3186
3187         return false;
3188 }
3189
3190 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3191 {
3192         u64 mcg_cap = vcpu->arch.mcg_cap;
3193         unsigned bank_num = mcg_cap & 0xff;
3194         u32 msr = msr_info->index;
3195         u64 data = msr_info->data;
3196
3197         switch (msr) {
3198         case MSR_IA32_MCG_STATUS:
3199                 vcpu->arch.mcg_status = data;
3200                 break;
3201         case MSR_IA32_MCG_CTL:
3202                 if (!(mcg_cap & MCG_CTL_P) &&
3203                     (data || !msr_info->host_initiated))
3204                         return 1;
3205                 if (data != 0 && data != ~(u64)0)
3206                         return 1;
3207                 vcpu->arch.mcg_ctl = data;
3208                 break;
3209         default:
3210                 if (msr >= MSR_IA32_MC0_CTL &&
3211                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3212                         u32 offset = array_index_nospec(
3213                                 msr - MSR_IA32_MC0_CTL,
3214                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3215
3216                         /* only 0 or all 1s can be written to IA32_MCi_CTL
3217                          * some Linux kernels though clear bit 10 in bank 4 to
3218                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3219                          * this to avoid an uncatched #GP in the guest
3220                          */
3221                         if ((offset & 0x3) == 0 &&
3222                             data != 0 && (data | (1 << 10)) != ~(u64)0)
3223                                 return -1;
3224
3225                         /* MCi_STATUS */
3226                         if (!msr_info->host_initiated &&
3227                             (offset & 0x3) == 1 && data != 0) {
3228                                 if (!can_set_mci_status(vcpu))
3229                                         return -1;
3230                         }
3231
3232                         vcpu->arch.mce_banks[offset] = data;
3233                         break;
3234                 }
3235                 return 1;
3236         }
3237         return 0;
3238 }
3239
3240 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3241 {
3242         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3243
3244         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3245 }
3246
3247 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3248 {
3249         gpa_t gpa = data & ~0x3f;
3250
3251         /* Bits 4:5 are reserved, Should be zero */
3252         if (data & 0x30)
3253                 return 1;
3254
3255         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3256             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3257                 return 1;
3258
3259         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3260             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3261                 return 1;
3262
3263         if (!lapic_in_kernel(vcpu))
3264                 return data ? 1 : 0;
3265
3266         vcpu->arch.apf.msr_en_val = data;
3267
3268         if (!kvm_pv_async_pf_enabled(vcpu)) {
3269                 kvm_clear_async_pf_completion_queue(vcpu);
3270                 kvm_async_pf_hash_reset(vcpu);
3271                 return 0;
3272         }
3273
3274         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3275                                         sizeof(u64)))
3276                 return 1;
3277
3278         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3279         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3280
3281         kvm_async_pf_wakeup_all(vcpu);
3282
3283         return 0;
3284 }
3285
3286 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3287 {
3288         /* Bits 8-63 are reserved */
3289         if (data >> 8)
3290                 return 1;
3291
3292         if (!lapic_in_kernel(vcpu))
3293                 return 1;
3294
3295         vcpu->arch.apf.msr_int_val = data;
3296
3297         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3298
3299         return 0;
3300 }
3301
3302 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3303 {
3304         vcpu->arch.pv_time_enabled = false;
3305         vcpu->arch.time = 0;
3306 }
3307
3308 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3309 {
3310         ++vcpu->stat.tlb_flush;
3311         static_call(kvm_x86_flush_tlb_all)(vcpu);
3312 }
3313
3314 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3315 {
3316         ++vcpu->stat.tlb_flush;
3317
3318         if (!tdp_enabled) {
3319                 /*
3320                  * A TLB flush on behalf of the guest is equivalent to
3321                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3322                  * a forced sync of the shadow page tables.  Ensure all the
3323                  * roots are synced and the guest TLB in hardware is clean.
3324                  */
3325                 kvm_mmu_sync_roots(vcpu);
3326                 kvm_mmu_sync_prev_roots(vcpu);
3327         }
3328
3329         static_call(kvm_x86_flush_tlb_guest)(vcpu);
3330 }
3331
3332
3333 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3334 {
3335         ++vcpu->stat.tlb_flush;
3336         static_call(kvm_x86_flush_tlb_current)(vcpu);
3337 }
3338
3339 /*
3340  * Service "local" TLB flush requests, which are specific to the current MMU
3341  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3342  * TLB flushes that are targeted at an MMU context also need to be serviced
3343  * prior before nested VM-Enter/VM-Exit.
3344  */
3345 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3346 {
3347         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3348                 kvm_vcpu_flush_tlb_current(vcpu);
3349
3350         if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3351                 kvm_vcpu_flush_tlb_guest(vcpu);
3352 }
3353 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3354
3355 static void record_steal_time(struct kvm_vcpu *vcpu)
3356 {
3357         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3358         struct kvm_steal_time __user *st;
3359         struct kvm_memslots *slots;
3360         u64 steal;
3361         u32 version;
3362
3363         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3364                 kvm_xen_runstate_set_running(vcpu);
3365                 return;
3366         }
3367
3368         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3369                 return;
3370
3371         if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3372                 return;
3373
3374         slots = kvm_memslots(vcpu->kvm);
3375
3376         if (unlikely(slots->generation != ghc->generation ||
3377                      kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3378                 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3379
3380                 /* We rely on the fact that it fits in a single page. */
3381                 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3382
3383                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3384                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3385                         return;
3386         }
3387
3388         st = (struct kvm_steal_time __user *)ghc->hva;
3389         /*
3390          * Doing a TLB flush here, on the guest's behalf, can avoid
3391          * expensive IPIs.
3392          */
3393         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3394                 u8 st_preempted = 0;
3395                 int err = -EFAULT;
3396
3397                 if (!user_access_begin(st, sizeof(*st)))
3398                         return;
3399
3400                 asm volatile("1: xchgb %0, %2\n"
3401                              "xor %1, %1\n"
3402                              "2:\n"
3403                              _ASM_EXTABLE_UA(1b, 2b)
3404                              : "+q" (st_preempted),
3405                                "+&r" (err),
3406                                "+m" (st->preempted));
3407                 if (err)
3408                         goto out;
3409
3410                 user_access_end();
3411
3412                 vcpu->arch.st.preempted = 0;
3413
3414                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3415                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3416                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3417                         kvm_vcpu_flush_tlb_guest(vcpu);
3418
3419                 if (!user_access_begin(st, sizeof(*st)))
3420                         goto dirty;
3421         } else {
3422                 if (!user_access_begin(st, sizeof(*st)))
3423                         return;
3424
3425                 unsafe_put_user(0, &st->preempted, out);
3426                 vcpu->arch.st.preempted = 0;
3427         }
3428
3429         unsafe_get_user(version, &st->version, out);
3430         if (version & 1)
3431                 version += 1;  /* first time write, random junk */
3432
3433         version += 1;
3434         unsafe_put_user(version, &st->version, out);
3435
3436         smp_wmb();
3437
3438         unsafe_get_user(steal, &st->steal, out);
3439         steal += current->sched_info.run_delay -
3440                 vcpu->arch.st.last_steal;
3441         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3442         unsafe_put_user(steal, &st->steal, out);
3443
3444         version += 1;
3445         unsafe_put_user(version, &st->version, out);
3446
3447  out:
3448         user_access_end();
3449  dirty:
3450         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3451 }
3452
3453 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3454 {
3455         bool pr = false;
3456         u32 msr = msr_info->index;
3457         u64 data = msr_info->data;
3458
3459         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3460                 return kvm_xen_write_hypercall_page(vcpu, data);
3461
3462         switch (msr) {
3463         case MSR_AMD64_NB_CFG:
3464         case MSR_IA32_UCODE_WRITE:
3465         case MSR_VM_HSAVE_PA:
3466         case MSR_AMD64_PATCH_LOADER:
3467         case MSR_AMD64_BU_CFG2:
3468         case MSR_AMD64_DC_CFG:
3469         case MSR_F15H_EX_CFG:
3470                 break;
3471
3472         case MSR_IA32_UCODE_REV:
3473                 if (msr_info->host_initiated)
3474                         vcpu->arch.microcode_version = data;
3475                 break;
3476         case MSR_IA32_ARCH_CAPABILITIES:
3477                 if (!msr_info->host_initiated)
3478                         return 1;
3479                 vcpu->arch.arch_capabilities = data;
3480                 break;
3481         case MSR_IA32_PERF_CAPABILITIES: {
3482                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3483
3484                 if (!msr_info->host_initiated)
3485                         return 1;
3486                 if (kvm_get_msr_feature(&msr_ent))
3487                         return 1;
3488                 if (data & ~msr_ent.data)
3489                         return 1;
3490
3491                 vcpu->arch.perf_capabilities = data;
3492
3493                 return 0;
3494                 }
3495         case MSR_EFER:
3496                 return set_efer(vcpu, msr_info);
3497         case MSR_K7_HWCR:
3498                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3499                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3500                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3501
3502                 /* Handle McStatusWrEn */
3503                 if (data == BIT_ULL(18)) {
3504                         vcpu->arch.msr_hwcr = data;
3505                 } else if (data != 0) {
3506                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3507                                     data);
3508                         return 1;
3509                 }
3510                 break;
3511         case MSR_FAM10H_MMIO_CONF_BASE:
3512                 if (data != 0) {
3513                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3514                                     "0x%llx\n", data);
3515                         return 1;
3516                 }
3517                 break;
3518         case 0x200 ... 0x2ff:
3519                 return kvm_mtrr_set_msr(vcpu, msr, data);
3520         case MSR_IA32_APICBASE:
3521                 return kvm_set_apic_base(vcpu, msr_info);
3522         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3523                 return kvm_x2apic_msr_write(vcpu, msr, data);
3524         case MSR_IA32_TSC_DEADLINE:
3525                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3526                 break;
3527         case MSR_IA32_TSC_ADJUST:
3528                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3529                         if (!msr_info->host_initiated) {
3530                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3531                                 adjust_tsc_offset_guest(vcpu, adj);
3532                                 /* Before back to guest, tsc_timestamp must be adjusted
3533                                  * as well, otherwise guest's percpu pvclock time could jump.
3534                                  */
3535                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3536                         }
3537                         vcpu->arch.ia32_tsc_adjust_msr = data;
3538                 }
3539                 break;
3540         case MSR_IA32_MISC_ENABLE:
3541                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3542                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3543                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3544                                 return 1;
3545                         vcpu->arch.ia32_misc_enable_msr = data;
3546                         kvm_update_cpuid_runtime(vcpu);
3547                 } else {
3548                         vcpu->arch.ia32_misc_enable_msr = data;
3549                 }
3550                 break;
3551         case MSR_IA32_SMBASE:
3552                 if (!msr_info->host_initiated)
3553                         return 1;
3554                 vcpu->arch.smbase = data;
3555                 break;
3556         case MSR_IA32_POWER_CTL:
3557                 vcpu->arch.msr_ia32_power_ctl = data;
3558                 break;
3559         case MSR_IA32_TSC:
3560                 if (msr_info->host_initiated) {
3561                         kvm_synchronize_tsc(vcpu, data);
3562                 } else {
3563                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3564                         adjust_tsc_offset_guest(vcpu, adj);
3565                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3566                 }
3567                 break;
3568         case MSR_IA32_XSS:
3569                 if (!msr_info->host_initiated &&
3570                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3571                         return 1;
3572                 /*
3573                  * KVM supports exposing PT to the guest, but does not support
3574                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3575                  * XSAVES/XRSTORS to save/restore PT MSRs.
3576                  */
3577                 if (data & ~supported_xss)
3578                         return 1;
3579                 vcpu->arch.ia32_xss = data;
3580                 kvm_update_cpuid_runtime(vcpu);
3581                 break;
3582         case MSR_SMI_COUNT:
3583                 if (!msr_info->host_initiated)
3584                         return 1;
3585                 vcpu->arch.smi_count = data;
3586                 break;
3587         case MSR_KVM_WALL_CLOCK_NEW:
3588                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3589                         return 1;
3590
3591                 vcpu->kvm->arch.wall_clock = data;
3592                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3593                 break;
3594         case MSR_KVM_WALL_CLOCK:
3595                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3596                         return 1;
3597
3598                 vcpu->kvm->arch.wall_clock = data;
3599                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3600                 break;
3601         case MSR_KVM_SYSTEM_TIME_NEW:
3602                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3603                         return 1;
3604
3605                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3606                 break;
3607         case MSR_KVM_SYSTEM_TIME:
3608                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3609                         return 1;
3610
3611                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3612                 break;
3613         case MSR_KVM_ASYNC_PF_EN:
3614                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3615                         return 1;
3616
3617                 if (kvm_pv_enable_async_pf(vcpu, data))
3618                         return 1;
3619                 break;
3620         case MSR_KVM_ASYNC_PF_INT:
3621                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3622                         return 1;
3623
3624                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3625                         return 1;
3626                 break;
3627         case MSR_KVM_ASYNC_PF_ACK:
3628                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3629                         return 1;
3630                 if (data & 0x1) {
3631                         vcpu->arch.apf.pageready_pending = false;
3632                         kvm_check_async_pf_completion(vcpu);
3633                 }
3634                 break;
3635         case MSR_KVM_STEAL_TIME:
3636                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3637                         return 1;
3638
3639                 if (unlikely(!sched_info_on()))
3640                         return 1;
3641
3642                 if (data & KVM_STEAL_RESERVED_MASK)
3643                         return 1;
3644
3645                 vcpu->arch.st.msr_val = data;
3646
3647                 if (!(data & KVM_MSR_ENABLED))
3648                         break;
3649
3650                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3651
3652                 break;
3653         case MSR_KVM_PV_EOI_EN:
3654                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3655                         return 1;
3656
3657                 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3658                         return 1;
3659                 break;
3660
3661         case MSR_KVM_POLL_CONTROL:
3662                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3663                         return 1;
3664
3665                 /* only enable bit supported */
3666                 if (data & (-1ULL << 1))
3667                         return 1;
3668
3669                 vcpu->arch.msr_kvm_poll_control = data;
3670                 break;
3671
3672         case MSR_IA32_MCG_CTL:
3673         case MSR_IA32_MCG_STATUS:
3674         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3675                 return set_msr_mce(vcpu, msr_info);
3676
3677         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3678         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3679                 pr = true;
3680                 fallthrough;
3681         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3682         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3683                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3684                         return kvm_pmu_set_msr(vcpu, msr_info);
3685
3686                 if (pr || data != 0)
3687                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3688                                     "0x%x data 0x%llx\n", msr, data);
3689                 break;
3690         case MSR_K7_CLK_CTL:
3691                 /*
3692                  * Ignore all writes to this no longer documented MSR.
3693                  * Writes are only relevant for old K7 processors,
3694                  * all pre-dating SVM, but a recommended workaround from
3695                  * AMD for these chips. It is possible to specify the
3696                  * affected processor models on the command line, hence
3697                  * the need to ignore the workaround.
3698                  */
3699                 break;
3700         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3701         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3702         case HV_X64_MSR_SYNDBG_OPTIONS:
3703         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3704         case HV_X64_MSR_CRASH_CTL:
3705         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3706         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3707         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3708         case HV_X64_MSR_TSC_EMULATION_STATUS:
3709                 return kvm_hv_set_msr_common(vcpu, msr, data,
3710                                              msr_info->host_initiated);
3711         case MSR_IA32_BBL_CR_CTL3:
3712                 /* Drop writes to this legacy MSR -- see rdmsr
3713                  * counterpart for further detail.
3714                  */
3715                 if (report_ignored_msrs)
3716                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3717                                 msr, data);
3718                 break;
3719         case MSR_AMD64_OSVW_ID_LENGTH:
3720                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3721                         return 1;
3722                 vcpu->arch.osvw.length = data;
3723                 break;
3724         case MSR_AMD64_OSVW_STATUS:
3725                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3726                         return 1;
3727                 vcpu->arch.osvw.status = data;
3728                 break;
3729         case MSR_PLATFORM_INFO:
3730                 if (!msr_info->host_initiated ||
3731                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3732                      cpuid_fault_enabled(vcpu)))
3733                         return 1;
3734                 vcpu->arch.msr_platform_info = data;
3735                 break;
3736         case MSR_MISC_FEATURES_ENABLES:
3737                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3738                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3739                      !supports_cpuid_fault(vcpu)))
3740                         return 1;
3741                 vcpu->arch.msr_misc_features_enables = data;
3742                 break;
3743 #ifdef CONFIG_X86_64
3744         case MSR_IA32_XFD:
3745                 if (!msr_info->host_initiated &&
3746                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3747                         return 1;
3748
3749                 if (data & ~kvm_guest_supported_xfd(vcpu))
3750                         return 1;
3751
3752                 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3753                 break;
3754         case MSR_IA32_XFD_ERR:
3755                 if (!msr_info->host_initiated &&
3756                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3757                         return 1;
3758
3759                 if (data & ~kvm_guest_supported_xfd(vcpu))
3760                         return 1;
3761
3762                 vcpu->arch.guest_fpu.xfd_err = data;
3763                 break;
3764 #endif
3765         default:
3766                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3767                         return kvm_pmu_set_msr(vcpu, msr_info);
3768                 return KVM_MSR_RET_INVALID;
3769         }
3770         return 0;
3771 }
3772 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3773
3774 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3775 {
3776         u64 data;
3777         u64 mcg_cap = vcpu->arch.mcg_cap;
3778         unsigned bank_num = mcg_cap & 0xff;
3779
3780         switch (msr) {
3781         case MSR_IA32_P5_MC_ADDR:
3782         case MSR_IA32_P5_MC_TYPE:
3783                 data = 0;
3784                 break;
3785         case MSR_IA32_MCG_CAP:
3786                 data = vcpu->arch.mcg_cap;
3787                 break;
3788         case MSR_IA32_MCG_CTL:
3789                 if (!(mcg_cap & MCG_CTL_P) && !host)
3790                         return 1;
3791                 data = vcpu->arch.mcg_ctl;
3792                 break;
3793         case MSR_IA32_MCG_STATUS:
3794                 data = vcpu->arch.mcg_status;
3795                 break;
3796         default:
3797                 if (msr >= MSR_IA32_MC0_CTL &&
3798                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3799                         u32 offset = array_index_nospec(
3800                                 msr - MSR_IA32_MC0_CTL,
3801                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3802
3803                         data = vcpu->arch.mce_banks[offset];
3804                         break;
3805                 }
3806                 return 1;
3807         }
3808         *pdata = data;
3809         return 0;
3810 }
3811
3812 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3813 {
3814         switch (msr_info->index) {
3815         case MSR_IA32_PLATFORM_ID:
3816         case MSR_IA32_EBL_CR_POWERON:
3817         case MSR_IA32_LASTBRANCHFROMIP:
3818         case MSR_IA32_LASTBRANCHTOIP:
3819         case MSR_IA32_LASTINTFROMIP:
3820         case MSR_IA32_LASTINTTOIP:
3821         case MSR_AMD64_SYSCFG:
3822         case MSR_K8_TSEG_ADDR:
3823         case MSR_K8_TSEG_MASK:
3824         case MSR_VM_HSAVE_PA:
3825         case MSR_K8_INT_PENDING_MSG:
3826         case MSR_AMD64_NB_CFG:
3827         case MSR_FAM10H_MMIO_CONF_BASE:
3828         case MSR_AMD64_BU_CFG2:
3829         case MSR_IA32_PERF_CTL:
3830         case MSR_AMD64_DC_CFG:
3831         case MSR_F15H_EX_CFG:
3832         /*
3833          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3834          * limit) MSRs. Just return 0, as we do not want to expose the host
3835          * data here. Do not conditionalize this on CPUID, as KVM does not do
3836          * so for existing CPU-specific MSRs.
3837          */
3838         case MSR_RAPL_POWER_UNIT:
3839         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3840         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3841         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3842         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3843                 msr_info->data = 0;
3844                 break;
3845         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3846                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3847                         return kvm_pmu_get_msr(vcpu, msr_info);
3848                 if (!msr_info->host_initiated)
3849                         return 1;
3850                 msr_info->data = 0;
3851                 break;
3852         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3853         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3854         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3855         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3856                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3857                         return kvm_pmu_get_msr(vcpu, msr_info);
3858                 msr_info->data = 0;
3859                 break;
3860         case MSR_IA32_UCODE_REV:
3861                 msr_info->data = vcpu->arch.microcode_version;
3862                 break;
3863         case MSR_IA32_ARCH_CAPABILITIES:
3864                 if (!msr_info->host_initiated &&
3865                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3866                         return 1;
3867                 msr_info->data = vcpu->arch.arch_capabilities;
3868                 break;
3869         case MSR_IA32_PERF_CAPABILITIES:
3870                 if (!msr_info->host_initiated &&
3871                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3872                         return 1;
3873                 msr_info->data = vcpu->arch.perf_capabilities;
3874                 break;
3875         case MSR_IA32_POWER_CTL:
3876                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3877                 break;
3878         case MSR_IA32_TSC: {
3879                 /*
3880                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3881                  * even when not intercepted. AMD manual doesn't explicitly
3882                  * state this but appears to behave the same.
3883                  *
3884                  * On userspace reads and writes, however, we unconditionally
3885                  * return L1's TSC value to ensure backwards-compatible
3886                  * behavior for migration.
3887                  */
3888                 u64 offset, ratio;
3889
3890                 if (msr_info->host_initiated) {
3891                         offset = vcpu->arch.l1_tsc_offset;
3892                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
3893                 } else {
3894                         offset = vcpu->arch.tsc_offset;
3895                         ratio = vcpu->arch.tsc_scaling_ratio;
3896                 }
3897
3898                 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
3899                 break;
3900         }
3901         case MSR_MTRRcap:
3902         case 0x200 ... 0x2ff:
3903                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3904         case 0xcd: /* fsb frequency */
3905                 msr_info->data = 3;
3906                 break;
3907                 /*
3908                  * MSR_EBC_FREQUENCY_ID
3909                  * Conservative value valid for even the basic CPU models.
3910                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3911                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3912                  * and 266MHz for model 3, or 4. Set Core Clock
3913                  * Frequency to System Bus Frequency Ratio to 1 (bits
3914                  * 31:24) even though these are only valid for CPU
3915                  * models > 2, however guests may end up dividing or
3916                  * multiplying by zero otherwise.
3917                  */
3918         case MSR_EBC_FREQUENCY_ID:
3919                 msr_info->data = 1 << 24;
3920                 break;
3921         case MSR_IA32_APICBASE:
3922                 msr_info->data = kvm_get_apic_base(vcpu);
3923                 break;
3924         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3925                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3926         case MSR_IA32_TSC_DEADLINE:
3927                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3928                 break;
3929         case MSR_IA32_TSC_ADJUST:
3930                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3931                 break;
3932         case MSR_IA32_MISC_ENABLE:
3933                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3934                 break;
3935         case MSR_IA32_SMBASE:
3936                 if (!msr_info->host_initiated)
3937                         return 1;
3938                 msr_info->data = vcpu->arch.smbase;
3939                 break;
3940         case MSR_SMI_COUNT:
3941                 msr_info->data = vcpu->arch.smi_count;
3942                 break;
3943         case MSR_IA32_PERF_STATUS:
3944                 /* TSC increment by tick */
3945                 msr_info->data = 1000ULL;
3946                 /* CPU multiplier */
3947                 msr_info->data |= (((uint64_t)4ULL) << 40);
3948                 break;
3949         case MSR_EFER:
3950                 msr_info->data = vcpu->arch.efer;
3951                 break;
3952         case MSR_KVM_WALL_CLOCK:
3953                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3954                         return 1;
3955
3956                 msr_info->data = vcpu->kvm->arch.wall_clock;
3957                 break;
3958         case MSR_KVM_WALL_CLOCK_NEW:
3959                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3960                         return 1;
3961
3962                 msr_info->data = vcpu->kvm->arch.wall_clock;
3963                 break;
3964         case MSR_KVM_SYSTEM_TIME:
3965                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3966                         return 1;
3967
3968                 msr_info->data = vcpu->arch.time;
3969                 break;
3970         case MSR_KVM_SYSTEM_TIME_NEW:
3971                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3972                         return 1;
3973
3974                 msr_info->data = vcpu->arch.time;
3975                 break;
3976         case MSR_KVM_ASYNC_PF_EN:
3977                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3978                         return 1;
3979
3980                 msr_info->data = vcpu->arch.apf.msr_en_val;
3981                 break;
3982         case MSR_KVM_ASYNC_PF_INT:
3983                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3984                         return 1;
3985
3986                 msr_info->data = vcpu->arch.apf.msr_int_val;
3987                 break;
3988         case MSR_KVM_ASYNC_PF_ACK:
3989                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3990                         return 1;
3991
3992                 msr_info->data = 0;
3993                 break;
3994         case MSR_KVM_STEAL_TIME:
3995                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3996                         return 1;
3997
3998                 msr_info->data = vcpu->arch.st.msr_val;
3999                 break;
4000         case MSR_KVM_PV_EOI_EN:
4001                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4002                         return 1;
4003
4004                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4005                 break;
4006         case MSR_KVM_POLL_CONTROL:
4007                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4008                         return 1;
4009
4010                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4011                 break;
4012         case MSR_IA32_P5_MC_ADDR:
4013         case MSR_IA32_P5_MC_TYPE:
4014         case MSR_IA32_MCG_CAP:
4015         case MSR_IA32_MCG_CTL:
4016         case MSR_IA32_MCG_STATUS:
4017         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4018                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4019                                    msr_info->host_initiated);
4020         case MSR_IA32_XSS:
4021                 if (!msr_info->host_initiated &&
4022                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4023                         return 1;
4024                 msr_info->data = vcpu->arch.ia32_xss;
4025                 break;
4026         case MSR_K7_CLK_CTL:
4027                 /*
4028                  * Provide expected ramp-up count for K7. All other
4029                  * are set to zero, indicating minimum divisors for
4030                  * every field.
4031                  *
4032                  * This prevents guest kernels on AMD host with CPU
4033                  * type 6, model 8 and higher from exploding due to
4034                  * the rdmsr failing.
4035                  */
4036                 msr_info->data = 0x20000000;
4037                 break;
4038         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4039         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4040         case HV_X64_MSR_SYNDBG_OPTIONS:
4041         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4042         case HV_X64_MSR_CRASH_CTL:
4043         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4044         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4045         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4046         case HV_X64_MSR_TSC_EMULATION_STATUS:
4047                 return kvm_hv_get_msr_common(vcpu,
4048                                              msr_info->index, &msr_info->data,
4049                                              msr_info->host_initiated);
4050         case MSR_IA32_BBL_CR_CTL3:
4051                 /* This legacy MSR exists but isn't fully documented in current
4052                  * silicon.  It is however accessed by winxp in very narrow
4053                  * scenarios where it sets bit #19, itself documented as
4054                  * a "reserved" bit.  Best effort attempt to source coherent
4055                  * read data here should the balance of the register be
4056                  * interpreted by the guest:
4057                  *
4058                  * L2 cache control register 3: 64GB range, 256KB size,
4059                  * enabled, latency 0x1, configured
4060                  */
4061                 msr_info->data = 0xbe702111;
4062                 break;
4063         case MSR_AMD64_OSVW_ID_LENGTH:
4064                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4065                         return 1;
4066                 msr_info->data = vcpu->arch.osvw.length;
4067                 break;
4068         case MSR_AMD64_OSVW_STATUS:
4069                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4070                         return 1;
4071                 msr_info->data = vcpu->arch.osvw.status;
4072                 break;
4073         case MSR_PLATFORM_INFO:
4074                 if (!msr_info->host_initiated &&
4075                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4076                         return 1;
4077                 msr_info->data = vcpu->arch.msr_platform_info;
4078                 break;
4079         case MSR_MISC_FEATURES_ENABLES:
4080                 msr_info->data = vcpu->arch.msr_misc_features_enables;
4081                 break;
4082         case MSR_K7_HWCR:
4083                 msr_info->data = vcpu->arch.msr_hwcr;
4084                 break;
4085 #ifdef CONFIG_X86_64
4086         case MSR_IA32_XFD:
4087                 if (!msr_info->host_initiated &&
4088                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4089                         return 1;
4090
4091                 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4092                 break;
4093         case MSR_IA32_XFD_ERR:
4094                 if (!msr_info->host_initiated &&
4095                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4096                         return 1;
4097
4098                 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4099                 break;
4100 #endif
4101         default:
4102                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4103                         return kvm_pmu_get_msr(vcpu, msr_info);
4104                 return KVM_MSR_RET_INVALID;
4105         }
4106         return 0;
4107 }
4108 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4109
4110 /*
4111  * Read or write a bunch of msrs. All parameters are kernel addresses.
4112  *
4113  * @return number of msrs set successfully.
4114  */
4115 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4116                     struct kvm_msr_entry *entries,
4117                     int (*do_msr)(struct kvm_vcpu *vcpu,
4118                                   unsigned index, u64 *data))
4119 {
4120         int i;
4121
4122         for (i = 0; i < msrs->nmsrs; ++i)
4123                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4124                         break;
4125
4126         return i;
4127 }
4128
4129 /*
4130  * Read or write a bunch of msrs. Parameters are user addresses.
4131  *
4132  * @return number of msrs set successfully.
4133  */
4134 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4135                   int (*do_msr)(struct kvm_vcpu *vcpu,
4136                                 unsigned index, u64 *data),
4137                   int writeback)
4138 {
4139         struct kvm_msrs msrs;
4140         struct kvm_msr_entry *entries;
4141         int r, n;
4142         unsigned size;
4143
4144         r = -EFAULT;
4145         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4146                 goto out;
4147
4148         r = -E2BIG;
4149         if (msrs.nmsrs >= MAX_IO_MSRS)
4150                 goto out;
4151
4152         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4153         entries = memdup_user(user_msrs->entries, size);
4154         if (IS_ERR(entries)) {
4155                 r = PTR_ERR(entries);
4156                 goto out;
4157         }
4158
4159         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4160         if (r < 0)
4161                 goto out_free;
4162
4163         r = -EFAULT;
4164         if (writeback && copy_to_user(user_msrs->entries, entries, size))
4165                 goto out_free;
4166
4167         r = n;
4168
4169 out_free:
4170         kfree(entries);
4171 out:
4172         return r;
4173 }
4174
4175 static inline bool kvm_can_mwait_in_guest(void)
4176 {
4177         return boot_cpu_has(X86_FEATURE_MWAIT) &&
4178                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4179                 boot_cpu_has(X86_FEATURE_ARAT);
4180 }
4181
4182 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4183                                             struct kvm_cpuid2 __user *cpuid_arg)
4184 {
4185         struct kvm_cpuid2 cpuid;
4186         int r;
4187
4188         r = -EFAULT;
4189         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4190                 return r;
4191
4192         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4193         if (r)
4194                 return r;
4195
4196         r = -EFAULT;
4197         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4198                 return r;
4199
4200         return 0;
4201 }
4202
4203 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4204 {
4205         int r = 0;
4206
4207         switch (ext) {
4208         case KVM_CAP_IRQCHIP:
4209         case KVM_CAP_HLT:
4210         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4211         case KVM_CAP_SET_TSS_ADDR:
4212         case KVM_CAP_EXT_CPUID:
4213         case KVM_CAP_EXT_EMUL_CPUID:
4214         case KVM_CAP_CLOCKSOURCE:
4215         case KVM_CAP_PIT:
4216         case KVM_CAP_NOP_IO_DELAY:
4217         case KVM_CAP_MP_STATE:
4218         case KVM_CAP_SYNC_MMU:
4219         case KVM_CAP_USER_NMI:
4220         case KVM_CAP_REINJECT_CONTROL:
4221         case KVM_CAP_IRQ_INJECT_STATUS:
4222         case KVM_CAP_IOEVENTFD:
4223         case KVM_CAP_IOEVENTFD_NO_LENGTH:
4224         case KVM_CAP_PIT2:
4225         case KVM_CAP_PIT_STATE2:
4226         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4227         case KVM_CAP_VCPU_EVENTS:
4228         case KVM_CAP_HYPERV:
4229         case KVM_CAP_HYPERV_VAPIC:
4230         case KVM_CAP_HYPERV_SPIN:
4231         case KVM_CAP_HYPERV_SYNIC:
4232         case KVM_CAP_HYPERV_SYNIC2:
4233         case KVM_CAP_HYPERV_VP_INDEX:
4234         case KVM_CAP_HYPERV_EVENTFD:
4235         case KVM_CAP_HYPERV_TLBFLUSH:
4236         case KVM_CAP_HYPERV_SEND_IPI:
4237         case KVM_CAP_HYPERV_CPUID:
4238         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4239         case KVM_CAP_SYS_HYPERV_CPUID:
4240         case KVM_CAP_PCI_SEGMENT:
4241         case KVM_CAP_DEBUGREGS:
4242         case KVM_CAP_X86_ROBUST_SINGLESTEP:
4243         case KVM_CAP_XSAVE:
4244         case KVM_CAP_ASYNC_PF:
4245         case KVM_CAP_ASYNC_PF_INT:
4246         case KVM_CAP_GET_TSC_KHZ:
4247         case KVM_CAP_KVMCLOCK_CTRL:
4248         case KVM_CAP_READONLY_MEM:
4249         case KVM_CAP_HYPERV_TIME:
4250         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4251         case KVM_CAP_TSC_DEADLINE_TIMER:
4252         case KVM_CAP_DISABLE_QUIRKS:
4253         case KVM_CAP_SET_BOOT_CPU_ID:
4254         case KVM_CAP_SPLIT_IRQCHIP:
4255         case KVM_CAP_IMMEDIATE_EXIT:
4256         case KVM_CAP_PMU_EVENT_FILTER:
4257         case KVM_CAP_GET_MSR_FEATURES:
4258         case KVM_CAP_MSR_PLATFORM_INFO:
4259         case KVM_CAP_EXCEPTION_PAYLOAD:
4260         case KVM_CAP_SET_GUEST_DEBUG:
4261         case KVM_CAP_LAST_CPU:
4262         case KVM_CAP_X86_USER_SPACE_MSR:
4263         case KVM_CAP_X86_MSR_FILTER:
4264         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4265 #ifdef CONFIG_X86_SGX_KVM
4266         case KVM_CAP_SGX_ATTRIBUTE:
4267 #endif
4268         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4269         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4270         case KVM_CAP_SREGS2:
4271         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4272         case KVM_CAP_VCPU_ATTRIBUTES:
4273         case KVM_CAP_SYS_ATTRIBUTES:
4274         case KVM_CAP_VAPIC:
4275         case KVM_CAP_ENABLE_CAP:
4276                 r = 1;
4277                 break;
4278         case KVM_CAP_EXIT_HYPERCALL:
4279                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4280                 break;
4281         case KVM_CAP_SET_GUEST_DEBUG2:
4282                 return KVM_GUESTDBG_VALID_MASK;
4283 #ifdef CONFIG_KVM_XEN
4284         case KVM_CAP_XEN_HVM:
4285                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4286                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4287                     KVM_XEN_HVM_CONFIG_SHARED_INFO |
4288                     KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL;
4289                 if (sched_info_on())
4290                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4291                 break;
4292 #endif
4293         case KVM_CAP_SYNC_REGS:
4294                 r = KVM_SYNC_X86_VALID_FIELDS;
4295                 break;
4296         case KVM_CAP_ADJUST_CLOCK:
4297                 r = KVM_CLOCK_VALID_FLAGS;
4298                 break;
4299         case KVM_CAP_X86_DISABLE_EXITS:
4300                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4301                       KVM_X86_DISABLE_EXITS_CSTATE;
4302                 if(kvm_can_mwait_in_guest())
4303                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
4304                 break;
4305         case KVM_CAP_X86_SMM:
4306                 /* SMBASE is usually relocated above 1M on modern chipsets,
4307                  * and SMM handlers might indeed rely on 4G segment limits,
4308                  * so do not report SMM to be available if real mode is
4309                  * emulated via vm86 mode.  Still, do not go to great lengths
4310                  * to avoid userspace's usage of the feature, because it is a
4311                  * fringe case that is not enabled except via specific settings
4312                  * of the module parameters.
