KVM/VMX: Invoke NMI non-IST entry instead of IST entry
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/idtentry.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mmu_context.h>
45 #include <asm/mshyperv.h>
46 #include <asm/mwait.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "hyperv.h"
55 #include "irq.h"
56 #include "kvm_cache_regs.h"
57 #include "lapic.h"
58 #include "mmu.h"
59 #include "nested.h"
60 #include "pmu.h"
61 #include "sgx.h"
62 #include "trace.h"
63 #include "vmcs.h"
64 #include "vmcs12.h"
65 #include "vmx.h"
66 #include "x86.h"
67
68 MODULE_AUTHOR("Qumranet");
69 MODULE_LICENSE("GPL");
70
71 #ifdef MODULE
72 static const struct x86_cpu_id vmx_cpu_id[] = {
73         X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
74         {}
75 };
76 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
77 #endif
78
79 bool __read_mostly enable_vpid = 1;
80 module_param_named(vpid, enable_vpid, bool, 0444);
81
82 static bool __read_mostly enable_vnmi = 1;
83 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
84
85 bool __read_mostly flexpriority_enabled = 1;
86 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
87
88 bool __read_mostly enable_ept = 1;
89 module_param_named(ept, enable_ept, bool, S_IRUGO);
90
91 bool __read_mostly enable_unrestricted_guest = 1;
92 module_param_named(unrestricted_guest,
93                         enable_unrestricted_guest, bool, S_IRUGO);
94
95 bool __read_mostly enable_ept_ad_bits = 1;
96 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
97
98 static bool __read_mostly emulate_invalid_guest_state = true;
99 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
100
101 static bool __read_mostly fasteoi = 1;
102 module_param(fasteoi, bool, S_IRUGO);
103
104 bool __read_mostly enable_apicv = 1;
105 module_param(enable_apicv, bool, S_IRUGO);
106
107 /*
108  * If nested=1, nested virtualization is supported, i.e., guests may use
109  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
110  * use VMX instructions.
111  */
112 static bool __read_mostly nested = 1;
113 module_param(nested, bool, S_IRUGO);
114
115 bool __read_mostly enable_pml = 1;
116 module_param_named(pml, enable_pml, bool, S_IRUGO);
117
118 static bool __read_mostly dump_invalid_vmcs = 0;
119 module_param(dump_invalid_vmcs, bool, 0644);
120
121 #define MSR_BITMAP_MODE_X2APIC          1
122 #define MSR_BITMAP_MODE_X2APIC_APICV    2
123
124 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
125
126 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
127 static int __read_mostly cpu_preemption_timer_multi;
128 static bool __read_mostly enable_preemption_timer = 1;
129 #ifdef CONFIG_X86_64
130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
131 #endif
132
133 extern bool __read_mostly allow_smaller_maxphyaddr;
134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
135
136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
138 #define KVM_VM_CR0_ALWAYS_ON                            \
139         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
140          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
141
142 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
143 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
144 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
145
146 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
147
148 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
149         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
150         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
151         RTIT_STATUS_BYTECNT))
152
153 /*
154  * List of MSRs that can be directly passed to the guest.
155  * In addition to these x2apic and PT MSRs are handled specially.
156  */
157 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
158         MSR_IA32_SPEC_CTRL,
159         MSR_IA32_PRED_CMD,
160         MSR_IA32_TSC,
161 #ifdef CONFIG_X86_64
162         MSR_FS_BASE,
163         MSR_GS_BASE,
164         MSR_KERNEL_GS_BASE,
165 #endif
166         MSR_IA32_SYSENTER_CS,
167         MSR_IA32_SYSENTER_ESP,
168         MSR_IA32_SYSENTER_EIP,
169         MSR_CORE_C1_RES,
170         MSR_CORE_C3_RESIDENCY,
171         MSR_CORE_C6_RESIDENCY,
172         MSR_CORE_C7_RESIDENCY,
173 };
174
175 /*
176  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
177  * ple_gap:    upper bound on the amount of time between two successive
178  *             executions of PAUSE in a loop. Also indicate if ple enabled.
179  *             According to test, this time is usually smaller than 128 cycles.
180  * ple_window: upper bound on the amount of time a guest is allowed to execute
181  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
182  *             less than 2^12 cycles
183  * Time is measured based on a counter that runs at the same rate as the TSC,
184  * refer SDM volume 3b section 21.6.13 & 22.1.3.
185  */
186 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
187 module_param(ple_gap, uint, 0444);
188
189 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
190 module_param(ple_window, uint, 0444);
191
192 /* Default doubles per-vcpu window every exit. */
193 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
194 module_param(ple_window_grow, uint, 0444);
195
196 /* Default resets per-vcpu window every exit to ple_window. */
197 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
198 module_param(ple_window_shrink, uint, 0444);
199
200 /* Default is to compute the maximum so we can never overflow. */
201 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
202 module_param(ple_window_max, uint, 0444);
203
204 /* Default is SYSTEM mode, 1 for host-guest mode */
205 int __read_mostly pt_mode = PT_MODE_SYSTEM;
206 module_param(pt_mode, int, S_IRUGO);
207
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
209 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
210 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
211
212 /* Storage for pre module init parameter parsing */
213 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
214
215 static const struct {
216         const char *option;
217         bool for_parse;
218 } vmentry_l1d_param[] = {
219         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
220         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
221         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
222         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
223         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
224         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
225 };
226
227 #define L1D_CACHE_ORDER 4
228 static void *vmx_l1d_flush_pages;
229
230 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
231 {
232         struct page *page;
233         unsigned int i;
234
235         if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
236                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
237                 return 0;
238         }
239
240         if (!enable_ept) {
241                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
242                 return 0;
243         }
244
245         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
246                 u64 msr;
247
248                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
249                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
250                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
251                         return 0;
252                 }
253         }
254
255         /* If set to auto use the default l1tf mitigation method */
256         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
257                 switch (l1tf_mitigation) {
258                 case L1TF_MITIGATION_OFF:
259                         l1tf = VMENTER_L1D_FLUSH_NEVER;
260                         break;
261                 case L1TF_MITIGATION_FLUSH_NOWARN:
262                 case L1TF_MITIGATION_FLUSH:
263                 case L1TF_MITIGATION_FLUSH_NOSMT:
264                         l1tf = VMENTER_L1D_FLUSH_COND;
265                         break;
266                 case L1TF_MITIGATION_FULL:
267                 case L1TF_MITIGATION_FULL_FORCE:
268                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
269                         break;
270                 }
271         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
272                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
273         }
274
275         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
276             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
277                 /*
278                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
279                  * lifetime and so should not be charged to a memcg.
280                  */
281                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
282                 if (!page)
283                         return -ENOMEM;
284                 vmx_l1d_flush_pages = page_address(page);
285
286                 /*
287                  * Initialize each page with a different pattern in
288                  * order to protect against KSM in the nested
289                  * virtualization case.
290                  */
291                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
292                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
293                                PAGE_SIZE);
294                 }
295         }
296
297         l1tf_vmx_mitigation = l1tf;
298
299         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
300                 static_branch_enable(&vmx_l1d_should_flush);
301         else
302                 static_branch_disable(&vmx_l1d_should_flush);
303
304         if (l1tf == VMENTER_L1D_FLUSH_COND)
305                 static_branch_enable(&vmx_l1d_flush_cond);
306         else
307                 static_branch_disable(&vmx_l1d_flush_cond);
308         return 0;
309 }
310
311 static int vmentry_l1d_flush_parse(const char *s)
312 {
313         unsigned int i;
314
315         if (s) {
316                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
317                         if (vmentry_l1d_param[i].for_parse &&
318                             sysfs_streq(s, vmentry_l1d_param[i].option))
319                                 return i;
320                 }
321         }
322         return -EINVAL;
323 }
324
325 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
326 {
327         int l1tf, ret;
328
329         l1tf = vmentry_l1d_flush_parse(s);
330         if (l1tf < 0)
331                 return l1tf;
332
333         if (!boot_cpu_has(X86_BUG_L1TF))
334                 return 0;
335
336         /*
337          * Has vmx_init() run already? If not then this is the pre init
338          * parameter parsing. In that case just store the value and let
339          * vmx_init() do the proper setup after enable_ept has been
340          * established.
341          */
342         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
343                 vmentry_l1d_flush_param = l1tf;
344                 return 0;
345         }
346
347         mutex_lock(&vmx_l1d_flush_mutex);
348         ret = vmx_setup_l1d_flush(l1tf);
349         mutex_unlock(&vmx_l1d_flush_mutex);
350         return ret;
351 }
352
353 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
354 {
355         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
356                 return sprintf(s, "???\n");
357
358         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
359 }
360
361 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
362         .set = vmentry_l1d_flush_set,
363         .get = vmentry_l1d_flush_get,
364 };
365 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
366
367 static u32 vmx_segment_access_rights(struct kvm_segment *var);
368
369 void vmx_vmexit(void);
370
371 #define vmx_insn_failed(fmt...)         \
372 do {                                    \
373         WARN_ONCE(1, fmt);              \
374         pr_warn_ratelimited(fmt);       \
375 } while (0)
376
377 asmlinkage void vmread_error(unsigned long field, bool fault)
378 {
379         if (fault)
380                 kvm_spurious_fault();
381         else
382                 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
383 }
384
385 noinline void vmwrite_error(unsigned long field, unsigned long value)
386 {
387         vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
388                         field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
389 }
390
391 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
392 {
393         vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
394 }
395
396 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
397 {
398         vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
399 }
400
401 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
402 {
403         vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
404                         ext, vpid, gva);
405 }
406
407 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
408 {
409         vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
410                         ext, eptp, gpa);
411 }
412
413 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
414 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
415 /*
416  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
417  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
418  */
419 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
420
421 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
422 static DEFINE_SPINLOCK(vmx_vpid_lock);
423
424 struct vmcs_config vmcs_config;
425 struct vmx_capability vmx_capability;
426
427 #define VMX_SEGMENT_FIELD(seg)                                  \
428         [VCPU_SREG_##seg] = {                                   \
429                 .selector = GUEST_##seg##_SELECTOR,             \
430                 .base = GUEST_##seg##_BASE,                     \
431                 .limit = GUEST_##seg##_LIMIT,                   \
432                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
433         }
434
435 static const struct kvm_vmx_segment_field {
436         unsigned selector;
437         unsigned base;
438         unsigned limit;
439         unsigned ar_bytes;
440 } kvm_vmx_segment_fields[] = {
441         VMX_SEGMENT_FIELD(CS),
442         VMX_SEGMENT_FIELD(DS),
443         VMX_SEGMENT_FIELD(ES),
444         VMX_SEGMENT_FIELD(FS),
445         VMX_SEGMENT_FIELD(GS),
446         VMX_SEGMENT_FIELD(SS),
447         VMX_SEGMENT_FIELD(TR),
448         VMX_SEGMENT_FIELD(LDTR),
449 };
450
451 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
452 {
453         vmx->segment_cache.bitmask = 0;
454 }
455
456 static unsigned long host_idt_base;
457
458 /*
459  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
460  * will emulate SYSCALL in legacy mode if the vendor string in guest
461  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
462  * support this emulation, IA32_STAR must always be included in
463  * vmx_uret_msrs_list[], even in i386 builds.
464  */
465 static const u32 vmx_uret_msrs_list[] = {
466 #ifdef CONFIG_X86_64
467         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
468 #endif
469         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
470         MSR_IA32_TSX_CTRL,
471 };
472
473 #if IS_ENABLED(CONFIG_HYPERV)
474 static bool __read_mostly enlightened_vmcs = true;
475 module_param(enlightened_vmcs, bool, 0444);
476
477 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
478                 void *data)
479 {
480         struct kvm_tlb_range *range = data;
481
482         return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
483                         range->pages);
484 }
485
486 static inline int hv_remote_flush_root_ept(hpa_t root_ept,
487                                            struct kvm_tlb_range *range)
488 {
489         if (range)
490                 return hyperv_flush_guest_mapping_range(root_ept,
491                                 kvm_fill_hv_flush_list_func, (void *)range);
492         else
493                 return hyperv_flush_guest_mapping(root_ept);
494 }
495
496 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
497                 struct kvm_tlb_range *range)
498 {
499         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
500         struct kvm_vcpu *vcpu;
501         int ret = 0, i, nr_unique_valid_roots;
502         hpa_t root;
503
504         spin_lock(&kvm_vmx->hv_root_ept_lock);
505
506         if (!VALID_PAGE(kvm_vmx->hv_root_ept)) {
507                 nr_unique_valid_roots = 0;
508
509                 /*
510                  * Flush all valid roots, and see if all vCPUs have converged
511                  * on a common root, in which case future flushes can skip the
512                  * loop and flush the common root.
513                  */
514                 kvm_for_each_vcpu(i, vcpu, kvm) {
515                         root = to_vmx(vcpu)->hv_root_ept;
516                         if (!VALID_PAGE(root) || root == kvm_vmx->hv_root_ept)
517                                 continue;
518
519                         /*
520                          * Set the tracked root to the first valid root.  Keep
521                          * this root for the entirety of the loop even if more
522                          * roots are encountered as a low effort optimization
523                          * to avoid flushing the same (first) root again.
524                          */
525                         if (++nr_unique_valid_roots == 1)
526                                 kvm_vmx->hv_root_ept = root;
527
528                         if (!ret)
529                                 ret = hv_remote_flush_root_ept(root, range);
530
531                         /*
532                          * Stop processing roots if a failure occurred and
533                          * multiple valid roots have already been detected.
534                          */
535                         if (ret && nr_unique_valid_roots > 1)
536                                 break;
537                 }
538
539                 /*
540                  * The optimized flush of a single root can't be used if there
541                  * are multiple valid roots (obviously).
542                  */
543                 if (nr_unique_valid_roots > 1)
544                         kvm_vmx->hv_root_ept = INVALID_PAGE;
545         } else {
546                 ret = hv_remote_flush_root_ept(kvm_vmx->hv_root_ept, range);
547         }
548
549         spin_unlock(&kvm_vmx->hv_root_ept_lock);
550         return ret;
551 }
552 static int hv_remote_flush_tlb(struct kvm *kvm)
553 {
554         return hv_remote_flush_tlb_with_range(kvm, NULL);
555 }
556
557 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
558 {
559         struct hv_enlightened_vmcs *evmcs;
560         struct hv_partition_assist_pg **p_hv_pa_pg =
561                         &to_kvm_hv(vcpu->kvm)->hv_pa_pg;
562         /*
563          * Synthetic VM-Exit is not enabled in current code and so All
564          * evmcs in singe VM shares same assist page.
565          */
566         if (!*p_hv_pa_pg)
567                 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
568
569         if (!*p_hv_pa_pg)
570                 return -ENOMEM;
571
572         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
573
574         evmcs->partition_assist_page =
575                 __pa(*p_hv_pa_pg);
576         evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
577         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
578
579         return 0;
580 }
581
582 #endif /* IS_ENABLED(CONFIG_HYPERV) */
583
584 static void hv_track_root_ept(struct kvm_vcpu *vcpu, hpa_t root_ept)
585 {
586 #if IS_ENABLED(CONFIG_HYPERV)
587         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
588
589         if (kvm_x86_ops.tlb_remote_flush == hv_remote_flush_tlb) {
590                 spin_lock(&kvm_vmx->hv_root_ept_lock);
591                 to_vmx(vcpu)->hv_root_ept = root_ept;
592                 if (root_ept != kvm_vmx->hv_root_ept)
593                         kvm_vmx->hv_root_ept = INVALID_PAGE;
594                 spin_unlock(&kvm_vmx->hv_root_ept_lock);
595         }
596 #endif
597 }
598
599 /*
600  * Comment's format: document - errata name - stepping - processor name.
601  * Refer from
602  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
603  */
604 static u32 vmx_preemption_cpu_tfms[] = {
605 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
606 0x000206E6,
607 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
608 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
609 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
610 0x00020652,
611 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
612 0x00020655,
613 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
614 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
615 /*
616  * 320767.pdf - AAP86  - B1 -
617  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
618  */
619 0x000106E5,
620 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
621 0x000106A0,
622 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
623 0x000106A1,
624 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
625 0x000106A4,
626  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
627  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
628  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
629 0x000106A5,
630  /* Xeon E3-1220 V2 */
631 0x000306A8,
632 };
633
634 static inline bool cpu_has_broken_vmx_preemption_timer(void)
635 {
636         u32 eax = cpuid_eax(0x00000001), i;
637
638         /* Clear the reserved bits */
639         eax &= ~(0x3U << 14 | 0xfU << 28);
640         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
641                 if (eax == vmx_preemption_cpu_tfms[i])
642                         return true;
643
644         return false;
645 }
646
647 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
648 {
649         return flexpriority_enabled && lapic_in_kernel(vcpu);
650 }
651
652 static inline bool report_flexpriority(void)
653 {
654         return flexpriority_enabled;
655 }
656
657 static int possible_passthrough_msr_slot(u32 msr)
658 {
659         u32 i;
660
661         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
662                 if (vmx_possible_passthrough_msrs[i] == msr)
663                         return i;
664
665         return -ENOENT;
666 }
667
668 static bool is_valid_passthrough_msr(u32 msr)
669 {
670         bool r;
671
672         switch (msr) {
673         case 0x800 ... 0x8ff:
674                 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
675                 return true;
676         case MSR_IA32_RTIT_STATUS:
677         case MSR_IA32_RTIT_OUTPUT_BASE:
678         case MSR_IA32_RTIT_OUTPUT_MASK:
679         case MSR_IA32_RTIT_CR3_MATCH:
680         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
681                 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
682         case MSR_LBR_SELECT:
683         case MSR_LBR_TOS:
684         case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
685         case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
686         case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
687         case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
688         case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
689                 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
690                 return true;
691         }
692
693         r = possible_passthrough_msr_slot(msr) != -ENOENT;
694
695         WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
696
697         return r;
698 }
699
700 static inline int __vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
701 {
702         int i;
703
704         for (i = 0; i < vmx->nr_uret_msrs; ++i)
705                 if (vmx_uret_msrs_list[vmx->guest_uret_msrs[i].slot] == msr)
706                         return i;
707         return -1;
708 }
709
710 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
711 {
712         int i;
713
714         i = __vmx_find_uret_msr(vmx, msr);
715         if (i >= 0)
716                 return &vmx->guest_uret_msrs[i];
717         return NULL;
718 }
719
720 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
721                                   struct vmx_uret_msr *msr, u64 data)
722 {
723         int ret = 0;
724
725         u64 old_msr_data = msr->data;
726         msr->data = data;
727         if (msr - vmx->guest_uret_msrs < vmx->nr_active_uret_msrs) {
728                 preempt_disable();
729                 ret = kvm_set_user_return_msr(msr->slot, msr->data, msr->mask);
730                 preempt_enable();
731                 if (ret)
732                         msr->data = old_msr_data;
733         }
734         return ret;
735 }
736
737 #ifdef CONFIG_KEXEC_CORE
738 static void crash_vmclear_local_loaded_vmcss(void)
739 {
740         int cpu = raw_smp_processor_id();
741         struct loaded_vmcs *v;
742
743         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
744                             loaded_vmcss_on_cpu_link)
745                 vmcs_clear(v->vmcs);
746 }
747 #endif /* CONFIG_KEXEC_CORE */
748
749 static void __loaded_vmcs_clear(void *arg)
750 {
751         struct loaded_vmcs *loaded_vmcs = arg;
752         int cpu = raw_smp_processor_id();
753
754         if (loaded_vmcs->cpu != cpu)
755                 return; /* vcpu migration can race with cpu offline */
756         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
757                 per_cpu(current_vmcs, cpu) = NULL;
758
759         vmcs_clear(loaded_vmcs->vmcs);
760         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
761                 vmcs_clear(loaded_vmcs->shadow_vmcs);
762
763         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
764
765         /*
766          * Ensure all writes to loaded_vmcs, including deleting it from its
767          * current percpu list, complete before setting loaded_vmcs->vcpu to
768          * -1, otherwise a different cpu can see vcpu == -1 first and add
769          * loaded_vmcs to its percpu list before it's deleted from this cpu's
770          * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
771          */
772         smp_wmb();
773
774         loaded_vmcs->cpu = -1;
775         loaded_vmcs->launched = 0;
776 }
777
778 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
779 {
780         int cpu = loaded_vmcs->cpu;
781
782         if (cpu != -1)
783                 smp_call_function_single(cpu,
784                          __loaded_vmcs_clear, loaded_vmcs, 1);
785 }
786
787 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
788                                        unsigned field)
789 {
790         bool ret;
791         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
792
793         if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
794                 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
795                 vmx->segment_cache.bitmask = 0;
796         }
797         ret = vmx->segment_cache.bitmask & mask;
798         vmx->segment_cache.bitmask |= mask;
799         return ret;
800 }
801
802 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
803 {
804         u16 *p = &vmx->segment_cache.seg[seg].selector;
805
806         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
807                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
808         return *p;
809 }
810
811 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
812 {
813         ulong *p = &vmx->segment_cache.seg[seg].base;
814
815         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
816                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
817         return *p;
818 }
819
820 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
821 {
822         u32 *p = &vmx->segment_cache.seg[seg].limit;
823
824         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
825                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
826         return *p;
827 }
828
829 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
830 {
831         u32 *p = &vmx->segment_cache.seg[seg].ar;
832
833         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
834                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
835         return *p;
836 }
837
838 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
839 {
840         u32 eb;
841
842         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
843              (1u << DB_VECTOR) | (1u << AC_VECTOR);
844         /*
845          * Guest access to VMware backdoor ports could legitimately
846          * trigger #GP because of TSS I/O permission bitmap.
847          * We intercept those #GP and allow access to them anyway
848          * as VMware does.
849          */
850         if (enable_vmware_backdoor)
851                 eb |= (1u << GP_VECTOR);
852         if ((vcpu->guest_debug &
853              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
854             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
855                 eb |= 1u << BP_VECTOR;
856         if (to_vmx(vcpu)->rmode.vm86_active)
857                 eb = ~0;
858         if (!vmx_need_pf_intercept(vcpu))
859                 eb &= ~(1u << PF_VECTOR);
860
861         /* When we are running a nested L2 guest and L1 specified for it a
862          * certain exception bitmap, we must trap the same exceptions and pass
863          * them to L1. When running L2, we will only handle the exceptions
864          * specified above if L1 did not want them.
865          */
866         if (is_guest_mode(vcpu))
867                 eb |= get_vmcs12(vcpu)->exception_bitmap;
868         else {
869                 /*
870                  * If EPT is enabled, #PF is only trapped if MAXPHYADDR is mismatched
871                  * between guest and host.  In that case we only care about present
872                  * faults.  For vmcs02, however, PFEC_MASK and PFEC_MATCH are set in
873                  * prepare_vmcs02_rare.
874                  */
875                 bool selective_pf_trap = enable_ept && (eb & (1u << PF_VECTOR));
876                 int mask = selective_pf_trap ? PFERR_PRESENT_MASK : 0;
877                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
878                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, mask);
879         }
880
881         vmcs_write32(EXCEPTION_BITMAP, eb);
882 }
883
884 /*
885  * Check if MSR is intercepted for currently loaded MSR bitmap.
886  */
887 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
888 {
889         unsigned long *msr_bitmap;
890         int f = sizeof(unsigned long);
891
892         if (!cpu_has_vmx_msr_bitmap())
893                 return true;
894
895         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
896
897         if (msr <= 0x1fff) {
898                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
899         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
900                 msr &= 0x1fff;
901                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
902         }
903
904         return true;
905 }
906
907 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
908                 unsigned long entry, unsigned long exit)
909 {
910         vm_entry_controls_clearbit(vmx, entry);
911         vm_exit_controls_clearbit(vmx, exit);
912 }
913
914 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
915 {
916         unsigned int i;
917
918         for (i = 0; i < m->nr; ++i) {
919                 if (m->val[i].index == msr)
920                         return i;
921         }
922         return -ENOENT;
923 }
924
925 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
926 {
927         int i;
928         struct msr_autoload *m = &vmx->msr_autoload;
929
930         switch (msr) {
931         case MSR_EFER:
932                 if (cpu_has_load_ia32_efer()) {
933                         clear_atomic_switch_msr_special(vmx,
934                                         VM_ENTRY_LOAD_IA32_EFER,
935                                         VM_EXIT_LOAD_IA32_EFER);
936                         return;
937                 }
938                 break;
939         case MSR_CORE_PERF_GLOBAL_CTRL:
940                 if (cpu_has_load_perf_global_ctrl()) {
941                         clear_atomic_switch_msr_special(vmx,
942                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
943                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
944                         return;
945                 }
946                 break;
947         }
948         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
949         if (i < 0)
950                 goto skip_guest;
951         --m->guest.nr;
952         m->guest.val[i] = m->guest.val[m->guest.nr];
953         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
954
955 skip_guest:
956         i = vmx_find_loadstore_msr_slot(&m->host, msr);
957         if (i < 0)
958                 return;
959
960         --m->host.nr;
961         m->host.val[i] = m->host.val[m->host.nr];
962         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
963 }
964
965 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
966                 unsigned long entry, unsigned long exit,
967                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
968                 u64 guest_val, u64 host_val)
969 {
970         vmcs_write64(guest_val_vmcs, guest_val);
971         if (host_val_vmcs != HOST_IA32_EFER)
972                 vmcs_write64(host_val_vmcs, host_val);
973         vm_entry_controls_setbit(vmx, entry);
974         vm_exit_controls_setbit(vmx, exit);
975 }
976
977 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
978                                   u64 guest_val, u64 host_val, bool entry_only)
979 {
980         int i, j = 0;
981         struct msr_autoload *m = &vmx->msr_autoload;
982
983         switch (msr) {
984         case MSR_EFER:
985                 if (cpu_has_load_ia32_efer()) {
986                         add_atomic_switch_msr_special(vmx,
987                                         VM_ENTRY_LOAD_IA32_EFER,
988                                         VM_EXIT_LOAD_IA32_EFER,
989                                         GUEST_IA32_EFER,
990                                         HOST_IA32_EFER,
991                                         guest_val, host_val);
992                         return;
993                 }
994                 break;
995         case MSR_CORE_PERF_GLOBAL_CTRL:
996                 if (cpu_has_load_perf_global_ctrl()) {
997                         add_atomic_switch_msr_special(vmx,
998                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
999                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1000                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1001                                         HOST_IA32_PERF_GLOBAL_CTRL,
1002                                         guest_val, host_val);
1003                         return;
1004                 }
1005                 break;
1006         case MSR_IA32_PEBS_ENABLE:
1007                 /* PEBS needs a quiescent period after being disabled (to write
1008                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
1009                  * provide that period, so a CPU could write host's record into
1010                  * guest's memory.
