KVM: vmx: rename pi_init to avoid conflict with paride
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/io.h>
40 #include <asm/irq_remapping.h>
41 #include <asm/kexec.h>
42 #include <asm/perf_event.h>
43 #include <asm/mce.h>
44 #include <asm/mmu_context.h>
45 #include <asm/mshyperv.h>
46 #include <asm/mwait.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "irq.h"
55 #include "kvm_cache_regs.h"
56 #include "lapic.h"
57 #include "mmu.h"
58 #include "nested.h"
59 #include "pmu.h"
60 #include "trace.h"
61 #include "vmcs.h"
62 #include "vmcs12.h"
63 #include "vmx.h"
64 #include "x86.h"
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 #ifdef MODULE
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71         X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
72         {}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75 #endif
76
77 bool __read_mostly enable_vpid = 1;
78 module_param_named(vpid, enable_vpid, bool, 0444);
79
80 static bool __read_mostly enable_vnmi = 1;
81 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
82
83 bool __read_mostly flexpriority_enabled = 1;
84 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
85
86 bool __read_mostly enable_ept = 1;
87 module_param_named(ept, enable_ept, bool, S_IRUGO);
88
89 bool __read_mostly enable_unrestricted_guest = 1;
90 module_param_named(unrestricted_guest,
91                         enable_unrestricted_guest, bool, S_IRUGO);
92
93 bool __read_mostly enable_ept_ad_bits = 1;
94 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
95
96 static bool __read_mostly emulate_invalid_guest_state = true;
97 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
98
99 static bool __read_mostly fasteoi = 1;
100 module_param(fasteoi, bool, S_IRUGO);
101
102 bool __read_mostly enable_apicv = 1;
103 module_param(enable_apicv, bool, S_IRUGO);
104
105 /*
106  * If nested=1, nested virtualization is supported, i.e., guests may use
107  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
108  * use VMX instructions.
109  */
110 static bool __read_mostly nested = 1;
111 module_param(nested, bool, S_IRUGO);
112
113 bool __read_mostly enable_pml = 1;
114 module_param_named(pml, enable_pml, bool, S_IRUGO);
115
116 static bool __read_mostly dump_invalid_vmcs = 0;
117 module_param(dump_invalid_vmcs, bool, 0644);
118
119 #define MSR_BITMAP_MODE_X2APIC          1
120 #define MSR_BITMAP_MODE_X2APIC_APICV    2
121
122 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
123
124 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
125 static int __read_mostly cpu_preemption_timer_multi;
126 static bool __read_mostly enable_preemption_timer = 1;
127 #ifdef CONFIG_X86_64
128 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
129 #endif
130
131 extern bool __read_mostly allow_smaller_maxphyaddr;
132 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
133
134 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
135 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
136 #define KVM_VM_CR0_ALWAYS_ON                            \
137         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
138          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
139
140 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
141 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
142 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
143
144 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
145
146 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
147         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
148         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
149         RTIT_STATUS_BYTECNT))
150
151 /*
152  * List of MSRs that can be directly passed to the guest.
153  * In addition to these x2apic and PT MSRs are handled specially.
154  */
155 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
156         MSR_IA32_SPEC_CTRL,
157         MSR_IA32_PRED_CMD,
158         MSR_IA32_TSC,
159         MSR_FS_BASE,
160         MSR_GS_BASE,
161         MSR_KERNEL_GS_BASE,
162         MSR_IA32_SYSENTER_CS,
163         MSR_IA32_SYSENTER_ESP,
164         MSR_IA32_SYSENTER_EIP,
165         MSR_CORE_C1_RES,
166         MSR_CORE_C3_RESIDENCY,
167         MSR_CORE_C6_RESIDENCY,
168         MSR_CORE_C7_RESIDENCY,
169 };
170
171 /*
172  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
173  * ple_gap:    upper bound on the amount of time between two successive
174  *             executions of PAUSE in a loop. Also indicate if ple enabled.
175  *             According to test, this time is usually smaller than 128 cycles.
176  * ple_window: upper bound on the amount of time a guest is allowed to execute
177  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
178  *             less than 2^12 cycles
179  * Time is measured based on a counter that runs at the same rate as the TSC,
180  * refer SDM volume 3b section 21.6.13 & 22.1.3.
181  */
182 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
183 module_param(ple_gap, uint, 0444);
184
185 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
186 module_param(ple_window, uint, 0444);
187
188 /* Default doubles per-vcpu window every exit. */
189 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
190 module_param(ple_window_grow, uint, 0444);
191
192 /* Default resets per-vcpu window every exit to ple_window. */
193 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
194 module_param(ple_window_shrink, uint, 0444);
195
196 /* Default is to compute the maximum so we can never overflow. */
197 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
198 module_param(ple_window_max, uint, 0444);
199
200 /* Default is SYSTEM mode, 1 for host-guest mode */
201 int __read_mostly pt_mode = PT_MODE_SYSTEM;
202 module_param(pt_mode, int, S_IRUGO);
203
204 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
205 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
206 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
207
208 /* Storage for pre module init parameter parsing */
209 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
210
211 static const struct {
212         const char *option;
213         bool for_parse;
214 } vmentry_l1d_param[] = {
215         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
216         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
217         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
218         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
219         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
220         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
221 };
222
223 #define L1D_CACHE_ORDER 4
224 static void *vmx_l1d_flush_pages;
225
226 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
227 {
228         struct page *page;
229         unsigned int i;
230
231         if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
232                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
233                 return 0;
234         }
235
236         if (!enable_ept) {
237                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
238                 return 0;
239         }
240
241         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
242                 u64 msr;
243
244                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
245                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
246                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
247                         return 0;
248                 }
249         }
250
251         /* If set to auto use the default l1tf mitigation method */
252         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
253                 switch (l1tf_mitigation) {
254                 case L1TF_MITIGATION_OFF:
255                         l1tf = VMENTER_L1D_FLUSH_NEVER;
256                         break;
257                 case L1TF_MITIGATION_FLUSH_NOWARN:
258                 case L1TF_MITIGATION_FLUSH:
259                 case L1TF_MITIGATION_FLUSH_NOSMT:
260                         l1tf = VMENTER_L1D_FLUSH_COND;
261                         break;
262                 case L1TF_MITIGATION_FULL:
263                 case L1TF_MITIGATION_FULL_FORCE:
264                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
265                         break;
266                 }
267         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
268                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
269         }
270
271         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
272             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
273                 /*
274                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
275                  * lifetime and so should not be charged to a memcg.
276                  */
277                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
278                 if (!page)
279                         return -ENOMEM;
280                 vmx_l1d_flush_pages = page_address(page);
281
282                 /*
283                  * Initialize each page with a different pattern in
284                  * order to protect against KSM in the nested
285                  * virtualization case.
286                  */
287                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
288                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
289                                PAGE_SIZE);
290                 }
291         }
292
293         l1tf_vmx_mitigation = l1tf;
294
295         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
296                 static_branch_enable(&vmx_l1d_should_flush);
297         else
298                 static_branch_disable(&vmx_l1d_should_flush);
299
300         if (l1tf == VMENTER_L1D_FLUSH_COND)
301                 static_branch_enable(&vmx_l1d_flush_cond);
302         else
303                 static_branch_disable(&vmx_l1d_flush_cond);
304         return 0;
305 }
306
307 static int vmentry_l1d_flush_parse(const char *s)
308 {
309         unsigned int i;
310
311         if (s) {
312                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
313                         if (vmentry_l1d_param[i].for_parse &&
314                             sysfs_streq(s, vmentry_l1d_param[i].option))
315                                 return i;
316                 }
317         }
318         return -EINVAL;
319 }
320
321 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
322 {
323         int l1tf, ret;
324
325         l1tf = vmentry_l1d_flush_parse(s);
326         if (l1tf < 0)
327                 return l1tf;
328
329         if (!boot_cpu_has(X86_BUG_L1TF))
330                 return 0;
331
332         /*
333          * Has vmx_init() run already? If not then this is the pre init
334          * parameter parsing. In that case just store the value and let
335          * vmx_init() do the proper setup after enable_ept has been
336          * established.
337          */
338         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
339                 vmentry_l1d_flush_param = l1tf;
340                 return 0;
341         }
342
343         mutex_lock(&vmx_l1d_flush_mutex);
344         ret = vmx_setup_l1d_flush(l1tf);
345         mutex_unlock(&vmx_l1d_flush_mutex);
346         return ret;
347 }
348
349 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
350 {
351         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
352                 return sprintf(s, "???\n");
353
354         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
355 }
356
357 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
358         .set = vmentry_l1d_flush_set,
359         .get = vmentry_l1d_flush_get,
360 };
361 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
362
363 static u32 vmx_segment_access_rights(struct kvm_segment *var);
364 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
365                                                           u32 msr, int type);
366
367 void vmx_vmexit(void);
368
369 #define vmx_insn_failed(fmt...)         \
370 do {                                    \
371         WARN_ONCE(1, fmt);              \
372         pr_warn_ratelimited(fmt);       \
373 } while (0)
374
375 asmlinkage void vmread_error(unsigned long field, bool fault)
376 {
377         if (fault)
378                 kvm_spurious_fault();
379         else
380                 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
381 }
382
383 noinline void vmwrite_error(unsigned long field, unsigned long value)
384 {
385         vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
386                         field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
387 }
388
389 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
390 {
391         vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
392 }
393
394 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
395 {
396         vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
397 }
398
399 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
400 {
401         vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
402                         ext, vpid, gva);
403 }
404
405 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
406 {
407         vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
408                         ext, eptp, gpa);
409 }
410
411 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
412 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
413 /*
414  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
415  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
416  */
417 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
418
419 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
420 static DEFINE_SPINLOCK(vmx_vpid_lock);
421
422 struct vmcs_config vmcs_config;
423 struct vmx_capability vmx_capability;
424
425 #define VMX_SEGMENT_FIELD(seg)                                  \
426         [VCPU_SREG_##seg] = {                                   \
427                 .selector = GUEST_##seg##_SELECTOR,             \
428                 .base = GUEST_##seg##_BASE,                     \
429                 .limit = GUEST_##seg##_LIMIT,                   \
430                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
431         }
432
433 static const struct kvm_vmx_segment_field {
434         unsigned selector;
435         unsigned base;
436         unsigned limit;
437         unsigned ar_bytes;
438 } kvm_vmx_segment_fields[] = {
439         VMX_SEGMENT_FIELD(CS),
440         VMX_SEGMENT_FIELD(DS),
441         VMX_SEGMENT_FIELD(ES),
442         VMX_SEGMENT_FIELD(FS),
443         VMX_SEGMENT_FIELD(GS),
444         VMX_SEGMENT_FIELD(SS),
445         VMX_SEGMENT_FIELD(TR),
446         VMX_SEGMENT_FIELD(LDTR),
447 };
448
449 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
450 {
451         vmx->segment_cache.bitmask = 0;
452 }
453
454 static unsigned long host_idt_base;
455
456 /*
457  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
458  * will emulate SYSCALL in legacy mode if the vendor string in guest
459  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
460  * support this emulation, IA32_STAR must always be included in
461  * vmx_uret_msrs_list[], even in i386 builds.
462  */
463 static const u32 vmx_uret_msrs_list[] = {
464 #ifdef CONFIG_X86_64
465         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
466 #endif
467         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
468         MSR_IA32_TSX_CTRL,
469 };
470
471 #if IS_ENABLED(CONFIG_HYPERV)
472 static bool __read_mostly enlightened_vmcs = true;
473 module_param(enlightened_vmcs, bool, 0444);
474
475 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
476 static void check_ept_pointer_match(struct kvm *kvm)
477 {
478         struct kvm_vcpu *vcpu;
479         u64 tmp_eptp = INVALID_PAGE;
480         int i;
481
482         kvm_for_each_vcpu(i, vcpu, kvm) {
483                 if (!VALID_PAGE(tmp_eptp)) {
484                         tmp_eptp = to_vmx(vcpu)->ept_pointer;
485                 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
486                         to_kvm_vmx(kvm)->ept_pointers_match
487                                 = EPT_POINTERS_MISMATCH;
488                         return;
489                 }
490         }
491
492         to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
493 }
494
495 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
496                 void *data)
497 {
498         struct kvm_tlb_range *range = data;
499
500         return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
501                         range->pages);
502 }
503
504 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
505                 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
506 {
507         u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
508
509         /*
510          * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
511          * of the base of EPT PML4 table, strip off EPT configuration
512          * information.
513          */
514         if (range)
515                 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
516                                 kvm_fill_hv_flush_list_func, (void *)range);
517         else
518                 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
519 }
520
521 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
522                 struct kvm_tlb_range *range)
523 {
524         struct kvm_vcpu *vcpu;
525         int ret = 0, i;
526
527         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
528
529         if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
530                 check_ept_pointer_match(kvm);
531
532         if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
533                 kvm_for_each_vcpu(i, vcpu, kvm) {
534                         /* If ept_pointer is invalid pointer, bypass flush request. */
535                         if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
536                                 ret |= __hv_remote_flush_tlb_with_range(
537                                         kvm, vcpu, range);
538                 }
539         } else {
540                 ret = __hv_remote_flush_tlb_with_range(kvm,
541                                 kvm_get_vcpu(kvm, 0), range);
542         }
543
544         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
545         return ret;
546 }
547 static int hv_remote_flush_tlb(struct kvm *kvm)
548 {
549         return hv_remote_flush_tlb_with_range(kvm, NULL);
550 }
551
552 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
553 {
554         struct hv_enlightened_vmcs *evmcs;
555         struct hv_partition_assist_pg **p_hv_pa_pg =
556                         &vcpu->kvm->arch.hyperv.hv_pa_pg;
557         /*
558          * Synthetic VM-Exit is not enabled in current code and so All
559          * evmcs in singe VM shares same assist page.
560          */
561         if (!*p_hv_pa_pg)
562                 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
563
564         if (!*p_hv_pa_pg)
565                 return -ENOMEM;
566
567         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
568
569         evmcs->partition_assist_page =
570                 __pa(*p_hv_pa_pg);
571         evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
572         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
573
574         return 0;
575 }
576
577 #endif /* IS_ENABLED(CONFIG_HYPERV) */
578
579 /*
580  * Comment's format: document - errata name - stepping - processor name.
581  * Refer from
582  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
583  */
584 static u32 vmx_preemption_cpu_tfms[] = {
585 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
586 0x000206E6,
587 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
588 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
589 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
590 0x00020652,
591 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
592 0x00020655,
593 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
594 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
595 /*
596  * 320767.pdf - AAP86  - B1 -
597  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
598  */
599 0x000106E5,
600 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
601 0x000106A0,
602 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
603 0x000106A1,
604 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
605 0x000106A4,
606  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
607  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
608  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
609 0x000106A5,
610  /* Xeon E3-1220 V2 */
611 0x000306A8,
612 };
613
614 static inline bool cpu_has_broken_vmx_preemption_timer(void)
615 {
616         u32 eax = cpuid_eax(0x00000001), i;
617
618         /* Clear the reserved bits */
619         eax &= ~(0x3U << 14 | 0xfU << 28);
620         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
621                 if (eax == vmx_preemption_cpu_tfms[i])
622                         return true;
623
624         return false;
625 }
626
627 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
628 {
629         return flexpriority_enabled && lapic_in_kernel(vcpu);
630 }
631
632 static inline bool report_flexpriority(void)
633 {
634         return flexpriority_enabled;
635 }
636
637 static int possible_passthrough_msr_slot(u32 msr)
638 {
639         u32 i;
640
641         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
642                 if (vmx_possible_passthrough_msrs[i] == msr)
643                         return i;
644
645         return -ENOENT;
646 }
647
648 static bool is_valid_passthrough_msr(u32 msr)
649 {
650         bool r;
651
652         switch (msr) {
653         case 0x800 ... 0x8ff:
654                 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
655                 return true;
656         case MSR_IA32_RTIT_STATUS:
657         case MSR_IA32_RTIT_OUTPUT_BASE:
658         case MSR_IA32_RTIT_OUTPUT_MASK:
659         case MSR_IA32_RTIT_CR3_MATCH:
660         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
661                 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
662                 return true;
663         }
664
665         r = possible_passthrough_msr_slot(msr) != -ENOENT;
666
667         WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
668
669         return r;
670 }
671
672 static inline int __vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
673 {
674         int i;
675
676         for (i = 0; i < vmx->nr_uret_msrs; ++i)
677                 if (vmx_uret_msrs_list[vmx->guest_uret_msrs[i].slot] == msr)
678                         return i;
679         return -1;
680 }
681
682 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
683 {
684         int i;
685
686         i = __vmx_find_uret_msr(vmx, msr);
687         if (i >= 0)
688                 return &vmx->guest_uret_msrs[i];
689         return NULL;
690 }
691
692 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
693                                   struct vmx_uret_msr *msr, u64 data)
694 {
695         int ret = 0;
696
697         u64 old_msr_data = msr->data;
698         msr->data = data;
699         if (msr - vmx->guest_uret_msrs < vmx->nr_active_uret_msrs) {
700                 preempt_disable();
701                 ret = kvm_set_user_return_msr(msr->slot, msr->data, msr->mask);
702                 preempt_enable();
703                 if (ret)
704                         msr->data = old_msr_data;
705         }
706         return ret;
707 }
708
709 #ifdef CONFIG_KEXEC_CORE
710 static void crash_vmclear_local_loaded_vmcss(void)
711 {
712         int cpu = raw_smp_processor_id();
713         struct loaded_vmcs *v;
714
715         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
716                             loaded_vmcss_on_cpu_link)
717                 vmcs_clear(v->vmcs);
718 }
719 #endif /* CONFIG_KEXEC_CORE */
720
721 static void __loaded_vmcs_clear(void *arg)
722 {
723         struct loaded_vmcs *loaded_vmcs = arg;
724         int cpu = raw_smp_processor_id();
725
726         if (loaded_vmcs->cpu != cpu)
727                 return; /* vcpu migration can race with cpu offline */
728         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
729                 per_cpu(current_vmcs, cpu) = NULL;
730
731         vmcs_clear(loaded_vmcs->vmcs);
732         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
733                 vmcs_clear(loaded_vmcs->shadow_vmcs);
734
735         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
736
737         /*
738          * Ensure all writes to loaded_vmcs, including deleting it from its
739          * current percpu list, complete before setting loaded_vmcs->vcpu to
740          * -1, otherwise a different cpu can see vcpu == -1 first and add
741          * loaded_vmcs to its percpu list before it's deleted from this cpu's
742          * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
743          */
744         smp_wmb();
745
746         loaded_vmcs->cpu = -1;
747         loaded_vmcs->launched = 0;
748 }
749
750 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
751 {
752         int cpu = loaded_vmcs->cpu;
753
754         if (cpu != -1)
755                 smp_call_function_single(cpu,
756                          __loaded_vmcs_clear, loaded_vmcs, 1);
757 }
758
759 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
760                                        unsigned field)
761 {
762         bool ret;
763         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
764
765         if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
766                 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
767                 vmx->segment_cache.bitmask = 0;
768         }
769         ret = vmx->segment_cache.bitmask & mask;
770         vmx->segment_cache.bitmask |= mask;
771         return ret;
772 }
773
774 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
775 {
776         u16 *p = &vmx->segment_cache.seg[seg].selector;
777
778         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
779                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
780         return *p;
781 }
782
783 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
784 {
785         ulong *p = &vmx->segment_cache.seg[seg].base;
786
787         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
788                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
789         return *p;
790 }
791
792 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
793 {
794         u32 *p = &vmx->segment_cache.seg[seg].limit;
795
796         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
797                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
798         return *p;
799 }
800
801 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
802 {
803         u32 *p = &vmx->segment_cache.seg[seg].ar;
804
805         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
806                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
807         return *p;
808 }
809
810 void update_exception_bitmap(struct kvm_vcpu *vcpu)
811 {
812         u32 eb;
813
814         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
815              (1u << DB_VECTOR) | (1u << AC_VECTOR);
816         /*
817          * Guest access to VMware backdoor ports could legitimately
818          * trigger #GP because of TSS I/O permission bitmap.
819          * We intercept those #GP and allow access to them anyway
820          * as VMware does.
821          */
822         if (enable_vmware_backdoor)
823                 eb |= (1u << GP_VECTOR);
824         if ((vcpu->guest_debug &
825              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
826             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
827                 eb |= 1u << BP_VECTOR;
828         if (to_vmx(vcpu)->rmode.vm86_active)
829                 eb = ~0;
830         if (!vmx_need_pf_intercept(vcpu))
831                 eb &= ~(1u << PF_VECTOR);
832
833         /* When we are running a nested L2 guest and L1 specified for it a
834          * certain exception bitmap, we must trap the same exceptions and pass
835          * them to L1. When running L2, we will only handle the exceptions
836          * specified above if L1 did not want them.
837          */
838         if (is_guest_mode(vcpu))
839                 eb |= get_vmcs12(vcpu)->exception_bitmap;
840         else {
841                 /*
842                  * If EPT is enabled, #PF is only trapped if MAXPHYADDR is mismatched
843                  * between guest and host.  In that case we only care about present
844                  * faults.  For vmcs02, however, PFEC_MASK and PFEC_MATCH are set in
845                  * prepare_vmcs02_rare.
846                  */
847                 bool selective_pf_trap = enable_ept && (eb & (1u << PF_VECTOR));
848                 int mask = selective_pf_trap ? PFERR_PRESENT_MASK : 0;
849                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
850                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, mask);
851         }
852
853         vmcs_write32(EXCEPTION_BITMAP, eb);
854 }
855
856 /*
857  * Check if MSR is intercepted for currently loaded MSR bitmap.
858  */
859 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
860 {
861         unsigned long *msr_bitmap;
862         int f = sizeof(unsigned long);
863
864         if (!cpu_has_vmx_msr_bitmap())
865                 return true;
866
867         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
868
869         if (msr <= 0x1fff) {
870                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
871         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
872                 msr &= 0x1fff;
873                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
874         }
875
876         return true;
877 }
878
879 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
880                 unsigned long entry, unsigned long exit)
881 {
882         vm_entry_controls_clearbit(vmx, entry);
883         vm_exit_controls_clearbit(vmx, exit);
884 }
885
886 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
887 {
888         unsigned int i;
889
890         for (i = 0; i < m->nr; ++i) {
891                 if (m->val[i].index == msr)
892                         return i;
893         }
894         return -ENOENT;
895 }
896
897 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
898 {
899         int i;
900         struct msr_autoload *m = &vmx->msr_autoload;
901
902         switch (msr) {
903         case MSR_EFER:
904                 if (cpu_has_load_ia32_efer()) {
905                         clear_atomic_switch_msr_special(vmx,
906                                         VM_ENTRY_LOAD_IA32_EFER,
907                                         VM_EXIT_LOAD_IA32_EFER);
908                         return;
909                 }
910                 break;
911         case MSR_CORE_PERF_GLOBAL_CTRL:
912                 if (cpu_has_load_perf_global_ctrl()) {
913                         clear_atomic_switch_msr_special(vmx,
914                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
915                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
916                         return;
917                 }
918                 break;
919         }
920         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
921         if (i < 0)
922                 goto skip_guest;
923         --m->guest.nr;
924         m->guest.val[i] = m->guest.val[m->guest.nr];
925         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
926
927 skip_guest:
928         i = vmx_find_loadstore_msr_slot(&m->host, msr);
929         if (i < 0)
930                 return;
931
932         --m->host.nr;
933         m->host.val[i] = m->host.val[m->host.nr];
934         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
935 }
936
937 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
938                 unsigned long entry, unsigned long exit,
939                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
940                 u64 guest_val, u64 host_val)
941 {
942         vmcs_write64(guest_val_vmcs, guest_val);
943         if (host_val_vmcs != HOST_IA32_EFER)
944                 vmcs_write64(host_val_vmcs, host_val);
945         vm_entry_controls_setbit(vmx, entry);
946         vm_exit_controls_setbit(vmx, exit);
947 }
948
949 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
950                                   u64 guest_val, u64 host_val, bool entry_only)
951 {
952         int i, j = 0;
953         struct msr_autoload *m = &vmx->msr_autoload;
954
955         switch (msr) {
956         case MSR_EFER:
957                 if (cpu_has_load_ia32_efer()) {
958                         add_atomic_switch_msr_special(vmx,
959                                         VM_ENTRY_LOAD_IA32_EFER,
960                                         VM_EXIT_LOAD_IA32_EFER,
961                                         GUEST_IA32_EFER,
962                                         HOST_IA32_EFER,
963                                         guest_val, host_val);
964                         return;
965                 }
966                 break;
967         case MSR_CORE_PERF_GLOBAL_CTRL:
968                 if (cpu_has_load_perf_global_ctrl()) {
969                         add_atomic_switch_msr_special(vmx,
970                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
971                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
972                                         GUEST_IA32_PERF_GLOBAL_CTRL,
973                                         HOST_IA32_PERF_GLOBAL_CTRL,
974                                         guest_val, host_val);
975                         return;
976                 }
977                 break;
978         case MSR_IA32_PEBS_ENABLE:
979                 /* PEBS needs a quiescent period after being disabled (to write
980                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
981                  * provide that period, so a CPU could write host's record into
982                  * guest's memory.
983                  */
984                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
985         }
986
987         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
988         if (!entry_only)
989                 j = vmx_find_loadstore_msr_slot(&m->host, msr);
990
991         if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
992             (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
993                 printk_once(KERN_WARNING "Not enough msr switch entries. "
994                                 "Can't add msr %x\n", msr);
995                 return;
996         }
997         if (i < 0) {
998                 i = m->guest.nr++;
999                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1000         }
1001         m->guest.val[i].index = msr;
1002         m->guest.val[i].value = guest_val;
1003
1004         if (entry_only)
1005                 return;
1006
1007         if (j < 0) {
1008                 j = m->host.nr++;
1009                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1010         }
1011         m->host.val[j].index = msr;
1012         m->host.val[j].value = host_val;
1013 }
1014
1015 static bool update_transition_efer(struct vcpu_vmx *vmx)
1016 {
1017         u64 guest_efer = vmx->vcpu.arch.efer;
1018         u64 ignore_bits = 0;
1019         int i;
1020
1021         /* Shadow paging assumes NX to be available.  */
1022         if (!enable_ept)
1023                 guest_efer |= EFER_NX;
1024
1025         /*
1026          * LMA and LME handled by hardware; SCE meaningless outside long mode.
1027          */
1028         ignore_bits |= EFER_SCE;
1029 #ifdef CONFIG_X86_64
1030         ignore_bits |= EFER_LMA | EFER_LME;
1031         /* SCE is meaningful only in long mode on Intel */
1032         if (guest_efer & EFER_LMA)
1033                 ignore_bits &= ~(u64)EFER_SCE;
1034 #endif
1035
1036         /*
1037          * On EPT, we can't emulate NX, so we must switch EFER atomically.
1038          * On CPUs that support "load IA32_EFER", always switch EFER
1039          * atomically, since it's faster than switching it manually.
1040          */
1041         if (cpu_has_load_ia32_efer() ||
1042             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1043                 if (!(guest_efer & EFER_LMA))
1044                         guest_efer &= ~EFER_LME;
1045                 if (guest_efer != host_efer)
1046                         add_atomic_switch_msr(vmx, MSR_EFER,
1047                                               guest_efer, host_efer, false);
1048                 else
1049                         clear_atomic_switch_msr(vmx, MSR_EFER);
1050                 return false;
1051         }
1052
1053         i = __vmx_find_uret_msr(vmx, MSR_EFER);
1054         if (i < 0)
1055                 return false;
1056
1057         clear_atomic_switch_msr(vmx, MSR_EFER);
1058
1059         guest_efer &= ~ignore_bits;
1060         guest_efer |= host_efer & ignore_bits;
1061
1062         vmx->guest_uret_msrs[i].data = guest_efer;
1063         vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1064
1065         return true;
1066 }
1067
1068 #ifdef CONFIG_X86_32
1069 /*
1070  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1071  * VMCS rather than the segment table.  KVM uses this helper to figure
1072  * out the current bases to poke them into the VMCS before entry.