4313                  */
4314                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4315                 break;
4316         case KVM_CAP_NR_VCPUS:
4317                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4318                 break;
4319         case KVM_CAP_MAX_VCPUS:
4320                 r = KVM_MAX_VCPUS;
4321                 break;
4322         case KVM_CAP_MAX_VCPU_ID:
4323                 r = KVM_MAX_VCPU_IDS;
4324                 break;
4325         case KVM_CAP_PV_MMU:    /* obsolete */
4326                 r = 0;
4327                 break;
4328         case KVM_CAP_MCE:
4329                 r = KVM_MAX_MCE_BANKS;
4330                 break;
4331         case KVM_CAP_XCRS:
4332                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4333                 break;
4334         case KVM_CAP_TSC_CONTROL:
4335                 r = kvm_has_tsc_control;
4336                 break;
4337         case KVM_CAP_X2APIC_API:
4338                 r = KVM_X2APIC_API_VALID_FLAGS;
4339                 break;
4340         case KVM_CAP_NESTED_STATE:
4341                 r = kvm_x86_ops.nested_ops->get_state ?
4342                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4343                 break;
4344         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4345                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4346                 break;
4347         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4348                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4349                 break;
4350         case KVM_CAP_SMALLER_MAXPHYADDR:
4351                 r = (int) allow_smaller_maxphyaddr;
4352                 break;
4353         case KVM_CAP_STEAL_TIME:
4354                 r = sched_info_on();
4355                 break;
4356         case KVM_CAP_X86_BUS_LOCK_EXIT:
4357                 if (kvm_has_bus_lock_exit)
4358                         r = KVM_BUS_LOCK_DETECTION_OFF |
4359                             KVM_BUS_LOCK_DETECTION_EXIT;
4360                 else
4361                         r = 0;
4362                 break;
4363         case KVM_CAP_XSAVE2: {
4364                 u64 guest_perm = xstate_get_guest_group_perm();
4365
4366                 r = xstate_required_size(supported_xcr0 & guest_perm, false);
4367                 if (r < sizeof(struct kvm_xsave))
4368                         r = sizeof(struct kvm_xsave);
4369                 break;
4370         case KVM_CAP_PMU_CAPABILITY:
4371                 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4372                 break;
4373         }
4374         case KVM_CAP_DISABLE_QUIRKS2:
4375                 r = KVM_X86_VALID_QUIRKS;
4376                 break;
4377         default:
4378                 break;
4379         }
4380         return r;
4381 }
4382
4383 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4384 {
4385         void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4386
4387         if ((u64)(unsigned long)uaddr != attr->addr)
4388                 return ERR_PTR_USR(-EFAULT);
4389         return uaddr;
4390 }
4391
4392 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4393 {
4394         u64 __user *uaddr = kvm_get_attr_addr(attr);
4395
4396         if (attr->group)
4397                 return -ENXIO;
4398
4399         if (IS_ERR(uaddr))
4400                 return PTR_ERR(uaddr);
4401
4402         switch (attr->attr) {
4403         case KVM_X86_XCOMP_GUEST_SUPP:
4404                 if (put_user(supported_xcr0, uaddr))
4405                         return -EFAULT;
4406                 return 0;
4407         default:
4408                 return -ENXIO;
4409                 break;
4410         }
4411 }
4412
4413 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4414 {
4415         if (attr->group)
4416                 return -ENXIO;
4417
4418         switch (attr->attr) {
4419         case KVM_X86_XCOMP_GUEST_SUPP:
4420                 return 0;
4421         default:
4422                 return -ENXIO;
4423         }
4424 }
4425
4426 long kvm_arch_dev_ioctl(struct file *filp,
4427                         unsigned int ioctl, unsigned long arg)
4428 {
4429         void __user *argp = (void __user *)arg;
4430         long r;
4431
4432         switch (ioctl) {
4433         case KVM_GET_MSR_INDEX_LIST: {
4434                 struct kvm_msr_list __user *user_msr_list = argp;
4435                 struct kvm_msr_list msr_list;
4436                 unsigned n;
4437
4438                 r = -EFAULT;
4439                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4440                         goto out;
4441                 n = msr_list.nmsrs;
4442                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4443                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4444                         goto out;
4445                 r = -E2BIG;
4446                 if (n < msr_list.nmsrs)
4447                         goto out;
4448                 r = -EFAULT;
4449                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4450                                  num_msrs_to_save * sizeof(u32)))
4451                         goto out;
4452                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4453                                  &emulated_msrs,
4454                                  num_emulated_msrs * sizeof(u32)))
4455                         goto out;
4456                 r = 0;
4457                 break;
4458         }
4459         case KVM_GET_SUPPORTED_CPUID:
4460         case KVM_GET_EMULATED_CPUID: {
4461                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4462                 struct kvm_cpuid2 cpuid;
4463
4464                 r = -EFAULT;
4465                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4466                         goto out;
4467
4468                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4469                                             ioctl);
4470                 if (r)
4471                         goto out;
4472
4473                 r = -EFAULT;
4474                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4475                         goto out;
4476                 r = 0;
4477                 break;
4478         }
4479         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4480                 r = -EFAULT;
4481                 if (copy_to_user(argp, &kvm_mce_cap_supported,
4482                                  sizeof(kvm_mce_cap_supported)))
4483                         goto out;
4484                 r = 0;
4485                 break;
4486         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4487                 struct kvm_msr_list __user *user_msr_list = argp;
4488                 struct kvm_msr_list msr_list;
4489                 unsigned int n;
4490
4491                 r = -EFAULT;
4492                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4493                         goto out;
4494                 n = msr_list.nmsrs;
4495                 msr_list.nmsrs = num_msr_based_features;
4496                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4497                         goto out;
4498                 r = -E2BIG;
4499                 if (n < msr_list.nmsrs)
4500                         goto out;
4501                 r = -EFAULT;
4502                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4503                                  num_msr_based_features * sizeof(u32)))
4504                         goto out;
4505                 r = 0;
4506                 break;
4507         }
4508         case KVM_GET_MSRS:
4509                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4510                 break;
4511         case KVM_GET_SUPPORTED_HV_CPUID:
4512                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4513                 break;
4514         case KVM_GET_DEVICE_ATTR: {
4515                 struct kvm_device_attr attr;
4516                 r = -EFAULT;
4517                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4518                         break;
4519                 r = kvm_x86_dev_get_attr(&attr);
4520                 break;
4521         }
4522         case KVM_HAS_DEVICE_ATTR: {
4523                 struct kvm_device_attr attr;
4524                 r = -EFAULT;
4525                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4526                         break;
4527                 r = kvm_x86_dev_has_attr(&attr);
4528                 break;
4529         }
4530         default:
4531                 r = -EINVAL;
4532                 break;
4533         }
4534 out:
4535         return r;
4536 }
4537
4538 static void wbinvd_ipi(void *garbage)
4539 {
4540         wbinvd();
4541 }
4542
4543 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4544 {
4545         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4546 }
4547
4548 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4549 {
4550         /* Address WBINVD may be executed by guest */
4551         if (need_emulate_wbinvd(vcpu)) {
4552                 if (static_call(kvm_x86_has_wbinvd_exit)())
4553                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4554                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4555                         smp_call_function_single(vcpu->cpu,
4556                                         wbinvd_ipi, NULL, 1);
4557         }
4558
4559         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4560
4561         /* Save host pkru register if supported */
4562         vcpu->arch.host_pkru = read_pkru();
4563
4564         /* Apply any externally detected TSC adjustments (due to suspend) */
4565         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4566                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4567                 vcpu->arch.tsc_offset_adjustment = 0;
4568                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4569         }
4570
4571         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4572                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4573                                 rdtsc() - vcpu->arch.last_host_tsc;
4574                 if (tsc_delta < 0)
4575                         mark_tsc_unstable("KVM discovered backwards TSC");
4576
4577                 if (kvm_check_tsc_unstable()) {
4578                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4579                                                 vcpu->arch.last_guest_tsc);
4580                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4581                         vcpu->arch.tsc_catchup = 1;
4582                 }
4583
4584                 if (kvm_lapic_hv_timer_in_use(vcpu))
4585                         kvm_lapic_restart_hv_timer(vcpu);
4586
4587                 /*
4588                  * On a host with synchronized TSC, there is no need to update
4589                  * kvmclock on vcpu->cpu migration
4590                  */
4591                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4592                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4593                 if (vcpu->cpu != cpu)
4594                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4595                 vcpu->cpu = cpu;
4596         }
4597
4598         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4599 }
4600
4601 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4602 {
4603         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4604         struct kvm_steal_time __user *st;
4605         struct kvm_memslots *slots;
4606         static const u8 preempted = KVM_VCPU_PREEMPTED;
4607
4608         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4609                 return;
4610
4611         if (vcpu->arch.st.preempted)
4612                 return;
4613
4614         /* This happens on process exit */
4615         if (unlikely(current->mm != vcpu->kvm->mm))
4616                 return;
4617
4618         slots = kvm_memslots(vcpu->kvm);
4619
4620         if (unlikely(slots->generation != ghc->generation ||
4621                      kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4622                 return;
4623
4624         st = (struct kvm_steal_time __user *)ghc->hva;
4625         BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4626
4627         if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4628                 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4629
4630         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4631 }
4632
4633 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4634 {
4635         int idx;
4636
4637         if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4638                 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4639
4640         /*
4641          * Take the srcu lock as memslots will be accessed to check the gfn
4642          * cache generation against the memslots generation.
4643          */
4644         idx = srcu_read_lock(&vcpu->kvm->srcu);
4645         if (kvm_xen_msr_enabled(vcpu->kvm))
4646                 kvm_xen_runstate_set_preempted(vcpu);
4647         else
4648                 kvm_steal_time_set_preempted(vcpu);
4649         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4650
4651         static_call(kvm_x86_vcpu_put)(vcpu);
4652         vcpu->arch.last_host_tsc = rdtsc();
4653 }
4654
4655 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4656                                     struct kvm_lapic_state *s)
4657 {
4658         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4659
4660         return kvm_apic_get_state(vcpu, s);
4661 }
4662
4663 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4664                                     struct kvm_lapic_state *s)
4665 {
4666         int r;
4667
4668         r = kvm_apic_set_state(vcpu, s);
4669         if (r)
4670                 return r;
4671         update_cr8_intercept(vcpu);
4672
4673         return 0;
4674 }
4675
4676 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4677 {
4678         /*
4679          * We can accept userspace's request for interrupt injection
4680          * as long as we have a place to store the interrupt number.
4681          * The actual injection will happen when the CPU is able to
4682          * deliver the interrupt.
4683          */
4684         if (kvm_cpu_has_extint(vcpu))
4685                 return false;
4686
4687         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4688         return (!lapic_in_kernel(vcpu) ||
4689                 kvm_apic_accept_pic_intr(vcpu));
4690 }
4691
4692 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4693 {
4694         /*
4695          * Do not cause an interrupt window exit if an exception
4696          * is pending or an event needs reinjection; userspace
4697          * might want to inject the interrupt manually using KVM_SET_REGS
4698          * or KVM_SET_SREGS.  For that to work, we must be at an
4699          * instruction boundary and with no events half-injected.
4700          */
4701         return (kvm_arch_interrupt_allowed(vcpu) &&
4702                 kvm_cpu_accept_dm_intr(vcpu) &&
4703                 !kvm_event_needs_reinjection(vcpu) &&
4704                 !vcpu->arch.exception.pending);
4705 }
4706
4707 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4708                                     struct kvm_interrupt *irq)
4709 {
4710         if (irq->irq >= KVM_NR_INTERRUPTS)
4711                 return -EINVAL;
4712
4713         if (!irqchip_in_kernel(vcpu->kvm)) {
4714                 kvm_queue_interrupt(vcpu, irq->irq, false);
4715                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4716                 return 0;
4717         }
4718
4719         /*
4720          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4721          * fail for in-kernel 8259.
4722          */
4723         if (pic_in_kernel(vcpu->kvm))
4724                 return -ENXIO;
4725
4726         if (vcpu->arch.pending_external_vector != -1)
4727                 return -EEXIST;
4728
4729         vcpu->arch.pending_external_vector = irq->irq;
4730         kvm_make_request(KVM_REQ_EVENT, vcpu);
4731         return 0;
4732 }
4733
4734 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4735 {
4736         kvm_inject_nmi(vcpu);
4737
4738         return 0;
4739 }
4740
4741 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4742 {
4743         kvm_make_request(KVM_REQ_SMI, vcpu);
4744
4745         return 0;
4746 }
4747
4748 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4749                                            struct kvm_tpr_access_ctl *tac)
4750 {
4751         if (tac->flags)
4752                 return -EINVAL;
4753         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4754         return 0;
4755 }
4756
4757 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4758                                         u64 mcg_cap)
4759 {
4760         int r;
4761         unsigned bank_num = mcg_cap & 0xff, bank;
4762
4763         r = -EINVAL;
4764         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4765                 goto out;
4766         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4767                 goto out;
4768         r = 0;
4769         vcpu->arch.mcg_cap = mcg_cap;
4770         /* Init IA32_MCG_CTL to all 1s */
4771         if (mcg_cap & MCG_CTL_P)
4772                 vcpu->arch.mcg_ctl = ~(u64)0;
4773         /* Init IA32_MCi_CTL to all 1s */
4774         for (bank = 0; bank < bank_num; bank++)
4775                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4776
4777         static_call(kvm_x86_setup_mce)(vcpu);
4778 out:
4779         return r;
4780 }
4781
4782 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4783                                       struct kvm_x86_mce *mce)
4784 {
4785         u64 mcg_cap = vcpu->arch.mcg_cap;
4786         unsigned bank_num = mcg_cap & 0xff;
4787         u64 *banks = vcpu->arch.mce_banks;
4788
4789         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4790                 return -EINVAL;
4791         /*
4792          * if IA32_MCG_CTL is not all 1s, the uncorrected error
4793          * reporting is disabled
4794          */
4795         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4796             vcpu->arch.mcg_ctl != ~(u64)0)
4797                 return 0;
4798         banks += 4 * mce->bank;
4799         /*
4800          * if IA32_MCi_CTL is not all 1s, the uncorrected error
4801          * reporting is disabled for the bank
4802          */
4803         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4804                 return 0;
4805         if (mce->status & MCI_STATUS_UC) {
4806                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4807                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4808                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4809                         return 0;
4810                 }
4811                 if (banks[1] & MCI_STATUS_VAL)
4812                         mce->status |= MCI_STATUS_OVER;
4813                 banks[2] = mce->addr;
4814                 banks[3] = mce->misc;
4815                 vcpu->arch.mcg_status = mce->mcg_status;
4816                 banks[1] = mce->status;
4817                 kvm_queue_exception(vcpu, MC_VECTOR);
4818         } else if (!(banks[1] & MCI_STATUS_VAL)
4819                    || !(banks[1] & MCI_STATUS_UC)) {
4820                 if (banks[1] & MCI_STATUS_VAL)
4821                         mce->status |= MCI_STATUS_OVER;
4822                 banks[2] = mce->addr;
4823                 banks[3] = mce->misc;
4824                 banks[1] = mce->status;
4825         } else
4826                 banks[1] |= MCI_STATUS_OVER;
4827         return 0;
4828 }
4829
4830 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4831                                                struct kvm_vcpu_events *events)
4832 {
4833         process_nmi(vcpu);
4834
4835         if (kvm_check_request(KVM_REQ_SMI, vcpu))
4836                 process_smi(vcpu);
4837
4838         /*
4839          * In guest mode, payload delivery should be deferred,
4840          * so that the L1 hypervisor can intercept #PF before
4841          * CR2 is modified (or intercept #DB before DR6 is
4842          * modified under nVMX). Unless the per-VM capability,
4843          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4844          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4845          * opportunistically defer the exception payload, deliver it if the
4846          * capability hasn't been requested before processing a
4847          * KVM_GET_VCPU_EVENTS.
4848          */
4849         if (!vcpu->kvm->arch.exception_payload_enabled &&
4850             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4851                 kvm_deliver_exception_payload(vcpu);
4852
4853         /*
4854          * The API doesn't provide the instruction length for software
4855          * exceptions, so don't report them. As long as the guest RIP
4856          * isn't advanced, we should expect to encounter the exception
4857          * again.
4858          */
4859         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4860                 events->exception.injected = 0;
4861                 events->exception.pending = 0;
4862         } else {
4863                 events->exception.injected = vcpu->arch.exception.injected;
4864                 events->exception.pending = vcpu->arch.exception.pending;
4865                 /*
4866                  * For ABI compatibility, deliberately conflate
4867                  * pending and injected exceptions when
4868                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4869                  */
4870                 if (!vcpu->kvm->arch.exception_payload_enabled)
4871                         events->exception.injected |=
4872                                 vcpu->arch.exception.pending;
4873         }
4874         events->exception.nr = vcpu->arch.exception.nr;
4875         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4876         events->exception.error_code = vcpu->arch.exception.error_code;
4877         events->exception_has_payload = vcpu->arch.exception.has_payload;
4878         events->exception_payload = vcpu->arch.exception.payload;
4879
4880         events->interrupt.injected =
4881                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4882         events->interrupt.nr = vcpu->arch.interrupt.nr;
4883         events->interrupt.soft = 0;
4884         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4885
4886         events->nmi.injected = vcpu->arch.nmi_injected;
4887         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4888         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4889         events->nmi.pad = 0;
4890
4891         events->sipi_vector = 0; /* never valid when reporting to user space */
4892
4893         events->smi.smm = is_smm(vcpu);
4894         events->smi.pending = vcpu->arch.smi_pending;
4895         events->smi.smm_inside_nmi =
4896                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4897         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4898
4899         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4900                          | KVM_VCPUEVENT_VALID_SHADOW
4901                          | KVM_VCPUEVENT_VALID_SMM);
4902         if (vcpu->kvm->arch.exception_payload_enabled)
4903                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4904
4905         memset(&events->reserved, 0, sizeof(events->reserved));
4906 }
4907
4908 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4909
4910 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4911                                               struct kvm_vcpu_events *events)
4912 {
4913         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4914                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4915                               | KVM_VCPUEVENT_VALID_SHADOW
4916                               | KVM_VCPUEVENT_VALID_SMM
4917                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4918                 return -EINVAL;
4919
4920         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4921                 if (!vcpu->kvm->arch.exception_payload_enabled)
4922                         return -EINVAL;
4923                 if (events->exception.pending)
4924                         events->exception.injected = 0;
4925                 else
4926                         events->exception_has_payload = 0;
4927         } else {
4928                 events->exception.pending = 0;
4929                 events->exception_has_payload = 0;
4930         }
4931
4932         if ((events->exception.injected || events->exception.pending) &&
4933             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4934                 return -EINVAL;
4935
4936         /* INITs are latched while in SMM */
4937         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4938             (events->smi.smm || events->smi.pending) &&
4939             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4940                 return -EINVAL;
4941
4942         process_nmi(vcpu);
4943         vcpu->arch.exception.injected = events->exception.injected;
4944         vcpu->arch.exception.pending = events->exception.pending;
4945         vcpu->arch.exception.nr = events->exception.nr;
4946         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4947         vcpu->arch.exception.error_code = events->exception.error_code;
4948         vcpu->arch.exception.has_payload = events->exception_has_payload;
4949         vcpu->arch.exception.payload = events->exception_payload;
4950
4951         vcpu->arch.interrupt.injected = events->interrupt.injected;
4952         vcpu->arch.interrupt.nr = events->interrupt.nr;
4953         vcpu->arch.interrupt.soft = events->interrupt.soft;
4954         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4955                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4956                                                 events->interrupt.shadow);
4957
4958         vcpu->arch.nmi_injected = events->nmi.injected;
4959         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4960                 vcpu->arch.nmi_pending = events->nmi.pending;
4961         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4962
4963         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4964             lapic_in_kernel(vcpu))
4965                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4966
4967         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4968                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4969                         kvm_x86_ops.nested_ops->leave_nested(vcpu);
4970                         kvm_smm_changed(vcpu, events->smi.smm);
4971                 }
4972
4973                 vcpu->arch.smi_pending = events->smi.pending;
4974
4975                 if (events->smi.smm) {
4976                         if (events->smi.smm_inside_nmi)
4977                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4978                         else
4979                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4980                 }
4981
4982                 if (lapic_in_kernel(vcpu)) {
4983                         if (events->smi.latched_init)
4984                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4985                         else
4986                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4987                 }
4988         }
4989
4990         kvm_make_request(KVM_REQ_EVENT, vcpu);
4991
4992         return 0;
4993 }
4994
4995 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4996                                              struct kvm_debugregs *dbgregs)
4997 {
4998         unsigned long val;
4999
5000         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5001         kvm_get_dr(vcpu, 6, &val);
5002         dbgregs->dr6 = val;
5003         dbgregs->dr7 = vcpu->arch.dr7;
5004         dbgregs->flags = 0;
5005         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5006 }
5007
5008 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5009                                             struct kvm_debugregs *dbgregs)
5010 {
5011         if (dbgregs->flags)
5012                 return -EINVAL;
5013
5014         if (!kvm_dr6_valid(dbgregs->dr6))
5015                 return -EINVAL;
5016         if (!kvm_dr7_valid(dbgregs->dr7))
5017                 return -EINVAL;
5018
5019         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5020         kvm_update_dr0123(vcpu);
5021         vcpu->arch.dr6 = dbgregs->dr6;
5022         vcpu->arch.dr7 = dbgregs->dr7;
5023         kvm_update_dr7(vcpu);
5024
5025         return 0;
5026 }
5027
5028 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5029                                          struct kvm_xsave *guest_xsave)
5030 {
5031         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5032                 return;
5033
5034         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5035                                        guest_xsave->region,
5036                                        sizeof(guest_xsave->region),
5037                                        vcpu->arch.pkru);
5038 }
5039
5040 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5041                                           u8 *state, unsigned int size)
5042 {
5043         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5044                 return;
5045
5046         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5047                                        state, size, vcpu->arch.pkru);
5048 }
5049
5050 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5051                                         struct kvm_xsave *guest_xsave)
5052 {
5053         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5054                 return 0;
5055
5056         return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5057                                               guest_xsave->region,
5058                                               supported_xcr0, &vcpu->arch.pkru);
5059 }
5060
5061 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5062                                         struct kvm_xcrs *guest_xcrs)
5063 {
5064         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5065                 guest_xcrs->nr_xcrs = 0;
5066                 return;
5067         }
5068
5069         guest_xcrs->nr_xcrs = 1;
5070         guest_xcrs->flags = 0;
5071         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5072         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5073 }
5074
5075 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5076                                        struct kvm_xcrs *guest_xcrs)
5077 {
5078         int i, r = 0;
5079
5080         if (!boot_cpu_has(X86_FEATURE_XSAVE))
5081                 return -EINVAL;
5082
5083         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5084                 return -EINVAL;
5085
5086         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5087                 /* Only support XCR0 currently */
5088                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5089                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5090                                 guest_xcrs->xcrs[i].value);
5091                         break;
5092                 }
5093         if (r)
5094                 r = -EINVAL;
5095         return r;
5096 }
5097
5098 /*
5099  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5100  * stopped by the hypervisor.  This function will be called from the host only.
5101  * EINVAL is returned when the host attempts to set the flag for a guest that
5102  * does not support pv clocks.