1011                  */
1012                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1013         }
1014
1015         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1016         if (!entry_only)
1017                 j = vmx_find_loadstore_msr_slot(&m->host, msr);
1018
1019         if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1020             (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1021                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1022                                 "Can't add msr %x\n", msr);
1023                 return;
1024         }
1025         if (i < 0) {
1026                 i = m->guest.nr++;
1027                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1028         }
1029         m->guest.val[i].index = msr;
1030         m->guest.val[i].value = guest_val;
1031
1032         if (entry_only)
1033                 return;
1034
1035         if (j < 0) {
1036                 j = m->host.nr++;
1037                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1038         }
1039         m->host.val[j].index = msr;
1040         m->host.val[j].value = host_val;
1041 }
1042
1043 static bool update_transition_efer(struct vcpu_vmx *vmx)
1044 {
1045         u64 guest_efer = vmx->vcpu.arch.efer;
1046         u64 ignore_bits = 0;
1047         int i;
1048
1049         /* Shadow paging assumes NX to be available.  */
1050         if (!enable_ept)
1051                 guest_efer |= EFER_NX;
1052
1053         /*
1054          * LMA and LME handled by hardware; SCE meaningless outside long mode.
1055          */
1056         ignore_bits |= EFER_SCE;
1057 #ifdef CONFIG_X86_64
1058         ignore_bits |= EFER_LMA | EFER_LME;
1059         /* SCE is meaningful only in long mode on Intel */
1060         if (guest_efer & EFER_LMA)
1061                 ignore_bits &= ~(u64)EFER_SCE;
1062 #endif
1063
1064         /*
1065          * On EPT, we can't emulate NX, so we must switch EFER atomically.
1066          * On CPUs that support "load IA32_EFER", always switch EFER
1067          * atomically, since it's faster than switching it manually.
1068          */
1069         if (cpu_has_load_ia32_efer() ||
1070             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1071                 if (!(guest_efer & EFER_LMA))
1072                         guest_efer &= ~EFER_LME;
1073                 if (guest_efer != host_efer)
1074                         add_atomic_switch_msr(vmx, MSR_EFER,
1075                                               guest_efer, host_efer, false);
1076                 else
1077                         clear_atomic_switch_msr(vmx, MSR_EFER);
1078                 return false;
1079         }
1080
1081         i = __vmx_find_uret_msr(vmx, MSR_EFER);
1082         if (i < 0)
1083                 return false;
1084
1085         clear_atomic_switch_msr(vmx, MSR_EFER);
1086
1087         guest_efer &= ~ignore_bits;
1088         guest_efer |= host_efer & ignore_bits;
1089
1090         vmx->guest_uret_msrs[i].data = guest_efer;
1091         vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1092
1093         return true;
1094 }
1095
1096 #ifdef CONFIG_X86_32
1097 /*
1098  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1099  * VMCS rather than the segment table.  KVM uses this helper to figure
1100  * out the current bases to poke them into the VMCS before entry.
1101  */
1102 static unsigned long segment_base(u16 selector)
1103 {
1104         struct desc_struct *table;
1105         unsigned long v;
1106
1107         if (!(selector & ~SEGMENT_RPL_MASK))
1108                 return 0;
1109
1110         table = get_current_gdt_ro();
1111
1112         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1113                 u16 ldt_selector = kvm_read_ldt();
1114
1115                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1116                         return 0;
1117
1118                 table = (struct desc_struct *)segment_base(ldt_selector);
1119         }
1120         v = get_desc_base(&table[selector >> 3]);
1121         return v;
1122 }
1123 #endif
1124
1125 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1126 {
1127         return vmx_pt_mode_is_host_guest() &&
1128                !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1129 }
1130
1131 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1132 {
1133         /* The base must be 128-byte aligned and a legal physical address. */
1134         return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1135 }
1136
1137 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1138 {
1139         u32 i;
1140
1141         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1142         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1143         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1144         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1145         for (i = 0; i < addr_range; i++) {
1146                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1147                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1148         }
1149 }
1150
1151 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1152 {
1153         u32 i;
1154
1155         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1156         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1157         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1158         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1159         for (i = 0; i < addr_range; i++) {
1160                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1161                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1162         }
1163 }
1164
1165 static void pt_guest_enter(struct vcpu_vmx *vmx)
1166 {
1167         if (vmx_pt_mode_is_system())
1168                 return;
1169
1170         /*
1171          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1172          * Save host state before VM entry.
1173          */
1174         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1175         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1176                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1177                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1178                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1179         }
1180 }
1181
1182 static void pt_guest_exit(struct vcpu_vmx *vmx)
1183 {
1184         if (vmx_pt_mode_is_system())
1185                 return;
1186
1187         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1188                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1189                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1190         }
1191
1192         /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1193         wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1194 }
1195
1196 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1197                         unsigned long fs_base, unsigned long gs_base)
1198 {
1199         if (unlikely(fs_sel != host->fs_sel)) {
1200                 if (!(fs_sel & 7))
1201                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1202                 else
1203                         vmcs_write16(HOST_FS_SELECTOR, 0);
1204                 host->fs_sel = fs_sel;
1205         }
1206         if (unlikely(gs_sel != host->gs_sel)) {
1207                 if (!(gs_sel & 7))
1208                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1209                 else
1210                         vmcs_write16(HOST_GS_SELECTOR, 0);
1211                 host->gs_sel = gs_sel;
1212         }
1213         if (unlikely(fs_base != host->fs_base)) {
1214                 vmcs_writel(HOST_FS_BASE, fs_base);
1215                 host->fs_base = fs_base;
1216         }
1217         if (unlikely(gs_base != host->gs_base)) {
1218                 vmcs_writel(HOST_GS_BASE, gs_base);
1219                 host->gs_base = gs_base;
1220         }
1221 }
1222
1223 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1224 {
1225         struct vcpu_vmx *vmx = to_vmx(vcpu);
1226         struct vmcs_host_state *host_state;
1227 #ifdef CONFIG_X86_64
1228         int cpu = raw_smp_processor_id();
1229 #endif
1230         unsigned long fs_base, gs_base;
1231         u16 fs_sel, gs_sel;
1232         int i;
1233
1234         vmx->req_immediate_exit = false;
1235
1236         /*
1237          * Note that guest MSRs to be saved/restored can also be changed
1238          * when guest state is loaded. This happens when guest transitions
1239          * to/from long-mode by setting MSR_EFER.LMA.
1240          */
1241         if (!vmx->guest_uret_msrs_loaded) {
1242                 vmx->guest_uret_msrs_loaded = true;
1243                 for (i = 0; i < vmx->nr_active_uret_msrs; ++i)
1244                         kvm_set_user_return_msr(vmx->guest_uret_msrs[i].slot,
1245                                                 vmx->guest_uret_msrs[i].data,
1246                                                 vmx->guest_uret_msrs[i].mask);
1247
1248         }
1249
1250         if (vmx->nested.need_vmcs12_to_shadow_sync)
1251                 nested_sync_vmcs12_to_shadow(vcpu);
1252
1253         if (vmx->guest_state_loaded)
1254                 return;
1255
1256         host_state = &vmx->loaded_vmcs->host_state;
1257
1258         /*
1259          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1260          * allow segment selectors with cpl > 0 or ti == 1.
1261          */
1262         host_state->ldt_sel = kvm_read_ldt();
1263
1264 #ifdef CONFIG_X86_64
1265         savesegment(ds, host_state->ds_sel);
1266         savesegment(es, host_state->es_sel);
1267
1268         gs_base = cpu_kernelmode_gs_base(cpu);
1269         if (likely(is_64bit_mm(current->mm))) {
1270                 current_save_fsgs();
1271                 fs_sel = current->thread.fsindex;
1272                 gs_sel = current->thread.gsindex;
1273                 fs_base = current->thread.fsbase;
1274                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1275         } else {
1276                 savesegment(fs, fs_sel);
1277                 savesegment(gs, gs_sel);
1278                 fs_base = read_msr(MSR_FS_BASE);
1279                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1280         }
1281
1282         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1283 #else
1284         savesegment(fs, fs_sel);
1285         savesegment(gs, gs_sel);
1286         fs_base = segment_base(fs_sel);
1287         gs_base = segment_base(gs_sel);
1288 #endif
1289
1290         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1291         vmx->guest_state_loaded = true;
1292 }
1293
1294 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1295 {
1296         struct vmcs_host_state *host_state;
1297
1298         if (!vmx->guest_state_loaded)
1299                 return;
1300
1301         host_state = &vmx->loaded_vmcs->host_state;
1302
1303         ++vmx->vcpu.stat.host_state_reload;
1304
1305 #ifdef CONFIG_X86_64
1306         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1307 #endif
1308         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1309                 kvm_load_ldt(host_state->ldt_sel);
1310 #ifdef CONFIG_X86_64
1311                 load_gs_index(host_state->gs_sel);
1312 #else
1313                 loadsegment(gs, host_state->gs_sel);
1314 #endif
1315         }
1316         if (host_state->fs_sel & 7)
1317                 loadsegment(fs, host_state->fs_sel);
1318 #ifdef CONFIG_X86_64
1319         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1320                 loadsegment(ds, host_state->ds_sel);
1321                 loadsegment(es, host_state->es_sel);
1322         }
1323 #endif
1324         invalidate_tss_limit();
1325 #ifdef CONFIG_X86_64
1326         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1327 #endif
1328         load_fixmap_gdt(raw_smp_processor_id());
1329         vmx->guest_state_loaded = false;
1330         vmx->guest_uret_msrs_loaded = false;
1331 }
1332
1333 #ifdef CONFIG_X86_64
1334 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1335 {
1336         preempt_disable();
1337         if (vmx->guest_state_loaded)
1338                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1339         preempt_enable();
1340         return vmx->msr_guest_kernel_gs_base;
1341 }
1342
1343 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1344 {
1345         preempt_disable();
1346         if (vmx->guest_state_loaded)
1347                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1348         preempt_enable();
1349         vmx->msr_guest_kernel_gs_base = data;
1350 }
1351 #endif
1352
1353 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1354                         struct loaded_vmcs *buddy)
1355 {
1356         struct vcpu_vmx *vmx = to_vmx(vcpu);
1357         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1358         struct vmcs *prev;
1359
1360         if (!already_loaded) {
1361                 loaded_vmcs_clear(vmx->loaded_vmcs);
1362                 local_irq_disable();
1363
1364                 /*
1365                  * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1366                  * this cpu's percpu list, otherwise it may not yet be deleted
1367                  * from its previous cpu's percpu list.  Pairs with the
1368                  * smb_wmb() in __loaded_vmcs_clear().
1369                  */
1370                 smp_rmb();
1371
1372                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1373                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1374                 local_irq_enable();
1375         }
1376
1377         prev = per_cpu(current_vmcs, cpu);
1378         if (prev != vmx->loaded_vmcs->vmcs) {
1379                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1380                 vmcs_load(vmx->loaded_vmcs->vmcs);
1381
1382                 /*
1383                  * No indirect branch prediction barrier needed when switching
1384                  * the active VMCS within a guest, e.g. on nested VM-Enter.
1385                  * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1386                  */
1387                 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1388                         indirect_branch_prediction_barrier();
1389         }
1390
1391         if (!already_loaded) {
1392                 void *gdt = get_current_gdt_ro();
1393                 unsigned long sysenter_esp;
1394
1395                 /*
1396                  * Flush all EPTP/VPID contexts, the new pCPU may have stale
1397                  * TLB entries from its previous association with the vCPU.
1398                  */
1399                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1400
1401                 /*
1402                  * Linux uses per-cpu TSS and GDT, so set these when switching
1403                  * processors.  See 22.2.4.
1404                  */
1405                 vmcs_writel(HOST_TR_BASE,
1406                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1407                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1408
1409                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1410                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1411
1412                 vmx->loaded_vmcs->cpu = cpu;
1413         }
1414
1415         /* Setup TSC multiplier */
1416         if (kvm_has_tsc_control &&
1417             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1418                 decache_tsc_multiplier(vmx);
1419 }
1420
1421 /*
1422  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1423  * vcpu mutex is already taken.
1424  */
1425 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1426 {
1427         struct vcpu_vmx *vmx = to_vmx(vcpu);
1428
1429         vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1430
1431         vmx_vcpu_pi_load(vcpu, cpu);
1432
1433         vmx->host_debugctlmsr = get_debugctlmsr();
1434 }
1435
1436 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1437 {
1438         vmx_vcpu_pi_put(vcpu);
1439
1440         vmx_prepare_switch_to_host(to_vmx(vcpu));
1441 }
1442
1443 static bool emulation_required(struct kvm_vcpu *vcpu)
1444 {
1445         return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1446 }
1447
1448 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1449 {
1450         struct vcpu_vmx *vmx = to_vmx(vcpu);
1451         unsigned long rflags, save_rflags;
1452
1453         if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1454                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1455                 rflags = vmcs_readl(GUEST_RFLAGS);
1456                 if (vmx->rmode.vm86_active) {
1457                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1458                         save_rflags = vmx->rmode.save_rflags;
1459                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1460                 }
1461                 vmx->rflags = rflags;
1462         }
1463         return vmx->rflags;
1464 }
1465
1466 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1467 {
1468         struct vcpu_vmx *vmx = to_vmx(vcpu);
1469         unsigned long old_rflags;
1470
1471         if (is_unrestricted_guest(vcpu)) {
1472                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1473                 vmx->rflags = rflags;
1474                 vmcs_writel(GUEST_RFLAGS, rflags);
1475                 return;
1476         }
1477
1478         old_rflags = vmx_get_rflags(vcpu);
1479         vmx->rflags = rflags;
1480         if (vmx->rmode.vm86_active) {
1481                 vmx->rmode.save_rflags = rflags;
1482                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1483         }
1484         vmcs_writel(GUEST_RFLAGS, rflags);
1485
1486         if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1487                 vmx->emulation_required = emulation_required(vcpu);
1488 }
1489
1490 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1491 {
1492         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1493         int ret = 0;
1494
1495         if (interruptibility & GUEST_INTR_STATE_STI)
1496                 ret |= KVM_X86_SHADOW_INT_STI;
1497         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1498                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1499
1500         return ret;
1501 }
1502
1503 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1504 {
1505         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1506         u32 interruptibility = interruptibility_old;
1507
1508         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1509
1510         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1511                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1512         else if (mask & KVM_X86_SHADOW_INT_STI)
1513                 interruptibility |= GUEST_INTR_STATE_STI;
1514
1515         if ((interruptibility != interruptibility_old))
1516                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1517 }
1518
1519 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1520 {
1521         struct vcpu_vmx *vmx = to_vmx(vcpu);
1522         unsigned long value;
1523
1524         /*
1525          * Any MSR write that attempts to change bits marked reserved will
1526          * case a #GP fault.
1527          */
1528         if (data & vmx->pt_desc.ctl_bitmask)
1529                 return 1;
1530
1531         /*
1532          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1533          * result in a #GP unless the same write also clears TraceEn.
1534          */
1535         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1536                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1537                 return 1;
1538
1539         /*
1540          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1541          * and FabricEn would cause #GP, if
1542          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1543          */
1544         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1545                 !(data & RTIT_CTL_FABRIC_EN) &&
1546                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1547                                         PT_CAP_single_range_output))
1548                 return 1;
1549
1550         /*
1551          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1552          * utilize encodings marked reserved will cause a #GP fault.
1553          */
1554         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1555         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1556                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1557                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1558                 return 1;
1559         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1560                                                 PT_CAP_cycle_thresholds);
1561         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1562                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1563                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1564                 return 1;
1565         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1566         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1567                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1568                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1569                 return 1;
1570
1571         /*
1572          * If ADDRx_CFG is reserved or the encodings is >2 will
1573          * cause a #GP fault.
1574          */
1575         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1576         if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1577                 return 1;
1578         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1579         if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1580                 return 1;
1581         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1582         if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1583                 return 1;
1584         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1585         if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1586                 return 1;
1587
1588         return 0;
1589 }
1590
1591 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1592 {
1593         /*
1594          * Emulation of instructions in SGX enclaves is impossible as RIP does
1595          * not point  tthe failing instruction, and even if it did, the code
1596          * stream is inaccessible.  Inject #UD instead of exiting to userspace
1597          * so that guest userspace can't DoS the guest simply by triggering
1598          * emulation (enclaves are CPL3 only).
1599          */
1600         if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1601                 kvm_queue_exception(vcpu, UD_VECTOR);
1602                 return false;
1603         }
1604         return true;
1605 }
1606
1607 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1608 {
1609         union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1610         unsigned long rip, orig_rip;
1611         u32 instr_len;
1612
1613         /*
1614          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1615          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1616          * set when EPT misconfig occurs.  In practice, real hardware updates
1617          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1618          * (namely Hyper-V) don't set it due to it being undefined behavior,
1619          * i.e. we end up advancing IP with some random value.
1620          */
1621         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1622             exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1623                 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1624
1625                 /*
1626                  * Emulating an enclave's instructions isn't supported as KVM
1627                  * cannot access the enclave's memory or its true RIP, e.g. the
1628                  * vmcs.GUEST_RIP points at the exit point of the enclave, not
1629                  * the RIP that actually triggered the VM-Exit.  But, because
1630                  * most instructions that cause VM-Exit will #UD in an enclave,
1631                  * most instruction-based VM-Exits simply do not occur.
1632                  *
1633                  * There are a few exceptions, notably the debug instructions
1634                  * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1635                  * and generate #DB/#BP as expected, which KVM might intercept.
1636                  * But again, the CPU does the dirty work and saves an instr
1637                  * length of zero so VMMs don't shoot themselves in the foot.
1638                  * WARN if KVM tries to skip a non-zero length instruction on
1639                  * a VM-Exit from an enclave.
1640                  */
1641                 if (!instr_len)
1642                         goto rip_updated;
1643
1644                 WARN(exit_reason.enclave_mode,
1645                      "KVM: skipping instruction after SGX enclave VM-Exit");
1646
1647                 orig_rip = kvm_rip_read(vcpu);
1648                 rip = orig_rip + instr_len;
1649 #ifdef CONFIG_X86_64
1650                 /*
1651                  * We need to mask out the high 32 bits of RIP if not in 64-bit
1652                  * mode, but just finding out that we are in 64-bit mode is
1653                  * quite expensive.  Only do it if there was a carry.
1654                  */
1655                 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1656                         rip = (u32)rip;
1657 #endif
1658                 kvm_rip_write(vcpu, rip);
1659         } else {
1660                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1661                         return 0;
1662         }
1663
1664 rip_updated:
1665         /* skipping an emulated instruction also counts */
1666         vmx_set_interrupt_shadow(vcpu, 0);
1667
1668         return 1;
1669 }
1670
1671 /*
1672  * Recognizes a pending MTF VM-exit and records the nested state for later
1673  * delivery.
1674  */
1675 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1676 {
1677         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1678         struct vcpu_vmx *vmx = to_vmx(vcpu);
1679
1680         if (!is_guest_mode(vcpu))
1681                 return;
1682
1683         /*
1684          * Per the SDM, MTF takes priority over debug-trap exceptions besides
1685          * T-bit traps. As instruction emulation is completed (i.e. at the
1686          * instruction boundary), any #DB exception pending delivery must be a
1687          * debug-trap. Record the pending MTF state to be delivered in
1688          * vmx_check_nested_events().
1689          */
1690         if (nested_cpu_has_mtf(vmcs12) &&
1691             (!vcpu->arch.exception.pending ||
1692              vcpu->arch.exception.nr == DB_VECTOR))
1693                 vmx->nested.mtf_pending = true;
1694         else
1695                 vmx->nested.mtf_pending = false;
1696 }
1697
1698 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1699 {
1700         vmx_update_emulated_instruction(vcpu);
1701         return skip_emulated_instruction(vcpu);
1702 }
1703
1704 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1705 {
1706         /*
1707          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1708          * explicitly skip the instruction because if the HLT state is set,
1709          * then the instruction is already executing and RIP has already been
1710          * advanced.
1711          */
1712         if (kvm_hlt_in_guest(vcpu->kvm) &&
1713                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1714                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1715 }
1716
1717 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1718 {
1719         struct vcpu_vmx *vmx = to_vmx(vcpu);
1720         unsigned nr = vcpu->arch.exception.nr;
1721         bool has_error_code = vcpu->arch.exception.has_error_code;
1722         u32 error_code = vcpu->arch.exception.error_code;
1723         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1724
1725         kvm_deliver_exception_payload(vcpu);
1726
1727         if (has_error_code) {
1728                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1729                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1730         }
1731
1732         if (vmx->rmode.vm86_active) {
1733                 int inc_eip = 0;
1734                 if (kvm_exception_is_soft(nr))
1735                         inc_eip = vcpu->arch.event_exit_inst_len;
1736                 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1737                 return;
1738         }
1739
1740         WARN_ON_ONCE(vmx->emulation_required);
1741
1742         if (kvm_exception_is_soft(nr)) {
1743                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1744                              vmx->vcpu.arch.event_exit_inst_len);
1745                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1746         } else
1747                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1748
1749         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1750
1751         vmx_clear_hlt(vcpu);
1752 }
1753
1754 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr)
1755 {
1756         struct vmx_uret_msr tmp;
1757         int from, to;
1758
1759         from = __vmx_find_uret_msr(vmx, msr);
1760         if (from < 0)
1761                 return;
1762         to = vmx->nr_active_uret_msrs++;
1763
1764         tmp = vmx->guest_uret_msrs[to];
1765         vmx->guest_uret_msrs[to] = vmx->guest_uret_msrs[from];
1766         vmx->guest_uret_msrs[from] = tmp;
1767 }
1768
1769 /*
1770  * Set up the vmcs to automatically save and restore system
1771  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1772  * mode, as fiddling with msrs is very expensive.
1773  */
1774 static void setup_msrs(struct vcpu_vmx *vmx)
1775 {
1776         vmx->guest_uret_msrs_loaded = false;
1777         vmx->nr_active_uret_msrs = 0;
1778 #ifdef CONFIG_X86_64
1779         /*
1780          * The SYSCALL MSRs are only needed on long mode guests, and only
1781          * when EFER.SCE is set.
1782          */
1783         if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1784                 vmx_setup_uret_msr(vmx, MSR_STAR);
1785                 vmx_setup_uret_msr(vmx, MSR_LSTAR);
1786                 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK);
1787         }
1788 #endif
1789         if (update_transition_efer(vmx))
1790                 vmx_setup_uret_msr(vmx, MSR_EFER);
1791
1792         if (guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1793                 vmx_setup_uret_msr(vmx, MSR_TSC_AUX);
1794
1795         vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL);
1796
1797         if (cpu_has_vmx_msr_bitmap())
1798                 vmx_update_msr_bitmap(&vmx->vcpu);
1799 }
1800
1801 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1802 {
1803         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1804         u64 g_tsc_offset = 0;
1805
1806         /*
1807          * We're here if L1 chose not to trap WRMSR to TSC. According
1808          * to the spec, this should set L1's TSC; The offset that L1
1809          * set for L2 remains unchanged, and still needs to be added
1810          * to the newly set TSC to get L2's TSC.
1811          */
1812         if (is_guest_mode(vcpu) &&
1813             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1814                 g_tsc_offset = vmcs12->tsc_offset;
1815
1816         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1817                                    vcpu->arch.tsc_offset - g_tsc_offset,
1818                                    offset);
1819         vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1820         return offset + g_tsc_offset;
1821 }
1822
1823 /*
1824  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1825  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1826  * all guests if the "nested" module option is off, and can also be disabled
1827  * for a single guest by disabling its VMX cpuid bit.
1828  */
1829 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1830 {
1831         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1832 }
1833
1834 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1835                                                  uint64_t val)
1836 {
1837         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1838
1839         return !(val & ~valid_bits);
1840 }
1841
1842 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1843 {
1844         switch (msr->index) {
1845         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1846                 if (!nested)
1847                         return 1;
1848                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1849         case MSR_IA32_PERF_CAPABILITIES:
1850                 msr->data = vmx_get_perf_capabilities();
1851                 return 0;
1852         default:
1853                 return KVM_MSR_RET_INVALID;
1854         }
1855 }
1856
1857 /*
1858  * Reads an msr value (of 'msr_index') into 'pdata'.
1859  * Returns 0 on success, non-0 otherwise.
1860  * Assumes vcpu_load() was already called.
1861  */
1862 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1863 {
1864         struct vcpu_vmx *vmx = to_vmx(vcpu);
1865         struct vmx_uret_msr *msr;
1866         u32 index;
1867
1868         switch (msr_info->index) {
1869 #ifdef CONFIG_X86_64
1870         case MSR_FS_BASE:
1871                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1872                 break;
1873         case MSR_GS_BASE:
1874                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1875                 break;
1876         case MSR_KERNEL_GS_BASE:
1877                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1878                 break;
1879 #endif
1880         case MSR_EFER:
1881                 return kvm_get_msr_common(vcpu, msr_info);
1882         case MSR_IA32_TSX_CTRL:
1883                 if (!msr_info->host_initiated &&
1884                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1885                         return 1;
1886                 goto find_uret_msr;
1887         case MSR_IA32_UMWAIT_CONTROL:
1888                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1889                         return 1;
1890
1891                 msr_info->data = vmx->msr_ia32_umwait_control;
1892                 break;
1893         case MSR_IA32_SPEC_CTRL:
1894                 if (!msr_info->host_initiated &&
1895                     !guest_has_spec_ctrl_msr(vcpu))
1896                         return 1;
1897
1898                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1899                 break;
1900         case MSR_IA32_SYSENTER_CS:
1901                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1902                 break;
1903         case MSR_IA32_SYSENTER_EIP:
1904                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1905                 break;
1906         case MSR_IA32_SYSENTER_ESP:
1907                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1908                 break;
1909         case MSR_IA32_BNDCFGS:
1910                 if (!kvm_mpx_supported() ||
1911                     (!msr_info->host_initiated &&
1912                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1913                         return 1;
1914                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1915                 break;
1916         case MSR_IA32_MCG_EXT_CTL:
1917                 if (!msr_info->host_initiated &&
1918                     !(vmx->msr_ia32_feature_control &
1919                       FEAT_CTL_LMCE_ENABLED))
1920                         return 1;
1921                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1922                 break;
1923         case MSR_IA32_FEAT_CTL:
1924                 msr_info->data = vmx->msr_ia32_feature_control;
1925                 break;
1926         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1927                 if (!msr_info->host_initiated &&
1928                     !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1929                         return 1;
1930                 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1931                         [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1932                 break;
1933         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1934                 if (!nested_vmx_allowed(vcpu))
1935                         return 1;
1936                 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1937                                     &msr_info->data))
1938                         return 1;
1939                 /*
1940                  * Enlightened VMCS v1 doesn't have certain fields, but buggy
1941                  * Hyper-V versions are still trying to use corresponding
1942                  * features when they are exposed. Filter out the essential
1943                  * minimum.