1073  */
1074 static unsigned long segment_base(u16 selector)
1075 {
1076         struct desc_struct *table;
1077         unsigned long v;
1078
1079         if (!(selector & ~SEGMENT_RPL_MASK))
1080                 return 0;
1081
1082         table = get_current_gdt_ro();
1083
1084         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1085                 u16 ldt_selector = kvm_read_ldt();
1086
1087                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1088                         return 0;
1089
1090                 table = (struct desc_struct *)segment_base(ldt_selector);
1091         }
1092         v = get_desc_base(&table[selector >> 3]);
1093         return v;
1094 }
1095 #endif
1096
1097 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1098 {
1099         return vmx_pt_mode_is_host_guest() &&
1100                !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1101 }
1102
1103 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1104 {
1105         /* The base must be 128-byte aligned and a legal physical address. */
1106         return !kvm_vcpu_is_illegal_gpa(vcpu, base) && !(base & 0x7f);
1107 }
1108
1109 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1110 {
1111         u32 i;
1112
1113         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1114         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1115         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1116         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1117         for (i = 0; i < addr_range; i++) {
1118                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1119                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1120         }
1121 }
1122
1123 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1124 {
1125         u32 i;
1126
1127         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1128         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1129         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1130         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1131         for (i = 0; i < addr_range; i++) {
1132                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1133                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1134         }
1135 }
1136
1137 static void pt_guest_enter(struct vcpu_vmx *vmx)
1138 {
1139         if (vmx_pt_mode_is_system())
1140                 return;
1141
1142         /*
1143          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1144          * Save host state before VM entry.
1145          */
1146         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1147         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1148                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1149                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1150                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1151         }
1152 }
1153
1154 static void pt_guest_exit(struct vcpu_vmx *vmx)
1155 {
1156         if (vmx_pt_mode_is_system())
1157                 return;
1158
1159         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1160                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1161                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1162         }
1163
1164         /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1165         wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1166 }
1167
1168 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1169                         unsigned long fs_base, unsigned long gs_base)
1170 {
1171         if (unlikely(fs_sel != host->fs_sel)) {
1172                 if (!(fs_sel & 7))
1173                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1174                 else
1175                         vmcs_write16(HOST_FS_SELECTOR, 0);
1176                 host->fs_sel = fs_sel;
1177         }
1178         if (unlikely(gs_sel != host->gs_sel)) {
1179                 if (!(gs_sel & 7))
1180                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1181                 else
1182                         vmcs_write16(HOST_GS_SELECTOR, 0);
1183                 host->gs_sel = gs_sel;
1184         }
1185         if (unlikely(fs_base != host->fs_base)) {
1186                 vmcs_writel(HOST_FS_BASE, fs_base);
1187                 host->fs_base = fs_base;
1188         }
1189         if (unlikely(gs_base != host->gs_base)) {
1190                 vmcs_writel(HOST_GS_BASE, gs_base);
1191                 host->gs_base = gs_base;
1192         }
1193 }
1194
1195 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1196 {
1197         struct vcpu_vmx *vmx = to_vmx(vcpu);
1198         struct vmcs_host_state *host_state;
1199 #ifdef CONFIG_X86_64
1200         int cpu = raw_smp_processor_id();
1201 #endif
1202         unsigned long fs_base, gs_base;
1203         u16 fs_sel, gs_sel;
1204         int i;
1205
1206         vmx->req_immediate_exit = false;
1207
1208         /*
1209          * Note that guest MSRs to be saved/restored can also be changed
1210          * when guest state is loaded. This happens when guest transitions
1211          * to/from long-mode by setting MSR_EFER.LMA.
1212          */
1213         if (!vmx->guest_uret_msrs_loaded) {
1214                 vmx->guest_uret_msrs_loaded = true;
1215                 for (i = 0; i < vmx->nr_active_uret_msrs; ++i)
1216                         kvm_set_user_return_msr(vmx->guest_uret_msrs[i].slot,
1217                                                 vmx->guest_uret_msrs[i].data,
1218                                                 vmx->guest_uret_msrs[i].mask);
1219
1220         }
1221
1222         if (vmx->nested.need_vmcs12_to_shadow_sync)
1223                 nested_sync_vmcs12_to_shadow(vcpu);
1224
1225         if (vmx->guest_state_loaded)
1226                 return;
1227
1228         host_state = &vmx->loaded_vmcs->host_state;
1229
1230         /*
1231          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1232          * allow segment selectors with cpl > 0 or ti == 1.
1233          */
1234         host_state->ldt_sel = kvm_read_ldt();
1235
1236 #ifdef CONFIG_X86_64
1237         savesegment(ds, host_state->ds_sel);
1238         savesegment(es, host_state->es_sel);
1239
1240         gs_base = cpu_kernelmode_gs_base(cpu);
1241         if (likely(is_64bit_mm(current->mm))) {
1242                 current_save_fsgs();
1243                 fs_sel = current->thread.fsindex;
1244                 gs_sel = current->thread.gsindex;
1245                 fs_base = current->thread.fsbase;
1246                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1247         } else {
1248                 savesegment(fs, fs_sel);
1249                 savesegment(gs, gs_sel);
1250                 fs_base = read_msr(MSR_FS_BASE);
1251                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1252         }
1253
1254         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1255 #else
1256         savesegment(fs, fs_sel);
1257         savesegment(gs, gs_sel);
1258         fs_base = segment_base(fs_sel);
1259         gs_base = segment_base(gs_sel);
1260 #endif
1261
1262         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1263         vmx->guest_state_loaded = true;
1264 }
1265
1266 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1267 {
1268         struct vmcs_host_state *host_state;
1269
1270         if (!vmx->guest_state_loaded)
1271                 return;
1272
1273         host_state = &vmx->loaded_vmcs->host_state;
1274
1275         ++vmx->vcpu.stat.host_state_reload;
1276
1277 #ifdef CONFIG_X86_64
1278         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1279 #endif
1280         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1281                 kvm_load_ldt(host_state->ldt_sel);
1282 #ifdef CONFIG_X86_64
1283                 load_gs_index(host_state->gs_sel);
1284 #else
1285                 loadsegment(gs, host_state->gs_sel);
1286 #endif
1287         }
1288         if (host_state->fs_sel & 7)
1289                 loadsegment(fs, host_state->fs_sel);
1290 #ifdef CONFIG_X86_64
1291         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1292                 loadsegment(ds, host_state->ds_sel);
1293                 loadsegment(es, host_state->es_sel);
1294         }
1295 #endif
1296         invalidate_tss_limit();
1297 #ifdef CONFIG_X86_64
1298         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1299 #endif
1300         load_fixmap_gdt(raw_smp_processor_id());
1301         vmx->guest_state_loaded = false;
1302         vmx->guest_uret_msrs_loaded = false;
1303 }
1304
1305 #ifdef CONFIG_X86_64
1306 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1307 {
1308         preempt_disable();
1309         if (vmx->guest_state_loaded)
1310                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1311         preempt_enable();
1312         return vmx->msr_guest_kernel_gs_base;
1313 }
1314
1315 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1316 {
1317         preempt_disable();
1318         if (vmx->guest_state_loaded)
1319                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1320         preempt_enable();
1321         vmx->msr_guest_kernel_gs_base = data;
1322 }
1323 #endif
1324
1325 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1326                         struct loaded_vmcs *buddy)
1327 {
1328         struct vcpu_vmx *vmx = to_vmx(vcpu);
1329         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1330         struct vmcs *prev;
1331
1332         if (!already_loaded) {
1333                 loaded_vmcs_clear(vmx->loaded_vmcs);
1334                 local_irq_disable();
1335
1336                 /*
1337                  * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1338                  * this cpu's percpu list, otherwise it may not yet be deleted
1339                  * from its previous cpu's percpu list.  Pairs with the
1340                  * smb_wmb() in __loaded_vmcs_clear().
1341                  */
1342                 smp_rmb();
1343
1344                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1345                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1346                 local_irq_enable();
1347         }
1348
1349         prev = per_cpu(current_vmcs, cpu);
1350         if (prev != vmx->loaded_vmcs->vmcs) {
1351                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1352                 vmcs_load(vmx->loaded_vmcs->vmcs);
1353
1354                 /*
1355                  * No indirect branch prediction barrier needed when switching
1356                  * the active VMCS within a guest, e.g. on nested VM-Enter.
1357                  * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1358                  */
1359                 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1360                         indirect_branch_prediction_barrier();
1361         }
1362
1363         if (!already_loaded) {
1364                 void *gdt = get_current_gdt_ro();
1365                 unsigned long sysenter_esp;
1366
1367                 /*
1368                  * Flush all EPTP/VPID contexts, the new pCPU may have stale
1369                  * TLB entries from its previous association with the vCPU.
1370                  */
1371                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1372
1373                 /*
1374                  * Linux uses per-cpu TSS and GDT, so set these when switching
1375                  * processors.  See 22.2.4.
1376                  */
1377                 vmcs_writel(HOST_TR_BASE,
1378                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1379                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1380
1381                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1382                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1383
1384                 vmx->loaded_vmcs->cpu = cpu;
1385         }
1386
1387         /* Setup TSC multiplier */
1388         if (kvm_has_tsc_control &&
1389             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1390                 decache_tsc_multiplier(vmx);
1391 }
1392
1393 /*
1394  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1395  * vcpu mutex is already taken.
1396  */
1397 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1398 {
1399         struct vcpu_vmx *vmx = to_vmx(vcpu);
1400
1401         vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1402
1403         vmx_vcpu_pi_load(vcpu, cpu);
1404
1405         vmx->host_debugctlmsr = get_debugctlmsr();
1406 }
1407
1408 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1409 {
1410         vmx_vcpu_pi_put(vcpu);
1411
1412         vmx_prepare_switch_to_host(to_vmx(vcpu));
1413 }
1414
1415 static bool emulation_required(struct kvm_vcpu *vcpu)
1416 {
1417         return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1418 }
1419
1420 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1421 {
1422         struct vcpu_vmx *vmx = to_vmx(vcpu);
1423         unsigned long rflags, save_rflags;
1424
1425         if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1426                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1427                 rflags = vmcs_readl(GUEST_RFLAGS);
1428                 if (vmx->rmode.vm86_active) {
1429                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1430                         save_rflags = vmx->rmode.save_rflags;
1431                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1432                 }
1433                 vmx->rflags = rflags;
1434         }
1435         return vmx->rflags;
1436 }
1437
1438 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1439 {
1440         struct vcpu_vmx *vmx = to_vmx(vcpu);
1441         unsigned long old_rflags;
1442
1443         if (is_unrestricted_guest(vcpu)) {
1444                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1445                 vmx->rflags = rflags;
1446                 vmcs_writel(GUEST_RFLAGS, rflags);
1447                 return;
1448         }
1449
1450         old_rflags = vmx_get_rflags(vcpu);
1451         vmx->rflags = rflags;
1452         if (vmx->rmode.vm86_active) {
1453                 vmx->rmode.save_rflags = rflags;
1454                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1455         }
1456         vmcs_writel(GUEST_RFLAGS, rflags);
1457
1458         if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1459                 vmx->emulation_required = emulation_required(vcpu);
1460 }
1461
1462 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1463 {
1464         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1465         int ret = 0;
1466
1467         if (interruptibility & GUEST_INTR_STATE_STI)
1468                 ret |= KVM_X86_SHADOW_INT_STI;
1469         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1470                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1471
1472         return ret;
1473 }
1474
1475 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1476 {
1477         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1478         u32 interruptibility = interruptibility_old;
1479
1480         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1481
1482         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1483                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1484         else if (mask & KVM_X86_SHADOW_INT_STI)
1485                 interruptibility |= GUEST_INTR_STATE_STI;
1486
1487         if ((interruptibility != interruptibility_old))
1488                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1489 }
1490
1491 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1492 {
1493         struct vcpu_vmx *vmx = to_vmx(vcpu);
1494         unsigned long value;
1495
1496         /*
1497          * Any MSR write that attempts to change bits marked reserved will
1498          * case a #GP fault.
1499          */
1500         if (data & vmx->pt_desc.ctl_bitmask)
1501                 return 1;
1502
1503         /*
1504          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1505          * result in a #GP unless the same write also clears TraceEn.
1506          */
1507         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1508                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1509                 return 1;
1510
1511         /*
1512          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1513          * and FabricEn would cause #GP, if
1514          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1515          */
1516         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1517                 !(data & RTIT_CTL_FABRIC_EN) &&
1518                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1519                                         PT_CAP_single_range_output))
1520                 return 1;
1521
1522         /*
1523          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1524          * utilize encodings marked reserved will casue a #GP fault.
1525          */
1526         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1527         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1528                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1529                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1530                 return 1;
1531         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1532                                                 PT_CAP_cycle_thresholds);
1533         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1534                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1535                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1536                 return 1;
1537         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1538         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1539                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1540                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1541                 return 1;
1542
1543         /*
1544          * If ADDRx_CFG is reserved or the encodings is >2 will
1545          * cause a #GP fault.
1546          */
1547         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1548         if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1549                 return 1;
1550         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1551         if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1552                 return 1;
1553         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1554         if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1555                 return 1;
1556         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1557         if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1558                 return 1;
1559
1560         return 0;
1561 }
1562
1563 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1564 {
1565         return true;
1566 }
1567
1568 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1569 {
1570         unsigned long rip, orig_rip;
1571
1572         /*
1573          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1574          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1575          * set when EPT misconfig occurs.  In practice, real hardware updates
1576          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1577          * (namely Hyper-V) don't set it due to it being undefined behavior,
1578          * i.e. we end up advancing IP with some random value.
1579          */
1580         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1581             to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1582                 orig_rip = kvm_rip_read(vcpu);
1583                 rip = orig_rip + vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1584 #ifdef CONFIG_X86_64
1585                 /*
1586                  * We need to mask out the high 32 bits of RIP if not in 64-bit
1587                  * mode, but just finding out that we are in 64-bit mode is
1588                  * quite expensive.  Only do it if there was a carry.
1589                  */
1590                 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1591                         rip = (u32)rip;
1592 #endif
1593                 kvm_rip_write(vcpu, rip);
1594         } else {
1595                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1596                         return 0;
1597         }
1598
1599         /* skipping an emulated instruction also counts */
1600         vmx_set_interrupt_shadow(vcpu, 0);
1601
1602         return 1;
1603 }
1604
1605 /*
1606  * Recognizes a pending MTF VM-exit and records the nested state for later
1607  * delivery.
1608  */
1609 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1610 {
1611         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1612         struct vcpu_vmx *vmx = to_vmx(vcpu);
1613
1614         if (!is_guest_mode(vcpu))
1615                 return;
1616
1617         /*
1618          * Per the SDM, MTF takes priority over debug-trap exceptions besides
1619          * T-bit traps. As instruction emulation is completed (i.e. at the
1620          * instruction boundary), any #DB exception pending delivery must be a
1621          * debug-trap. Record the pending MTF state to be delivered in
1622          * vmx_check_nested_events().
1623          */
1624         if (nested_cpu_has_mtf(vmcs12) &&
1625             (!vcpu->arch.exception.pending ||
1626              vcpu->arch.exception.nr == DB_VECTOR))
1627                 vmx->nested.mtf_pending = true;
1628         else
1629                 vmx->nested.mtf_pending = false;
1630 }
1631
1632 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1633 {
1634         vmx_update_emulated_instruction(vcpu);
1635         return skip_emulated_instruction(vcpu);
1636 }
1637
1638 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1639 {
1640         /*
1641          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1642          * explicitly skip the instruction because if the HLT state is set,
1643          * then the instruction is already executing and RIP has already been
1644          * advanced.
1645          */
1646         if (kvm_hlt_in_guest(vcpu->kvm) &&
1647                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1648                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1649 }
1650
1651 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1652 {
1653         struct vcpu_vmx *vmx = to_vmx(vcpu);
1654         unsigned nr = vcpu->arch.exception.nr;
1655         bool has_error_code = vcpu->arch.exception.has_error_code;
1656         u32 error_code = vcpu->arch.exception.error_code;
1657         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1658
1659         kvm_deliver_exception_payload(vcpu);
1660
1661         if (has_error_code) {
1662                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1663                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1664         }
1665
1666         if (vmx->rmode.vm86_active) {
1667                 int inc_eip = 0;
1668                 if (kvm_exception_is_soft(nr))
1669                         inc_eip = vcpu->arch.event_exit_inst_len;
1670                 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1671                 return;
1672         }
1673
1674         WARN_ON_ONCE(vmx->emulation_required);
1675
1676         if (kvm_exception_is_soft(nr)) {
1677                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1678                              vmx->vcpu.arch.event_exit_inst_len);
1679                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1680         } else
1681                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1682
1683         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1684
1685         vmx_clear_hlt(vcpu);
1686 }
1687
1688 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr)
1689 {
1690         struct vmx_uret_msr tmp;
1691         int from, to;
1692
1693         from = __vmx_find_uret_msr(vmx, msr);
1694         if (from < 0)
1695                 return;
1696         to = vmx->nr_active_uret_msrs++;
1697
1698         tmp = vmx->guest_uret_msrs[to];
1699         vmx->guest_uret_msrs[to] = vmx->guest_uret_msrs[from];
1700         vmx->guest_uret_msrs[from] = tmp;
1701 }
1702
1703 /*
1704  * Set up the vmcs to automatically save and restore system
1705  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1706  * mode, as fiddling with msrs is very expensive.
1707  */
1708 static void setup_msrs(struct vcpu_vmx *vmx)
1709 {
1710         vmx->guest_uret_msrs_loaded = false;
1711         vmx->nr_active_uret_msrs = 0;
1712 #ifdef CONFIG_X86_64
1713         /*
1714          * The SYSCALL MSRs are only needed on long mode guests, and only
1715          * when EFER.SCE is set.
1716          */
1717         if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1718                 vmx_setup_uret_msr(vmx, MSR_STAR);
1719                 vmx_setup_uret_msr(vmx, MSR_LSTAR);
1720                 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK);
1721         }
1722 #endif
1723         if (update_transition_efer(vmx))
1724                 vmx_setup_uret_msr(vmx, MSR_EFER);
1725
1726         if (guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1727                 vmx_setup_uret_msr(vmx, MSR_TSC_AUX);
1728
1729         vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL);
1730
1731         if (cpu_has_vmx_msr_bitmap())
1732                 vmx_update_msr_bitmap(&vmx->vcpu);
1733 }
1734
1735 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1736 {
1737         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1738         u64 g_tsc_offset = 0;
1739
1740         /*
1741          * We're here if L1 chose not to trap WRMSR to TSC. According
1742          * to the spec, this should set L1's TSC; The offset that L1
1743          * set for L2 remains unchanged, and still needs to be added
1744          * to the newly set TSC to get L2's TSC.
1745          */
1746         if (is_guest_mode(vcpu) &&
1747             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1748                 g_tsc_offset = vmcs12->tsc_offset;
1749
1750         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1751                                    vcpu->arch.tsc_offset - g_tsc_offset,
1752                                    offset);
1753         vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1754         return offset + g_tsc_offset;
1755 }
1756
1757 /*
1758  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1759  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1760  * all guests if the "nested" module option is off, and can also be disabled
1761  * for a single guest by disabling its VMX cpuid bit.
1762  */
1763 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1764 {
1765         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1766 }
1767
1768 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1769                                                  uint64_t val)
1770 {
1771         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1772
1773         return !(val & ~valid_bits);
1774 }
1775
1776 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1777 {
1778         switch (msr->index) {
1779         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1780                 if (!nested)
1781                         return 1;
1782                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1783         case MSR_IA32_PERF_CAPABILITIES:
1784                 msr->data = vmx_get_perf_capabilities();
1785                 return 0;
1786         default:
1787                 return KVM_MSR_RET_INVALID;
1788         }
1789 }
1790
1791 /*
1792  * Reads an msr value (of 'msr_index') into 'pdata'.
1793  * Returns 0 on success, non-0 otherwise.
1794  * Assumes vcpu_load() was already called.
1795  */
1796 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1797 {
1798         struct vcpu_vmx *vmx = to_vmx(vcpu);
1799         struct vmx_uret_msr *msr;
1800         u32 index;
1801
1802         switch (msr_info->index) {
1803 #ifdef CONFIG_X86_64
1804         case MSR_FS_BASE:
1805                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1806                 break;
1807         case MSR_GS_BASE:
1808                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1809                 break;
1810         case MSR_KERNEL_GS_BASE:
1811                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1812                 break;
1813 #endif
1814         case MSR_EFER:
1815                 return kvm_get_msr_common(vcpu, msr_info);
1816         case MSR_IA32_TSX_CTRL:
1817                 if (!msr_info->host_initiated &&
1818                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1819                         return 1;
1820                 goto find_uret_msr;
1821         case MSR_IA32_UMWAIT_CONTROL:
1822                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1823                         return 1;
1824
1825                 msr_info->data = vmx->msr_ia32_umwait_control;
1826                 break;
1827         case MSR_IA32_SPEC_CTRL:
1828                 if (!msr_info->host_initiated &&
1829                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1830                         return 1;
1831
1832                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1833                 break;
1834         case MSR_IA32_SYSENTER_CS:
1835                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1836                 break;
1837         case MSR_IA32_SYSENTER_EIP:
1838                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1839                 break;
1840         case MSR_IA32_SYSENTER_ESP:
1841                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1842                 break;
1843         case MSR_IA32_BNDCFGS:
1844                 if (!kvm_mpx_supported() ||
1845                     (!msr_info->host_initiated &&
1846                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1847                         return 1;
1848                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1849                 break;
1850         case MSR_IA32_MCG_EXT_CTL:
1851                 if (!msr_info->host_initiated &&
1852                     !(vmx->msr_ia32_feature_control &
1853                       FEAT_CTL_LMCE_ENABLED))
1854                         return 1;
1855                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1856                 break;
1857         case MSR_IA32_FEAT_CTL:
1858                 msr_info->data = vmx->msr_ia32_feature_control;
1859                 break;
1860         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1861                 if (!nested_vmx_allowed(vcpu))
1862                         return 1;
1863                 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1864                                     &msr_info->data))
1865                         return 1;
1866                 /*
1867                  * Enlightened VMCS v1 doesn't have certain fields, but buggy
1868                  * Hyper-V versions are still trying to use corresponding
1869                  * features when they are exposed. Filter out the essential
1870                  * minimum.
1871                  */
1872                 if (!msr_info->host_initiated &&
1873                     vmx->nested.enlightened_vmcs_enabled)
1874                         nested_evmcs_filter_control_msr(msr_info->index,
1875                                                         &msr_info->data);
1876                 break;
1877         case MSR_IA32_RTIT_CTL:
1878                 if (!vmx_pt_mode_is_host_guest())
1879                         return 1;
1880                 msr_info->data = vmx->pt_desc.guest.ctl;
1881                 break;
1882         case MSR_IA32_RTIT_STATUS:
1883                 if (!vmx_pt_mode_is_host_guest())
1884                         return 1;
1885                 msr_info->data = vmx->pt_desc.guest.status;
1886                 break;
1887         case MSR_IA32_RTIT_CR3_MATCH:
1888                 if (!vmx_pt_mode_is_host_guest() ||
1889                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1890                                                 PT_CAP_cr3_filtering))
1891                         return 1;
1892                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1893                 break;
1894         case MSR_IA32_RTIT_OUTPUT_BASE:
1895                 if (!vmx_pt_mode_is_host_guest() ||
1896                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1897                                         PT_CAP_topa_output) &&
1898                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1899                                         PT_CAP_single_range_output)))
1900                         return 1;
1901                 msr_info->data = vmx->pt_desc.guest.output_base;
1902                 break;
1903         case MSR_IA32_RTIT_OUTPUT_MASK:
1904                 if (!vmx_pt_mode_is_host_guest() ||
1905                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1906                                         PT_CAP_topa_output) &&
1907                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1908                                         PT_CAP_single_range_output)))
1909                         return 1;
1910                 msr_info->data = vmx->pt_desc.guest.output_mask;
1911                 break;
1912         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1913                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1914                 if (!vmx_pt_mode_is_host_guest() ||
1915                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1916                                         PT_CAP_num_address_ranges)))
1917                         return 1;
1918                 if (index % 2)
1919                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1920                 else
1921                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1922                 break;
1923         case MSR_TSC_AUX:
1924                 if (!msr_info->host_initiated &&
1925                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1926                         return 1;
1927                 goto find_uret_msr;
1928         default:
1929         find_uret_msr:
1930                 msr = vmx_find_uret_msr(vmx, msr_info->index);
1931                 if (msr) {
1932                         msr_info->data = msr->data;
1933                         break;
1934                 }
1935                 return kvm_get_msr_common(vcpu, msr_info);
1936         }
1937
1938         return 0;
1939 }
1940
1941 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1942                                                     u64 data)
1943 {
1944 #ifdef CONFIG_X86_64
1945         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1946                 return (u32)data;
1947 #endif
1948         return (unsigned long)data;
1949 }
1950
1951 /*
1952  * Writes msr value into the appropriate "register".
1953  * Returns 0 on success, non-0 otherwise.
1954  * Assumes vcpu_load() was already called.
1955  */
1956 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1957 {
1958         struct vcpu_vmx *vmx = to_vmx(vcpu);
1959         struct vmx_uret_msr *msr;
1960         int ret = 0;
1961         u32 msr_index = msr_info->index;
1962         u64 data = msr_info->data;
1963         u32 index;
1964
1965         switch (msr_index) {
1966         case MSR_EFER:
1967                 ret = kvm_set_msr_common(vcpu, msr_info);
1968                 break;
1969 #ifdef CONFIG_X86_64
1970         case MSR_FS_BASE:
1971                 vmx_segment_cache_clear(vmx);
1972                 vmcs_writel(GUEST_FS_BASE, data);
1973                 break;
1974         case MSR_GS_BASE:
1975                 vmx_segment_cache_clear(vmx);
1976                 vmcs_writel(GUEST_GS_BASE, data);
1977                 break;
1978         case MSR_KERNEL_GS_BASE:
1979                 vmx_write_guest_kernel_gs_base(vmx, data);
1980                 break;
1981 #endif
1982         case MSR_IA32_SYSENTER_CS:
1983                 if (is_guest_mode(vcpu))
1984                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
1985                 vmcs_write32(GUEST_SYSENTER_CS, data);
1986                 break;
1987         case MSR_IA32_SYSENTER_EIP:
1988                 if (is_guest_mode(vcpu)) {
1989                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1990                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
1991                 }
1992                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1993                 break;
1994         case MSR_IA32_SYSENTER_ESP:
1995                 if (is_guest_mode(vcpu)) {
1996                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1997                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
1998                 }
1999                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2000                 break;
2001         case MSR_IA32_DEBUGCTLMSR:
2002                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2003                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
2004                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2005
2006                 ret = kvm_set_msr_common(vcpu, msr_info);
2007                 break;
2008
2009         case MSR_IA32_BNDCFGS:
2010                 if (!kvm_mpx_supported() ||
2011                     (!msr_info->host_initiated &&
2012                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2013                         return 1;
2014                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2015                     (data & MSR_IA32_BNDCFGS_RSVD))
2016                         return 1;
2017                 vmcs_write64(GUEST_BNDCFGS, data);
2018                 break;
2019         case MSR_IA32_UMWAIT_CONTROL:
2020                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2021                         return 1;
2022
2023                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2024                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2025                         return 1;
2026
2027                 vmx->msr_ia32_umwait_control = data;
2028                 break;
2029         case MSR_IA32_SPEC_CTRL:
2030                 if (!msr_info->host_initiated &&
2031                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2032                         return 1;
2033
2034                 if (kvm_spec_ctrl_test_value(data))
2035                         return 1;
2036
2037                 vmx->spec_ctrl = data;
2038                 if (!data)
2039                         break;
2040
2041                 /*
2042                  * For non-nested:
2043                  * When it's written (to non-zero) for the first time, pass
2044                  * it through.
2045                  *
2046                  * For nested:
2047                  * The handling of the MSR bitmap for L2 guests is done in
2048                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2049                  * vmcs02.msr_bitmap here since it gets completely overwritten
2050                  * in the merging. We update the vmcs01 here for L1 as well
2051                  * since it will end up touching the MSR anyway now.