5103  */
5104 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5105 {
5106         if (!vcpu->arch.pv_time_enabled)
5107                 return -EINVAL;
5108         vcpu->arch.pvclock_set_guest_stopped_request = true;
5109         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5110         return 0;
5111 }
5112
5113 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5114                                  struct kvm_device_attr *attr)
5115 {
5116         int r;
5117
5118         switch (attr->attr) {
5119         case KVM_VCPU_TSC_OFFSET:
5120                 r = 0;
5121                 break;
5122         default:
5123                 r = -ENXIO;
5124         }
5125
5126         return r;
5127 }
5128
5129 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5130                                  struct kvm_device_attr *attr)
5131 {
5132         u64 __user *uaddr = kvm_get_attr_addr(attr);
5133         int r;
5134
5135         if (IS_ERR(uaddr))
5136                 return PTR_ERR(uaddr);
5137
5138         switch (attr->attr) {
5139         case KVM_VCPU_TSC_OFFSET:
5140                 r = -EFAULT;
5141                 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5142                         break;
5143                 r = 0;
5144                 break;
5145         default:
5146                 r = -ENXIO;
5147         }
5148
5149         return r;
5150 }
5151
5152 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5153                                  struct kvm_device_attr *attr)
5154 {
5155         u64 __user *uaddr = kvm_get_attr_addr(attr);
5156         struct kvm *kvm = vcpu->kvm;
5157         int r;
5158
5159         if (IS_ERR(uaddr))
5160                 return PTR_ERR(uaddr);
5161
5162         switch (attr->attr) {
5163         case KVM_VCPU_TSC_OFFSET: {
5164                 u64 offset, tsc, ns;
5165                 unsigned long flags;
5166                 bool matched;
5167
5168                 r = -EFAULT;
5169                 if (get_user(offset, uaddr))
5170                         break;
5171
5172                 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5173
5174                 matched = (vcpu->arch.virtual_tsc_khz &&
5175                            kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5176                            kvm->arch.last_tsc_offset == offset);
5177
5178                 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5179                 ns = get_kvmclock_base_ns();
5180
5181                 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5182                 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5183
5184                 r = 0;
5185                 break;
5186         }
5187         default:
5188                 r = -ENXIO;
5189         }
5190
5191         return r;
5192 }
5193
5194 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5195                                       unsigned int ioctl,
5196                                       void __user *argp)
5197 {
5198         struct kvm_device_attr attr;
5199         int r;
5200
5201         if (copy_from_user(&attr, argp, sizeof(attr)))
5202                 return -EFAULT;
5203
5204         if (attr.group != KVM_VCPU_TSC_CTRL)
5205                 return -ENXIO;
5206
5207         switch (ioctl) {
5208         case KVM_HAS_DEVICE_ATTR:
5209                 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5210                 break;
5211         case KVM_GET_DEVICE_ATTR:
5212                 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5213                 break;
5214         case KVM_SET_DEVICE_ATTR:
5215                 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5216                 break;
5217         }
5218
5219         return r;
5220 }
5221
5222 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5223                                      struct kvm_enable_cap *cap)
5224 {
5225         int r;
5226         uint16_t vmcs_version;
5227         void __user *user_ptr;
5228
5229         if (cap->flags)
5230                 return -EINVAL;
5231
5232         switch (cap->cap) {
5233         case KVM_CAP_HYPERV_SYNIC2:
5234                 if (cap->args[0])
5235                         return -EINVAL;
5236                 fallthrough;
5237
5238         case KVM_CAP_HYPERV_SYNIC:
5239                 if (!irqchip_in_kernel(vcpu->kvm))
5240                         return -EINVAL;
5241                 return kvm_hv_activate_synic(vcpu, cap->cap ==
5242                                              KVM_CAP_HYPERV_SYNIC2);
5243         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5244                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5245                         return -ENOTTY;
5246                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5247                 if (!r) {
5248                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
5249                         if (copy_to_user(user_ptr, &vmcs_version,
5250                                          sizeof(vmcs_version)))
5251                                 r = -EFAULT;
5252                 }
5253                 return r;
5254         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5255                 if (!kvm_x86_ops.enable_direct_tlbflush)
5256                         return -ENOTTY;
5257
5258                 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5259
5260         case KVM_CAP_HYPERV_ENFORCE_CPUID:
5261                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5262
5263         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5264                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5265                 if (vcpu->arch.pv_cpuid.enforce)
5266                         kvm_update_pv_runtime(vcpu);
5267
5268                 return 0;
5269         default:
5270                 return -EINVAL;
5271         }
5272 }
5273
5274 long kvm_arch_vcpu_ioctl(struct file *filp,
5275                          unsigned int ioctl, unsigned long arg)
5276 {
5277         struct kvm_vcpu *vcpu = filp->private_data;
5278         void __user *argp = (void __user *)arg;
5279         int r;
5280         union {
5281                 struct kvm_sregs2 *sregs2;
5282                 struct kvm_lapic_state *lapic;
5283                 struct kvm_xsave *xsave;
5284                 struct kvm_xcrs *xcrs;
5285                 void *buffer;
5286         } u;
5287
5288         vcpu_load(vcpu);
5289
5290         u.buffer = NULL;
5291         switch (ioctl) {
5292         case KVM_GET_LAPIC: {
5293                 r = -EINVAL;
5294                 if (!lapic_in_kernel(vcpu))
5295                         goto out;
5296                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5297                                 GFP_KERNEL_ACCOUNT);
5298
5299                 r = -ENOMEM;
5300                 if (!u.lapic)
5301                         goto out;
5302                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5303                 if (r)
5304                         goto out;
5305                 r = -EFAULT;
5306                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5307                         goto out;
5308                 r = 0;
5309                 break;
5310         }
5311         case KVM_SET_LAPIC: {
5312                 r = -EINVAL;
5313                 if (!lapic_in_kernel(vcpu))
5314                         goto out;
5315                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5316                 if (IS_ERR(u.lapic)) {
5317                         r = PTR_ERR(u.lapic);
5318                         goto out_nofree;
5319                 }
5320
5321                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5322                 break;
5323         }
5324         case KVM_INTERRUPT: {
5325                 struct kvm_interrupt irq;
5326
5327                 r = -EFAULT;
5328                 if (copy_from_user(&irq, argp, sizeof(irq)))
5329                         goto out;
5330                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5331                 break;
5332         }
5333         case KVM_NMI: {
5334                 r = kvm_vcpu_ioctl_nmi(vcpu);
5335                 break;
5336         }
5337         case KVM_SMI: {
5338                 r = kvm_vcpu_ioctl_smi(vcpu);
5339                 break;
5340         }
5341         case KVM_SET_CPUID: {
5342                 struct kvm_cpuid __user *cpuid_arg = argp;
5343                 struct kvm_cpuid cpuid;
5344
5345                 r = -EFAULT;
5346                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5347                         goto out;
5348                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5349                 break;
5350         }
5351         case KVM_SET_CPUID2: {
5352                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5353                 struct kvm_cpuid2 cpuid;
5354
5355                 r = -EFAULT;
5356                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5357                         goto out;
5358                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5359                                               cpuid_arg->entries);
5360                 break;
5361         }
5362         case KVM_GET_CPUID2: {
5363                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5364                 struct kvm_cpuid2 cpuid;
5365
5366                 r = -EFAULT;
5367                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5368                         goto out;
5369                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5370                                               cpuid_arg->entries);
5371                 if (r)
5372                         goto out;
5373                 r = -EFAULT;
5374                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5375                         goto out;
5376                 r = 0;
5377                 break;
5378         }
5379         case KVM_GET_MSRS: {
5380                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5381                 r = msr_io(vcpu, argp, do_get_msr, 1);
5382                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5383                 break;
5384         }
5385         case KVM_SET_MSRS: {
5386                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5387                 r = msr_io(vcpu, argp, do_set_msr, 0);
5388                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5389                 break;
5390         }
5391         case KVM_TPR_ACCESS_REPORTING: {
5392                 struct kvm_tpr_access_ctl tac;
5393
5394                 r = -EFAULT;
5395                 if (copy_from_user(&tac, argp, sizeof(tac)))
5396                         goto out;
5397                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5398                 if (r)
5399                         goto out;
5400                 r = -EFAULT;
5401                 if (copy_to_user(argp, &tac, sizeof(tac)))
5402                         goto out;
5403                 r = 0;
5404                 break;
5405         };
5406         case KVM_SET_VAPIC_ADDR: {
5407                 struct kvm_vapic_addr va;
5408                 int idx;
5409
5410                 r = -EINVAL;
5411                 if (!lapic_in_kernel(vcpu))
5412                         goto out;
5413                 r = -EFAULT;
5414                 if (copy_from_user(&va, argp, sizeof(va)))
5415                         goto out;
5416                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5417                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5418                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5419                 break;
5420         }
5421         case KVM_X86_SETUP_MCE: {
5422                 u64 mcg_cap;
5423
5424                 r = -EFAULT;
5425                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5426                         goto out;
5427                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5428                 break;
5429         }
5430         case KVM_X86_SET_MCE: {
5431                 struct kvm_x86_mce mce;
5432
5433                 r = -EFAULT;
5434                 if (copy_from_user(&mce, argp, sizeof(mce)))
5435                         goto out;
5436                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5437                 break;
5438         }
5439         case KVM_GET_VCPU_EVENTS: {
5440                 struct kvm_vcpu_events events;
5441
5442                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5443
5444                 r = -EFAULT;
5445                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5446                         break;
5447                 r = 0;
5448                 break;
5449         }
5450         case KVM_SET_VCPU_EVENTS: {
5451                 struct kvm_vcpu_events events;
5452
5453                 r = -EFAULT;
5454                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5455                         break;
5456
5457                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5458                 break;
5459         }
5460         case KVM_GET_DEBUGREGS: {
5461                 struct kvm_debugregs dbgregs;
5462
5463                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5464
5465                 r = -EFAULT;
5466                 if (copy_to_user(argp, &dbgregs,
5467                                  sizeof(struct kvm_debugregs)))
5468                         break;
5469                 r = 0;
5470                 break;
5471         }
5472         case KVM_SET_DEBUGREGS: {
5473                 struct kvm_debugregs dbgregs;
5474
5475                 r = -EFAULT;
5476                 if (copy_from_user(&dbgregs, argp,
5477                                    sizeof(struct kvm_debugregs)))
5478                         break;
5479
5480                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5481                 break;
5482         }
5483         case KVM_GET_XSAVE: {
5484                 r = -EINVAL;
5485                 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5486                         break;
5487
5488                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5489                 r = -ENOMEM;
5490                 if (!u.xsave)
5491                         break;
5492
5493                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5494
5495                 r = -EFAULT;
5496                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5497                         break;
5498                 r = 0;
5499                 break;
5500         }
5501         case KVM_SET_XSAVE: {
5502                 int size = vcpu->arch.guest_fpu.uabi_size;
5503
5504                 u.xsave = memdup_user(argp, size);
5505                 if (IS_ERR(u.xsave)) {
5506                         r = PTR_ERR(u.xsave);
5507                         goto out_nofree;
5508                 }
5509
5510                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5511                 break;
5512         }
5513
5514         case KVM_GET_XSAVE2: {
5515                 int size = vcpu->arch.guest_fpu.uabi_size;
5516
5517                 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5518                 r = -ENOMEM;
5519                 if (!u.xsave)
5520                         break;
5521
5522                 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5523
5524                 r = -EFAULT;
5525                 if (copy_to_user(argp, u.xsave, size))
5526                         break;
5527
5528                 r = 0;
5529                 break;
5530         }
5531
5532         case KVM_GET_XCRS: {
5533                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5534                 r = -ENOMEM;
5535                 if (!u.xcrs)
5536                         break;
5537
5538                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5539
5540                 r = -EFAULT;
5541                 if (copy_to_user(argp, u.xcrs,
5542                                  sizeof(struct kvm_xcrs)))
5543                         break;
5544                 r = 0;
5545                 break;
5546         }
5547         case KVM_SET_XCRS: {
5548                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5549                 if (IS_ERR(u.xcrs)) {
5550                         r = PTR_ERR(u.xcrs);
5551                         goto out_nofree;
5552                 }
5553
5554                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5555                 break;
5556         }
5557         case KVM_SET_TSC_KHZ: {
5558                 u32 user_tsc_khz;
5559
5560                 r = -EINVAL;
5561                 user_tsc_khz = (u32)arg;
5562
5563                 if (kvm_has_tsc_control &&
5564                     user_tsc_khz >= kvm_max_guest_tsc_khz)
5565                         goto out;
5566
5567                 if (user_tsc_khz == 0)
5568                         user_tsc_khz = tsc_khz;
5569
5570                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5571                         r = 0;
5572
5573                 goto out;
5574         }
5575         case KVM_GET_TSC_KHZ: {
5576                 r = vcpu->arch.virtual_tsc_khz;
5577                 goto out;
5578         }
5579         case KVM_KVMCLOCK_CTRL: {
5580                 r = kvm_set_guest_paused(vcpu);
5581                 goto out;
5582         }
5583         case KVM_ENABLE_CAP: {
5584                 struct kvm_enable_cap cap;
5585
5586                 r = -EFAULT;
5587                 if (copy_from_user(&cap, argp, sizeof(cap)))
5588                         goto out;
5589                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5590                 break;
5591         }
5592         case KVM_GET_NESTED_STATE: {
5593                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5594                 u32 user_data_size;
5595
5596                 r = -EINVAL;
5597                 if (!kvm_x86_ops.nested_ops->get_state)
5598                         break;
5599
5600                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5601                 r = -EFAULT;
5602                 if (get_user(user_data_size, &user_kvm_nested_state->size))
5603                         break;
5604
5605                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5606                                                      user_data_size);
5607                 if (r < 0)
5608                         break;
5609
5610                 if (r > user_data_size) {
5611                         if (put_user(r, &user_kvm_nested_state->size))
5612                                 r = -EFAULT;
5613                         else
5614                                 r = -E2BIG;
5615                         break;
5616                 }
5617
5618                 r = 0;
5619                 break;
5620         }
5621         case KVM_SET_NESTED_STATE: {
5622                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5623                 struct kvm_nested_state kvm_state;
5624                 int idx;
5625
5626                 r = -EINVAL;
5627                 if (!kvm_x86_ops.nested_ops->set_state)
5628                         break;
5629
5630                 r = -EFAULT;
5631                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5632                         break;
5633
5634                 r = -EINVAL;
5635                 if (kvm_state.size < sizeof(kvm_state))
5636                         break;
5637
5638                 if (kvm_state.flags &
5639                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5640                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5641                       | KVM_STATE_NESTED_GIF_SET))
5642                         break;
5643
5644                 /* nested_run_pending implies guest_mode.  */
5645                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5646                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5647                         break;
5648
5649                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5650                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5651                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5652                 break;
5653         }
5654         case KVM_GET_SUPPORTED_HV_CPUID:
5655                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5656                 break;
5657 #ifdef CONFIG_KVM_XEN
5658         case KVM_XEN_VCPU_GET_ATTR: {
5659                 struct kvm_xen_vcpu_attr xva;
5660
5661                 r = -EFAULT;
5662                 if (copy_from_user(&xva, argp, sizeof(xva)))
5663                         goto out;
5664                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5665                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5666                         r = -EFAULT;
5667                 break;
5668         }
5669         case KVM_XEN_VCPU_SET_ATTR: {
5670                 struct kvm_xen_vcpu_attr xva;
5671
5672                 r = -EFAULT;
5673                 if (copy_from_user(&xva, argp, sizeof(xva)))
5674                         goto out;
5675                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5676                 break;
5677         }
5678 #endif
5679         case KVM_GET_SREGS2: {
5680                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5681                 r = -ENOMEM;
5682                 if (!u.sregs2)
5683                         goto out;
5684                 __get_sregs2(vcpu, u.sregs2);
5685                 r = -EFAULT;
5686                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5687                         goto out;
5688                 r = 0;
5689                 break;
5690         }
5691         case KVM_SET_SREGS2: {
5692                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5693                 if (IS_ERR(u.sregs2)) {
5694                         r = PTR_ERR(u.sregs2);
5695                         u.sregs2 = NULL;
5696                         goto out;
5697                 }
5698                 r = __set_sregs2(vcpu, u.sregs2);
5699                 break;
5700         }
5701         case KVM_HAS_DEVICE_ATTR:
5702         case KVM_GET_DEVICE_ATTR:
5703         case KVM_SET_DEVICE_ATTR:
5704                 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5705                 break;
5706         default:
5707                 r = -EINVAL;
5708         }
5709 out:
5710         kfree(u.buffer);
5711 out_nofree:
5712         vcpu_put(vcpu);
5713         return r;
5714 }
5715
5716 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5717 {
5718         return VM_FAULT_SIGBUS;
5719 }
5720
5721 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5722 {
5723         int ret;
5724
5725         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5726                 return -EINVAL;
5727         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5728         return ret;
5729 }
5730
5731 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5732                                               u64 ident_addr)
5733 {
5734         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5735 }
5736
5737 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5738                                          unsigned long kvm_nr_mmu_pages)
5739 {
5740         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5741                 return -EINVAL;
5742
5743         mutex_lock(&kvm->slots_lock);
5744
5745         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5746         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5747
5748         mutex_unlock(&kvm->slots_lock);
5749         return 0;
5750 }
5751
5752 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5753 {
5754         return kvm->arch.n_max_mmu_pages;
5755 }
5756
5757 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5758 {
5759         struct kvm_pic *pic = kvm->arch.vpic;
5760         int r;
5761
5762         r = 0;
5763         switch (chip->chip_id) {
5764         case KVM_IRQCHIP_PIC_MASTER:
5765                 memcpy(&chip->chip.pic, &pic->pics[0],
5766                         sizeof(struct kvm_pic_state));
5767                 break;
5768         case KVM_IRQCHIP_PIC_SLAVE:
5769                 memcpy(&chip->chip.pic, &pic->pics[1],
5770                         sizeof(struct kvm_pic_state));
5771                 break;
5772         case KVM_IRQCHIP_IOAPIC:
5773                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5774                 break;
5775         default:
5776                 r = -EINVAL;
5777                 break;
5778         }
5779         return r;
5780 }
5781
5782 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5783 {
5784         struct kvm_pic *pic = kvm->arch.vpic;
5785         int r;
5786
5787         r = 0;
5788         switch (chip->chip_id) {
5789         case KVM_IRQCHIP_PIC_MASTER:
5790                 spin_lock(&pic->lock);
5791                 memcpy(&pic->pics[0], &chip->chip.pic,
5792                         sizeof(struct kvm_pic_state));
5793                 spin_unlock(&pic->lock);
5794                 break;
5795         case KVM_IRQCHIP_PIC_SLAVE:
5796                 spin_lock(&pic->lock);
5797                 memcpy(&pic->pics[1], &chip->chip.pic,
5798                         sizeof(struct kvm_pic_state));
5799                 spin_unlock(&pic->lock);
5800                 break;
5801         case KVM_IRQCHIP_IOAPIC:
5802                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5803                 break;
5804         default:
5805                 r = -EINVAL;
5806                 break;
5807         }
5808         kvm_pic_update_irq(pic);
5809         return r;
5810 }
5811
5812 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5813 {
5814         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5815
5816         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5817
5818         mutex_lock(&kps->lock);
5819         memcpy(ps, &kps->channels, sizeof(*ps));
5820         mutex_unlock(&kps->lock);
5821         return 0;
5822 }
5823
5824 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5825 {
5826         int i;
5827         struct kvm_pit *pit = kvm->arch.vpit;
5828
5829         mutex_lock(&pit->pit_state.lock);
5830         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5831         for (i = 0; i < 3; i++)
5832                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5833         mutex_unlock(&pit->pit_state.lock);
5834         return 0;
5835 }
5836
5837 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5838 {
5839         mutex_lock(&kvm->arch.vpit->pit_state.lock);
5840         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5841                 sizeof(ps->channels));
5842         ps->flags = kvm->arch.vpit->pit_state.flags;
5843         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5844         memset(&ps->reserved, 0, sizeof(ps->reserved));
5845         return 0;
5846 }
5847
5848 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5849 {
5850         int start = 0;
5851         int i;
5852         u32 prev_legacy, cur_legacy;
5853         struct kvm_pit *pit = kvm->arch.vpit;
5854
5855         mutex_lock(&pit->pit_state.lock);
5856         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5857         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5858         if (!prev_legacy && cur_legacy)
5859                 start = 1;
5860         memcpy(&pit->pit_state.channels, &ps->channels,
5861                sizeof(pit->pit_state.channels));
5862         pit->pit_state.flags = ps->flags;
5863         for (i = 0; i < 3; i++)
5864                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5865                                    start && i == 0);
5866         mutex_unlock(&pit->pit_state.lock);
5867         return 0;
5868 }
5869
5870 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5871                                  struct kvm_reinject_control *control)
5872 {
5873         struct kvm_pit *pit = kvm->arch.vpit;
5874
5875         /* pit->pit_state.lock was overloaded to prevent userspace from getting
5876          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5877          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5878          */
5879         mutex_lock(&pit->pit_state.lock);
5880         kvm_pit_set_reinject(pit, control->pit_reinject);
5881         mutex_unlock(&pit->pit_state.lock);
5882
5883         return 0;
5884 }
5885
5886 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5887 {
5888
5889         /*
5890          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5891          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5892          * on all VM-Exits, thus we only need to kick running vCPUs to force a
5893          * VM-Exit.
5894          */
5895         struct kvm_vcpu *vcpu;
5896         unsigned long i;
5897
5898         kvm_for_each_vcpu(i, vcpu, kvm)
5899                 kvm_vcpu_kick(vcpu);
5900 }
5901
5902 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5903                         bool line_status)
5904 {
5905         if (!irqchip_in_kernel(kvm))
5906                 return -ENXIO;
5907
5908         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5909                                         irq_event->irq, irq_event->level,
5910                                         line_status);
5911         return 0;
5912 }
5913
5914 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5915                             struct kvm_enable_cap *cap)
5916 {
5917         int r;
5918
5919         if (cap->flags)
5920                 return -EINVAL;
5921
5922         switch (cap->cap) {
5923         case KVM_CAP_DISABLE_QUIRKS2:
5924                 r = -EINVAL;
5925                 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
5926                         break;
5927                 fallthrough;
5928         case KVM_CAP_DISABLE_QUIRKS:
5929                 kvm->arch.disabled_quirks = cap->args[0];
5930                 r = 0;
5931                 break;
5932         case KVM_CAP_SPLIT_IRQCHIP: {
5933                 mutex_lock(&kvm->lock);
5934                 r = -EINVAL;
5935                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5936                         goto split_irqchip_unlock;
5937                 r = -EEXIST;
5938                 if (irqchip_in_kernel(kvm))
5939                         goto split_irqchip_unlock;
5940                 if (kvm->created_vcpus)
5941                         goto split_irqchip_unlock;
5942                 r = kvm_setup_empty_irq_routing(kvm);
5943                 if (r)
5944                         goto split_irqchip_unlock;
5945                 /* Pairs with irqchip_in_kernel. */
5946                 smp_wmb();
5947                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5948                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5949                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
5950                 r = 0;
5951 split_irqchip_unlock:
5952                 mutex_unlock(&kvm->lock);
5953                 break;
5954         }
5955         case KVM_CAP_X2APIC_API:
5956                 r = -EINVAL;
5957                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5958                         break;
5959
5960                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5961                         kvm->arch.x2apic_format = true;
5962                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5963                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
5964
5965                 r = 0;
5966                 break;
5967         case KVM_CAP_X86_DISABLE_EXITS:
5968                 r = -EINVAL;
5969                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5970                         break;
5971
5972                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5973                         kvm_can_mwait_in_guest())
5974                         kvm->arch.mwait_in_guest = true;
5975                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5976                         kvm->arch.hlt_in_guest = true;
5977                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5978                         kvm->arch.pause_in_guest = true;
5979                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5980                         kvm->arch.cstate_in_guest = true;
5981                 r = 0;
5982                 break;
5983         case KVM_CAP_MSR_PLATFORM_INFO:
5984                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5985                 r = 0;
5986                 break;
5987         case KVM_CAP_EXCEPTION_PAYLOAD:
5988                 kvm->arch.exception_payload_enabled = cap->args[0];
5989                 r = 0;
5990                 break;
5991         case KVM_CAP_X86_USER_SPACE_MSR:
5992                 kvm->arch.user_space_msr_mask = cap->args[0];
5993                 r = 0;
5994                 break;
5995         case KVM_CAP_X86_BUS_LOCK_EXIT:
5996                 r = -EINVAL;
5997                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5998                         break;
5999
6000                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6001                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6002                         break;
6003
6004                 if (kvm_has_bus_lock_exit &&
6005                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6006                         kvm->arch.bus_lock_detection_enabled = true;
6007                 r = 0;
6008                 break;
6009 #ifdef CONFIG_X86_SGX_KVM
6010         case KVM_CAP_SGX_ATTRIBUTE: {
6011                 unsigned long allowed_attributes = 0;
6012
6013                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6014                 if (r)
6015                         break;
6016
6017                 /* KVM only supports the PROVISIONKEY privileged attribute. */
6018                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6019                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6020                         kvm->arch.sgx_provisioning_allowed = true;
6021                 else
6022                         r = -EINVAL;
6023                 break;
6024         }
6025 #endif
6026         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6027                 r = -EINVAL;
6028                 if (!kvm_x86_ops.vm_copy_enc_context_from)
6029                         break;
6030
6031                 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6032                 break;
6033         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6034                 r = -EINVAL;
6035                 if (!kvm_x86_ops.vm_move_enc_context_from)
6036                         break;
6037
6038                 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6039                 break;
6040         case KVM_CAP_EXIT_HYPERCALL:
6041                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6042                         r = -EINVAL;
6043                         break;
6044                 }
6045                 kvm->arch.hypercall_exit_enabled = cap->args[0];
6046                 r = 0;
6047                 break;
6048         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6049                 r = -EINVAL;
6050                 if (cap->args[0] & ~1)
6051                         break;
6052                 kvm->arch.exit_on_emulation_error = cap->args[0];
6053                 r = 0;
6054                 break;
6055         case KVM_CAP_PMU_CAPABILITY:
6056                 r = -EINVAL;
6057                 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6058                         break;
6059
6060                 mutex_lock(&kvm->lock);
6061                 if (!kvm->created_vcpus) {
6062                         kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6063                         r = 0;
6064                 }
6065                 mutex_unlock(&kvm->lock);
6066                 break;
6067         default:
6068                 r = -EINVAL;
6069                 break;
6070         }
6071         return r;
6072 }
6073
6074 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6075 {
6076         struct kvm_x86_msr_filter *msr_filter;
6077
6078         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6079         if (!msr_filter)
6080                 return NULL;
6081
6082         msr_filter->default_allow = default_allow;
6083         return msr_filter;
6084 }
6085
6086 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6087 {
6088         u32 i;
6089
6090         if (!msr_filter)
6091                 return;
6092
6093         for (i = 0; i < msr_filter->count; i++)
6094                 kfree(msr_filter->ranges[i].bitmap);
6095
6096         kfree(msr_filter);
6097 }
6098
6099 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6100                               struct kvm_msr_filter_range *user_range)
6101 {
6102         unsigned long *bitmap = NULL;
6103         size_t bitmap_size;
6104
6105         if (!user_range->nmsrs)
6106                 return 0;
6107
6108         if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6109                 return -EINVAL;
6110
6111         if (!user_range->flags)
6112                 return -EINVAL;
6113
6114         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6115         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6116                 return -EINVAL;
6117
6118         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6119         if (IS_ERR(bitmap))
6120                 return PTR_ERR(bitmap);
6121
6122         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6123                 .flags = user_range->flags,
6124                 .base = user_range->base,
6125                 .nmsrs = user_range->nmsrs,
6126                 .bitmap = bitmap,
6127         };
6128
6129         msr_filter->count++;
6130         return 0;
6131 }
6132
6133 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6134 {
6135         struct kvm_msr_filter __user *user_msr_filter = argp;
6136         struct kvm_x86_msr_filter *new_filter, *old_filter;
6137         struct kvm_msr_filter filter;
6138         bool default_allow;
6139         bool empty = true;
6140         int r = 0;
6141         u32 i;
6142
6143         if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6144                 return -EFAULT;
6145
6146         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6147                 empty &= !filter.ranges[i].nmsrs;
6148
6149         default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6150         if (empty && !default_allow)
6151                 return -EINVAL;
6152
6153         new_filter = kvm_alloc_msr_filter(default_allow);
6154         if (!new_filter)
6155                 return -ENOMEM;
6156
6157         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6158                 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6159                 if (r) {
6160                         kvm_free_msr_filter(new_filter);
6161                         return r;
6162                 }
6163         }
6164
6165         mutex_lock(&kvm->lock);
6166
6167         /* The per-VM filter is protected by kvm->lock... */
6168         old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6169
6170         rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6171         synchronize_srcu(&kvm->srcu);
6172
6173         kvm_free_msr_filter(old_filter);
6174
6175         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6176         mutex_unlock(&kvm->lock);
6177
6178         return 0;
6179 }
6180
6181 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6182 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6183 {
6184         struct kvm_vcpu *vcpu;
6185         unsigned long i;
6186         int ret = 0;
6187
6188         mutex_lock(&kvm->lock);
6189         kvm_for_each_vcpu(i, vcpu, kvm) {
6190                 if (!vcpu->arch.pv_time_enabled)
6191                         continue;
6192
6193                 ret = kvm_set_guest_paused(vcpu);
6194                 if (ret) {
6195                         kvm_err("Failed to pause guest VCPU%d: %d\n",
6196                                 vcpu->vcpu_id, ret);
6197                         break;
6198                 }
6199         }
6200         mutex_unlock(&kvm->lock);
6201
6202         return ret ? NOTIFY_BAD : NOTIFY_DONE;
6203 }
6204
6205 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6206 {
6207         switch (state) {
6208         case PM_HIBERNATION_PREPARE:
6209         case PM_SUSPEND_PREPARE:
6210                 return kvm_arch_suspend_notifier(kvm);
6211         }
6212
6213         return NOTIFY_DONE;
6214 }
6215 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6216
6217 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6218 {
6219         struct kvm_clock_data data = { 0 };
6220
6221         get_kvmclock(kvm, &data);
6222         if (copy_to_user(argp, &data, sizeof(data)))
6223                 return -EFAULT;
6224
6225         return 0;
6226 }
6227
6228 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6229 {
6230         struct kvm_arch *ka = &kvm->arch;
6231         struct kvm_clock_data data;
6232         u64 now_raw_ns;
6233
6234         if (copy_from_user(&data, argp, sizeof(data)))
6235                 return -EFAULT;
6236
6237         /*
6238          * Only KVM_CLOCK_REALTIME is used, but allow passing the
6239          * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6240          */
6241         if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6242                 return -EINVAL;
6243
6244         kvm_hv_invalidate_tsc_page(kvm);
6245         kvm_start_pvclock_update(kvm);
6246         pvclock_update_vm_gtod_copy(kvm);
6247
6248         /*
6249          * This pairs with kvm_guest_time_update(): when masterclock is
6250          * in use, we use master_kernel_ns + kvmclock_offset to set
6251          * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6252          * is slightly ahead) here we risk going negative on unsigned
6253          * 'system_time' when 'data.clock' is very small.
6254          */
6255         if (data.flags & KVM_CLOCK_REALTIME) {
6256                 u64 now_real_ns = ktime_get_real_ns();
6257
6258                 /*
6259                  * Avoid stepping the kvmclock backwards.
6260                  */
6261                 if (now_real_ns > data.realtime)
6262                         data.clock += now_real_ns - data.realtime;
6263         }
6264
6265         if (ka->use_master_clock)
6266                 now_raw_ns = ka->master_kernel_ns;
6267         else
6268                 now_raw_ns = get_kvmclock_base_ns();
6269         ka->kvmclock_offset = data.clock - now_raw_ns;
6270         kvm_end_pvclock_update(kvm);
6271         return 0;
6272 }
6273
6274 long kvm_arch_vm_ioctl(struct file *filp,
6275                        unsigned int ioctl, unsigned long arg)
6276 {
6277         struct kvm *kvm = filp->private_data;
6278         void __user *argp = (void __user *)arg;
6279         int r = -ENOTTY;
6280         /*
6281          * This union makes it completely explicit to gcc-3.x
6282          * that these two variables' stack usage should be
6283          * combined, not added together.
6284          */
6285         union {
6286                 struct kvm_pit_state ps;
6287                 struct kvm_pit_state2 ps2;
6288                 struct kvm_pit_config pit_config;
6289         } u;
6290
6291         switch (ioctl) {
6292         case KVM_SET_TSS_ADDR:
6293                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6294                 break;
6295         case KVM_SET_IDENTITY_MAP_ADDR: {
6296                 u64 ident_addr;
6297
6298                 mutex_lock(&kvm->lock);
6299                 r = -EINVAL;
6300                 if (kvm->created_vcpus)
6301                         goto set_identity_unlock;
6302                 r = -EFAULT;
6303                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6304                         goto set_identity_unlock;
6305                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6306 set_identity_unlock:
6307                 mutex_unlock(&kvm->lock);
6308                 break;
6309         }
6310         case KVM_SET_NR_MMU_PAGES:
6311                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6312                 break;
6313         case KVM_GET_NR_MMU_PAGES:
6314                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6315                 break;
6316         case KVM_CREATE_IRQCHIP: {
6317                 mutex_lock(&kvm->lock);
6318
6319                 r = -EEXIST;
6320                 if (irqchip_in_kernel(kvm))
6321                         goto create_irqchip_unlock;
6322
6323                 r = -EINVAL;
6324                 if (kvm->created_vcpus)
6325                         goto create_irqchip_unlock;
6326
6327                 r = kvm_pic_init(kvm);
6328                 if (r)
6329                         goto create_irqchip_unlock;
6330
6331                 r = kvm_ioapic_init(kvm);
6332                 if (r) {
6333                         kvm_pic_destroy(kvm);
6334                         goto create_irqchip_unlock;
6335                 }
6336
6337                 r = kvm_setup_default_irq_routing(kvm);
6338                 if (r) {
6339                         kvm_ioapic_destroy(kvm);
6340                         kvm_pic_destroy(kvm);
6341                         goto create_irqchip_unlock;
6342                 }
6343                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6344                 smp_wmb();
6345                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6346                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6347         create_irqchip_unlock:
6348                 mutex_unlock(&kvm->lock);
6349                 break;
6350         }
6351         case KVM_CREATE_PIT:
6352                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6353                 goto create_pit;
6354         case KVM_CREATE_PIT2:
6355                 r = -EFAULT;
6356                 if (copy_from_user(&u.pit_config, argp,
6357                                    sizeof(struct kvm_pit_config)))
6358                         goto out;
6359         create_pit:
6360                 mutex_lock(&kvm->lock);
6361                 r = -EEXIST;
6362                 if (kvm->arch.vpit)
6363                         goto create_pit_unlock;
6364                 r = -ENOMEM;
6365                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6366                 if (kvm->arch.vpit)
6367                         r = 0;
6368         create_pit_unlock:
6369                 mutex_unlock(&kvm->lock);
6370                 break;
6371         case KVM_GET_IRQCHIP: {
6372                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6373                 struct kvm_irqchip *chip;
6374
6375                 chip = memdup_user(argp, sizeof(*chip));
6376                 if (IS_ERR(chip)) {
6377                         r = PTR_ERR(chip);
6378                         goto out;
6379                 }
6380
6381                 r = -ENXIO;
6382                 if (!irqchip_kernel(kvm))
6383                         goto get_irqchip_out;
6384                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6385                 if (r)
6386                         goto get_irqchip_out;
6387                 r = -EFAULT;
6388                 if (copy_to_user(argp, chip, sizeof(*chip)))
6389                         goto get_irqchip_out;
6390                 r = 0;
6391         get_irqchip_out:
6392                 kfree(chip);
6393                 break;
6394         }
6395         case KVM_SET_IRQCHIP: {
6396                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6397                 struct kvm_irqchip *chip;
6398
6399                 chip = memdup_user(argp, sizeof(*chip));
6400                 if (IS_ERR(chip)) {
6401                         r = PTR_ERR(chip);
6402                         goto out;
6403                 }
6404
6405                 r = -ENXIO;
6406                 if (!irqchip_kernel(kvm))
6407                         goto set_irqchip_out;
6408                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6409         set_irqchip_out:
6410                 kfree(chip);
6411                 break;
6412         }
6413         case KVM_GET_PIT: {
6414                 r = -EFAULT;
6415                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6416                         goto out;
6417                 r = -ENXIO;
6418                 if (!kvm->arch.vpit)
6419                         goto out;
6420                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6421                 if (r)
6422                         goto out;
6423                 r = -EFAULT;
6424                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6425                         goto out;
6426                 r = 0;
6427                 break;
6428         }
6429         case KVM_SET_PIT: {
6430                 r = -EFAULT;
6431                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6432                         goto out;
6433                 mutex_lock(&kvm->lock);
6434                 r = -ENXIO;
6435                 if (!kvm->arch.vpit)
6436                         goto set_pit_out;
6437                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6438 set_pit_out:
6439                 mutex_unlock(&kvm->lock);
6440                 break;
6441         }
6442         case KVM_GET_PIT2: {
6443                 r = -ENXIO;
6444                 if (!kvm->arch.vpit)
6445                         goto out;
6446                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6447                 if (r)
6448                         goto out;
6449                 r = -EFAULT;
6450                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6451                         goto out;
6452                 r = 0;
6453                 break;
6454         }
6455         case KVM_SET_PIT2: {
6456                 r = -EFAULT;
6457                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6458                         goto out;
6459                 mutex_lock(&kvm->lock);
6460                 r = -ENXIO;
6461                 if (!kvm->arch.vpit)
6462                         goto set_pit2_out;
6463                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6464 set_pit2_out:
6465                 mutex_unlock(&kvm->lock);
6466                 break;
6467         }
6468         case KVM_REINJECT_CONTROL: {
6469                 struct kvm_reinject_control control;
6470                 r =  -EFAULT;
6471                 if (copy_from_user(&control, argp, sizeof(control)))
6472                         goto out;
6473                 r = -ENXIO;
6474                 if (!kvm->arch.vpit)
6475                         goto out;
6476                 r = kvm_vm_ioctl_reinject(kvm, &control);
6477                 break;
6478         }
6479         case KVM_SET_BOOT_CPU_ID:
6480                 r = 0;
6481                 mutex_lock(&kvm->lock);
6482                 if (kvm->created_vcpus)
6483                         r = -EBUSY;
6484                 else
6485                         kvm->arch.bsp_vcpu_id = arg;
6486                 mutex_unlock(&kvm->lock);
6487                 break;
6488 #ifdef CONFIG_KVM_XEN
6489         case KVM_XEN_HVM_CONFIG: {
6490                 struct kvm_xen_hvm_config xhc;
6491                 r = -EFAULT;
6492                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6493                         goto out;
6494                 r = kvm_xen_hvm_config(kvm, &xhc);
6495                 break;
6496         }
6497         case KVM_XEN_HVM_GET_ATTR: {
6498                 struct kvm_xen_hvm_attr xha;
6499
6500                 r = -EFAULT;
6501                 if (copy_from_user(&xha, argp, sizeof(xha)))
6502                         goto out;
6503                 r = kvm_xen_hvm_get_attr(kvm, &xha);
6504                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6505                         r = -EFAULT;
6506                 break;
6507         }
6508         case KVM_XEN_HVM_SET_ATTR: {
6509                 struct kvm_xen_hvm_attr xha;
6510
6511                 r = -EFAULT;
6512                 if (copy_from_user(&xha, argp, sizeof(xha)))
6513                         goto out;
6514                 r = kvm_xen_hvm_set_attr(kvm, &xha);
6515                 break;
6516         }
6517 #endif
6518         case KVM_SET_CLOCK:
6519                 r = kvm_vm_ioctl_set_clock(kvm, argp);
6520                 break;
6521         case KVM_GET_CLOCK:
6522                 r = kvm_vm_ioctl_get_clock(kvm, argp);
6523                 break;
6524         case KVM_MEMORY_ENCRYPT_OP: {
6525                 r = -ENOTTY;
6526                 if (!kvm_x86_ops.mem_enc_ioctl)
6527                         goto out;
6528
6529                 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6530                 break;
6531         }
6532         case KVM_MEMORY_ENCRYPT_REG_REGION: {
6533                 struct kvm_enc_region region;
6534
6535                 r = -EFAULT;
6536                 if (copy_from_user(&region, argp, sizeof(region)))
6537                         goto out;
6538
6539                 r = -ENOTTY;
6540                 if (!kvm_x86_ops.mem_enc_register_region)
6541                         goto out;
6542
6543                 r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6544                 break;
6545         }
6546         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6547                 struct kvm_enc_region region;
6548
6549                 r = -EFAULT;
6550                 if (copy_from_user(&region, argp, sizeof(region)))
6551                         goto out;
6552
6553                 r = -ENOTTY;
6554                 if (!kvm_x86_ops.mem_enc_unregister_region)
6555                         goto out;
6556
6557                 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6558                 break;
6559         }
6560         case KVM_HYPERV_EVENTFD: {
6561                 struct kvm_hyperv_eventfd hvevfd;
6562
6563                 r = -EFAULT;
6564                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6565                         goto out;
6566                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6567                 break;
6568         }
6569         case KVM_SET_PMU_EVENT_FILTER:
6570                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6571                 break;
6572         case KVM_X86_SET_MSR_FILTER:
6573                 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6574                 break;
6575         default:
6576                 r = -ENOTTY;
6577         }
6578 out:
6579         return r;
6580 }
6581
6582 static void kvm_init_msr_list(void)
6583 {
6584         struct x86_pmu_capability x86_pmu;
6585         u32 dummy[2];
6586         unsigned i;
6587
6588         BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6589                          "Please update the fixed PMCs in msrs_to_saved_all[]");
6590
6591         perf_get_x86_pmu_capability(&x86_pmu);
6592
6593         num_msrs_to_save = 0;
6594         num_emulated_msrs = 0;
6595         num_msr_based_features = 0;
6596
6597         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6598                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6599                         continue;
6600
6601                 /*
6602                  * Even MSRs that are valid in the host may not be exposed
6603                  * to the guests in some cases.