1944                  */
1945                 if (!msr_info->host_initiated &&
1946                     vmx->nested.enlightened_vmcs_enabled)
1947                         nested_evmcs_filter_control_msr(msr_info->index,
1948                                                         &msr_info->data);
1949                 break;
1950         case MSR_IA32_RTIT_CTL:
1951                 if (!vmx_pt_mode_is_host_guest())
1952                         return 1;
1953                 msr_info->data = vmx->pt_desc.guest.ctl;
1954                 break;
1955         case MSR_IA32_RTIT_STATUS:
1956                 if (!vmx_pt_mode_is_host_guest())
1957                         return 1;
1958                 msr_info->data = vmx->pt_desc.guest.status;
1959                 break;
1960         case MSR_IA32_RTIT_CR3_MATCH:
1961                 if (!vmx_pt_mode_is_host_guest() ||
1962                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1963                                                 PT_CAP_cr3_filtering))
1964                         return 1;
1965                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1966                 break;
1967         case MSR_IA32_RTIT_OUTPUT_BASE:
1968                 if (!vmx_pt_mode_is_host_guest() ||
1969                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1970                                         PT_CAP_topa_output) &&
1971                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1972                                         PT_CAP_single_range_output)))
1973                         return 1;
1974                 msr_info->data = vmx->pt_desc.guest.output_base;
1975                 break;
1976         case MSR_IA32_RTIT_OUTPUT_MASK:
1977                 if (!vmx_pt_mode_is_host_guest() ||
1978                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1979                                         PT_CAP_topa_output) &&
1980                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1981                                         PT_CAP_single_range_output)))
1982                         return 1;
1983                 msr_info->data = vmx->pt_desc.guest.output_mask;
1984                 break;
1985         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1986                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1987                 if (!vmx_pt_mode_is_host_guest() ||
1988                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1989                                         PT_CAP_num_address_ranges)))
1990                         return 1;
1991                 if (index % 2)
1992                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1993                 else
1994                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1995                 break;
1996         case MSR_TSC_AUX:
1997                 if (!msr_info->host_initiated &&
1998                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1999                         return 1;
2000                 goto find_uret_msr;
2001         case MSR_IA32_DEBUGCTLMSR:
2002                 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2003                 break;
2004         default:
2005         find_uret_msr:
2006                 msr = vmx_find_uret_msr(vmx, msr_info->index);
2007                 if (msr) {
2008                         msr_info->data = msr->data;
2009                         break;
2010                 }
2011                 return kvm_get_msr_common(vcpu, msr_info);
2012         }
2013
2014         return 0;
2015 }
2016
2017 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2018                                                     u64 data)
2019 {
2020 #ifdef CONFIG_X86_64
2021         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2022                 return (u32)data;
2023 #endif
2024         return (unsigned long)data;
2025 }
2026
2027 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
2028 {
2029         u64 debugctl = vmx_supported_debugctl();
2030
2031         if (!intel_pmu_lbr_is_enabled(vcpu))
2032                 debugctl &= ~DEBUGCTLMSR_LBR_MASK;
2033
2034         return debugctl;
2035 }
2036
2037 /*
2038  * Writes msr value into the appropriate "register".
2039  * Returns 0 on success, non-0 otherwise.
2040  * Assumes vcpu_load() was already called.
2041  */
2042 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2043 {
2044         struct vcpu_vmx *vmx = to_vmx(vcpu);
2045         struct vmx_uret_msr *msr;
2046         int ret = 0;
2047         u32 msr_index = msr_info->index;
2048         u64 data = msr_info->data;
2049         u32 index;
2050
2051         switch (msr_index) {
2052         case MSR_EFER:
2053                 ret = kvm_set_msr_common(vcpu, msr_info);
2054                 break;
2055 #ifdef CONFIG_X86_64
2056         case MSR_FS_BASE:
2057                 vmx_segment_cache_clear(vmx);
2058                 vmcs_writel(GUEST_FS_BASE, data);
2059                 break;
2060         case MSR_GS_BASE:
2061                 vmx_segment_cache_clear(vmx);
2062                 vmcs_writel(GUEST_GS_BASE, data);
2063                 break;
2064         case MSR_KERNEL_GS_BASE:
2065                 vmx_write_guest_kernel_gs_base(vmx, data);
2066                 break;
2067 #endif
2068         case MSR_IA32_SYSENTER_CS:
2069                 if (is_guest_mode(vcpu))
2070                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
2071                 vmcs_write32(GUEST_SYSENTER_CS, data);
2072                 break;
2073         case MSR_IA32_SYSENTER_EIP:
2074                 if (is_guest_mode(vcpu)) {
2075                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2076                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
2077                 }
2078                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2079                 break;
2080         case MSR_IA32_SYSENTER_ESP:
2081                 if (is_guest_mode(vcpu)) {
2082                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2083                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
2084                 }
2085                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2086                 break;
2087         case MSR_IA32_DEBUGCTLMSR: {
2088                 u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
2089                 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2090                         if (report_ignored_msrs)
2091                                 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
2092                                             __func__, data);
2093                         data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2094                         invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2095                 }
2096
2097                 if (invalid)
2098                         return 1;
2099
2100                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2101                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
2102                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2103
2104                 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2105                 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2106                     (data & DEBUGCTLMSR_LBR))
2107                         intel_pmu_create_guest_lbr_event(vcpu);
2108                 return 0;
2109         }
2110         case MSR_IA32_BNDCFGS:
2111                 if (!kvm_mpx_supported() ||
2112                     (!msr_info->host_initiated &&
2113                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2114                         return 1;
2115                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2116                     (data & MSR_IA32_BNDCFGS_RSVD))
2117                         return 1;
2118                 vmcs_write64(GUEST_BNDCFGS, data);
2119                 break;
2120         case MSR_IA32_UMWAIT_CONTROL:
2121                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2122                         return 1;
2123
2124                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2125                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2126                         return 1;
2127
2128                 vmx->msr_ia32_umwait_control = data;
2129                 break;
2130         case MSR_IA32_SPEC_CTRL:
2131                 if (!msr_info->host_initiated &&
2132                     !guest_has_spec_ctrl_msr(vcpu))
2133                         return 1;
2134
2135                 if (kvm_spec_ctrl_test_value(data))
2136                         return 1;
2137
2138                 vmx->spec_ctrl = data;
2139                 if (!data)
2140                         break;
2141
2142                 /*
2143                  * For non-nested:
2144                  * When it's written (to non-zero) for the first time, pass
2145                  * it through.
2146                  *
2147                  * For nested:
2148                  * The handling of the MSR bitmap for L2 guests is done in
2149                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2150                  * vmcs02.msr_bitmap here since it gets completely overwritten
2151                  * in the merging. We update the vmcs01 here for L1 as well
2152                  * since it will end up touching the MSR anyway now.
2153                  */
2154                 vmx_disable_intercept_for_msr(vcpu,
2155                                               MSR_IA32_SPEC_CTRL,
2156                                               MSR_TYPE_RW);
2157                 break;
2158         case MSR_IA32_TSX_CTRL:
2159                 if (!msr_info->host_initiated &&
2160                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2161                         return 1;
2162                 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2163                         return 1;
2164                 goto find_uret_msr;
2165         case MSR_IA32_PRED_CMD:
2166                 if (!msr_info->host_initiated &&
2167                     !guest_has_pred_cmd_msr(vcpu))
2168                         return 1;
2169
2170                 if (data & ~PRED_CMD_IBPB)
2171                         return 1;
2172                 if (!boot_cpu_has(X86_FEATURE_IBPB))
2173                         return 1;
2174                 if (!data)
2175                         break;
2176
2177                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2178
2179                 /*
2180                  * For non-nested:
2181                  * When it's written (to non-zero) for the first time, pass
2182                  * it through.
2183                  *
2184                  * For nested:
2185                  * The handling of the MSR bitmap for L2 guests is done in
2186                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2187                  * vmcs02.msr_bitmap here since it gets completely overwritten
2188                  * in the merging.
2189                  */
2190                 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2191                 break;
2192         case MSR_IA32_CR_PAT:
2193                 if (!kvm_pat_valid(data))
2194                         return 1;
2195
2196                 if (is_guest_mode(vcpu) &&
2197                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2198                         get_vmcs12(vcpu)->guest_ia32_pat = data;
2199
2200                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2201                         vmcs_write64(GUEST_IA32_PAT, data);
2202                         vcpu->arch.pat = data;
2203                         break;
2204                 }
2205                 ret = kvm_set_msr_common(vcpu, msr_info);
2206                 break;
2207         case MSR_IA32_TSC_ADJUST:
2208                 ret = kvm_set_msr_common(vcpu, msr_info);
2209                 break;
2210         case MSR_IA32_MCG_EXT_CTL:
2211                 if ((!msr_info->host_initiated &&
2212                      !(to_vmx(vcpu)->msr_ia32_feature_control &
2213                        FEAT_CTL_LMCE_ENABLED)) ||
2214                     (data & ~MCG_EXT_CTL_LMCE_EN))
2215                         return 1;
2216                 vcpu->arch.mcg_ext_ctl = data;
2217                 break;
2218         case MSR_IA32_FEAT_CTL:
2219                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2220                     (to_vmx(vcpu)->msr_ia32_feature_control &
2221                      FEAT_CTL_LOCKED && !msr_info->host_initiated))
2222                         return 1;
2223                 vmx->msr_ia32_feature_control = data;
2224                 if (msr_info->host_initiated && data == 0)
2225                         vmx_leave_nested(vcpu);
2226
2227                 /* SGX may be enabled/disabled by guest's firmware */
2228                 vmx_write_encls_bitmap(vcpu, NULL);
2229                 break;
2230         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2231                 /*
2232                  * On real hardware, the LE hash MSRs are writable before
2233                  * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2234                  * at which point SGX related bits in IA32_FEATURE_CONTROL
2235                  * become writable.
2236                  *
2237                  * KVM does not emulate SGX activation for simplicity, so
2238                  * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2239                  * is unlocked.  This is technically not architectural
2240                  * behavior, but it's close enough.
2241                  */
2242                 if (!msr_info->host_initiated &&
2243                     (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2244                     ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2245                     !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2246                         return 1;
2247                 vmx->msr_ia32_sgxlepubkeyhash
2248                         [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2249                 break;
2250         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2251                 if (!msr_info->host_initiated)
2252                         return 1; /* they are read-only */
2253                 if (!nested_vmx_allowed(vcpu))
2254                         return 1;
2255                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2256         case MSR_IA32_RTIT_CTL:
2257                 if (!vmx_pt_mode_is_host_guest() ||
2258                         vmx_rtit_ctl_check(vcpu, data) ||
2259                         vmx->nested.vmxon)
2260                         return 1;
2261                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2262                 vmx->pt_desc.guest.ctl = data;
2263                 pt_update_intercept_for_msr(vcpu);
2264                 break;
2265         case MSR_IA32_RTIT_STATUS:
2266                 if (!pt_can_write_msr(vmx))
2267                         return 1;
2268                 if (data & MSR_IA32_RTIT_STATUS_MASK)
2269                         return 1;
2270                 vmx->pt_desc.guest.status = data;
2271                 break;
2272         case MSR_IA32_RTIT_CR3_MATCH:
2273                 if (!pt_can_write_msr(vmx))
2274                         return 1;
2275                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2276                                            PT_CAP_cr3_filtering))
2277                         return 1;
2278                 vmx->pt_desc.guest.cr3_match = data;
2279                 break;
2280         case MSR_IA32_RTIT_OUTPUT_BASE:
2281                 if (!pt_can_write_msr(vmx))
2282                         return 1;
2283                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2284                                            PT_CAP_topa_output) &&
2285                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2286                                            PT_CAP_single_range_output))
2287                         return 1;
2288                 if (!pt_output_base_valid(vcpu, data))
2289                         return 1;
2290                 vmx->pt_desc.guest.output_base = data;
2291                 break;
2292         case MSR_IA32_RTIT_OUTPUT_MASK:
2293                 if (!pt_can_write_msr(vmx))
2294                         return 1;
2295                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2296                                            PT_CAP_topa_output) &&
2297                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2298                                            PT_CAP_single_range_output))
2299                         return 1;
2300                 vmx->pt_desc.guest.output_mask = data;
2301                 break;
2302         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2303                 if (!pt_can_write_msr(vmx))
2304                         return 1;
2305                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2306                 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2307                                                        PT_CAP_num_address_ranges))
2308                         return 1;
2309                 if (is_noncanonical_address(data, vcpu))
2310                         return 1;
2311                 if (index % 2)
2312                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2313                 else
2314                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2315                 break;
2316         case MSR_TSC_AUX:
2317                 if (!msr_info->host_initiated &&
2318                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2319                         return 1;
2320                 /* Check reserved bit, higher 32 bits should be zero */
2321                 if ((data >> 32) != 0)
2322                         return 1;
2323                 goto find_uret_msr;
2324         case MSR_IA32_PERF_CAPABILITIES:
2325                 if (data && !vcpu_to_pmu(vcpu)->version)
2326                         return 1;
2327                 if (data & PMU_CAP_LBR_FMT) {
2328                         if ((data & PMU_CAP_LBR_FMT) !=
2329                             (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2330                                 return 1;
2331                         if (!intel_pmu_lbr_is_compatible(vcpu))
2332                                 return 1;
2333                 }
2334                 ret = kvm_set_msr_common(vcpu, msr_info);
2335                 break;
2336
2337         default:
2338         find_uret_msr:
2339                 msr = vmx_find_uret_msr(vmx, msr_index);
2340                 if (msr)
2341                         ret = vmx_set_guest_uret_msr(vmx, msr, data);
2342                 else
2343                         ret = kvm_set_msr_common(vcpu, msr_info);
2344         }
2345
2346         return ret;
2347 }
2348
2349 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2350 {
2351         unsigned long guest_owned_bits;
2352
2353         kvm_register_mark_available(vcpu, reg);
2354
2355         switch (reg) {
2356         case VCPU_REGS_RSP:
2357                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2358                 break;
2359         case VCPU_REGS_RIP:
2360                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2361                 break;
2362         case VCPU_EXREG_PDPTR:
2363                 if (enable_ept)
2364                         ept_save_pdptrs(vcpu);
2365                 break;
2366         case VCPU_EXREG_CR0:
2367                 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2368
2369                 vcpu->arch.cr0 &= ~guest_owned_bits;
2370                 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2371                 break;
2372         case VCPU_EXREG_CR3:
2373                 if (is_unrestricted_guest(vcpu) ||
2374                     (enable_ept && is_paging(vcpu)))
2375                         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2376                 break;
2377         case VCPU_EXREG_CR4:
2378                 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2379
2380                 vcpu->arch.cr4 &= ~guest_owned_bits;
2381                 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2382                 break;
2383         default:
2384                 WARN_ON_ONCE(1);
2385                 break;
2386         }
2387 }
2388
2389 static __init int cpu_has_kvm_support(void)
2390 {
2391         return cpu_has_vmx();
2392 }
2393
2394 static __init int vmx_disabled_by_bios(void)
2395 {
2396         return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2397                !boot_cpu_has(X86_FEATURE_VMX);
2398 }
2399
2400 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2401 {
2402         u64 msr;
2403
2404         cr4_set_bits(X86_CR4_VMXE);
2405
2406         asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2407                           _ASM_EXTABLE(1b, %l[fault])
2408                           : : [vmxon_pointer] "m"(vmxon_pointer)
2409                           : : fault);
2410         return 0;
2411
2412 fault:
2413         WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2414                   rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2415         cr4_clear_bits(X86_CR4_VMXE);
2416
2417         return -EFAULT;
2418 }
2419
2420 static int hardware_enable(void)
2421 {
2422         int cpu = raw_smp_processor_id();
2423         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2424         int r;
2425
2426         if (cr4_read_shadow() & X86_CR4_VMXE)
2427                 return -EBUSY;
2428
2429         /*
2430          * This can happen if we hot-added a CPU but failed to allocate
2431          * VP assist page for it.
2432          */
2433         if (static_branch_unlikely(&enable_evmcs) &&
2434             !hv_get_vp_assist_page(cpu))
2435                 return -EFAULT;
2436
2437         intel_pt_handle_vmx(1);
2438
2439         r = kvm_cpu_vmxon(phys_addr);
2440         if (r) {
2441                 intel_pt_handle_vmx(0);
2442                 return r;
2443         }
2444
2445         if (enable_ept)
2446                 ept_sync_global();
2447
2448         return 0;
2449 }
2450
2451 static void vmclear_local_loaded_vmcss(void)
2452 {
2453         int cpu = raw_smp_processor_id();
2454         struct loaded_vmcs *v, *n;
2455
2456         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2457                                  loaded_vmcss_on_cpu_link)
2458                 __loaded_vmcs_clear(v);
2459 }
2460
2461 static void hardware_disable(void)
2462 {
2463         vmclear_local_loaded_vmcss();
2464
2465         if (cpu_vmxoff())
2466                 kvm_spurious_fault();
2467
2468         intel_pt_handle_vmx(0);
2469 }
2470
2471 /*
2472  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2473  * directly instead of going through cpu_has(), to ensure KVM is trapping
2474  * ENCLS whenever it's supported in hardware.  It does not matter whether
2475  * the host OS supports or has enabled SGX.
2476  */
2477 static bool cpu_has_sgx(void)
2478 {
2479         return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2480 }
2481
2482 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2483                                       u32 msr, u32 *result)
2484 {
2485         u32 vmx_msr_low, vmx_msr_high;
2486         u32 ctl = ctl_min | ctl_opt;
2487
2488         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2489
2490         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2491         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2492
2493         /* Ensure minimum (required) set of control bits are supported. */
2494         if (ctl_min & ~ctl)
2495                 return -EIO;
2496
2497         *result = ctl;
2498         return 0;
2499 }
2500
2501 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2502                                     struct vmx_capability *vmx_cap)
2503 {
2504         u32 vmx_msr_low, vmx_msr_high;
2505         u32 min, opt, min2, opt2;
2506         u32 _pin_based_exec_control = 0;
2507         u32 _cpu_based_exec_control = 0;
2508         u32 _cpu_based_2nd_exec_control = 0;
2509         u32 _vmexit_control = 0;
2510         u32 _vmentry_control = 0;
2511
2512         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2513         min = CPU_BASED_HLT_EXITING |
2514 #ifdef CONFIG_X86_64
2515               CPU_BASED_CR8_LOAD_EXITING |
2516               CPU_BASED_CR8_STORE_EXITING |
2517 #endif
2518               CPU_BASED_CR3_LOAD_EXITING |
2519               CPU_BASED_CR3_STORE_EXITING |
2520               CPU_BASED_UNCOND_IO_EXITING |
2521               CPU_BASED_MOV_DR_EXITING |
2522               CPU_BASED_USE_TSC_OFFSETTING |
2523               CPU_BASED_MWAIT_EXITING |
2524               CPU_BASED_MONITOR_EXITING |
2525               CPU_BASED_INVLPG_EXITING |
2526               CPU_BASED_RDPMC_EXITING;
2527
2528         opt = CPU_BASED_TPR_SHADOW |
2529               CPU_BASED_USE_MSR_BITMAPS |
2530               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2531         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2532                                 &_cpu_based_exec_control) < 0)
2533                 return -EIO;
2534 #ifdef CONFIG_X86_64
2535         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2536                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2537                                            ~CPU_BASED_CR8_STORE_EXITING;
2538 #endif
2539         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2540                 min2 = 0;
2541                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2542                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2543                         SECONDARY_EXEC_WBINVD_EXITING |
2544                         SECONDARY_EXEC_ENABLE_VPID |
2545                         SECONDARY_EXEC_ENABLE_EPT |
2546                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2547                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2548                         SECONDARY_EXEC_DESC |
2549                         SECONDARY_EXEC_ENABLE_RDTSCP |
2550                         SECONDARY_EXEC_ENABLE_INVPCID |
2551                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2552                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2553                         SECONDARY_EXEC_SHADOW_VMCS |
2554                         SECONDARY_EXEC_XSAVES |
2555                         SECONDARY_EXEC_RDSEED_EXITING |
2556                         SECONDARY_EXEC_RDRAND_EXITING |
2557                         SECONDARY_EXEC_ENABLE_PML |
2558                         SECONDARY_EXEC_TSC_SCALING |
2559                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2560                         SECONDARY_EXEC_PT_USE_GPA |
2561                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2562                         SECONDARY_EXEC_ENABLE_VMFUNC |
2563                         SECONDARY_EXEC_BUS_LOCK_DETECTION;
2564                 if (cpu_has_sgx())
2565                         opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2566                 if (adjust_vmx_controls(min2, opt2,
2567                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2568                                         &_cpu_based_2nd_exec_control) < 0)
2569                         return -EIO;
2570         }
2571 #ifndef CONFIG_X86_64
2572         if (!(_cpu_based_2nd_exec_control &
2573                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2574                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2575 #endif
2576
2577         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2578                 _cpu_based_2nd_exec_control &= ~(
2579                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2580                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2581                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2582
2583         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2584                 &vmx_cap->ept, &vmx_cap->vpid);
2585
2586         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2587                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2588                    enabled */
2589                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2590                                              CPU_BASED_CR3_STORE_EXITING |
2591                                              CPU_BASED_INVLPG_EXITING);
2592         } else if (vmx_cap->ept) {
2593                 vmx_cap->ept = 0;
2594                 pr_warn_once("EPT CAP should not exist if not support "
2595                                 "1-setting enable EPT VM-execution control\n");
2596         }
2597         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2598                 vmx_cap->vpid) {
2599                 vmx_cap->vpid = 0;
2600                 pr_warn_once("VPID CAP should not exist if not support "
2601                                 "1-setting enable VPID VM-execution control\n");
2602         }
2603
2604         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2605 #ifdef CONFIG_X86_64
2606         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2607 #endif
2608         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2609               VM_EXIT_LOAD_IA32_PAT |
2610               VM_EXIT_LOAD_IA32_EFER |
2611               VM_EXIT_CLEAR_BNDCFGS |
2612               VM_EXIT_PT_CONCEAL_PIP |
2613               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2614         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2615                                 &_vmexit_control) < 0)
2616                 return -EIO;
2617
2618         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2619         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2620                  PIN_BASED_VMX_PREEMPTION_TIMER;
2621         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2622                                 &_pin_based_exec_control) < 0)
2623                 return -EIO;
2624
2625         if (cpu_has_broken_vmx_preemption_timer())
2626                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2627         if (!(_cpu_based_2nd_exec_control &
2628                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2629                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2630
2631         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2632         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2633               VM_ENTRY_LOAD_IA32_PAT |
2634               VM_ENTRY_LOAD_IA32_EFER |
2635               VM_ENTRY_LOAD_BNDCFGS |
2636               VM_ENTRY_PT_CONCEAL_PIP |
2637               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2638         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2639                                 &_vmentry_control) < 0)
2640                 return -EIO;
2641
2642         /*
2643          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2644          * can't be used due to an errata where VM Exit may incorrectly clear
2645          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2646          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2647          */
2648         if (boot_cpu_data.x86 == 0x6) {
2649                 switch (boot_cpu_data.x86_model) {
2650                 case 26: /* AAK155 */
2651                 case 30: /* AAP115 */
2652                 case 37: /* AAT100 */
2653                 case 44: /* BC86,AAY89,BD102 */
2654                 case 46: /* BA97 */
2655                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2656                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2657                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2658                                         "does not work properly. Using workaround\n");
2659                         break;
2660                 default:
2661                         break;
2662                 }
2663         }
2664
2665
2666         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2667
2668         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2669         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2670                 return -EIO;
2671
2672 #ifdef CONFIG_X86_64
2673         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2674         if (vmx_msr_high & (1u<<16))
2675                 return -EIO;
2676 #endif
2677
2678         /* Require Write-Back (WB) memory type for VMCS accesses. */
2679         if (((vmx_msr_high >> 18) & 15) != 6)
2680                 return -EIO;
2681
2682         vmcs_conf->size = vmx_msr_high & 0x1fff;
2683         vmcs_conf->order = get_order(vmcs_conf->size);
2684         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2685
2686         vmcs_conf->revision_id = vmx_msr_low;
2687
2688         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2689         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2690         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2691         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2692         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2693
2694 #if IS_ENABLED(CONFIG_HYPERV)
2695         if (enlightened_vmcs)
2696                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2697 #endif
2698
2699         return 0;
2700 }
2701
2702 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2703 {
2704         int node = cpu_to_node(cpu);
2705         struct page *pages;
2706         struct vmcs *vmcs;
2707
2708         pages = __alloc_pages_node(node, flags, vmcs_config.order);
2709         if (!pages)
2710                 return NULL;
2711         vmcs = page_address(pages);
2712         memset(vmcs, 0, vmcs_config.size);
2713
2714         /* KVM supports Enlightened VMCS v1 only */
2715         if (static_branch_unlikely(&enable_evmcs))
2716                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2717         else
2718                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2719
2720         if (shadow)
2721                 vmcs->hdr.shadow_vmcs = 1;
2722         return vmcs;
2723 }
2724
2725 void free_vmcs(struct vmcs *vmcs)
2726 {
2727         free_pages((unsigned long)vmcs, vmcs_config.order);
2728 }
2729
2730 /*
2731  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2732  */
2733 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2734 {
2735         if (!loaded_vmcs->vmcs)
2736                 return;
2737         loaded_vmcs_clear(loaded_vmcs);
2738         free_vmcs(loaded_vmcs->vmcs);
2739         loaded_vmcs->vmcs = NULL;
2740         if (loaded_vmcs->msr_bitmap)
2741                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2742         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2743 }
2744
2745 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2746 {
2747         loaded_vmcs->vmcs = alloc_vmcs(false);
2748         if (!loaded_vmcs->vmcs)
2749                 return -ENOMEM;
2750
2751         vmcs_clear(loaded_vmcs->vmcs);
2752
2753         loaded_vmcs->shadow_vmcs = NULL;
2754         loaded_vmcs->hv_timer_soft_disabled = false;
2755         loaded_vmcs->cpu = -1;
2756         loaded_vmcs->launched = 0;
2757
2758         if (cpu_has_vmx_msr_bitmap()) {
2759                 loaded_vmcs->msr_bitmap = (unsigned long *)
2760                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2761                 if (!loaded_vmcs->msr_bitmap)
2762                         goto out_vmcs;
2763                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2764
2765                 if (IS_ENABLED(CONFIG_HYPERV) &&
2766                     static_branch_unlikely(&enable_evmcs) &&
2767                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2768                         struct hv_enlightened_vmcs *evmcs =
2769                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2770
2771                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
2772                 }
2773         }
2774
2775         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2776         memset(&loaded_vmcs->controls_shadow, 0,
2777                 sizeof(struct vmcs_controls_shadow));
2778
2779         return 0;
2780
2781 out_vmcs:
2782         free_loaded_vmcs(loaded_vmcs);
2783         return -ENOMEM;
2784 }
2785
2786 static void free_kvm_area(void)
2787 {
2788         int cpu;
2789
2790         for_each_possible_cpu(cpu) {
2791                 free_vmcs(per_cpu(vmxarea, cpu));
2792                 per_cpu(vmxarea, cpu) = NULL;
2793         }
2794 }
2795
2796 static __init int alloc_kvm_area(void)
2797 {
2798         int cpu;
2799
2800         for_each_possible_cpu(cpu) {
2801                 struct vmcs *vmcs;
2802
2803                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2804                 if (!vmcs) {
2805                         free_kvm_area();
2806                         return -ENOMEM;
2807                 }
2808
2809                 /*
2810                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2811                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2812                  * revision_id reported by MSR_IA32_VMX_BASIC.