2052                  */
2053                 vmx_disable_intercept_for_msr(vcpu,
2054                                               MSR_IA32_SPEC_CTRL,
2055                                               MSR_TYPE_RW);
2056                 break;
2057         case MSR_IA32_TSX_CTRL:
2058                 if (!msr_info->host_initiated &&
2059                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2060                         return 1;
2061                 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2062                         return 1;
2063                 goto find_uret_msr;
2064         case MSR_IA32_PRED_CMD:
2065                 if (!msr_info->host_initiated &&
2066                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2067                         return 1;
2068
2069                 if (data & ~PRED_CMD_IBPB)
2070                         return 1;
2071                 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL))
2072                         return 1;
2073                 if (!data)
2074                         break;
2075
2076                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2077
2078                 /*
2079                  * For non-nested:
2080                  * When it's written (to non-zero) for the first time, pass
2081                  * it through.
2082                  *
2083                  * For nested:
2084                  * The handling of the MSR bitmap for L2 guests is done in
2085                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2086                  * vmcs02.msr_bitmap here since it gets completely overwritten
2087                  * in the merging.
2088                  */
2089                 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2090                 break;
2091         case MSR_IA32_CR_PAT:
2092                 if (!kvm_pat_valid(data))
2093                         return 1;
2094
2095                 if (is_guest_mode(vcpu) &&
2096                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2097                         get_vmcs12(vcpu)->guest_ia32_pat = data;
2098
2099                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2100                         vmcs_write64(GUEST_IA32_PAT, data);
2101                         vcpu->arch.pat = data;
2102                         break;
2103                 }
2104                 ret = kvm_set_msr_common(vcpu, msr_info);
2105                 break;
2106         case MSR_IA32_TSC_ADJUST:
2107                 ret = kvm_set_msr_common(vcpu, msr_info);
2108                 break;
2109         case MSR_IA32_MCG_EXT_CTL:
2110                 if ((!msr_info->host_initiated &&
2111                      !(to_vmx(vcpu)->msr_ia32_feature_control &
2112                        FEAT_CTL_LMCE_ENABLED)) ||
2113                     (data & ~MCG_EXT_CTL_LMCE_EN))
2114                         return 1;
2115                 vcpu->arch.mcg_ext_ctl = data;
2116                 break;
2117         case MSR_IA32_FEAT_CTL:
2118                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2119                     (to_vmx(vcpu)->msr_ia32_feature_control &
2120                      FEAT_CTL_LOCKED && !msr_info->host_initiated))
2121                         return 1;
2122                 vmx->msr_ia32_feature_control = data;
2123                 if (msr_info->host_initiated && data == 0)
2124                         vmx_leave_nested(vcpu);
2125                 break;
2126         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2127                 if (!msr_info->host_initiated)
2128                         return 1; /* they are read-only */
2129                 if (!nested_vmx_allowed(vcpu))
2130                         return 1;
2131                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2132         case MSR_IA32_RTIT_CTL:
2133                 if (!vmx_pt_mode_is_host_guest() ||
2134                         vmx_rtit_ctl_check(vcpu, data) ||
2135                         vmx->nested.vmxon)
2136                         return 1;
2137                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2138                 vmx->pt_desc.guest.ctl = data;
2139                 pt_update_intercept_for_msr(vcpu);
2140                 break;
2141         case MSR_IA32_RTIT_STATUS:
2142                 if (!pt_can_write_msr(vmx))
2143                         return 1;
2144                 if (data & MSR_IA32_RTIT_STATUS_MASK)
2145                         return 1;
2146                 vmx->pt_desc.guest.status = data;
2147                 break;
2148         case MSR_IA32_RTIT_CR3_MATCH:
2149                 if (!pt_can_write_msr(vmx))
2150                         return 1;
2151                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2152                                            PT_CAP_cr3_filtering))
2153                         return 1;
2154                 vmx->pt_desc.guest.cr3_match = data;
2155                 break;
2156         case MSR_IA32_RTIT_OUTPUT_BASE:
2157                 if (!pt_can_write_msr(vmx))
2158                         return 1;
2159                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2160                                            PT_CAP_topa_output) &&
2161                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2162                                            PT_CAP_single_range_output))
2163                         return 1;
2164                 if (!pt_output_base_valid(vcpu, data))
2165                         return 1;
2166                 vmx->pt_desc.guest.output_base = data;
2167                 break;
2168         case MSR_IA32_RTIT_OUTPUT_MASK:
2169                 if (!pt_can_write_msr(vmx))
2170                         return 1;
2171                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2172                                            PT_CAP_topa_output) &&
2173                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2174                                            PT_CAP_single_range_output))
2175                         return 1;
2176                 vmx->pt_desc.guest.output_mask = data;
2177                 break;
2178         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2179                 if (!pt_can_write_msr(vmx))
2180                         return 1;
2181                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2182                 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2183                                                        PT_CAP_num_address_ranges))
2184                         return 1;
2185                 if (is_noncanonical_address(data, vcpu))
2186                         return 1;
2187                 if (index % 2)
2188                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2189                 else
2190                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2191                 break;
2192         case MSR_TSC_AUX:
2193                 if (!msr_info->host_initiated &&
2194                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2195                         return 1;
2196                 /* Check reserved bit, higher 32 bits should be zero */
2197                 if ((data >> 32) != 0)
2198                         return 1;
2199                 goto find_uret_msr;
2200
2201         default:
2202         find_uret_msr:
2203                 msr = vmx_find_uret_msr(vmx, msr_index);
2204                 if (msr)
2205                         ret = vmx_set_guest_uret_msr(vmx, msr, data);
2206                 else
2207                         ret = kvm_set_msr_common(vcpu, msr_info);
2208         }
2209
2210         return ret;
2211 }
2212
2213 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2214 {
2215         unsigned long guest_owned_bits;
2216
2217         kvm_register_mark_available(vcpu, reg);
2218
2219         switch (reg) {
2220         case VCPU_REGS_RSP:
2221                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2222                 break;
2223         case VCPU_REGS_RIP:
2224                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2225                 break;
2226         case VCPU_EXREG_PDPTR:
2227                 if (enable_ept)
2228                         ept_save_pdptrs(vcpu);
2229                 break;
2230         case VCPU_EXREG_CR0:
2231                 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2232
2233                 vcpu->arch.cr0 &= ~guest_owned_bits;
2234                 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2235                 break;
2236         case VCPU_EXREG_CR3:
2237                 if (is_unrestricted_guest(vcpu) ||
2238                     (enable_ept && is_paging(vcpu)))
2239                         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2240                 break;
2241         case VCPU_EXREG_CR4:
2242                 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2243
2244                 vcpu->arch.cr4 &= ~guest_owned_bits;
2245                 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2246                 break;
2247         default:
2248                 WARN_ON_ONCE(1);
2249                 break;
2250         }
2251 }
2252
2253 static __init int cpu_has_kvm_support(void)
2254 {
2255         return cpu_has_vmx();
2256 }
2257
2258 static __init int vmx_disabled_by_bios(void)
2259 {
2260         return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2261                !boot_cpu_has(X86_FEATURE_VMX);
2262 }
2263
2264 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2265 {
2266         u64 msr;
2267
2268         cr4_set_bits(X86_CR4_VMXE);
2269         intel_pt_handle_vmx(1);
2270
2271         asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2272                           _ASM_EXTABLE(1b, %l[fault])
2273                           : : [vmxon_pointer] "m"(vmxon_pointer)
2274                           : : fault);
2275         return 0;
2276
2277 fault:
2278         WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2279                   rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2280         intel_pt_handle_vmx(0);
2281         cr4_clear_bits(X86_CR4_VMXE);
2282
2283         return -EFAULT;
2284 }
2285
2286 static int hardware_enable(void)
2287 {
2288         int cpu = raw_smp_processor_id();
2289         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2290         int r;
2291
2292         if (cr4_read_shadow() & X86_CR4_VMXE)
2293                 return -EBUSY;
2294
2295         /*
2296          * This can happen if we hot-added a CPU but failed to allocate
2297          * VP assist page for it.
2298          */
2299         if (static_branch_unlikely(&enable_evmcs) &&
2300             !hv_get_vp_assist_page(cpu))
2301                 return -EFAULT;
2302
2303         r = kvm_cpu_vmxon(phys_addr);
2304         if (r)
2305                 return r;
2306
2307         if (enable_ept)
2308                 ept_sync_global();
2309
2310         return 0;
2311 }
2312
2313 static void vmclear_local_loaded_vmcss(void)
2314 {
2315         int cpu = raw_smp_processor_id();
2316         struct loaded_vmcs *v, *n;
2317
2318         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2319                                  loaded_vmcss_on_cpu_link)
2320                 __loaded_vmcs_clear(v);
2321 }
2322
2323
2324 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2325  * tricks.
2326  */
2327 static void kvm_cpu_vmxoff(void)
2328 {
2329         asm volatile (__ex("vmxoff"));
2330
2331         intel_pt_handle_vmx(0);
2332         cr4_clear_bits(X86_CR4_VMXE);
2333 }
2334
2335 static void hardware_disable(void)
2336 {
2337         vmclear_local_loaded_vmcss();
2338         kvm_cpu_vmxoff();
2339 }
2340
2341 /*
2342  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2343  * directly instead of going through cpu_has(), to ensure KVM is trapping
2344  * ENCLS whenever it's supported in hardware.  It does not matter whether
2345  * the host OS supports or has enabled SGX.
2346  */
2347 static bool cpu_has_sgx(void)
2348 {
2349         return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2350 }
2351
2352 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2353                                       u32 msr, u32 *result)
2354 {
2355         u32 vmx_msr_low, vmx_msr_high;
2356         u32 ctl = ctl_min | ctl_opt;
2357
2358         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2359
2360         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2361         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2362
2363         /* Ensure minimum (required) set of control bits are supported. */
2364         if (ctl_min & ~ctl)
2365                 return -EIO;
2366
2367         *result = ctl;
2368         return 0;
2369 }
2370
2371 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2372                                     struct vmx_capability *vmx_cap)
2373 {
2374         u32 vmx_msr_low, vmx_msr_high;
2375         u32 min, opt, min2, opt2;
2376         u32 _pin_based_exec_control = 0;
2377         u32 _cpu_based_exec_control = 0;
2378         u32 _cpu_based_2nd_exec_control = 0;
2379         u32 _vmexit_control = 0;
2380         u32 _vmentry_control = 0;
2381
2382         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2383         min = CPU_BASED_HLT_EXITING |
2384 #ifdef CONFIG_X86_64
2385               CPU_BASED_CR8_LOAD_EXITING |
2386               CPU_BASED_CR8_STORE_EXITING |
2387 #endif
2388               CPU_BASED_CR3_LOAD_EXITING |
2389               CPU_BASED_CR3_STORE_EXITING |
2390               CPU_BASED_UNCOND_IO_EXITING |
2391               CPU_BASED_MOV_DR_EXITING |
2392               CPU_BASED_USE_TSC_OFFSETTING |
2393               CPU_BASED_MWAIT_EXITING |
2394               CPU_BASED_MONITOR_EXITING |
2395               CPU_BASED_INVLPG_EXITING |
2396               CPU_BASED_RDPMC_EXITING;
2397
2398         opt = CPU_BASED_TPR_SHADOW |
2399               CPU_BASED_USE_MSR_BITMAPS |
2400               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2401         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2402                                 &_cpu_based_exec_control) < 0)
2403                 return -EIO;
2404 #ifdef CONFIG_X86_64
2405         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2406                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2407                                            ~CPU_BASED_CR8_STORE_EXITING;
2408 #endif
2409         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2410                 min2 = 0;
2411                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2412                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2413                         SECONDARY_EXEC_WBINVD_EXITING |
2414                         SECONDARY_EXEC_ENABLE_VPID |
2415                         SECONDARY_EXEC_ENABLE_EPT |
2416                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2417                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2418                         SECONDARY_EXEC_DESC |
2419                         SECONDARY_EXEC_ENABLE_RDTSCP |
2420                         SECONDARY_EXEC_ENABLE_INVPCID |
2421                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2422                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2423                         SECONDARY_EXEC_SHADOW_VMCS |
2424                         SECONDARY_EXEC_XSAVES |
2425                         SECONDARY_EXEC_RDSEED_EXITING |
2426                         SECONDARY_EXEC_RDRAND_EXITING |
2427                         SECONDARY_EXEC_ENABLE_PML |
2428                         SECONDARY_EXEC_TSC_SCALING |
2429                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2430                         SECONDARY_EXEC_PT_USE_GPA |
2431                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2432                         SECONDARY_EXEC_ENABLE_VMFUNC;
2433                 if (cpu_has_sgx())
2434                         opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2435                 if (adjust_vmx_controls(min2, opt2,
2436                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2437                                         &_cpu_based_2nd_exec_control) < 0)
2438                         return -EIO;
2439         }
2440 #ifndef CONFIG_X86_64
2441         if (!(_cpu_based_2nd_exec_control &
2442                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2443                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2444 #endif
2445
2446         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2447                 _cpu_based_2nd_exec_control &= ~(
2448                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2449                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2450                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2451
2452         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2453                 &vmx_cap->ept, &vmx_cap->vpid);
2454
2455         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2456                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2457                    enabled */
2458                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2459                                              CPU_BASED_CR3_STORE_EXITING |
2460                                              CPU_BASED_INVLPG_EXITING);
2461         } else if (vmx_cap->ept) {
2462                 vmx_cap->ept = 0;
2463                 pr_warn_once("EPT CAP should not exist if not support "
2464                                 "1-setting enable EPT VM-execution control\n");
2465         }
2466         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2467                 vmx_cap->vpid) {
2468                 vmx_cap->vpid = 0;
2469                 pr_warn_once("VPID CAP should not exist if not support "
2470                                 "1-setting enable VPID VM-execution control\n");
2471         }
2472
2473         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2474 #ifdef CONFIG_X86_64
2475         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2476 #endif
2477         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2478               VM_EXIT_LOAD_IA32_PAT |
2479               VM_EXIT_LOAD_IA32_EFER |
2480               VM_EXIT_CLEAR_BNDCFGS |
2481               VM_EXIT_PT_CONCEAL_PIP |
2482               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2483         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2484                                 &_vmexit_control) < 0)
2485                 return -EIO;
2486
2487         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2488         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2489                  PIN_BASED_VMX_PREEMPTION_TIMER;
2490         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2491                                 &_pin_based_exec_control) < 0)
2492                 return -EIO;
2493
2494         if (cpu_has_broken_vmx_preemption_timer())
2495                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2496         if (!(_cpu_based_2nd_exec_control &
2497                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2498                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2499
2500         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2501         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2502               VM_ENTRY_LOAD_IA32_PAT |
2503               VM_ENTRY_LOAD_IA32_EFER |
2504               VM_ENTRY_LOAD_BNDCFGS |
2505               VM_ENTRY_PT_CONCEAL_PIP |
2506               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2507         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2508                                 &_vmentry_control) < 0)
2509                 return -EIO;
2510
2511         /*
2512          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2513          * can't be used due to an errata where VM Exit may incorrectly clear
2514          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2515          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2516          */
2517         if (boot_cpu_data.x86 == 0x6) {
2518                 switch (boot_cpu_data.x86_model) {
2519                 case 26: /* AAK155 */
2520                 case 30: /* AAP115 */
2521                 case 37: /* AAT100 */
2522                 case 44: /* BC86,AAY89,BD102 */
2523                 case 46: /* BA97 */
2524                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2525                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2526                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2527                                         "does not work properly. Using workaround\n");
2528                         break;
2529                 default:
2530                         break;
2531                 }
2532         }
2533
2534
2535         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2536
2537         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2538         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2539                 return -EIO;
2540
2541 #ifdef CONFIG_X86_64
2542         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2543         if (vmx_msr_high & (1u<<16))
2544                 return -EIO;
2545 #endif
2546
2547         /* Require Write-Back (WB) memory type for VMCS accesses. */
2548         if (((vmx_msr_high >> 18) & 15) != 6)
2549                 return -EIO;
2550
2551         vmcs_conf->size = vmx_msr_high & 0x1fff;
2552         vmcs_conf->order = get_order(vmcs_conf->size);
2553         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2554
2555         vmcs_conf->revision_id = vmx_msr_low;
2556
2557         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2558         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2559         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2560         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2561         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2562
2563         if (static_branch_unlikely(&enable_evmcs))
2564                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2565
2566         return 0;
2567 }
2568
2569 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2570 {
2571         int node = cpu_to_node(cpu);
2572         struct page *pages;
2573         struct vmcs *vmcs;
2574
2575         pages = __alloc_pages_node(node, flags, vmcs_config.order);
2576         if (!pages)
2577                 return NULL;
2578         vmcs = page_address(pages);
2579         memset(vmcs, 0, vmcs_config.size);
2580
2581         /* KVM supports Enlightened VMCS v1 only */
2582         if (static_branch_unlikely(&enable_evmcs))
2583                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2584         else
2585                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2586
2587         if (shadow)
2588                 vmcs->hdr.shadow_vmcs = 1;
2589         return vmcs;
2590 }
2591
2592 void free_vmcs(struct vmcs *vmcs)
2593 {
2594         free_pages((unsigned long)vmcs, vmcs_config.order);
2595 }
2596
2597 /*
2598  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2599  */
2600 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2601 {
2602         if (!loaded_vmcs->vmcs)
2603                 return;
2604         loaded_vmcs_clear(loaded_vmcs);
2605         free_vmcs(loaded_vmcs->vmcs);
2606         loaded_vmcs->vmcs = NULL;
2607         if (loaded_vmcs->msr_bitmap)
2608                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2609         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2610 }
2611
2612 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2613 {
2614         loaded_vmcs->vmcs = alloc_vmcs(false);
2615         if (!loaded_vmcs->vmcs)
2616                 return -ENOMEM;
2617
2618         vmcs_clear(loaded_vmcs->vmcs);
2619
2620         loaded_vmcs->shadow_vmcs = NULL;
2621         loaded_vmcs->hv_timer_soft_disabled = false;
2622         loaded_vmcs->cpu = -1;
2623         loaded_vmcs->launched = 0;
2624
2625         if (cpu_has_vmx_msr_bitmap()) {
2626                 loaded_vmcs->msr_bitmap = (unsigned long *)
2627                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2628                 if (!loaded_vmcs->msr_bitmap)
2629                         goto out_vmcs;
2630                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2631
2632                 if (IS_ENABLED(CONFIG_HYPERV) &&
2633                     static_branch_unlikely(&enable_evmcs) &&
2634                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2635                         struct hv_enlightened_vmcs *evmcs =
2636                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2637
2638                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
2639                 }
2640         }
2641
2642         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2643         memset(&loaded_vmcs->controls_shadow, 0,
2644                 sizeof(struct vmcs_controls_shadow));
2645
2646         return 0;
2647
2648 out_vmcs:
2649         free_loaded_vmcs(loaded_vmcs);
2650         return -ENOMEM;
2651 }
2652
2653 static void free_kvm_area(void)
2654 {
2655         int cpu;
2656
2657         for_each_possible_cpu(cpu) {
2658                 free_vmcs(per_cpu(vmxarea, cpu));
2659                 per_cpu(vmxarea, cpu) = NULL;
2660         }
2661 }
2662
2663 static __init int alloc_kvm_area(void)
2664 {
2665         int cpu;
2666
2667         for_each_possible_cpu(cpu) {
2668                 struct vmcs *vmcs;
2669
2670                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2671                 if (!vmcs) {
2672                         free_kvm_area();
2673                         return -ENOMEM;
2674                 }
2675
2676                 /*
2677                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2678                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2679                  * revision_id reported by MSR_IA32_VMX_BASIC.
2680                  *
2681                  * However, even though not explicitly documented by
2682                  * TLFS, VMXArea passed as VMXON argument should
2683                  * still be marked with revision_id reported by
2684                  * physical CPU.
2685                  */
2686                 if (static_branch_unlikely(&enable_evmcs))
2687                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2688
2689                 per_cpu(vmxarea, cpu) = vmcs;
2690         }
2691         return 0;
2692 }
2693
2694 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2695                 struct kvm_segment *save)
2696 {
2697         if (!emulate_invalid_guest_state) {
2698                 /*
2699                  * CS and SS RPL should be equal during guest entry according
2700                  * to VMX spec, but in reality it is not always so. Since vcpu
2701                  * is in the middle of the transition from real mode to
2702                  * protected mode it is safe to assume that RPL 0 is a good
2703                  * default value.
2704                  */
2705                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2706                         save->selector &= ~SEGMENT_RPL_MASK;
2707                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2708                 save->s = 1;
2709         }
2710         vmx_set_segment(vcpu, save, seg);
2711 }
2712
2713 static void enter_pmode(struct kvm_vcpu *vcpu)
2714 {
2715         unsigned long flags;
2716         struct vcpu_vmx *vmx = to_vmx(vcpu);
2717
2718         /*
2719          * Update real mode segment cache. It may be not up-to-date if sement
2720          * register was written while vcpu was in a guest mode.
2721          */
2722         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2723         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2724         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2725         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2726         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2727         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2728
2729         vmx->rmode.vm86_active = 0;
2730
2731         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2732
2733         flags = vmcs_readl(GUEST_RFLAGS);
2734         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2735         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2736         vmcs_writel(GUEST_RFLAGS, flags);
2737
2738         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2739                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2740
2741         update_exception_bitmap(vcpu);
2742
2743         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2744         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2745         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2746         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2747         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2748         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2749 }
2750
2751 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2752 {
2753         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2754         struct kvm_segment var = *save;
2755
2756         var.dpl = 0x3;
2757         if (seg == VCPU_SREG_CS)
2758                 var.type = 0x3;
2759
2760         if (!emulate_invalid_guest_state) {
2761                 var.selector = var.base >> 4;
2762                 var.base = var.base & 0xffff0;
2763                 var.limit = 0xffff;
2764                 var.g = 0;
2765                 var.db = 0;
2766                 var.present = 1;
2767                 var.s = 1;
2768                 var.l = 0;
2769                 var.unusable = 0;
2770                 var.type = 0x3;
2771                 var.avl = 0;
2772                 if (save->base & 0xf)
2773                         printk_once(KERN_WARNING "kvm: segment base is not "
2774                                         "paragraph aligned when entering "
2775                                         "protected mode (seg=%d)", seg);
2776         }
2777
2778         vmcs_write16(sf->selector, var.selector);
2779         vmcs_writel(sf->base, var.base);
2780         vmcs_write32(sf->limit, var.limit);
2781         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2782 }
2783
2784 static void enter_rmode(struct kvm_vcpu *vcpu)
2785 {
2786         unsigned long flags;
2787         struct vcpu_vmx *vmx = to_vmx(vcpu);
2788         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2789
2790         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2791         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2792         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2793         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2794         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2795         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2796         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2797
2798         vmx->rmode.vm86_active = 1;
2799
2800         /*
2801          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2802          * vcpu. Warn the user that an update is overdue.
2803          */
2804         if (!kvm_vmx->tss_addr)
2805                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2806                              "called before entering vcpu\n");
2807
2808         vmx_segment_cache_clear(vmx);
2809
2810         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2811         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2812         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2813
2814         flags = vmcs_readl(GUEST_RFLAGS);
2815         vmx->rmode.save_rflags = flags;
2816
2817         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2818
2819         vmcs_writel(GUEST_RFLAGS, flags);
2820         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2821         update_exception_bitmap(vcpu);
2822
2823         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2824         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2825         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2826         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2827         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2828         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2829
2830         kvm_mmu_reset_context(vcpu);
2831 }
2832
2833 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2834 {
2835         struct vcpu_vmx *vmx = to_vmx(vcpu);
2836         struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2837
2838         /* Nothing to do if hardware doesn't support EFER. */
2839         if (!msr)
2840                 return 0;
2841
2842         vcpu->arch.efer = efer;
2843         if (efer & EFER_LMA) {
2844                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2845                 msr->data = efer;
2846         } else {
2847                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2848
2849                 msr->data = efer & ~EFER_LME;
2850         }
2851         setup_msrs(vmx);
2852         return 0;
2853 }
2854
2855 #ifdef CONFIG_X86_64
2856
2857 static void enter_lmode(struct kvm_vcpu *vcpu)
2858 {
2859         u32 guest_tr_ar;
2860
2861         vmx_segment_cache_clear(to_vmx(vcpu));
2862
2863         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2864         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2865                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2866                                      __func__);
2867                 vmcs_write32(GUEST_TR_AR_BYTES,
2868                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2869                              | VMX_AR_TYPE_BUSY_64_TSS);
2870         }
2871         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2872 }
2873
2874 static void exit_lmode(struct kvm_vcpu *vcpu)
2875 {
2876         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2877         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2878 }
2879
2880 #endif
2881
2882 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2883 {
2884         struct vcpu_vmx *vmx = to_vmx(vcpu);
2885
2886         /*
2887          * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2888          * the CPU is not required to invalidate guest-physical mappings on
2889          * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2890          * associated with the root EPT structure and not any particular VPID
2891          * (INVVPID also isn't required to invalidate guest-physical mappings).
2892          */
2893         if (enable_ept) {
2894                 ept_sync_global();
2895         } else if (enable_vpid) {
2896                 if (cpu_has_vmx_invvpid_global()) {
2897                         vpid_sync_vcpu_global();
2898                 } else {
2899                         vpid_sync_vcpu_single(vmx->vpid);
2900                         vpid_sync_vcpu_single(vmx->nested.vpid02);
2901                 }
2902         }
2903 }
2904
2905 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2906 {
2907         struct kvm_mmu *mmu = vcpu->arch.mmu;
2908         u64 root_hpa = mmu->root_hpa;
2909
2910         /* No flush required if the current context is invalid. */
2911         if (!VALID_PAGE(root_hpa))
2912                 return;
2913
2914         if (enable_ept)
2915                 ept_sync_context(construct_eptp(vcpu, root_hpa,
2916                                                 mmu->shadow_root_level));
2917         else if (!is_guest_mode(vcpu))
2918                 vpid_sync_context(to_vmx(vcpu)->vpid);
2919         else
2920                 vpid_sync_context(nested_get_vpid02(vcpu));
2921 }
2922
2923 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2924 {
2925         /*
2926          * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
2927          * vmx_flush_tlb_guest() for an explanation of why this is ok.
2928          */
2929         vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
2930 }
2931
2932 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2933 {
2934         /*
2935          * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
2936          * or a vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit
2937          * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2938          * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2939          * i.e. no explicit INVVPID is necessary.