6604                  */
6605                 switch (msrs_to_save_all[i]) {
6606                 case MSR_IA32_BNDCFGS:
6607                         if (!kvm_mpx_supported())
6608                                 continue;
6609                         break;
6610                 case MSR_TSC_AUX:
6611                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6612                             !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6613                                 continue;
6614                         break;
6615                 case MSR_IA32_UMWAIT_CONTROL:
6616                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6617                                 continue;
6618                         break;
6619                 case MSR_IA32_RTIT_CTL:
6620                 case MSR_IA32_RTIT_STATUS:
6621                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6622                                 continue;
6623                         break;
6624                 case MSR_IA32_RTIT_CR3_MATCH:
6625                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6626                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6627                                 continue;
6628                         break;
6629                 case MSR_IA32_RTIT_OUTPUT_BASE:
6630                 case MSR_IA32_RTIT_OUTPUT_MASK:
6631                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6632                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6633                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6634                                 continue;
6635                         break;
6636                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6637                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6638                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6639                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6640                                 continue;
6641                         break;
6642                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6643                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6644                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6645                                 continue;
6646                         break;
6647                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6648                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6649                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6650                                 continue;
6651                         break;
6652                 case MSR_IA32_XFD:
6653                 case MSR_IA32_XFD_ERR:
6654                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6655                                 continue;
6656                         break;
6657                 default:
6658                         break;
6659                 }
6660
6661                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6662         }
6663
6664         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6665                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6666                         continue;
6667
6668                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6669         }
6670
6671         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6672                 struct kvm_msr_entry msr;
6673
6674                 msr.index = msr_based_features_all[i];
6675                 if (kvm_get_msr_feature(&msr))
6676                         continue;
6677
6678                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6679         }
6680 }
6681
6682 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6683                            const void *v)
6684 {
6685         int handled = 0;
6686         int n;
6687
6688         do {
6689                 n = min(len, 8);
6690                 if (!(lapic_in_kernel(vcpu) &&
6691                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6692                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6693                         break;
6694                 handled += n;
6695                 addr += n;
6696                 len -= n;
6697                 v += n;
6698         } while (len);
6699
6700         return handled;
6701 }
6702
6703 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6704 {
6705         int handled = 0;
6706         int n;
6707
6708         do {
6709                 n = min(len, 8);
6710                 if (!(lapic_in_kernel(vcpu) &&
6711                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6712                                          addr, n, v))
6713                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6714                         break;
6715                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6716                 handled += n;
6717                 addr += n;
6718                 len -= n;
6719                 v += n;
6720         } while (len);
6721
6722         return handled;
6723 }
6724
6725 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6726                         struct kvm_segment *var, int seg)
6727 {
6728         static_call(kvm_x86_set_segment)(vcpu, var, seg);
6729 }
6730
6731 void kvm_get_segment(struct kvm_vcpu *vcpu,
6732                      struct kvm_segment *var, int seg)
6733 {
6734         static_call(kvm_x86_get_segment)(vcpu, var, seg);
6735 }
6736
6737 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
6738                            struct x86_exception *exception)
6739 {
6740         struct kvm_mmu *mmu = vcpu->arch.mmu;
6741         gpa_t t_gpa;
6742
6743         BUG_ON(!mmu_is_nested(vcpu));
6744
6745         /* NPT walks are always user-walks */
6746         access |= PFERR_USER_MASK;
6747         t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6748
6749         return t_gpa;
6750 }
6751
6752 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6753                               struct x86_exception *exception)
6754 {
6755         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6756
6757         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6758         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6759 }
6760 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6761
6762  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6763                                 struct x86_exception *exception)
6764 {
6765         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6766
6767         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6768         access |= PFERR_FETCH_MASK;
6769         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6770 }
6771
6772 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6773                                struct x86_exception *exception)
6774 {
6775         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6776
6777         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6778         access |= PFERR_WRITE_MASK;
6779         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6780 }
6781 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6782
6783 /* uses this to access any guest's mapped memory without checking CPL */
6784 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6785                                 struct x86_exception *exception)
6786 {
6787         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6788
6789         return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6790 }
6791
6792 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6793                                       struct kvm_vcpu *vcpu, u64 access,
6794                                       struct x86_exception *exception)
6795 {
6796         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6797         void *data = val;
6798         int r = X86EMUL_CONTINUE;
6799
6800         while (bytes) {
6801                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6802                 unsigned offset = addr & (PAGE_SIZE-1);
6803                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6804                 int ret;
6805
6806                 if (gpa == UNMAPPED_GVA)
6807                         return X86EMUL_PROPAGATE_FAULT;
6808                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6809                                                offset, toread);
6810                 if (ret < 0) {
6811                         r = X86EMUL_IO_NEEDED;
6812                         goto out;
6813                 }
6814
6815                 bytes -= toread;
6816                 data += toread;
6817                 addr += toread;
6818         }
6819 out:
6820         return r;
6821 }
6822
6823 /* used for instruction fetching */
6824 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6825                                 gva_t addr, void *val, unsigned int bytes,
6826                                 struct x86_exception *exception)
6827 {
6828         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6829         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6830         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6831         unsigned offset;
6832         int ret;
6833
6834         /* Inline kvm_read_guest_virt_helper for speed.  */
6835         gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6836                                     exception);
6837         if (unlikely(gpa == UNMAPPED_GVA))
6838                 return X86EMUL_PROPAGATE_FAULT;
6839
6840         offset = addr & (PAGE_SIZE-1);
6841         if (WARN_ON(offset + bytes > PAGE_SIZE))
6842                 bytes = (unsigned)PAGE_SIZE - offset;
6843         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6844                                        offset, bytes);
6845         if (unlikely(ret < 0))
6846                 return X86EMUL_IO_NEEDED;
6847
6848         return X86EMUL_CONTINUE;
6849 }
6850
6851 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6852                                gva_t addr, void *val, unsigned int bytes,
6853                                struct x86_exception *exception)
6854 {
6855         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6856
6857         /*
6858          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6859          * is returned, but our callers are not ready for that and they blindly
6860          * call kvm_inject_page_fault.  Ensure that they at least do not leak
6861          * uninitialized kernel stack memory into cr2 and error code.
6862          */
6863         memset(exception, 0, sizeof(*exception));
6864         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6865                                           exception);
6866 }
6867 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6868
6869 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6870                              gva_t addr, void *val, unsigned int bytes,
6871                              struct x86_exception *exception, bool system)
6872 {
6873         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6874         u64 access = 0;
6875
6876         if (system)
6877                 access |= PFERR_IMPLICIT_ACCESS;
6878         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
6879                 access |= PFERR_USER_MASK;
6880
6881         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6882 }
6883
6884 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6885                 unsigned long addr, void *val, unsigned int bytes)
6886 {
6887         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6888         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6889
6890         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6891 }
6892
6893 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6894                                       struct kvm_vcpu *vcpu, u64 access,
6895                                       struct x86_exception *exception)
6896 {
6897         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6898         void *data = val;
6899         int r = X86EMUL_CONTINUE;
6900
6901         while (bytes) {
6902                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6903                 unsigned offset = addr & (PAGE_SIZE-1);
6904                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6905                 int ret;
6906
6907                 if (gpa == UNMAPPED_GVA)
6908                         return X86EMUL_PROPAGATE_FAULT;
6909                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6910                 if (ret < 0) {
6911                         r = X86EMUL_IO_NEEDED;
6912                         goto out;
6913                 }
6914
6915                 bytes -= towrite;
6916                 data += towrite;
6917                 addr += towrite;
6918         }
6919 out:
6920         return r;
6921 }
6922
6923 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6924                               unsigned int bytes, struct x86_exception *exception,
6925                               bool system)
6926 {
6927         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6928         u64 access = PFERR_WRITE_MASK;
6929
6930         if (system)
6931                 access |= PFERR_IMPLICIT_ACCESS;
6932         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
6933                 access |= PFERR_USER_MASK;
6934
6935         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6936                                            access, exception);
6937 }
6938
6939 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6940                                 unsigned int bytes, struct x86_exception *exception)
6941 {
6942         /* kvm_write_guest_virt_system can pull in tons of pages. */
6943         vcpu->arch.l1tf_flush_l1d = true;
6944
6945         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6946                                            PFERR_WRITE_MASK, exception);
6947 }
6948 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6949
6950 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
6951                                 void *insn, int insn_len)
6952 {
6953         return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
6954                                                             insn, insn_len);
6955 }
6956
6957 int handle_ud(struct kvm_vcpu *vcpu)
6958 {
6959         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6960         int emul_type = EMULTYPE_TRAP_UD;
6961         char sig[5]; /* ud2; .ascii "kvm" */
6962         struct x86_exception e;
6963
6964         if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
6965                 return 1;
6966
6967         if (force_emulation_prefix &&
6968             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6969                                 sig, sizeof(sig), &e) == 0 &&
6970             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6971                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6972                 emul_type = EMULTYPE_TRAP_UD_FORCED;
6973         }
6974
6975         return kvm_emulate_instruction(vcpu, emul_type);
6976 }
6977 EXPORT_SYMBOL_GPL(handle_ud);
6978
6979 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6980                             gpa_t gpa, bool write)
6981 {
6982         /* For APIC access vmexit */
6983         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6984                 return 1;
6985
6986         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6987                 trace_vcpu_match_mmio(gva, gpa, write, true);
6988                 return 1;
6989         }
6990
6991         return 0;
6992 }
6993
6994 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6995                                 gpa_t *gpa, struct x86_exception *exception,
6996                                 bool write)
6997 {
6998         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6999         u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7000                 | (write ? PFERR_WRITE_MASK : 0);
7001
7002         /*
7003          * currently PKRU is only applied to ept enabled guest so
7004          * there is no pkey in EPT page table for L1 guest or EPT
7005          * shadow page table for L2 guest.
7006          */
7007         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7008             !permission_fault(vcpu, vcpu->arch.walk_mmu,
7009                               vcpu->arch.mmio_access, 0, access))) {
7010                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7011                                         (gva & (PAGE_SIZE - 1));
7012                 trace_vcpu_match_mmio(gva, *gpa, write, false);
7013                 return 1;
7014         }
7015
7016         *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7017
7018         if (*gpa == UNMAPPED_GVA)
7019                 return -1;
7020
7021         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7022 }
7023
7024 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7025                         const void *val, int bytes)
7026 {
7027         int ret;
7028
7029         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7030         if (ret < 0)
7031                 return 0;
7032         kvm_page_track_write(vcpu, gpa, val, bytes);
7033         return 1;
7034 }
7035
7036 struct read_write_emulator_ops {
7037         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7038                                   int bytes);
7039         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7040                                   void *val, int bytes);
7041         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7042                                int bytes, void *val);
7043         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7044                                     void *val, int bytes);
7045         bool write;
7046 };
7047
7048 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7049 {
7050         if (vcpu->mmio_read_completed) {
7051                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7052                                vcpu->mmio_fragments[0].gpa, val);
7053                 vcpu->mmio_read_completed = 0;
7054                 return 1;
7055         }
7056
7057         return 0;
7058 }
7059
7060 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7061                         void *val, int bytes)
7062 {
7063         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7064 }
7065
7066 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7067                          void *val, int bytes)
7068 {
7069         return emulator_write_phys(vcpu, gpa, val, bytes);
7070 }
7071
7072 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7073 {
7074         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7075         return vcpu_mmio_write(vcpu, gpa, bytes, val);
7076 }
7077
7078 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7079                           void *val, int bytes)
7080 {
7081         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7082         return X86EMUL_IO_NEEDED;
7083 }
7084
7085 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7086                            void *val, int bytes)
7087 {
7088         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7089
7090         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7091         return X86EMUL_CONTINUE;
7092 }
7093
7094 static const struct read_write_emulator_ops read_emultor = {
7095         .read_write_prepare = read_prepare,
7096         .read_write_emulate = read_emulate,
7097         .read_write_mmio = vcpu_mmio_read,
7098         .read_write_exit_mmio = read_exit_mmio,
7099 };
7100
7101 static const struct read_write_emulator_ops write_emultor = {
7102         .read_write_emulate = write_emulate,
7103         .read_write_mmio = write_mmio,
7104         .read_write_exit_mmio = write_exit_mmio,
7105         .write = true,
7106 };
7107
7108 static int emulator_read_write_onepage(unsigned long addr, void *val,
7109                                        unsigned int bytes,
7110                                        struct x86_exception *exception,
7111                                        struct kvm_vcpu *vcpu,
7112                                        const struct read_write_emulator_ops *ops)
7113 {
7114         gpa_t gpa;
7115         int handled, ret;
7116         bool write = ops->write;
7117         struct kvm_mmio_fragment *frag;
7118         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7119
7120         /*
7121          * If the exit was due to a NPF we may already have a GPA.
7122          * If the GPA is present, use it to avoid the GVA to GPA table walk.
7123          * Note, this cannot be used on string operations since string
7124          * operation using rep will only have the initial GPA from the NPF
7125          * occurred.
7126          */
7127         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7128             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7129                 gpa = ctxt->gpa_val;
7130                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7131         } else {
7132                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7133                 if (ret < 0)
7134                         return X86EMUL_PROPAGATE_FAULT;
7135         }
7136
7137         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7138                 return X86EMUL_CONTINUE;
7139
7140         /*
7141          * Is this MMIO handled locally?
7142          */
7143         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7144         if (handled == bytes)
7145                 return X86EMUL_CONTINUE;
7146
7147         gpa += handled;
7148         bytes -= handled;
7149         val += handled;
7150
7151         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7152         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7153         frag->gpa = gpa;
7154         frag->data = val;
7155         frag->len = bytes;
7156         return X86EMUL_CONTINUE;
7157 }
7158
7159 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7160                         unsigned long addr,
7161                         void *val, unsigned int bytes,
7162                         struct x86_exception *exception,
7163                         const struct read_write_emulator_ops *ops)
7164 {
7165         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7166         gpa_t gpa;
7167         int rc;
7168
7169         if (ops->read_write_prepare &&
7170                   ops->read_write_prepare(vcpu, val, bytes))
7171                 return X86EMUL_CONTINUE;
7172
7173         vcpu->mmio_nr_fragments = 0;
7174
7175         /* Crossing a page boundary? */
7176         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7177                 int now;
7178
7179                 now = -addr & ~PAGE_MASK;
7180                 rc = emulator_read_write_onepage(addr, val, now, exception,
7181                                                  vcpu, ops);
7182
7183                 if (rc != X86EMUL_CONTINUE)
7184                         return rc;
7185                 addr += now;
7186                 if (ctxt->mode != X86EMUL_MODE_PROT64)
7187                         addr = (u32)addr;
7188                 val += now;
7189                 bytes -= now;
7190         }
7191
7192         rc = emulator_read_write_onepage(addr, val, bytes, exception,
7193                                          vcpu, ops);
7194         if (rc != X86EMUL_CONTINUE)
7195                 return rc;
7196
7197         if (!vcpu->mmio_nr_fragments)
7198                 return rc;
7199
7200         gpa = vcpu->mmio_fragments[0].gpa;
7201
7202         vcpu->mmio_needed = 1;
7203         vcpu->mmio_cur_fragment = 0;
7204
7205         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7206         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7207         vcpu->run->exit_reason = KVM_EXIT_MMIO;
7208         vcpu->run->mmio.phys_addr = gpa;
7209
7210         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7211 }
7212
7213 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7214                                   unsigned long addr,
7215                                   void *val,
7216                                   unsigned int bytes,
7217                                   struct x86_exception *exception)
7218 {
7219         return emulator_read_write(ctxt, addr, val, bytes,
7220                                    exception, &read_emultor);
7221 }
7222
7223 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7224                             unsigned long addr,
7225                             const void *val,
7226                             unsigned int bytes,
7227                             struct x86_exception *exception)
7228 {
7229         return emulator_read_write(ctxt, addr, (void *)val, bytes,
7230                                    exception, &write_emultor);
7231 }
7232
7233 #define CMPXCHG_TYPE(t, ptr, old, new) \
7234         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
7235
7236 #ifdef CONFIG_X86_64
7237 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
7238 #else
7239 #  define CMPXCHG64(ptr, old, new) \
7240         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
7241 #endif
7242
7243 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7244                                      unsigned long addr,
7245                                      const void *old,
7246                                      const void *new,
7247                                      unsigned int bytes,
7248                                      struct x86_exception *exception)
7249 {
7250         struct kvm_host_map map;
7251         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7252         u64 page_line_mask;
7253         gpa_t gpa;
7254         char *kaddr;
7255         bool exchanged;
7256
7257         /* guests cmpxchg8b have to be emulated atomically */
7258         if (bytes > 8 || (bytes & (bytes - 1)))
7259                 goto emul_write;
7260
7261         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7262
7263         if (gpa == UNMAPPED_GVA ||
7264             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7265                 goto emul_write;
7266
7267         /*
7268          * Emulate the atomic as a straight write to avoid #AC if SLD is
7269          * enabled in the host and the access splits a cache line.
7270          */
7271         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7272                 page_line_mask = ~(cache_line_size() - 1);
7273         else
7274                 page_line_mask = PAGE_MASK;
7275
7276         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7277                 goto emul_write;
7278
7279         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
7280                 goto emul_write;
7281
7282         kaddr = map.hva + offset_in_page(gpa);
7283
7284         switch (bytes) {
7285         case 1:
7286                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
7287                 break;
7288         case 2:
7289                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
7290                 break;
7291         case 4:
7292                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
7293                 break;
7294         case 8:
7295                 exchanged = CMPXCHG64(kaddr, old, new);
7296                 break;
7297         default:
7298                 BUG();
7299         }
7300
7301         kvm_vcpu_unmap(vcpu, &map, true);
7302
7303         if (!exchanged)
7304                 return X86EMUL_CMPXCHG_FAILED;
7305
7306         kvm_page_track_write(vcpu, gpa, new, bytes);
7307
7308         return X86EMUL_CONTINUE;
7309
7310 emul_write:
7311         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7312
7313         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7314 }
7315
7316 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7317 {
7318         int r = 0, i;
7319
7320         for (i = 0; i < vcpu->arch.pio.count; i++) {
7321                 if (vcpu->arch.pio.in)
7322                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7323                                             vcpu->arch.pio.size, pd);
7324                 else
7325                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7326                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
7327                                              pd);
7328                 if (r)
7329                         break;
7330                 pd += vcpu->arch.pio.size;
7331         }
7332         return r;
7333 }
7334
7335 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7336                                unsigned short port,
7337                                unsigned int count, bool in)
7338 {
7339         vcpu->arch.pio.port = port;
7340         vcpu->arch.pio.in = in;
7341         vcpu->arch.pio.count  = count;
7342         vcpu->arch.pio.size = size;
7343
7344         if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7345                 return 1;
7346
7347         vcpu->run->exit_reason = KVM_EXIT_IO;
7348         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7349         vcpu->run->io.size = size;
7350         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7351         vcpu->run->io.count = count;
7352         vcpu->run->io.port = port;
7353
7354         return 0;
7355 }
7356
7357 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7358                              unsigned short port, unsigned int count)
7359 {
7360         WARN_ON(vcpu->arch.pio.count);
7361         memset(vcpu->arch.pio_data, 0, size * count);
7362         return emulator_pio_in_out(vcpu, size, port, count, true);
7363 }
7364
7365 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7366 {
7367         int size = vcpu->arch.pio.size;
7368         unsigned count = vcpu->arch.pio.count;
7369         memcpy(val, vcpu->arch.pio_data, size * count);
7370         trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7371         vcpu->arch.pio.count = 0;
7372 }
7373
7374 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7375                            unsigned short port, void *val, unsigned int count)
7376 {
7377         if (vcpu->arch.pio.count) {
7378                 /*
7379                  * Complete a previous iteration that required userspace I/O.
7380                  * Note, @count isn't guaranteed to match pio.count as userspace
7381                  * can modify ECX before rerunning the vCPU.  Ignore any such
7382                  * shenanigans as KVM doesn't support modifying the rep count,
7383                  * and the emulator ensures @count doesn't overflow the buffer.
7384                  */
7385         } else {
7386                 int r = __emulator_pio_in(vcpu, size, port, count);
7387                 if (!r)
7388                         return r;
7389
7390                 /* Results already available, fall through.  */
7391         }
7392
7393         complete_emulator_pio_in(vcpu, val);
7394         return 1;
7395 }
7396
7397 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7398                                     int size, unsigned short port, void *val,
7399                                     unsigned int count)
7400 {
7401         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7402
7403 }
7404
7405 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7406                             unsigned short port, const void *val,
7407                             unsigned int count)
7408 {
7409         int ret;
7410
7411         memcpy(vcpu->arch.pio_data, val, size * count);
7412         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7413         ret = emulator_pio_in_out(vcpu, size, port, count, false);
7414         if (ret)
7415                 vcpu->arch.pio.count = 0;
7416
7417         return ret;
7418 }
7419
7420 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7421                                      int size, unsigned short port,
7422                                      const void *val, unsigned int count)
7423 {
7424         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7425 }
7426
7427 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7428 {
7429         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7430 }
7431
7432 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7433 {
7434         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7435 }
7436
7437 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7438 {
7439         if (!need_emulate_wbinvd(vcpu))
7440                 return X86EMUL_CONTINUE;
7441
7442         if (static_call(kvm_x86_has_wbinvd_exit)()) {
7443                 int cpu = get_cpu();
7444
7445                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7446                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7447                                 wbinvd_ipi, NULL, 1);
7448                 put_cpu();
7449                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7450         } else
7451                 wbinvd();
7452         return X86EMUL_CONTINUE;
7453 }
7454
7455 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7456 {
7457         kvm_emulate_wbinvd_noskip(vcpu);
7458         return kvm_skip_emulated_instruction(vcpu);
7459 }
7460 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7461
7462
7463
7464 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7465 {
7466         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7467 }
7468
7469 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7470                             unsigned long *dest)
7471 {
7472         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7473 }
7474
7475 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7476                            unsigned long value)
7477 {
7478
7479         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7480 }
7481
7482 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7483 {
7484         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7485 }
7486
7487 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7488 {
7489         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7490         unsigned long value;
7491
7492         switch (cr) {
7493         case 0:
7494                 value = kvm_read_cr0(vcpu);
7495                 break;
7496         case 2:
7497                 value = vcpu->arch.cr2;
7498                 break;
7499         case 3:
7500                 value = kvm_read_cr3(vcpu);
7501                 break;
7502         case 4:
7503                 value = kvm_read_cr4(vcpu);
7504                 break;
7505         case 8:
7506                 value = kvm_get_cr8(vcpu);
7507                 break;
7508         default:
7509                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7510                 return 0;
7511         }
7512
7513         return value;
7514 }
7515
7516 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7517 {
7518         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7519         int res = 0;
7520
7521         switch (cr) {
7522         case 0:
7523                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7524                 break;
7525         case 2:
7526                 vcpu->arch.cr2 = val;
7527                 break;
7528         case 3:
7529                 res = kvm_set_cr3(vcpu, val);
7530                 break;
7531         case 4:
7532                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7533                 break;
7534         case 8:
7535                 res = kvm_set_cr8(vcpu, val);
7536                 break;
7537         default:
7538                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7539                 res = -1;
7540         }
7541
7542         return res;
7543 }
7544
7545 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7546 {
7547         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7548 }
7549
7550 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7551 {
7552         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7553 }
7554
7555 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7556 {
7557         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7558 }
7559
7560 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7561 {
7562         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7563 }
7564
7565 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7566 {
7567         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7568 }
7569
7570 static unsigned long emulator_get_cached_segment_base(
7571         struct x86_emulate_ctxt *ctxt, int seg)
7572 {
7573         return get_segment_base(emul_to_vcpu(ctxt), seg);
7574 }
7575
7576 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7577                                  struct desc_struct *desc, u32 *base3,
7578                                  int seg)
7579 {
7580         struct kvm_segment var;
7581
7582         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7583         *selector = var.selector;
7584
7585         if (var.unusable) {
7586                 memset(desc, 0, sizeof(*desc));
7587                 if (base3)
7588                         *base3 = 0;
7589                 return false;
7590         }
7591
7592         if (var.g)
7593                 var.limit >>= 12;
7594         set_desc_limit(desc, var.limit);
7595         set_desc_base(desc, (unsigned long)var.base);
7596 #ifdef CONFIG_X86_64
7597         if (base3)
7598                 *base3 = var.base >> 32;
7599 #endif
7600         desc->type = var.type;
7601         desc->s = var.s;
7602         desc->dpl = var.dpl;
7603         desc->p = var.present;
7604         desc->avl = var.avl;
7605         desc->l = var.l;
7606         desc->d = var.db;
7607         desc->g = var.g;
7608
7609         return true;
7610 }
7611
7612 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7613                                  struct desc_struct *desc, u32 base3,
7614                                  int seg)
7615 {
7616         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7617         struct kvm_segment var;
7618
7619         var.selector = selector;
7620         var.base = get_desc_base(desc);
7621 #ifdef CONFIG_X86_64
7622         var.base |= ((u64)base3) << 32;
7623 #endif
7624         var.limit = get_desc_limit(desc);
7625         if (desc->g)
7626                 var.limit = (var.limit << 12) | 0xfff;
7627         var.type = desc->type;
7628         var.dpl = desc->dpl;
7629         var.db = desc->d;
7630         var.s = desc->s;
7631         var.l = desc->l;
7632         var.g = desc->g;
7633         var.avl = desc->avl;
7634         var.present = desc->p;
7635         var.unusable = !var.present;
7636         var.padding = 0;
7637
7638         kvm_set_segment(vcpu, &var, seg);
7639         return;
7640 }
7641
7642 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7643                                         u32 msr_index, u64 *pdata)
7644 {
7645         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7646         int r;
7647
7648         r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
7649
7650         if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7651                                     complete_emulated_rdmsr, r)) {
7652                 /* Bounce to user space */
7653                 return X86EMUL_IO_NEEDED;
7654         }
7655
7656         return r;
7657 }
7658
7659 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7660                                         u32 msr_index, u64 data)
7661 {
7662         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7663         int r;
7664
7665         r = kvm_set_msr_with_filter(vcpu, msr_index, data);
7666
7667         if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7668                                     complete_emulated_msr_access, r)) {
7669                 /* Bounce to user space */
7670                 return X86EMUL_IO_NEEDED;
7671         }
7672
7673         return r;
7674 }
7675
7676 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7677                             u32 msr_index, u64 *pdata)
7678 {
7679         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
7680 }
7681
7682 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7683                             u32 msr_index, u64 data)
7684 {
7685         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
7686 }
7687
7688 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7689 {
7690         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7691
7692         return vcpu->arch.smbase;
7693 }
7694
7695 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7696 {
7697         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7698
7699         vcpu->arch.smbase = smbase;
7700 }
7701
7702 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7703                               u32 pmc)
7704 {
7705         if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7706                 return 0;
7707         return -EINVAL;
7708 }
7709
7710 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7711                              u32 pmc, u64 *pdata)
7712 {
7713         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7714 }
7715
7716 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7717 {
7718         emul_to_vcpu(ctxt)->arch.halt_request = 1;
7719 }
7720
7721 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7722                               struct x86_instruction_info *info,
7723                               enum x86_intercept_stage stage)
7724 {
7725         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7726                                             &ctxt->exception);
7727 }
7728
7729 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7730                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7731                               bool exact_only)
7732 {
7733         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7734 }
7735
7736 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7737 {
7738         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7739 }
7740
7741 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7742 {
7743         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7744 }
7745
7746 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7747 {
7748         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7749 }
7750
7751 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
7752 {
7753         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
7754 }
7755
7756 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7757 {
7758         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7759 }
7760
7761 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7762 {
7763         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7764 }
7765
7766 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7767 {
7768         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7769 }
7770
7771 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7772 {
7773         return emul_to_vcpu(ctxt)->arch.hflags;
7774 }
7775
7776 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7777 {
7778         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7779
7780         kvm_smm_changed(vcpu, false);
7781 }
7782
7783 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7784                                   const char *smstate)
7785 {
7786         return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7787 }
7788
7789 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7790 {
7791         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7792 }
7793
7794 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7795 {
7796         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7797 }
7798
7799 static const struct x86_emulate_ops emulate_ops = {
7800         .read_gpr            = emulator_read_gpr,
7801         .write_gpr           = emulator_write_gpr,
7802         .read_std            = emulator_read_std,
7803         .write_std           = emulator_write_std,
7804         .read_phys           = kvm_read_guest_phys_system,
7805         .fetch               = kvm_fetch_guest_virt,
7806         .read_emulated       = emulator_read_emulated,
7807         .write_emulated      = emulator_write_emulated,
7808         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
7809         .invlpg              = emulator_invlpg,
7810         .pio_in_emulated     = emulator_pio_in_emulated,
7811         .pio_out_emulated    = emulator_pio_out_emulated,
7812         .get_segment         = emulator_get_segment,
7813         .set_segment         = emulator_set_segment,
7814         .get_cached_segment_base = emulator_get_cached_segment_base,
7815         .get_gdt             = emulator_get_gdt,
7816         .get_idt             = emulator_get_idt,
7817         .set_gdt             = emulator_set_gdt,
7818         .set_idt             = emulator_set_idt,
7819         .get_cr              = emulator_get_cr,
7820         .set_cr              = emulator_set_cr,
7821         .cpl                 = emulator_get_cpl,
7822         .get_dr              = emulator_get_dr,
7823         .set_dr              = emulator_set_dr,
7824         .get_smbase          = emulator_get_smbase,
7825         .set_smbase          = emulator_set_smbase,
7826         .set_msr_with_filter = emulator_set_msr_with_filter,
7827         .get_msr_with_filter = emulator_get_msr_with_filter,
7828         .set_msr             = emulator_set_msr,
7829         .get_msr             = emulator_get_msr,
7830         .check_pmc           = emulator_check_pmc,
7831         .read_pmc            = emulator_read_pmc,
7832         .halt                = emulator_halt,
7833         .wbinvd              = emulator_wbinvd,
7834         .fix_hypercall       = emulator_fix_hypercall,
7835         .intercept           = emulator_intercept,
7836         .get_cpuid           = emulator_get_cpuid,
7837         .guest_has_long_mode = emulator_guest_has_long_mode,
7838         .guest_has_movbe     = emulator_guest_has_movbe,
7839         .guest_has_fxsr      = emulator_guest_has_fxsr,
7840         .guest_has_rdpid     = emulator_guest_has_rdpid,
7841         .set_nmi_mask        = emulator_set_nmi_mask,
7842         .get_hflags          = emulator_get_hflags,
7843         .exiting_smm         = emulator_exiting_smm,
7844         .leave_smm           = emulator_leave_smm,
7845         .triple_fault        = emulator_triple_fault,
7846         .set_xcr             = emulator_set_xcr,
7847 };
7848
7849 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7850 {
7851         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7852         /*
7853          * an sti; sti; sequence only disable interrupts for the first
7854          * instruction. So, if the last instruction, be it emulated or
7855          * not, left the system with the INT_STI flag enabled, it
7856          * means that the last instruction is an sti. We should not
7857          * leave the flag on in this case. The same goes for mov ss
7858          */
7859         if (int_shadow & mask)
7860                 mask = 0;
7861         if (unlikely(int_shadow || mask)) {
7862                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7863                 if (!mask)
7864                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7865         }
7866 }
7867
7868 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7869 {
7870         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7871         if (ctxt->exception.vector == PF_VECTOR)
7872                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7873
7874         if (ctxt->exception.error_code_valid)
7875                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7876                                       ctxt->exception.error_code);
7877         else
7878                 kvm_queue_exception(vcpu, ctxt->exception.vector);
7879         return false;
7880 }
7881
7882 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7883 {
7884         struct x86_emulate_ctxt *ctxt;
7885
7886         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7887         if (!ctxt) {
7888                 pr_err("kvm: failed to allocate vcpu's emulator\n");
7889                 return NULL;
7890         }
7891
7892         ctxt->vcpu = vcpu;
7893         ctxt->ops = &emulate_ops;
7894         vcpu->arch.emulate_ctxt = ctxt;
7895
7896         return ctxt;
7897 }
7898
7899 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7900 {
7901         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7902         int cs_db, cs_l;
7903
7904         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7905
7906         ctxt->gpa_available = false;
7907         ctxt->eflags = kvm_get_rflags(vcpu);
7908         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7909
7910         ctxt->eip = kvm_rip_read(vcpu);
7911         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
7912                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
7913                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
7914                      cs_db                              ? X86EMUL_MODE_PROT32 :
7915                                                           X86EMUL_MODE_PROT16;
7916         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7917         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7918         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7919
7920         ctxt->interruptibility = 0;
7921         ctxt->have_exception = false;
7922         ctxt->exception.vector = -1;
7923         ctxt->perm_ok = false;
7924
7925         init_decode_cache(ctxt);
7926         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7927 }
7928
7929 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7930 {
7931         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7932         int ret;
7933
7934         init_emulate_ctxt(vcpu);
7935
7936         ctxt->op_bytes = 2;
7937         ctxt->ad_bytes = 2;
7938         ctxt->_eip = ctxt->eip + inc_eip;
7939         ret = emulate_int_real(ctxt, irq);
7940
7941         if (ret != X86EMUL_CONTINUE) {
7942                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7943         } else {
7944                 ctxt->eip = ctxt->_eip;
7945                 kvm_rip_write(vcpu, ctxt->eip);
7946                 kvm_set_rflags(vcpu, ctxt->eflags);
7947         }
7948 }
7949 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7950
7951 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7952                                            u8 ndata, u8 *insn_bytes, u8 insn_size)
7953 {
7954         struct kvm_run *run = vcpu->run;
7955         u64 info[5];
7956         u8 info_start;
7957
7958         /*
7959          * Zero the whole array used to retrieve the exit info, as casting to
7960          * u32 for select entries will leave some chunks uninitialized.
7961          */
7962         memset(&info, 0, sizeof(info));
7963
7964         static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
7965                                            &info[2], (u32 *)&info[3],
7966                                            (u32 *)&info[4]);
7967
7968         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7969         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7970
7971         /*
7972          * There's currently space for 13 entries, but 5 are used for the exit
7973          * reason and info.  Restrict to 4 to reduce the maintenance burden
7974          * when expanding kvm_run.emulation_failure in the future.
7975          */
7976         if (WARN_ON_ONCE(ndata > 4))
7977                 ndata = 4;
7978
7979         /* Always include the flags as a 'data' entry. */
7980         info_start = 1;
7981         run->emulation_failure.flags = 0;
7982
7983         if (insn_size) {
7984                 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
7985                               sizeof(run->emulation_failure.insn_bytes) != 16));
7986                 info_start += 2;
7987                 run->emulation_failure.flags |=
7988                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7989                 run->emulation_failure.insn_size = insn_size;
7990                 memset(run->emulation_failure.insn_bytes, 0x90,
7991                        sizeof(run->emulation_failure.insn_bytes));
7992                 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
7993         }
7994
7995         memcpy(&run->internal.data[info_start], info, sizeof(info));
7996         memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
7997                ndata * sizeof(data[0]));
7998
7999         run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8000 }
8001
8002 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8003 {
8004         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8005
8006         prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8007                                        ctxt->fetch.end - ctxt->fetch.data);
8008 }
8009
8010 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8011                                           u8 ndata)
8012 {
8013         prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8014 }
8015 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8016
8017 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8018 {
8019         __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8020 }
8021 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8022
8023 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8024 {
8025         struct kvm *kvm = vcpu->kvm;
8026
8027         ++vcpu->stat.insn_emulation_fail;
8028         trace_kvm_emulate_insn_failed(vcpu);
8029
8030         if (emulation_type & EMULTYPE_VMWARE_GP) {
8031                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8032                 return 1;
8033         }
8034
8035         if (kvm->arch.exit_on_emulation_error ||
8036             (emulation_type & EMULTYPE_SKIP)) {
8037                 prepare_emulation_ctxt_failure_exit(vcpu);
8038                 return 0;
8039         }
8040
8041         kvm_queue_exception(vcpu, UD_VECTOR);
8042
8043         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8044                 prepare_emulation_ctxt_failure_exit(vcpu);
8045                 return 0;
8046         }
8047
8048         return 1;
8049 }
8050
8051 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8052                                   bool write_fault_to_shadow_pgtable,
8053                                   int emulation_type)
8054 {
8055         gpa_t gpa = cr2_or_gpa;
8056         kvm_pfn_t pfn;
8057
8058         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8059                 return false;
8060
8061         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8062             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8063                 return false;
8064
8065         if (!vcpu->arch.mmu->direct_map) {
8066                 /*
8067                  * Write permission should be allowed since only
8068                  * write access need to be emulated.