2813                  *
2814                  * However, even though not explicitly documented by
2815                  * TLFS, VMXArea passed as VMXON argument should
2816                  * still be marked with revision_id reported by
2817                  * physical CPU.
2818                  */
2819                 if (static_branch_unlikely(&enable_evmcs))
2820                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2821
2822                 per_cpu(vmxarea, cpu) = vmcs;
2823         }
2824         return 0;
2825 }
2826
2827 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2828                 struct kvm_segment *save)
2829 {
2830         if (!emulate_invalid_guest_state) {
2831                 /*
2832                  * CS and SS RPL should be equal during guest entry according
2833                  * to VMX spec, but in reality it is not always so. Since vcpu
2834                  * is in the middle of the transition from real mode to
2835                  * protected mode it is safe to assume that RPL 0 is a good
2836                  * default value.
2837                  */
2838                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2839                         save->selector &= ~SEGMENT_RPL_MASK;
2840                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2841                 save->s = 1;
2842         }
2843         vmx_set_segment(vcpu, save, seg);
2844 }
2845
2846 static void enter_pmode(struct kvm_vcpu *vcpu)
2847 {
2848         unsigned long flags;
2849         struct vcpu_vmx *vmx = to_vmx(vcpu);
2850
2851         /*
2852          * Update real mode segment cache. It may be not up-to-date if segment
2853          * register was written while vcpu was in a guest mode.
2854          */
2855         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2856         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2857         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2858         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2859         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2860         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2861
2862         vmx->rmode.vm86_active = 0;
2863
2864         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2865
2866         flags = vmcs_readl(GUEST_RFLAGS);
2867         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2868         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2869         vmcs_writel(GUEST_RFLAGS, flags);
2870
2871         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2872                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2873
2874         vmx_update_exception_bitmap(vcpu);
2875
2876         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2877         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2878         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2879         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2880         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2881         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2882 }
2883
2884 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2885 {
2886         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2887         struct kvm_segment var = *save;
2888
2889         var.dpl = 0x3;
2890         if (seg == VCPU_SREG_CS)
2891                 var.type = 0x3;
2892
2893         if (!emulate_invalid_guest_state) {
2894                 var.selector = var.base >> 4;
2895                 var.base = var.base & 0xffff0;
2896                 var.limit = 0xffff;
2897                 var.g = 0;
2898                 var.db = 0;
2899                 var.present = 1;
2900                 var.s = 1;
2901                 var.l = 0;
2902                 var.unusable = 0;
2903                 var.type = 0x3;
2904                 var.avl = 0;
2905                 if (save->base & 0xf)
2906                         printk_once(KERN_WARNING "kvm: segment base is not "
2907                                         "paragraph aligned when entering "
2908                                         "protected mode (seg=%d)", seg);
2909         }
2910
2911         vmcs_write16(sf->selector, var.selector);
2912         vmcs_writel(sf->base, var.base);
2913         vmcs_write32(sf->limit, var.limit);
2914         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2915 }
2916
2917 static void enter_rmode(struct kvm_vcpu *vcpu)
2918 {
2919         unsigned long flags;
2920         struct vcpu_vmx *vmx = to_vmx(vcpu);
2921         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2922
2923         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2924         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2925         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2926         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2927         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2928         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2929         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2930
2931         vmx->rmode.vm86_active = 1;
2932
2933         /*
2934          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2935          * vcpu. Warn the user that an update is overdue.
2936          */
2937         if (!kvm_vmx->tss_addr)
2938                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2939                              "called before entering vcpu\n");
2940
2941         vmx_segment_cache_clear(vmx);
2942
2943         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2944         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2945         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2946
2947         flags = vmcs_readl(GUEST_RFLAGS);
2948         vmx->rmode.save_rflags = flags;
2949
2950         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2951
2952         vmcs_writel(GUEST_RFLAGS, flags);
2953         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2954         vmx_update_exception_bitmap(vcpu);
2955
2956         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2957         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2958         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2959         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2960         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2961         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2962
2963         kvm_mmu_reset_context(vcpu);
2964 }
2965
2966 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2967 {
2968         struct vcpu_vmx *vmx = to_vmx(vcpu);
2969         struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2970
2971         /* Nothing to do if hardware doesn't support EFER. */
2972         if (!msr)
2973                 return 0;
2974
2975         vcpu->arch.efer = efer;
2976         if (efer & EFER_LMA) {
2977                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2978                 msr->data = efer;
2979         } else {
2980                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2981
2982                 msr->data = efer & ~EFER_LME;
2983         }
2984         setup_msrs(vmx);
2985         return 0;
2986 }
2987
2988 #ifdef CONFIG_X86_64
2989
2990 static void enter_lmode(struct kvm_vcpu *vcpu)
2991 {
2992         u32 guest_tr_ar;
2993
2994         vmx_segment_cache_clear(to_vmx(vcpu));
2995
2996         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2997         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2998                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2999                                      __func__);
3000                 vmcs_write32(GUEST_TR_AR_BYTES,
3001                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3002                              | VMX_AR_TYPE_BUSY_64_TSS);
3003         }
3004         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3005 }
3006
3007 static void exit_lmode(struct kvm_vcpu *vcpu)
3008 {
3009         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3010         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3011 }
3012
3013 #endif
3014
3015 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3016 {
3017         struct vcpu_vmx *vmx = to_vmx(vcpu);
3018
3019         /*
3020          * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3021          * the CPU is not required to invalidate guest-physical mappings on
3022          * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3023          * associated with the root EPT structure and not any particular VPID
3024          * (INVVPID also isn't required to invalidate guest-physical mappings).
3025          */
3026         if (enable_ept) {
3027                 ept_sync_global();
3028         } else if (enable_vpid) {
3029                 if (cpu_has_vmx_invvpid_global()) {
3030                         vpid_sync_vcpu_global();
3031                 } else {
3032                         vpid_sync_vcpu_single(vmx->vpid);
3033                         vpid_sync_vcpu_single(vmx->nested.vpid02);
3034                 }
3035         }
3036 }
3037
3038 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3039 {
3040         struct kvm_mmu *mmu = vcpu->arch.mmu;
3041         u64 root_hpa = mmu->root_hpa;
3042
3043         /* No flush required if the current context is invalid. */
3044         if (!VALID_PAGE(root_hpa))
3045                 return;
3046
3047         if (enable_ept)
3048                 ept_sync_context(construct_eptp(vcpu, root_hpa,
3049                                                 mmu->shadow_root_level));
3050         else if (!is_guest_mode(vcpu))
3051                 vpid_sync_context(to_vmx(vcpu)->vpid);
3052         else
3053                 vpid_sync_context(nested_get_vpid02(vcpu));
3054 }
3055
3056 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3057 {
3058         /*
3059          * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
3060          * vmx_flush_tlb_guest() for an explanation of why this is ok.
3061          */
3062         vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
3063 }
3064
3065 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3066 {
3067         /*
3068          * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
3069          * or a vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit
3070          * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3071          * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3072          * i.e. no explicit INVVPID is necessary.
3073          */
3074         vpid_sync_context(to_vmx(vcpu)->vpid);
3075 }
3076
3077 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3078 {
3079         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3080
3081         if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3082                 return;
3083
3084         if (is_pae_paging(vcpu)) {
3085                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3086                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3087                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3088                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3089         }
3090 }
3091
3092 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3093 {
3094         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3095
3096         if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3097                 return;
3098
3099         mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3100         mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3101         mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3102         mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3103
3104         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
3105 }
3106
3107 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3108                                         unsigned long cr0,
3109                                         struct kvm_vcpu *vcpu)
3110 {
3111         struct vcpu_vmx *vmx = to_vmx(vcpu);
3112
3113         if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3114                 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3115         if (!(cr0 & X86_CR0_PG)) {
3116                 /* From paging/starting to nonpaging */
3117                 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3118                                           CPU_BASED_CR3_STORE_EXITING);
3119                 vcpu->arch.cr0 = cr0;
3120                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3121         } else if (!is_paging(vcpu)) {
3122                 /* From nonpaging to paging */
3123                 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3124                                             CPU_BASED_CR3_STORE_EXITING);
3125                 vcpu->arch.cr0 = cr0;
3126                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3127         }
3128
3129         if (!(cr0 & X86_CR0_WP))
3130                 *hw_cr0 &= ~X86_CR0_WP;
3131 }
3132
3133 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3134 {
3135         struct vcpu_vmx *vmx = to_vmx(vcpu);
3136         unsigned long hw_cr0;
3137
3138         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3139         if (is_unrestricted_guest(vcpu))
3140                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3141         else {
3142                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3143
3144                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3145                         enter_pmode(vcpu);
3146
3147                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3148                         enter_rmode(vcpu);
3149         }
3150
3151 #ifdef CONFIG_X86_64
3152         if (vcpu->arch.efer & EFER_LME) {
3153                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3154                         enter_lmode(vcpu);
3155                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3156                         exit_lmode(vcpu);
3157         }
3158 #endif
3159
3160         if (enable_ept && !is_unrestricted_guest(vcpu))
3161                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3162
3163         vmcs_writel(CR0_READ_SHADOW, cr0);
3164         vmcs_writel(GUEST_CR0, hw_cr0);
3165         vcpu->arch.cr0 = cr0;
3166         kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3167
3168         /* depends on vcpu->arch.cr0 to be set to a new value */
3169         vmx->emulation_required = emulation_required(vcpu);
3170 }
3171
3172 static int vmx_get_max_tdp_level(void)
3173 {
3174         if (cpu_has_vmx_ept_5levels())
3175                 return 5;
3176         return 4;
3177 }
3178
3179 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3180 {
3181         u64 eptp = VMX_EPTP_MT_WB;
3182
3183         eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3184
3185         if (enable_ept_ad_bits &&
3186             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3187                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3188         eptp |= root_hpa;
3189
3190         return eptp;
3191 }
3192
3193 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3194                              int root_level)
3195 {
3196         struct kvm *kvm = vcpu->kvm;
3197         bool update_guest_cr3 = true;
3198         unsigned long guest_cr3;
3199         u64 eptp;
3200
3201         if (enable_ept) {
3202                 eptp = construct_eptp(vcpu, root_hpa, root_level);
3203                 vmcs_write64(EPT_POINTER, eptp);
3204
3205                 hv_track_root_ept(vcpu, root_hpa);
3206
3207                 if (!enable_unrestricted_guest && !is_paging(vcpu))
3208                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3209                 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3210                         guest_cr3 = vcpu->arch.cr3;
3211                 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3212                         update_guest_cr3 = false;
3213                 vmx_ept_load_pdptrs(vcpu);
3214         } else {
3215                 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3216         }
3217
3218         if (update_guest_cr3)
3219                 vmcs_writel(GUEST_CR3, guest_cr3);
3220 }
3221
3222 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3223 {
3224         /*
3225          * We operate under the default treatment of SMM, so VMX cannot be
3226          * enabled under SMM.  Note, whether or not VMXE is allowed at all is
3227          * handled by kvm_is_valid_cr4().
3228          */
3229         if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3230                 return false;
3231
3232         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3233                 return false;
3234
3235         return true;
3236 }
3237
3238 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3239 {
3240         unsigned long old_cr4 = vcpu->arch.cr4;
3241         struct vcpu_vmx *vmx = to_vmx(vcpu);
3242         /*
3243          * Pass through host's Machine Check Enable value to hw_cr4, which
3244          * is in force while we are in guest mode.  Do not let guests control
3245          * this bit, even if host CR4.MCE == 0.
3246          */
3247         unsigned long hw_cr4;
3248
3249         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3250         if (is_unrestricted_guest(vcpu))
3251                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3252         else if (vmx->rmode.vm86_active)
3253                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3254         else
3255                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3256
3257         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3258                 if (cr4 & X86_CR4_UMIP) {
3259                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3260                         hw_cr4 &= ~X86_CR4_UMIP;
3261                 } else if (!is_guest_mode(vcpu) ||
3262                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3263                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3264                 }
3265         }
3266
3267         vcpu->arch.cr4 = cr4;
3268         kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3269
3270         if (!is_unrestricted_guest(vcpu)) {
3271                 if (enable_ept) {
3272                         if (!is_paging(vcpu)) {
3273                                 hw_cr4 &= ~X86_CR4_PAE;
3274                                 hw_cr4 |= X86_CR4_PSE;
3275                         } else if (!(cr4 & X86_CR4_PAE)) {
3276                                 hw_cr4 &= ~X86_CR4_PAE;
3277                         }
3278                 }
3279
3280                 /*
3281                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3282                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3283                  * to be manually disabled when guest switches to non-paging
3284                  * mode.
3285                  *
3286                  * If !enable_unrestricted_guest, the CPU is always running
3287                  * with CR0.PG=1 and CR4 needs to be modified.
3288                  * If enable_unrestricted_guest, the CPU automatically
3289                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3290                  */
3291                 if (!is_paging(vcpu))
3292                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3293         }
3294
3295         vmcs_writel(CR4_READ_SHADOW, cr4);
3296         vmcs_writel(GUEST_CR4, hw_cr4);
3297
3298         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3299                 kvm_update_cpuid_runtime(vcpu);
3300 }
3301
3302 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3303 {
3304         struct vcpu_vmx *vmx = to_vmx(vcpu);
3305         u32 ar;
3306
3307         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3308                 *var = vmx->rmode.segs[seg];
3309                 if (seg == VCPU_SREG_TR
3310                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3311                         return;
3312                 var->base = vmx_read_guest_seg_base(vmx, seg);
3313                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3314                 return;
3315         }
3316         var->base = vmx_read_guest_seg_base(vmx, seg);
3317         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3318         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3319         ar = vmx_read_guest_seg_ar(vmx, seg);
3320         var->unusable = (ar >> 16) & 1;
3321         var->type = ar & 15;
3322         var->s = (ar >> 4) & 1;
3323         var->dpl = (ar >> 5) & 3;
3324         /*
3325          * Some userspaces do not preserve unusable property. Since usable
3326          * segment has to be present according to VMX spec we can use present
3327          * property to amend userspace bug by making unusable segment always
3328          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3329          * segment as unusable.
3330          */
3331         var->present = !var->unusable;
3332         var->avl = (ar >> 12) & 1;
3333         var->l = (ar >> 13) & 1;
3334         var->db = (ar >> 14) & 1;
3335         var->g = (ar >> 15) & 1;
3336 }
3337
3338 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3339 {
3340         struct kvm_segment s;
3341
3342         if (to_vmx(vcpu)->rmode.vm86_active) {
3343                 vmx_get_segment(vcpu, &s, seg);
3344                 return s.base;
3345         }
3346         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3347 }
3348
3349 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3350 {
3351         struct vcpu_vmx *vmx = to_vmx(vcpu);
3352
3353         if (unlikely(vmx->rmode.vm86_active))
3354                 return 0;
3355         else {
3356                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3357                 return VMX_AR_DPL(ar);
3358         }
3359 }
3360
3361 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3362 {
3363         u32 ar;
3364
3365         if (var->unusable || !var->present)
3366                 ar = 1 << 16;
3367         else {
3368                 ar = var->type & 15;
3369                 ar |= (var->s & 1) << 4;
3370                 ar |= (var->dpl & 3) << 5;
3371                 ar |= (var->present & 1) << 7;
3372                 ar |= (var->avl & 1) << 12;
3373                 ar |= (var->l & 1) << 13;
3374                 ar |= (var->db & 1) << 14;
3375                 ar |= (var->g & 1) << 15;
3376         }
3377
3378         return ar;
3379 }
3380
3381 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3382 {
3383         struct vcpu_vmx *vmx = to_vmx(vcpu);
3384         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3385
3386         vmx_segment_cache_clear(vmx);
3387
3388         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3389                 vmx->rmode.segs[seg] = *var;
3390                 if (seg == VCPU_SREG_TR)
3391                         vmcs_write16(sf->selector, var->selector);
3392                 else if (var->s)
3393                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3394                 goto out;
3395         }
3396
3397         vmcs_writel(sf->base, var->base);
3398         vmcs_write32(sf->limit, var->limit);
3399         vmcs_write16(sf->selector, var->selector);
3400
3401         /*
3402          *   Fix the "Accessed" bit in AR field of segment registers for older
3403          * qemu binaries.
3404          *   IA32 arch specifies that at the time of processor reset the
3405          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3406          * is setting it to 0 in the userland code. This causes invalid guest
3407          * state vmexit when "unrestricted guest" mode is turned on.
3408          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3409          * tree. Newer qemu binaries with that qemu fix would not need this
3410          * kvm hack.
3411          */
3412         if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3413                 var->type |= 0x1; /* Accessed */
3414
3415         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3416
3417 out:
3418         vmx->emulation_required = emulation_required(vcpu);
3419 }
3420
3421 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3422 {
3423         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3424
3425         *db = (ar >> 14) & 1;
3426         *l = (ar >> 13) & 1;
3427 }
3428
3429 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3430 {
3431         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3432         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3433 }
3434
3435 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3436 {
3437         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3438         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3439 }
3440
3441 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3442 {
3443         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3444         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3445 }
3446
3447 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3448 {
3449         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3450         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3451 }
3452
3453 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3454 {
3455         struct kvm_segment var;
3456         u32 ar;
3457
3458         vmx_get_segment(vcpu, &var, seg);
3459         var.dpl = 0x3;
3460         if (seg == VCPU_SREG_CS)
3461                 var.type = 0x3;
3462         ar = vmx_segment_access_rights(&var);
3463
3464         if (var.base != (var.selector << 4))
3465                 return false;
3466         if (var.limit != 0xffff)
3467                 return false;
3468         if (ar != 0xf3)
3469                 return false;
3470
3471         return true;
3472 }
3473
3474 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3475 {
3476         struct kvm_segment cs;
3477         unsigned int cs_rpl;
3478
3479         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3480         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3481
3482         if (cs.unusable)
3483                 return false;
3484         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3485                 return false;
3486         if (!cs.s)
3487                 return false;
3488         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3489                 if (cs.dpl > cs_rpl)
3490                         return false;
3491         } else {
3492                 if (cs.dpl != cs_rpl)
3493                         return false;
3494         }
3495         if (!cs.present)
3496                 return false;
3497
3498         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3499         return true;
3500 }
3501
3502 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3503 {
3504         struct kvm_segment ss;
3505         unsigned int ss_rpl;
3506
3507         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3508         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3509
3510         if (ss.unusable)
3511                 return true;
3512         if (ss.type != 3 && ss.type != 7)
3513                 return false;
3514         if (!ss.s)
3515                 return false;
3516         if (ss.dpl != ss_rpl) /* DPL != RPL */
3517                 return false;
3518         if (!ss.present)
3519                 return false;
3520
3521         return true;
3522 }
3523
3524 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3525 {
3526         struct kvm_segment var;
3527         unsigned int rpl;
3528
3529         vmx_get_segment(vcpu, &var, seg);
3530         rpl = var.selector & SEGMENT_RPL_MASK;
3531
3532         if (var.unusable)
3533                 return true;
3534         if (!var.s)
3535                 return false;
3536         if (!var.present)
3537                 return false;
3538         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3539                 if (var.dpl < rpl) /* DPL < RPL */
3540                         return false;
3541         }
3542
3543         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3544          * rights flags
3545          */
3546         return true;
3547 }
3548
3549 static bool tr_valid(struct kvm_vcpu *vcpu)
3550 {
3551         struct kvm_segment tr;
3552
3553         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3554
3555         if (tr.unusable)
3556                 return false;
3557         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3558                 return false;
3559         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3560                 return false;
3561         if (!tr.present)
3562                 return false;
3563
3564         return true;
3565 }
3566
3567 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3568 {
3569         struct kvm_segment ldtr;
3570
3571         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3572
3573         if (ldtr.unusable)
3574                 return true;
3575         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3576                 return false;
3577         if (ldtr.type != 2)
3578                 return false;
3579         if (!ldtr.present)
3580                 return false;
3581
3582         return true;
3583 }
3584
3585 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3586 {
3587         struct kvm_segment cs, ss;
3588
3589         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3590         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3591
3592         return ((cs.selector & SEGMENT_RPL_MASK) ==
3593                  (ss.selector & SEGMENT_RPL_MASK));
3594 }
3595
3596 /*
3597  * Check if guest state is valid. Returns true if valid, false if
3598  * not.
3599  * We assume that registers are always usable
3600  */
3601 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3602 {
3603         /* real mode guest state checks */
3604         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3605                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3606                         return false;
3607                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3608                         return false;
3609                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3610                         return false;
3611                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3612                         return false;
3613                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3614                         return false;
3615                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3616                         return false;
3617         } else {
3618         /* protected mode guest state checks */
3619                 if (!cs_ss_rpl_check(vcpu))
3620                         return false;
3621                 if (!code_segment_valid(vcpu))
3622                         return false;
3623                 if (!stack_segment_valid(vcpu))
3624                         return false;
3625                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3626                         return false;
3627                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3628                         return false;
3629                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3630                         return false;
3631                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3632                         return false;
3633                 if (!tr_valid(vcpu))
3634                         return false;
3635                 if (!ldtr_valid(vcpu))
3636                         return false;
3637         }
3638         /* TODO:
3639          * - Add checks on RIP
3640          * - Add checks on RFLAGS
3641          */
3642
3643         return true;
3644 }
3645
3646 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3647 {
3648         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3649         u16 data;
3650         int i;
3651
3652         for (i = 0; i < 3; i++) {
3653                 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3654                         return -EFAULT;
3655         }
3656
3657         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3658         if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3659                 return -EFAULT;
3660
3661         data = ~0;
3662         if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3663                 return -EFAULT;
3664
3665         return 0;
3666 }
3667
3668 static int init_rmode_identity_map(struct kvm *kvm)
3669 {
3670         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3671         int i, r = 0;
3672         void __user *uaddr;
3673         u32 tmp;
3674
3675         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3676         mutex_lock(&kvm->slots_lock);
3677
3678         if (likely(kvm_vmx->ept_identity_pagetable_done))
3679                 goto out;
3680
3681         if (!kvm_vmx->ept_identity_map_addr)
3682                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3683
3684         uaddr = __x86_set_memory_region(kvm,
3685                                         IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3686                                         kvm_vmx->ept_identity_map_addr,
3687                                         PAGE_SIZE);
3688         if (IS_ERR(uaddr)) {
3689                 r = PTR_ERR(uaddr);
3690                 goto out;
3691         }
3692
3693         /* Set up identity-mapping pagetable for EPT in real mode */
3694         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3695                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3696                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3697                 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3698                         r = -EFAULT;
3699                         goto out;
3700                 }
3701         }
3702         kvm_vmx->ept_identity_pagetable_done = true;
3703
3704 out:
3705         mutex_unlock(&kvm->slots_lock);
3706         return r;
3707 }
3708
3709 static void seg_setup(int seg)
3710 {
3711         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3712         unsigned int ar;
3713
3714         vmcs_write16(sf->selector, 0);
3715         vmcs_writel(sf->base, 0);
3716         vmcs_write32(sf->limit, 0xffff);
3717         ar = 0x93;
3718         if (seg == VCPU_SREG_CS)
3719                 ar |= 0x08; /* code segment */
3720
3721         vmcs_write32(sf->ar_bytes, ar);
3722 }
3723
3724 static int alloc_apic_access_page(struct kvm *kvm)
3725 {
3726         struct page *page;
3727         void __user *hva;
3728         int ret = 0;
3729
3730         mutex_lock(&kvm->slots_lock);
3731         if (kvm->arch.apic_access_page_done)
3732                 goto out;
3733         hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3734                                       APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3735         if (IS_ERR(hva)) {
3736                 ret = PTR_ERR(hva);
3737                 goto out;
3738         }
3739
3740         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3741         if (is_error_page(page)) {
3742                 ret = -EFAULT;
3743                 goto out;
3744         }
3745
3746         /*
3747          * Do not pin the page in memory, so that memory hot-unplug
3748          * is able to migrate it.
3749          */
3750         put_page(page);
3751         kvm->arch.apic_access_page_done = true;
3752 out:
3753         mutex_unlock(&kvm->slots_lock);
3754         return ret;
3755 }
3756
3757 int allocate_vpid(void)
3758 {
3759         int vpid;
3760
3761         if (!enable_vpid)
3762                 return 0;
3763         spin_lock(&vmx_vpid_lock);
3764         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3765         if (vpid < VMX_NR_VPIDS)
3766                 __set_bit(vpid, vmx_vpid_bitmap);
3767         else
3768                 vpid = 0;
3769         spin_unlock(&vmx_vpid_lock);
3770         return vpid;
3771 }
3772
3773 void free_vpid(int vpid)
3774 {
3775         if (!enable_vpid || vpid == 0)
3776                 return;
3777         spin_lock(&vmx_vpid_lock);
3778         __clear_bit(vpid, vmx_vpid_bitmap);
3779         spin_unlock(&vmx_vpid_lock);
3780 }
3781
3782 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3783 {
3784         int f = sizeof(unsigned long);
3785
3786         if (msr <= 0x1fff)
3787                 __clear_bit(msr, msr_bitmap + 0x000 / f);
3788         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3789                 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3790 }
3791
3792 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3793 {
3794         int f = sizeof(unsigned long);
3795
3796         if (msr <= 0x1fff)
3797                 __clear_bit(msr, msr_bitmap + 0x800 / f);
3798         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3799                 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3800 }
3801
3802 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3803 {
3804         int f = sizeof(unsigned long);
3805
3806         if (msr <= 0x1fff)
3807                 __set_bit(msr, msr_bitmap + 0x000 / f);
3808         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3809                 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3810 }
3811
3812 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3813 {
3814         int f = sizeof(unsigned long);
3815
3816         if (msr <= 0x1fff)
3817                 __set_bit(msr, msr_bitmap + 0x800 / f);
3818         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3819                 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3820 }
3821
3822 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3823 {
3824         struct vcpu_vmx *vmx = to_vmx(vcpu);
3825         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3826
3827         if (!cpu_has_vmx_msr_bitmap())
3828                 return;
3829
3830         if (static_branch_unlikely(&enable_evmcs))
3831                 evmcs_touch_msr_bitmap();
3832
3833         /*
3834          * Mark the desired intercept state in shadow bitmap, this is needed
3835          * for resync when the MSR filters change.