2940          */
2941         vpid_sync_context(to_vmx(vcpu)->vpid);
2942 }
2943
2944 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
2945 {
2946         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2947
2948         if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2949                 return;
2950
2951         if (is_pae_paging(vcpu)) {
2952                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2953                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2954                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2955                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2956         }
2957 }
2958
2959 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2960 {
2961         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2962
2963         if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2964                 return;
2965
2966         mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2967         mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2968         mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2969         mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2970
2971         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2972 }
2973
2974 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2975                                         unsigned long cr0,
2976                                         struct kvm_vcpu *vcpu)
2977 {
2978         struct vcpu_vmx *vmx = to_vmx(vcpu);
2979
2980         if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
2981                 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
2982         if (!(cr0 & X86_CR0_PG)) {
2983                 /* From paging/starting to nonpaging */
2984                 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2985                                           CPU_BASED_CR3_STORE_EXITING);
2986                 vcpu->arch.cr0 = cr0;
2987                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2988         } else if (!is_paging(vcpu)) {
2989                 /* From nonpaging to paging */
2990                 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2991                                             CPU_BASED_CR3_STORE_EXITING);
2992                 vcpu->arch.cr0 = cr0;
2993                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2994         }
2995
2996         if (!(cr0 & X86_CR0_WP))
2997                 *hw_cr0 &= ~X86_CR0_WP;
2998 }
2999
3000 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3001 {
3002         struct vcpu_vmx *vmx = to_vmx(vcpu);
3003         unsigned long hw_cr0;
3004
3005         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3006         if (is_unrestricted_guest(vcpu))
3007                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3008         else {
3009                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3010
3011                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3012                         enter_pmode(vcpu);
3013
3014                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3015                         enter_rmode(vcpu);
3016         }
3017
3018 #ifdef CONFIG_X86_64
3019         if (vcpu->arch.efer & EFER_LME) {
3020                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3021                         enter_lmode(vcpu);
3022                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3023                         exit_lmode(vcpu);
3024         }
3025 #endif
3026
3027         if (enable_ept && !is_unrestricted_guest(vcpu))
3028                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3029
3030         vmcs_writel(CR0_READ_SHADOW, cr0);
3031         vmcs_writel(GUEST_CR0, hw_cr0);
3032         vcpu->arch.cr0 = cr0;
3033         kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3034
3035         /* depends on vcpu->arch.cr0 to be set to a new value */
3036         vmx->emulation_required = emulation_required(vcpu);
3037 }
3038
3039 static int vmx_get_max_tdp_level(void)
3040 {
3041         if (cpu_has_vmx_ept_5levels())
3042                 return 5;
3043         return 4;
3044 }
3045
3046 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa,
3047                    int root_level)
3048 {
3049         u64 eptp = VMX_EPTP_MT_WB;
3050
3051         eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3052
3053         if (enable_ept_ad_bits &&
3054             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3055                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3056         eptp |= (root_hpa & PAGE_MASK);
3057
3058         return eptp;
3059 }
3060
3061 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd,
3062                              int pgd_level)
3063 {
3064         struct kvm *kvm = vcpu->kvm;
3065         bool update_guest_cr3 = true;
3066         unsigned long guest_cr3;
3067         u64 eptp;
3068
3069         if (enable_ept) {
3070                 eptp = construct_eptp(vcpu, pgd, pgd_level);
3071                 vmcs_write64(EPT_POINTER, eptp);
3072
3073                 if (kvm_x86_ops.tlb_remote_flush) {
3074                         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3075                         to_vmx(vcpu)->ept_pointer = eptp;
3076                         to_kvm_vmx(kvm)->ept_pointers_match
3077                                 = EPT_POINTERS_CHECK;
3078                         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3079                 }
3080
3081                 if (!enable_unrestricted_guest && !is_paging(vcpu))
3082                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3083                 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3084                         guest_cr3 = vcpu->arch.cr3;
3085                 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3086                         update_guest_cr3 = false;
3087                 vmx_ept_load_pdptrs(vcpu);
3088         } else {
3089                 guest_cr3 = pgd;
3090         }
3091
3092         if (update_guest_cr3)
3093                 vmcs_writel(GUEST_CR3, guest_cr3);
3094 }
3095
3096 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3097 {
3098         struct vcpu_vmx *vmx = to_vmx(vcpu);
3099         /*
3100          * Pass through host's Machine Check Enable value to hw_cr4, which
3101          * is in force while we are in guest mode.  Do not let guests control
3102          * this bit, even if host CR4.MCE == 0.
3103          */
3104         unsigned long hw_cr4;
3105
3106         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3107         if (is_unrestricted_guest(vcpu))
3108                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3109         else if (vmx->rmode.vm86_active)
3110                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3111         else
3112                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3113
3114         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3115                 if (cr4 & X86_CR4_UMIP) {
3116                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3117                         hw_cr4 &= ~X86_CR4_UMIP;
3118                 } else if (!is_guest_mode(vcpu) ||
3119                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3120                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3121                 }
3122         }
3123
3124         if (cr4 & X86_CR4_VMXE) {
3125                 /*
3126                  * To use VMXON (and later other VMX instructions), a guest
3127                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3128                  * So basically the check on whether to allow nested VMX
3129                  * is here.  We operate under the default treatment of SMM,
3130                  * so VMX cannot be enabled under SMM.
3131                  */
3132                 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3133                         return 1;
3134         }
3135
3136         if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3137                 return 1;
3138
3139         vcpu->arch.cr4 = cr4;
3140         kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3141
3142         if (!is_unrestricted_guest(vcpu)) {
3143                 if (enable_ept) {
3144                         if (!is_paging(vcpu)) {
3145                                 hw_cr4 &= ~X86_CR4_PAE;
3146                                 hw_cr4 |= X86_CR4_PSE;
3147                         } else if (!(cr4 & X86_CR4_PAE)) {
3148                                 hw_cr4 &= ~X86_CR4_PAE;
3149                         }
3150                 }
3151
3152                 /*
3153                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3154                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3155                  * to be manually disabled when guest switches to non-paging
3156                  * mode.
3157                  *
3158                  * If !enable_unrestricted_guest, the CPU is always running
3159                  * with CR0.PG=1 and CR4 needs to be modified.
3160                  * If enable_unrestricted_guest, the CPU automatically
3161                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3162                  */
3163                 if (!is_paging(vcpu))
3164                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3165         }
3166
3167         vmcs_writel(CR4_READ_SHADOW, cr4);
3168         vmcs_writel(GUEST_CR4, hw_cr4);
3169         return 0;
3170 }
3171
3172 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3173 {
3174         struct vcpu_vmx *vmx = to_vmx(vcpu);
3175         u32 ar;
3176
3177         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3178                 *var = vmx->rmode.segs[seg];
3179                 if (seg == VCPU_SREG_TR
3180                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3181                         return;
3182                 var->base = vmx_read_guest_seg_base(vmx, seg);
3183                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3184                 return;
3185         }
3186         var->base = vmx_read_guest_seg_base(vmx, seg);
3187         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3188         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3189         ar = vmx_read_guest_seg_ar(vmx, seg);
3190         var->unusable = (ar >> 16) & 1;
3191         var->type = ar & 15;
3192         var->s = (ar >> 4) & 1;
3193         var->dpl = (ar >> 5) & 3;
3194         /*
3195          * Some userspaces do not preserve unusable property. Since usable
3196          * segment has to be present according to VMX spec we can use present
3197          * property to amend userspace bug by making unusable segment always
3198          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3199          * segment as unusable.
3200          */
3201         var->present = !var->unusable;
3202         var->avl = (ar >> 12) & 1;
3203         var->l = (ar >> 13) & 1;
3204         var->db = (ar >> 14) & 1;
3205         var->g = (ar >> 15) & 1;
3206 }
3207
3208 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3209 {
3210         struct kvm_segment s;
3211
3212         if (to_vmx(vcpu)->rmode.vm86_active) {
3213                 vmx_get_segment(vcpu, &s, seg);
3214                 return s.base;
3215         }
3216         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3217 }
3218
3219 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3220 {
3221         struct vcpu_vmx *vmx = to_vmx(vcpu);
3222
3223         if (unlikely(vmx->rmode.vm86_active))
3224                 return 0;
3225         else {
3226                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3227                 return VMX_AR_DPL(ar);
3228         }
3229 }
3230
3231 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3232 {
3233         u32 ar;
3234
3235         if (var->unusable || !var->present)
3236                 ar = 1 << 16;
3237         else {
3238                 ar = var->type & 15;
3239                 ar |= (var->s & 1) << 4;
3240                 ar |= (var->dpl & 3) << 5;
3241                 ar |= (var->present & 1) << 7;
3242                 ar |= (var->avl & 1) << 12;
3243                 ar |= (var->l & 1) << 13;
3244                 ar |= (var->db & 1) << 14;
3245                 ar |= (var->g & 1) << 15;
3246         }
3247
3248         return ar;
3249 }
3250
3251 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3252 {
3253         struct vcpu_vmx *vmx = to_vmx(vcpu);
3254         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3255
3256         vmx_segment_cache_clear(vmx);
3257
3258         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3259                 vmx->rmode.segs[seg] = *var;
3260                 if (seg == VCPU_SREG_TR)
3261                         vmcs_write16(sf->selector, var->selector);
3262                 else if (var->s)
3263                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3264                 goto out;
3265         }
3266
3267         vmcs_writel(sf->base, var->base);
3268         vmcs_write32(sf->limit, var->limit);
3269         vmcs_write16(sf->selector, var->selector);
3270
3271         /*
3272          *   Fix the "Accessed" bit in AR field of segment registers for older
3273          * qemu binaries.
3274          *   IA32 arch specifies that at the time of processor reset the
3275          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3276          * is setting it to 0 in the userland code. This causes invalid guest
3277          * state vmexit when "unrestricted guest" mode is turned on.
3278          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3279          * tree. Newer qemu binaries with that qemu fix would not need this
3280          * kvm hack.
3281          */
3282         if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3283                 var->type |= 0x1; /* Accessed */
3284
3285         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3286
3287 out:
3288         vmx->emulation_required = emulation_required(vcpu);
3289 }
3290
3291 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3292 {
3293         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3294
3295         *db = (ar >> 14) & 1;
3296         *l = (ar >> 13) & 1;
3297 }
3298
3299 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3300 {
3301         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3302         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3303 }
3304
3305 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3306 {
3307         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3308         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3309 }
3310
3311 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3312 {
3313         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3314         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3315 }
3316
3317 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3318 {
3319         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3320         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3321 }
3322
3323 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3324 {
3325         struct kvm_segment var;
3326         u32 ar;
3327
3328         vmx_get_segment(vcpu, &var, seg);
3329         var.dpl = 0x3;
3330         if (seg == VCPU_SREG_CS)
3331                 var.type = 0x3;
3332         ar = vmx_segment_access_rights(&var);
3333
3334         if (var.base != (var.selector << 4))
3335                 return false;
3336         if (var.limit != 0xffff)
3337                 return false;
3338         if (ar != 0xf3)
3339                 return false;
3340
3341         return true;
3342 }
3343
3344 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3345 {
3346         struct kvm_segment cs;
3347         unsigned int cs_rpl;
3348
3349         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3350         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3351
3352         if (cs.unusable)
3353                 return false;
3354         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3355                 return false;
3356         if (!cs.s)
3357                 return false;
3358         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3359                 if (cs.dpl > cs_rpl)
3360                         return false;
3361         } else {
3362                 if (cs.dpl != cs_rpl)
3363                         return false;
3364         }
3365         if (!cs.present)
3366                 return false;
3367
3368         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3369         return true;
3370 }
3371
3372 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3373 {
3374         struct kvm_segment ss;
3375         unsigned int ss_rpl;
3376
3377         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3378         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3379
3380         if (ss.unusable)
3381                 return true;
3382         if (ss.type != 3 && ss.type != 7)
3383                 return false;
3384         if (!ss.s)
3385                 return false;
3386         if (ss.dpl != ss_rpl) /* DPL != RPL */
3387                 return false;
3388         if (!ss.present)
3389                 return false;
3390
3391         return true;
3392 }
3393
3394 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3395 {
3396         struct kvm_segment var;
3397         unsigned int rpl;
3398
3399         vmx_get_segment(vcpu, &var, seg);
3400         rpl = var.selector & SEGMENT_RPL_MASK;
3401
3402         if (var.unusable)
3403                 return true;
3404         if (!var.s)
3405                 return false;
3406         if (!var.present)
3407                 return false;
3408         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3409                 if (var.dpl < rpl) /* DPL < RPL */
3410                         return false;
3411         }
3412
3413         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3414          * rights flags
3415          */
3416         return true;
3417 }
3418
3419 static bool tr_valid(struct kvm_vcpu *vcpu)
3420 {
3421         struct kvm_segment tr;
3422
3423         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3424
3425         if (tr.unusable)
3426                 return false;
3427         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3428                 return false;
3429         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3430                 return false;
3431         if (!tr.present)
3432                 return false;
3433
3434         return true;
3435 }
3436
3437 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3438 {
3439         struct kvm_segment ldtr;
3440
3441         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3442
3443         if (ldtr.unusable)
3444                 return true;
3445         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3446                 return false;
3447         if (ldtr.type != 2)
3448                 return false;
3449         if (!ldtr.present)
3450                 return false;
3451
3452         return true;
3453 }
3454
3455 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3456 {
3457         struct kvm_segment cs, ss;
3458
3459         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3460         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3461
3462         return ((cs.selector & SEGMENT_RPL_MASK) ==
3463                  (ss.selector & SEGMENT_RPL_MASK));
3464 }
3465
3466 /*
3467  * Check if guest state is valid. Returns true if valid, false if
3468  * not.
3469  * We assume that registers are always usable
3470  */
3471 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3472 {
3473         /* real mode guest state checks */
3474         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3475                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3476                         return false;
3477                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3478                         return false;
3479                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3480                         return false;
3481                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3482                         return false;
3483                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3484                         return false;
3485                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3486                         return false;
3487         } else {
3488         /* protected mode guest state checks */
3489                 if (!cs_ss_rpl_check(vcpu))
3490                         return false;
3491                 if (!code_segment_valid(vcpu))
3492                         return false;
3493                 if (!stack_segment_valid(vcpu))
3494                         return false;
3495                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3496                         return false;
3497                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3498                         return false;
3499                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3500                         return false;
3501                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3502                         return false;
3503                 if (!tr_valid(vcpu))
3504                         return false;
3505                 if (!ldtr_valid(vcpu))
3506                         return false;
3507         }
3508         /* TODO:
3509          * - Add checks on RIP
3510          * - Add checks on RFLAGS
3511          */
3512
3513         return true;
3514 }
3515
3516 static int init_rmode_tss(struct kvm *kvm)
3517 {
3518         gfn_t fn;
3519         u16 data = 0;
3520         int idx, r;
3521
3522         idx = srcu_read_lock(&kvm->srcu);
3523         fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3524         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3525         if (r < 0)
3526                 goto out;
3527         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3528         r = kvm_write_guest_page(kvm, fn++, &data,
3529                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3530         if (r < 0)
3531                 goto out;
3532         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3533         if (r < 0)
3534                 goto out;
3535         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3536         if (r < 0)
3537                 goto out;
3538         data = ~0;
3539         r = kvm_write_guest_page(kvm, fn, &data,
3540                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3541                                  sizeof(u8));
3542 out:
3543         srcu_read_unlock(&kvm->srcu, idx);
3544         return r;
3545 }
3546
3547 static int init_rmode_identity_map(struct kvm *kvm)
3548 {
3549         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3550         int i, r = 0;
3551         kvm_pfn_t identity_map_pfn;
3552         u32 tmp;
3553
3554         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3555         mutex_lock(&kvm->slots_lock);
3556
3557         if (likely(kvm_vmx->ept_identity_pagetable_done))
3558                 goto out;
3559
3560         if (!kvm_vmx->ept_identity_map_addr)
3561                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3562         identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3563
3564         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3565                                     kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3566         if (r < 0)
3567                 goto out;
3568
3569         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3570         if (r < 0)
3571                 goto out;
3572         /* Set up identity-mapping pagetable for EPT in real mode */
3573         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3574                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3575                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3576                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3577                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3578                 if (r < 0)
3579                         goto out;
3580         }
3581         kvm_vmx->ept_identity_pagetable_done = true;
3582
3583 out:
3584         mutex_unlock(&kvm->slots_lock);
3585         return r;
3586 }
3587
3588 static void seg_setup(int seg)
3589 {
3590         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3591         unsigned int ar;
3592
3593         vmcs_write16(sf->selector, 0);
3594         vmcs_writel(sf->base, 0);
3595         vmcs_write32(sf->limit, 0xffff);
3596         ar = 0x93;
3597         if (seg == VCPU_SREG_CS)
3598                 ar |= 0x08; /* code segment */
3599
3600         vmcs_write32(sf->ar_bytes, ar);
3601 }
3602
3603 static int alloc_apic_access_page(struct kvm *kvm)
3604 {
3605         struct page *page;
3606         int r = 0;
3607
3608         mutex_lock(&kvm->slots_lock);
3609         if (kvm->arch.apic_access_page_done)
3610                 goto out;
3611         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3612                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3613         if (r)
3614                 goto out;
3615
3616         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3617         if (is_error_page(page)) {
3618                 r = -EFAULT;
3619                 goto out;
3620         }
3621
3622         /*
3623          * Do not pin the page in memory, so that memory hot-unplug
3624          * is able to migrate it.
3625          */
3626         put_page(page);
3627         kvm->arch.apic_access_page_done = true;
3628 out:
3629         mutex_unlock(&kvm->slots_lock);
3630         return r;
3631 }
3632
3633 int allocate_vpid(void)
3634 {
3635         int vpid;
3636
3637         if (!enable_vpid)
3638                 return 0;
3639         spin_lock(&vmx_vpid_lock);
3640         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3641         if (vpid < VMX_NR_VPIDS)
3642                 __set_bit(vpid, vmx_vpid_bitmap);
3643         else
3644                 vpid = 0;
3645         spin_unlock(&vmx_vpid_lock);
3646         return vpid;
3647 }
3648
3649 void free_vpid(int vpid)
3650 {
3651         if (!enable_vpid || vpid == 0)
3652                 return;
3653         spin_lock(&vmx_vpid_lock);
3654         __clear_bit(vpid, vmx_vpid_bitmap);
3655         spin_unlock(&vmx_vpid_lock);
3656 }
3657
3658 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3659 {
3660         int f = sizeof(unsigned long);
3661
3662         if (msr <= 0x1fff)
3663                 __clear_bit(msr, msr_bitmap + 0x000 / f);
3664         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3665                 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3666 }
3667
3668 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3669 {
3670         int f = sizeof(unsigned long);
3671
3672         if (msr <= 0x1fff)
3673                 __clear_bit(msr, msr_bitmap + 0x800 / f);
3674         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3675                 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3676 }
3677
3678 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3679 {
3680         int f = sizeof(unsigned long);
3681
3682         if (msr <= 0x1fff)
3683                 __set_bit(msr, msr_bitmap + 0x000 / f);
3684         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3685                 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3686 }
3687
3688 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3689 {
3690         int f = sizeof(unsigned long);
3691
3692         if (msr <= 0x1fff)
3693                 __set_bit(msr, msr_bitmap + 0x800 / f);
3694         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3695                 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3696 }
3697
3698 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
3699                                                           u32 msr, int type)
3700 {
3701         struct vcpu_vmx *vmx = to_vmx(vcpu);
3702         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3703
3704         if (!cpu_has_vmx_msr_bitmap())
3705                 return;
3706
3707         if (static_branch_unlikely(&enable_evmcs))
3708                 evmcs_touch_msr_bitmap();
3709
3710         /*
3711          * Mark the desired intercept state in shadow bitmap, this is needed
3712          * for resync when the MSR filters change.
3713         */
3714         if (is_valid_passthrough_msr(msr)) {
3715                 int idx = possible_passthrough_msr_slot(msr);
3716
3717                 if (idx != -ENOENT) {
3718                         if (type & MSR_TYPE_R)
3719                                 clear_bit(idx, vmx->shadow_msr_intercept.read);
3720                         if (type & MSR_TYPE_W)
3721                                 clear_bit(idx, vmx->shadow_msr_intercept.write);
3722                 }
3723         }
3724
3725         if ((type & MSR_TYPE_R) &&
3726             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3727                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3728                 type &= ~MSR_TYPE_R;
3729         }
3730
3731         if ((type & MSR_TYPE_W) &&
3732             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3733                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3734                 type &= ~MSR_TYPE_W;
3735         }
3736
3737         if (type & MSR_TYPE_R)
3738                 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3739
3740         if (type & MSR_TYPE_W)
3741                 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3742 }
3743
3744 static __always_inline void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu,
3745                                                          u32 msr, int type)
3746 {
3747         struct vcpu_vmx *vmx = to_vmx(vcpu);
3748         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3749
3750         if (!cpu_has_vmx_msr_bitmap())
3751                 return;
3752
3753         if (static_branch_unlikely(&enable_evmcs))
3754                 evmcs_touch_msr_bitmap();
3755
3756         /*
3757          * Mark the desired intercept state in shadow bitmap, this is needed
3758          * for resync when the MSR filter changes.
3759         */
3760         if (is_valid_passthrough_msr(msr)) {
3761                 int idx = possible_passthrough_msr_slot(msr);
3762
3763                 if (idx != -ENOENT) {
3764                         if (type & MSR_TYPE_R)
3765                                 set_bit(idx, vmx->shadow_msr_intercept.read);
3766                         if (type & MSR_TYPE_W)
3767                                 set_bit(idx, vmx->shadow_msr_intercept.write);
3768                 }
3769         }
3770
3771         if (type & MSR_TYPE_R)
3772                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3773
3774         if (type & MSR_TYPE_W)
3775                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3776 }
3777
3778 static __always_inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu,
3779                                                       u32 msr, int type, bool value)
3780 {
3781         if (value)
3782                 vmx_enable_intercept_for_msr(vcpu, msr, type);
3783         else
3784                 vmx_disable_intercept_for_msr(vcpu, msr, type);
3785 }
3786
3787 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3788 {
3789         u8 mode = 0;
3790
3791         if (cpu_has_secondary_exec_ctrls() &&
3792             (secondary_exec_controls_get(to_vmx(vcpu)) &
3793              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3794                 mode |= MSR_BITMAP_MODE_X2APIC;
3795                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3796                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3797         }
3798
3799         return mode;
3800 }
3801
3802 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3803 {
3804         unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3805         unsigned long read_intercept;
3806         int msr;
3807
3808         read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3809
3810         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3811                 unsigned int read_idx = msr / BITS_PER_LONG;
3812                 unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3813
3814                 msr_bitmap[read_idx] = read_intercept;
3815                 msr_bitmap[write_idx] = ~0ul;
3816         }
3817 }
3818
3819 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode)
3820 {
3821         if (!cpu_has_vmx_msr_bitmap())
3822                 return;
3823
3824         vmx_reset_x2apic_msrs(vcpu, mode);
3825
3826         /*
3827          * TPR reads and writes can be virtualized even if virtual interrupt
3828          * delivery is not in use.
3829          */
3830         vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3831                                   !(mode & MSR_BITMAP_MODE_X2APIC));
3832
3833         if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3834                 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3835                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3836                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3837         }
3838 }
3839
3840 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3841 {
3842         struct vcpu_vmx *vmx = to_vmx(vcpu);
3843         u8 mode = vmx_msr_bitmap_mode(vcpu);
3844         u8 changed = mode ^ vmx->msr_bitmap_mode;
3845
3846         if (!changed)
3847                 return;
3848
3849         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3850                 vmx_update_msr_bitmap_x2apic(vcpu, mode);
3851
3852         vmx->msr_bitmap_mode = mode;
3853 }
3854
3855 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3856 {
3857         struct vcpu_vmx *vmx = to_vmx(vcpu);
3858         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3859         u32 i;
3860
3861         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3862         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3863         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3864         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3865         for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3866                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3867                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3868         }
3869 }
3870
3871 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3872 {
3873         struct vcpu_vmx *vmx = to_vmx(vcpu);
3874         void *vapic_page;
3875         u32 vppr;
3876         int rvi;
3877
3878         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3879                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3880                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3881                 return false;
3882
3883         rvi = vmx_get_rvi();
3884
3885         vapic_page = vmx->nested.virtual_apic_map.hva;
3886         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3887
3888         return ((rvi & 0xf0) > (vppr & 0xf0));
3889 }
3890
3891 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3892 {
3893         struct vcpu_vmx *vmx = to_vmx(vcpu);
3894         u32 i;
3895
3896         /*
3897          * Set intercept permissions for all potentially passed through MSRs
3898          * again. They will automatically get filtered through the MSR filter,
3899          * so we are back in sync after this.
3900          */
3901         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3902                 u32 msr = vmx_possible_passthrough_msrs[i];
3903                 bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3904                 bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3905
3906                 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3907                 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3908         }
3909
3910         pt_update_intercept_for_msr(vcpu);
3911         vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu));
3912 }
3913
3914 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3915                                                      bool nested)
3916 {
3917 #ifdef CONFIG_SMP
3918         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3919
3920         if (vcpu->mode == IN_GUEST_MODE) {
3921                 /*
3922                  * The vector of interrupt to be delivered to vcpu had
3923                  * been set in PIR before this function.
3924                  *
3925                  * Following cases will be reached in this block, and
3926                  * we always send a notification event in all cases as
3927                  * explained below.
3928                  *
3929                  * Case 1: vcpu keeps in non-root mode. Sending a
3930                  * notification event posts the interrupt to vcpu.
3931                  *
3932                  * Case 2: vcpu exits to root mode and is still
3933                  * runnable. PIR will be synced to vIRR before the
3934                  * next vcpu entry. Sending a notification event in
3935                  * this case has no effect, as vcpu is not in root
3936                  * mode.
3937                  *
3938                  * Case 3: vcpu exits to root mode and is blocked.
3939                  * vcpu_block() has already synced PIR to vIRR and
3940                  * never blocks vcpu if vIRR is not cleared. Therefore,
3941                  * a blocked vcpu here does not wait for any requested
3942                  * interrupts in PIR, and sending a notification event
3943                  * which has no effect is safe here.
3944                  */
3945
3946                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3947                 return true;
3948         }
3949 #endif
3950         return false;
3951 }
3952
3953 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3954                                                 int vector)
3955 {
3956         struct vcpu_vmx *vmx = to_vmx(vcpu);
3957
3958         if (is_guest_mode(vcpu) &&
3959             vector == vmx->nested.posted_intr_nv) {
3960                 /*
3961                  * If a posted intr is not recognized by hardware,
3962                  * we will accomplish it in the next vmentry.
3963                  */
3964                 vmx->nested.pi_pending = true;
3965                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3966                 /* the PIR and ON have been set by L1. */
3967                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3968                         kvm_vcpu_kick(vcpu);
3969                 return 0;
3970         }
3971         return -1;
3972 }
3973 /*
3974  * Send interrupt to vcpu via posted interrupt way.
3975  * 1. If target vcpu is running(non-root mode), send posted interrupt
3976  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3977  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3978  * interrupt from PIR in next vmentry.
3979  */
3980 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3981 {
3982         struct vcpu_vmx *vmx = to_vmx(vcpu);
3983         int r;
3984
3985         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3986         if (!r)
3987                 return 0;
3988
3989         if (!vcpu->arch.apicv_active)
3990                 return -1;
3991
3992         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3993                 return 0;
3994
3995         /* If a previous notification has sent the IPI, nothing to do.  */
3996         if (pi_test_and_set_on(&vmx->pi_desc))
3997                 return 0;
3998
3999         if (vcpu != kvm_get_running_vcpu() &&
4000             !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4001                 kvm_vcpu_kick(vcpu);
4002
4003         return 0;
4004 }
4005
4006 /*
4007  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4008  * will not change in the lifetime of the guest.
4009  * Note that host-state that does change is set elsewhere. E.g., host-state
4010  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4011  */
4012 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4013 {
4014         u32 low32, high32;
4015         unsigned long tmpl;
4016         unsigned long cr0, cr3, cr4;
4017
4018         cr0 = read_cr0();
4019         WARN_ON(cr0 & X86_CR0_TS);
4020         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4021
4022         /*
4023          * Save the most likely value for this task's CR3 in the VMCS.
4024          * We can't use __get_current_cr3_fast() because we're not atomic.
4025          */
4026         cr3 = __read_cr3();
4027         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
4028         vmx->loaded_vmcs->host_state.cr3 = cr3;
4029
4030         /* Save the most likely value for this task's CR4 in the VMCS. */
4031         cr4 = cr4_read_shadow();
4032         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4033         vmx->loaded_vmcs->host_state.cr4 = cr4;
4034
4035         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4036 #ifdef CONFIG_X86_64
4037         /*
4038          * Load null selectors, so we can avoid reloading them in
4039          * vmx_prepare_switch_to_host(), in case userspace uses
4040          * the null selectors too (the expected case).