8069                  */
8070                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8071
8072                 /*
8073                  * If the mapping is invalid in guest, let cpu retry
8074                  * it to generate fault.
8075                  */
8076                 if (gpa == UNMAPPED_GVA)
8077                         return true;
8078         }
8079
8080         /*
8081          * Do not retry the unhandleable instruction if it faults on the
8082          * readonly host memory, otherwise it will goto a infinite loop:
8083          * retry instruction -> write #PF -> emulation fail -> retry
8084          * instruction -> ...
8085          */
8086         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8087
8088         /*
8089          * If the instruction failed on the error pfn, it can not be fixed,
8090          * report the error to userspace.
8091          */
8092         if (is_error_noslot_pfn(pfn))
8093                 return false;
8094
8095         kvm_release_pfn_clean(pfn);
8096
8097         /* The instructions are well-emulated on direct mmu. */
8098         if (vcpu->arch.mmu->direct_map) {
8099                 unsigned int indirect_shadow_pages;
8100
8101                 write_lock(&vcpu->kvm->mmu_lock);
8102                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8103                 write_unlock(&vcpu->kvm->mmu_lock);
8104
8105                 if (indirect_shadow_pages)
8106                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8107
8108                 return true;
8109         }
8110
8111         /*
8112          * if emulation was due to access to shadowed page table
8113          * and it failed try to unshadow page and re-enter the
8114          * guest to let CPU execute the instruction.
8115          */
8116         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8117
8118         /*
8119          * If the access faults on its page table, it can not
8120          * be fixed by unprotecting shadow page and it should
8121          * be reported to userspace.
8122          */
8123         return !write_fault_to_shadow_pgtable;
8124 }
8125
8126 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8127                               gpa_t cr2_or_gpa,  int emulation_type)
8128 {
8129         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8130         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8131
8132         last_retry_eip = vcpu->arch.last_retry_eip;
8133         last_retry_addr = vcpu->arch.last_retry_addr;
8134
8135         /*
8136          * If the emulation is caused by #PF and it is non-page_table
8137          * writing instruction, it means the VM-EXIT is caused by shadow
8138          * page protected, we can zap the shadow page and retry this
8139          * instruction directly.
8140          *
8141          * Note: if the guest uses a non-page-table modifying instruction
8142          * on the PDE that points to the instruction, then we will unmap
8143          * the instruction and go to an infinite loop. So, we cache the
8144          * last retried eip and the last fault address, if we meet the eip
8145          * and the address again, we can break out of the potential infinite
8146          * loop.
8147          */
8148         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8149
8150         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8151                 return false;
8152
8153         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8154             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8155                 return false;
8156
8157         if (x86_page_table_writing_insn(ctxt))
8158                 return false;
8159
8160         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8161                 return false;
8162
8163         vcpu->arch.last_retry_eip = ctxt->eip;
8164         vcpu->arch.last_retry_addr = cr2_or_gpa;
8165
8166         if (!vcpu->arch.mmu->direct_map)
8167                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8168
8169         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8170
8171         return true;
8172 }
8173
8174 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8175 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8176
8177 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8178 {
8179         trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8180
8181         if (entering_smm) {
8182                 vcpu->arch.hflags |= HF_SMM_MASK;
8183         } else {
8184                 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8185
8186                 /* Process a latched INIT or SMI, if any.  */
8187                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8188
8189                 /*
8190                  * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8191                  * on SMM exit we still need to reload them from
8192                  * guest memory
8193                  */
8194                 vcpu->arch.pdptrs_from_userspace = false;
8195         }
8196
8197         kvm_mmu_reset_context(vcpu);
8198 }
8199
8200 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8201                                 unsigned long *db)
8202 {
8203         u32 dr6 = 0;
8204         int i;
8205         u32 enable, rwlen;
8206
8207         enable = dr7;
8208         rwlen = dr7 >> 16;
8209         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8210                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8211                         dr6 |= (1 << i);
8212         return dr6;
8213 }
8214
8215 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8216 {
8217         struct kvm_run *kvm_run = vcpu->run;
8218
8219         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8220                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8221                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8222                 kvm_run->debug.arch.exception = DB_VECTOR;
8223                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8224                 return 0;
8225         }
8226         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8227         return 1;
8228 }
8229
8230 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8231 {
8232         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8233         int r;
8234
8235         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8236         if (unlikely(!r))
8237                 return 0;
8238
8239         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8240
8241         /*
8242          * rflags is the old, "raw" value of the flags.  The new value has
8243          * not been saved yet.
8244          *
8245          * This is correct even for TF set by the guest, because "the
8246          * processor will not generate this exception after the instruction
8247          * that sets the TF flag".
8248          */
8249         if (unlikely(rflags & X86_EFLAGS_TF))
8250                 r = kvm_vcpu_do_singlestep(vcpu);
8251         return r;
8252 }
8253 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8254
8255 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
8256 {
8257         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8258             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8259                 struct kvm_run *kvm_run = vcpu->run;
8260                 unsigned long eip = kvm_get_linear_rip(vcpu);
8261                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8262                                            vcpu->arch.guest_debug_dr7,
8263                                            vcpu->arch.eff_db);
8264
8265                 if (dr6 != 0) {
8266                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8267                         kvm_run->debug.arch.pc = eip;
8268                         kvm_run->debug.arch.exception = DB_VECTOR;
8269                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
8270                         *r = 0;
8271                         return true;
8272                 }
8273         }
8274
8275         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8276             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8277                 unsigned long eip = kvm_get_linear_rip(vcpu);
8278                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8279                                            vcpu->arch.dr7,
8280                                            vcpu->arch.db);
8281
8282                 if (dr6 != 0) {
8283                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8284                         *r = 1;
8285                         return true;
8286                 }
8287         }
8288
8289         return false;
8290 }
8291
8292 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8293 {
8294         switch (ctxt->opcode_len) {
8295         case 1:
8296                 switch (ctxt->b) {
8297                 case 0xe4:      /* IN */
8298                 case 0xe5:
8299                 case 0xec:
8300                 case 0xed:
8301                 case 0xe6:      /* OUT */
8302                 case 0xe7:
8303                 case 0xee:
8304                 case 0xef:
8305                 case 0x6c:      /* INS */
8306                 case 0x6d:
8307                 case 0x6e:      /* OUTS */
8308                 case 0x6f:
8309                         return true;
8310                 }
8311                 break;
8312         case 2:
8313                 switch (ctxt->b) {
8314                 case 0x33:      /* RDPMC */
8315                         return true;
8316                 }
8317                 break;
8318         }
8319
8320         return false;
8321 }
8322
8323 /*
8324  * Decode to be emulated instruction. Return EMULATION_OK if success.
8325  */
8326 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8327                                     void *insn, int insn_len)
8328 {
8329         int r = EMULATION_OK;
8330         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8331
8332         init_emulate_ctxt(vcpu);
8333
8334         /*
8335          * We will reenter on the same instruction since we do not set
8336          * complete_userspace_io. This does not handle watchpoints yet,
8337          * those would be handled in the emulate_ops.
8338          */
8339         if (!(emulation_type & EMULTYPE_SKIP) &&
8340             kvm_vcpu_check_breakpoint(vcpu, &r))
8341                 return r;
8342
8343         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8344
8345         trace_kvm_emulate_insn_start(vcpu);
8346         ++vcpu->stat.insn_emulation;
8347
8348         return r;
8349 }
8350 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8351
8352 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8353                             int emulation_type, void *insn, int insn_len)
8354 {
8355         int r;
8356         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8357         bool writeback = true;
8358         bool write_fault_to_spt;
8359
8360         if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8361                 return 1;
8362
8363         vcpu->arch.l1tf_flush_l1d = true;
8364
8365         /*
8366          * Clear write_fault_to_shadow_pgtable here to ensure it is
8367          * never reused.
8368          */
8369         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8370         vcpu->arch.write_fault_to_shadow_pgtable = false;
8371
8372         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8373                 kvm_clear_exception_queue(vcpu);
8374
8375                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8376                                                     insn, insn_len);
8377                 if (r != EMULATION_OK)  {
8378                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
8379                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8380                                 kvm_queue_exception(vcpu, UD_VECTOR);
8381                                 return 1;
8382                         }
8383                         if (reexecute_instruction(vcpu, cr2_or_gpa,
8384                                                   write_fault_to_spt,
8385                                                   emulation_type))
8386                                 return 1;
8387                         if (ctxt->have_exception) {
8388                                 /*
8389                                  * #UD should result in just EMULATION_FAILED, and trap-like
8390                                  * exception should not be encountered during decode.
8391                                  */
8392                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8393                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8394                                 inject_emulated_exception(vcpu);
8395                                 return 1;
8396                         }
8397                         return handle_emulation_failure(vcpu, emulation_type);
8398                 }
8399         }
8400
8401         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8402             !is_vmware_backdoor_opcode(ctxt)) {
8403                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8404                 return 1;
8405         }
8406
8407         /*
8408          * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8409          * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8410          * The caller is responsible for updating interruptibility state and
8411          * injecting single-step #DBs.
8412          */
8413         if (emulation_type & EMULTYPE_SKIP) {
8414                 if (ctxt->mode != X86EMUL_MODE_PROT64)
8415                         ctxt->eip = (u32)ctxt->_eip;
8416                 else
8417                         ctxt->eip = ctxt->_eip;
8418
8419                 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8420                         r = 1;
8421                         goto writeback;
8422                 }
8423
8424                 kvm_rip_write(vcpu, ctxt->eip);
8425                 if (ctxt->eflags & X86_EFLAGS_RF)
8426                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8427                 return 1;
8428         }
8429
8430         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8431                 return 1;
8432
8433         /* this is needed for vmware backdoor interface to work since it
8434            changes registers values  during IO operation */
8435         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8436                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8437                 emulator_invalidate_register_cache(ctxt);
8438         }
8439
8440 restart:
8441         if (emulation_type & EMULTYPE_PF) {
8442                 /* Save the faulting GPA (cr2) in the address field */
8443                 ctxt->exception.address = cr2_or_gpa;
8444
8445                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8446                 if (vcpu->arch.mmu->direct_map) {
8447                         ctxt->gpa_available = true;
8448                         ctxt->gpa_val = cr2_or_gpa;
8449                 }
8450         } else {
8451                 /* Sanitize the address out of an abundance of paranoia. */
8452                 ctxt->exception.address = 0;
8453         }
8454
8455         r = x86_emulate_insn(ctxt);
8456
8457         if (r == EMULATION_INTERCEPTED)
8458                 return 1;
8459
8460         if (r == EMULATION_FAILED) {
8461                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8462                                         emulation_type))
8463                         return 1;
8464
8465                 return handle_emulation_failure(vcpu, emulation_type);
8466         }
8467
8468         if (ctxt->have_exception) {
8469                 r = 1;
8470                 if (inject_emulated_exception(vcpu))
8471                         return r;
8472         } else if (vcpu->arch.pio.count) {
8473                 if (!vcpu->arch.pio.in) {
8474                         /* FIXME: return into emulator if single-stepping.  */
8475                         vcpu->arch.pio.count = 0;
8476                 } else {
8477                         writeback = false;
8478                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
8479                 }
8480                 r = 0;
8481         } else if (vcpu->mmio_needed) {
8482                 ++vcpu->stat.mmio_exits;
8483
8484                 if (!vcpu->mmio_is_write)
8485                         writeback = false;
8486                 r = 0;
8487                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8488         } else if (vcpu->arch.complete_userspace_io) {
8489                 writeback = false;
8490                 r = 0;
8491         } else if (r == EMULATION_RESTART)
8492                 goto restart;
8493         else
8494                 r = 1;
8495
8496 writeback:
8497         if (writeback) {
8498                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8499                 toggle_interruptibility(vcpu, ctxt->interruptibility);
8500                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8501                 if (!ctxt->have_exception ||
8502                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8503                         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8504                         if (ctxt->is_branch)
8505                                 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8506                         kvm_rip_write(vcpu, ctxt->eip);
8507                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8508                                 r = kvm_vcpu_do_singlestep(vcpu);
8509                         static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8510                         __kvm_set_rflags(vcpu, ctxt->eflags);
8511                 }
8512
8513                 /*
8514                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8515                  * do nothing, and it will be requested again as soon as
8516                  * the shadow expires.  But we still need to check here,
8517                  * because POPF has no interrupt shadow.
8518                  */
8519                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8520                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8521         } else
8522                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8523
8524         return r;
8525 }
8526
8527 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8528 {
8529         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8530 }
8531 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8532
8533 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8534                                         void *insn, int insn_len)
8535 {
8536         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8537 }
8538 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8539
8540 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8541 {
8542         vcpu->arch.pio.count = 0;
8543         return 1;
8544 }
8545
8546 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8547 {
8548         vcpu->arch.pio.count = 0;
8549
8550         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8551                 return 1;
8552
8553         return kvm_skip_emulated_instruction(vcpu);
8554 }
8555
8556 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8557                             unsigned short port)
8558 {
8559         unsigned long val = kvm_rax_read(vcpu);
8560         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8561
8562         if (ret)
8563                 return ret;
8564
8565         /*
8566          * Workaround userspace that relies on old KVM behavior of %rip being
8567          * incremented prior to exiting to userspace to handle "OUT 0x7e".
8568          */
8569         if (port == 0x7e &&
8570             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8571                 vcpu->arch.complete_userspace_io =
8572                         complete_fast_pio_out_port_0x7e;
8573                 kvm_skip_emulated_instruction(vcpu);
8574         } else {
8575                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8576                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8577         }
8578         return 0;
8579 }
8580
8581 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8582 {
8583         unsigned long val;
8584
8585         /* We should only ever be called with arch.pio.count equal to 1 */
8586         BUG_ON(vcpu->arch.pio.count != 1);
8587
8588         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8589                 vcpu->arch.pio.count = 0;
8590                 return 1;
8591         }
8592
8593         /* For size less than 4 we merge, else we zero extend */
8594         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8595
8596         /*
8597          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8598          * the copy and tracing
8599          */
8600         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8601         kvm_rax_write(vcpu, val);
8602
8603         return kvm_skip_emulated_instruction(vcpu);
8604 }
8605
8606 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8607                            unsigned short port)
8608 {
8609         unsigned long val;
8610         int ret;
8611
8612         /* For size less than 4 we merge, else we zero extend */
8613         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8614
8615         ret = emulator_pio_in(vcpu, size, port, &val, 1);
8616         if (ret) {
8617                 kvm_rax_write(vcpu, val);
8618                 return ret;
8619         }
8620
8621         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8622         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8623
8624         return 0;
8625 }
8626
8627 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8628 {
8629         int ret;
8630
8631         if (in)
8632                 ret = kvm_fast_pio_in(vcpu, size, port);
8633         else
8634                 ret = kvm_fast_pio_out(vcpu, size, port);
8635         return ret && kvm_skip_emulated_instruction(vcpu);
8636 }
8637 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8638
8639 static int kvmclock_cpu_down_prep(unsigned int cpu)
8640 {
8641         __this_cpu_write(cpu_tsc_khz, 0);
8642         return 0;
8643 }
8644
8645 static void tsc_khz_changed(void *data)
8646 {
8647         struct cpufreq_freqs *freq = data;
8648         unsigned long khz = 0;
8649
8650         if (data)
8651                 khz = freq->new;
8652         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8653                 khz = cpufreq_quick_get(raw_smp_processor_id());
8654         if (!khz)
8655                 khz = tsc_khz;
8656         __this_cpu_write(cpu_tsc_khz, khz);
8657 }
8658
8659 #ifdef CONFIG_X86_64
8660 static void kvm_hyperv_tsc_notifier(void)
8661 {
8662         struct kvm *kvm;
8663         int cpu;
8664
8665         mutex_lock(&kvm_lock);
8666         list_for_each_entry(kvm, &vm_list, vm_list)
8667                 kvm_make_mclock_inprogress_request(kvm);
8668
8669         /* no guest entries from this point */
8670         hyperv_stop_tsc_emulation();
8671
8672         /* TSC frequency always matches when on Hyper-V */
8673         for_each_present_cpu(cpu)
8674                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8675         kvm_max_guest_tsc_khz = tsc_khz;
8676
8677         list_for_each_entry(kvm, &vm_list, vm_list) {
8678                 __kvm_start_pvclock_update(kvm);
8679                 pvclock_update_vm_gtod_copy(kvm);
8680                 kvm_end_pvclock_update(kvm);
8681         }
8682
8683         mutex_unlock(&kvm_lock);
8684 }
8685 #endif
8686
8687 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8688 {
8689         struct kvm *kvm;
8690         struct kvm_vcpu *vcpu;
8691         int send_ipi = 0;
8692         unsigned long i;
8693
8694         /*
8695          * We allow guests to temporarily run on slowing clocks,
8696          * provided we notify them after, or to run on accelerating
8697          * clocks, provided we notify them before.  Thus time never
8698          * goes backwards.
8699          *
8700          * However, we have a problem.  We can't atomically update
8701          * the frequency of a given CPU from this function; it is
8702          * merely a notifier, which can be called from any CPU.
8703          * Changing the TSC frequency at arbitrary points in time
8704          * requires a recomputation of local variables related to
8705          * the TSC for each VCPU.  We must flag these local variables
8706          * to be updated and be sure the update takes place with the
8707          * new frequency before any guests proceed.
8708          *
8709          * Unfortunately, the combination of hotplug CPU and frequency
8710          * change creates an intractable locking scenario; the order
8711          * of when these callouts happen is undefined with respect to
8712          * CPU hotplug, and they can race with each other.  As such,
8713          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8714          * undefined; you can actually have a CPU frequency change take
8715          * place in between the computation of X and the setting of the
8716          * variable.  To protect against this problem, all updates of
8717          * the per_cpu tsc_khz variable are done in an interrupt
8718          * protected IPI, and all callers wishing to update the value
8719          * must wait for a synchronous IPI to complete (which is trivial
8720          * if the caller is on the CPU already).  This establishes the
8721          * necessary total order on variable updates.
8722          *
8723          * Note that because a guest time update may take place
8724          * anytime after the setting of the VCPU's request bit, the
8725          * correct TSC value must be set before the request.  However,
8726          * to ensure the update actually makes it to any guest which
8727          * starts running in hardware virtualization between the set
8728          * and the acquisition of the spinlock, we must also ping the
8729          * CPU after setting the request bit.
8730          *
8731          */
8732
8733         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8734
8735         mutex_lock(&kvm_lock);
8736         list_for_each_entry(kvm, &vm_list, vm_list) {
8737                 kvm_for_each_vcpu(i, vcpu, kvm) {
8738                         if (vcpu->cpu != cpu)
8739                                 continue;
8740                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8741                         if (vcpu->cpu != raw_smp_processor_id())
8742                                 send_ipi = 1;
8743                 }
8744         }
8745         mutex_unlock(&kvm_lock);
8746
8747         if (freq->old < freq->new && send_ipi) {
8748                 /*
8749                  * We upscale the frequency.  Must make the guest
8750                  * doesn't see old kvmclock values while running with
8751                  * the new frequency, otherwise we risk the guest sees
8752                  * time go backwards.
8753                  *
8754                  * In case we update the frequency for another cpu
8755                  * (which might be in guest context) send an interrupt
8756                  * to kick the cpu out of guest context.  Next time
8757                  * guest context is entered kvmclock will be updated,
8758                  * so the guest will not see stale values.
8759                  */
8760                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8761         }
8762 }
8763
8764 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8765                                      void *data)
8766 {
8767         struct cpufreq_freqs *freq = data;
8768         int cpu;
8769
8770         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8771                 return 0;
8772         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8773                 return 0;
8774
8775         for_each_cpu(cpu, freq->policy->cpus)
8776                 __kvmclock_cpufreq_notifier(freq, cpu);
8777
8778         return 0;
8779 }
8780
8781 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8782         .notifier_call  = kvmclock_cpufreq_notifier
8783 };
8784
8785 static int kvmclock_cpu_online(unsigned int cpu)
8786 {
8787         tsc_khz_changed(NULL);
8788         return 0;
8789 }
8790
8791 static void kvm_timer_init(void)
8792 {
8793         max_tsc_khz = tsc_khz;
8794
8795         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8796 #ifdef CONFIG_CPU_FREQ
8797                 struct cpufreq_policy *policy;
8798                 int cpu;
8799
8800                 cpu = get_cpu();
8801                 policy = cpufreq_cpu_get(cpu);
8802                 if (policy) {
8803                         if (policy->cpuinfo.max_freq)
8804                                 max_tsc_khz = policy->cpuinfo.max_freq;
8805                         cpufreq_cpu_put(policy);
8806                 }
8807                 put_cpu();
8808 #endif
8809                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8810                                           CPUFREQ_TRANSITION_NOTIFIER);
8811         }
8812
8813         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8814                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
8815 }
8816
8817 #ifdef CONFIG_X86_64
8818 static void pvclock_gtod_update_fn(struct work_struct *work)
8819 {
8820         struct kvm *kvm;
8821         struct kvm_vcpu *vcpu;
8822         unsigned long i;
8823
8824         mutex_lock(&kvm_lock);
8825         list_for_each_entry(kvm, &vm_list, vm_list)
8826                 kvm_for_each_vcpu(i, vcpu, kvm)
8827                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8828         atomic_set(&kvm_guest_has_master_clock, 0);
8829         mutex_unlock(&kvm_lock);
8830 }
8831
8832 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8833
8834 /*
8835  * Indirection to move queue_work() out of the tk_core.seq write held
8836  * region to prevent possible deadlocks against time accessors which
8837  * are invoked with work related locks held.
8838  */
8839 static void pvclock_irq_work_fn(struct irq_work *w)
8840 {
8841         queue_work(system_long_wq, &pvclock_gtod_work);
8842 }
8843
8844 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8845
8846 /*
8847  * Notification about pvclock gtod data update.
8848  */
8849 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8850                                void *priv)
8851 {
8852         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8853         struct timekeeper *tk = priv;
8854
8855         update_pvclock_gtod(tk);
8856
8857         /*
8858          * Disable master clock if host does not trust, or does not use,
8859          * TSC based clocksource. Delegate queue_work() to irq_work as
8860          * this is invoked with tk_core.seq write held.
8861          */
8862         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8863             atomic_read(&kvm_guest_has_master_clock) != 0)
8864                 irq_work_queue(&pvclock_irq_work);
8865         return 0;
8866 }
8867
8868 static struct notifier_block pvclock_gtod_notifier = {
8869         .notifier_call = pvclock_gtod_notify,
8870 };
8871 #endif
8872
8873 int kvm_arch_init(void *opaque)
8874 {
8875         struct kvm_x86_init_ops *ops = opaque;
8876         int r;
8877
8878         if (kvm_x86_ops.hardware_enable) {
8879                 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8880                 r = -EEXIST;
8881                 goto out;
8882         }
8883
8884         if (!ops->cpu_has_kvm_support()) {
8885                 pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8886                                    ops->runtime_ops->name);
8887                 r = -EOPNOTSUPP;
8888                 goto out;
8889         }
8890         if (ops->disabled_by_bios()) {
8891                 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8892                                    ops->runtime_ops->name);
8893                 r = -EOPNOTSUPP;
8894                 goto out;
8895         }
8896
8897         /*
8898          * KVM explicitly assumes that the guest has an FPU and
8899          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8900          * vCPU's FPU state as a fxregs_state struct.
8901          */
8902         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8903                 printk(KERN_ERR "kvm: inadequate fpu\n");
8904                 r = -EOPNOTSUPP;
8905                 goto out;
8906         }
8907
8908         if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8909                 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
8910                 r = -EOPNOTSUPP;
8911                 goto out;
8912         }
8913
8914         r = -ENOMEM;
8915
8916         x86_emulator_cache = kvm_alloc_emulator_cache();
8917         if (!x86_emulator_cache) {
8918                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8919                 goto out;
8920         }
8921
8922         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8923         if (!user_return_msrs) {
8924                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8925                 goto out_free_x86_emulator_cache;
8926         }
8927         kvm_nr_uret_msrs = 0;
8928
8929         r = kvm_mmu_module_init();
8930         if (r)
8931                 goto out_free_percpu;
8932
8933         kvm_timer_init();
8934
8935         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8936                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8937                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8938         }
8939
8940         if (pi_inject_timer == -1)
8941                 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
8942 #ifdef CONFIG_X86_64
8943         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8944
8945         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8946                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8947 #endif
8948
8949         return 0;
8950
8951 out_free_percpu:
8952         free_percpu(user_return_msrs);
8953 out_free_x86_emulator_cache:
8954         kmem_cache_destroy(x86_emulator_cache);
8955 out:
8956         return r;
8957 }
8958
8959 void kvm_arch_exit(void)
8960 {
8961 #ifdef CONFIG_X86_64
8962         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8963                 clear_hv_tscchange_cb();
8964 #endif
8965         kvm_lapic_exit();
8966
8967         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8968                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8969                                             CPUFREQ_TRANSITION_NOTIFIER);
8970         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8971 #ifdef CONFIG_X86_64
8972         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8973         irq_work_sync(&pvclock_irq_work);
8974         cancel_work_sync(&pvclock_gtod_work);
8975 #endif
8976         kvm_x86_ops.hardware_enable = NULL;
8977         kvm_mmu_module_exit();
8978         free_percpu(user_return_msrs);
8979         kmem_cache_destroy(x86_emulator_cache);
8980 #ifdef CONFIG_KVM_XEN
8981         static_key_deferred_flush(&kvm_xen_enabled);
8982         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8983 #endif
8984 }
8985
8986 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
8987 {
8988         /*
8989          * The vCPU has halted, e.g. executed HLT.  Update the run state if the
8990          * local APIC is in-kernel, the run loop will detect the non-runnable
8991          * state and halt the vCPU.  Exit to userspace if the local APIC is
8992          * managed by userspace, in which case userspace is responsible for
8993          * handling wake events.
8994          */
8995         ++vcpu->stat.halt_exits;
8996         if (lapic_in_kernel(vcpu)) {
8997                 vcpu->arch.mp_state = state;
8998                 return 1;
8999         } else {
9000                 vcpu->run->exit_reason = reason;
9001                 return 0;
9002         }
9003 }
9004
9005 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9006 {
9007         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9008 }
9009 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9010
9011 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9012 {
9013         int ret = kvm_skip_emulated_instruction(vcpu);
9014         /*
9015          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9016          * KVM_EXIT_DEBUG here.
9017          */
9018         return kvm_emulate_halt_noskip(vcpu) && ret;
9019 }
9020 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9021
9022 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9023 {
9024         int ret = kvm_skip_emulated_instruction(vcpu);
9025
9026         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9027                                         KVM_EXIT_AP_RESET_HOLD) && ret;
9028 }
9029 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9030
9031 #ifdef CONFIG_X86_64
9032 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9033                                 unsigned long clock_type)
9034 {
9035         struct kvm_clock_pairing clock_pairing;
9036         struct timespec64 ts;
9037         u64 cycle;
9038         int ret;
9039
9040         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9041                 return -KVM_EOPNOTSUPP;
9042
9043         /*
9044          * When tsc is in permanent catchup mode guests won't be able to use
9045          * pvclock_read_retry loop to get consistent view of pvclock
9046          */
9047         if (vcpu->arch.tsc_always_catchup)
9048                 return -KVM_EOPNOTSUPP;
9049
9050         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9051                 return -KVM_EOPNOTSUPP;
9052
9053         clock_pairing.sec = ts.tv_sec;
9054         clock_pairing.nsec = ts.tv_nsec;
9055         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9056         clock_pairing.flags = 0;
9057         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9058
9059         ret = 0;
9060         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9061                             sizeof(struct kvm_clock_pairing)))
9062                 ret = -KVM_EFAULT;
9063
9064         return ret;
9065 }
9066 #endif
9067
9068 /*
9069  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9070  *
9071  * @apicid - apicid of vcpu to be kicked.
9072  */
9073 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9074 {
9075         struct kvm_lapic_irq lapic_irq;
9076
9077         lapic_irq.shorthand = APIC_DEST_NOSHORT;
9078         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
9079         lapic_irq.level = 0;
9080         lapic_irq.dest_id = apicid;
9081         lapic_irq.msi_redir_hint = false;
9082
9083         lapic_irq.delivery_mode = APIC_DM_REMRD;
9084         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9085 }
9086
9087 bool kvm_apicv_activated(struct kvm *kvm)
9088 {
9089         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9090 }
9091 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9092
9093
9094 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9095                                        enum kvm_apicv_inhibit reason, bool set)
9096 {
9097         if (set)
9098                 __set_bit(reason, inhibits);
9099         else
9100                 __clear_bit(reason, inhibits);
9101
9102         trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9103 }
9104
9105 static void kvm_apicv_init(struct kvm *kvm)
9106 {
9107         unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9108
9109         init_rwsem(&kvm->arch.apicv_update_lock);
9110
9111         set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9112
9113         if (!enable_apicv)
9114                 set_or_clear_apicv_inhibit(inhibits,
9115                                            APICV_INHIBIT_REASON_ABSENT, true);
9116 }
9117
9118 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9119 {
9120         struct kvm_vcpu *target = NULL;
9121         struct kvm_apic_map *map;
9122
9123         vcpu->stat.directed_yield_attempted++;
9124
9125         if (single_task_running())
9126                 goto no_yield;
9127
9128         rcu_read_lock();
9129         map = rcu_dereference(vcpu->kvm->arch.apic_map);
9130
9131         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9132                 target = map->phys_map[dest_id]->vcpu;
9133
9134         rcu_read_unlock();
9135
9136         if (!target || !READ_ONCE(target->ready))
9137                 goto no_yield;
9138
9139         /* Ignore requests to yield to self */
9140         if (vcpu == target)
9141                 goto no_yield;
9142
9143         if (kvm_vcpu_yield_to(target) <= 0)
9144                 goto no_yield;
9145
9146         vcpu->stat.directed_yield_successful++;
9147
9148 no_yield:
9149         return;
9150 }
9151
9152 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9153 {
9154         u64 ret = vcpu->run->hypercall.ret;
9155
9156         if (!is_64_bit_mode(vcpu))
9157                 ret = (u32)ret;
9158         kvm_rax_write(vcpu, ret);
9159         ++vcpu->stat.hypercalls;
9160         return kvm_skip_emulated_instruction(vcpu);
9161 }
9162
9163 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9164 {
9165         unsigned long nr, a0, a1, a2, a3, ret;
9166         int op_64_bit;
9167
9168         if (kvm_xen_hypercall_enabled(vcpu->kvm))
9169                 return kvm_xen_hypercall(vcpu);
9170
9171         if (kvm_hv_hypercall_enabled(vcpu))
9172                 return kvm_hv_hypercall(vcpu);
9173
9174         nr = kvm_rax_read(vcpu);
9175         a0 = kvm_rbx_read(vcpu);
9176         a1 = kvm_rcx_read(vcpu);
9177         a2 = kvm_rdx_read(vcpu);
9178         a3 = kvm_rsi_read(vcpu);
9179
9180         trace_kvm_hypercall(nr, a0, a1, a2, a3);
9181
9182         op_64_bit = is_64_bit_hypercall(vcpu);
9183         if (!op_64_bit) {
9184                 nr &= 0xFFFFFFFF;
9185                 a0 &= 0xFFFFFFFF;
9186                 a1 &= 0xFFFFFFFF;
9187                 a2 &= 0xFFFFFFFF;
9188                 a3 &= 0xFFFFFFFF;
9189         }
9190
9191         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9192                 ret = -KVM_EPERM;
9193                 goto out;
9194         }
9195
9196         ret = -KVM_ENOSYS;
9197
9198         switch (nr) {
9199         case KVM_HC_VAPIC_POLL_IRQ:
9200                 ret = 0;
9201                 break;
9202         case KVM_HC_KICK_CPU:
9203                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9204                         break;
9205
9206                 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9207                 kvm_sched_yield(vcpu, a1);
9208                 ret = 0;
9209                 break;
9210 #ifdef CONFIG_X86_64
9211         case KVM_HC_CLOCK_PAIRING:
9212                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9213                 break;
9214 #endif
9215         case KVM_HC_SEND_IPI:
9216                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9217                         break;
9218
9219                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9220                 break;
9221         case KVM_HC_SCHED_YIELD:
9222                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9223                         break;
9224
9225                 kvm_sched_yield(vcpu, a0);
9226                 ret = 0;
9227                 break;
9228         case KVM_HC_MAP_GPA_RANGE: {
9229                 u64 gpa = a0, npages = a1, attrs = a2;
9230
9231                 ret = -KVM_ENOSYS;
9232                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9233                         break;
9234
9235                 if (!PAGE_ALIGNED(gpa) || !npages ||
9236                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9237                         ret = -KVM_EINVAL;
9238                         break;
9239                 }
9240
9241                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9242                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9243                 vcpu->run->hypercall.args[0]  = gpa;
9244                 vcpu->run->hypercall.args[1]  = npages;
9245                 vcpu->run->hypercall.args[2]  = attrs;
9246                 vcpu->run->hypercall.longmode = op_64_bit;
9247                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9248                 return 0;
9249         }
9250         default:
9251                 ret = -KVM_ENOSYS;
9252                 break;
9253         }
9254 out:
9255         if (!op_64_bit)
9256                 ret = (u32)ret;
9257         kvm_rax_write(vcpu, ret);
9258
9259         ++vcpu->stat.hypercalls;
9260         return kvm_skip_emulated_instruction(vcpu);
9261 }
9262 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9263
9264 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9265 {
9266         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9267         char instruction[3];
9268         unsigned long rip = kvm_rip_read(vcpu);
9269
9270         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9271
9272         return emulator_write_emulated(ctxt, rip, instruction, 3,
9273                 &ctxt->exception);
9274 }
9275
9276 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9277 {
9278         return vcpu->run->request_interrupt_window &&
9279                 likely(!pic_in_kernel(vcpu->kvm));
9280 }
9281
9282 /* Called within kvm->srcu read side.  */
9283 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9284 {
9285         struct kvm_run *kvm_run = vcpu->run;
9286
9287         kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9288         kvm_run->cr8 = kvm_get_cr8(vcpu);
9289         kvm_run->apic_base = kvm_get_apic_base(vcpu);
9290
9291         kvm_run->ready_for_interrupt_injection =
9292                 pic_in_kernel(vcpu->kvm) ||
9293                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9294
9295         if (is_smm(vcpu))
9296                 kvm_run->flags |= KVM_RUN_X86_SMM;
9297 }
9298
9299 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9300 {
9301         int max_irr, tpr;
9302
9303         if (!kvm_x86_ops.update_cr8_intercept)
9304                 return;
9305
9306         if (!lapic_in_kernel(vcpu))
9307                 return;
9308
9309         if (vcpu->arch.apicv_active)
9310                 return;
9311
9312         if (!vcpu->arch.apic->vapic_addr)
9313                 max_irr = kvm_lapic_find_highest_irr(vcpu);
9314         else
9315                 max_irr = -1;
9316
9317         if (max_irr != -1)
9318                 max_irr >>= 4;
9319
9320         tpr = kvm_lapic_get_cr8(vcpu);
9321
9322         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9323 }
9324
9325
9326 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9327 {
9328         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9329                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9330                 return 1;
9331         }
9332
9333         return kvm_x86_ops.nested_ops->check_events(vcpu);
9334 }
9335
9336 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9337 {
9338         if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9339                 vcpu->arch.exception.error_code = false;
9340         static_call(kvm_x86_queue_exception)(vcpu);
9341 }
9342
9343 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9344 {
9345         int r;
9346         bool can_inject = true;
9347
9348         /* try to reinject previous events if any */
9349
9350         if (vcpu->arch.exception.injected) {
9351                 kvm_inject_exception(vcpu);
9352                 can_inject = false;
9353         }
9354         /*
9355          * Do not inject an NMI or interrupt if there is a pending
9356          * exception.  Exceptions and interrupts are recognized at
9357          * instruction boundaries, i.e. the start of an instruction.