3836         */
3837         if (is_valid_passthrough_msr(msr)) {
3838                 int idx = possible_passthrough_msr_slot(msr);
3839
3840                 if (idx != -ENOENT) {
3841                         if (type & MSR_TYPE_R)
3842                                 clear_bit(idx, vmx->shadow_msr_intercept.read);
3843                         if (type & MSR_TYPE_W)
3844                                 clear_bit(idx, vmx->shadow_msr_intercept.write);
3845                 }
3846         }
3847
3848         if ((type & MSR_TYPE_R) &&
3849             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3850                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3851                 type &= ~MSR_TYPE_R;
3852         }
3853
3854         if ((type & MSR_TYPE_W) &&
3855             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3856                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3857                 type &= ~MSR_TYPE_W;
3858         }
3859
3860         if (type & MSR_TYPE_R)
3861                 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3862
3863         if (type & MSR_TYPE_W)
3864                 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3865 }
3866
3867 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3868 {
3869         struct vcpu_vmx *vmx = to_vmx(vcpu);
3870         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3871
3872         if (!cpu_has_vmx_msr_bitmap())
3873                 return;
3874
3875         if (static_branch_unlikely(&enable_evmcs))
3876                 evmcs_touch_msr_bitmap();
3877
3878         /*
3879          * Mark the desired intercept state in shadow bitmap, this is needed
3880          * for resync when the MSR filter changes.
3881         */
3882         if (is_valid_passthrough_msr(msr)) {
3883                 int idx = possible_passthrough_msr_slot(msr);
3884
3885                 if (idx != -ENOENT) {
3886                         if (type & MSR_TYPE_R)
3887                                 set_bit(idx, vmx->shadow_msr_intercept.read);
3888                         if (type & MSR_TYPE_W)
3889                                 set_bit(idx, vmx->shadow_msr_intercept.write);
3890                 }
3891         }
3892
3893         if (type & MSR_TYPE_R)
3894                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3895
3896         if (type & MSR_TYPE_W)
3897                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3898 }
3899
3900 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3901 {
3902         u8 mode = 0;
3903
3904         if (cpu_has_secondary_exec_ctrls() &&
3905             (secondary_exec_controls_get(to_vmx(vcpu)) &
3906              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3907                 mode |= MSR_BITMAP_MODE_X2APIC;
3908                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3909                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3910         }
3911
3912         return mode;
3913 }
3914
3915 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3916 {
3917         unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3918         unsigned long read_intercept;
3919         int msr;
3920
3921         read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3922
3923         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3924                 unsigned int read_idx = msr / BITS_PER_LONG;
3925                 unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3926
3927                 msr_bitmap[read_idx] = read_intercept;
3928                 msr_bitmap[write_idx] = ~0ul;
3929         }
3930 }
3931
3932 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode)
3933 {
3934         if (!cpu_has_vmx_msr_bitmap())
3935                 return;
3936
3937         vmx_reset_x2apic_msrs(vcpu, mode);
3938
3939         /*
3940          * TPR reads and writes can be virtualized even if virtual interrupt
3941          * delivery is not in use.
3942          */
3943         vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3944                                   !(mode & MSR_BITMAP_MODE_X2APIC));
3945
3946         if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3947                 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3948                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3949                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3950         }
3951 }
3952
3953 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3954 {
3955         struct vcpu_vmx *vmx = to_vmx(vcpu);
3956         u8 mode = vmx_msr_bitmap_mode(vcpu);
3957         u8 changed = mode ^ vmx->msr_bitmap_mode;
3958
3959         if (!changed)
3960                 return;
3961
3962         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3963                 vmx_update_msr_bitmap_x2apic(vcpu, mode);
3964
3965         vmx->msr_bitmap_mode = mode;
3966 }
3967
3968 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3969 {
3970         struct vcpu_vmx *vmx = to_vmx(vcpu);
3971         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3972         u32 i;
3973
3974         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3975         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3976         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3977         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3978         for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3979                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3980                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3981         }
3982 }
3983
3984 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3985 {
3986         struct vcpu_vmx *vmx = to_vmx(vcpu);
3987         void *vapic_page;
3988         u32 vppr;
3989         int rvi;
3990
3991         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3992                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3993                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3994                 return false;
3995
3996         rvi = vmx_get_rvi();
3997
3998         vapic_page = vmx->nested.virtual_apic_map.hva;
3999         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4000
4001         return ((rvi & 0xf0) > (vppr & 0xf0));
4002 }
4003
4004 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4005 {
4006         struct vcpu_vmx *vmx = to_vmx(vcpu);
4007         u32 i;
4008
4009         /*
4010          * Set intercept permissions for all potentially passed through MSRs
4011          * again. They will automatically get filtered through the MSR filter,
4012          * so we are back in sync after this.
4013          */
4014         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4015                 u32 msr = vmx_possible_passthrough_msrs[i];
4016                 bool read = test_bit(i, vmx->shadow_msr_intercept.read);
4017                 bool write = test_bit(i, vmx->shadow_msr_intercept.write);
4018
4019                 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
4020                 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
4021         }
4022
4023         pt_update_intercept_for_msr(vcpu);
4024         vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu));
4025 }
4026
4027 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4028                                                      bool nested)
4029 {
4030 #ifdef CONFIG_SMP
4031         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
4032
4033         if (vcpu->mode == IN_GUEST_MODE) {
4034                 /*
4035                  * The vector of interrupt to be delivered to vcpu had
4036                  * been set in PIR before this function.
4037                  *
4038                  * Following cases will be reached in this block, and
4039                  * we always send a notification event in all cases as
4040                  * explained below.
4041                  *
4042                  * Case 1: vcpu keeps in non-root mode. Sending a
4043                  * notification event posts the interrupt to vcpu.
4044                  *
4045                  * Case 2: vcpu exits to root mode and is still
4046                  * runnable. PIR will be synced to vIRR before the
4047                  * next vcpu entry. Sending a notification event in
4048                  * this case has no effect, as vcpu is not in root
4049                  * mode.
4050                  *
4051                  * Case 3: vcpu exits to root mode and is blocked.
4052                  * vcpu_block() has already synced PIR to vIRR and
4053                  * never blocks vcpu if vIRR is not cleared. Therefore,
4054                  * a blocked vcpu here does not wait for any requested
4055                  * interrupts in PIR, and sending a notification event
4056                  * which has no effect is safe here.
4057                  */
4058
4059                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4060                 return true;
4061         }
4062 #endif
4063         return false;
4064 }
4065
4066 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4067                                                 int vector)
4068 {
4069         struct vcpu_vmx *vmx = to_vmx(vcpu);
4070
4071         if (is_guest_mode(vcpu) &&
4072             vector == vmx->nested.posted_intr_nv) {
4073                 /*
4074                  * If a posted intr is not recognized by hardware,
4075                  * we will accomplish it in the next vmentry.
4076                  */
4077                 vmx->nested.pi_pending = true;
4078                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4079                 /* the PIR and ON have been set by L1. */
4080                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
4081                         kvm_vcpu_kick(vcpu);
4082                 return 0;
4083         }
4084         return -1;
4085 }
4086 /*
4087  * Send interrupt to vcpu via posted interrupt way.
4088  * 1. If target vcpu is running(non-root mode), send posted interrupt
4089  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4090  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4091  * interrupt from PIR in next vmentry.
4092  */
4093 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4094 {
4095         struct vcpu_vmx *vmx = to_vmx(vcpu);
4096         int r;
4097
4098         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4099         if (!r)
4100                 return 0;
4101
4102         if (!vcpu->arch.apicv_active)
4103                 return -1;
4104
4105         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4106                 return 0;
4107
4108         /* If a previous notification has sent the IPI, nothing to do.  */
4109         if (pi_test_and_set_on(&vmx->pi_desc))
4110                 return 0;
4111
4112         if (vcpu != kvm_get_running_vcpu() &&
4113             !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4114                 kvm_vcpu_kick(vcpu);
4115
4116         return 0;
4117 }
4118
4119 /*
4120  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4121  * will not change in the lifetime of the guest.
4122  * Note that host-state that does change is set elsewhere. E.g., host-state
4123  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4124  */
4125 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4126 {
4127         u32 low32, high32;
4128         unsigned long tmpl;
4129         unsigned long cr0, cr3, cr4;
4130
4131         cr0 = read_cr0();
4132         WARN_ON(cr0 & X86_CR0_TS);
4133         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4134
4135         /*
4136          * Save the most likely value for this task's CR3 in the VMCS.
4137          * We can't use __get_current_cr3_fast() because we're not atomic.
4138          */
4139         cr3 = __read_cr3();
4140         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
4141         vmx->loaded_vmcs->host_state.cr3 = cr3;
4142
4143         /* Save the most likely value for this task's CR4 in the VMCS. */
4144         cr4 = cr4_read_shadow();
4145         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4146         vmx->loaded_vmcs->host_state.cr4 = cr4;
4147
4148         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4149 #ifdef CONFIG_X86_64
4150         /*
4151          * Load null selectors, so we can avoid reloading them in
4152          * vmx_prepare_switch_to_host(), in case userspace uses
4153          * the null selectors too (the expected case).
4154          */
4155         vmcs_write16(HOST_DS_SELECTOR, 0);
4156         vmcs_write16(HOST_ES_SELECTOR, 0);
4157 #else
4158         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4159         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4160 #endif
4161         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4162         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4163
4164         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4165
4166         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4167
4168         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4169         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4170         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4171         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4172
4173         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4174                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4175                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4176         }
4177
4178         if (cpu_has_load_ia32_efer())
4179                 vmcs_write64(HOST_IA32_EFER, host_efer);
4180 }
4181
4182 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4183 {
4184         struct kvm_vcpu *vcpu = &vmx->vcpu;
4185
4186         vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4187                                           ~vcpu->arch.cr4_guest_rsvd_bits;
4188         if (!enable_ept)
4189                 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4190         if (is_guest_mode(&vmx->vcpu))
4191                 vcpu->arch.cr4_guest_owned_bits &=
4192                         ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4193         vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4194 }
4195
4196 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4197 {
4198         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4199
4200         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4201                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4202
4203         if (!enable_vnmi)
4204                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4205
4206         if (!enable_preemption_timer)
4207                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4208
4209         return pin_based_exec_ctrl;
4210 }
4211
4212 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4213 {
4214         struct vcpu_vmx *vmx = to_vmx(vcpu);
4215
4216         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4217         if (cpu_has_secondary_exec_ctrls()) {
4218                 if (kvm_vcpu_apicv_active(vcpu))
4219                         secondary_exec_controls_setbit(vmx,
4220                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4221                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4222                 else
4223                         secondary_exec_controls_clearbit(vmx,
4224                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
4225                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4226         }
4227
4228         if (cpu_has_vmx_msr_bitmap())
4229                 vmx_update_msr_bitmap(vcpu);
4230 }
4231
4232 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4233 {
4234         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4235
4236         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4237                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4238
4239         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4240                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4241 #ifdef CONFIG_X86_64
4242                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4243                                 CPU_BASED_CR8_LOAD_EXITING;
4244 #endif
4245         }
4246         if (!enable_ept)
4247                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4248                                 CPU_BASED_CR3_LOAD_EXITING  |
4249                                 CPU_BASED_INVLPG_EXITING;
4250         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4251                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4252                                 CPU_BASED_MONITOR_EXITING);
4253         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4254                 exec_control &= ~CPU_BASED_HLT_EXITING;
4255         return exec_control;
4256 }
4257
4258 /*
4259  * Adjust a single secondary execution control bit to intercept/allow an
4260  * instruction in the guest.  This is usually done based on whether or not a
4261  * feature has been exposed to the guest in order to correctly emulate faults.
4262  */
4263 static inline void
4264 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4265                                   u32 control, bool enabled, bool exiting)
4266 {
4267         /*
4268          * If the control is for an opt-in feature, clear the control if the
4269          * feature is not exposed to the guest, i.e. not enabled.  If the
4270          * control is opt-out, i.e. an exiting control, clear the control if
4271          * the feature _is_ exposed to the guest, i.e. exiting/interception is
4272          * disabled for the associated instruction.  Note, the caller is
4273          * responsible presetting exec_control to set all supported bits.
4274          */
4275         if (enabled == exiting)
4276                 *exec_control &= ~control;
4277
4278         /*
4279          * Update the nested MSR settings so that a nested VMM can/can't set
4280          * controls for features that are/aren't exposed to the guest.
4281          */
4282         if (nested) {
4283                 if (enabled)
4284                         vmx->nested.msrs.secondary_ctls_high |= control;
4285                 else
4286                         vmx->nested.msrs.secondary_ctls_high &= ~control;
4287         }
4288 }
4289
4290 /*
4291  * Wrapper macro for the common case of adjusting a secondary execution control
4292  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4293  * verifies that the control is actually supported by KVM and hardware.
4294  */
4295 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4296 ({                                                                       \
4297         bool __enabled;                                                  \
4298                                                                          \
4299         if (cpu_has_vmx_##name()) {                                      \
4300                 __enabled = guest_cpuid_has(&(vmx)->vcpu,                \
4301                                             X86_FEATURE_##feat_name);    \
4302                 vmx_adjust_secondary_exec_control(vmx, exec_control,     \
4303                         SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4304         }                                                                \
4305 })
4306
4307 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4308 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4309         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4310
4311 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4312         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4313
4314 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4315 {
4316         struct kvm_vcpu *vcpu = &vmx->vcpu;
4317
4318         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4319
4320         if (vmx_pt_mode_is_system())
4321                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4322         if (!cpu_need_virtualize_apic_accesses(vcpu))
4323                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4324         if (vmx->vpid == 0)
4325                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4326         if (!enable_ept) {
4327                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4328                 enable_unrestricted_guest = 0;
4329         }
4330         if (!enable_unrestricted_guest)
4331                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4332         if (kvm_pause_in_guest(vmx->vcpu.kvm))
4333                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4334         if (!kvm_vcpu_apicv_active(vcpu))
4335                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4336                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4337         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4338
4339         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4340          * in vmx_set_cr4.  */
4341         exec_control &= ~SECONDARY_EXEC_DESC;
4342
4343         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4344            (handle_vmptrld).
4345            We can NOT enable shadow_vmcs here because we don't have yet
4346            a current VMCS12
4347         */
4348         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4349
4350         /*
4351          * PML is enabled/disabled when dirty logging of memsmlots changes, but
4352          * it needs to be set here when dirty logging is already active, e.g.
4353          * if this vCPU was created after dirty logging was enabled.
4354          */
4355         if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4356                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4357
4358         if (cpu_has_vmx_xsaves()) {
4359                 /* Exposing XSAVES only when XSAVE is exposed */
4360                 bool xsaves_enabled =
4361                         boot_cpu_has(X86_FEATURE_XSAVE) &&
4362                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4363                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4364
4365                 vcpu->arch.xsaves_enabled = xsaves_enabled;
4366
4367                 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4368                                                   SECONDARY_EXEC_XSAVES,
4369                                                   xsaves_enabled, false);
4370         }
4371
4372         vmx_adjust_sec_exec_feature(vmx, &exec_control, rdtscp, RDTSCP);
4373         vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4374
4375         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4376         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4377
4378         vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4379                                     ENABLE_USR_WAIT_PAUSE, false);
4380
4381         if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4382                 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4383
4384         vmx->secondary_exec_control = exec_control;
4385 }
4386
4387 #define VMX_XSS_EXIT_BITMAP 0
4388
4389 /*
4390  * Noting that the initialization of Guest-state Area of VMCS is in
4391  * vmx_vcpu_reset().
4392  */
4393 static void init_vmcs(struct vcpu_vmx *vmx)
4394 {
4395         if (nested)
4396                 nested_vmx_set_vmcs_shadowing_bitmap();
4397
4398         if (cpu_has_vmx_msr_bitmap())
4399                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4400
4401         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4402
4403         /* Control */
4404         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4405
4406         exec_controls_set(vmx, vmx_exec_control(vmx));
4407
4408         if (cpu_has_secondary_exec_ctrls()) {
4409                 vmx_compute_secondary_exec_control(vmx);
4410                 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4411         }
4412
4413         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4414                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4415                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4416                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4417                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4418
4419                 vmcs_write16(GUEST_INTR_STATUS, 0);
4420
4421                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4422                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4423         }
4424
4425         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4426                 vmcs_write32(PLE_GAP, ple_gap);
4427                 vmx->ple_window = ple_window;
4428                 vmx->ple_window_dirty = true;
4429         }
4430
4431         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4432         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4433         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4434
4435         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4436         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4437         vmx_set_constant_host_state(vmx);
4438         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4439         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4440
4441         if (cpu_has_vmx_vmfunc())
4442                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4443
4444         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4445         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4446         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4447         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4448         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4449
4450         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4451                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4452
4453         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4454
4455         /* 22.2.1, 20.8.1 */
4456         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4457
4458         vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4459         vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4460
4461         set_cr4_guest_host_mask(vmx);
4462
4463         if (vmx->vpid != 0)
4464                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4465
4466         if (cpu_has_vmx_xsaves())
4467                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4468
4469         if (enable_pml) {
4470                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4471                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4472         }
4473
4474         vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4475
4476         if (vmx_pt_mode_is_host_guest()) {
4477                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4478                 /* Bit[6~0] are forced to 1, writes are ignored. */
4479                 vmx->pt_desc.guest.output_mask = 0x7F;
4480                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4481         }
4482 }
4483
4484 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4485 {
4486         struct vcpu_vmx *vmx = to_vmx(vcpu);
4487         struct msr_data apic_base_msr;
4488         u64 cr0;
4489
4490         vmx->rmode.vm86_active = 0;
4491         vmx->spec_ctrl = 0;
4492
4493         vmx->msr_ia32_umwait_control = 0;
4494
4495         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4496         vmx->hv_deadline_tsc = -1;
4497         kvm_set_cr8(vcpu, 0);
4498
4499         if (!init_event) {
4500                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4501                                      MSR_IA32_APICBASE_ENABLE;
4502                 if (kvm_vcpu_is_reset_bsp(vcpu))
4503                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4504                 apic_base_msr.host_initiated = true;
4505                 kvm_set_apic_base(vcpu, &apic_base_msr);
4506         }
4507
4508         vmx_segment_cache_clear(vmx);
4509
4510         seg_setup(VCPU_SREG_CS);
4511         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4512         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4513
4514         seg_setup(VCPU_SREG_DS);
4515         seg_setup(VCPU_SREG_ES);
4516         seg_setup(VCPU_SREG_FS);
4517         seg_setup(VCPU_SREG_GS);
4518         seg_setup(VCPU_SREG_SS);
4519
4520         vmcs_write16(GUEST_TR_SELECTOR, 0);
4521         vmcs_writel(GUEST_TR_BASE, 0);
4522         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4523         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4524
4525         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4526         vmcs_writel(GUEST_LDTR_BASE, 0);
4527         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4528         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4529
4530         if (!init_event) {
4531                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4532                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4533                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4534                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4535         }
4536
4537         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4538         kvm_rip_write(vcpu, 0xfff0);
4539
4540         vmcs_writel(GUEST_GDTR_BASE, 0);
4541         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4542
4543         vmcs_writel(GUEST_IDTR_BASE, 0);
4544         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4545
4546         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4547         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4548         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4549         if (kvm_mpx_supported())
4550                 vmcs_write64(GUEST_BNDCFGS, 0);
4551
4552         setup_msrs(vmx);
4553
4554         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4555
4556         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4557                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4558                 if (cpu_need_tpr_shadow(vcpu))
4559                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4560                                      __pa(vcpu->arch.apic->regs));
4561                 vmcs_write32(TPR_THRESHOLD, 0);
4562         }
4563
4564         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4565
4566         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4567         vmx->vcpu.arch.cr0 = cr0;
4568         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4569         vmx_set_cr4(vcpu, 0);
4570         vmx_set_efer(vcpu, 0);
4571
4572         vmx_update_exception_bitmap(vcpu);
4573
4574         vpid_sync_context(vmx->vpid);
4575         if (init_event)
4576                 vmx_clear_hlt(vcpu);
4577 }
4578
4579 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4580 {
4581         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4582 }
4583
4584 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4585 {
4586         if (!enable_vnmi ||
4587             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4588                 vmx_enable_irq_window(vcpu);
4589                 return;
4590         }
4591
4592         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4593 }
4594
4595 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4596 {
4597         struct vcpu_vmx *vmx = to_vmx(vcpu);
4598         uint32_t intr;
4599         int irq = vcpu->arch.interrupt.nr;
4600
4601         trace_kvm_inj_virq(irq);
4602
4603         ++vcpu->stat.irq_injections;
4604         if (vmx->rmode.vm86_active) {
4605                 int inc_eip = 0;
4606                 if (vcpu->arch.interrupt.soft)
4607                         inc_eip = vcpu->arch.event_exit_inst_len;
4608                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4609                 return;
4610         }
4611         intr = irq | INTR_INFO_VALID_MASK;
4612         if (vcpu->arch.interrupt.soft) {
4613                 intr |= INTR_TYPE_SOFT_INTR;
4614                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4615                              vmx->vcpu.arch.event_exit_inst_len);
4616         } else
4617                 intr |= INTR_TYPE_EXT_INTR;
4618         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4619
4620         vmx_clear_hlt(vcpu);
4621 }
4622
4623 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4624 {
4625         struct vcpu_vmx *vmx = to_vmx(vcpu);
4626
4627         if (!enable_vnmi) {
4628                 /*
4629                  * Tracking the NMI-blocked state in software is built upon
4630                  * finding the next open IRQ window. This, in turn, depends on
4631                  * well-behaving guests: They have to keep IRQs disabled at
4632                  * least as long as the NMI handler runs. Otherwise we may
4633                  * cause NMI nesting, maybe breaking the guest. But as this is
4634                  * highly unlikely, we can live with the residual risk.
4635                  */
4636                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4637                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4638         }
4639
4640         ++vcpu->stat.nmi_injections;
4641         vmx->loaded_vmcs->nmi_known_unmasked = false;
4642
4643         if (vmx->rmode.vm86_active) {
4644                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4645                 return;
4646         }
4647
4648         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4649                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4650
4651         vmx_clear_hlt(vcpu);
4652 }
4653
4654 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4655 {
4656         struct vcpu_vmx *vmx = to_vmx(vcpu);
4657         bool masked;
4658
4659         if (!enable_vnmi)
4660                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4661         if (vmx->loaded_vmcs->nmi_known_unmasked)
4662                 return false;
4663         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4664         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4665         return masked;
4666 }
4667
4668 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4669 {
4670         struct vcpu_vmx *vmx = to_vmx(vcpu);
4671
4672         if (!enable_vnmi) {
4673                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4674                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4675                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4676                 }
4677         } else {
4678                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4679                 if (masked)
4680                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4681                                       GUEST_INTR_STATE_NMI);
4682                 else
4683                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4684                                         GUEST_INTR_STATE_NMI);
4685         }
4686 }
4687
4688 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4689 {
4690         if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4691                 return false;
4692
4693         if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4694                 return true;
4695
4696         return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4697                 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4698                  GUEST_INTR_STATE_NMI));
4699 }
4700
4701 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4702 {
4703         if (to_vmx(vcpu)->nested.nested_run_pending)
4704                 return -EBUSY;
4705
4706         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4707         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4708                 return -EBUSY;
4709
4710         return !vmx_nmi_blocked(vcpu);
4711 }
4712
4713 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4714 {
4715         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4716                 return false;
4717
4718         return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4719                (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4720                 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4721 }
4722
4723 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4724 {
4725         if (to_vmx(vcpu)->nested.nested_run_pending)
4726                 return -EBUSY;
4727
4728        /*
4729         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4730         * e.g. if the IRQ arrived asynchronously after checking nested events.
4731         */
4732         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4733                 return -EBUSY;
4734
4735         return !vmx_interrupt_blocked(vcpu);
4736 }
4737
4738 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4739 {
4740         void __user *ret;
4741
4742         if (enable_unrestricted_guest)
4743                 return 0;
4744
4745         mutex_lock(&kvm->slots_lock);
4746         ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4747                                       PAGE_SIZE * 3);
4748         mutex_unlock(&kvm->slots_lock);
4749
4750         if (IS_ERR(ret))
4751                 return PTR_ERR(ret);
4752
4753         to_kvm_vmx(kvm)->tss_addr = addr;
4754
4755         return init_rmode_tss(kvm, ret);
4756 }
4757
4758 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4759 {
4760         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4761         return 0;
4762 }
4763
4764 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4765 {
4766         switch (vec) {
4767         case BP_VECTOR:
4768                 /*
4769                  * Update instruction length as we may reinject the exception
4770                  * from user space while in guest debugging mode.
4771                  */
4772                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4773                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4774                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4775                         return false;
4776                 fallthrough;
4777         case DB_VECTOR:
4778                 return !(vcpu->guest_debug &
4779                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4780         case DE_VECTOR:
4781         case OF_VECTOR:
4782         case BR_VECTOR:
4783         case UD_VECTOR:
4784         case DF_VECTOR:
4785         case SS_VECTOR:
4786         case GP_VECTOR:
4787         case MF_VECTOR:
4788                 return true;
4789         }
4790         return false;
4791 }
4792
4793 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4794                                   int vec, u32 err_code)
4795 {
4796         /*
4797          * Instruction with address size override prefix opcode 0x67
4798          * Cause the #SS fault with 0 error code in VM86 mode.
4799          */
4800         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4801                 if (kvm_emulate_instruction(vcpu, 0)) {
4802                         if (vcpu->arch.halt_request) {
4803                                 vcpu->arch.halt_request = 0;
4804                                 return kvm_vcpu_halt(vcpu);
4805                         }
4806                         return 1;
4807                 }
4808                 return 0;
4809         }
4810
4811         /*
4812          * Forward all other exceptions that are valid in real mode.
4813          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4814          *        the required debugging infrastructure rework.
4815          */
4816         kvm_queue_exception(vcpu, vec);
4817         return 1;
4818 }
4819
4820 static int handle_machine_check(struct kvm_vcpu *vcpu)
4821 {
4822         /* handled by vmx_vcpu_run() */
4823         return 1;
4824 }
4825
4826 /*
4827  * If the host has split lock detection disabled, then #AC is
4828  * unconditionally injected into the guest, which is the pre split lock
4829  * detection behaviour.