4041          */
4042         vmcs_write16(HOST_DS_SELECTOR, 0);
4043         vmcs_write16(HOST_ES_SELECTOR, 0);
4044 #else
4045         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4046         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4047 #endif
4048         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4049         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4050
4051         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4052
4053         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4054
4055         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4056         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4057         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4058         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4059
4060         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4061                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4062                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4063         }
4064
4065         if (cpu_has_load_ia32_efer())
4066                 vmcs_write64(HOST_IA32_EFER, host_efer);
4067 }
4068
4069 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4070 {
4071         struct kvm_vcpu *vcpu = &vmx->vcpu;
4072
4073         vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4074                                           ~vcpu->arch.cr4_guest_rsvd_bits;
4075         if (!enable_ept)
4076                 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4077         if (is_guest_mode(&vmx->vcpu))
4078                 vcpu->arch.cr4_guest_owned_bits &=
4079                         ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4080         vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4081 }
4082
4083 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4084 {
4085         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4086
4087         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4088                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4089
4090         if (!enable_vnmi)
4091                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4092
4093         if (!enable_preemption_timer)
4094                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4095
4096         return pin_based_exec_ctrl;
4097 }
4098
4099 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4100 {
4101         struct vcpu_vmx *vmx = to_vmx(vcpu);
4102
4103         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4104         if (cpu_has_secondary_exec_ctrls()) {
4105                 if (kvm_vcpu_apicv_active(vcpu))
4106                         secondary_exec_controls_setbit(vmx,
4107                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4108                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4109                 else
4110                         secondary_exec_controls_clearbit(vmx,
4111                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
4112                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4113         }
4114
4115         if (cpu_has_vmx_msr_bitmap())
4116                 vmx_update_msr_bitmap(vcpu);
4117 }
4118
4119 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4120 {
4121         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4122
4123         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4124                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4125
4126         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4127                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4128 #ifdef CONFIG_X86_64
4129                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4130                                 CPU_BASED_CR8_LOAD_EXITING;
4131 #endif
4132         }
4133         if (!enable_ept)
4134                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4135                                 CPU_BASED_CR3_LOAD_EXITING  |
4136                                 CPU_BASED_INVLPG_EXITING;
4137         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4138                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4139                                 CPU_BASED_MONITOR_EXITING);
4140         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4141                 exec_control &= ~CPU_BASED_HLT_EXITING;
4142         return exec_control;
4143 }
4144
4145 /*
4146  * Adjust a single secondary execution control bit to intercept/allow an
4147  * instruction in the guest.  This is usually done based on whether or not a
4148  * feature has been exposed to the guest in order to correctly emulate faults.
4149  */
4150 static inline void
4151 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4152                                   u32 control, bool enabled, bool exiting)
4153 {
4154         /*
4155          * If the control is for an opt-in feature, clear the control if the
4156          * feature is not exposed to the guest, i.e. not enabled.  If the
4157          * control is opt-out, i.e. an exiting control, clear the control if
4158          * the feature _is_ exposed to the guest, i.e. exiting/interception is
4159          * disabled for the associated instruction.  Note, the caller is
4160          * responsible presetting exec_control to set all supported bits.
4161          */
4162         if (enabled == exiting)
4163                 *exec_control &= ~control;
4164
4165         /*
4166          * Update the nested MSR settings so that a nested VMM can/can't set
4167          * controls for features that are/aren't exposed to the guest.
4168          */
4169         if (nested) {
4170                 if (enabled)
4171                         vmx->nested.msrs.secondary_ctls_high |= control;
4172                 else
4173                         vmx->nested.msrs.secondary_ctls_high &= ~control;
4174         }
4175 }
4176
4177 /*
4178  * Wrapper macro for the common case of adjusting a secondary execution control
4179  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4180  * verifies that the control is actually supported by KVM and hardware.
4181  */
4182 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4183 ({                                                                       \
4184         bool __enabled;                                                  \
4185                                                                          \
4186         if (cpu_has_vmx_##name()) {                                      \
4187                 __enabled = guest_cpuid_has(&(vmx)->vcpu,                \
4188                                             X86_FEATURE_##feat_name);    \
4189                 vmx_adjust_secondary_exec_control(vmx, exec_control,     \
4190                         SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4191         }                                                                \
4192 })
4193
4194 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4195 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4196         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4197
4198 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4199         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4200
4201 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4202 {
4203         struct kvm_vcpu *vcpu = &vmx->vcpu;
4204
4205         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4206
4207         if (vmx_pt_mode_is_system())
4208                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4209         if (!cpu_need_virtualize_apic_accesses(vcpu))
4210                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4211         if (vmx->vpid == 0)
4212                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4213         if (!enable_ept) {
4214                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4215                 enable_unrestricted_guest = 0;
4216         }
4217         if (!enable_unrestricted_guest)
4218                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4219         if (kvm_pause_in_guest(vmx->vcpu.kvm))
4220                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4221         if (!kvm_vcpu_apicv_active(vcpu))
4222                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4223                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4224         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4225
4226         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4227          * in vmx_set_cr4.  */
4228         exec_control &= ~SECONDARY_EXEC_DESC;
4229
4230         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4231            (handle_vmptrld).
4232            We can NOT enable shadow_vmcs here because we don't have yet
4233            a current VMCS12
4234         */
4235         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4236
4237         if (!enable_pml)
4238                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4239
4240         if (cpu_has_vmx_xsaves()) {
4241                 /* Exposing XSAVES only when XSAVE is exposed */
4242                 bool xsaves_enabled =
4243                         boot_cpu_has(X86_FEATURE_XSAVE) &&
4244                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4245                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4246
4247                 vcpu->arch.xsaves_enabled = xsaves_enabled;
4248
4249                 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4250                                                   SECONDARY_EXEC_XSAVES,
4251                                                   xsaves_enabled, false);
4252         }
4253
4254         vmx_adjust_sec_exec_feature(vmx, &exec_control, rdtscp, RDTSCP);
4255
4256         /*
4257          * Expose INVPCID if and only if PCID is also exposed to the guest.
4258          * INVPCID takes a #UD when it's disabled in the VMCS, but a #GP or #PF
4259          * if CR4.PCIDE=0.  Enumerating CPUID.INVPCID=1 would lead to incorrect
4260          * behavior from the guest perspective (it would expect #GP or #PF).
4261          */
4262         if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
4263                 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4264         vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4265
4266
4267         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4268         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4269
4270         vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4271                                     ENABLE_USR_WAIT_PAUSE, false);
4272
4273         vmx->secondary_exec_control = exec_control;
4274 }
4275
4276 static void ept_set_mmio_spte_mask(void)
4277 {
4278         /*
4279          * EPT Misconfigurations can be generated if the value of bits 2:0
4280          * of an EPT paging-structure entry is 110b (write/execute).
4281          */
4282         kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 0);
4283 }
4284
4285 #define VMX_XSS_EXIT_BITMAP 0
4286
4287 /*
4288  * Noting that the initialization of Guest-state Area of VMCS is in
4289  * vmx_vcpu_reset().
4290  */
4291 static void init_vmcs(struct vcpu_vmx *vmx)
4292 {
4293         if (nested)
4294                 nested_vmx_set_vmcs_shadowing_bitmap();
4295
4296         if (cpu_has_vmx_msr_bitmap())
4297                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4298
4299         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4300
4301         /* Control */
4302         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4303
4304         exec_controls_set(vmx, vmx_exec_control(vmx));
4305
4306         if (cpu_has_secondary_exec_ctrls()) {
4307                 vmx_compute_secondary_exec_control(vmx);
4308                 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4309         }
4310
4311         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4312                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4313                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4314                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4315                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4316
4317                 vmcs_write16(GUEST_INTR_STATUS, 0);
4318
4319                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4320                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4321         }
4322
4323         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4324                 vmcs_write32(PLE_GAP, ple_gap);
4325                 vmx->ple_window = ple_window;
4326                 vmx->ple_window_dirty = true;
4327         }
4328
4329         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4330         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4331         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4332
4333         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4334         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4335         vmx_set_constant_host_state(vmx);
4336         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4337         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4338
4339         if (cpu_has_vmx_vmfunc())
4340                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4341
4342         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4343         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4344         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4345         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4346         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4347
4348         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4349                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4350
4351         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4352
4353         /* 22.2.1, 20.8.1 */
4354         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4355
4356         vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4357         vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4358
4359         set_cr4_guest_host_mask(vmx);
4360
4361         if (vmx->vpid != 0)
4362                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4363
4364         if (cpu_has_vmx_xsaves())
4365                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4366
4367         if (enable_pml) {
4368                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4369                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4370         }
4371
4372         if (cpu_has_vmx_encls_vmexit())
4373                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4374
4375         if (vmx_pt_mode_is_host_guest()) {
4376                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4377                 /* Bit[6~0] are forced to 1, writes are ignored. */
4378                 vmx->pt_desc.guest.output_mask = 0x7F;
4379                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4380         }
4381 }
4382
4383 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4384 {
4385         struct vcpu_vmx *vmx = to_vmx(vcpu);
4386         struct msr_data apic_base_msr;
4387         u64 cr0;
4388
4389         vmx->rmode.vm86_active = 0;
4390         vmx->spec_ctrl = 0;
4391
4392         vmx->msr_ia32_umwait_control = 0;
4393
4394         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4395         vmx->hv_deadline_tsc = -1;
4396         kvm_set_cr8(vcpu, 0);
4397
4398         if (!init_event) {
4399                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4400                                      MSR_IA32_APICBASE_ENABLE;
4401                 if (kvm_vcpu_is_reset_bsp(vcpu))
4402                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4403                 apic_base_msr.host_initiated = true;
4404                 kvm_set_apic_base(vcpu, &apic_base_msr);
4405         }
4406
4407         vmx_segment_cache_clear(vmx);
4408
4409         seg_setup(VCPU_SREG_CS);
4410         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4411         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4412
4413         seg_setup(VCPU_SREG_DS);
4414         seg_setup(VCPU_SREG_ES);
4415         seg_setup(VCPU_SREG_FS);
4416         seg_setup(VCPU_SREG_GS);
4417         seg_setup(VCPU_SREG_SS);
4418
4419         vmcs_write16(GUEST_TR_SELECTOR, 0);
4420         vmcs_writel(GUEST_TR_BASE, 0);
4421         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4422         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4423
4424         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4425         vmcs_writel(GUEST_LDTR_BASE, 0);
4426         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4427         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4428
4429         if (!init_event) {
4430                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4431                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4432                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4433                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4434         }
4435
4436         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4437         kvm_rip_write(vcpu, 0xfff0);
4438
4439         vmcs_writel(GUEST_GDTR_BASE, 0);
4440         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4441
4442         vmcs_writel(GUEST_IDTR_BASE, 0);
4443         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4444
4445         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4446         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4447         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4448         if (kvm_mpx_supported())
4449                 vmcs_write64(GUEST_BNDCFGS, 0);
4450
4451         setup_msrs(vmx);
4452
4453         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4454
4455         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4456                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4457                 if (cpu_need_tpr_shadow(vcpu))
4458                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4459                                      __pa(vcpu->arch.apic->regs));
4460                 vmcs_write32(TPR_THRESHOLD, 0);
4461         }
4462
4463         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4464
4465         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4466         vmx->vcpu.arch.cr0 = cr0;
4467         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4468         vmx_set_cr4(vcpu, 0);
4469         vmx_set_efer(vcpu, 0);
4470
4471         update_exception_bitmap(vcpu);
4472
4473         vpid_sync_context(vmx->vpid);
4474         if (init_event)
4475                 vmx_clear_hlt(vcpu);
4476 }
4477
4478 static void enable_irq_window(struct kvm_vcpu *vcpu)
4479 {
4480         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4481 }
4482
4483 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4484 {
4485         if (!enable_vnmi ||
4486             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4487                 enable_irq_window(vcpu);
4488                 return;
4489         }
4490
4491         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4492 }
4493
4494 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4495 {
4496         struct vcpu_vmx *vmx = to_vmx(vcpu);
4497         uint32_t intr;
4498         int irq = vcpu->arch.interrupt.nr;
4499
4500         trace_kvm_inj_virq(irq);
4501
4502         ++vcpu->stat.irq_injections;
4503         if (vmx->rmode.vm86_active) {
4504                 int inc_eip = 0;
4505                 if (vcpu->arch.interrupt.soft)
4506                         inc_eip = vcpu->arch.event_exit_inst_len;
4507                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4508                 return;
4509         }
4510         intr = irq | INTR_INFO_VALID_MASK;
4511         if (vcpu->arch.interrupt.soft) {
4512                 intr |= INTR_TYPE_SOFT_INTR;
4513                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4514                              vmx->vcpu.arch.event_exit_inst_len);
4515         } else
4516                 intr |= INTR_TYPE_EXT_INTR;
4517         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4518
4519         vmx_clear_hlt(vcpu);
4520 }
4521
4522 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4523 {
4524         struct vcpu_vmx *vmx = to_vmx(vcpu);
4525
4526         if (!enable_vnmi) {
4527                 /*
4528                  * Tracking the NMI-blocked state in software is built upon
4529                  * finding the next open IRQ window. This, in turn, depends on
4530                  * well-behaving guests: They have to keep IRQs disabled at
4531                  * least as long as the NMI handler runs. Otherwise we may
4532                  * cause NMI nesting, maybe breaking the guest. But as this is
4533                  * highly unlikely, we can live with the residual risk.
4534                  */
4535                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4536                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4537         }
4538
4539         ++vcpu->stat.nmi_injections;
4540         vmx->loaded_vmcs->nmi_known_unmasked = false;
4541
4542         if (vmx->rmode.vm86_active) {
4543                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4544                 return;
4545         }
4546
4547         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4548                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4549
4550         vmx_clear_hlt(vcpu);
4551 }
4552
4553 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4554 {
4555         struct vcpu_vmx *vmx = to_vmx(vcpu);
4556         bool masked;
4557
4558         if (!enable_vnmi)
4559                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4560         if (vmx->loaded_vmcs->nmi_known_unmasked)
4561                 return false;
4562         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4563         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4564         return masked;
4565 }
4566
4567 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4568 {
4569         struct vcpu_vmx *vmx = to_vmx(vcpu);
4570
4571         if (!enable_vnmi) {
4572                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4573                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4574                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4575                 }
4576         } else {
4577                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4578                 if (masked)
4579                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4580                                       GUEST_INTR_STATE_NMI);
4581                 else
4582                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4583                                         GUEST_INTR_STATE_NMI);
4584         }
4585 }
4586
4587 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4588 {
4589         if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4590                 return false;
4591
4592         if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4593                 return true;
4594
4595         return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4596                 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4597                  GUEST_INTR_STATE_NMI));
4598 }
4599
4600 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4601 {
4602         if (to_vmx(vcpu)->nested.nested_run_pending)
4603                 return -EBUSY;
4604
4605         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4606         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4607                 return -EBUSY;
4608
4609         return !vmx_nmi_blocked(vcpu);
4610 }
4611
4612 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4613 {
4614         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4615                 return false;
4616
4617         return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4618                (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4619                 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4620 }
4621
4622 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4623 {
4624         if (to_vmx(vcpu)->nested.nested_run_pending)
4625                 return -EBUSY;
4626
4627        /*
4628         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4629         * e.g. if the IRQ arrived asynchronously after checking nested events.
4630         */
4631         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4632                 return -EBUSY;
4633
4634         return !vmx_interrupt_blocked(vcpu);
4635 }
4636
4637 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4638 {
4639         int ret;
4640
4641         if (enable_unrestricted_guest)
4642                 return 0;
4643
4644         mutex_lock(&kvm->slots_lock);
4645         ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4646                                       PAGE_SIZE * 3);
4647         mutex_unlock(&kvm->slots_lock);
4648
4649         if (ret)
4650                 return ret;
4651         to_kvm_vmx(kvm)->tss_addr = addr;
4652         return init_rmode_tss(kvm);
4653 }
4654
4655 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4656 {
4657         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4658         return 0;
4659 }
4660
4661 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4662 {
4663         switch (vec) {
4664         case BP_VECTOR:
4665                 /*
4666                  * Update instruction length as we may reinject the exception
4667                  * from user space while in guest debugging mode.
4668                  */
4669                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4670                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4671                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4672                         return false;
4673                 fallthrough;
4674         case DB_VECTOR:
4675                 return !(vcpu->guest_debug &
4676                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4677         case DE_VECTOR:
4678         case OF_VECTOR:
4679         case BR_VECTOR:
4680         case UD_VECTOR:
4681         case DF_VECTOR:
4682         case SS_VECTOR:
4683         case GP_VECTOR:
4684         case MF_VECTOR:
4685                 return true;
4686         }
4687         return false;
4688 }
4689
4690 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4691                                   int vec, u32 err_code)
4692 {
4693         /*
4694          * Instruction with address size override prefix opcode 0x67
4695          * Cause the #SS fault with 0 error code in VM86 mode.
4696          */
4697         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4698                 if (kvm_emulate_instruction(vcpu, 0)) {
4699                         if (vcpu->arch.halt_request) {
4700                                 vcpu->arch.halt_request = 0;
4701                                 return kvm_vcpu_halt(vcpu);
4702                         }
4703                         return 1;
4704                 }
4705                 return 0;
4706         }
4707
4708         /*
4709          * Forward all other exceptions that are valid in real mode.
4710          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4711          *        the required debugging infrastructure rework.
4712          */
4713         kvm_queue_exception(vcpu, vec);
4714         return 1;
4715 }
4716
4717 /*
4718  * Trigger machine check on the host. We assume all the MSRs are already set up
4719  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4720  * We pass a fake environment to the machine check handler because we want
4721  * the guest to be always treated like user space, no matter what context
4722  * it used internally.
4723  */
4724 static void kvm_machine_check(void)
4725 {
4726 #if defined(CONFIG_X86_MCE)
4727         struct pt_regs regs = {
4728                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4729                 .flags = X86_EFLAGS_IF,
4730         };
4731
4732         do_machine_check(&regs);
4733 #endif
4734 }
4735
4736 static int handle_machine_check(struct kvm_vcpu *vcpu)
4737 {
4738         /* handled by vmx_vcpu_run() */
4739         return 1;
4740 }
4741
4742 /*
4743  * If the host has split lock detection disabled, then #AC is
4744  * unconditionally injected into the guest, which is the pre split lock
4745  * detection behaviour.
4746  *
4747  * If the host has split lock detection enabled then #AC is
4748  * only injected into the guest when:
4749  *  - Guest CPL == 3 (user mode)
4750  *  - Guest has #AC detection enabled in CR0
4751  *  - Guest EFLAGS has AC bit set
4752  */
4753 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu)
4754 {
4755         if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4756                 return true;
4757
4758         return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4759                (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4760 }
4761
4762 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4763 {
4764         struct vcpu_vmx *vmx = to_vmx(vcpu);
4765         struct kvm_run *kvm_run = vcpu->run;
4766         u32 intr_info, ex_no, error_code;
4767         unsigned long cr2, rip, dr6;
4768         u32 vect_info;
4769
4770         vect_info = vmx->idt_vectoring_info;
4771         intr_info = vmx_get_intr_info(vcpu);
4772
4773         if (is_machine_check(intr_info) || is_nmi(intr_info))
4774                 return 1; /* handled by handle_exception_nmi_irqoff() */
4775
4776         if (is_invalid_opcode(intr_info))
4777                 return handle_ud(vcpu);
4778
4779         error_code = 0;
4780         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4781                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4782
4783         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4784                 WARN_ON_ONCE(!enable_vmware_backdoor);
4785
4786                 /*
4787                  * VMware backdoor emulation on #GP interception only handles
4788                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4789                  * error code on #GP.
4790                  */
4791                 if (error_code) {
4792                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4793                         return 1;
4794                 }
4795                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4796         }
4797
4798         /*
4799          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4800          * MMIO, it is better to report an internal error.
4801          * See the comments in vmx_handle_exit.
4802          */
4803         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4804             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4805                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4806                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4807                 vcpu->run->internal.ndata = 4;
4808                 vcpu->run->internal.data[0] = vect_info;
4809                 vcpu->run->internal.data[1] = intr_info;
4810                 vcpu->run->internal.data[2] = error_code;
4811                 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4812                 return 0;
4813         }
4814
4815         if (is_page_fault(intr_info)) {
4816                 cr2 = vmx_get_exit_qual(vcpu);
4817                 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4818                         /*
4819                          * EPT will cause page fault only if we need to
4820                          * detect illegal GPAs.
4821                          */
4822                         WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4823                         kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4824                         return 1;
4825                 } else
4826                         return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4827         }
4828
4829         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4830
4831         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4832                 return handle_rmode_exception(vcpu, ex_no, error_code);
4833
4834         switch (ex_no) {
4835         case DB_VECTOR:
4836                 dr6 = vmx_get_exit_qual(vcpu);
4837                 if (!(vcpu->guest_debug &
4838                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4839                         if (is_icebp(intr_info))
4840                                 WARN_ON(!skip_emulated_instruction(vcpu));
4841
4842                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4843                         return 1;
4844                 }
4845                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
4846                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4847                 fallthrough;
4848         case BP_VECTOR:
4849                 /*
4850                  * Update instruction length as we may reinject #BP from
4851                  * user space while in guest debugging mode. Reading it for
4852                  * #DB as well causes no harm, it is not used in that case.
4853                  */
4854                 vmx->vcpu.arch.event_exit_inst_len =
4855                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4856                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4857                 rip = kvm_rip_read(vcpu);
4858                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4859                 kvm_run->debug.arch.exception = ex_no;
4860                 break;
4861         case AC_VECTOR:
4862                 if (guest_inject_ac(vcpu)) {
4863                         kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4864                         return 1;
4865                 }
4866
4867                 /*
4868                  * Handle split lock. Depending on detection mode this will
4869                  * either warn and disable split lock detection for this
4870                  * task or force SIGBUS on it.
4871                  */
4872                 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4873                         return 1;
4874                 fallthrough;
4875         default:
4876                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4877                 kvm_run->ex.exception = ex_no;
4878                 kvm_run->ex.error_code = error_code;
4879                 break;
4880         }
4881         return 0;
4882 }
4883
4884 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4885 {
4886         ++vcpu->stat.irq_exits;
4887         return 1;
4888 }
4889
4890 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4891 {
4892         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4893         vcpu->mmio_needed = 0;
4894         return 0;
4895 }
4896
4897 static int handle_io(struct kvm_vcpu *vcpu)
4898 {
4899         unsigned long exit_qualification;
4900         int size, in, string;
4901         unsigned port;
4902
4903         exit_qualification = vmx_get_exit_qual(vcpu);
4904         string = (exit_qualification & 16) != 0;
4905
4906         ++vcpu->stat.io_exits;
4907
4908         if (string)
4909                 return kvm_emulate_instruction(vcpu, 0);
4910
4911         port = exit_qualification >> 16;
4912         size = (exit_qualification & 7) + 1;
4913         in = (exit_qualification & 8) != 0;
4914
4915         return kvm_fast_pio(vcpu, size, port, in);
4916 }
4917
4918 static void
4919 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4920 {
4921         /*
4922          * Patch in the VMCALL instruction:
4923          */
4924         hypercall[0] = 0x0f;
4925         hypercall[1] = 0x01;
4926         hypercall[2] = 0xc1;
4927 }
4928
4929 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4930 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4931 {
4932         if (is_guest_mode(vcpu)) {
4933                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4934                 unsigned long orig_val = val;
4935
4936                 /*
4937                  * We get here when L2 changed cr0 in a way that did not change
4938                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4939                  * but did change L0 shadowed bits. So we first calculate the
4940                  * effective cr0 value that L1 would like to write into the
4941                  * hardware. It consists of the L2-owned bits from the new
4942                  * value combined with the L1-owned bits from L1's guest_cr0.
4943                  */
4944                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4945                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4946
4947                 if (!nested_guest_cr0_valid(vcpu, val))
4948                         return 1;
4949
4950                 if (kvm_set_cr0(vcpu, val))
4951                         return 1;
4952                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4953                 return 0;
4954         } else {
4955                 if (to_vmx(vcpu)->nested.vmxon &&
4956                     !nested_host_cr0_valid(vcpu, val))
4957                         return 1;
4958
4959                 return kvm_set_cr0(vcpu, val);
4960         }
4961 }
4962
4963 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4964 {
4965         if (is_guest_mode(vcpu)) {
4966                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4967                 unsigned long orig_val = val;
4968
4969                 /* analogously to handle_set_cr0 */
4970                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4971                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4972                 if (kvm_set_cr4(vcpu, val))
4973                         return 1;
4974                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4975                 return 0;
4976         } else
4977                 return kvm_set_cr4(vcpu, val);
4978 }
4979
4980 static int handle_desc(struct kvm_vcpu *vcpu)
4981 {
4982         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4983         return kvm_emulate_instruction(vcpu, 0);
4984 }
4985
4986 static int handle_cr(struct kvm_vcpu *vcpu)
4987 {
4988         unsigned long exit_qualification, val;
4989         int cr;
4990         int reg;
4991         int err;
4992         int ret;
4993
4994         exit_qualification = vmx_get_exit_qual(vcpu);
4995         cr = exit_qualification & 15;
4996         reg = (exit_qualification >> 8) & 15;
4997         switch ((exit_qualification >> 4) & 3) {
4998         case 0: /* mov to cr */
4999                 val = kvm_register_readl(vcpu, reg);
5000                 trace_kvm_cr_write(cr, val);
5001                 switch (cr) {
5002                 case 0:
5003                         err = handle_set_cr0(vcpu, val);
5004                         return kvm_complete_insn_gp(vcpu, err);
5005                 case 3:
5006                         WARN_ON_ONCE(enable_unrestricted_guest);
5007                         err = kvm_set_cr3(vcpu, val);
5008                         return kvm_complete_insn_gp(vcpu, err);
5009                 case 4:
5010                         err = handle_set_cr4(vcpu, val);
5011                         return kvm_complete_insn_gp(vcpu, err);
5012                 case 8: {
5013                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5014                                 u8 cr8 = (u8)val;
5015                                 err = kvm_set_cr8(vcpu, cr8);
5016                                 ret = kvm_complete_insn_gp(vcpu, err);
5017                                 if (lapic_in_kernel(vcpu))
5018                                         return ret;
5019                                 if (cr8_prev <= cr8)
5020                                         return ret;
5021                                 /*
5022                                  * TODO: we might be squashing a
5023                                  * KVM_GUESTDBG_SINGLESTEP-triggered
5024                                  * KVM_EXIT_DEBUG here.
5025                                  */
5026                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5027                                 return 0;
5028                         }
5029                 }
5030                 break;
5031         case 2: /* clts */
5032                 WARN_ONCE(1, "Guest should always own CR0.TS");
5033                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5034                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5035                 return kvm_skip_emulated_instruction(vcpu);
5036         case 1: /*mov from cr*/
5037                 switch (cr) {
5038                 case 3:
5039                         WARN_ON_ONCE(enable_unrestricted_guest);
5040                         val = kvm_read_cr3(vcpu);
5041                         kvm_register_write(vcpu, reg, val);
5042                         trace_kvm_cr_read(cr, val);
5043                         return kvm_skip_emulated_instruction(vcpu);
5044                 case 8:
5045                         val = kvm_get_cr8(vcpu);
5046                         kvm_register_write(vcpu, reg, val);
5047                         trace_kvm_cr_read(cr, val);
5048                         return kvm_skip_emulated_instruction(vcpu);
5049                 }
5050                 break;
5051         case 3: /* lmsw */
5052                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5053                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5054                 kvm_lmsw(vcpu, val);
5055
5056                 return kvm_skip_emulated_instruction(vcpu);
5057         default:
5058                 break;
5059         }
5060         vcpu->run->exit_reason = 0;
5061         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5062                (int)(exit_qualification >> 4) & 3, cr);
5063         return 0;
5064 }
5065
5066 static int handle_dr(struct kvm_vcpu *vcpu)
5067 {
5068         unsigned long exit_qualification;
5069         int dr, dr7, reg;
5070
5071         exit_qualification = vmx_get_exit_qual(vcpu);
5072         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5073
5074         /* First, if DR does not exist, trigger UD */
5075         if (!kvm_require_dr(vcpu, dr))
5076                 return 1;
5077
5078         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5079         if (!kvm_require_cpl(vcpu, 0))
5080                 return 1;
5081         dr7 = vmcs_readl(GUEST_DR7);
5082         if (dr7 & DR7_GD) {
5083                 /*
5084                  * As the vm-exit takes precedence over the debug trap, we
5085                  * need to emulate the latter, either for the host or the
5086                  * guest debugging itself.