9358          * Trap-like exceptions, e.g. #DB, have higher priority than
9359          * NMIs and interrupts, i.e. traps are recognized before an
9360          * NMI/interrupt that's pending on the same instruction.
9361          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9362          * priority, but are only generated (pended) during instruction
9363          * execution, i.e. a pending fault-like exception means the
9364          * fault occurred on the *previous* instruction and must be
9365          * serviced prior to recognizing any new events in order to
9366          * fully complete the previous instruction.
9367          */
9368         else if (!vcpu->arch.exception.pending) {
9369                 if (vcpu->arch.nmi_injected) {
9370                         static_call(kvm_x86_inject_nmi)(vcpu);
9371                         can_inject = false;
9372                 } else if (vcpu->arch.interrupt.injected) {
9373                         static_call(kvm_x86_inject_irq)(vcpu);
9374                         can_inject = false;
9375                 }
9376         }
9377
9378         WARN_ON_ONCE(vcpu->arch.exception.injected &&
9379                      vcpu->arch.exception.pending);
9380
9381         /*
9382          * Call check_nested_events() even if we reinjected a previous event
9383          * in order for caller to determine if it should require immediate-exit
9384          * from L2 to L1 due to pending L1 events which require exit
9385          * from L2 to L1.
9386          */
9387         if (is_guest_mode(vcpu)) {
9388                 r = kvm_check_nested_events(vcpu);
9389                 if (r < 0)
9390                         goto out;
9391         }
9392
9393         /* try to inject new event if pending */
9394         if (vcpu->arch.exception.pending) {
9395                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
9396                                         vcpu->arch.exception.has_error_code,
9397                                         vcpu->arch.exception.error_code);
9398
9399                 vcpu->arch.exception.pending = false;
9400                 vcpu->arch.exception.injected = true;
9401
9402                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9403                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9404                                              X86_EFLAGS_RF);
9405
9406                 if (vcpu->arch.exception.nr == DB_VECTOR) {
9407                         kvm_deliver_exception_payload(vcpu);
9408                         if (vcpu->arch.dr7 & DR7_GD) {
9409                                 vcpu->arch.dr7 &= ~DR7_GD;
9410                                 kvm_update_dr7(vcpu);
9411                         }
9412                 }
9413
9414                 kvm_inject_exception(vcpu);
9415                 can_inject = false;
9416         }
9417
9418         /* Don't inject interrupts if the user asked to avoid doing so */
9419         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9420                 return 0;
9421
9422         /*
9423          * Finally, inject interrupt events.  If an event cannot be injected
9424          * due to architectural conditions (e.g. IF=0) a window-open exit
9425          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9426          * and can architecturally be injected, but we cannot do it right now:
9427          * an interrupt could have arrived just now and we have to inject it
9428          * as a vmexit, or there could already an event in the queue, which is
9429          * indicated by can_inject.  In that case we request an immediate exit
9430          * in order to make progress and get back here for another iteration.
9431          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9432          */
9433         if (vcpu->arch.smi_pending) {
9434                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9435                 if (r < 0)
9436                         goto out;
9437                 if (r) {
9438                         vcpu->arch.smi_pending = false;
9439                         ++vcpu->arch.smi_count;
9440                         enter_smm(vcpu);
9441                         can_inject = false;
9442                 } else
9443                         static_call(kvm_x86_enable_smi_window)(vcpu);
9444         }
9445
9446         if (vcpu->arch.nmi_pending) {
9447                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9448                 if (r < 0)
9449                         goto out;
9450                 if (r) {
9451                         --vcpu->arch.nmi_pending;
9452                         vcpu->arch.nmi_injected = true;
9453                         static_call(kvm_x86_inject_nmi)(vcpu);
9454                         can_inject = false;
9455                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9456                 }
9457                 if (vcpu->arch.nmi_pending)
9458                         static_call(kvm_x86_enable_nmi_window)(vcpu);
9459         }
9460
9461         if (kvm_cpu_has_injectable_intr(vcpu)) {
9462                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9463                 if (r < 0)
9464                         goto out;
9465                 if (r) {
9466                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9467                         static_call(kvm_x86_inject_irq)(vcpu);
9468                         WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9469                 }
9470                 if (kvm_cpu_has_injectable_intr(vcpu))
9471                         static_call(kvm_x86_enable_irq_window)(vcpu);
9472         }
9473
9474         if (is_guest_mode(vcpu) &&
9475             kvm_x86_ops.nested_ops->hv_timer_pending &&
9476             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9477                 *req_immediate_exit = true;
9478
9479         WARN_ON(vcpu->arch.exception.pending);
9480         return 0;
9481
9482 out:
9483         if (r == -EBUSY) {
9484                 *req_immediate_exit = true;
9485                 r = 0;
9486         }
9487         return r;
9488 }
9489
9490 static void process_nmi(struct kvm_vcpu *vcpu)
9491 {
9492         unsigned limit = 2;
9493
9494         /*
9495          * x86 is limited to one NMI running, and one NMI pending after it.
9496          * If an NMI is already in progress, limit further NMIs to just one.
9497          * Otherwise, allow two (and we'll inject the first one immediately).
9498          */
9499         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9500                 limit = 1;
9501
9502         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9503         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9504         kvm_make_request(KVM_REQ_EVENT, vcpu);
9505 }
9506
9507 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9508 {
9509         u32 flags = 0;
9510         flags |= seg->g       << 23;
9511         flags |= seg->db      << 22;
9512         flags |= seg->l       << 21;
9513         flags |= seg->avl     << 20;
9514         flags |= seg->present << 15;
9515         flags |= seg->dpl     << 13;
9516         flags |= seg->s       << 12;
9517         flags |= seg->type    << 8;
9518         return flags;
9519 }
9520
9521 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9522 {
9523         struct kvm_segment seg;
9524         int offset;
9525
9526         kvm_get_segment(vcpu, &seg, n);
9527         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9528
9529         if (n < 3)
9530                 offset = 0x7f84 + n * 12;
9531         else
9532                 offset = 0x7f2c + (n - 3) * 12;
9533
9534         put_smstate(u32, buf, offset + 8, seg.base);
9535         put_smstate(u32, buf, offset + 4, seg.limit);
9536         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9537 }
9538
9539 #ifdef CONFIG_X86_64
9540 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9541 {
9542         struct kvm_segment seg;
9543         int offset;
9544         u16 flags;
9545
9546         kvm_get_segment(vcpu, &seg, n);
9547         offset = 0x7e00 + n * 16;
9548
9549         flags = enter_smm_get_segment_flags(&seg) >> 8;
9550         put_smstate(u16, buf, offset, seg.selector);
9551         put_smstate(u16, buf, offset + 2, flags);
9552         put_smstate(u32, buf, offset + 4, seg.limit);
9553         put_smstate(u64, buf, offset + 8, seg.base);
9554 }
9555 #endif
9556
9557 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9558 {
9559         struct desc_ptr dt;
9560         struct kvm_segment seg;
9561         unsigned long val;
9562         int i;
9563
9564         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9565         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9566         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9567         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9568
9569         for (i = 0; i < 8; i++)
9570                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9571
9572         kvm_get_dr(vcpu, 6, &val);
9573         put_smstate(u32, buf, 0x7fcc, (u32)val);
9574         kvm_get_dr(vcpu, 7, &val);
9575         put_smstate(u32, buf, 0x7fc8, (u32)val);
9576
9577         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9578         put_smstate(u32, buf, 0x7fc4, seg.selector);
9579         put_smstate(u32, buf, 0x7f64, seg.base);
9580         put_smstate(u32, buf, 0x7f60, seg.limit);
9581         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9582
9583         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9584         put_smstate(u32, buf, 0x7fc0, seg.selector);
9585         put_smstate(u32, buf, 0x7f80, seg.base);
9586         put_smstate(u32, buf, 0x7f7c, seg.limit);
9587         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9588
9589         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9590         put_smstate(u32, buf, 0x7f74, dt.address);
9591         put_smstate(u32, buf, 0x7f70, dt.size);
9592
9593         static_call(kvm_x86_get_idt)(vcpu, &dt);
9594         put_smstate(u32, buf, 0x7f58, dt.address);
9595         put_smstate(u32, buf, 0x7f54, dt.size);
9596
9597         for (i = 0; i < 6; i++)
9598                 enter_smm_save_seg_32(vcpu, buf, i);
9599
9600         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9601
9602         /* revision id */
9603         put_smstate(u32, buf, 0x7efc, 0x00020000);
9604         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9605 }
9606
9607 #ifdef CONFIG_X86_64
9608 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9609 {
9610         struct desc_ptr dt;
9611         struct kvm_segment seg;
9612         unsigned long val;
9613         int i;
9614
9615         for (i = 0; i < 16; i++)
9616                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9617
9618         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9619         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9620
9621         kvm_get_dr(vcpu, 6, &val);
9622         put_smstate(u64, buf, 0x7f68, val);
9623         kvm_get_dr(vcpu, 7, &val);
9624         put_smstate(u64, buf, 0x7f60, val);
9625
9626         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9627         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9628         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9629
9630         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9631
9632         /* revision id */
9633         put_smstate(u32, buf, 0x7efc, 0x00020064);
9634
9635         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9636
9637         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9638         put_smstate(u16, buf, 0x7e90, seg.selector);
9639         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9640         put_smstate(u32, buf, 0x7e94, seg.limit);
9641         put_smstate(u64, buf, 0x7e98, seg.base);
9642
9643         static_call(kvm_x86_get_idt)(vcpu, &dt);
9644         put_smstate(u32, buf, 0x7e84, dt.size);
9645         put_smstate(u64, buf, 0x7e88, dt.address);
9646
9647         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9648         put_smstate(u16, buf, 0x7e70, seg.selector);
9649         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9650         put_smstate(u32, buf, 0x7e74, seg.limit);
9651         put_smstate(u64, buf, 0x7e78, seg.base);
9652
9653         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9654         put_smstate(u32, buf, 0x7e64, dt.size);
9655         put_smstate(u64, buf, 0x7e68, dt.address);
9656
9657         for (i = 0; i < 6; i++)
9658                 enter_smm_save_seg_64(vcpu, buf, i);
9659 }
9660 #endif
9661
9662 static void enter_smm(struct kvm_vcpu *vcpu)
9663 {
9664         struct kvm_segment cs, ds;
9665         struct desc_ptr dt;
9666         unsigned long cr0;
9667         char buf[512];
9668
9669         memset(buf, 0, 512);
9670 #ifdef CONFIG_X86_64
9671         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9672                 enter_smm_save_state_64(vcpu, buf);
9673         else
9674 #endif
9675                 enter_smm_save_state_32(vcpu, buf);
9676
9677         /*
9678          * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9679          * state (e.g. leave guest mode) after we've saved the state into the
9680          * SMM state-save area.
9681          */
9682         static_call(kvm_x86_enter_smm)(vcpu, buf);
9683
9684         kvm_smm_changed(vcpu, true);
9685         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9686
9687         if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9688                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9689         else
9690                 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9691
9692         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9693         kvm_rip_write(vcpu, 0x8000);
9694
9695         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9696         static_call(kvm_x86_set_cr0)(vcpu, cr0);
9697         vcpu->arch.cr0 = cr0;
9698
9699         static_call(kvm_x86_set_cr4)(vcpu, 0);
9700
9701         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
9702         dt.address = dt.size = 0;
9703         static_call(kvm_x86_set_idt)(vcpu, &dt);
9704
9705         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9706
9707         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9708         cs.base = vcpu->arch.smbase;
9709
9710         ds.selector = 0;
9711         ds.base = 0;
9712
9713         cs.limit    = ds.limit = 0xffffffff;
9714         cs.type     = ds.type = 0x3;
9715         cs.dpl      = ds.dpl = 0;
9716         cs.db       = ds.db = 0;
9717         cs.s        = ds.s = 1;
9718         cs.l        = ds.l = 0;
9719         cs.g        = ds.g = 1;
9720         cs.avl      = ds.avl = 0;
9721         cs.present  = ds.present = 1;
9722         cs.unusable = ds.unusable = 0;
9723         cs.padding  = ds.padding = 0;
9724
9725         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9726         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9727         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9728         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9729         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9730         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9731
9732 #ifdef CONFIG_X86_64
9733         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9734                 static_call(kvm_x86_set_efer)(vcpu, 0);
9735 #endif
9736
9737         kvm_update_cpuid_runtime(vcpu);
9738         kvm_mmu_reset_context(vcpu);
9739 }
9740
9741 static void process_smi(struct kvm_vcpu *vcpu)
9742 {
9743         vcpu->arch.smi_pending = true;
9744         kvm_make_request(KVM_REQ_EVENT, vcpu);
9745 }
9746
9747 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9748                                        unsigned long *vcpu_bitmap)
9749 {
9750         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9751 }
9752
9753 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9754 {
9755         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9756 }
9757
9758 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9759 {
9760         bool activate;
9761
9762         if (!lapic_in_kernel(vcpu))
9763                 return;
9764
9765         down_read(&vcpu->kvm->arch.apicv_update_lock);
9766
9767         activate = kvm_apicv_activated(vcpu->kvm);
9768         if (vcpu->arch.apicv_active == activate)
9769                 goto out;
9770
9771         vcpu->arch.apicv_active = activate;
9772         kvm_apic_update_apicv(vcpu);
9773         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9774
9775         /*
9776          * When APICv gets disabled, we may still have injected interrupts
9777          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9778          * still active when the interrupt got accepted. Make sure
9779          * inject_pending_event() is called to check for that.
9780          */
9781         if (!vcpu->arch.apicv_active)
9782                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9783
9784 out:
9785         up_read(&vcpu->kvm->arch.apicv_update_lock);
9786 }
9787 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9788
9789 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9790                                       enum kvm_apicv_inhibit reason, bool set)
9791 {
9792         unsigned long old, new;
9793
9794         lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9795
9796         if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
9797                 return;
9798
9799         old = new = kvm->arch.apicv_inhibit_reasons;
9800
9801         set_or_clear_apicv_inhibit(&new, reason, set);
9802
9803         if (!!old != !!new) {
9804                 /*
9805                  * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9806                  * false positives in the sanity check WARN in svm_vcpu_run().
9807                  * This task will wait for all vCPUs to ack the kick IRQ before
9808                  * updating apicv_inhibit_reasons, and all other vCPUs will
9809                  * block on acquiring apicv_update_lock so that vCPUs can't
9810                  * redo svm_vcpu_run() without seeing the new inhibit state.
9811                  *
9812                  * Note, holding apicv_update_lock and taking it in the read
9813                  * side (handling the request) also prevents other vCPUs from
9814                  * servicing the request with a stale apicv_inhibit_reasons.
9815                  */
9816                 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9817                 kvm->arch.apicv_inhibit_reasons = new;
9818                 if (new) {
9819                         unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9820                         kvm_zap_gfn_range(kvm, gfn, gfn+1);
9821                 }
9822         } else {
9823                 kvm->arch.apicv_inhibit_reasons = new;
9824         }
9825 }
9826
9827 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9828                                     enum kvm_apicv_inhibit reason, bool set)
9829 {
9830         if (!enable_apicv)
9831                 return;
9832
9833         down_write(&kvm->arch.apicv_update_lock);
9834         __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
9835         up_write(&kvm->arch.apicv_update_lock);
9836 }
9837 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
9838
9839 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9840 {
9841         if (!kvm_apic_present(vcpu))
9842                 return;
9843
9844         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9845
9846         if (irqchip_split(vcpu->kvm))
9847                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9848         else {
9849                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9850                 if (ioapic_in_kernel(vcpu->kvm))
9851                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9852         }
9853
9854         if (is_guest_mode(vcpu))
9855                 vcpu->arch.load_eoi_exitmap_pending = true;
9856         else
9857                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9858 }
9859
9860 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9861 {
9862         u64 eoi_exit_bitmap[4];
9863
9864         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9865                 return;
9866
9867         if (to_hv_vcpu(vcpu)) {
9868                 bitmap_or((ulong *)eoi_exit_bitmap,
9869                           vcpu->arch.ioapic_handled_vectors,
9870                           to_hv_synic(vcpu)->vec_bitmap, 256);
9871                 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9872                 return;
9873         }
9874
9875         static_call_cond(kvm_x86_load_eoi_exitmap)(
9876                 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9877 }
9878
9879 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9880                                             unsigned long start, unsigned long end)
9881 {
9882         unsigned long apic_address;
9883
9884         /*
9885          * The physical address of apic access page is stored in the VMCS.
9886          * Update it when it becomes invalid.
9887          */
9888         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9889         if (start <= apic_address && apic_address < end)
9890                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9891 }
9892
9893 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9894 {
9895         if (!lapic_in_kernel(vcpu))
9896                 return;
9897
9898         static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
9899 }
9900
9901 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9902 {
9903         smp_send_reschedule(vcpu->cpu);
9904 }
9905 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9906
9907 /*
9908  * Called within kvm->srcu read side.
9909  * Returns 1 to let vcpu_run() continue the guest execution loop without
9910  * exiting to the userspace.  Otherwise, the value will be returned to the
9911  * userspace.
9912  */
9913 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9914 {
9915         int r;
9916         bool req_int_win =
9917                 dm_request_for_irq_injection(vcpu) &&
9918                 kvm_cpu_accept_dm_intr(vcpu);
9919         fastpath_t exit_fastpath;
9920
9921         bool req_immediate_exit = false;
9922
9923         /* Forbid vmenter if vcpu dirty ring is soft-full */
9924         if (unlikely(vcpu->kvm->dirty_ring_size &&
9925                      kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9926                 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9927                 trace_kvm_dirty_ring_exit(vcpu);
9928                 r = 0;
9929                 goto out;
9930         }
9931
9932         if (kvm_request_pending(vcpu)) {
9933                 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
9934                         r = -EIO;
9935                         goto out;
9936                 }
9937                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9938                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9939                                 r = 0;
9940                                 goto out;
9941                         }
9942                 }
9943                 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
9944                         kvm_mmu_free_obsolete_roots(vcpu);
9945                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9946                         __kvm_migrate_timers(vcpu);
9947                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9948                         kvm_update_masterclock(vcpu->kvm);
9949                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9950                         kvm_gen_kvmclock_update(vcpu);
9951                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9952                         r = kvm_guest_time_update(vcpu);
9953                         if (unlikely(r))
9954                                 goto out;
9955                 }
9956                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9957                         kvm_mmu_sync_roots(vcpu);
9958                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9959                         kvm_mmu_load_pgd(vcpu);
9960                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9961                         kvm_vcpu_flush_tlb_all(vcpu);
9962
9963                         /* Flushing all ASIDs flushes the current ASID... */
9964                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9965                 }
9966                 kvm_service_local_tlb_flush_requests(vcpu);
9967
9968                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9969                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9970                         r = 0;
9971                         goto out;
9972                 }
9973                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9974                         if (is_guest_mode(vcpu)) {
9975                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9976                         } else {
9977                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9978                                 vcpu->mmio_needed = 0;
9979                                 r = 0;
9980                                 goto out;
9981                         }
9982                 }
9983                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9984                         /* Page is swapped out. Do synthetic halt */
9985                         vcpu->arch.apf.halted = true;
9986                         r = 1;
9987                         goto out;
9988                 }
9989                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9990                         record_steal_time(vcpu);
9991                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9992                         process_smi(vcpu);
9993                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9994                         process_nmi(vcpu);
9995                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9996                         kvm_pmu_handle_event(vcpu);
9997                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9998                         kvm_pmu_deliver_pmi(vcpu);
9999                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10000                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10001                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
10002                                      vcpu->arch.ioapic_handled_vectors)) {
10003                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10004                                 vcpu->run->eoi.vector =
10005                                                 vcpu->arch.pending_ioapic_eoi;
10006                                 r = 0;
10007                                 goto out;
10008                         }
10009                 }
10010                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10011                         vcpu_scan_ioapic(vcpu);
10012                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10013                         vcpu_load_eoi_exitmap(vcpu);
10014                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10015                         kvm_vcpu_reload_apic_access_page(vcpu);
10016                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10017                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10018                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10019                         r = 0;
10020                         goto out;
10021                 }
10022                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10023                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10024                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10025                         r = 0;
10026                         goto out;
10027                 }
10028                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10029                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10030
10031                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10032                         vcpu->run->hyperv = hv_vcpu->exit;
10033                         r = 0;
10034                         goto out;
10035                 }
10036
10037                 /*
10038                  * KVM_REQ_HV_STIMER has to be processed after
10039                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10040                  * depend on the guest clock being up-to-date
10041                  */
10042                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10043                         kvm_hv_process_stimers(vcpu);
10044                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10045                         kvm_vcpu_update_apicv(vcpu);
10046                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10047                         kvm_check_async_pf_completion(vcpu);
10048                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10049                         static_call(kvm_x86_msr_filter_changed)(vcpu);
10050
10051                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10052                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10053         }
10054
10055         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10056             kvm_xen_has_interrupt(vcpu)) {
10057                 ++vcpu->stat.req_event;
10058                 r = kvm_apic_accept_events(vcpu);
10059                 if (r < 0) {
10060                         r = 0;
10061                         goto out;
10062                 }
10063                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10064                         r = 1;
10065                         goto out;
10066                 }
10067
10068                 r = inject_pending_event(vcpu, &req_immediate_exit);
10069                 if (r < 0) {
10070                         r = 0;
10071                         goto out;
10072                 }
10073                 if (req_int_win)
10074                         static_call(kvm_x86_enable_irq_window)(vcpu);
10075
10076                 if (kvm_lapic_enabled(vcpu)) {
10077                         update_cr8_intercept(vcpu);
10078                         kvm_lapic_sync_to_vapic(vcpu);
10079                 }
10080         }
10081
10082         r = kvm_mmu_reload(vcpu);
10083         if (unlikely(r)) {
10084                 goto cancel_injection;
10085         }
10086
10087         preempt_disable();
10088
10089         static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10090
10091         /*
10092          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10093          * IPI are then delayed after guest entry, which ensures that they
10094          * result in virtual interrupt delivery.
10095          */
10096         local_irq_disable();
10097
10098         /* Store vcpu->apicv_active before vcpu->mode.  */
10099         smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10100
10101         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10102
10103         /*
10104          * 1) We should set ->mode before checking ->requests.  Please see
10105          * the comment in kvm_vcpu_exiting_guest_mode().
10106          *
10107          * 2) For APICv, we should set ->mode before checking PID.ON. This
10108          * pairs with the memory barrier implicit in pi_test_and_set_on
10109          * (see vmx_deliver_posted_interrupt).
10110          *
10111          * 3) This also orders the write to mode from any reads to the page
10112          * tables done while the VCPU is running.  Please see the comment
10113          * in kvm_flush_remote_tlbs.
10114          */
10115         smp_mb__after_srcu_read_unlock();
10116
10117         /*
10118          * Process pending posted interrupts to handle the case where the
10119          * notification IRQ arrived in the host, or was never sent (because the
10120          * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10121          * status, KVM doesn't update assigned devices when APICv is inhibited,
10122          * i.e. they can post interrupts even if APICv is temporarily disabled.
10123          */
10124         if (kvm_lapic_enabled(vcpu))
10125                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10126
10127         if (kvm_vcpu_exit_request(vcpu)) {
10128                 vcpu->mode = OUTSIDE_GUEST_MODE;
10129                 smp_wmb();
10130                 local_irq_enable();
10131                 preempt_enable();
10132                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10133                 r = 1;
10134                 goto cancel_injection;
10135         }
10136
10137         if (req_immediate_exit) {
10138                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10139                 static_call(kvm_x86_request_immediate_exit)(vcpu);
10140         }
10141
10142         fpregs_assert_state_consistent();
10143         if (test_thread_flag(TIF_NEED_FPU_LOAD))
10144                 switch_fpu_return();
10145
10146         if (vcpu->arch.guest_fpu.xfd_err)
10147                 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10148
10149         if (unlikely(vcpu->arch.switch_db_regs)) {
10150                 set_debugreg(0, 7);
10151                 set_debugreg(vcpu->arch.eff_db[0], 0);
10152                 set_debugreg(vcpu->arch.eff_db[1], 1);
10153                 set_debugreg(vcpu->arch.eff_db[2], 2);
10154                 set_debugreg(vcpu->arch.eff_db[3], 3);
10155         } else if (unlikely(hw_breakpoint_active())) {
10156                 set_debugreg(0, 7);
10157         }
10158
10159         guest_timing_enter_irqoff();
10160
10161         for (;;) {
10162                 /*
10163                  * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10164                  * update must kick and wait for all vCPUs before toggling the
10165                  * per-VM state, and responsing vCPUs must wait for the update
10166                  * to complete before servicing KVM_REQ_APICV_UPDATE.
10167                  */
10168                 WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
10169
10170                 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10171                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10172                         break;
10173
10174                 if (kvm_lapic_enabled(vcpu))
10175                         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10176
10177                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10178                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10179                         break;
10180                 }
10181         }
10182
10183         /*
10184          * Do this here before restoring debug registers on the host.  And
10185          * since we do this before handling the vmexit, a DR access vmexit
10186          * can (a) read the correct value of the debug registers, (b) set
10187          * KVM_DEBUGREG_WONT_EXIT again.
10188          */
10189         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10190                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10191                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10192                 kvm_update_dr0123(vcpu);
10193                 kvm_update_dr7(vcpu);
10194         }
10195
10196         /*
10197          * If the guest has used debug registers, at least dr7
10198          * will be disabled while returning to the host.
10199          * If we don't have active breakpoints in the host, we don't
10200          * care about the messed up debug address registers. But if
10201          * we have some of them active, restore the old state.
10202          */
10203         if (hw_breakpoint_active())
10204                 hw_breakpoint_restore();
10205
10206         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10207         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10208
10209         vcpu->mode = OUTSIDE_GUEST_MODE;
10210         smp_wmb();
10211
10212         /*
10213          * Sync xfd before calling handle_exit_irqoff() which may
10214          * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10215          * in #NM irqoff handler).
10216          */
10217         if (vcpu->arch.xfd_no_write_intercept)
10218                 fpu_sync_guest_vmexit_xfd_state();
10219
10220         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10221
10222         if (vcpu->arch.guest_fpu.xfd_err)
10223                 wrmsrl(MSR_IA32_XFD_ERR, 0);
10224
10225         /*
10226          * Consume any pending interrupts, including the possible source of
10227          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10228          * An instruction is required after local_irq_enable() to fully unblock
10229          * interrupts on processors that implement an interrupt shadow, the
10230          * stat.exits increment will do nicely.
10231          */
10232         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10233         local_irq_enable();
10234         ++vcpu->stat.exits;
10235         local_irq_disable();
10236         kvm_after_interrupt(vcpu);
10237
10238         /*
10239          * Wait until after servicing IRQs to account guest time so that any
10240          * ticks that occurred while running the guest are properly accounted
10241          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10242          * of accounting via context tracking, but the loss of accuracy is
10243          * acceptable for all known use cases.
10244          */
10245         guest_timing_exit_irqoff();
10246
10247         if (lapic_in_kernel(vcpu)) {
10248                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
10249                 if (delta != S64_MIN) {
10250                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
10251                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
10252                 }
10253         }
10254
10255         local_irq_enable();
10256         preempt_enable();
10257
10258         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10259
10260         /*
10261          * Profile KVM exit RIPs:
10262          */
10263         if (unlikely(prof_on == KVM_PROFILING)) {
10264                 unsigned long rip = kvm_rip_read(vcpu);
10265                 profile_hit(KVM_PROFILING, (void *)rip);
10266         }
10267
10268         if (unlikely(vcpu->arch.tsc_always_catchup))
10269                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10270
10271         if (vcpu->arch.apic_attention)
10272                 kvm_lapic_sync_from_vapic(vcpu);
10273
10274         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10275         return r;
10276
10277 cancel_injection:
10278         if (req_immediate_exit)
10279                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10280         static_call(kvm_x86_cancel_injection)(vcpu);
10281         if (unlikely(vcpu->arch.apic_attention))
10282                 kvm_lapic_sync_from_vapic(vcpu);
10283 out:
10284         return r;
10285 }
10286
10287 /* Called within kvm->srcu read side.  */
10288 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
10289 {
10290         bool hv_timer;
10291
10292         if (!kvm_arch_vcpu_runnable(vcpu)) {
10293                 /*
10294                  * Switch to the software timer before halt-polling/blocking as
10295                  * the guest's timer may be a break event for the vCPU, and the
10296                  * hypervisor timer runs only when the CPU is in guest mode.
10297                  * Switch before halt-polling so that KVM recognizes an expired
10298                  * timer before blocking.
10299                  */
10300                 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10301                 if (hv_timer)
10302                         kvm_lapic_switch_to_sw_timer(vcpu);
10303
10304                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10305                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10306                         kvm_vcpu_halt(vcpu);
10307                 else
10308                         kvm_vcpu_block(vcpu);
10309                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10310
10311                 if (hv_timer)
10312                         kvm_lapic_switch_to_hv_timer(vcpu);
10313
10314                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10315                         return 1;
10316         }
10317
10318         if (kvm_apic_accept_events(vcpu) < 0)
10319                 return 0;
10320         switch(vcpu->arch.mp_state) {
10321         case KVM_MP_STATE_HALTED:
10322         case KVM_MP_STATE_AP_RESET_HOLD:
10323                 vcpu->arch.pv.pv_unhalted = false;
10324                 vcpu->arch.mp_state =
10325                         KVM_MP_STATE_RUNNABLE;
10326                 fallthrough;
10327         case KVM_MP_STATE_RUNNABLE:
10328                 vcpu->arch.apf.halted = false;
10329                 break;
10330         case KVM_MP_STATE_INIT_RECEIVED:
10331                 break;
10332         default:
10333                 return -EINTR;
10334         }
10335         return 1;
10336 }
10337
10338 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10339 {
10340         if (is_guest_mode(vcpu))
10341                 kvm_check_nested_events(vcpu);
10342
10343         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10344                 !vcpu->arch.apf.halted);
10345 }
10346
10347 /* Called within kvm->srcu read side.  */
10348 static int vcpu_run(struct kvm_vcpu *vcpu)
10349 {
10350         int r;
10351         struct kvm *kvm = vcpu->kvm;
10352
10353         vcpu->arch.l1tf_flush_l1d = true;
10354
10355         for (;;) {
10356                 if (kvm_vcpu_running(vcpu)) {
10357                         r = vcpu_enter_guest(vcpu);
10358                 } else {
10359                         r = vcpu_block(kvm, vcpu);
10360                 }
10361
10362                 if (r <= 0)
10363                         break;
10364
10365                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10366                 if (kvm_cpu_has_pending_timer(vcpu))
10367                         kvm_inject_pending_timer_irqs(vcpu);
10368
10369                 if (dm_request_for_irq_injection(vcpu) &&
10370                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10371                         r = 0;
10372                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10373                         ++vcpu->stat.request_irq_exits;
10374                         break;
10375                 }
10376
10377                 if (__xfer_to_guest_mode_work_pending()) {
10378                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10379                         r = xfer_to_guest_mode_handle_work(vcpu);
10380                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10381                         if (r)
10382                                 return r;
10383                 }
10384         }
10385
10386         return r;
10387 }
10388
10389 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10390 {
10391         int r;
10392
10393         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10394         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10395         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10396         return r;
10397 }
10398
10399 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10400 {
10401         BUG_ON(!vcpu->arch.pio.count);
10402
10403         return complete_emulated_io(vcpu);
10404 }
10405
10406 /*
10407  * Implements the following, as a state machine:
10408  *
10409  * read:
10410  *   for each fragment
10411  *     for each mmio piece in the fragment
10412  *       write gpa, len
10413  *       exit
10414  *       copy data
10415  *   execute insn
10416  *
10417  * write:
10418  *   for each fragment
10419  *     for each mmio piece in the fragment
10420  *       write gpa, len
10421  *       copy data
10422  *       exit
10423  */
10424 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10425 {
10426         struct kvm_run *run = vcpu->run;
10427         struct kvm_mmio_fragment *frag;
10428         unsigned len;
10429
10430         BUG_ON(!vcpu->mmio_needed);
10431
10432         /* Complete previous fragment */
10433         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10434         len = min(8u, frag->len);
10435         if (!vcpu->mmio_is_write)
10436                 memcpy(frag->data, run->mmio.data, len);
10437
10438         if (frag->len <= 8) {
10439                 /* Switch to the next fragment. */
10440                 frag++;
10441                 vcpu->mmio_cur_fragment++;
10442         } else {
10443                 /* Go forward to the next mmio piece. */
10444                 frag->data += len;
10445                 frag->gpa += len;
10446                 frag->len -= len;
10447         }
10448
10449         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10450                 vcpu->mmio_needed = 0;
10451
10452                 /* FIXME: return into emulator if single-stepping.  */
10453                 if (vcpu->mmio_is_write)
10454                         return 1;
10455                 vcpu->mmio_read_completed = 1;
10456                 return complete_emulated_io(vcpu);
10457         }
10458
10459         run->exit_reason = KVM_EXIT_MMIO;
10460         run->mmio.phys_addr = frag->gpa;
10461         if (vcpu->mmio_is_write)
10462                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10463         run->mmio.len = min(8u, frag->len);
10464         run->mmio.is_write = vcpu->mmio_is_write;
10465         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10466         return 0;
10467 }
10468
10469 /* Swap (qemu) user FPU context for the guest FPU context. */
10470 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10471 {
10472         /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10473         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10474         trace_kvm_fpu(1);
10475 }
10476
10477 /* When vcpu_run ends, restore user space FPU context. */
10478 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10479 {
10480         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10481         ++vcpu->stat.fpu_reload;
10482         trace_kvm_fpu(0);
10483 }
10484
10485 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10486 {
10487         struct kvm_run *kvm_run = vcpu->run;
10488         struct kvm *kvm = vcpu->kvm;
10489         int r;
10490
10491         vcpu_load(vcpu);
10492         kvm_sigset_activate(vcpu);
10493         kvm_run->flags = 0;
10494         kvm_load_guest_fpu(vcpu);
10495
10496         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10497         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10498                 if (kvm_run->immediate_exit) {
10499                         r = -EINTR;
10500                         goto out;
10501                 }
10502                 /*
10503                  * It should be impossible for the hypervisor timer to be in
10504                  * use before KVM has ever run the vCPU.