4830  *
4831  * If the host has split lock detection enabled then #AC is
4832  * only injected into the guest when:
4833  *  - Guest CPL == 3 (user mode)
4834  *  - Guest has #AC detection enabled in CR0
4835  *  - Guest EFLAGS has AC bit set
4836  */
4837 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu)
4838 {
4839         if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4840                 return true;
4841
4842         return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4843                (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4844 }
4845
4846 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4847 {
4848         struct vcpu_vmx *vmx = to_vmx(vcpu);
4849         struct kvm_run *kvm_run = vcpu->run;
4850         u32 intr_info, ex_no, error_code;
4851         unsigned long cr2, rip, dr6;
4852         u32 vect_info;
4853
4854         vect_info = vmx->idt_vectoring_info;
4855         intr_info = vmx_get_intr_info(vcpu);
4856
4857         if (is_machine_check(intr_info) || is_nmi(intr_info))
4858                 return 1; /* handled by handle_exception_nmi_irqoff() */
4859
4860         if (is_invalid_opcode(intr_info))
4861                 return handle_ud(vcpu);
4862
4863         error_code = 0;
4864         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4865                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4866
4867         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4868                 WARN_ON_ONCE(!enable_vmware_backdoor);
4869
4870                 /*
4871                  * VMware backdoor emulation on #GP interception only handles
4872                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4873                  * error code on #GP.
4874                  */
4875                 if (error_code) {
4876                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4877                         return 1;
4878                 }
4879                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4880         }
4881
4882         /*
4883          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4884          * MMIO, it is better to report an internal error.
4885          * See the comments in vmx_handle_exit.
4886          */
4887         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4888             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4889                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4890                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4891                 vcpu->run->internal.ndata = 4;
4892                 vcpu->run->internal.data[0] = vect_info;
4893                 vcpu->run->internal.data[1] = intr_info;
4894                 vcpu->run->internal.data[2] = error_code;
4895                 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4896                 return 0;
4897         }
4898
4899         if (is_page_fault(intr_info)) {
4900                 cr2 = vmx_get_exit_qual(vcpu);
4901                 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4902                         /*
4903                          * EPT will cause page fault only if we need to
4904                          * detect illegal GPAs.
4905                          */
4906                         WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4907                         kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4908                         return 1;
4909                 } else
4910                         return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4911         }
4912
4913         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4914
4915         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4916                 return handle_rmode_exception(vcpu, ex_no, error_code);
4917
4918         switch (ex_no) {
4919         case DB_VECTOR:
4920                 dr6 = vmx_get_exit_qual(vcpu);
4921                 if (!(vcpu->guest_debug &
4922                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4923                         if (is_icebp(intr_info))
4924                                 WARN_ON(!skip_emulated_instruction(vcpu));
4925
4926                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4927                         return 1;
4928                 }
4929                 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
4930                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4931                 fallthrough;
4932         case BP_VECTOR:
4933                 /*
4934                  * Update instruction length as we may reinject #BP from
4935                  * user space while in guest debugging mode. Reading it for
4936                  * #DB as well causes no harm, it is not used in that case.
4937                  */
4938                 vmx->vcpu.arch.event_exit_inst_len =
4939                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4940                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4941                 rip = kvm_rip_read(vcpu);
4942                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4943                 kvm_run->debug.arch.exception = ex_no;
4944                 break;
4945         case AC_VECTOR:
4946                 if (guest_inject_ac(vcpu)) {
4947                         kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4948                         return 1;
4949                 }
4950
4951                 /*
4952                  * Handle split lock. Depending on detection mode this will
4953                  * either warn and disable split lock detection for this
4954                  * task or force SIGBUS on it.
4955                  */
4956                 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4957                         return 1;
4958                 fallthrough;
4959         default:
4960                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4961                 kvm_run->ex.exception = ex_no;
4962                 kvm_run->ex.error_code = error_code;
4963                 break;
4964         }
4965         return 0;
4966 }
4967
4968 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4969 {
4970         ++vcpu->stat.irq_exits;
4971         return 1;
4972 }
4973
4974 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4975 {
4976         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4977         vcpu->mmio_needed = 0;
4978         return 0;
4979 }
4980
4981 static int handle_io(struct kvm_vcpu *vcpu)
4982 {
4983         unsigned long exit_qualification;
4984         int size, in, string;
4985         unsigned port;
4986
4987         exit_qualification = vmx_get_exit_qual(vcpu);
4988         string = (exit_qualification & 16) != 0;
4989
4990         ++vcpu->stat.io_exits;
4991
4992         if (string)
4993                 return kvm_emulate_instruction(vcpu, 0);
4994
4995         port = exit_qualification >> 16;
4996         size = (exit_qualification & 7) + 1;
4997         in = (exit_qualification & 8) != 0;
4998
4999         return kvm_fast_pio(vcpu, size, port, in);
5000 }
5001
5002 static void
5003 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5004 {
5005         /*
5006          * Patch in the VMCALL instruction:
5007          */
5008         hypercall[0] = 0x0f;
5009         hypercall[1] = 0x01;
5010         hypercall[2] = 0xc1;
5011 }
5012
5013 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5014 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5015 {
5016         if (is_guest_mode(vcpu)) {
5017                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5018                 unsigned long orig_val = val;
5019
5020                 /*
5021                  * We get here when L2 changed cr0 in a way that did not change
5022                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5023                  * but did change L0 shadowed bits. So we first calculate the
5024                  * effective cr0 value that L1 would like to write into the
5025                  * hardware. It consists of the L2-owned bits from the new
5026                  * value combined with the L1-owned bits from L1's guest_cr0.
5027                  */
5028                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5029                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5030
5031                 if (!nested_guest_cr0_valid(vcpu, val))
5032                         return 1;
5033
5034                 if (kvm_set_cr0(vcpu, val))
5035                         return 1;
5036                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5037                 return 0;
5038         } else {
5039                 if (to_vmx(vcpu)->nested.vmxon &&
5040                     !nested_host_cr0_valid(vcpu, val))
5041                         return 1;
5042
5043                 return kvm_set_cr0(vcpu, val);
5044         }
5045 }
5046
5047 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5048 {
5049         if (is_guest_mode(vcpu)) {
5050                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5051                 unsigned long orig_val = val;
5052
5053                 /* analogously to handle_set_cr0 */
5054                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5055                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5056                 if (kvm_set_cr4(vcpu, val))
5057                         return 1;
5058                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5059                 return 0;
5060         } else
5061                 return kvm_set_cr4(vcpu, val);
5062 }
5063
5064 static int handle_desc(struct kvm_vcpu *vcpu)
5065 {
5066         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5067         return kvm_emulate_instruction(vcpu, 0);
5068 }
5069
5070 static int handle_cr(struct kvm_vcpu *vcpu)
5071 {
5072         unsigned long exit_qualification, val;
5073         int cr;
5074         int reg;
5075         int err;
5076         int ret;
5077
5078         exit_qualification = vmx_get_exit_qual(vcpu);
5079         cr = exit_qualification & 15;
5080         reg = (exit_qualification >> 8) & 15;
5081         switch ((exit_qualification >> 4) & 3) {
5082         case 0: /* mov to cr */
5083                 val = kvm_register_read(vcpu, reg);
5084                 trace_kvm_cr_write(cr, val);
5085                 switch (cr) {
5086                 case 0:
5087                         err = handle_set_cr0(vcpu, val);
5088                         return kvm_complete_insn_gp(vcpu, err);
5089                 case 3:
5090                         WARN_ON_ONCE(enable_unrestricted_guest);
5091                         err = kvm_set_cr3(vcpu, val);
5092                         return kvm_complete_insn_gp(vcpu, err);
5093                 case 4:
5094                         err = handle_set_cr4(vcpu, val);
5095                         return kvm_complete_insn_gp(vcpu, err);
5096                 case 8: {
5097                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5098                                 u8 cr8 = (u8)val;
5099                                 err = kvm_set_cr8(vcpu, cr8);
5100                                 ret = kvm_complete_insn_gp(vcpu, err);
5101                                 if (lapic_in_kernel(vcpu))
5102                                         return ret;
5103                                 if (cr8_prev <= cr8)
5104                                         return ret;
5105                                 /*
5106                                  * TODO: we might be squashing a
5107                                  * KVM_GUESTDBG_SINGLESTEP-triggered
5108                                  * KVM_EXIT_DEBUG here.
5109                                  */
5110                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5111                                 return 0;
5112                         }
5113                 }
5114                 break;
5115         case 2: /* clts */
5116                 WARN_ONCE(1, "Guest should always own CR0.TS");
5117                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5118                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5119                 return kvm_skip_emulated_instruction(vcpu);
5120         case 1: /*mov from cr*/
5121                 switch (cr) {
5122                 case 3:
5123                         WARN_ON_ONCE(enable_unrestricted_guest);
5124                         val = kvm_read_cr3(vcpu);
5125                         kvm_register_write(vcpu, reg, val);
5126                         trace_kvm_cr_read(cr, val);
5127                         return kvm_skip_emulated_instruction(vcpu);
5128                 case 8:
5129                         val = kvm_get_cr8(vcpu);
5130                         kvm_register_write(vcpu, reg, val);
5131                         trace_kvm_cr_read(cr, val);
5132                         return kvm_skip_emulated_instruction(vcpu);
5133                 }
5134                 break;
5135         case 3: /* lmsw */
5136                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5137                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5138                 kvm_lmsw(vcpu, val);
5139
5140                 return kvm_skip_emulated_instruction(vcpu);
5141         default:
5142                 break;
5143         }
5144         vcpu->run->exit_reason = 0;
5145         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5146                (int)(exit_qualification >> 4) & 3, cr);
5147         return 0;
5148 }
5149
5150 static int handle_dr(struct kvm_vcpu *vcpu)
5151 {
5152         unsigned long exit_qualification;
5153         int dr, dr7, reg;
5154         int err = 1;
5155
5156         exit_qualification = vmx_get_exit_qual(vcpu);
5157         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5158
5159         /* First, if DR does not exist, trigger UD */
5160         if (!kvm_require_dr(vcpu, dr))
5161                 return 1;
5162
5163         if (kvm_x86_ops.get_cpl(vcpu) > 0)
5164                 goto out;
5165
5166         dr7 = vmcs_readl(GUEST_DR7);
5167         if (dr7 & DR7_GD) {
5168                 /*
5169                  * As the vm-exit takes precedence over the debug trap, we
5170                  * need to emulate the latter, either for the host or the
5171                  * guest debugging itself.
5172                  */
5173                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5174                         vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5175                         vcpu->run->debug.arch.dr7 = dr7;
5176                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5177                         vcpu->run->debug.arch.exception = DB_VECTOR;
5178                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5179                         return 0;
5180                 } else {
5181                         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5182                         return 1;
5183                 }
5184         }
5185
5186         if (vcpu->guest_debug == 0) {
5187                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5188
5189                 /*
5190                  * No more DR vmexits; force a reload of the debug registers
5191                  * and reenter on this instruction.  The next vmexit will
5192                  * retrieve the full state of the debug registers.
5193                  */
5194                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5195                 return 1;
5196         }
5197
5198         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5199         if (exit_qualification & TYPE_MOV_FROM_DR) {
5200                 unsigned long val;
5201
5202                 kvm_get_dr(vcpu, dr, &val);
5203                 kvm_register_write(vcpu, reg, val);
5204                 err = 0;
5205         } else {
5206                 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5207         }
5208
5209 out:
5210         return kvm_complete_insn_gp(vcpu, err);
5211 }
5212
5213 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5214 {
5215         get_debugreg(vcpu->arch.db[0], 0);
5216         get_debugreg(vcpu->arch.db[1], 1);
5217         get_debugreg(vcpu->arch.db[2], 2);
5218         get_debugreg(vcpu->arch.db[3], 3);
5219         get_debugreg(vcpu->arch.dr6, 6);
5220         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5221
5222         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5223         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5224 }
5225
5226 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5227 {
5228         vmcs_writel(GUEST_DR7, val);
5229 }
5230
5231 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5232 {
5233         kvm_apic_update_ppr(vcpu);
5234         return 1;
5235 }
5236
5237 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5238 {
5239         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5240
5241         kvm_make_request(KVM_REQ_EVENT, vcpu);
5242
5243         ++vcpu->stat.irq_window_exits;
5244         return 1;
5245 }
5246
5247 static int handle_invlpg(struct kvm_vcpu *vcpu)
5248 {
5249         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5250
5251         kvm_mmu_invlpg(vcpu, exit_qualification);
5252         return kvm_skip_emulated_instruction(vcpu);
5253 }
5254
5255 static int handle_apic_access(struct kvm_vcpu *vcpu)
5256 {
5257         if (likely(fasteoi)) {
5258                 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5259                 int access_type, offset;
5260
5261                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5262                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5263                 /*
5264                  * Sane guest uses MOV to write EOI, with written value
5265                  * not cared. So make a short-circuit here by avoiding
5266                  * heavy instruction emulation.
5267                  */
5268                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5269                     (offset == APIC_EOI)) {
5270                         kvm_lapic_set_eoi(vcpu);
5271                         return kvm_skip_emulated_instruction(vcpu);
5272                 }
5273         }
5274         return kvm_emulate_instruction(vcpu, 0);
5275 }
5276
5277 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5278 {
5279         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5280         int vector = exit_qualification & 0xff;
5281
5282         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5283         kvm_apic_set_eoi_accelerated(vcpu, vector);
5284         return 1;
5285 }
5286
5287 static int handle_apic_write(struct kvm_vcpu *vcpu)
5288 {
5289         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5290         u32 offset = exit_qualification & 0xfff;
5291
5292         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5293         kvm_apic_write_nodecode(vcpu, offset);
5294         return 1;
5295 }
5296
5297 static int handle_task_switch(struct kvm_vcpu *vcpu)
5298 {
5299         struct vcpu_vmx *vmx = to_vmx(vcpu);
5300         unsigned long exit_qualification;
5301         bool has_error_code = false;
5302         u32 error_code = 0;
5303         u16 tss_selector;
5304         int reason, type, idt_v, idt_index;
5305
5306         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5307         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5308         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5309
5310         exit_qualification = vmx_get_exit_qual(vcpu);
5311
5312         reason = (u32)exit_qualification >> 30;
5313         if (reason == TASK_SWITCH_GATE && idt_v) {
5314                 switch (type) {
5315                 case INTR_TYPE_NMI_INTR:
5316                         vcpu->arch.nmi_injected = false;
5317                         vmx_set_nmi_mask(vcpu, true);
5318                         break;
5319                 case INTR_TYPE_EXT_INTR:
5320                 case INTR_TYPE_SOFT_INTR:
5321                         kvm_clear_interrupt_queue(vcpu);
5322                         break;
5323                 case INTR_TYPE_HARD_EXCEPTION:
5324                         if (vmx->idt_vectoring_info &
5325                             VECTORING_INFO_DELIVER_CODE_MASK) {
5326                                 has_error_code = true;
5327                                 error_code =
5328                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5329                         }
5330                         fallthrough;
5331                 case INTR_TYPE_SOFT_EXCEPTION:
5332                         kvm_clear_exception_queue(vcpu);
5333                         break;
5334                 default:
5335                         break;
5336                 }
5337         }
5338         tss_selector = exit_qualification;
5339
5340         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5341                        type != INTR_TYPE_EXT_INTR &&
5342                        type != INTR_TYPE_NMI_INTR))
5343                 WARN_ON(!skip_emulated_instruction(vcpu));
5344
5345         /*
5346          * TODO: What about debug traps on tss switch?
5347          *       Are we supposed to inject them and update dr6?
5348          */
5349         return kvm_task_switch(vcpu, tss_selector,
5350                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5351                                reason, has_error_code, error_code);
5352 }
5353
5354 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5355 {
5356         unsigned long exit_qualification;
5357         gpa_t gpa;
5358         u64 error_code;
5359
5360         exit_qualification = vmx_get_exit_qual(vcpu);
5361
5362         /*
5363          * EPT violation happened while executing iret from NMI,
5364          * "blocked by NMI" bit has to be set before next VM entry.
5365          * There are errata that may cause this bit to not be set:
5366          * AAK134, BY25.
5367          */
5368         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5369                         enable_vnmi &&
5370                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5371                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5372
5373         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5374         trace_kvm_page_fault(gpa, exit_qualification);
5375
5376         /* Is it a read fault? */
5377         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5378                      ? PFERR_USER_MASK : 0;
5379         /* Is it a write fault? */
5380         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5381                       ? PFERR_WRITE_MASK : 0;
5382         /* Is it a fetch fault? */
5383         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5384                       ? PFERR_FETCH_MASK : 0;
5385         /* ept page table entry is present? */
5386         error_code |= (exit_qualification &
5387                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5388                         EPT_VIOLATION_EXECUTABLE))
5389                       ? PFERR_PRESENT_MASK : 0;
5390
5391         error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5392                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5393
5394         vcpu->arch.exit_qualification = exit_qualification;
5395
5396         /*
5397          * Check that the GPA doesn't exceed physical memory limits, as that is
5398          * a guest page fault.  We have to emulate the instruction here, because
5399          * if the illegal address is that of a paging structure, then
5400          * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5401          * would also use advanced VM-exit information for EPT violations to
5402          * reconstruct the page fault error code.
5403          */
5404         if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5405                 return kvm_emulate_instruction(vcpu, 0);
5406
5407         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5408 }
5409
5410 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5411 {
5412         gpa_t gpa;
5413
5414         if (!vmx_can_emulate_instruction(vcpu, NULL, 0))
5415                 return 1;
5416
5417         /*
5418          * A nested guest cannot optimize MMIO vmexits, because we have an
5419          * nGPA here instead of the required GPA.
5420          */
5421         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5422         if (!is_guest_mode(vcpu) &&
5423             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5424                 trace_kvm_fast_mmio(gpa);
5425                 return kvm_skip_emulated_instruction(vcpu);
5426         }
5427
5428         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5429 }
5430
5431 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5432 {
5433         WARN_ON_ONCE(!enable_vnmi);
5434         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5435         ++vcpu->stat.nmi_window_exits;
5436         kvm_make_request(KVM_REQ_EVENT, vcpu);
5437
5438         return 1;
5439 }
5440
5441 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5442 {
5443         struct vcpu_vmx *vmx = to_vmx(vcpu);
5444         bool intr_window_requested;
5445         unsigned count = 130;
5446
5447         intr_window_requested = exec_controls_get(vmx) &
5448                                 CPU_BASED_INTR_WINDOW_EXITING;
5449
5450         while (vmx->emulation_required && count-- != 0) {
5451                 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5452                         return handle_interrupt_window(&vmx->vcpu);
5453
5454                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5455                         return 1;
5456
5457                 if (!kvm_emulate_instruction(vcpu, 0))
5458                         return 0;
5459
5460                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5461                     vcpu->arch.exception.pending) {
5462                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5463                         vcpu->run->internal.suberror =
5464                                                 KVM_INTERNAL_ERROR_EMULATION;
5465                         vcpu->run->internal.ndata = 0;
5466                         return 0;
5467                 }
5468
5469                 if (vcpu->arch.halt_request) {
5470                         vcpu->arch.halt_request = 0;
5471                         return kvm_vcpu_halt(vcpu);
5472                 }
5473
5474                 /*
5475                  * Note, return 1 and not 0, vcpu_run() will invoke
5476                  * xfer_to_guest_mode() which will create a proper return
5477                  * code.
5478                  */
5479                 if (__xfer_to_guest_mode_work_pending())
5480                         return 1;
5481         }
5482
5483         return 1;
5484 }
5485
5486 static void grow_ple_window(struct kvm_vcpu *vcpu)
5487 {
5488         struct vcpu_vmx *vmx = to_vmx(vcpu);
5489         unsigned int old = vmx->ple_window;
5490
5491         vmx->ple_window = __grow_ple_window(old, ple_window,
5492                                             ple_window_grow,
5493                                             ple_window_max);
5494
5495         if (vmx->ple_window != old) {
5496                 vmx->ple_window_dirty = true;
5497                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5498                                             vmx->ple_window, old);
5499         }
5500 }
5501
5502 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5503 {
5504         struct vcpu_vmx *vmx = to_vmx(vcpu);
5505         unsigned int old = vmx->ple_window;
5506
5507         vmx->ple_window = __shrink_ple_window(old, ple_window,
5508                                               ple_window_shrink,
5509                                               ple_window);
5510
5511         if (vmx->ple_window != old) {
5512                 vmx->ple_window_dirty = true;
5513                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5514                                             vmx->ple_window, old);
5515         }
5516 }
5517
5518 /*
5519  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5520  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5521  */
5522 static int handle_pause(struct kvm_vcpu *vcpu)
5523 {
5524         if (!kvm_pause_in_guest(vcpu->kvm))
5525                 grow_ple_window(vcpu);
5526
5527         /*
5528          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5529          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5530          * never set PAUSE_EXITING and just set PLE if supported,
5531          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5532          */
5533         kvm_vcpu_on_spin(vcpu, true);
5534         return kvm_skip_emulated_instruction(vcpu);
5535 }
5536
5537 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5538 {
5539         return 1;
5540 }
5541
5542 static int handle_invpcid(struct kvm_vcpu *vcpu)
5543 {
5544         u32 vmx_instruction_info;
5545         unsigned long type;
5546         gva_t gva;
5547         struct {
5548                 u64 pcid;
5549                 u64 gla;
5550         } operand;
5551
5552         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5553                 kvm_queue_exception(vcpu, UD_VECTOR);
5554                 return 1;
5555         }
5556
5557         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5558         type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5559
5560         if (type > 3) {
5561                 kvm_inject_gp(vcpu, 0);
5562                 return 1;
5563         }
5564
5565         /* According to the Intel instruction reference, the memory operand
5566          * is read even if it isn't needed (e.g., for type==all)
5567          */
5568         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5569                                 vmx_instruction_info, false,
5570                                 sizeof(operand), &gva))
5571                 return 1;
5572
5573         return kvm_handle_invpcid(vcpu, type, gva);
5574 }
5575
5576 static int handle_pml_full(struct kvm_vcpu *vcpu)
5577 {
5578         unsigned long exit_qualification;
5579
5580         trace_kvm_pml_full(vcpu->vcpu_id);
5581
5582         exit_qualification = vmx_get_exit_qual(vcpu);
5583
5584         /*
5585          * PML buffer FULL happened while executing iret from NMI,
5586          * "blocked by NMI" bit has to be set before next VM entry.
5587          */
5588         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5589                         enable_vnmi &&
5590                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5591                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5592                                 GUEST_INTR_STATE_NMI);
5593
5594         /*
5595          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5596          * here.., and there's no userspace involvement needed for PML.
5597          */
5598         return 1;
5599 }
5600
5601 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5602 {
5603         struct vcpu_vmx *vmx = to_vmx(vcpu);
5604
5605         if (!vmx->req_immediate_exit &&
5606             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5607                 kvm_lapic_expired_hv_timer(vcpu);
5608                 return EXIT_FASTPATH_REENTER_GUEST;
5609         }
5610
5611         return EXIT_FASTPATH_NONE;
5612 }
5613
5614 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5615 {
5616         handle_fastpath_preemption_timer(vcpu);
5617         return 1;
5618 }
5619
5620 /*
5621  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5622  * are overwritten by nested_vmx_setup() when nested=1.
5623  */
5624 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5625 {
5626         kvm_queue_exception(vcpu, UD_VECTOR);
5627         return 1;
5628 }
5629
5630 #ifndef CONFIG_X86_SGX_KVM
5631 static int handle_encls(struct kvm_vcpu *vcpu)
5632 {
5633         /*
5634          * SGX virtualization is disabled.  There is no software enable bit for
5635          * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5636          * the guest from executing ENCLS (when SGX is supported by hardware).
5637          */
5638         kvm_queue_exception(vcpu, UD_VECTOR);
5639         return 1;
5640 }
5641 #endif /* CONFIG_X86_SGX_KVM */
5642
5643 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5644 {
5645         vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
5646         vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
5647         return 0;
5648 }
5649
5650 /*
5651  * The exit handlers return 1 if the exit was handled fully and guest execution
5652  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5653  * to be done to userspace and return 0.