5087                  */
5088                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5089                         vcpu->run->debug.arch.dr6 = DR6_BD | DR6_RTM | DR6_FIXED_1;
5090                         vcpu->run->debug.arch.dr7 = dr7;
5091                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5092                         vcpu->run->debug.arch.exception = DB_VECTOR;
5093                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5094                         return 0;
5095                 } else {
5096                         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5097                         return 1;
5098                 }
5099         }
5100
5101         if (vcpu->guest_debug == 0) {
5102                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5103
5104                 /*
5105                  * No more DR vmexits; force a reload of the debug registers
5106                  * and reenter on this instruction.  The next vmexit will
5107                  * retrieve the full state of the debug registers.
5108                  */
5109                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5110                 return 1;
5111         }
5112
5113         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5114         if (exit_qualification & TYPE_MOV_FROM_DR) {
5115                 unsigned long val;
5116
5117                 if (kvm_get_dr(vcpu, dr, &val))
5118                         return 1;
5119                 kvm_register_write(vcpu, reg, val);
5120         } else
5121                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5122                         return 1;
5123
5124         return kvm_skip_emulated_instruction(vcpu);
5125 }
5126
5127 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5128 {
5129         get_debugreg(vcpu->arch.db[0], 0);
5130         get_debugreg(vcpu->arch.db[1], 1);
5131         get_debugreg(vcpu->arch.db[2], 2);
5132         get_debugreg(vcpu->arch.db[3], 3);
5133         get_debugreg(vcpu->arch.dr6, 6);
5134         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5135
5136         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5137         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5138 }
5139
5140 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5141 {
5142         vmcs_writel(GUEST_DR7, val);
5143 }
5144
5145 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5146 {
5147         kvm_apic_update_ppr(vcpu);
5148         return 1;
5149 }
5150
5151 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5152 {
5153         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5154
5155         kvm_make_request(KVM_REQ_EVENT, vcpu);
5156
5157         ++vcpu->stat.irq_window_exits;
5158         return 1;
5159 }
5160
5161 static int handle_vmcall(struct kvm_vcpu *vcpu)
5162 {
5163         return kvm_emulate_hypercall(vcpu);
5164 }
5165
5166 static int handle_invd(struct kvm_vcpu *vcpu)
5167 {
5168         /* Treat an INVD instruction as a NOP and just skip it. */
5169         return kvm_skip_emulated_instruction(vcpu);
5170 }
5171
5172 static int handle_invlpg(struct kvm_vcpu *vcpu)
5173 {
5174         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5175
5176         kvm_mmu_invlpg(vcpu, exit_qualification);
5177         return kvm_skip_emulated_instruction(vcpu);
5178 }
5179
5180 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5181 {
5182         int err;
5183
5184         err = kvm_rdpmc(vcpu);
5185         return kvm_complete_insn_gp(vcpu, err);
5186 }
5187
5188 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5189 {
5190         return kvm_emulate_wbinvd(vcpu);
5191 }
5192
5193 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5194 {
5195         u64 new_bv = kvm_read_edx_eax(vcpu);
5196         u32 index = kvm_rcx_read(vcpu);
5197
5198         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5199                 return kvm_skip_emulated_instruction(vcpu);
5200         return 1;
5201 }
5202
5203 static int handle_apic_access(struct kvm_vcpu *vcpu)
5204 {
5205         if (likely(fasteoi)) {
5206                 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5207                 int access_type, offset;
5208
5209                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5210                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5211                 /*
5212                  * Sane guest uses MOV to write EOI, with written value
5213                  * not cared. So make a short-circuit here by avoiding
5214                  * heavy instruction emulation.
5215                  */
5216                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5217                     (offset == APIC_EOI)) {
5218                         kvm_lapic_set_eoi(vcpu);
5219                         return kvm_skip_emulated_instruction(vcpu);
5220                 }
5221         }
5222         return kvm_emulate_instruction(vcpu, 0);
5223 }
5224
5225 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5226 {
5227         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5228         int vector = exit_qualification & 0xff;
5229
5230         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5231         kvm_apic_set_eoi_accelerated(vcpu, vector);
5232         return 1;
5233 }
5234
5235 static int handle_apic_write(struct kvm_vcpu *vcpu)
5236 {
5237         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5238         u32 offset = exit_qualification & 0xfff;
5239
5240         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5241         kvm_apic_write_nodecode(vcpu, offset);
5242         return 1;
5243 }
5244
5245 static int handle_task_switch(struct kvm_vcpu *vcpu)
5246 {
5247         struct vcpu_vmx *vmx = to_vmx(vcpu);
5248         unsigned long exit_qualification;
5249         bool has_error_code = false;
5250         u32 error_code = 0;
5251         u16 tss_selector;
5252         int reason, type, idt_v, idt_index;
5253
5254         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5255         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5256         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5257
5258         exit_qualification = vmx_get_exit_qual(vcpu);
5259
5260         reason = (u32)exit_qualification >> 30;
5261         if (reason == TASK_SWITCH_GATE && idt_v) {
5262                 switch (type) {
5263                 case INTR_TYPE_NMI_INTR:
5264                         vcpu->arch.nmi_injected = false;
5265                         vmx_set_nmi_mask(vcpu, true);
5266                         break;
5267                 case INTR_TYPE_EXT_INTR:
5268                 case INTR_TYPE_SOFT_INTR:
5269                         kvm_clear_interrupt_queue(vcpu);
5270                         break;
5271                 case INTR_TYPE_HARD_EXCEPTION:
5272                         if (vmx->idt_vectoring_info &
5273                             VECTORING_INFO_DELIVER_CODE_MASK) {
5274                                 has_error_code = true;
5275                                 error_code =
5276                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5277                         }
5278                         fallthrough;
5279                 case INTR_TYPE_SOFT_EXCEPTION:
5280                         kvm_clear_exception_queue(vcpu);
5281                         break;
5282                 default:
5283                         break;
5284                 }
5285         }
5286         tss_selector = exit_qualification;
5287
5288         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5289                        type != INTR_TYPE_EXT_INTR &&
5290                        type != INTR_TYPE_NMI_INTR))
5291                 WARN_ON(!skip_emulated_instruction(vcpu));
5292
5293         /*
5294          * TODO: What about debug traps on tss switch?
5295          *       Are we supposed to inject them and update dr6?
5296          */
5297         return kvm_task_switch(vcpu, tss_selector,
5298                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5299                                reason, has_error_code, error_code);
5300 }
5301
5302 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5303 {
5304         unsigned long exit_qualification;
5305         gpa_t gpa;
5306         u64 error_code;
5307
5308         exit_qualification = vmx_get_exit_qual(vcpu);
5309
5310         /*
5311          * EPT violation happened while executing iret from NMI,
5312          * "blocked by NMI" bit has to be set before next VM entry.
5313          * There are errata that may cause this bit to not be set:
5314          * AAK134, BY25.
5315          */
5316         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5317                         enable_vnmi &&
5318                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5319                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5320
5321         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5322         trace_kvm_page_fault(gpa, exit_qualification);
5323
5324         /* Is it a read fault? */
5325         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5326                      ? PFERR_USER_MASK : 0;
5327         /* Is it a write fault? */
5328         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5329                       ? PFERR_WRITE_MASK : 0;
5330         /* Is it a fetch fault? */
5331         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5332                       ? PFERR_FETCH_MASK : 0;
5333         /* ept page table entry is present? */
5334         error_code |= (exit_qualification &
5335                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5336                         EPT_VIOLATION_EXECUTABLE))
5337                       ? PFERR_PRESENT_MASK : 0;
5338
5339         error_code |= (exit_qualification & 0x100) != 0 ?
5340                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5341
5342         vcpu->arch.exit_qualification = exit_qualification;
5343
5344         /*
5345          * Check that the GPA doesn't exceed physical memory limits, as that is
5346          * a guest page fault.  We have to emulate the instruction here, because
5347          * if the illegal address is that of a paging structure, then
5348          * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5349          * would also use advanced VM-exit information for EPT violations to
5350          * reconstruct the page fault error code.
5351          */
5352         if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5353                 return kvm_emulate_instruction(vcpu, 0);
5354
5355         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5356 }
5357
5358 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5359 {
5360         gpa_t gpa;
5361
5362         /*
5363          * A nested guest cannot optimize MMIO vmexits, because we have an
5364          * nGPA here instead of the required GPA.
5365          */
5366         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5367         if (!is_guest_mode(vcpu) &&
5368             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5369                 trace_kvm_fast_mmio(gpa);
5370                 return kvm_skip_emulated_instruction(vcpu);
5371         }
5372
5373         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5374 }
5375
5376 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5377 {
5378         WARN_ON_ONCE(!enable_vnmi);
5379         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5380         ++vcpu->stat.nmi_window_exits;
5381         kvm_make_request(KVM_REQ_EVENT, vcpu);
5382
5383         return 1;
5384 }
5385
5386 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5387 {
5388         struct vcpu_vmx *vmx = to_vmx(vcpu);
5389         bool intr_window_requested;
5390         unsigned count = 130;
5391
5392         intr_window_requested = exec_controls_get(vmx) &
5393                                 CPU_BASED_INTR_WINDOW_EXITING;
5394
5395         while (vmx->emulation_required && count-- != 0) {
5396                 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5397                         return handle_interrupt_window(&vmx->vcpu);
5398
5399                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5400                         return 1;
5401
5402                 if (!kvm_emulate_instruction(vcpu, 0))
5403                         return 0;
5404
5405                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5406                     vcpu->arch.exception.pending) {
5407                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5408                         vcpu->run->internal.suberror =
5409                                                 KVM_INTERNAL_ERROR_EMULATION;
5410                         vcpu->run->internal.ndata = 0;
5411                         return 0;
5412                 }
5413
5414                 if (vcpu->arch.halt_request) {
5415                         vcpu->arch.halt_request = 0;
5416                         return kvm_vcpu_halt(vcpu);
5417                 }
5418
5419                 /*
5420                  * Note, return 1 and not 0, vcpu_run() will invoke
5421                  * xfer_to_guest_mode() which will create a proper return
5422                  * code.
5423                  */
5424                 if (__xfer_to_guest_mode_work_pending())
5425                         return 1;
5426         }
5427
5428         return 1;
5429 }
5430
5431 static void grow_ple_window(struct kvm_vcpu *vcpu)
5432 {
5433         struct vcpu_vmx *vmx = to_vmx(vcpu);
5434         unsigned int old = vmx->ple_window;
5435
5436         vmx->ple_window = __grow_ple_window(old, ple_window,
5437                                             ple_window_grow,
5438                                             ple_window_max);
5439
5440         if (vmx->ple_window != old) {
5441                 vmx->ple_window_dirty = true;
5442                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5443                                             vmx->ple_window, old);
5444         }
5445 }
5446
5447 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5448 {
5449         struct vcpu_vmx *vmx = to_vmx(vcpu);
5450         unsigned int old = vmx->ple_window;
5451
5452         vmx->ple_window = __shrink_ple_window(old, ple_window,
5453                                               ple_window_shrink,
5454                                               ple_window);
5455
5456         if (vmx->ple_window != old) {
5457                 vmx->ple_window_dirty = true;
5458                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5459                                             vmx->ple_window, old);
5460         }
5461 }
5462
5463 static void vmx_enable_tdp(void)
5464 {
5465         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5466                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5467                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5468                 0ull, VMX_EPT_EXECUTABLE_MASK,
5469                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5470                 VMX_EPT_RWX_MASK, 0ull);
5471
5472         ept_set_mmio_spte_mask();
5473 }
5474
5475 /*
5476  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5477  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5478  */
5479 static int handle_pause(struct kvm_vcpu *vcpu)
5480 {
5481         if (!kvm_pause_in_guest(vcpu->kvm))
5482                 grow_ple_window(vcpu);
5483
5484         /*
5485          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5486          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5487          * never set PAUSE_EXITING and just set PLE if supported,
5488          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5489          */
5490         kvm_vcpu_on_spin(vcpu, true);
5491         return kvm_skip_emulated_instruction(vcpu);
5492 }
5493
5494 static int handle_nop(struct kvm_vcpu *vcpu)
5495 {
5496         return kvm_skip_emulated_instruction(vcpu);
5497 }
5498
5499 static int handle_mwait(struct kvm_vcpu *vcpu)
5500 {
5501         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5502         return handle_nop(vcpu);
5503 }
5504
5505 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5506 {
5507         kvm_queue_exception(vcpu, UD_VECTOR);
5508         return 1;
5509 }
5510
5511 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5512 {
5513         return 1;
5514 }
5515
5516 static int handle_monitor(struct kvm_vcpu *vcpu)
5517 {
5518         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5519         return handle_nop(vcpu);
5520 }
5521
5522 static int handle_invpcid(struct kvm_vcpu *vcpu)
5523 {
5524         u32 vmx_instruction_info;
5525         unsigned long type;
5526         gva_t gva;
5527         struct {
5528                 u64 pcid;
5529                 u64 gla;
5530         } operand;
5531
5532         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5533                 kvm_queue_exception(vcpu, UD_VECTOR);
5534                 return 1;
5535         }
5536
5537         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5538         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5539
5540         if (type > 3) {
5541                 kvm_inject_gp(vcpu, 0);
5542                 return 1;
5543         }
5544
5545         /* According to the Intel instruction reference, the memory operand
5546          * is read even if it isn't needed (e.g., for type==all)
5547          */
5548         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5549                                 vmx_instruction_info, false,
5550                                 sizeof(operand), &gva))
5551                 return 1;
5552
5553         return kvm_handle_invpcid(vcpu, type, gva);
5554 }
5555
5556 static int handle_pml_full(struct kvm_vcpu *vcpu)
5557 {
5558         unsigned long exit_qualification;
5559
5560         trace_kvm_pml_full(vcpu->vcpu_id);
5561
5562         exit_qualification = vmx_get_exit_qual(vcpu);
5563
5564         /*
5565          * PML buffer FULL happened while executing iret from NMI,
5566          * "blocked by NMI" bit has to be set before next VM entry.
5567          */
5568         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5569                         enable_vnmi &&
5570                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5571                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5572                                 GUEST_INTR_STATE_NMI);
5573
5574         /*
5575          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5576          * here.., and there's no userspace involvement needed for PML.
5577          */
5578         return 1;
5579 }
5580
5581 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5582 {
5583         struct vcpu_vmx *vmx = to_vmx(vcpu);
5584
5585         if (!vmx->req_immediate_exit &&
5586             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5587                 kvm_lapic_expired_hv_timer(vcpu);
5588                 return EXIT_FASTPATH_REENTER_GUEST;
5589         }
5590
5591         return EXIT_FASTPATH_NONE;
5592 }
5593
5594 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5595 {
5596         handle_fastpath_preemption_timer(vcpu);
5597         return 1;
5598 }
5599
5600 /*
5601  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5602  * are overwritten by nested_vmx_setup() when nested=1.
5603  */
5604 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5605 {
5606         kvm_queue_exception(vcpu, UD_VECTOR);
5607         return 1;
5608 }
5609
5610 static int handle_encls(struct kvm_vcpu *vcpu)
5611 {
5612         /*
5613          * SGX virtualization is not yet supported.  There is no software
5614          * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5615          * to prevent the guest from executing ENCLS.
5616          */
5617         kvm_queue_exception(vcpu, UD_VECTOR);
5618         return 1;
5619 }
5620
5621 /*
5622  * The exit handlers return 1 if the exit was handled fully and guest execution
5623  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5624  * to be done to userspace and return 0.
5625  */
5626 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5627         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5628         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5629         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5630         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5631         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5632         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5633         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5634         [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5635         [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5636         [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5637         [EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5638         [EXIT_REASON_HLT]                     = kvm_emulate_halt,
5639         [EXIT_REASON_INVD]                    = handle_invd,
5640         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5641         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5642         [EXIT_REASON_VMCALL]                  = handle_vmcall,
5643         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5644         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5645         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5646         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5647         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5648         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5649         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5650         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5651         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5652         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5653         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5654         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5655         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5656         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5657         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5658         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5659         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5660         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5661         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5662         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5663         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5664         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5665         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
5666         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5667         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5668         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5669         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5670         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
5671         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
5672         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5673         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5674         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5675         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5676         [EXIT_REASON_ENCLS]                   = handle_encls,
5677 };
5678
5679 static const int kvm_vmx_max_exit_handlers =
5680         ARRAY_SIZE(kvm_vmx_exit_handlers);
5681
5682 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5683                               u32 *intr_info, u32 *error_code)
5684 {
5685         struct vcpu_vmx *vmx = to_vmx(vcpu);
5686
5687         *info1 = vmx_get_exit_qual(vcpu);
5688         if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
5689                 *info2 = vmx->idt_vectoring_info;
5690                 *intr_info = vmx_get_intr_info(vcpu);
5691                 if (is_exception_with_error_code(*intr_info))
5692                         *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5693                 else
5694                         *error_code = 0;
5695         } else {
5696                 *info2 = 0;
5697                 *intr_info = 0;
5698                 *error_code = 0;
5699         }
5700 }
5701
5702 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5703 {
5704         if (vmx->pml_pg) {
5705                 __free_page(vmx->pml_pg);
5706                 vmx->pml_pg = NULL;
5707         }
5708 }
5709
5710 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5711 {
5712         struct vcpu_vmx *vmx = to_vmx(vcpu);
5713         u64 *pml_buf;
5714         u16 pml_idx;
5715
5716         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5717
5718         /* Do nothing if PML buffer is empty */
5719         if (pml_idx == (PML_ENTITY_NUM - 1))
5720                 return;
5721
5722         /* PML index always points to next available PML buffer entity */
5723         if (pml_idx >= PML_ENTITY_NUM)
5724                 pml_idx = 0;
5725         else
5726                 pml_idx++;
5727
5728         pml_buf = page_address(vmx->pml_pg);
5729         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5730                 u64 gpa;
5731
5732                 gpa = pml_buf[pml_idx];
5733                 WARN_ON(gpa & (PAGE_SIZE - 1));
5734                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5735         }
5736
5737         /* reset PML index */
5738         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5739 }
5740
5741 /*
5742  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5743  * Called before reporting dirty_bitmap to userspace.
5744  */
5745 static void kvm_flush_pml_buffers(struct kvm *kvm)
5746 {
5747         int i;
5748         struct kvm_vcpu *vcpu;
5749         /*
5750          * We only need to kick vcpu out of guest mode here, as PML buffer
5751          * is flushed at beginning of all VMEXITs, and it's obvious that only
5752          * vcpus running in guest are possible to have unflushed GPAs in PML
5753          * buffer.
5754          */
5755         kvm_for_each_vcpu(i, vcpu, kvm)
5756                 kvm_vcpu_kick(vcpu);
5757 }
5758
5759 static void vmx_dump_sel(char *name, uint32_t sel)
5760 {
5761         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5762                name, vmcs_read16(sel),
5763                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5764                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5765                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5766 }
5767
5768 static void vmx_dump_dtsel(char *name, uint32_t limit)
5769 {
5770         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5771                name, vmcs_read32(limit),
5772                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5773 }
5774
5775 void dump_vmcs(void)
5776 {
5777         u32 vmentry_ctl, vmexit_ctl;
5778         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5779         unsigned long cr4;
5780         u64 efer;
5781
5782         if (!dump_invalid_vmcs) {
5783                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5784                 return;
5785         }
5786
5787         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5788         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5789         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5790         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5791         cr4 = vmcs_readl(GUEST_CR4);
5792         efer = vmcs_read64(GUEST_IA32_EFER);
5793         secondary_exec_control = 0;
5794         if (cpu_has_secondary_exec_ctrls())
5795                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5796
5797         pr_err("*** Guest State ***\n");
5798         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5799                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5800                vmcs_readl(CR0_GUEST_HOST_MASK));
5801         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5802                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5803         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5804         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5805             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5806         {
5807                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5808                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5809                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5810                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5811         }
5812         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5813                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5814         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5815                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5816         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5817                vmcs_readl(GUEST_SYSENTER_ESP),
5818                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5819         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5820         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5821         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5822         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5823         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5824         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5825         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5826         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5827         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5828         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5829         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5830             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5831                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5832                        efer, vmcs_read64(GUEST_IA32_PAT));
5833         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5834                vmcs_read64(GUEST_IA32_DEBUGCTL),
5835                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5836         if (cpu_has_load_perf_global_ctrl() &&
5837             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5838                 pr_err("PerfGlobCtl = 0x%016llx\n",
5839                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5840         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5841                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5842         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5843                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5844                vmcs_read32(GUEST_ACTIVITY_STATE));
5845         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5846                 pr_err("InterruptStatus = %04x\n",
5847                        vmcs_read16(GUEST_INTR_STATUS));
5848
5849         pr_err("*** Host State ***\n");
5850         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5851                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5852         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5853                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5854                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5855                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5856                vmcs_read16(HOST_TR_SELECTOR));
5857         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5858                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5859                vmcs_readl(HOST_TR_BASE));
5860         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5861                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5862         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5863                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5864                vmcs_readl(HOST_CR4));
5865         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5866                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5867                vmcs_read32(HOST_IA32_SYSENTER_CS),
5868                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5869         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5870                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5871                        vmcs_read64(HOST_IA32_EFER),
5872                        vmcs_read64(HOST_IA32_PAT));
5873         if (cpu_has_load_perf_global_ctrl() &&
5874             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5875                 pr_err("PerfGlobCtl = 0x%016llx\n",
5876                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5877
5878         pr_err("*** Control State ***\n");
5879         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5880                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5881         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5882         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5883                vmcs_read32(EXCEPTION_BITMAP),
5884                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5885                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5886         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5887                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5888                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5889                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5890         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5891                vmcs_read32(VM_EXIT_INTR_INFO),
5892                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5893                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5894         pr_err("        reason=%08x qualification=%016lx\n",
5895                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5896         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5897                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5898                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5899         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5900         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5901                 pr_err("TSC Multiplier = 0x%016llx\n",
5902                        vmcs_read64(TSC_MULTIPLIER));
5903         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5904                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5905                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
5906                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5907                 }
5908                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5909                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5910                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5911                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5912         }
5913         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5914                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5915         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5916                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5917         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5918                 pr_err("PLE Gap=%08x Window=%08x\n",
5919                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5920         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5921                 pr_err("Virtual processor ID = 0x%04x\n",
5922                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
5923 }
5924
5925 /*
5926  * The guest has exited.  See if we can fix it or if we need userspace
5927  * assistance.
5928  */
5929 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5930 {
5931         struct vcpu_vmx *vmx = to_vmx(vcpu);
5932         u32 exit_reason = vmx->exit_reason;
5933         u32 vectoring_info = vmx->idt_vectoring_info;
5934
5935         /*
5936          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5937          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5938          * querying dirty_bitmap, we only need to kick all vcpus out of guest
5939          * mode as if vcpus is in root mode, the PML buffer must has been
5940          * flushed already.
5941          */
5942         if (enable_pml)
5943                 vmx_flush_pml_buffer(vcpu);
5944
5945         /*
5946          * We should never reach this point with a pending nested VM-Enter, and
5947          * more specifically emulation of L2 due to invalid guest state (see
5948          * below) should never happen as that means we incorrectly allowed a
5949          * nested VM-Enter with an invalid vmcs12.
5950          */
5951         WARN_ON_ONCE(vmx->nested.nested_run_pending);
5952
5953         /* If guest state is invalid, start emulating */
5954         if (vmx->emulation_required)
5955                 return handle_invalid_guest_state(vcpu);
5956
5957         if (is_guest_mode(vcpu)) {
5958                 /*
5959                  * The host physical addresses of some pages of guest memory
5960                  * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5961                  * Page). The CPU may write to these pages via their host
5962                  * physical address while L2 is running, bypassing any
5963                  * address-translation-based dirty tracking (e.g. EPT write
5964                  * protection).
5965                  *
5966                  * Mark them dirty on every exit from L2 to prevent them from
5967                  * getting out of sync with dirty tracking.
5968                  */
5969                 nested_mark_vmcs12_pages_dirty(vcpu);
5970
5971                 if (nested_vmx_reflect_vmexit(vcpu))
5972                         return 1;
5973         }
5974
5975         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5976                 dump_vmcs();
5977                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5978                 vcpu->run->fail_entry.hardware_entry_failure_reason
5979                         = exit_reason;
5980                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5981                 return 0;
5982         }
5983
5984         if (unlikely(vmx->fail)) {
5985                 dump_vmcs();
5986                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5987                 vcpu->run->fail_entry.hardware_entry_failure_reason
5988                         = vmcs_read32(VM_INSTRUCTION_ERROR);
5989                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5990                 return 0;
5991         }
5992
5993         /*
5994          * Note:
5995          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5996          * delivery event since it indicates guest is accessing MMIO.
5997          * The vm-exit can be triggered again after return to guest that
5998          * will cause infinite loop.
5999          */
6000         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6001                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6002                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
6003                         exit_reason != EXIT_REASON_PML_FULL &&
6004                         exit_reason != EXIT_REASON_APIC_ACCESS &&
6005                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
6006                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6007                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6008                 vcpu->run->internal.ndata = 3;
6009                 vcpu->run->internal.data[0] = vectoring_info;
6010                 vcpu->run->internal.data[1] = exit_reason;
6011                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6012                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
6013                         vcpu->run->internal.ndata++;
6014                         vcpu->run->internal.data[3] =
6015                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6016                 }
6017                 vcpu->run->internal.data[vcpu->run->internal.ndata++] =
6018                         vcpu->arch.last_vmentry_cpu;
6019                 return 0;
6020         }
6021
6022         if (unlikely(!enable_vnmi &&
6023                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
6024                 if (!vmx_interrupt_blocked(vcpu)) {
6025                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6026                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6027                            vcpu->arch.nmi_pending) {
6028                         /*
6029                          * This CPU don't support us in finding the end of an
6030                          * NMI-blocked window if the guest runs with IRQs
6031                          * disabled. So we pull the trigger after 1 s of
6032                          * futile waiting, but inform the user about this.
6033                          */
6034                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6035                                "state on VCPU %d after 1 s timeout\n",
6036                                __func__, vcpu->vcpu_id);
6037                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6038                 }
6039         }
6040
6041         if (exit_fastpath != EXIT_FASTPATH_NONE)
6042                 return 1;
6043
6044         if (exit_reason >= kvm_vmx_max_exit_handlers)
6045                 goto unexpected_vmexit;
6046 #ifdef CONFIG_RETPOLINE
6047         if (exit_reason == EXIT_REASON_MSR_WRITE)
6048                 return kvm_emulate_wrmsr(vcpu);
6049         else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER)
6050                 return handle_preemption_timer(vcpu);
6051         else if (exit_reason == EXIT_REASON_INTERRUPT_WINDOW)
6052                 return handle_interrupt_window(vcpu);
6053         else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6054                 return handle_external_interrupt(vcpu);
6055         else if (exit_reason == EXIT_REASON_HLT)
6056                 return kvm_emulate_halt(vcpu);
6057         else if (exit_reason == EXIT_REASON_EPT_MISCONFIG)
6058                 return handle_ept_misconfig(vcpu);
6059 #endif
6060
6061         exit_reason = array_index_nospec(exit_reason,
6062                                          kvm_vmx_max_exit_handlers);
6063         if (!kvm_vmx_exit_handlers[exit_reason])
6064                 goto unexpected_vmexit;
6065
6066         return kvm_vmx_exit_handlers[exit_reason](vcpu);
6067
6068 unexpected_vmexit:
6069         vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", exit_reason);
6070         dump_vmcs();
6071         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6072         vcpu->run->internal.suberror =
6073                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6074         vcpu->run->internal.ndata = 2;
6075         vcpu->run->internal.data[0] = exit_reason;
6076         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6077         return 0;
6078 }
6079
6080 /*
6081  * Software based L1D cache flush which is used when microcode providing
6082  * the cache control MSR is not loaded.
6083  *
6084  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6085  * flush it is required to read in 64 KiB because the replacement algorithm
6086  * is not exactly LRU. This could be sized at runtime via topology
6087  * information but as all relevant affected CPUs have 32KiB L1D cache size
6088  * there is no point in doing so.