10505                  */
10506                 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10507
10508                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10509                 kvm_vcpu_block(vcpu);
10510                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10511
10512                 if (kvm_apic_accept_events(vcpu) < 0) {
10513                         r = 0;
10514                         goto out;
10515                 }
10516                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10517                 r = -EAGAIN;
10518                 if (signal_pending(current)) {
10519                         r = -EINTR;
10520                         kvm_run->exit_reason = KVM_EXIT_INTR;
10521                         ++vcpu->stat.signal_exits;
10522                 }
10523                 goto out;
10524         }
10525
10526         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10527             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10528                 r = -EINVAL;
10529                 goto out;
10530         }
10531
10532         if (kvm_run->kvm_dirty_regs) {
10533                 r = sync_regs(vcpu);
10534                 if (r != 0)
10535                         goto out;
10536         }
10537
10538         /* re-sync apic's tpr */
10539         if (!lapic_in_kernel(vcpu)) {
10540                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10541                         r = -EINVAL;
10542                         goto out;
10543                 }
10544         }
10545
10546         if (unlikely(vcpu->arch.complete_userspace_io)) {
10547                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10548                 vcpu->arch.complete_userspace_io = NULL;
10549                 r = cui(vcpu);
10550                 if (r <= 0)
10551                         goto out;
10552         } else
10553                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10554
10555         if (kvm_run->immediate_exit) {
10556                 r = -EINTR;
10557                 goto out;
10558         }
10559
10560         r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10561         if (r <= 0)
10562                 goto out;
10563
10564         r = vcpu_run(vcpu);
10565
10566 out:
10567         kvm_put_guest_fpu(vcpu);
10568         if (kvm_run->kvm_valid_regs)
10569                 store_regs(vcpu);
10570         post_kvm_run_save(vcpu);
10571         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10572
10573         kvm_sigset_deactivate(vcpu);
10574         vcpu_put(vcpu);
10575         return r;
10576 }
10577
10578 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10579 {
10580         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10581                 /*
10582                  * We are here if userspace calls get_regs() in the middle of
10583                  * instruction emulation. Registers state needs to be copied
10584                  * back from emulation context to vcpu. Userspace shouldn't do
10585                  * that usually, but some bad designed PV devices (vmware
10586                  * backdoor interface) need this to work
10587                  */
10588                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10589                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10590         }
10591         regs->rax = kvm_rax_read(vcpu);
10592         regs->rbx = kvm_rbx_read(vcpu);
10593         regs->rcx = kvm_rcx_read(vcpu);
10594         regs->rdx = kvm_rdx_read(vcpu);
10595         regs->rsi = kvm_rsi_read(vcpu);
10596         regs->rdi = kvm_rdi_read(vcpu);
10597         regs->rsp = kvm_rsp_read(vcpu);
10598         regs->rbp = kvm_rbp_read(vcpu);
10599 #ifdef CONFIG_X86_64
10600         regs->r8 = kvm_r8_read(vcpu);
10601         regs->r9 = kvm_r9_read(vcpu);
10602         regs->r10 = kvm_r10_read(vcpu);
10603         regs->r11 = kvm_r11_read(vcpu);
10604         regs->r12 = kvm_r12_read(vcpu);
10605         regs->r13 = kvm_r13_read(vcpu);
10606         regs->r14 = kvm_r14_read(vcpu);
10607         regs->r15 = kvm_r15_read(vcpu);
10608 #endif
10609
10610         regs->rip = kvm_rip_read(vcpu);
10611         regs->rflags = kvm_get_rflags(vcpu);
10612 }
10613
10614 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10615 {
10616         vcpu_load(vcpu);
10617         __get_regs(vcpu, regs);
10618         vcpu_put(vcpu);
10619         return 0;
10620 }
10621
10622 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10623 {
10624         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10625         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10626
10627         kvm_rax_write(vcpu, regs->rax);
10628         kvm_rbx_write(vcpu, regs->rbx);
10629         kvm_rcx_write(vcpu, regs->rcx);
10630         kvm_rdx_write(vcpu, regs->rdx);
10631         kvm_rsi_write(vcpu, regs->rsi);
10632         kvm_rdi_write(vcpu, regs->rdi);
10633         kvm_rsp_write(vcpu, regs->rsp);
10634         kvm_rbp_write(vcpu, regs->rbp);
10635 #ifdef CONFIG_X86_64
10636         kvm_r8_write(vcpu, regs->r8);
10637         kvm_r9_write(vcpu, regs->r9);
10638         kvm_r10_write(vcpu, regs->r10);
10639         kvm_r11_write(vcpu, regs->r11);
10640         kvm_r12_write(vcpu, regs->r12);
10641         kvm_r13_write(vcpu, regs->r13);
10642         kvm_r14_write(vcpu, regs->r14);
10643         kvm_r15_write(vcpu, regs->r15);
10644 #endif
10645
10646         kvm_rip_write(vcpu, regs->rip);
10647         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10648
10649         vcpu->arch.exception.pending = false;
10650
10651         kvm_make_request(KVM_REQ_EVENT, vcpu);
10652 }
10653
10654 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10655 {
10656         vcpu_load(vcpu);
10657         __set_regs(vcpu, regs);
10658         vcpu_put(vcpu);
10659         return 0;
10660 }
10661
10662 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10663 {
10664         struct desc_ptr dt;
10665
10666         if (vcpu->arch.guest_state_protected)
10667                 goto skip_protected_regs;
10668
10669         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10670         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10671         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10672         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10673         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10674         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10675
10676         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10677         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10678
10679         static_call(kvm_x86_get_idt)(vcpu, &dt);
10680         sregs->idt.limit = dt.size;
10681         sregs->idt.base = dt.address;
10682         static_call(kvm_x86_get_gdt)(vcpu, &dt);
10683         sregs->gdt.limit = dt.size;
10684         sregs->gdt.base = dt.address;
10685
10686         sregs->cr2 = vcpu->arch.cr2;
10687         sregs->cr3 = kvm_read_cr3(vcpu);
10688
10689 skip_protected_regs:
10690         sregs->cr0 = kvm_read_cr0(vcpu);
10691         sregs->cr4 = kvm_read_cr4(vcpu);
10692         sregs->cr8 = kvm_get_cr8(vcpu);
10693         sregs->efer = vcpu->arch.efer;
10694         sregs->apic_base = kvm_get_apic_base(vcpu);
10695 }
10696
10697 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10698 {
10699         __get_sregs_common(vcpu, sregs);
10700
10701         if (vcpu->arch.guest_state_protected)
10702                 return;
10703
10704         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10705                 set_bit(vcpu->arch.interrupt.nr,
10706                         (unsigned long *)sregs->interrupt_bitmap);
10707 }
10708
10709 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10710 {
10711         int i;
10712
10713         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10714
10715         if (vcpu->arch.guest_state_protected)
10716                 return;
10717
10718         if (is_pae_paging(vcpu)) {
10719                 for (i = 0 ; i < 4 ; i++)
10720                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10721                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10722         }
10723 }
10724
10725 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10726                                   struct kvm_sregs *sregs)
10727 {
10728         vcpu_load(vcpu);
10729         __get_sregs(vcpu, sregs);
10730         vcpu_put(vcpu);
10731         return 0;
10732 }
10733
10734 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10735                                     struct kvm_mp_state *mp_state)
10736 {
10737         int r;
10738
10739         vcpu_load(vcpu);
10740         if (kvm_mpx_supported())
10741                 kvm_load_guest_fpu(vcpu);
10742
10743         r = kvm_apic_accept_events(vcpu);
10744         if (r < 0)
10745                 goto out;
10746         r = 0;
10747
10748         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10749              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10750             vcpu->arch.pv.pv_unhalted)
10751                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10752         else
10753                 mp_state->mp_state = vcpu->arch.mp_state;
10754
10755 out:
10756         if (kvm_mpx_supported())
10757                 kvm_put_guest_fpu(vcpu);
10758         vcpu_put(vcpu);
10759         return r;
10760 }
10761
10762 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10763                                     struct kvm_mp_state *mp_state)
10764 {
10765         int ret = -EINVAL;
10766
10767         vcpu_load(vcpu);
10768
10769         if (!lapic_in_kernel(vcpu) &&
10770             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10771                 goto out;
10772
10773         /*
10774          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10775          * INIT state; latched init should be reported using
10776          * KVM_SET_VCPU_EVENTS, so reject it here.
10777          */
10778         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10779             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10780              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10781                 goto out;
10782
10783         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10784                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10785                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10786         } else
10787                 vcpu->arch.mp_state = mp_state->mp_state;
10788         kvm_make_request(KVM_REQ_EVENT, vcpu);
10789
10790         ret = 0;
10791 out:
10792         vcpu_put(vcpu);
10793         return ret;
10794 }
10795
10796 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10797                     int reason, bool has_error_code, u32 error_code)
10798 {
10799         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10800         int ret;
10801
10802         init_emulate_ctxt(vcpu);
10803
10804         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10805                                    has_error_code, error_code);
10806         if (ret) {
10807                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10808                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10809                 vcpu->run->internal.ndata = 0;
10810                 return 0;
10811         }
10812
10813         kvm_rip_write(vcpu, ctxt->eip);
10814         kvm_set_rflags(vcpu, ctxt->eflags);
10815         return 1;
10816 }
10817 EXPORT_SYMBOL_GPL(kvm_task_switch);
10818
10819 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10820 {
10821         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10822                 /*
10823                  * When EFER.LME and CR0.PG are set, the processor is in
10824                  * 64-bit mode (though maybe in a 32-bit code segment).
10825                  * CR4.PAE and EFER.LMA must be set.
10826                  */
10827                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10828                         return false;
10829                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10830                         return false;
10831         } else {
10832                 /*
10833                  * Not in 64-bit mode: EFER.LMA is clear and the code
10834                  * segment cannot be 64-bit.
10835                  */
10836                 if (sregs->efer & EFER_LMA || sregs->cs.l)
10837                         return false;
10838         }
10839
10840         return kvm_is_valid_cr4(vcpu, sregs->cr4);
10841 }
10842
10843 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10844                 int *mmu_reset_needed, bool update_pdptrs)
10845 {
10846         struct msr_data apic_base_msr;
10847         int idx;
10848         struct desc_ptr dt;
10849
10850         if (!kvm_is_valid_sregs(vcpu, sregs))
10851                 return -EINVAL;
10852
10853         apic_base_msr.data = sregs->apic_base;
10854         apic_base_msr.host_initiated = true;
10855         if (kvm_set_apic_base(vcpu, &apic_base_msr))
10856                 return -EINVAL;
10857
10858         if (vcpu->arch.guest_state_protected)
10859                 return 0;
10860
10861         dt.size = sregs->idt.limit;
10862         dt.address = sregs->idt.base;
10863         static_call(kvm_x86_set_idt)(vcpu, &dt);
10864         dt.size = sregs->gdt.limit;
10865         dt.address = sregs->gdt.base;
10866         static_call(kvm_x86_set_gdt)(vcpu, &dt);
10867
10868         vcpu->arch.cr2 = sregs->cr2;
10869         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10870         vcpu->arch.cr3 = sregs->cr3;
10871         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10872         static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
10873
10874         kvm_set_cr8(vcpu, sregs->cr8);
10875
10876         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10877         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10878
10879         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10880         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10881         vcpu->arch.cr0 = sregs->cr0;
10882
10883         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10884         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10885
10886         if (update_pdptrs) {
10887                 idx = srcu_read_lock(&vcpu->kvm->srcu);
10888                 if (is_pae_paging(vcpu)) {
10889                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
10890                         *mmu_reset_needed = 1;
10891                 }
10892                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10893         }
10894
10895         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10896         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10897         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10898         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10899         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10900         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10901
10902         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10903         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10904
10905         update_cr8_intercept(vcpu);
10906
10907         /* Older userspace won't unhalt the vcpu on reset. */
10908         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10909             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10910             !is_protmode(vcpu))
10911                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10912
10913         return 0;
10914 }
10915
10916 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10917 {
10918         int pending_vec, max_bits;
10919         int mmu_reset_needed = 0;
10920         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10921
10922         if (ret)
10923                 return ret;
10924
10925         if (mmu_reset_needed)
10926                 kvm_mmu_reset_context(vcpu);
10927
10928         max_bits = KVM_NR_INTERRUPTS;
10929         pending_vec = find_first_bit(
10930                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10931
10932         if (pending_vec < max_bits) {
10933                 kvm_queue_interrupt(vcpu, pending_vec, false);
10934                 pr_debug("Set back pending irq %d\n", pending_vec);
10935                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10936         }
10937         return 0;
10938 }
10939
10940 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10941 {
10942         int mmu_reset_needed = 0;
10943         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10944         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10945                 !(sregs2->efer & EFER_LMA);
10946         int i, ret;
10947
10948         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10949                 return -EINVAL;
10950
10951         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10952                 return -EINVAL;
10953
10954         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10955                                  &mmu_reset_needed, !valid_pdptrs);
10956         if (ret)
10957                 return ret;
10958
10959         if (valid_pdptrs) {
10960                 for (i = 0; i < 4 ; i++)
10961                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10962
10963                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10964                 mmu_reset_needed = 1;
10965                 vcpu->arch.pdptrs_from_userspace = true;
10966         }
10967         if (mmu_reset_needed)
10968                 kvm_mmu_reset_context(vcpu);
10969         return 0;
10970 }
10971
10972 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10973                                   struct kvm_sregs *sregs)
10974 {
10975         int ret;
10976
10977         vcpu_load(vcpu);
10978         ret = __set_sregs(vcpu, sregs);
10979         vcpu_put(vcpu);
10980         return ret;
10981 }
10982
10983 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
10984 {
10985         bool set = false;
10986         struct kvm_vcpu *vcpu;
10987         unsigned long i;
10988
10989         down_write(&kvm->arch.apicv_update_lock);
10990
10991         kvm_for_each_vcpu(i, vcpu, kvm) {
10992                 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
10993                         set = true;
10994                         break;
10995                 }
10996         }
10997         __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
10998         up_write(&kvm->arch.apicv_update_lock);
10999 }
11000
11001 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11002                                         struct kvm_guest_debug *dbg)
11003 {
11004         unsigned long rflags;
11005         int i, r;
11006
11007         if (vcpu->arch.guest_state_protected)
11008                 return -EINVAL;
11009
11010         vcpu_load(vcpu);
11011
11012         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11013                 r = -EBUSY;
11014                 if (vcpu->arch.exception.pending)
11015                         goto out;
11016                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11017                         kvm_queue_exception(vcpu, DB_VECTOR);
11018                 else
11019                         kvm_queue_exception(vcpu, BP_VECTOR);
11020         }
11021
11022         /*
11023          * Read rflags as long as potentially injected trace flags are still
11024          * filtered out.
11025          */
11026         rflags = kvm_get_rflags(vcpu);
11027
11028         vcpu->guest_debug = dbg->control;
11029         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11030                 vcpu->guest_debug = 0;
11031
11032         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11033                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11034                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11035                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11036         } else {
11037                 for (i = 0; i < KVM_NR_DB_REGS; i++)
11038                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11039         }
11040         kvm_update_dr7(vcpu);
11041
11042         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11043                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11044
11045         /*
11046          * Trigger an rflags update that will inject or remove the trace
11047          * flags.
11048          */
11049         kvm_set_rflags(vcpu, rflags);
11050
11051         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11052
11053         kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11054
11055         r = 0;
11056
11057 out:
11058         vcpu_put(vcpu);
11059         return r;
11060 }
11061
11062 /*
11063  * Translate a guest virtual address to a guest physical address.
11064  */
11065 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11066                                     struct kvm_translation *tr)
11067 {
11068         unsigned long vaddr = tr->linear_address;
11069         gpa_t gpa;
11070         int idx;
11071
11072         vcpu_load(vcpu);
11073
11074         idx = srcu_read_lock(&vcpu->kvm->srcu);
11075         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11076         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11077         tr->physical_address = gpa;
11078         tr->valid = gpa != UNMAPPED_GVA;
11079         tr->writeable = 1;
11080         tr->usermode = 0;
11081
11082         vcpu_put(vcpu);
11083         return 0;
11084 }
11085
11086 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11087 {
11088         struct fxregs_state *fxsave;
11089
11090         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11091                 return 0;
11092
11093         vcpu_load(vcpu);
11094
11095         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11096         memcpy(fpu->fpr, fxsave->st_space, 128);
11097         fpu->fcw = fxsave->cwd;
11098         fpu->fsw = fxsave->swd;
11099         fpu->ftwx = fxsave->twd;
11100         fpu->last_opcode = fxsave->fop;
11101         fpu->last_ip = fxsave->rip;
11102         fpu->last_dp = fxsave->rdp;
11103         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11104
11105         vcpu_put(vcpu);
11106         return 0;
11107 }
11108
11109 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11110 {
11111         struct fxregs_state *fxsave;
11112
11113         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11114                 return 0;
11115
11116         vcpu_load(vcpu);
11117
11118         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11119
11120         memcpy(fxsave->st_space, fpu->fpr, 128);
11121         fxsave->cwd = fpu->fcw;
11122         fxsave->swd = fpu->fsw;
11123         fxsave->twd = fpu->ftwx;
11124         fxsave->fop = fpu->last_opcode;
11125         fxsave->rip = fpu->last_ip;
11126         fxsave->rdp = fpu->last_dp;
11127         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11128
11129         vcpu_put(vcpu);
11130         return 0;
11131 }
11132
11133 static void store_regs(struct kvm_vcpu *vcpu)
11134 {
11135         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11136
11137         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11138                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11139
11140         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11141                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11142
11143         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11144                 kvm_vcpu_ioctl_x86_get_vcpu_events(
11145                                 vcpu, &vcpu->run->s.regs.events);
11146 }
11147
11148 static int sync_regs(struct kvm_vcpu *vcpu)
11149 {
11150         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11151                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11152                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11153         }
11154         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11155                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11156                         return -EINVAL;
11157                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11158         }
11159         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11160                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11161                                 vcpu, &vcpu->run->s.regs.events))
11162                         return -EINVAL;
11163                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11164         }
11165
11166         return 0;
11167 }
11168
11169 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11170 {
11171         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
11172                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11173                              "guest TSC will not be reliable\n");
11174
11175         return 0;
11176 }
11177
11178 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11179 {
11180         struct page *page;
11181         int r;
11182
11183         vcpu->arch.last_vmentry_cpu = -1;
11184         vcpu->arch.regs_avail = ~0;
11185         vcpu->arch.regs_dirty = ~0;
11186
11187         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11188                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11189         else
11190                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11191
11192         r = kvm_mmu_create(vcpu);
11193         if (r < 0)
11194                 return r;
11195
11196         if (irqchip_in_kernel(vcpu->kvm)) {
11197                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11198                 if (r < 0)
11199                         goto fail_mmu_destroy;
11200                 if (kvm_apicv_activated(vcpu->kvm))
11201                         vcpu->arch.apicv_active = true;
11202         } else
11203                 static_branch_inc(&kvm_has_noapic_vcpu);
11204
11205         r = -ENOMEM;
11206
11207         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11208         if (!page)
11209                 goto fail_free_lapic;
11210         vcpu->arch.pio_data = page_address(page);
11211
11212         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11213                                        GFP_KERNEL_ACCOUNT);
11214         if (!vcpu->arch.mce_banks)
11215                 goto fail_free_pio_data;
11216         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11217
11218         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11219                                 GFP_KERNEL_ACCOUNT))
11220                 goto fail_free_mce_banks;
11221
11222         if (!alloc_emulate_ctxt(vcpu))
11223                 goto free_wbinvd_dirty_mask;
11224
11225         if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11226                 pr_err("kvm: failed to allocate vcpu's fpu\n");
11227                 goto free_emulate_ctxt;
11228         }
11229
11230         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11231         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11232
11233         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11234
11235         kvm_async_pf_hash_reset(vcpu);
11236         kvm_pmu_init(vcpu);
11237
11238         vcpu->arch.pending_external_vector = -1;
11239         vcpu->arch.preempted_in_kernel = false;
11240
11241 #if IS_ENABLED(CONFIG_HYPERV)
11242         vcpu->arch.hv_root_tdp = INVALID_PAGE;
11243 #endif
11244
11245         r = static_call(kvm_x86_vcpu_create)(vcpu);
11246         if (r)
11247                 goto free_guest_fpu;
11248
11249         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11250         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11251         kvm_vcpu_mtrr_init(vcpu);
11252         vcpu_load(vcpu);
11253         kvm_set_tsc_khz(vcpu, max_tsc_khz);
11254         kvm_vcpu_reset(vcpu, false);
11255         kvm_init_mmu(vcpu);
11256         vcpu_put(vcpu);
11257         return 0;
11258
11259 free_guest_fpu:
11260         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11261 free_emulate_ctxt:
11262         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11263 free_wbinvd_dirty_mask:
11264         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11265 fail_free_mce_banks:
11266         kfree(vcpu->arch.mce_banks);
11267 fail_free_pio_data:
11268         free_page((unsigned long)vcpu->arch.pio_data);
11269 fail_free_lapic:
11270         kvm_free_lapic(vcpu);
11271 fail_mmu_destroy:
11272         kvm_mmu_destroy(vcpu);
11273         return r;
11274 }
11275
11276 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11277 {
11278         struct kvm *kvm = vcpu->kvm;
11279
11280         if (mutex_lock_killable(&vcpu->mutex))
11281                 return;
11282         vcpu_load(vcpu);
11283         kvm_synchronize_tsc(vcpu, 0);
11284         vcpu_put(vcpu);
11285
11286         /* poll control enabled by default */
11287         vcpu->arch.msr_kvm_poll_control = 1;
11288
11289         mutex_unlock(&vcpu->mutex);
11290
11291         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11292                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11293                                                 KVMCLOCK_SYNC_PERIOD);
11294 }
11295
11296 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11297 {
11298         int idx;
11299
11300         kvmclock_reset(vcpu);
11301
11302         static_call(kvm_x86_vcpu_free)(vcpu);
11303
11304         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11305         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11306         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11307
11308         kvm_hv_vcpu_uninit(vcpu);
11309         kvm_pmu_destroy(vcpu);
11310         kfree(vcpu->arch.mce_banks);
11311         kvm_free_lapic(vcpu);
11312         idx = srcu_read_lock(&vcpu->kvm->srcu);
11313         kvm_mmu_destroy(vcpu);
11314         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11315         free_page((unsigned long)vcpu->arch.pio_data);
11316         kvfree(vcpu->arch.cpuid_entries);
11317         if (!lapic_in_kernel(vcpu))
11318                 static_branch_dec(&kvm_has_noapic_vcpu);
11319 }
11320
11321 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11322 {
11323         struct kvm_cpuid_entry2 *cpuid_0x1;
11324         unsigned long old_cr0 = kvm_read_cr0(vcpu);
11325         unsigned long new_cr0;
11326
11327         /*
11328          * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11329          * to handle side effects.  RESET emulation hits those flows and relies
11330          * on emulated/virtualized registers, including those that are loaded
11331          * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11332          * to detect improper or missing initialization.
11333          */
11334         WARN_ON_ONCE(!init_event &&
11335                      (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11336
11337         kvm_lapic_reset(vcpu, init_event);
11338
11339         vcpu->arch.hflags = 0;
11340
11341         vcpu->arch.smi_pending = 0;
11342         vcpu->arch.smi_count = 0;
11343         atomic_set(&vcpu->arch.nmi_queued, 0);
11344         vcpu->arch.nmi_pending = 0;
11345         vcpu->arch.nmi_injected = false;
11346         kvm_clear_interrupt_queue(vcpu);
11347         kvm_clear_exception_queue(vcpu);
11348
11349         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11350         kvm_update_dr0123(vcpu);
11351         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11352         vcpu->arch.dr7 = DR7_FIXED_1;
11353         kvm_update_dr7(vcpu);
11354
11355         vcpu->arch.cr2 = 0;
11356
11357         kvm_make_request(KVM_REQ_EVENT, vcpu);
11358         vcpu->arch.apf.msr_en_val = 0;
11359         vcpu->arch.apf.msr_int_val = 0;
11360         vcpu->arch.st.msr_val = 0;
11361
11362         kvmclock_reset(vcpu);
11363
11364         kvm_clear_async_pf_completion_queue(vcpu);
11365         kvm_async_pf_hash_reset(vcpu);
11366         vcpu->arch.apf.halted = false;
11367
11368         if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11369                 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11370
11371                 /*
11372                  * To avoid have the INIT path from kvm_apic_has_events() that be
11373                  * called with loaded FPU and does not let userspace fix the state.
11374                  */
11375                 if (init_event)
11376                         kvm_put_guest_fpu(vcpu);
11377
11378                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11379                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11380
11381                 if (init_event)
11382                         kvm_load_guest_fpu(vcpu);
11383         }
11384
11385         if (!init_event) {
11386                 kvm_pmu_reset(vcpu);
11387                 vcpu->arch.smbase = 0x30000;
11388
11389                 vcpu->arch.msr_misc_features_enables = 0;
11390
11391                 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11392                 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11393         }
11394
11395         /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11396         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11397         kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11398
11399         /*
11400          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11401          * if no CPUID match is found.  Note, it's impossible to get a match at
11402          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11403          * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11404          * on RESET.  But, go through the motions in case that's ever remedied.
11405          */
11406         cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11407         kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11408
11409         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11410
11411         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11412         kvm_rip_write(vcpu, 0xfff0);
11413
11414         vcpu->arch.cr3 = 0;
11415         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11416
11417         /*
11418          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11419          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11420          * (or qualify) that with a footnote stating that CD/NW are preserved.
11421          */
11422         new_cr0 = X86_CR0_ET;
11423         if (init_event)
11424                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11425         else
11426                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11427
11428         static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11429         static_call(kvm_x86_set_cr4)(vcpu, 0);
11430         static_call(kvm_x86_set_efer)(vcpu, 0);
11431         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11432
11433         /*
11434          * On the standard CR0/CR4/EFER modification paths, there are several
11435          * complex conditions determining whether the MMU has to be reset and/or
11436          * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11437          * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11438          * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11439          * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11440          */
11441         if (old_cr0 & X86_CR0_PG) {
11442                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11443                 kvm_mmu_reset_context(vcpu);
11444         }
11445
11446         /*
11447          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11448          * APM states the TLBs are untouched by INIT, but it also states that
11449          * the TLBs are flushed on "External initialization of the processor."
11450          * Flush the guest TLB regardless of vendor, there is no meaningful
11451          * benefit in relying on the guest to flush the TLB immediately after
11452          * INIT.  A spurious TLB flush is benign and likely negligible from a
11453          * performance perspective.
11454          */
11455         if (init_event)
11456                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11457 }
11458 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11459
11460 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11461 {
11462         struct kvm_segment cs;
11463
11464         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11465         cs.selector = vector << 8;
11466         cs.base = vector << 12;
11467         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11468         kvm_rip_write(vcpu, 0);
11469 }
11470 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11471
11472 int kvm_arch_hardware_enable(void)
11473 {
11474         struct kvm *kvm;
11475         struct kvm_vcpu *vcpu;
11476         unsigned long i;
11477         int ret;
11478         u64 local_tsc;
11479         u64 max_tsc = 0;
11480         bool stable, backwards_tsc = false;
11481
11482         kvm_user_return_msr_cpu_online();
11483         ret = static_call(kvm_x86_hardware_enable)();
11484         if (ret != 0)
11485                 return ret;
11486
11487         local_tsc = rdtsc();
11488         stable = !kvm_check_tsc_unstable();
11489         list_for_each_entry(kvm, &vm_list, vm_list) {
11490                 kvm_for_each_vcpu(i, vcpu, kvm) {
11491                         if (!stable && vcpu->cpu == smp_processor_id())
11492                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11493                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11494                                 backwards_tsc = true;
11495                                 if (vcpu->arch.last_host_tsc > max_tsc)
11496                                         max_tsc = vcpu->arch.last_host_tsc;
11497                         }
11498                 }
11499         }
11500
11501         /*
11502          * Sometimes, even reliable TSCs go backwards.  This happens on
11503          * platforms that reset TSC during suspend or hibernate actions, but
11504          * maintain synchronization.  We must compensate.  Fortunately, we can
11505          * detect that condition here, which happens early in CPU bringup,
11506          * before any KVM threads can be running.  Unfortunately, we can't
11507          * bring the TSCs fully up to date with real time, as we aren't yet far
11508          * enough into CPU bringup that we know how much real time has actually
11509          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11510          * variables that haven't been updated yet.
11511          *
11512          * So we simply find the maximum observed TSC above, then record the
11513          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11514          * the adjustment will be applied.  Note that we accumulate
11515          * adjustments, in case multiple suspend cycles happen before some VCPU
11516          * gets a chance to run again.  In the event that no KVM threads get a
11517          * chance to run, we will miss the entire elapsed period, as we'll have
11518          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11519          * loose cycle time.  This isn't too big a deal, since the loss will be
11520          * uniform across all VCPUs (not to mention the scenario is extremely
11521          * unlikely). It is possible that a second hibernate recovery happens
11522          * much faster than a first, causing the observed TSC here to be
11523          * smaller; this would require additional padding adjustment, which is
11524          * why we set last_host_tsc to the local tsc observed here.
11525          *
11526          * N.B. - this code below runs only on platforms with reliable TSC,
11527          * as that is the only way backwards_tsc is set above.  Also note
11528          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11529          * have the same delta_cyc adjustment applied if backwards_tsc
11530          * is detected.  Note further, this adjustment is only done once,
11531          * as we reset last_host_tsc on all VCPUs to stop this from being
11532          * called multiple times (one for each physical CPU bringup).
11533          *
11534          * Platforms with unreliable TSCs don't have to deal with this, they
11535          * will be compensated by the logic in vcpu_load, which sets the TSC to
11536          * catchup mode.  This will catchup all VCPUs to real time, but cannot
11537          * guarantee that they stay in perfect synchronization.
11538          */
11539         if (backwards_tsc) {
11540                 u64 delta_cyc = max_tsc - local_tsc;
11541                 list_for_each_entry(kvm, &vm_list, vm_list) {
11542                         kvm->arch.backwards_tsc_observed = true;
11543                         kvm_for_each_vcpu(i, vcpu, kvm) {
11544                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11545                                 vcpu->arch.last_host_tsc = local_tsc;
11546                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11547                         }
11548
11549                         /*
11550                          * We have to disable TSC offset matching.. if you were
11551                          * booting a VM while issuing an S4 host suspend....
11552                          * you may have some problem.  Solving this issue is
11553                          * left as an exercise to the reader.
11554                          */
11555                         kvm->arch.last_tsc_nsec = 0;
11556                         kvm->arch.last_tsc_write = 0;
11557                 }
11558
11559         }
11560         return 0;
11561 }
11562
11563 void kvm_arch_hardware_disable(void)
11564 {
11565         static_call(kvm_x86_hardware_disable)();
11566         drop_user_return_notifiers();
11567 }
11568
11569 int kvm_arch_hardware_setup(void *opaque)
11570 {
11571         struct kvm_x86_init_ops *ops = opaque;
11572         int r;
11573
11574         rdmsrl_safe(MSR_EFER, &host_efer);
11575
11576         if (boot_cpu_has(X86_FEATURE_XSAVES))
11577                 rdmsrl(MSR_IA32_XSS, host_xss);
11578
11579         r = ops->hardware_setup();
11580         if (r != 0)
11581                 return r;
11582
11583         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11584         kvm_ops_static_call_update();
11585
11586         kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11587
11588         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11589                 supported_xss = 0;
11590
11591 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11592         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11593 #undef __kvm_cpu_cap_has
11594
11595         if (kvm_has_tsc_control) {
11596                 /*
11597                  * Make sure the user can only configure tsc_khz values that
11598                  * fit into a signed integer.
11599                  * A min value is not calculated because it will always
11600                  * be 1 on all machines.
11601                  */
11602                 u64 max = min(0x7fffffffULL,
11603                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11604                 kvm_max_guest_tsc_khz = max;
11605         }
11606         kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11607         kvm_init_msr_list();
11608         return 0;
11609 }
11610
11611 void kvm_arch_hardware_unsetup(void)
11612 {
11613         kvm_unregister_perf_callbacks();
11614
11615         static_call(kvm_x86_hardware_unsetup)();
11616 }
11617
11618 int kvm_arch_check_processor_compat(void *opaque)
11619 {
11620         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11621         struct kvm_x86_init_ops *ops = opaque;
11622
11623         WARN_ON(!irqs_disabled());
11624
11625         if (__cr4_reserved_bits(cpu_has, c) !=
11626             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11627                 return -EIO;
11628
11629         return ops->check_processor_compatibility();
11630 }
11631
11632 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11633 {
11634         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11635 }
11636 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11637
11638 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11639 {
11640         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11641 }
11642
11643 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11644 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11645
11646 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11647 {
11648         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11649
11650         vcpu->arch.l1tf_flush_l1d = true;
11651         if (pmu->version && unlikely(pmu->event_count)) {
11652                 pmu->need_cleanup = true;
11653                 kvm_make_request(KVM_REQ_PMU, vcpu);
11654         }
11655         static_call(kvm_x86_sched_in)(vcpu, cpu);
11656 }
11657
11658 void kvm_arch_free_vm(struct kvm *kvm)
11659 {
11660         kfree(to_kvm_hv(kvm)->hv_pa_pg);
11661         __kvm_arch_free_vm(kvm);
11662 }
11663
11664
11665 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11666 {
11667         int ret;
11668         unsigned long flags;
11669
11670         if (type)
11671                 return -EINVAL;
11672
11673         ret = kvm_page_track_init(kvm);
11674         if (ret)
11675                 goto out;
11676
11677         ret = kvm_mmu_init_vm(kvm);
11678         if (ret)
11679                 goto out_page_track;
11680
11681         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11682         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11683         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11684
11685         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11686         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11687         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11688         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11689                 &kvm->arch.irq_sources_bitmap);
11690
11691         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11692         mutex_init(&kvm->arch.apic_map_lock);
11693         seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11694         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11695
11696         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11697         pvclock_update_vm_gtod_copy(kvm);
11698         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11699
11700         kvm->arch.guest_can_read_msr_platform_info = true;
11701         kvm->arch.enable_pmu = enable_pmu;
11702
11703 #if IS_ENABLED(CONFIG_HYPERV)
11704         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11705         kvm->arch.hv_root_tdp = INVALID_PAGE;
11706 #endif
11707
11708         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11709         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11710
11711         kvm_apicv_init(kvm);
11712         kvm_hv_init_vm(kvm);
11713         kvm_xen_init_vm(kvm);
11714
11715         return static_call(kvm_x86_vm_init)(kvm);
11716
11717 out_page_track:
11718         kvm_page_track_cleanup(kvm);
11719 out:
11720         return ret;
11721 }
11722
11723 int kvm_arch_post_init_vm(struct kvm *kvm)
11724 {
11725         return kvm_mmu_post_init_vm(kvm);
11726 }
11727
11728 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11729 {
11730         vcpu_load(vcpu);
11731         kvm_mmu_unload(vcpu);
11732         vcpu_put(vcpu);
11733 }
11734
11735 static void kvm_free_vcpus(struct kvm *kvm)
11736 {
11737         unsigned long i;
11738         struct kvm_vcpu *vcpu;
11739
11740         /*
11741          * Unpin any mmu pages first.