5654  */
5655 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5656         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5657         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5658         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5659         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5660         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5661         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5662         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5663         [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5664         [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5665         [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5666         [EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5667         [EXIT_REASON_HLT]                     = kvm_emulate_halt,
5668         [EXIT_REASON_INVD]                    = kvm_emulate_invd,
5669         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5670         [EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
5671         [EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
5672         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5673         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5674         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5675         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5676         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5677         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5678         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5679         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5680         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5681         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5682         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5683         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5684         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5685         [EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
5686         [EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
5687         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5688         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5689         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5690         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5691         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5692         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5693         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5694         [EXIT_REASON_MWAIT_INSTRUCTION]       = kvm_emulate_mwait,
5695         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5696         [EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
5697         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5698         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5699         [EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
5700         [EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
5701         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5702         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5703         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5704         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5705         [EXIT_REASON_ENCLS]                   = handle_encls,
5706         [EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
5707 };
5708
5709 static const int kvm_vmx_max_exit_handlers =
5710         ARRAY_SIZE(kvm_vmx_exit_handlers);
5711
5712 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5713                               u32 *intr_info, u32 *error_code)
5714 {
5715         struct vcpu_vmx *vmx = to_vmx(vcpu);
5716
5717         *info1 = vmx_get_exit_qual(vcpu);
5718         if (!(vmx->exit_reason.failed_vmentry)) {
5719                 *info2 = vmx->idt_vectoring_info;
5720                 *intr_info = vmx_get_intr_info(vcpu);
5721                 if (is_exception_with_error_code(*intr_info))
5722                         *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5723                 else
5724                         *error_code = 0;
5725         } else {
5726                 *info2 = 0;
5727                 *intr_info = 0;
5728                 *error_code = 0;
5729         }
5730 }
5731
5732 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5733 {
5734         if (vmx->pml_pg) {
5735                 __free_page(vmx->pml_pg);
5736                 vmx->pml_pg = NULL;
5737         }
5738 }
5739
5740 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5741 {
5742         struct vcpu_vmx *vmx = to_vmx(vcpu);
5743         u64 *pml_buf;
5744         u16 pml_idx;
5745
5746         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5747
5748         /* Do nothing if PML buffer is empty */
5749         if (pml_idx == (PML_ENTITY_NUM - 1))
5750                 return;
5751
5752         /* PML index always points to next available PML buffer entity */
5753         if (pml_idx >= PML_ENTITY_NUM)
5754                 pml_idx = 0;
5755         else
5756                 pml_idx++;
5757
5758         pml_buf = page_address(vmx->pml_pg);
5759         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5760                 u64 gpa;
5761
5762                 gpa = pml_buf[pml_idx];
5763                 WARN_ON(gpa & (PAGE_SIZE - 1));
5764                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5765         }
5766
5767         /* reset PML index */
5768         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5769 }
5770
5771 static void vmx_dump_sel(char *name, uint32_t sel)
5772 {
5773         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5774                name, vmcs_read16(sel),
5775                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5776                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5777                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5778 }
5779
5780 static void vmx_dump_dtsel(char *name, uint32_t limit)
5781 {
5782         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5783                name, vmcs_read32(limit),
5784                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5785 }
5786
5787 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
5788 {
5789         unsigned int i;
5790         struct vmx_msr_entry *e;
5791
5792         pr_err("MSR %s:\n", name);
5793         for (i = 0, e = m->val; i < m->nr; ++i, ++e)
5794                 pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
5795 }
5796
5797 void dump_vmcs(struct kvm_vcpu *vcpu)
5798 {
5799         struct vcpu_vmx *vmx = to_vmx(vcpu);
5800         u32 vmentry_ctl, vmexit_ctl;
5801         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5802         unsigned long cr4;
5803         int efer_slot;
5804
5805         if (!dump_invalid_vmcs) {
5806                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5807                 return;
5808         }
5809
5810         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5811         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5812         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5813         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5814         cr4 = vmcs_readl(GUEST_CR4);
5815         secondary_exec_control = 0;
5816         if (cpu_has_secondary_exec_ctrls())
5817                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5818
5819         pr_err("*** Guest State ***\n");
5820         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5821                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5822                vmcs_readl(CR0_GUEST_HOST_MASK));
5823         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5824                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5825         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5826         if (cpu_has_vmx_ept()) {
5827                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5828                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5829                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5830                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5831         }
5832         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5833                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5834         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5835                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5836         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5837                vmcs_readl(GUEST_SYSENTER_ESP),
5838                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5839         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5840         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5841         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5842         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5843         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5844         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5845         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5846         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5847         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5848         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5849         efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
5850         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
5851                 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
5852         else if (efer_slot >= 0)
5853                 pr_err("EFER= 0x%016llx (autoload)\n",
5854                        vmx->msr_autoload.guest.val[efer_slot].value);
5855         else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
5856                 pr_err("EFER= 0x%016llx (effective)\n",
5857                        vcpu->arch.efer | (EFER_LMA | EFER_LME));
5858         else
5859                 pr_err("EFER= 0x%016llx (effective)\n",
5860                        vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
5861         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
5862                 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
5863         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5864                vmcs_read64(GUEST_IA32_DEBUGCTL),
5865                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5866         if (cpu_has_load_perf_global_ctrl() &&
5867             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5868                 pr_err("PerfGlobCtl = 0x%016llx\n",
5869                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5870         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5871                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5872         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5873                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5874                vmcs_read32(GUEST_ACTIVITY_STATE));
5875         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5876                 pr_err("InterruptStatus = %04x\n",
5877                        vmcs_read16(GUEST_INTR_STATUS));
5878         if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
5879                 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
5880         if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
5881                 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
5882
5883         pr_err("*** Host State ***\n");
5884         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5885                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5886         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5887                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5888                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5889                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5890                vmcs_read16(HOST_TR_SELECTOR));
5891         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5892                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5893                vmcs_readl(HOST_TR_BASE));
5894         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5895                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5896         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5897                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5898                vmcs_readl(HOST_CR4));
5899         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5900                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5901                vmcs_read32(HOST_IA32_SYSENTER_CS),
5902                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5903         if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
5904                 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
5905         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
5906                 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
5907         if (cpu_has_load_perf_global_ctrl() &&
5908             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5909                 pr_err("PerfGlobCtl = 0x%016llx\n",
5910                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5911         if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
5912                 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
5913
5914         pr_err("*** Control State ***\n");
5915         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5916                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5917         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5918         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5919                vmcs_read32(EXCEPTION_BITMAP),
5920                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5921                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5922         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5923                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5924                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5925                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5926         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5927                vmcs_read32(VM_EXIT_INTR_INFO),
5928                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5929                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5930         pr_err("        reason=%08x qualification=%016lx\n",
5931                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5932         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5933                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5934                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5935         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5936         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5937                 pr_err("TSC Multiplier = 0x%016llx\n",
5938                        vmcs_read64(TSC_MULTIPLIER));
5939         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5940                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5941                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
5942                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5943                 }
5944                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5945                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5946                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5947                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5948         }
5949         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5950                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5951         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5952                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5953         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5954                 pr_err("PLE Gap=%08x Window=%08x\n",
5955                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5956         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5957                 pr_err("Virtual processor ID = 0x%04x\n",
5958                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
5959 }
5960
5961 /*
5962  * The guest has exited.  See if we can fix it or if we need userspace
5963  * assistance.
5964  */
5965 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5966 {
5967         struct vcpu_vmx *vmx = to_vmx(vcpu);
5968         union vmx_exit_reason exit_reason = vmx->exit_reason;
5969         u32 vectoring_info = vmx->idt_vectoring_info;
5970         u16 exit_handler_index;
5971
5972         /*
5973          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5974          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5975          * querying dirty_bitmap, we only need to kick all vcpus out of guest
5976          * mode as if vcpus is in root mode, the PML buffer must has been
5977          * flushed already.  Note, PML is never enabled in hardware while
5978          * running L2.
5979          */
5980         if (enable_pml && !is_guest_mode(vcpu))
5981                 vmx_flush_pml_buffer(vcpu);
5982
5983         /*
5984          * We should never reach this point with a pending nested VM-Enter, and
5985          * more specifically emulation of L2 due to invalid guest state (see
5986          * below) should never happen as that means we incorrectly allowed a
5987          * nested VM-Enter with an invalid vmcs12.
5988          */
5989         WARN_ON_ONCE(vmx->nested.nested_run_pending);
5990
5991         /* If guest state is invalid, start emulating */
5992         if (vmx->emulation_required)
5993                 return handle_invalid_guest_state(vcpu);
5994
5995         if (is_guest_mode(vcpu)) {
5996                 /*
5997                  * PML is never enabled when running L2, bail immediately if a
5998                  * PML full exit occurs as something is horribly wrong.
5999                  */
6000                 if (exit_reason.basic == EXIT_REASON_PML_FULL)
6001                         goto unexpected_vmexit;
6002
6003                 /*
6004                  * The host physical addresses of some pages of guest memory
6005                  * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6006                  * Page). The CPU may write to these pages via their host
6007                  * physical address while L2 is running, bypassing any
6008                  * address-translation-based dirty tracking (e.g. EPT write
6009                  * protection).
6010                  *
6011                  * Mark them dirty on every exit from L2 to prevent them from
6012                  * getting out of sync with dirty tracking.
6013                  */
6014                 nested_mark_vmcs12_pages_dirty(vcpu);
6015
6016                 if (nested_vmx_reflect_vmexit(vcpu))
6017                         return 1;
6018         }
6019
6020         if (exit_reason.failed_vmentry) {
6021                 dump_vmcs(vcpu);
6022                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6023                 vcpu->run->fail_entry.hardware_entry_failure_reason
6024                         = exit_reason.full;
6025                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6026                 return 0;
6027         }
6028
6029         if (unlikely(vmx->fail)) {
6030                 dump_vmcs(vcpu);
6031                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6032                 vcpu->run->fail_entry.hardware_entry_failure_reason
6033                         = vmcs_read32(VM_INSTRUCTION_ERROR);
6034                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6035                 return 0;
6036         }
6037
6038         /*
6039          * Note:
6040          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6041          * delivery event since it indicates guest is accessing MMIO.
6042          * The vm-exit can be triggered again after return to guest that
6043          * will cause infinite loop.
6044          */
6045         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6046             (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6047              exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6048              exit_reason.basic != EXIT_REASON_PML_FULL &&
6049              exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6050              exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
6051                 int ndata = 3;
6052
6053                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6054                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6055                 vcpu->run->internal.data[0] = vectoring_info;
6056                 vcpu->run->internal.data[1] = exit_reason.full;
6057                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6058                 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6059                         vcpu->run->internal.data[ndata++] =
6060                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6061                 }
6062                 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6063                 vcpu->run->internal.ndata = ndata;
6064                 return 0;
6065         }
6066
6067         if (unlikely(!enable_vnmi &&
6068                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
6069                 if (!vmx_interrupt_blocked(vcpu)) {
6070                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6071                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6072                            vcpu->arch.nmi_pending) {
6073                         /*
6074                          * This CPU don't support us in finding the end of an
6075                          * NMI-blocked window if the guest runs with IRQs
6076                          * disabled. So we pull the trigger after 1 s of
6077                          * futile waiting, but inform the user about this.
6078                          */
6079                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6080                                "state on VCPU %d after 1 s timeout\n",
6081                                __func__, vcpu->vcpu_id);
6082                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6083                 }
6084         }
6085
6086         if (exit_fastpath != EXIT_FASTPATH_NONE)
6087                 return 1;
6088
6089         if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6090                 goto unexpected_vmexit;
6091 #ifdef CONFIG_RETPOLINE
6092         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6093                 return kvm_emulate_wrmsr(vcpu);
6094         else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6095                 return handle_preemption_timer(vcpu);
6096         else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6097                 return handle_interrupt_window(vcpu);
6098         else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6099                 return handle_external_interrupt(vcpu);
6100         else if (exit_reason.basic == EXIT_REASON_HLT)
6101                 return kvm_emulate_halt(vcpu);
6102         else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6103                 return handle_ept_misconfig(vcpu);
6104 #endif
6105
6106         exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6107                                                 kvm_vmx_max_exit_handlers);
6108         if (!kvm_vmx_exit_handlers[exit_handler_index])
6109                 goto unexpected_vmexit;
6110
6111         return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6112
6113 unexpected_vmexit:
6114         vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6115                     exit_reason.full);
6116         dump_vmcs(vcpu);
6117         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6118         vcpu->run->internal.suberror =
6119                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6120         vcpu->run->internal.ndata = 2;
6121         vcpu->run->internal.data[0] = exit_reason.full;
6122         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6123         return 0;
6124 }
6125
6126 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6127 {
6128         int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6129
6130         /*
6131          * Even when current exit reason is handled by KVM internally, we
6132          * still need to exit to user space when bus lock detected to inform
6133          * that there is a bus lock in guest.
6134          */
6135         if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6136                 if (ret > 0)
6137                         vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6138
6139                 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6140                 return 0;
6141         }
6142         return ret;
6143 }
6144
6145 /*
6146  * Software based L1D cache flush which is used when microcode providing
6147  * the cache control MSR is not loaded.
6148  *
6149  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6150  * flush it is required to read in 64 KiB because the replacement algorithm
6151  * is not exactly LRU. This could be sized at runtime via topology
6152  * information but as all relevant affected CPUs have 32KiB L1D cache size
6153  * there is no point in doing so.
6154  */
6155 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6156 {
6157         int size = PAGE_SIZE << L1D_CACHE_ORDER;
6158
6159         /*
6160          * This code is only executed when the the flush mode is 'cond' or
6161          * 'always'
6162          */
6163         if (static_branch_likely(&vmx_l1d_flush_cond)) {
6164                 bool flush_l1d;
6165
6166                 /*
6167                  * Clear the per-vcpu flush bit, it gets set again
6168                  * either from vcpu_run() or from one of the unsafe
6169                  * VMEXIT handlers.
6170                  */
6171                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6172                 vcpu->arch.l1tf_flush_l1d = false;
6173
6174                 /*
6175                  * Clear the per-cpu flush bit, it gets set again from
6176                  * the interrupt handlers.
6177                  */
6178                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6179                 kvm_clear_cpu_l1tf_flush_l1d();
6180
6181                 if (!flush_l1d)
6182                         return;
6183         }
6184
6185         vcpu->stat.l1d_flush++;
6186
6187         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6188                 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6189                 return;
6190         }
6191
6192         asm volatile(
6193                 /* First ensure the pages are in the TLB */
6194                 "xorl   %%eax, %%eax\n"
6195                 ".Lpopulate_tlb:\n\t"
6196                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6197                 "addl   $4096, %%eax\n\t"
6198                 "cmpl   %%eax, %[size]\n\t"
6199                 "jne    .Lpopulate_tlb\n\t"
6200                 "xorl   %%eax, %%eax\n\t"
6201                 "cpuid\n\t"
6202                 /* Now fill the cache */
6203                 "xorl   %%eax, %%eax\n"
6204                 ".Lfill_cache:\n"
6205                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6206                 "addl   $64, %%eax\n\t"
6207                 "cmpl   %%eax, %[size]\n\t"
6208                 "jne    .Lfill_cache\n\t"
6209                 "lfence\n"
6210                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6211                     [size] "r" (size)
6212                 : "eax", "ebx", "ecx", "edx");
6213 }
6214
6215 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6216 {
6217         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6218         int tpr_threshold;
6219
6220         if (is_guest_mode(vcpu) &&
6221                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6222                 return;
6223
6224         tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6225         if (is_guest_mode(vcpu))
6226                 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6227         else
6228                 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6229 }
6230
6231 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6232 {
6233         struct vcpu_vmx *vmx = to_vmx(vcpu);
6234         u32 sec_exec_control;
6235
6236         if (!lapic_in_kernel(vcpu))
6237                 return;
6238
6239         if (!flexpriority_enabled &&
6240             !cpu_has_vmx_virtualize_x2apic_mode())
6241                 return;
6242
6243         /* Postpone execution until vmcs01 is the current VMCS. */
6244         if (is_guest_mode(vcpu)) {
6245                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6246                 return;
6247         }
6248
6249         sec_exec_control = secondary_exec_controls_get(vmx);
6250         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6251                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6252
6253         switch (kvm_get_apic_mode(vcpu)) {
6254         case LAPIC_MODE_INVALID:
6255                 WARN_ONCE(true, "Invalid local APIC state");
6256         case LAPIC_MODE_DISABLED:
6257                 break;
6258         case LAPIC_MODE_XAPIC:
6259                 if (flexpriority_enabled) {
6260                         sec_exec_control |=
6261                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6262                         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6263
6264                         /*
6265                          * Flush the TLB, reloading the APIC access page will
6266                          * only do so if its physical address has changed, but
6267                          * the guest may have inserted a non-APIC mapping into
6268                          * the TLB while the APIC access page was disabled.
6269                          */
6270                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6271                 }
6272                 break;
6273         case LAPIC_MODE_X2APIC:
6274                 if (cpu_has_vmx_virtualize_x2apic_mode())
6275                         sec_exec_control |=
6276                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6277                 break;
6278         }
6279         secondary_exec_controls_set(vmx, sec_exec_control);
6280
6281         vmx_update_msr_bitmap(vcpu);
6282 }
6283
6284 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6285 {
6286         struct page *page;
6287
6288         /* Defer reload until vmcs01 is the current VMCS. */
6289         if (is_guest_mode(vcpu)) {
6290                 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6291                 return;
6292         }
6293
6294         if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6295             SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6296                 return;
6297
6298         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6299         if (is_error_page(page))
6300                 return;
6301
6302         vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6303         vmx_flush_tlb_current(vcpu);
6304
6305         /*
6306          * Do not pin apic access page in memory, the MMU notifier
6307          * will call us again if it is migrated or swapped out.
6308          */
6309         put_page(page);
6310 }
6311
6312 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6313 {
6314         u16 status;
6315         u8 old;
6316
6317         if (max_isr == -1)
6318                 max_isr = 0;
6319
6320         status = vmcs_read16(GUEST_INTR_STATUS);
6321         old = status >> 8;
6322         if (max_isr != old) {
6323                 status &= 0xff;
6324                 status |= max_isr << 8;
6325                 vmcs_write16(GUEST_INTR_STATUS, status);
6326         }
6327 }
6328
6329 static void vmx_set_rvi(int vector)
6330 {
6331         u16 status;
6332         u8 old;
6333
6334         if (vector == -1)
6335                 vector = 0;
6336
6337         status = vmcs_read16(GUEST_INTR_STATUS);
6338         old = (u8)status & 0xff;
6339         if ((u8)vector != old) {
6340                 status &= ~0xff;
6341                 status |= (u8)vector;
6342                 vmcs_write16(GUEST_INTR_STATUS, status);
6343         }
6344 }
6345
6346 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6347 {
6348         /*
6349          * When running L2, updating RVI is only relevant when
6350          * vmcs12 virtual-interrupt-delivery enabled.
6351          * However, it can be enabled only when L1 also
6352          * intercepts external-interrupts and in that case
6353          * we should not update vmcs02 RVI but instead intercept
6354          * interrupt. Therefore, do nothing when running L2.
6355          */
6356         if (!is_guest_mode(vcpu))
6357                 vmx_set_rvi(max_irr);
6358 }
6359
6360 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6361 {
6362         struct vcpu_vmx *vmx = to_vmx(vcpu);
6363         int max_irr;
6364         bool max_irr_updated;
6365
6366         WARN_ON(!vcpu->arch.apicv_active);
6367         if (pi_test_on(&vmx->pi_desc)) {
6368                 pi_clear_on(&vmx->pi_desc);
6369                 /*
6370                  * IOMMU can write to PID.ON, so the barrier matters even on UP.
6371                  * But on x86 this is just a compiler barrier anyway.
6372                  */
6373                 smp_mb__after_atomic();
6374                 max_irr_updated =
6375                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6376
6377                 /*
6378                  * If we are running L2 and L1 has a new pending interrupt
6379                  * which can be injected, we should re-evaluate
6380                  * what should be done with this new L1 interrupt.
6381                  * If L1 intercepts external-interrupts, we should
6382                  * exit from L2 to L1. Otherwise, interrupt should be
6383                  * delivered directly to L2.
6384                  */
6385                 if (is_guest_mode(vcpu) && max_irr_updated) {
6386                         if (nested_exit_on_intr(vcpu))
6387                                 kvm_vcpu_exiting_guest_mode(vcpu);
6388                         else
6389                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6390                 }
6391         } else {
6392                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6393         }
6394         vmx_hwapic_irr_update(vcpu, max_irr);
6395         return max_irr;
6396 }
6397
6398 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6399 {
6400         if (!kvm_vcpu_apicv_active(vcpu))
6401                 return;
6402
6403         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6404         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6405         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6406         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6407 }
6408
6409 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6410 {
6411         struct vcpu_vmx *vmx = to_vmx(vcpu);
6412
6413         pi_clear_on(&vmx->pi_desc);
6414         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6415 }
6416
6417 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6418
6419 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6420                                         unsigned long entry)
6421 {
6422         kvm_before_interrupt(vcpu);
6423         vmx_do_interrupt_nmi_irqoff(entry);
6424         kvm_after_interrupt(vcpu);
6425 }
6426
6427 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6428 {
6429         const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6430         u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6431
6432         /* if exit due to PF check for async PF */
6433         if (is_page_fault(intr_info))
6434                 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6435         /* Handle machine checks before interrupts are enabled */
6436         else if (is_machine_check(intr_info))
6437                 kvm_machine_check();
6438         /* We need to handle NMIs before interrupts are enabled */
6439         else if (is_nmi(intr_info))
6440                 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6441 }
6442
6443 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6444 {
6445         u32 intr_info = vmx_get_intr_info(vcpu);
6446         unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6447         gate_desc *desc = (gate_desc *)host_idt_base + vector;
6448
6449         if (WARN_ONCE(!is_external_intr(intr_info),
6450             "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6451                 return;
6452
6453         handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6454 }
6455
6456 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6457 {
6458         struct vcpu_vmx *vmx = to_vmx(vcpu);
6459
6460         if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6461                 handle_external_interrupt_irqoff(vcpu);
6462         else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6463                 handle_exception_nmi_irqoff(vmx);
6464 }
6465
6466 /*
6467  * The kvm parameter can be NULL (module initialization, or invocation before
6468  * VM creation). Be sure to check the kvm parameter before using it.
6469  */
6470 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6471 {
6472         switch (index) {
6473         case MSR_IA32_SMBASE:
6474                 /*
6475                  * We cannot do SMM unless we can run the guest in big
6476                  * real mode.
6477                  */
6478                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6479         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6480                 return nested;
6481         case MSR_AMD64_VIRT_SPEC_CTRL:
6482                 /* This is AMD only.  */
6483                 return false;
6484         default:
6485                 return true;
6486         }
6487 }
6488
6489 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6490 {
6491         u32 exit_intr_info;
6492         bool unblock_nmi;
6493         u8 vector;
6494         bool idtv_info_valid;
6495
6496         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6497
6498         if (enable_vnmi) {
6499                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6500                         return;
6501
6502                 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6503                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6504                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6505                 /*
6506                  * SDM 3: 27.7.1.2 (September 2008)
6507                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6508                  * a guest IRET fault.
6509                  * SDM 3: 23.2.2 (September 2008)
6510                  * Bit 12 is undefined in any of the following cases:
6511                  *  If the VM exit sets the valid bit in the IDT-vectoring
6512                  *   information field.
6513                  *  If the VM exit is due to a double fault.
6514                  */
6515                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6516                     vector != DF_VECTOR && !idtv_info_valid)
6517                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6518                                       GUEST_INTR_STATE_NMI);
6519                 else
6520                         vmx->loaded_vmcs->nmi_known_unmasked =
6521                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6522                                   & GUEST_INTR_STATE_NMI);
6523         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6524                 vmx->loaded_vmcs->vnmi_blocked_time +=
6525                         ktime_to_ns(ktime_sub(ktime_get(),
6526                                               vmx->loaded_vmcs->entry_time));
6527 }
6528
6529 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6530                                       u32 idt_vectoring_info,
6531                                       int instr_len_field,
6532                                       int error_code_field)
6533 {
6534         u8 vector;
6535         int type;
6536         bool idtv_info_valid;
6537
6538         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6539
6540         vcpu->arch.nmi_injected = false;
6541         kvm_clear_exception_queue(vcpu);
6542         kvm_clear_interrupt_queue(vcpu);
6543
6544         if (!idtv_info_valid)
6545                 return;
6546
6547         kvm_make_request(KVM_REQ_EVENT, vcpu);
6548
6549         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6550         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6551
6552         switch (type) {
6553         case INTR_TYPE_NMI_INTR:
6554                 vcpu->arch.nmi_injected = true;
6555                 /*
6556                  * SDM 3: 27.7.1.2 (September 2008)
6557                  * Clear bit "block by NMI" before VM entry if a NMI
6558                  * delivery faulted.
6559                  */
6560                 vmx_set_nmi_mask(vcpu, false);
6561                 break;
6562         case INTR_TYPE_SOFT_EXCEPTION:
6563                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6564                 fallthrough;
6565         case INTR_TYPE_HARD_EXCEPTION:
6566                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6567                         u32 err = vmcs_read32(error_code_field);
6568                         kvm_requeue_exception_e(vcpu, vector, err);
6569                 } else
6570                         kvm_requeue_exception(vcpu, vector);
6571                 break;
6572         case INTR_TYPE_SOFT_INTR:
6573                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6574                 fallthrough;
6575         case INTR_TYPE_EXT_INTR:
6576                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6577                 break;
6578         default:
6579                 break;
6580         }
6581 }
6582
6583 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6584 {
6585         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6586                                   VM_EXIT_INSTRUCTION_LEN,
6587                                   IDT_VECTORING_ERROR_CODE);
6588 }
6589
6590 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6591 {
6592         __vmx_complete_interrupts(vcpu,
6593                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6594                                   VM_ENTRY_INSTRUCTION_LEN,
6595                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6596
6597         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6598 }
6599
6600 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6601 {
6602         int i, nr_msrs;
6603         struct perf_guest_switch_msr *msrs;
6604
6605         /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6606         msrs = perf_guest_get_msrs(&nr_msrs);
6607         if (!msrs)
6608                 return;
6609
6610         for (i = 0; i < nr_msrs; i++)
6611                 if (msrs[i].host == msrs[i].guest)
6612                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6613                 else
6614                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6615                                         msrs[i].host, false);
6616 }
6617
6618 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6619 {
6620         struct vcpu_vmx *vmx = to_vmx(vcpu);
6621         u64 tscl;
6622         u32 delta_tsc;
6623
6624         if (vmx->req_immediate_exit) {
6625                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6626                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6627         } else if (vmx->hv_deadline_tsc != -1) {
6628                 tscl = rdtsc();
6629                 if (vmx->hv_deadline_tsc > tscl)
6630                         /* set_hv_timer ensures the delta fits in 32-bits */
6631                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6632                                 cpu_preemption_timer_multi);
6633                 else
6634                         delta_tsc = 0;
6635
6636                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6637                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6638         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6639                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6640                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6641         }
6642 }
6643
6644 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6645 {
6646         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6647                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6648                 vmcs_writel(HOST_RSP, host_rsp);
6649         }
6650 }
6651
6652 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6653 {
6654         switch (to_vmx(vcpu)->exit_reason.basic) {
6655         case EXIT_REASON_MSR_WRITE:
6656                 return handle_fastpath_set_msr_irqoff(vcpu);
6657         case EXIT_REASON_PREEMPTION_TIMER:
6658                 return handle_fastpath_preemption_timer(vcpu);
6659         default:
6660                 return EXIT_FASTPATH_NONE;
6661         }
6662 }
6663
6664 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6665                                         struct vcpu_vmx *vmx)
6666 {
6667         /*
6668          * VMENTER enables interrupts (host state), but the kernel state is
6669          * interrupts disabled when this is invoked. Also tell RCU about
6670          * it. This is the same logic as for exit_to_user_mode().
6671          *
6672          * This ensures that e.g. latency analysis on the host observes
6673          * guest mode as interrupt enabled.
6674          *
6675          * guest_enter_irqoff() informs context tracking about the
6676          * transition to guest mode and if enabled adjusts RCU state
6677          * accordingly.
6678          */
6679         instrumentation_begin();
6680         trace_hardirqs_on_prepare();
6681         lockdep_hardirqs_on_prepare(CALLER_ADDR0);
6682         instrumentation_end();
6683
6684         guest_enter_irqoff();
6685         lockdep_hardirqs_on(CALLER_ADDR0);
6686
6687         /* L1D Flush includes CPU buffer clear to mitigate MDS */
6688         if (static_branch_unlikely(&vmx_l1d_should_flush))
6689                 vmx_l1d_flush(vcpu);
6690         else if (static_branch_unlikely(&mds_user_clear))
6691                 mds_clear_cpu_buffers();
6692
6693         if (vcpu->arch.cr2 != native_read_cr2())
6694                 native_write_cr2(vcpu->arch.cr2);
6695
6696         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6697                                    vmx->loaded_vmcs->launched);
6698
6699         vcpu->arch.cr2 = native_read_cr2();
6700
6701         /*
6702          * VMEXIT disables interrupts (host state), but tracing and lockdep
6703          * have them in state 'on' as recorded before entering guest mode.
6704          * Same as enter_from_user_mode().
6705          *
6706          * guest_exit_irqoff() restores host context and reinstates RCU if
6707          * enabled and required.
6708          *
6709          * This needs to be done before the below as native_read_msr()
6710          * contains a tracepoint and x86_spec_ctrl_restore_host() calls
6711          * into world and some more.