6089  */
6090 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6091 {
6092         int size = PAGE_SIZE << L1D_CACHE_ORDER;
6093
6094         /*
6095          * This code is only executed when the the flush mode is 'cond' or
6096          * 'always'
6097          */
6098         if (static_branch_likely(&vmx_l1d_flush_cond)) {
6099                 bool flush_l1d;
6100
6101                 /*
6102                  * Clear the per-vcpu flush bit, it gets set again
6103                  * either from vcpu_run() or from one of the unsafe
6104                  * VMEXIT handlers.
6105                  */
6106                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6107                 vcpu->arch.l1tf_flush_l1d = false;
6108
6109                 /*
6110                  * Clear the per-cpu flush bit, it gets set again from
6111                  * the interrupt handlers.
6112                  */
6113                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6114                 kvm_clear_cpu_l1tf_flush_l1d();
6115
6116                 if (!flush_l1d)
6117                         return;
6118         }
6119
6120         vcpu->stat.l1d_flush++;
6121
6122         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6123                 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6124                 return;
6125         }
6126
6127         asm volatile(
6128                 /* First ensure the pages are in the TLB */
6129                 "xorl   %%eax, %%eax\n"
6130                 ".Lpopulate_tlb:\n\t"
6131                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6132                 "addl   $4096, %%eax\n\t"
6133                 "cmpl   %%eax, %[size]\n\t"
6134                 "jne    .Lpopulate_tlb\n\t"
6135                 "xorl   %%eax, %%eax\n\t"
6136                 "cpuid\n\t"
6137                 /* Now fill the cache */
6138                 "xorl   %%eax, %%eax\n"
6139                 ".Lfill_cache:\n"
6140                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6141                 "addl   $64, %%eax\n\t"
6142                 "cmpl   %%eax, %[size]\n\t"
6143                 "jne    .Lfill_cache\n\t"
6144                 "lfence\n"
6145                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6146                     [size] "r" (size)
6147                 : "eax", "ebx", "ecx", "edx");
6148 }
6149
6150 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6151 {
6152         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6153         int tpr_threshold;
6154
6155         if (is_guest_mode(vcpu) &&
6156                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6157                 return;
6158
6159         tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6160         if (is_guest_mode(vcpu))
6161                 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6162         else
6163                 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6164 }
6165
6166 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6167 {
6168         struct vcpu_vmx *vmx = to_vmx(vcpu);
6169         u32 sec_exec_control;
6170
6171         if (!lapic_in_kernel(vcpu))
6172                 return;
6173
6174         if (!flexpriority_enabled &&
6175             !cpu_has_vmx_virtualize_x2apic_mode())
6176                 return;
6177
6178         /* Postpone execution until vmcs01 is the current VMCS. */
6179         if (is_guest_mode(vcpu)) {
6180                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6181                 return;
6182         }
6183
6184         sec_exec_control = secondary_exec_controls_get(vmx);
6185         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6186                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6187
6188         switch (kvm_get_apic_mode(vcpu)) {
6189         case LAPIC_MODE_INVALID:
6190                 WARN_ONCE(true, "Invalid local APIC state");
6191         case LAPIC_MODE_DISABLED:
6192                 break;
6193         case LAPIC_MODE_XAPIC:
6194                 if (flexpriority_enabled) {
6195                         sec_exec_control |=
6196                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6197                         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6198
6199                         /*
6200                          * Flush the TLB, reloading the APIC access page will
6201                          * only do so if its physical address has changed, but
6202                          * the guest may have inserted a non-APIC mapping into
6203                          * the TLB while the APIC access page was disabled.
6204                          */
6205                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6206                 }
6207                 break;
6208         case LAPIC_MODE_X2APIC:
6209                 if (cpu_has_vmx_virtualize_x2apic_mode())
6210                         sec_exec_control |=
6211                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6212                 break;
6213         }
6214         secondary_exec_controls_set(vmx, sec_exec_control);
6215
6216         vmx_update_msr_bitmap(vcpu);
6217 }
6218
6219 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6220 {
6221         struct page *page;
6222
6223         /* Defer reload until vmcs01 is the current VMCS. */
6224         if (is_guest_mode(vcpu)) {
6225                 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6226                 return;
6227         }
6228
6229         if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6230             SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6231                 return;
6232
6233         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6234         if (is_error_page(page))
6235                 return;
6236
6237         vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6238         vmx_flush_tlb_current(vcpu);
6239
6240         /*
6241          * Do not pin apic access page in memory, the MMU notifier
6242          * will call us again if it is migrated or swapped out.
6243          */
6244         put_page(page);
6245 }
6246
6247 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6248 {
6249         u16 status;
6250         u8 old;
6251
6252         if (max_isr == -1)
6253                 max_isr = 0;
6254
6255         status = vmcs_read16(GUEST_INTR_STATUS);
6256         old = status >> 8;
6257         if (max_isr != old) {
6258                 status &= 0xff;
6259                 status |= max_isr << 8;
6260                 vmcs_write16(GUEST_INTR_STATUS, status);
6261         }
6262 }
6263
6264 static void vmx_set_rvi(int vector)
6265 {
6266         u16 status;
6267         u8 old;
6268
6269         if (vector == -1)
6270                 vector = 0;
6271
6272         status = vmcs_read16(GUEST_INTR_STATUS);
6273         old = (u8)status & 0xff;
6274         if ((u8)vector != old) {
6275                 status &= ~0xff;
6276                 status |= (u8)vector;
6277                 vmcs_write16(GUEST_INTR_STATUS, status);
6278         }
6279 }
6280
6281 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6282 {
6283         /*
6284          * When running L2, updating RVI is only relevant when
6285          * vmcs12 virtual-interrupt-delivery enabled.
6286          * However, it can be enabled only when L1 also
6287          * intercepts external-interrupts and in that case
6288          * we should not update vmcs02 RVI but instead intercept
6289          * interrupt. Therefore, do nothing when running L2.
6290          */
6291         if (!is_guest_mode(vcpu))
6292                 vmx_set_rvi(max_irr);
6293 }
6294
6295 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6296 {
6297         struct vcpu_vmx *vmx = to_vmx(vcpu);
6298         int max_irr;
6299         bool max_irr_updated;
6300
6301         WARN_ON(!vcpu->arch.apicv_active);
6302         if (pi_test_on(&vmx->pi_desc)) {
6303                 pi_clear_on(&vmx->pi_desc);
6304                 /*
6305                  * IOMMU can write to PID.ON, so the barrier matters even on UP.
6306                  * But on x86 this is just a compiler barrier anyway.
6307                  */
6308                 smp_mb__after_atomic();
6309                 max_irr_updated =
6310                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6311
6312                 /*
6313                  * If we are running L2 and L1 has a new pending interrupt
6314                  * which can be injected, we should re-evaluate
6315                  * what should be done with this new L1 interrupt.
6316                  * If L1 intercepts external-interrupts, we should
6317                  * exit from L2 to L1. Otherwise, interrupt should be
6318                  * delivered directly to L2.
6319                  */
6320                 if (is_guest_mode(vcpu) && max_irr_updated) {
6321                         if (nested_exit_on_intr(vcpu))
6322                                 kvm_vcpu_exiting_guest_mode(vcpu);
6323                         else
6324                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6325                 }
6326         } else {
6327                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6328         }
6329         vmx_hwapic_irr_update(vcpu, max_irr);
6330         return max_irr;
6331 }
6332
6333 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6334 {
6335         if (!kvm_vcpu_apicv_active(vcpu))
6336                 return;
6337
6338         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6339         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6340         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6341         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6342 }
6343
6344 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6345 {
6346         struct vcpu_vmx *vmx = to_vmx(vcpu);
6347
6348         pi_clear_on(&vmx->pi_desc);
6349         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6350 }
6351
6352 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6353
6354 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
6355 {
6356         unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6357         gate_desc *desc = (gate_desc *)host_idt_base + vector;
6358
6359         kvm_before_interrupt(vcpu);
6360         vmx_do_interrupt_nmi_irqoff(gate_offset(desc));
6361         kvm_after_interrupt(vcpu);
6362 }
6363
6364 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6365 {
6366         u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6367
6368         /* if exit due to PF check for async PF */
6369         if (is_page_fault(intr_info))
6370                 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6371         /* Handle machine checks before interrupts are enabled */
6372         else if (is_machine_check(intr_info))
6373                 kvm_machine_check();
6374         /* We need to handle NMIs before interrupts are enabled */
6375         else if (is_nmi(intr_info))
6376                 handle_interrupt_nmi_irqoff(&vmx->vcpu, intr_info);
6377 }
6378
6379 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6380 {
6381         u32 intr_info = vmx_get_intr_info(vcpu);
6382
6383         if (WARN_ONCE(!is_external_intr(intr_info),
6384             "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6385                 return;
6386
6387         handle_interrupt_nmi_irqoff(vcpu, intr_info);
6388 }
6389
6390 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6391 {
6392         struct vcpu_vmx *vmx = to_vmx(vcpu);
6393
6394         if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6395                 handle_external_interrupt_irqoff(vcpu);
6396         else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6397                 handle_exception_nmi_irqoff(vmx);
6398 }
6399
6400 static bool vmx_has_emulated_msr(u32 index)
6401 {
6402         switch (index) {
6403         case MSR_IA32_SMBASE:
6404                 /*
6405                  * We cannot do SMM unless we can run the guest in big
6406                  * real mode.
6407                  */
6408                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6409         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6410                 return nested;
6411         case MSR_AMD64_VIRT_SPEC_CTRL:
6412                 /* This is AMD only.  */
6413                 return false;
6414         default:
6415                 return true;
6416         }
6417 }
6418
6419 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6420 {
6421         u32 exit_intr_info;
6422         bool unblock_nmi;
6423         u8 vector;
6424         bool idtv_info_valid;
6425
6426         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6427
6428         if (enable_vnmi) {
6429                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6430                         return;
6431
6432                 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6433                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6434                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6435                 /*
6436                  * SDM 3: 27.7.1.2 (September 2008)
6437                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6438                  * a guest IRET fault.
6439                  * SDM 3: 23.2.2 (September 2008)
6440                  * Bit 12 is undefined in any of the following cases:
6441                  *  If the VM exit sets the valid bit in the IDT-vectoring
6442                  *   information field.
6443                  *  If the VM exit is due to a double fault.
6444                  */
6445                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6446                     vector != DF_VECTOR && !idtv_info_valid)
6447                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6448                                       GUEST_INTR_STATE_NMI);
6449                 else
6450                         vmx->loaded_vmcs->nmi_known_unmasked =
6451                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6452                                   & GUEST_INTR_STATE_NMI);
6453         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6454                 vmx->loaded_vmcs->vnmi_blocked_time +=
6455                         ktime_to_ns(ktime_sub(ktime_get(),
6456                                               vmx->loaded_vmcs->entry_time));
6457 }
6458
6459 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6460                                       u32 idt_vectoring_info,
6461                                       int instr_len_field,
6462                                       int error_code_field)
6463 {
6464         u8 vector;
6465         int type;
6466         bool idtv_info_valid;
6467
6468         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6469
6470         vcpu->arch.nmi_injected = false;
6471         kvm_clear_exception_queue(vcpu);
6472         kvm_clear_interrupt_queue(vcpu);
6473
6474         if (!idtv_info_valid)
6475                 return;
6476
6477         kvm_make_request(KVM_REQ_EVENT, vcpu);
6478
6479         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6480         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6481
6482         switch (type) {
6483         case INTR_TYPE_NMI_INTR:
6484                 vcpu->arch.nmi_injected = true;
6485                 /*
6486                  * SDM 3: 27.7.1.2 (September 2008)
6487                  * Clear bit "block by NMI" before VM entry if a NMI
6488                  * delivery faulted.
6489                  */
6490                 vmx_set_nmi_mask(vcpu, false);
6491                 break;
6492         case INTR_TYPE_SOFT_EXCEPTION:
6493                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6494                 fallthrough;
6495         case INTR_TYPE_HARD_EXCEPTION:
6496                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6497                         u32 err = vmcs_read32(error_code_field);
6498                         kvm_requeue_exception_e(vcpu, vector, err);
6499                 } else
6500                         kvm_requeue_exception(vcpu, vector);
6501                 break;
6502         case INTR_TYPE_SOFT_INTR:
6503                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6504                 fallthrough;
6505         case INTR_TYPE_EXT_INTR:
6506                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6507                 break;
6508         default:
6509                 break;
6510         }
6511 }
6512
6513 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6514 {
6515         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6516                                   VM_EXIT_INSTRUCTION_LEN,
6517                                   IDT_VECTORING_ERROR_CODE);
6518 }
6519
6520 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6521 {
6522         __vmx_complete_interrupts(vcpu,
6523                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6524                                   VM_ENTRY_INSTRUCTION_LEN,
6525                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6526
6527         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6528 }
6529
6530 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6531 {
6532         int i, nr_msrs;
6533         struct perf_guest_switch_msr *msrs;
6534
6535         msrs = perf_guest_get_msrs(&nr_msrs);
6536
6537         if (!msrs)
6538                 return;
6539
6540         for (i = 0; i < nr_msrs; i++)
6541                 if (msrs[i].host == msrs[i].guest)
6542                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6543                 else
6544                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6545                                         msrs[i].host, false);
6546 }
6547
6548 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6549 {
6550         struct vcpu_vmx *vmx = to_vmx(vcpu);
6551         u64 tscl;
6552         u32 delta_tsc;
6553
6554         if (vmx->req_immediate_exit) {
6555                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6556                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6557         } else if (vmx->hv_deadline_tsc != -1) {
6558                 tscl = rdtsc();
6559                 if (vmx->hv_deadline_tsc > tscl)
6560                         /* set_hv_timer ensures the delta fits in 32-bits */
6561                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6562                                 cpu_preemption_timer_multi);
6563                 else
6564                         delta_tsc = 0;
6565
6566                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6567                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6568         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6569                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6570                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6571         }
6572 }
6573
6574 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6575 {
6576         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6577                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6578                 vmcs_writel(HOST_RSP, host_rsp);
6579         }
6580 }
6581
6582 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6583 {
6584         switch (to_vmx(vcpu)->exit_reason) {
6585         case EXIT_REASON_MSR_WRITE:
6586                 return handle_fastpath_set_msr_irqoff(vcpu);
6587         case EXIT_REASON_PREEMPTION_TIMER:
6588                 return handle_fastpath_preemption_timer(vcpu);
6589         default:
6590                 return EXIT_FASTPATH_NONE;
6591         }
6592 }
6593
6594 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6595
6596 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6597                                         struct vcpu_vmx *vmx)
6598 {
6599         /*
6600          * VMENTER enables interrupts (host state), but the kernel state is
6601          * interrupts disabled when this is invoked. Also tell RCU about
6602          * it. This is the same logic as for exit_to_user_mode().
6603          *
6604          * This ensures that e.g. latency analysis on the host observes
6605          * guest mode as interrupt enabled.
6606          *
6607          * guest_enter_irqoff() informs context tracking about the
6608          * transition to guest mode and if enabled adjusts RCU state
6609          * accordingly.
6610          */
6611         instrumentation_begin();
6612         trace_hardirqs_on_prepare();
6613         lockdep_hardirqs_on_prepare(CALLER_ADDR0);
6614         instrumentation_end();
6615
6616         guest_enter_irqoff();
6617         lockdep_hardirqs_on(CALLER_ADDR0);
6618
6619         /* L1D Flush includes CPU buffer clear to mitigate MDS */
6620         if (static_branch_unlikely(&vmx_l1d_should_flush))
6621                 vmx_l1d_flush(vcpu);
6622         else if (static_branch_unlikely(&mds_user_clear))
6623                 mds_clear_cpu_buffers();
6624
6625         if (vcpu->arch.cr2 != native_read_cr2())
6626                 native_write_cr2(vcpu->arch.cr2);
6627
6628         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6629                                    vmx->loaded_vmcs->launched);
6630
6631         vcpu->arch.cr2 = native_read_cr2();
6632
6633         /*
6634          * VMEXIT disables interrupts (host state), but tracing and lockdep
6635          * have them in state 'on' as recorded before entering guest mode.
6636          * Same as enter_from_user_mode().
6637          *
6638          * guest_exit_irqoff() restores host context and reinstates RCU if
6639          * enabled and required.
6640          *
6641          * This needs to be done before the below as native_read_msr()
6642          * contains a tracepoint and x86_spec_ctrl_restore_host() calls
6643          * into world and some more.
6644          */
6645         lockdep_hardirqs_off(CALLER_ADDR0);
6646         guest_exit_irqoff();
6647
6648         instrumentation_begin();
6649         trace_hardirqs_off_finish();
6650         instrumentation_end();
6651 }
6652
6653 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6654 {
6655         fastpath_t exit_fastpath;
6656         struct vcpu_vmx *vmx = to_vmx(vcpu);
6657         unsigned long cr3, cr4;
6658
6659 reenter_guest:
6660         /* Record the guest's net vcpu time for enforced NMI injections. */
6661         if (unlikely(!enable_vnmi &&
6662                      vmx->loaded_vmcs->soft_vnmi_blocked))
6663                 vmx->loaded_vmcs->entry_time = ktime_get();
6664
6665         /* Don't enter VMX if guest state is invalid, let the exit handler
6666            start emulation until we arrive back to a valid state */
6667         if (vmx->emulation_required)
6668                 return EXIT_FASTPATH_NONE;
6669
6670         if (vmx->ple_window_dirty) {
6671                 vmx->ple_window_dirty = false;
6672                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6673         }
6674
6675         /*
6676          * We did this in prepare_switch_to_guest, because it needs to
6677          * be within srcu_read_lock.
6678          */
6679         WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6680
6681         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6682                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6683         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6684                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6685
6686         cr3 = __get_current_cr3_fast();
6687         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6688                 vmcs_writel(HOST_CR3, cr3);
6689                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6690         }
6691
6692         cr4 = cr4_read_shadow();
6693         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6694                 vmcs_writel(HOST_CR4, cr4);
6695                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6696         }
6697
6698         /* When single-stepping over STI and MOV SS, we must clear the
6699          * corresponding interruptibility bits in the guest state. Otherwise
6700          * vmentry fails as it then expects bit 14 (BS) in pending debug
6701          * exceptions being set, but that's not correct for the guest debugging
6702          * case. */
6703         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6704                 vmx_set_interrupt_shadow(vcpu, 0);
6705
6706         kvm_load_guest_xsave_state(vcpu);
6707
6708         pt_guest_enter(vmx);
6709
6710         atomic_switch_perf_msrs(vmx);
6711
6712         if (enable_preemption_timer)
6713                 vmx_update_hv_timer(vcpu);
6714
6715         kvm_wait_lapic_expire(vcpu);
6716
6717         /*
6718          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6719          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6720          * is no need to worry about the conditional branch over the wrmsr
6721          * being speculatively taken.
6722          */
6723         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6724
6725         /* The actual VMENTER/EXIT is in the .noinstr.text section. */
6726         vmx_vcpu_enter_exit(vcpu, vmx);
6727
6728         /*
6729          * We do not use IBRS in the kernel. If this vCPU has used the
6730          * SPEC_CTRL MSR it may have left it on; save the value and
6731          * turn it off. This is much more efficient than blindly adding
6732          * it to the atomic save/restore list. Especially as the former
6733          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6734          *
6735          * For non-nested case:
6736          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6737          * save it.
6738          *
6739          * For nested case:
6740          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6741          * save it.
6742          */
6743         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6744                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6745
6746         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6747
6748         /* All fields are clean at this point */
6749         if (static_branch_unlikely(&enable_evmcs))
6750                 current_evmcs->hv_clean_fields |=
6751                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6752
6753         if (static_branch_unlikely(&enable_evmcs))
6754                 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6755
6756         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6757         if (vmx->host_debugctlmsr)
6758                 update_debugctlmsr(vmx->host_debugctlmsr);
6759
6760 #ifndef CONFIG_X86_64
6761         /*
6762          * The sysexit path does not restore ds/es, so we must set them to
6763          * a reasonable value ourselves.
6764          *
6765          * We can't defer this to vmx_prepare_switch_to_host() since that
6766          * function may be executed in interrupt context, which saves and
6767          * restore segments around it, nullifying its effect.
6768          */
6769         loadsegment(ds, __USER_DS);
6770         loadsegment(es, __USER_DS);
6771 #endif
6772
6773         vmx_register_cache_reset(vcpu);
6774
6775         pt_guest_exit(vmx);
6776
6777         kvm_load_host_xsave_state(vcpu);
6778
6779         vmx->nested.nested_run_pending = 0;
6780         vmx->idt_vectoring_info = 0;
6781
6782         if (unlikely(vmx->fail)) {
6783                 vmx->exit_reason = 0xdead;
6784                 return EXIT_FASTPATH_NONE;
6785         }
6786
6787         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6788         if (unlikely((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY))
6789                 kvm_machine_check();
6790
6791         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6792
6793         if (unlikely(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6794                 return EXIT_FASTPATH_NONE;
6795
6796         vmx->loaded_vmcs->launched = 1;
6797         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6798
6799         vmx_recover_nmi_blocking(vmx);
6800         vmx_complete_interrupts(vmx);
6801
6802         if (is_guest_mode(vcpu))
6803                 return EXIT_FASTPATH_NONE;
6804
6805         exit_fastpath = vmx_exit_handlers_fastpath(vcpu);
6806         if (exit_fastpath == EXIT_FASTPATH_REENTER_GUEST) {
6807                 if (!kvm_vcpu_exit_request(vcpu)) {
6808                         /*
6809                          * FIXME: this goto should be a loop in vcpu_enter_guest,
6810                          * but it would incur the cost of a retpoline for now.
6811                          * Revisit once static calls are available.
6812                          */
6813                         if (vcpu->arch.apicv_active)
6814                                 vmx_sync_pir_to_irr(vcpu);
6815                         goto reenter_guest;
6816                 }
6817                 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
6818         }
6819
6820         return exit_fastpath;
6821 }
6822
6823 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6824 {
6825         struct vcpu_vmx *vmx = to_vmx(vcpu);
6826
6827         if (enable_pml)
6828                 vmx_destroy_pml_buffer(vmx);
6829         free_vpid(vmx->vpid);
6830         nested_vmx_free_vcpu(vcpu);
6831         free_loaded_vmcs(vmx->loaded_vmcs);
6832 }
6833
6834 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6835 {
6836         struct vcpu_vmx *vmx;
6837         unsigned long *msr_bitmap;
6838         int i, cpu, err;
6839
6840         BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6841         vmx = to_vmx(vcpu);
6842
6843         err = -ENOMEM;
6844
6845         vmx->vpid = allocate_vpid();
6846
6847         /*
6848          * If PML is turned on, failure on enabling PML just results in failure
6849          * of creating the vcpu, therefore we can simplify PML logic (by
6850          * avoiding dealing with cases, such as enabling PML partially on vcpus
6851          * for the guest), etc.
6852          */
6853         if (enable_pml) {
6854                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6855                 if (!vmx->pml_pg)
6856                         goto free_vpid;
6857         }
6858
6859         BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
6860
6861         for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) {
6862                 u32 index = vmx_uret_msrs_list[i];
6863                 u32 data_low, data_high;
6864                 int j = vmx->nr_uret_msrs;
6865
6866                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
6867                         continue;
6868                 if (wrmsr_safe(index, data_low, data_high) < 0)
6869                         continue;
6870
6871                 vmx->guest_uret_msrs[j].slot = i;
6872                 vmx->guest_uret_msrs[j].data = 0;
6873                 switch (index) {
6874                 case MSR_IA32_TSX_CTRL:
6875                         /*
6876                          * No need to pass TSX_CTRL_CPUID_CLEAR through, so
6877                          * let's avoid changing CPUID bits under the host
6878                          * kernel's feet.
6879                          */
6880                         vmx->guest_uret_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6881                         break;
6882                 default:
6883                         vmx->guest_uret_msrs[j].mask = -1ull;
6884                         break;
6885                 }
6886                 ++vmx->nr_uret_msrs;
6887         }
6888
6889         err = alloc_loaded_vmcs(&vmx->vmcs01);
6890         if (err < 0)
6891                 goto free_pml;
6892
6893         /* The MSR bitmap starts with all ones */
6894         bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6895         bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6896
6897         msr_bitmap = vmx->vmcs01.msr_bitmap;
6898         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
6899         vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
6900         vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
6901         vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6902         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6903         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6904         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6905         if (kvm_cstate_in_guest(vcpu->kvm)) {
6906                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
6907                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6908                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6909                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6910         }
6911         vmx->msr_bitmap_mode = 0;
6912
6913         vmx->loaded_vmcs = &vmx->vmcs01;
6914         cpu = get_cpu();
6915         vmx_vcpu_load(vcpu, cpu);
6916         vcpu->cpu = cpu;
6917         init_vmcs(vmx);
6918         vmx_vcpu_put(vcpu);
6919         put_cpu();
6920         if (cpu_need_virtualize_apic_accesses(vcpu)) {
6921                 err = alloc_apic_access_page(vcpu->kvm);
6922                 if (err)
6923                         goto free_vmcs;
6924         }
6925
6926         if (enable_ept && !enable_unrestricted_guest) {
6927                 err = init_rmode_identity_map(vcpu->kvm);
6928                 if (err)
6929                         goto free_vmcs;
6930         }
6931
6932         if (nested)
6933                 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
6934         else
6935                 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6936
6937         vmx->nested.posted_intr_nv = -1;
6938         vmx->nested.current_vmptr = -1ull;
6939
6940         vcpu->arch.microcode_version = 0x100000000ULL;
6941         vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6942
6943         /*
6944          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6945          * or POSTED_INTR_WAKEUP_VECTOR.
6946          */
6947         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6948         vmx->pi_desc.sn = 1;
6949
6950         vmx->ept_pointer = INVALID_PAGE;
6951
6952         return 0;
6953
6954 free_vmcs:
6955         free_loaded_vmcs(vmx->loaded_vmcs);
6956 free_pml:
6957         vmx_destroy_pml_buffer(vmx);
6958 free_vpid:
6959         free_vpid(vmx->vpid);
6960         return err;
6961 }
6962
6963 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6964 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6965
6966 static int vmx_vm_init(struct kvm *kvm)
6967 {
6968         spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6969
6970         if (!ple_gap)
6971                 kvm->arch.pause_in_guest = true;
6972
6973         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6974                 switch (l1tf_mitigation) {
6975                 case L1TF_MITIGATION_OFF:
6976                 case L1TF_MITIGATION_FLUSH_NOWARN:
6977                         /* 'I explicitly don't care' is set */
6978                         break;
6979                 case L1TF_MITIGATION_FLUSH:
6980                 case L1TF_MITIGATION_FLUSH_NOSMT:
6981                 case L1TF_MITIGATION_FULL:
6982                         /*
6983                          * Warn upon starting the first VM in a potentially
6984                          * insecure environment.
6985                          */
6986                         if (sched_smt_active())
6987                                 pr_warn_once(L1TF_MSG_SMT);
6988                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6989                                 pr_warn_once(L1TF_MSG_L1D);
6990                         break;
6991                 case L1TF_MITIGATION_FULL_FORCE:
6992                         /* Flush is enforced */
6993                         break;
6994                 }
6995         }
6996         kvm_apicv_init(kvm, enable_apicv);
6997         return 0;
6998 }
6999
7000 static int __init vmx_check_processor_compat(void)
7001 {
7002         struct vmcs_config vmcs_conf;
7003         struct vmx_capability vmx_cap;
7004
7005         if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7006             !this_cpu_has(X86_FEATURE_VMX)) {
7007                 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7008                 return -EIO;
7009         }
7010
7011         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7012                 return -EIO;
7013         if (nested)
7014                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7015         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7016                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7017                                 smp_processor_id());
7018                 return -EIO;
7019         }
7020         return 0;
7021 }
7022
7023 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7024 {
7025         u8 cache;
7026         u64 ipat = 0;
7027
7028         /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7029          * memory aliases with conflicting memory types and sometimes MCEs.
7030          * We have to be careful as to what are honored and when.
7031          *
7032          * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7033          * UC.  The effective memory type is UC or WC depending on guest PAT.