11742          */
11743         kvm_for_each_vcpu(i, vcpu, kvm) {
11744                 kvm_clear_async_pf_completion_queue(vcpu);
11745                 kvm_unload_vcpu_mmu(vcpu);
11746         }
11747
11748         kvm_destroy_vcpus(kvm);
11749 }
11750
11751 void kvm_arch_sync_events(struct kvm *kvm)
11752 {
11753         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11754         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11755         kvm_free_pit(kvm);
11756 }
11757
11758 /**
11759  * __x86_set_memory_region: Setup KVM internal memory slot
11760  *
11761  * @kvm: the kvm pointer to the VM.
11762  * @id: the slot ID to setup.
11763  * @gpa: the GPA to install the slot (unused when @size == 0).
11764  * @size: the size of the slot. Set to zero to uninstall a slot.
11765  *
11766  * This function helps to setup a KVM internal memory slot.  Specify
11767  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11768  * slot.  The return code can be one of the following:
11769  *
11770  *   HVA:           on success (uninstall will return a bogus HVA)
11771  *   -errno:        on error
11772  *
11773  * The caller should always use IS_ERR() to check the return value
11774  * before use.  Note, the KVM internal memory slots are guaranteed to
11775  * remain valid and unchanged until the VM is destroyed, i.e., the
11776  * GPA->HVA translation will not change.  However, the HVA is a user
11777  * address, i.e. its accessibility is not guaranteed, and must be
11778  * accessed via __copy_{to,from}_user().
11779  */
11780 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11781                                       u32 size)
11782 {
11783         int i, r;
11784         unsigned long hva, old_npages;
11785         struct kvm_memslots *slots = kvm_memslots(kvm);
11786         struct kvm_memory_slot *slot;
11787
11788         /* Called with kvm->slots_lock held.  */
11789         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11790                 return ERR_PTR_USR(-EINVAL);
11791
11792         slot = id_to_memslot(slots, id);
11793         if (size) {
11794                 if (slot && slot->npages)
11795                         return ERR_PTR_USR(-EEXIST);
11796
11797                 /*
11798                  * MAP_SHARED to prevent internal slot pages from being moved
11799                  * by fork()/COW.
11800                  */
11801                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11802                               MAP_SHARED | MAP_ANONYMOUS, 0);
11803                 if (IS_ERR((void *)hva))
11804                         return (void __user *)hva;
11805         } else {
11806                 if (!slot || !slot->npages)
11807                         return NULL;
11808
11809                 old_npages = slot->npages;
11810                 hva = slot->userspace_addr;
11811         }
11812
11813         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11814                 struct kvm_userspace_memory_region m;
11815
11816                 m.slot = id | (i << 16);
11817                 m.flags = 0;
11818                 m.guest_phys_addr = gpa;
11819                 m.userspace_addr = hva;
11820                 m.memory_size = size;
11821                 r = __kvm_set_memory_region(kvm, &m);
11822                 if (r < 0)
11823                         return ERR_PTR_USR(r);
11824         }
11825
11826         if (!size)
11827                 vm_munmap(hva, old_npages * PAGE_SIZE);
11828
11829         return (void __user *)hva;
11830 }
11831 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11832
11833 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11834 {
11835         kvm_mmu_pre_destroy_vm(kvm);
11836 }
11837
11838 void kvm_arch_destroy_vm(struct kvm *kvm)
11839 {
11840         if (current->mm == kvm->mm) {
11841                 /*
11842                  * Free memory regions allocated on behalf of userspace,
11843                  * unless the the memory map has changed due to process exit
11844                  * or fd copying.
11845                  */
11846                 mutex_lock(&kvm->slots_lock);
11847                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11848                                         0, 0);
11849                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11850                                         0, 0);
11851                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11852                 mutex_unlock(&kvm->slots_lock);
11853         }
11854         static_call_cond(kvm_x86_vm_destroy)(kvm);
11855         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11856         kvm_pic_destroy(kvm);
11857         kvm_ioapic_destroy(kvm);
11858         kvm_free_vcpus(kvm);
11859         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11860         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11861         kvm_mmu_uninit_vm(kvm);
11862         kvm_page_track_cleanup(kvm);
11863         kvm_xen_destroy_vm(kvm);
11864         kvm_hv_destroy_vm(kvm);
11865 }
11866
11867 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11868 {
11869         int i;
11870
11871         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11872                 kvfree(slot->arch.rmap[i]);
11873                 slot->arch.rmap[i] = NULL;
11874         }
11875 }
11876
11877 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11878 {
11879         int i;
11880
11881         memslot_rmap_free(slot);
11882
11883         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11884                 kvfree(slot->arch.lpage_info[i - 1]);
11885                 slot->arch.lpage_info[i - 1] = NULL;
11886         }
11887
11888         kvm_page_track_free_memslot(slot);
11889 }
11890
11891 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
11892 {
11893         const int sz = sizeof(*slot->arch.rmap[0]);
11894         int i;
11895
11896         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11897                 int level = i + 1;
11898                 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11899
11900                 if (slot->arch.rmap[i])
11901                         continue;
11902
11903                 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11904                 if (!slot->arch.rmap[i]) {
11905                         memslot_rmap_free(slot);
11906                         return -ENOMEM;
11907                 }
11908         }
11909
11910         return 0;
11911 }
11912
11913 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11914                                       struct kvm_memory_slot *slot)
11915 {
11916         unsigned long npages = slot->npages;
11917         int i, r;
11918
11919         /*
11920          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
11921          * old arrays will be freed by __kvm_set_memory_region() if installing
11922          * the new memslot is successful.
11923          */
11924         memset(&slot->arch, 0, sizeof(slot->arch));
11925
11926         if (kvm_memslots_have_rmaps(kvm)) {
11927                 r = memslot_rmap_alloc(slot, npages);
11928                 if (r)
11929                         return r;
11930         }
11931
11932         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11933                 struct kvm_lpage_info *linfo;
11934                 unsigned long ugfn;
11935                 int lpages;
11936                 int level = i + 1;
11937
11938                 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11939
11940                 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11941                 if (!linfo)
11942                         goto out_free;
11943
11944                 slot->arch.lpage_info[i - 1] = linfo;
11945
11946                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11947                         linfo[0].disallow_lpage = 1;
11948                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11949                         linfo[lpages - 1].disallow_lpage = 1;
11950                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11951                 /*
11952                  * If the gfn and userspace address are not aligned wrt each
11953                  * other, disable large page support for this slot.
11954                  */
11955                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11956                         unsigned long j;
11957
11958                         for (j = 0; j < lpages; ++j)
11959                                 linfo[j].disallow_lpage = 1;
11960                 }
11961         }
11962
11963         if (kvm_page_track_create_memslot(kvm, slot, npages))
11964                 goto out_free;
11965
11966         return 0;
11967
11968 out_free:
11969         memslot_rmap_free(slot);
11970
11971         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11972                 kvfree(slot->arch.lpage_info[i - 1]);
11973                 slot->arch.lpage_info[i - 1] = NULL;
11974         }
11975         return -ENOMEM;
11976 }
11977
11978 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11979 {
11980         struct kvm_vcpu *vcpu;
11981         unsigned long i;
11982
11983         /*
11984          * memslots->generation has been incremented.
11985          * mmio generation may have reached its maximum value.
11986          */
11987         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11988
11989         /* Force re-initialization of steal_time cache */
11990         kvm_for_each_vcpu(i, vcpu, kvm)
11991                 kvm_vcpu_kick(vcpu);
11992 }
11993
11994 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11995                                    const struct kvm_memory_slot *old,
11996                                    struct kvm_memory_slot *new,
11997                                    enum kvm_mr_change change)
11998 {
11999         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
12000                 return kvm_alloc_memslot_metadata(kvm, new);
12001
12002         if (change == KVM_MR_FLAGS_ONLY)
12003                 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12004         else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12005                 return -EIO;
12006
12007         return 0;
12008 }
12009
12010
12011 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12012 {
12013         struct kvm_arch *ka = &kvm->arch;
12014
12015         if (!kvm_x86_ops.cpu_dirty_log_size)
12016                 return;
12017
12018         if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12019             (!enable && --ka->cpu_dirty_logging_count == 0))
12020                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12021
12022         WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12023 }
12024
12025 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12026                                      struct kvm_memory_slot *old,
12027                                      const struct kvm_memory_slot *new,
12028                                      enum kvm_mr_change change)
12029 {
12030         u32 old_flags = old ? old->flags : 0;
12031         u32 new_flags = new ? new->flags : 0;
12032         bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12033
12034         /*
12035          * Update CPU dirty logging if dirty logging is being toggled.  This
12036          * applies to all operations.
12037          */
12038         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12039                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12040
12041         /*
12042          * Nothing more to do for RO slots (which can't be dirtied and can't be
12043          * made writable) or CREATE/MOVE/DELETE of a slot.
12044          *
12045          * For a memslot with dirty logging disabled:
12046          * CREATE:      No dirty mappings will already exist.
12047          * MOVE/DELETE: The old mappings will already have been cleaned up by
12048          *              kvm_arch_flush_shadow_memslot()
12049          *
12050          * For a memslot with dirty logging enabled:
12051          * CREATE:      No shadow pages exist, thus nothing to write-protect
12052          *              and no dirty bits to clear.
12053          * MOVE/DELETE: The old mappings will already have been cleaned up by
12054          *              kvm_arch_flush_shadow_memslot().
12055          */
12056         if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12057                 return;
12058
12059         /*
12060          * READONLY and non-flags changes were filtered out above, and the only
12061          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12062          * logging isn't being toggled on or off.
12063          */
12064         if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12065                 return;
12066
12067         if (!log_dirty_pages) {
12068                 /*
12069                  * Dirty logging tracks sptes in 4k granularity, meaning that
12070                  * large sptes have to be split.  If live migration succeeds,
12071                  * the guest in the source machine will be destroyed and large
12072                  * sptes will be created in the destination.  However, if the
12073                  * guest continues to run in the source machine (for example if
12074                  * live migration fails), small sptes will remain around and
12075                  * cause bad performance.
12076                  *
12077                  * Scan sptes if dirty logging has been stopped, dropping those
12078                  * which can be collapsed into a single large-page spte.  Later
12079                  * page faults will create the large-page sptes.
12080                  */
12081                 kvm_mmu_zap_collapsible_sptes(kvm, new);
12082         } else {
12083                 /*
12084                  * Initially-all-set does not require write protecting any page,
12085                  * because they're all assumed to be dirty.
12086                  */
12087                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12088                         return;
12089
12090                 if (READ_ONCE(eager_page_split))
12091                         kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12092
12093                 if (kvm_x86_ops.cpu_dirty_log_size) {
12094                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12095                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12096                 } else {
12097                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12098                 }
12099         }
12100 }
12101
12102 void kvm_arch_commit_memory_region(struct kvm *kvm,
12103                                 struct kvm_memory_slot *old,
12104                                 const struct kvm_memory_slot *new,
12105                                 enum kvm_mr_change change)
12106 {
12107         if (!kvm->arch.n_requested_mmu_pages &&
12108             (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12109                 unsigned long nr_mmu_pages;
12110
12111                 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12112                 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12113                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12114         }
12115
12116         kvm_mmu_slot_apply_flags(kvm, old, new, change);
12117
12118         /* Free the arrays associated with the old memslot. */
12119         if (change == KVM_MR_MOVE)
12120                 kvm_arch_free_memslot(kvm, old);
12121 }
12122
12123 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12124 {
12125         kvm_mmu_zap_all(kvm);
12126 }
12127
12128 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12129                                    struct kvm_memory_slot *slot)
12130 {
12131         kvm_page_track_flush_slot(kvm, slot);
12132 }
12133
12134 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12135 {
12136         return (is_guest_mode(vcpu) &&
12137                 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12138 }
12139
12140 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12141 {
12142         if (!list_empty_careful(&vcpu->async_pf.done))
12143                 return true;
12144
12145         if (kvm_apic_has_events(vcpu))
12146                 return true;
12147
12148         if (vcpu->arch.pv.pv_unhalted)
12149                 return true;
12150
12151         if (vcpu->arch.exception.pending)
12152                 return true;
12153
12154         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12155             (vcpu->arch.nmi_pending &&
12156              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12157                 return true;
12158
12159         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12160             (vcpu->arch.smi_pending &&
12161              static_call(kvm_x86_smi_allowed)(vcpu, false)))
12162                 return true;
12163
12164         if (kvm_arch_interrupt_allowed(vcpu) &&
12165             (kvm_cpu_has_interrupt(vcpu) ||
12166             kvm_guest_apic_has_interrupt(vcpu)))
12167                 return true;
12168
12169         if (kvm_hv_has_stimer_pending(vcpu))
12170                 return true;
12171
12172         if (is_guest_mode(vcpu) &&
12173             kvm_x86_ops.nested_ops->hv_timer_pending &&
12174             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12175                 return true;
12176
12177         return false;
12178 }
12179
12180 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12181 {
12182         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12183 }
12184
12185 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12186 {
12187         if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12188                 return true;
12189
12190         return false;
12191 }
12192
12193 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12194 {
12195         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12196                 return true;
12197
12198         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12199                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12200                  kvm_test_request(KVM_REQ_EVENT, vcpu))
12201                 return true;
12202
12203         return kvm_arch_dy_has_pending_interrupt(vcpu);
12204 }
12205
12206 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12207 {
12208         if (vcpu->arch.guest_state_protected)
12209                 return true;
12210
12211         return vcpu->arch.preempted_in_kernel;
12212 }
12213
12214 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12215 {
12216         return kvm_rip_read(vcpu);
12217 }
12218
12219 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12220 {
12221         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12222 }
12223
12224 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12225 {
12226         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12227 }
12228
12229 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12230 {
12231         /* Can't read the RIP when guest state is protected, just return 0 */
12232         if (vcpu->arch.guest_state_protected)
12233                 return 0;
12234
12235         if (is_64_bit_mode(vcpu))
12236                 return kvm_rip_read(vcpu);
12237         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12238                      kvm_rip_read(vcpu));
12239 }
12240 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12241
12242 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12243 {
12244         return kvm_get_linear_rip(vcpu) == linear_rip;
12245 }
12246 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12247
12248 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12249 {
12250         unsigned long rflags;
12251
12252         rflags = static_call(kvm_x86_get_rflags)(vcpu);
12253         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12254                 rflags &= ~X86_EFLAGS_TF;
12255         return rflags;
12256 }
12257 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12258
12259 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12260 {
12261         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12262             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12263                 rflags |= X86_EFLAGS_TF;
12264         static_call(kvm_x86_set_rflags)(vcpu, rflags);
12265 }
12266
12267 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12268 {
12269         __kvm_set_rflags(vcpu, rflags);
12270         kvm_make_request(KVM_REQ_EVENT, vcpu);
12271 }
12272 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12273
12274 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
12275 {
12276         int r;
12277
12278         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
12279               work->wakeup_all)
12280                 return;
12281
12282         r = kvm_mmu_reload(vcpu);
12283         if (unlikely(r))
12284                 return;
12285
12286         if (!vcpu->arch.mmu->direct_map &&
12287               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
12288                 return;
12289
12290         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
12291 }
12292
12293 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12294 {
12295         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12296
12297         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12298 }
12299
12300 static inline u32 kvm_async_pf_next_probe(u32 key)
12301 {
12302         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12303 }
12304
12305 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12306 {
12307         u32 key = kvm_async_pf_hash_fn(gfn);
12308
12309         while (vcpu->arch.apf.gfns[key] != ~0)
12310                 key = kvm_async_pf_next_probe(key);
12311
12312         vcpu->arch.apf.gfns[key] = gfn;
12313 }
12314
12315 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12316 {
12317         int i;
12318         u32 key = kvm_async_pf_hash_fn(gfn);
12319
12320         for (i = 0; i < ASYNC_PF_PER_VCPU &&
12321                      (vcpu->arch.apf.gfns[key] != gfn &&
12322                       vcpu->arch.apf.gfns[key] != ~0); i++)
12323                 key = kvm_async_pf_next_probe(key);
12324
12325         return key;
12326 }
12327
12328 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12329 {
12330         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12331 }
12332
12333 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12334 {
12335         u32 i, j, k;
12336
12337         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12338
12339         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12340                 return;
12341
12342         while (true) {
12343                 vcpu->arch.apf.gfns[i] = ~0;
12344                 do {
12345                         j = kvm_async_pf_next_probe(j);
12346                         if (vcpu->arch.apf.gfns[j] == ~0)
12347                                 return;
12348                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12349                         /*
12350                          * k lies cyclically in ]i,j]
12351                          * |    i.k.j |
12352                          * |....j i.k.| or  |.k..j i...|
12353                          */
12354                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12355                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12356                 i = j;
12357         }
12358 }
12359
12360 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12361 {
12362         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12363
12364         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12365                                       sizeof(reason));
12366 }
12367
12368 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12369 {
12370         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12371
12372         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12373                                              &token, offset, sizeof(token));
12374 }
12375
12376 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12377 {
12378         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12379         u32 val;
12380
12381         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12382                                          &val, offset, sizeof(val)))
12383                 return false;
12384
12385         return !val;
12386 }
12387
12388 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12389 {
12390
12391         if (!kvm_pv_async_pf_enabled(vcpu))
12392                 return false;
12393
12394         if (vcpu->arch.apf.send_user_only &&
12395             static_call(kvm_x86_get_cpl)(vcpu) == 0)
12396                 return false;
12397
12398         if (is_guest_mode(vcpu)) {
12399                 /*
12400                  * L1 needs to opt into the special #PF vmexits that are
12401                  * used to deliver async page faults.
12402                  */
12403                 return vcpu->arch.apf.delivery_as_pf_vmexit;
12404         } else {
12405                 /*
12406                  * Play it safe in case the guest temporarily disables paging.
12407                  * The real mode IDT in particular is unlikely to have a #PF
12408                  * exception setup.
12409                  */
12410                 return is_paging(vcpu);
12411         }
12412 }
12413
12414 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12415 {
12416         if (unlikely(!lapic_in_kernel(vcpu) ||
12417                      kvm_event_needs_reinjection(vcpu) ||
12418                      vcpu->arch.exception.pending))
12419                 return false;
12420
12421         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12422                 return false;
12423
12424         /*
12425          * If interrupts are off we cannot even use an artificial
12426          * halt state.
12427          */
12428         return kvm_arch_interrupt_allowed(vcpu);
12429 }
12430
12431 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12432                                      struct kvm_async_pf *work)
12433 {
12434         struct x86_exception fault;
12435
12436         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12437         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12438
12439         if (kvm_can_deliver_async_pf(vcpu) &&
12440             !apf_put_user_notpresent(vcpu)) {
12441                 fault.vector = PF_VECTOR;
12442                 fault.error_code_valid = true;
12443                 fault.error_code = 0;
12444                 fault.nested_page_fault = false;
12445                 fault.address = work->arch.token;
12446                 fault.async_page_fault = true;
12447                 kvm_inject_page_fault(vcpu, &fault);
12448                 return true;
12449         } else {
12450                 /*
12451                  * It is not possible to deliver a paravirtualized asynchronous
12452                  * page fault, but putting the guest in an artificial halt state
12453                  * can be beneficial nevertheless: if an interrupt arrives, we
12454                  * can deliver it timely and perhaps the guest will schedule
12455                  * another process.  When the instruction that triggered a page
12456                  * fault is retried, hopefully the page will be ready in the host.
12457                  */
12458                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12459                 return false;
12460         }
12461 }
12462
12463 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12464                                  struct kvm_async_pf *work)
12465 {
12466         struct kvm_lapic_irq irq = {
12467                 .delivery_mode = APIC_DM_FIXED,
12468                 .vector = vcpu->arch.apf.vec
12469         };
12470
12471         if (work->wakeup_all)
12472                 work->arch.token = ~0; /* broadcast wakeup */
12473         else
12474                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12475         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12476
12477         if ((work->wakeup_all || work->notpresent_injected) &&
12478             kvm_pv_async_pf_enabled(vcpu) &&
12479             !apf_put_user_ready(vcpu, work->arch.token)) {
12480                 vcpu->arch.apf.pageready_pending = true;
12481                 kvm_apic_set_irq(vcpu, &irq, NULL);
12482         }
12483
12484         vcpu->arch.apf.halted = false;
12485         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12486 }
12487
12488 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12489 {
12490         kvm_make_request(KVM_REQ_APF_READY, vcpu);
12491         if (!vcpu->arch.apf.pageready_pending)
12492                 kvm_vcpu_kick(vcpu);
12493 }
12494
12495 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12496 {
12497         if (!kvm_pv_async_pf_enabled(vcpu))
12498                 return true;
12499         else
12500                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12501 }
12502
12503 void kvm_arch_start_assignment(struct kvm *kvm)
12504 {
12505         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12506                 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12507 }
12508 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12509
12510 void kvm_arch_end_assignment(struct kvm *kvm)
12511 {
12512         atomic_dec(&kvm->arch.assigned_device_count);
12513 }
12514 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12515
12516 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12517 {
12518         return atomic_read(&kvm->arch.assigned_device_count);
12519 }
12520 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12521
12522 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12523 {
12524         atomic_inc(&kvm->arch.noncoherent_dma_count);
12525 }
12526 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12527
12528 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12529 {
12530         atomic_dec(&kvm->arch.noncoherent_dma_count);
12531 }
12532 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12533
12534 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12535 {
12536         return atomic_read(&kvm->arch.noncoherent_dma_count);
12537 }
12538 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12539
12540 bool kvm_arch_has_irq_bypass(void)
12541 {
12542         return true;
12543 }
12544
12545 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12546                                       struct irq_bypass_producer *prod)
12547 {
12548         struct kvm_kernel_irqfd *irqfd =
12549                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12550         int ret;
12551
12552         irqfd->producer = prod;
12553         kvm_arch_start_assignment(irqfd->kvm);
12554         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
12555                                          prod->irq, irqfd->gsi, 1);
12556
12557         if (ret)
12558                 kvm_arch_end_assignment(irqfd->kvm);
12559
12560         return ret;
12561 }
12562
12563 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12564                                       struct irq_bypass_producer *prod)
12565 {
12566         int ret;
12567         struct kvm_kernel_irqfd *irqfd =
12568                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12569
12570         WARN_ON(irqfd->producer != prod);
12571         irqfd->producer = NULL;
12572
12573         /*
12574          * When producer of consumer is unregistered, we change back to
12575          * remapped mode, so we can re-use the current implementation
12576          * when the irq is masked/disabled or the consumer side (KVM
12577          * int this case doesn't want to receive the interrupts.
12578         */
12579         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12580         if (ret)
12581                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12582                        " fails: %d\n", irqfd->consumer.token, ret);
12583
12584         kvm_arch_end_assignment(irqfd->kvm);
12585 }
12586
12587 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12588                                    uint32_t guest_irq, bool set)
12589 {
12590         return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
12591 }
12592
12593 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12594                                   struct kvm_kernel_irq_routing_entry *new)
12595 {
12596         if (new->type != KVM_IRQ_ROUTING_MSI)
12597                 return true;
12598
12599         return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12600 }
12601
12602 bool kvm_vector_hashing_enabled(void)
12603 {
12604         return vector_hashing;
12605 }
12606
12607 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12608 {
12609         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12610 }
12611 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12612
12613
12614 int kvm_spec_ctrl_test_value(u64 value)
12615 {
12616         /*
12617          * test that setting IA32_SPEC_CTRL to given value
12618          * is allowed by the host processor
12619          */
12620
12621         u64 saved_value;
12622         unsigned long flags;
12623         int ret = 0;
12624
12625         local_irq_save(flags);
12626
12627         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12628                 ret = 1;
12629         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12630                 ret = 1;
12631         else
12632                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12633
12634         local_irq_restore(flags);
12635
12636         return ret;
12637 }
12638 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12639
12640 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12641 {
12642         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12643         struct x86_exception fault;
12644         u64 access = error_code &
12645                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12646
12647         if (!(error_code & PFERR_PRESENT_MASK) ||
12648             mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12649                 /*
12650                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12651                  * tables probably do not match the TLB.  Just proceed
12652                  * with the error code that the processor gave.
12653                  */
12654                 fault.vector = PF_VECTOR;
12655                 fault.error_code_valid = true;
12656                 fault.error_code = error_code;
12657                 fault.nested_page_fault = false;
12658                 fault.address = gva;
12659         }
12660         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12661 }
12662 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12663
12664 /*
12665  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12666  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12667  * indicates whether exit to userspace is needed.
12668  */
12669 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12670                               struct x86_exception *e)
12671 {
12672         if (r == X86EMUL_PROPAGATE_FAULT) {
12673                 kvm_inject_emulated_page_fault(vcpu, e);
12674                 return 1;
12675         }
12676
12677         /*
12678          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12679          * while handling a VMX instruction KVM could've handled the request
12680          * correctly by exiting to userspace and performing I/O but there
12681          * doesn't seem to be a real use-case behind such requests, just return
12682          * KVM_EXIT_INTERNAL_ERROR for now.
12683          */
12684         kvm_prepare_emulation_failure_exit(vcpu);
12685
12686         return 0;
12687 }
12688 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12689
12690 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12691 {
12692         bool pcid_enabled;
12693         struct x86_exception e;
12694         struct {
12695                 u64 pcid;
12696                 u64 gla;
12697         } operand;
12698         int r;
12699
12700         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12701         if (r != X86EMUL_CONTINUE)
12702                 return kvm_handle_memory_failure(vcpu, r, &e);
12703
12704         if (operand.pcid >> 12 != 0) {
12705                 kvm_inject_gp(vcpu, 0);
12706                 return 1;
12707         }
12708
12709         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12710
12711         switch (type) {
12712         case INVPCID_TYPE_INDIV_ADDR:
12713                 if ((!pcid_enabled && (operand.pcid != 0)) ||
12714                     is_noncanonical_address(operand.gla, vcpu)) {
12715                         kvm_inject_gp(vcpu, 0);
12716                         return 1;
12717                 }
12718                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12719                 return kvm_skip_emulated_instruction(vcpu);
12720
12721         case INVPCID_TYPE_SINGLE_CTXT:
12722                 if (!pcid_enabled && (operand.pcid != 0)) {
12723                         kvm_inject_gp(vcpu, 0);
12724                         return 1;
12725                 }
12726
12727                 kvm_invalidate_pcid(vcpu, operand.pcid);
12728                 return kvm_skip_emulated_instruction(vcpu);
12729
12730         case INVPCID_TYPE_ALL_NON_GLOBAL:
12731                 /*
12732                  * Currently, KVM doesn't mark global entries in the shadow
12733                  * page tables, so a non-global flush just degenerates to a
12734                  * global flush. If needed, we could optimize this later by
12735                  * keeping track of global entries in shadow page tables.
12736                  */
12737
12738                 fallthrough;
12739         case INVPCID_TYPE_ALL_INCL_GLOBAL:
12740                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12741                 return kvm_skip_emulated_instruction(vcpu);
12742
12743         default:
12744                 kvm_inject_gp(vcpu, 0);
12745                 return 1;
12746         }
12747 }
12748 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12749
12750 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12751 {
12752         struct kvm_run *run = vcpu->run;
12753         struct kvm_mmio_fragment *frag;
12754         unsigned int len;
12755
12756         BUG_ON(!vcpu->mmio_needed);
12757
12758         /* Complete previous fragment */
12759         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12760         len = min(8u, frag->len);
12761         if (!vcpu->mmio_is_write)
12762                 memcpy(frag->data, run->mmio.data, len);
12763
12764         if (frag->len <= 8) {
12765                 /* Switch to the next fragment. */
12766                 frag++;
12767                 vcpu->mmio_cur_fragment++;
12768         } else {
12769                 /* Go forward to the next mmio piece. */
12770                 frag->data += len;
12771                 frag->gpa += len;
12772                 frag->len -= len;
12773         }
12774
12775         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12776                 vcpu->mmio_needed = 0;
12777
12778                 // VMG change, at this point, we're always done
12779                 // RIP has already been advanced
12780                 return 1;
12781         }
12782
12783         // More MMIO is needed
12784         run->mmio.phys_addr = frag->gpa;
12785         run->mmio.len = min(8u, frag->len);
12786         run->mmio.is_write = vcpu->mmio_is_write;
12787         if (run->mmio.is_write)
12788                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12789         run->exit_reason = KVM_EXIT_MMIO;
12790
12791         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12792
12793         return 0;
12794 }
12795
12796 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12797                           void *data)
12798 {
12799         int handled;
12800         struct kvm_mmio_fragment *frag;
12801
12802         if (!data)
12803                 return -EINVAL;
12804
12805         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12806         if (handled == bytes)
12807                 return 1;
12808
12809         bytes -= handled;
12810         gpa += handled;
12811         data += handled;
12812
12813         /*TODO: Check if need to increment number of frags */
12814         frag = vcpu->mmio_fragments;
12815         vcpu->mmio_nr_fragments = 1;
12816         frag->len = bytes;
12817         frag->gpa = gpa;
12818         frag->data = data;
12819
12820         vcpu->mmio_needed = 1;
12821         vcpu->mmio_cur_fragment = 0;
12822
12823         vcpu->run->mmio.phys_addr = gpa;
12824         vcpu->run->mmio.len = min(8u, frag->len);
12825         vcpu->run->mmio.is_write = 1;
12826         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12827         vcpu->run->exit_reason = KVM_EXIT_MMIO;
12828
12829         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12830
12831         return 0;
12832 }
12833 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12834
12835 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12836                          void *data)
12837 {
12838         int handled;
12839         struct kvm_mmio_fragment *frag;
12840
12841         if (!data)
12842                 return -EINVAL;
12843
12844         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12845         if (handled == bytes)
12846                 return 1;
12847
12848         bytes -= handled;
12849         gpa += handled;
12850         data += handled;
12851
12852         /*TODO: Check if need to increment number of frags */
12853         frag = vcpu->mmio_fragments;
12854         vcpu->mmio_nr_fragments = 1;
12855         frag->len = bytes;
12856         frag->gpa = gpa;
12857         frag->data = data;
12858
12859         vcpu->mmio_needed = 1;
12860         vcpu->mmio_cur_fragment = 0;
12861
12862         vcpu->run->mmio.phys_addr = gpa;
12863         vcpu->run->mmio.len = min(8u, frag->len);
12864         vcpu->run->mmio.is_write = 0;
12865         vcpu->run->exit_reason = KVM_EXIT_MMIO;
12866
12867         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12868
12869         return 0;
12870 }
12871 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12872
12873 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12874                            unsigned int port);
12875
12876 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12877 {
12878         int size = vcpu->arch.pio.size;
12879         int port = vcpu->arch.pio.port;
12880
12881         vcpu->arch.pio.count = 0;
12882         if (vcpu->arch.sev_pio_count)
12883                 return kvm_sev_es_outs(vcpu, size, port);
12884         return 1;
12885 }
12886
12887 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12888                            unsigned int port)
12889 {
12890         for (;;) {
12891                 unsigned int count =
12892                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12893                 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12894
12895                 /* memcpy done already by emulator_pio_out.  */
12896                 vcpu->arch.sev_pio_count -= count;
12897                 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12898                 if (!ret)
12899                         break;
12900
12901                 /* Emulation done by the kernel.  */
12902                 if (!vcpu->arch.sev_pio_count)
12903                         return 1;
12904         }
12905
12906         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12907         return 0;
12908 }
12909
12910 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12911                           unsigned int port);
12912
12913 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12914 {
12915         unsigned count = vcpu->arch.pio.count;
12916         complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12917         vcpu->arch.sev_pio_count -= count;
12918         vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12919 }
12920
12921 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12922 {
12923         int size = vcpu->arch.pio.size;
12924         int port = vcpu->arch.pio.port;
12925
12926         advance_sev_es_emulated_ins(vcpu);
12927         if (vcpu->arch.sev_pio_count)
12928                 return kvm_sev_es_ins(vcpu, size, port);
12929         return 1;
12930 }
12931
12932 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12933                           unsigned int port)
12934 {
12935         for (;;) {
12936                 unsigned int count =
12937                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12938                 if (!__emulator_pio_in(vcpu, size, port, count))
12939                         break;
12940
12941                 /* Emulation done by the kernel.  */
12942                 advance_sev_es_emulated_ins(vcpu);
12943                 if (!vcpu->arch.sev_pio_count)
12944                         return 1;
12945         }
12946
12947         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12948         return 0;
12949 }
12950
12951 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12952                          unsigned int port, void *data,  unsigned int count,
12953                          int in)
12954 {
12955         vcpu->arch.sev_pio_data = data;
12956         vcpu->arch.sev_pio_count = count;
12957         return in ? kvm_sev_es_ins(vcpu, size, port)
12958                   : kvm_sev_es_outs(vcpu, size, port);
12959 }
12960 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12961
12962 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12963 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12964 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12965 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12966 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12967 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12968 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12969 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12970 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12971 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12972 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12973 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12974 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12975 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12976 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12977 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12978 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12979 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12980 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12981 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12982 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12983 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12984 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
12985 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12986 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12987 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12988 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);