7034          * This was historically the source of MCEs and we want to be
7035          * conservative.
7036          *
7037          * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7038          * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7039          * EPT memory type is set to WB.  The effective memory type is forced
7040          * WB.
7041          *
7042          * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7043          * EPT memory type is used to emulate guest CD/MTRR.
7044          */
7045
7046         if (is_mmio) {
7047                 cache = MTRR_TYPE_UNCACHABLE;
7048                 goto exit;
7049         }
7050
7051         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7052                 ipat = VMX_EPT_IPAT_BIT;
7053                 cache = MTRR_TYPE_WRBACK;
7054                 goto exit;
7055         }
7056
7057         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7058                 ipat = VMX_EPT_IPAT_BIT;
7059                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7060                         cache = MTRR_TYPE_WRBACK;
7061                 else
7062                         cache = MTRR_TYPE_UNCACHABLE;
7063                 goto exit;
7064         }
7065
7066         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7067
7068 exit:
7069         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7070 }
7071
7072 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7073 {
7074         /*
7075          * These bits in the secondary execution controls field
7076          * are dynamic, the others are mostly based on the hypervisor
7077          * architecture and the guest's CPUID.  Do not touch the
7078          * dynamic bits.
7079          */
7080         u32 mask =
7081                 SECONDARY_EXEC_SHADOW_VMCS |
7082                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7083                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7084                 SECONDARY_EXEC_DESC;
7085
7086         u32 new_ctl = vmx->secondary_exec_control;
7087         u32 cur_ctl = secondary_exec_controls_get(vmx);
7088
7089         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7090 }
7091
7092 /*
7093  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7094  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7095  */
7096 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7097 {
7098         struct vcpu_vmx *vmx = to_vmx(vcpu);
7099         struct kvm_cpuid_entry2 *entry;
7100
7101         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7102         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7103
7104 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
7105         if (entry && (entry->_reg & (_cpuid_mask)))                     \
7106                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
7107 } while (0)
7108
7109         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7110         cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7111         cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7112         cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7113         cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7114         cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7115         cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7116         cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7117         cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7118         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7119         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7120         cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7121         cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7122         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7123         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7124
7125         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7126         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7127         cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7128         cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7129         cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7130         cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7131         cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7132
7133 #undef cr4_fixed1_update
7134 }
7135
7136 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7137 {
7138         struct vcpu_vmx *vmx = to_vmx(vcpu);
7139
7140         if (kvm_mpx_supported()) {
7141                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7142
7143                 if (mpx_enabled) {
7144                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7145                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7146                 } else {
7147                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7148                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7149                 }
7150         }
7151 }
7152
7153 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7154 {
7155         struct vcpu_vmx *vmx = to_vmx(vcpu);
7156         struct kvm_cpuid_entry2 *best = NULL;
7157         int i;
7158
7159         for (i = 0; i < PT_CPUID_LEAVES; i++) {
7160                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7161                 if (!best)
7162                         return;
7163                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7164                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7165                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7166                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7167         }
7168
7169         /* Get the number of configurable Address Ranges for filtering */
7170         vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7171                                                 PT_CAP_num_address_ranges);
7172
7173         /* Initialize and clear the no dependency bits */
7174         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7175                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7176
7177         /*
7178          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7179          * will inject an #GP
7180          */
7181         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7182                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7183
7184         /*
7185          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7186          * PSBFreq can be set
7187          */
7188         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7189                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7190                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7191
7192         /*
7193          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7194          * MTCFreq can be set
7195          */
7196         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7197                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7198                                 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7199
7200         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7201         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7202                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7203                                                         RTIT_CTL_PTW_EN);
7204
7205         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7206         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7207                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7208
7209         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7210         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7211                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7212
7213         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7214         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7215                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7216
7217         /* unmask address range configure area */
7218         for (i = 0; i < vmx->pt_desc.addr_range; i++)
7219                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7220 }
7221
7222 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7223 {
7224         struct vcpu_vmx *vmx = to_vmx(vcpu);
7225
7226         /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7227         vcpu->arch.xsaves_enabled = false;
7228
7229         if (cpu_has_secondary_exec_ctrls()) {
7230                 vmx_compute_secondary_exec_control(vmx);
7231                 vmcs_set_secondary_exec_control(vmx);
7232         }
7233
7234         if (nested_vmx_allowed(vcpu))
7235                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7236                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7237                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7238         else
7239                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7240                         ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7241                           FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7242
7243         if (nested_vmx_allowed(vcpu)) {
7244                 nested_vmx_cr_fixed1_bits_update(vcpu);
7245                 nested_vmx_entry_exit_ctls_update(vcpu);
7246         }
7247
7248         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7249                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7250                 update_intel_pt_cfg(vcpu);
7251
7252         if (boot_cpu_has(X86_FEATURE_RTM)) {
7253                 struct vmx_uret_msr *msr;
7254                 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7255                 if (msr) {
7256                         bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7257                         vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7258                 }
7259         }
7260
7261         set_cr4_guest_host_mask(vmx);
7262
7263         /* Refresh #PF interception to account for MAXPHYADDR changes. */
7264         update_exception_bitmap(vcpu);
7265 }
7266
7267 static __init void vmx_set_cpu_caps(void)
7268 {
7269         kvm_set_cpu_caps();
7270
7271         /* CPUID 0x1 */
7272         if (nested)
7273                 kvm_cpu_cap_set(X86_FEATURE_VMX);
7274
7275         /* CPUID 0x7 */
7276         if (kvm_mpx_supported())
7277                 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7278         if (cpu_has_vmx_invpcid())
7279                 kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
7280         if (vmx_pt_mode_is_host_guest())
7281                 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7282
7283         if (vmx_umip_emulated())
7284                 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7285
7286         /* CPUID 0xD.1 */
7287         supported_xss = 0;
7288         if (!cpu_has_vmx_xsaves())
7289                 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7290
7291         /* CPUID 0x80000001 */
7292         if (!cpu_has_vmx_rdtscp())
7293                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7294
7295         if (cpu_has_vmx_waitpkg())
7296                 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7297 }
7298
7299 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7300 {
7301         to_vmx(vcpu)->req_immediate_exit = true;
7302 }
7303
7304 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7305                                   struct x86_instruction_info *info)
7306 {
7307         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7308         unsigned short port;
7309         bool intercept;
7310         int size;
7311
7312         if (info->intercept == x86_intercept_in ||
7313             info->intercept == x86_intercept_ins) {
7314                 port = info->src_val;
7315                 size = info->dst_bytes;
7316         } else {
7317                 port = info->dst_val;
7318                 size = info->src_bytes;
7319         }
7320
7321         /*
7322          * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7323          * VM-exits depend on the 'unconditional IO exiting' VM-execution
7324          * control.
7325          *
7326          * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7327          */
7328         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7329                 intercept = nested_cpu_has(vmcs12,
7330                                            CPU_BASED_UNCOND_IO_EXITING);
7331         else
7332                 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7333
7334         /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7335         return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7336 }
7337
7338 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7339                                struct x86_instruction_info *info,
7340                                enum x86_intercept_stage stage,
7341                                struct x86_exception *exception)
7342 {
7343         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7344
7345         switch (info->intercept) {
7346         /*
7347          * RDPID causes #UD if disabled through secondary execution controls.
7348          * Because it is marked as EmulateOnUD, we need to intercept it here.
7349          */
7350         case x86_intercept_rdtscp:
7351                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7352                         exception->vector = UD_VECTOR;
7353                         exception->error_code_valid = false;
7354                         return X86EMUL_PROPAGATE_FAULT;
7355                 }
7356                 break;
7357
7358         case x86_intercept_in:
7359         case x86_intercept_ins:
7360         case x86_intercept_out:
7361         case x86_intercept_outs:
7362                 return vmx_check_intercept_io(vcpu, info);
7363
7364         case x86_intercept_lgdt:
7365         case x86_intercept_lidt:
7366         case x86_intercept_lldt:
7367         case x86_intercept_ltr:
7368         case x86_intercept_sgdt:
7369         case x86_intercept_sidt:
7370         case x86_intercept_sldt:
7371         case x86_intercept_str:
7372                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7373                         return X86EMUL_CONTINUE;
7374
7375                 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7376                 break;
7377
7378         /* TODO: check more intercepts... */
7379         default:
7380                 break;
7381         }
7382
7383         return X86EMUL_UNHANDLEABLE;
7384 }
7385
7386 #ifdef CONFIG_X86_64
7387 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7388 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7389                                   u64 divisor, u64 *result)
7390 {
7391         u64 low = a << shift, high = a >> (64 - shift);
7392
7393         /* To avoid the overflow on divq */
7394         if (high >= divisor)
7395                 return 1;
7396
7397         /* Low hold the result, high hold rem which is discarded */
7398         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7399             "rm" (divisor), "0" (low), "1" (high));
7400         *result = low;
7401
7402         return 0;
7403 }
7404
7405 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7406                             bool *expired)
7407 {
7408         struct vcpu_vmx *vmx;
7409         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7410         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7411
7412         vmx = to_vmx(vcpu);
7413         tscl = rdtsc();
7414         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7415         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7416         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7417                                                     ktimer->timer_advance_ns);
7418
7419         if (delta_tsc > lapic_timer_advance_cycles)
7420                 delta_tsc -= lapic_timer_advance_cycles;
7421         else
7422                 delta_tsc = 0;
7423
7424         /* Convert to host delta tsc if tsc scaling is enabled */
7425         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7426             delta_tsc && u64_shl_div_u64(delta_tsc,
7427                                 kvm_tsc_scaling_ratio_frac_bits,
7428                                 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7429                 return -ERANGE;
7430
7431         /*
7432          * If the delta tsc can't fit in the 32 bit after the multi shift,
7433          * we can't use the preemption timer.
7434          * It's possible that it fits on later vmentries, but checking
7435          * on every vmentry is costly so we just use an hrtimer.
7436          */
7437         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7438                 return -ERANGE;
7439
7440         vmx->hv_deadline_tsc = tscl + delta_tsc;
7441         *expired = !delta_tsc;
7442         return 0;
7443 }
7444
7445 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7446 {
7447         to_vmx(vcpu)->hv_deadline_tsc = -1;
7448 }
7449 #endif
7450
7451 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7452 {
7453         if (!kvm_pause_in_guest(vcpu->kvm))
7454                 shrink_ple_window(vcpu);
7455 }
7456
7457 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7458                                      struct kvm_memory_slot *slot)
7459 {
7460         if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
7461                 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7462         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7463 }
7464
7465 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7466                                        struct kvm_memory_slot *slot)
7467 {
7468         kvm_mmu_slot_set_dirty(kvm, slot);
7469 }
7470
7471 static void vmx_flush_log_dirty(struct kvm *kvm)
7472 {
7473         kvm_flush_pml_buffers(kvm);
7474 }
7475
7476 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7477                                            struct kvm_memory_slot *memslot,
7478                                            gfn_t offset, unsigned long mask)
7479 {
7480         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7481 }
7482
7483 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7484 {
7485         if (pi_pre_block(vcpu))
7486                 return 1;
7487
7488         if (kvm_lapic_hv_timer_in_use(vcpu))
7489                 kvm_lapic_switch_to_sw_timer(vcpu);
7490
7491         return 0;
7492 }
7493
7494 static void vmx_post_block(struct kvm_vcpu *vcpu)
7495 {
7496         if (kvm_x86_ops.set_hv_timer)
7497                 kvm_lapic_switch_to_hv_timer(vcpu);
7498
7499         pi_post_block(vcpu);
7500 }
7501
7502 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7503 {
7504         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7505                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7506                         FEAT_CTL_LMCE_ENABLED;
7507         else
7508                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7509                         ~FEAT_CTL_LMCE_ENABLED;
7510 }
7511
7512 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7513 {
7514         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7515         if (to_vmx(vcpu)->nested.nested_run_pending)
7516                 return -EBUSY;
7517         return !is_smm(vcpu);
7518 }
7519
7520 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7521 {
7522         struct vcpu_vmx *vmx = to_vmx(vcpu);
7523
7524         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7525         if (vmx->nested.smm.guest_mode)
7526                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7527
7528         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7529         vmx->nested.vmxon = false;
7530         vmx_clear_hlt(vcpu);
7531         return 0;
7532 }
7533
7534 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7535 {
7536         struct vcpu_vmx *vmx = to_vmx(vcpu);
7537         int ret;
7538
7539         if (vmx->nested.smm.vmxon) {
7540                 vmx->nested.vmxon = true;
7541                 vmx->nested.smm.vmxon = false;
7542         }
7543
7544         if (vmx->nested.smm.guest_mode) {
7545                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7546                 if (ret)
7547                         return ret;
7548
7549                 vmx->nested.smm.guest_mode = false;
7550         }
7551         return 0;
7552 }
7553
7554 static void enable_smi_window(struct kvm_vcpu *vcpu)
7555 {
7556         /* RSM will cause a vmexit anyway.  */
7557 }
7558
7559 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7560 {
7561         return to_vmx(vcpu)->nested.vmxon;
7562 }
7563
7564 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7565 {
7566         if (is_guest_mode(vcpu)) {
7567                 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7568
7569                 if (hrtimer_try_to_cancel(timer) == 1)
7570                         hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7571         }
7572 }
7573
7574 static void hardware_unsetup(void)
7575 {
7576         if (nested)
7577                 nested_vmx_hardware_unsetup();
7578
7579         free_kvm_area();
7580 }
7581
7582 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7583 {
7584         ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7585                           BIT(APICV_INHIBIT_REASON_HYPERV);
7586
7587         return supported & BIT(bit);
7588 }
7589
7590 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7591         .hardware_unsetup = hardware_unsetup,
7592
7593         .hardware_enable = hardware_enable,
7594         .hardware_disable = hardware_disable,
7595         .cpu_has_accelerated_tpr = report_flexpriority,
7596         .has_emulated_msr = vmx_has_emulated_msr,
7597
7598         .vm_size = sizeof(struct kvm_vmx),
7599         .vm_init = vmx_vm_init,
7600
7601         .vcpu_create = vmx_create_vcpu,
7602         .vcpu_free = vmx_free_vcpu,
7603         .vcpu_reset = vmx_vcpu_reset,
7604
7605         .prepare_guest_switch = vmx_prepare_switch_to_guest,
7606         .vcpu_load = vmx_vcpu_load,
7607         .vcpu_put = vmx_vcpu_put,
7608
7609         .update_exception_bitmap = update_exception_bitmap,
7610         .get_msr_feature = vmx_get_msr_feature,
7611         .get_msr = vmx_get_msr,
7612         .set_msr = vmx_set_msr,
7613         .get_segment_base = vmx_get_segment_base,
7614         .get_segment = vmx_get_segment,
7615         .set_segment = vmx_set_segment,
7616         .get_cpl = vmx_get_cpl,
7617         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7618         .set_cr0 = vmx_set_cr0,
7619         .set_cr4 = vmx_set_cr4,
7620         .set_efer = vmx_set_efer,
7621         .get_idt = vmx_get_idt,
7622         .set_idt = vmx_set_idt,
7623         .get_gdt = vmx_get_gdt,
7624         .set_gdt = vmx_set_gdt,
7625         .set_dr7 = vmx_set_dr7,
7626         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7627         .cache_reg = vmx_cache_reg,
7628         .get_rflags = vmx_get_rflags,
7629         .set_rflags = vmx_set_rflags,
7630
7631         .tlb_flush_all = vmx_flush_tlb_all,
7632         .tlb_flush_current = vmx_flush_tlb_current,
7633         .tlb_flush_gva = vmx_flush_tlb_gva,
7634         .tlb_flush_guest = vmx_flush_tlb_guest,
7635
7636         .run = vmx_vcpu_run,
7637         .handle_exit = vmx_handle_exit,
7638         .skip_emulated_instruction = vmx_skip_emulated_instruction,
7639         .update_emulated_instruction = vmx_update_emulated_instruction,
7640         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7641         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7642         .patch_hypercall = vmx_patch_hypercall,
7643         .set_irq = vmx_inject_irq,
7644         .set_nmi = vmx_inject_nmi,
7645         .queue_exception = vmx_queue_exception,
7646         .cancel_injection = vmx_cancel_injection,
7647         .interrupt_allowed = vmx_interrupt_allowed,
7648         .nmi_allowed = vmx_nmi_allowed,
7649         .get_nmi_mask = vmx_get_nmi_mask,
7650         .set_nmi_mask = vmx_set_nmi_mask,
7651         .enable_nmi_window = enable_nmi_window,
7652         .enable_irq_window = enable_irq_window,
7653         .update_cr8_intercept = update_cr8_intercept,
7654         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7655         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7656         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7657         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7658         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7659         .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7660         .hwapic_irr_update = vmx_hwapic_irr_update,
7661         .hwapic_isr_update = vmx_hwapic_isr_update,
7662         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7663         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7664         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7665         .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7666
7667         .set_tss_addr = vmx_set_tss_addr,
7668         .set_identity_map_addr = vmx_set_identity_map_addr,
7669         .get_mt_mask = vmx_get_mt_mask,
7670
7671         .get_exit_info = vmx_get_exit_info,
7672
7673         .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7674
7675         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7676
7677         .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7678
7679         .load_mmu_pgd = vmx_load_mmu_pgd,
7680
7681         .check_intercept = vmx_check_intercept,
7682         .handle_exit_irqoff = vmx_handle_exit_irqoff,
7683
7684         .request_immediate_exit = vmx_request_immediate_exit,
7685
7686         .sched_in = vmx_sched_in,
7687
7688         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7689         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7690         .flush_log_dirty = vmx_flush_log_dirty,
7691         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7692
7693         .pre_block = vmx_pre_block,
7694         .post_block = vmx_post_block,
7695
7696         .pmu_ops = &intel_pmu_ops,
7697         .nested_ops = &vmx_nested_ops,
7698
7699         .update_pi_irte = pi_update_irte,
7700
7701 #ifdef CONFIG_X86_64
7702         .set_hv_timer = vmx_set_hv_timer,
7703         .cancel_hv_timer = vmx_cancel_hv_timer,
7704 #endif
7705
7706         .setup_mce = vmx_setup_mce,
7707
7708         .smi_allowed = vmx_smi_allowed,
7709         .pre_enter_smm = vmx_pre_enter_smm,
7710         .pre_leave_smm = vmx_pre_leave_smm,
7711         .enable_smi_window = enable_smi_window,
7712
7713         .can_emulate_instruction = vmx_can_emulate_instruction,
7714         .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7715         .migrate_timers = vmx_migrate_timers,
7716
7717         .msr_filter_changed = vmx_msr_filter_changed,
7718 };
7719
7720 static __init int hardware_setup(void)
7721 {
7722         unsigned long host_bndcfgs;
7723         struct desc_ptr dt;
7724         int r, i, ept_lpage_level;
7725
7726         store_idt(&dt);
7727         host_idt_base = dt.address;
7728
7729         for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7730                 kvm_define_user_return_msr(i, vmx_uret_msrs_list[i]);
7731
7732         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7733                 return -EIO;
7734
7735         if (boot_cpu_has(X86_FEATURE_NX))
7736                 kvm_enable_efer_bits(EFER_NX);
7737
7738         if (boot_cpu_has(X86_FEATURE_MPX)) {
7739                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7740                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7741         }
7742
7743         if (!cpu_has_vmx_mpx())
7744                 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7745                                     XFEATURE_MASK_BNDCSR);
7746
7747         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7748             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7749                 enable_vpid = 0;
7750
7751         if (!cpu_has_vmx_ept() ||
7752             !cpu_has_vmx_ept_4levels() ||
7753             !cpu_has_vmx_ept_mt_wb() ||
7754             !cpu_has_vmx_invept_global())
7755                 enable_ept = 0;
7756
7757         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7758                 enable_ept_ad_bits = 0;
7759
7760         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7761                 enable_unrestricted_guest = 0;
7762
7763         if (!cpu_has_vmx_flexpriority())
7764                 flexpriority_enabled = 0;
7765
7766         if (!cpu_has_virtual_nmis())
7767                 enable_vnmi = 0;
7768
7769         /*
7770          * set_apic_access_page_addr() is used to reload apic access
7771          * page upon invalidation.  No need to do anything if not
7772          * using the APIC_ACCESS_ADDR VMCS field.
7773          */
7774         if (!flexpriority_enabled)
7775                 vmx_x86_ops.set_apic_access_page_addr = NULL;
7776
7777         if (!cpu_has_vmx_tpr_shadow())
7778                 vmx_x86_ops.update_cr8_intercept = NULL;
7779
7780 #if IS_ENABLED(CONFIG_HYPERV)
7781         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7782             && enable_ept) {
7783                 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7784                 vmx_x86_ops.tlb_remote_flush_with_range =
7785                                 hv_remote_flush_tlb_with_range;
7786         }
7787 #endif
7788
7789         if (!cpu_has_vmx_ple()) {
7790                 ple_gap = 0;
7791                 ple_window = 0;
7792                 ple_window_grow = 0;
7793                 ple_window_max = 0;
7794                 ple_window_shrink = 0;
7795         }
7796
7797         if (!cpu_has_vmx_apicv()) {
7798                 enable_apicv = 0;
7799                 vmx_x86_ops.sync_pir_to_irr = NULL;
7800         }
7801
7802         if (cpu_has_vmx_tsc_scaling()) {
7803                 kvm_has_tsc_control = true;
7804                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7805                 kvm_tsc_scaling_ratio_frac_bits = 48;
7806         }
7807
7808         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7809
7810         if (enable_ept)
7811                 vmx_enable_tdp();
7812
7813         if (!enable_ept)
7814                 ept_lpage_level = 0;
7815         else if (cpu_has_vmx_ept_1g_page())
7816                 ept_lpage_level = PG_LEVEL_1G;
7817         else if (cpu_has_vmx_ept_2m_page())
7818                 ept_lpage_level = PG_LEVEL_2M;
7819         else
7820                 ept_lpage_level = PG_LEVEL_4K;
7821         kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level);
7822
7823         /*
7824          * Only enable PML when hardware supports PML feature, and both EPT
7825          * and EPT A/D bit features are enabled -- PML depends on them to work.
7826          */
7827         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7828                 enable_pml = 0;
7829
7830         if (!enable_pml) {
7831                 vmx_x86_ops.slot_enable_log_dirty = NULL;
7832                 vmx_x86_ops.slot_disable_log_dirty = NULL;
7833                 vmx_x86_ops.flush_log_dirty = NULL;
7834                 vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
7835         }
7836
7837         if (!cpu_has_vmx_preemption_timer())
7838                 enable_preemption_timer = false;
7839
7840         if (enable_preemption_timer) {
7841                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7842                 u64 vmx_msr;
7843
7844                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7845                 cpu_preemption_timer_multi =
7846                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7847
7848                 if (tsc_khz)
7849                         use_timer_freq = (u64)tsc_khz * 1000;
7850                 use_timer_freq >>= cpu_preemption_timer_multi;
7851
7852                 /*
7853                  * KVM "disables" the preemption timer by setting it to its max
7854                  * value.  Don't use the timer if it might cause spurious exits
7855                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7856                  */
7857                 if (use_timer_freq > 0xffffffffu / 10)
7858                         enable_preemption_timer = false;
7859         }
7860
7861         if (!enable_preemption_timer) {
7862                 vmx_x86_ops.set_hv_timer = NULL;
7863                 vmx_x86_ops.cancel_hv_timer = NULL;
7864                 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7865         }
7866
7867         kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
7868
7869         kvm_mce_cap_supported |= MCG_LMCE_P;
7870
7871         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7872                 return -EINVAL;
7873         if (!enable_ept || !cpu_has_vmx_intel_pt())
7874                 pt_mode = PT_MODE_SYSTEM;
7875
7876         if (nested) {
7877                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7878                                            vmx_capability.ept);
7879
7880                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7881                 if (r)
7882                         return r;
7883         }
7884
7885         vmx_set_cpu_caps();
7886
7887         r = alloc_kvm_area();
7888         if (r)
7889                 nested_vmx_hardware_unsetup();
7890         return r;
7891 }
7892
7893 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7894         .cpu_has_kvm_support = cpu_has_kvm_support,
7895         .disabled_by_bios = vmx_disabled_by_bios,
7896         .check_processor_compatibility = vmx_check_processor_compat,
7897         .hardware_setup = hardware_setup,
7898
7899         .runtime_ops = &vmx_x86_ops,
7900 };
7901
7902 static void vmx_cleanup_l1d_flush(void)
7903 {
7904         if (vmx_l1d_flush_pages) {
7905                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7906                 vmx_l1d_flush_pages = NULL;
7907         }
7908         /* Restore state so sysfs ignores VMX */
7909         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7910 }
7911
7912 static void vmx_exit(void)
7913 {
7914 #ifdef CONFIG_KEXEC_CORE
7915         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7916         synchronize_rcu();
7917 #endif
7918
7919         kvm_exit();
7920
7921 #if IS_ENABLED(CONFIG_HYPERV)
7922         if (static_branch_unlikely(&enable_evmcs)) {
7923                 int cpu;
7924                 struct hv_vp_assist_page *vp_ap;
7925                 /*
7926                  * Reset everything to support using non-enlightened VMCS
7927                  * access later (e.g. when we reload the module with
7928                  * enlightened_vmcs=0)
7929                  */
7930                 for_each_online_cpu(cpu) {
7931                         vp_ap = hv_get_vp_assist_page(cpu);
7932
7933                         if (!vp_ap)
7934                                 continue;
7935
7936                         vp_ap->nested_control.features.directhypercall = 0;
7937                         vp_ap->current_nested_vmcs = 0;
7938                         vp_ap->enlighten_vmentry = 0;
7939                 }
7940
7941                 static_branch_disable(&enable_evmcs);
7942         }
7943 #endif
7944         vmx_cleanup_l1d_flush();
7945 }
7946 module_exit(vmx_exit);
7947
7948 static int __init vmx_init(void)
7949 {
7950         int r, cpu;
7951
7952 #if IS_ENABLED(CONFIG_HYPERV)
7953         /*
7954          * Enlightened VMCS usage should be recommended and the host needs
7955          * to support eVMCS v1 or above. We can also disable eVMCS support
7956          * with module parameter.
7957          */
7958         if (enlightened_vmcs &&
7959             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7960             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7961             KVM_EVMCS_VERSION) {
7962                 int cpu;
7963
7964                 /* Check that we have assist pages on all online CPUs */
7965                 for_each_online_cpu(cpu) {
7966                         if (!hv_get_vp_assist_page(cpu)) {
7967                                 enlightened_vmcs = false;
7968                                 break;
7969                         }
7970                 }
7971
7972                 if (enlightened_vmcs) {
7973                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7974                         static_branch_enable(&enable_evmcs);
7975                 }
7976
7977                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7978                         vmx_x86_ops.enable_direct_tlbflush
7979                                 = hv_enable_direct_tlbflush;
7980
7981         } else {
7982                 enlightened_vmcs = false;
7983         }
7984 #endif
7985
7986         r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
7987                      __alignof__(struct vcpu_vmx), THIS_MODULE);
7988         if (r)
7989                 return r;
7990
7991         /*
7992          * Must be called after kvm_init() so enable_ept is properly set
7993          * up. Hand the parameter mitigation value in which was stored in
7994          * the pre module init parser. If no parameter was given, it will
7995          * contain 'auto' which will be turned into the default 'cond'
7996          * mitigation mode.
7997          */
7998         r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
7999         if (r) {
8000                 vmx_exit();
8001                 return r;
8002         }
8003
8004         for_each_possible_cpu(cpu) {
8005                 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8006
8007                 pi_init_cpu(cpu);
8008         }
8009
8010 #ifdef CONFIG_KEXEC_CORE
8011         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8012                            crash_vmclear_local_loaded_vmcss);
8013 #endif
8014         vmx_check_vmcs12_offsets();
8015
8016         /*
8017          * Shadow paging doesn't have a (further) performance penalty
8018          * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8019          * by default
8020          */
8021         if (!enable_ept)
8022                 allow_smaller_maxphyaddr = true;
8023
8024         return 0;
8025 }
8026 module_init(vmx_init);