6712          */
6713         lockdep_hardirqs_off(CALLER_ADDR0);
6714         guest_exit_irqoff();
6715
6716         instrumentation_begin();
6717         trace_hardirqs_off_finish();
6718         instrumentation_end();
6719 }
6720
6721 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6722 {
6723         struct vcpu_vmx *vmx = to_vmx(vcpu);
6724         unsigned long cr3, cr4;
6725
6726         /* Record the guest's net vcpu time for enforced NMI injections. */
6727         if (unlikely(!enable_vnmi &&
6728                      vmx->loaded_vmcs->soft_vnmi_blocked))
6729                 vmx->loaded_vmcs->entry_time = ktime_get();
6730
6731         /* Don't enter VMX if guest state is invalid, let the exit handler
6732            start emulation until we arrive back to a valid state */
6733         if (vmx->emulation_required)
6734                 return EXIT_FASTPATH_NONE;
6735
6736         trace_kvm_entry(vcpu);
6737
6738         if (vmx->ple_window_dirty) {
6739                 vmx->ple_window_dirty = false;
6740                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6741         }
6742
6743         /*
6744          * We did this in prepare_switch_to_guest, because it needs to
6745          * be within srcu_read_lock.
6746          */
6747         WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6748
6749         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6750                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6751         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6752                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6753
6754         cr3 = __get_current_cr3_fast();
6755         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6756                 vmcs_writel(HOST_CR3, cr3);
6757                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6758         }
6759
6760         cr4 = cr4_read_shadow();
6761         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6762                 vmcs_writel(HOST_CR4, cr4);
6763                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6764         }
6765
6766         /* When single-stepping over STI and MOV SS, we must clear the
6767          * corresponding interruptibility bits in the guest state. Otherwise
6768          * vmentry fails as it then expects bit 14 (BS) in pending debug
6769          * exceptions being set, but that's not correct for the guest debugging
6770          * case. */
6771         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6772                 vmx_set_interrupt_shadow(vcpu, 0);
6773
6774         kvm_load_guest_xsave_state(vcpu);
6775
6776         pt_guest_enter(vmx);
6777
6778         atomic_switch_perf_msrs(vmx);
6779         if (intel_pmu_lbr_is_enabled(vcpu))
6780                 vmx_passthrough_lbr_msrs(vcpu);
6781
6782         if (enable_preemption_timer)
6783                 vmx_update_hv_timer(vcpu);
6784
6785         kvm_wait_lapic_expire(vcpu);
6786
6787         /*
6788          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6789          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6790          * is no need to worry about the conditional branch over the wrmsr
6791          * being speculatively taken.
6792          */
6793         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6794
6795         /* The actual VMENTER/EXIT is in the .noinstr.text section. */
6796         vmx_vcpu_enter_exit(vcpu, vmx);
6797
6798         /*
6799          * We do not use IBRS in the kernel. If this vCPU has used the
6800          * SPEC_CTRL MSR it may have left it on; save the value and
6801          * turn it off. This is much more efficient than blindly adding
6802          * it to the atomic save/restore list. Especially as the former
6803          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6804          *
6805          * For non-nested case:
6806          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6807          * save it.
6808          *
6809          * For nested case:
6810          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6811          * save it.
6812          */
6813         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6814                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6815
6816         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6817
6818         /* All fields are clean at this point */
6819         if (static_branch_unlikely(&enable_evmcs)) {
6820                 current_evmcs->hv_clean_fields |=
6821                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6822
6823                 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6824         }
6825
6826         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6827         if (vmx->host_debugctlmsr)
6828                 update_debugctlmsr(vmx->host_debugctlmsr);
6829
6830 #ifndef CONFIG_X86_64
6831         /*
6832          * The sysexit path does not restore ds/es, so we must set them to
6833          * a reasonable value ourselves.
6834          *
6835          * We can't defer this to vmx_prepare_switch_to_host() since that
6836          * function may be executed in interrupt context, which saves and
6837          * restore segments around it, nullifying its effect.
6838          */
6839         loadsegment(ds, __USER_DS);
6840         loadsegment(es, __USER_DS);
6841 #endif
6842
6843         vmx_register_cache_reset(vcpu);
6844
6845         pt_guest_exit(vmx);
6846
6847         kvm_load_host_xsave_state(vcpu);
6848
6849         vmx->nested.nested_run_pending = 0;
6850         vmx->idt_vectoring_info = 0;
6851
6852         if (unlikely(vmx->fail)) {
6853                 vmx->exit_reason.full = 0xdead;
6854                 return EXIT_FASTPATH_NONE;
6855         }
6856
6857         vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6858         if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6859                 kvm_machine_check();
6860
6861         if (likely(!vmx->exit_reason.failed_vmentry))
6862                 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6863
6864         trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX);
6865
6866         if (unlikely(vmx->exit_reason.failed_vmentry))
6867                 return EXIT_FASTPATH_NONE;
6868
6869         vmx->loaded_vmcs->launched = 1;
6870
6871         vmx_recover_nmi_blocking(vmx);
6872         vmx_complete_interrupts(vmx);
6873
6874         if (is_guest_mode(vcpu))
6875                 return EXIT_FASTPATH_NONE;
6876
6877         return vmx_exit_handlers_fastpath(vcpu);
6878 }
6879
6880 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6881 {
6882         struct vcpu_vmx *vmx = to_vmx(vcpu);
6883
6884         if (enable_pml)
6885                 vmx_destroy_pml_buffer(vmx);
6886         free_vpid(vmx->vpid);
6887         nested_vmx_free_vcpu(vcpu);
6888         free_loaded_vmcs(vmx->loaded_vmcs);
6889 }
6890
6891 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6892 {
6893         struct vcpu_vmx *vmx;
6894         int i, cpu, err;
6895
6896         BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6897         vmx = to_vmx(vcpu);
6898
6899         err = -ENOMEM;
6900
6901         vmx->vpid = allocate_vpid();
6902
6903         /*
6904          * If PML is turned on, failure on enabling PML just results in failure
6905          * of creating the vcpu, therefore we can simplify PML logic (by
6906          * avoiding dealing with cases, such as enabling PML partially on vcpus
6907          * for the guest), etc.
6908          */
6909         if (enable_pml) {
6910                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6911                 if (!vmx->pml_pg)
6912                         goto free_vpid;
6913         }
6914
6915         BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
6916
6917         for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) {
6918                 u32 index = vmx_uret_msrs_list[i];
6919                 u32 data_low, data_high;
6920                 int j = vmx->nr_uret_msrs;
6921
6922                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
6923                         continue;
6924                 if (wrmsr_safe(index, data_low, data_high) < 0)
6925                         continue;
6926
6927                 vmx->guest_uret_msrs[j].slot = i;
6928                 vmx->guest_uret_msrs[j].data = 0;
6929                 switch (index) {
6930                 case MSR_IA32_TSX_CTRL:
6931                         /*
6932                          * TSX_CTRL_CPUID_CLEAR is handled in the CPUID
6933                          * interception.  Keep the host value unchanged to avoid
6934                          * changing CPUID bits under the host kernel's feet.
6935                          *
6936                          * hle=0, rtm=0, tsx_ctrl=1 can be found with some
6937                          * combinations of new kernel and old userspace.  If
6938                          * those guests run on a tsx=off host, do allow guests
6939                          * to use TSX_CTRL, but do not change the value on the
6940                          * host so that TSX remains always disabled.
6941                          */
6942                         if (boot_cpu_has(X86_FEATURE_RTM))
6943                                 vmx->guest_uret_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6944                         else
6945                                 vmx->guest_uret_msrs[j].mask = 0;
6946                         break;
6947                 default:
6948                         vmx->guest_uret_msrs[j].mask = -1ull;
6949                         break;
6950                 }
6951                 ++vmx->nr_uret_msrs;
6952         }
6953
6954         err = alloc_loaded_vmcs(&vmx->vmcs01);
6955         if (err < 0)
6956                 goto free_pml;
6957
6958         /* The MSR bitmap starts with all ones */
6959         bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6960         bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6961
6962         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
6963 #ifdef CONFIG_X86_64
6964         vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
6965         vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
6966         vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6967 #endif
6968         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6969         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6970         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6971         if (kvm_cstate_in_guest(vcpu->kvm)) {
6972                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
6973                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6974                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6975                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6976         }
6977         vmx->msr_bitmap_mode = 0;
6978
6979         vmx->loaded_vmcs = &vmx->vmcs01;
6980         cpu = get_cpu();
6981         vmx_vcpu_load(vcpu, cpu);
6982         vcpu->cpu = cpu;
6983         init_vmcs(vmx);
6984         vmx_vcpu_put(vcpu);
6985         put_cpu();
6986         if (cpu_need_virtualize_apic_accesses(vcpu)) {
6987                 err = alloc_apic_access_page(vcpu->kvm);
6988                 if (err)
6989                         goto free_vmcs;
6990         }
6991
6992         if (enable_ept && !enable_unrestricted_guest) {
6993                 err = init_rmode_identity_map(vcpu->kvm);
6994                 if (err)
6995                         goto free_vmcs;
6996         }
6997
6998         if (nested)
6999                 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
7000         else
7001                 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
7002
7003         vcpu_setup_sgx_lepubkeyhash(vcpu);
7004
7005         vmx->nested.posted_intr_nv = -1;
7006         vmx->nested.current_vmptr = -1ull;
7007
7008         vcpu->arch.microcode_version = 0x100000000ULL;
7009         vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
7010
7011         /*
7012          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
7013          * or POSTED_INTR_WAKEUP_VECTOR.
7014          */
7015         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
7016         vmx->pi_desc.sn = 1;
7017
7018 #if IS_ENABLED(CONFIG_HYPERV)
7019         vmx->hv_root_ept = INVALID_PAGE;
7020 #endif
7021         return 0;
7022
7023 free_vmcs:
7024         free_loaded_vmcs(vmx->loaded_vmcs);
7025 free_pml:
7026         vmx_destroy_pml_buffer(vmx);
7027 free_vpid:
7028         free_vpid(vmx->vpid);
7029         return err;
7030 }
7031
7032 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7033 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7034
7035 static int vmx_vm_init(struct kvm *kvm)
7036 {
7037 #if IS_ENABLED(CONFIG_HYPERV)
7038         spin_lock_init(&to_kvm_vmx(kvm)->hv_root_ept_lock);
7039 #endif
7040
7041         if (!ple_gap)
7042                 kvm->arch.pause_in_guest = true;
7043
7044         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7045                 switch (l1tf_mitigation) {
7046                 case L1TF_MITIGATION_OFF:
7047                 case L1TF_MITIGATION_FLUSH_NOWARN:
7048                         /* 'I explicitly don't care' is set */
7049                         break;
7050                 case L1TF_MITIGATION_FLUSH:
7051                 case L1TF_MITIGATION_FLUSH_NOSMT:
7052                 case L1TF_MITIGATION_FULL:
7053                         /*
7054                          * Warn upon starting the first VM in a potentially
7055                          * insecure environment.
7056                          */
7057                         if (sched_smt_active())
7058                                 pr_warn_once(L1TF_MSG_SMT);
7059                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7060                                 pr_warn_once(L1TF_MSG_L1D);
7061                         break;
7062                 case L1TF_MITIGATION_FULL_FORCE:
7063                         /* Flush is enforced */
7064                         break;
7065                 }
7066         }
7067         kvm_apicv_init(kvm, enable_apicv);
7068         return 0;
7069 }
7070
7071 static int __init vmx_check_processor_compat(void)
7072 {
7073         struct vmcs_config vmcs_conf;
7074         struct vmx_capability vmx_cap;
7075
7076         if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7077             !this_cpu_has(X86_FEATURE_VMX)) {
7078                 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7079                 return -EIO;
7080         }
7081
7082         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7083                 return -EIO;
7084         if (nested)
7085                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7086         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7087                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7088                                 smp_processor_id());
7089                 return -EIO;
7090         }
7091         return 0;
7092 }
7093
7094 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7095 {
7096         u8 cache;
7097         u64 ipat = 0;
7098
7099         /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7100          * memory aliases with conflicting memory types and sometimes MCEs.
7101          * We have to be careful as to what are honored and when.
7102          *
7103          * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7104          * UC.  The effective memory type is UC or WC depending on guest PAT.
7105          * This was historically the source of MCEs and we want to be
7106          * conservative.
7107          *
7108          * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7109          * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7110          * EPT memory type is set to WB.  The effective memory type is forced
7111          * WB.
7112          *
7113          * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7114          * EPT memory type is used to emulate guest CD/MTRR.
7115          */
7116
7117         if (is_mmio) {
7118                 cache = MTRR_TYPE_UNCACHABLE;
7119                 goto exit;
7120         }
7121
7122         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7123                 ipat = VMX_EPT_IPAT_BIT;
7124                 cache = MTRR_TYPE_WRBACK;
7125                 goto exit;
7126         }
7127
7128         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7129                 ipat = VMX_EPT_IPAT_BIT;
7130                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7131                         cache = MTRR_TYPE_WRBACK;
7132                 else
7133                         cache = MTRR_TYPE_UNCACHABLE;
7134                 goto exit;
7135         }
7136
7137         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7138
7139 exit:
7140         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7141 }
7142
7143 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7144 {
7145         /*
7146          * These bits in the secondary execution controls field
7147          * are dynamic, the others are mostly based on the hypervisor
7148          * architecture and the guest's CPUID.  Do not touch the
7149          * dynamic bits.
7150          */
7151         u32 mask =
7152                 SECONDARY_EXEC_SHADOW_VMCS |
7153                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7154                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7155                 SECONDARY_EXEC_DESC;
7156
7157         u32 new_ctl = vmx->secondary_exec_control;
7158         u32 cur_ctl = secondary_exec_controls_get(vmx);
7159
7160         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7161 }
7162
7163 /*
7164  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7165  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7166  */
7167 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7168 {
7169         struct vcpu_vmx *vmx = to_vmx(vcpu);
7170         struct kvm_cpuid_entry2 *entry;
7171
7172         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7173         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7174
7175 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
7176         if (entry && (entry->_reg & (_cpuid_mask)))                     \
7177                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
7178 } while (0)
7179
7180         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7181         cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7182         cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7183         cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7184         cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7185         cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7186         cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7187         cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7188         cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7189         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7190         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7191         cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7192         cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7193         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7194         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7195
7196         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7197         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7198         cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7199         cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7200         cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7201         cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7202         cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7203
7204 #undef cr4_fixed1_update
7205 }
7206
7207 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7208 {
7209         struct vcpu_vmx *vmx = to_vmx(vcpu);
7210
7211         if (kvm_mpx_supported()) {
7212                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7213
7214                 if (mpx_enabled) {
7215                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7216                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7217                 } else {
7218                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7219                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7220                 }
7221         }
7222 }
7223
7224 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7225 {
7226         struct vcpu_vmx *vmx = to_vmx(vcpu);
7227         struct kvm_cpuid_entry2 *best = NULL;
7228         int i;
7229
7230         for (i = 0; i < PT_CPUID_LEAVES; i++) {
7231                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7232                 if (!best)
7233                         return;
7234                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7235                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7236                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7237                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7238         }
7239
7240         /* Get the number of configurable Address Ranges for filtering */
7241         vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7242                                                 PT_CAP_num_address_ranges);
7243
7244         /* Initialize and clear the no dependency bits */
7245         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7246                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7247
7248         /*
7249          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7250          * will inject an #GP
7251          */
7252         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7253                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7254
7255         /*
7256          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7257          * PSBFreq can be set
7258          */
7259         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7260                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7261                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7262
7263         /*
7264          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7265          * MTCFreq can be set
7266          */
7267         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7268                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7269                                 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7270
7271         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7272         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7273                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7274                                                         RTIT_CTL_PTW_EN);
7275
7276         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7277         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7278                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7279
7280         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7281         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7282                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7283
7284         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7285         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7286                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7287
7288         /* unmask address range configure area */
7289         for (i = 0; i < vmx->pt_desc.addr_range; i++)
7290                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7291 }
7292
7293 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7294 {
7295         struct vcpu_vmx *vmx = to_vmx(vcpu);
7296
7297         /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7298         vcpu->arch.xsaves_enabled = false;
7299
7300         if (cpu_has_secondary_exec_ctrls()) {
7301                 vmx_compute_secondary_exec_control(vmx);
7302                 vmcs_set_secondary_exec_control(vmx);
7303         }
7304
7305         if (nested_vmx_allowed(vcpu))
7306                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7307                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7308                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7309         else
7310                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7311                         ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7312                           FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7313
7314         if (nested_vmx_allowed(vcpu)) {
7315                 nested_vmx_cr_fixed1_bits_update(vcpu);
7316                 nested_vmx_entry_exit_ctls_update(vcpu);
7317         }
7318
7319         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7320                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7321                 update_intel_pt_cfg(vcpu);
7322
7323         if (boot_cpu_has(X86_FEATURE_RTM)) {
7324                 struct vmx_uret_msr *msr;
7325                 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7326                 if (msr) {
7327                         bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7328                         vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7329                 }
7330         }
7331
7332         set_cr4_guest_host_mask(vmx);
7333
7334         vmx_write_encls_bitmap(vcpu, NULL);
7335         if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7336                 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7337         else
7338                 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7339
7340         if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7341                 vmx->msr_ia32_feature_control_valid_bits |=
7342                         FEAT_CTL_SGX_LC_ENABLED;
7343         else
7344                 vmx->msr_ia32_feature_control_valid_bits &=
7345                         ~FEAT_CTL_SGX_LC_ENABLED;
7346
7347         /* Refresh #PF interception to account for MAXPHYADDR changes. */
7348         vmx_update_exception_bitmap(vcpu);
7349 }
7350
7351 static __init void vmx_set_cpu_caps(void)
7352 {
7353         kvm_set_cpu_caps();
7354
7355         /* CPUID 0x1 */
7356         if (nested)
7357                 kvm_cpu_cap_set(X86_FEATURE_VMX);
7358
7359         /* CPUID 0x7 */
7360         if (kvm_mpx_supported())
7361                 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7362         if (!cpu_has_vmx_invpcid())
7363                 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7364         if (vmx_pt_mode_is_host_guest())
7365                 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7366
7367         if (!enable_sgx) {
7368                 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7369                 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7370                 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7371                 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7372         }
7373
7374         if (vmx_umip_emulated())
7375                 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7376
7377         /* CPUID 0xD.1 */
7378         supported_xss = 0;
7379         if (!cpu_has_vmx_xsaves())
7380                 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7381
7382         /* CPUID 0x80000001 */
7383         if (!cpu_has_vmx_rdtscp())
7384                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7385
7386         if (cpu_has_vmx_waitpkg())
7387                 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7388 }
7389
7390 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7391 {
7392         to_vmx(vcpu)->req_immediate_exit = true;
7393 }
7394
7395 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7396                                   struct x86_instruction_info *info)
7397 {
7398         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7399         unsigned short port;
7400         bool intercept;
7401         int size;
7402
7403         if (info->intercept == x86_intercept_in ||
7404             info->intercept == x86_intercept_ins) {
7405                 port = info->src_val;
7406                 size = info->dst_bytes;
7407         } else {
7408                 port = info->dst_val;
7409                 size = info->src_bytes;
7410         }
7411
7412         /*
7413          * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7414          * VM-exits depend on the 'unconditional IO exiting' VM-execution
7415          * control.
7416          *
7417          * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7418          */
7419         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7420                 intercept = nested_cpu_has(vmcs12,
7421                                            CPU_BASED_UNCOND_IO_EXITING);
7422         else
7423                 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7424
7425         /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7426         return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7427 }
7428
7429 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7430                                struct x86_instruction_info *info,
7431                                enum x86_intercept_stage stage,
7432                                struct x86_exception *exception)
7433 {
7434         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7435
7436         switch (info->intercept) {
7437         /*
7438          * RDPID causes #UD if disabled through secondary execution controls.
7439          * Because it is marked as EmulateOnUD, we need to intercept it here.
7440          */
7441         case x86_intercept_rdtscp:
7442                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7443                         exception->vector = UD_VECTOR;
7444                         exception->error_code_valid = false;
7445                         return X86EMUL_PROPAGATE_FAULT;
7446                 }
7447                 break;
7448
7449         case x86_intercept_in:
7450         case x86_intercept_ins:
7451         case x86_intercept_out:
7452         case x86_intercept_outs:
7453                 return vmx_check_intercept_io(vcpu, info);
7454
7455         case x86_intercept_lgdt:
7456         case x86_intercept_lidt:
7457         case x86_intercept_lldt:
7458         case x86_intercept_ltr:
7459         case x86_intercept_sgdt:
7460         case x86_intercept_sidt:
7461         case x86_intercept_sldt:
7462         case x86_intercept_str:
7463                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7464                         return X86EMUL_CONTINUE;
7465
7466                 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7467                 break;
7468
7469         /* TODO: check more intercepts... */
7470         default:
7471                 break;
7472         }
7473
7474         return X86EMUL_UNHANDLEABLE;
7475 }
7476
7477 #ifdef CONFIG_X86_64
7478 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7479 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7480                                   u64 divisor, u64 *result)
7481 {
7482         u64 low = a << shift, high = a >> (64 - shift);
7483
7484         /* To avoid the overflow on divq */
7485         if (high >= divisor)
7486                 return 1;
7487
7488         /* Low hold the result, high hold rem which is discarded */
7489         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7490             "rm" (divisor), "0" (low), "1" (high));
7491         *result = low;
7492
7493         return 0;
7494 }
7495
7496 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7497                             bool *expired)
7498 {
7499         struct vcpu_vmx *vmx;
7500         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7501         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7502
7503         vmx = to_vmx(vcpu);
7504         tscl = rdtsc();
7505         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7506         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7507         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7508                                                     ktimer->timer_advance_ns);
7509
7510         if (delta_tsc > lapic_timer_advance_cycles)
7511                 delta_tsc -= lapic_timer_advance_cycles;
7512         else
7513                 delta_tsc = 0;
7514
7515         /* Convert to host delta tsc if tsc scaling is enabled */
7516         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7517             delta_tsc && u64_shl_div_u64(delta_tsc,
7518                                 kvm_tsc_scaling_ratio_frac_bits,
7519                                 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7520                 return -ERANGE;
7521
7522         /*
7523          * If the delta tsc can't fit in the 32 bit after the multi shift,
7524          * we can't use the preemption timer.
7525          * It's possible that it fits on later vmentries, but checking
7526          * on every vmentry is costly so we just use an hrtimer.
7527          */
7528         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7529                 return -ERANGE;
7530
7531         vmx->hv_deadline_tsc = tscl + delta_tsc;
7532         *expired = !delta_tsc;
7533         return 0;
7534 }
7535
7536 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7537 {
7538         to_vmx(vcpu)->hv_deadline_tsc = -1;
7539 }
7540 #endif
7541
7542 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7543 {
7544         if (!kvm_pause_in_guest(vcpu->kvm))
7545                 shrink_ple_window(vcpu);
7546 }
7547
7548 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7549 {
7550         struct vcpu_vmx *vmx = to_vmx(vcpu);
7551
7552         if (is_guest_mode(vcpu)) {
7553                 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7554                 return;
7555         }
7556
7557         /*
7558          * Note, cpu_dirty_logging_count can be changed concurrent with this
7559          * code, but in that case another update request will be made and so
7560          * the guest will never run with a stale PML value.
7561          */
7562         if (vcpu->kvm->arch.cpu_dirty_logging_count)
7563                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7564         else
7565                 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7566 }
7567
7568 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7569 {
7570         if (pi_pre_block(vcpu))
7571                 return 1;
7572
7573         if (kvm_lapic_hv_timer_in_use(vcpu))
7574                 kvm_lapic_switch_to_sw_timer(vcpu);
7575
7576         return 0;
7577 }
7578
7579 static void vmx_post_block(struct kvm_vcpu *vcpu)
7580 {
7581         if (kvm_x86_ops.set_hv_timer)
7582                 kvm_lapic_switch_to_hv_timer(vcpu);
7583
7584         pi_post_block(vcpu);
7585 }
7586
7587 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7588 {
7589         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7590                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7591                         FEAT_CTL_LMCE_ENABLED;
7592         else
7593                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7594                         ~FEAT_CTL_LMCE_ENABLED;
7595 }
7596
7597 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7598 {
7599         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7600         if (to_vmx(vcpu)->nested.nested_run_pending)
7601                 return -EBUSY;
7602         return !is_smm(vcpu);
7603 }
7604
7605 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7606 {
7607         struct vcpu_vmx *vmx = to_vmx(vcpu);
7608
7609         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7610         if (vmx->nested.smm.guest_mode)
7611                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7612
7613         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7614         vmx->nested.vmxon = false;
7615         vmx_clear_hlt(vcpu);
7616         return 0;
7617 }
7618
7619 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7620 {
7621         struct vcpu_vmx *vmx = to_vmx(vcpu);
7622         int ret;
7623
7624         if (vmx->nested.smm.vmxon) {
7625                 vmx->nested.vmxon = true;
7626                 vmx->nested.smm.vmxon = false;
7627         }
7628
7629         if (vmx->nested.smm.guest_mode) {
7630                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7631                 if (ret)
7632                         return ret;
7633
7634                 vmx->nested.smm.guest_mode = false;
7635         }
7636         return 0;
7637 }
7638
7639 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7640 {
7641         /* RSM will cause a vmexit anyway.  */
7642 }
7643
7644 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7645 {
7646         return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7647 }
7648
7649 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7650 {
7651         if (is_guest_mode(vcpu)) {
7652                 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7653
7654                 if (hrtimer_try_to_cancel(timer) == 1)
7655                         hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7656         }
7657 }
7658
7659 static void hardware_unsetup(void)
7660 {
7661         if (nested)
7662                 nested_vmx_hardware_unsetup();
7663
7664         free_kvm_area();
7665 }
7666
7667 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7668 {
7669         ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7670                           BIT(APICV_INHIBIT_REASON_HYPERV);
7671
7672         return supported & BIT(bit);
7673 }
7674
7675 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7676         .hardware_unsetup = hardware_unsetup,
7677
7678         .hardware_enable = hardware_enable,
7679         .hardware_disable = hardware_disable,
7680         .cpu_has_accelerated_tpr = report_flexpriority,
7681         .has_emulated_msr = vmx_has_emulated_msr,
7682
7683         .vm_size = sizeof(struct kvm_vmx),
7684         .vm_init = vmx_vm_init,
7685
7686         .vcpu_create = vmx_create_vcpu,
7687         .vcpu_free = vmx_free_vcpu,
7688         .vcpu_reset = vmx_vcpu_reset,
7689
7690         .prepare_guest_switch = vmx_prepare_switch_to_guest,
7691         .vcpu_load = vmx_vcpu_load,
7692         .vcpu_put = vmx_vcpu_put,
7693
7694         .update_exception_bitmap = vmx_update_exception_bitmap,
7695         .get_msr_feature = vmx_get_msr_feature,
7696         .get_msr = vmx_get_msr,
7697         .set_msr = vmx_set_msr,
7698         .get_segment_base = vmx_get_segment_base,
7699         .get_segment = vmx_get_segment,
7700         .set_segment = vmx_set_segment,
7701         .get_cpl = vmx_get_cpl,
7702         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7703         .set_cr0 = vmx_set_cr0,
7704         .is_valid_cr4 = vmx_is_valid_cr4,
7705         .set_cr4 = vmx_set_cr4,
7706         .set_efer = vmx_set_efer,
7707         .get_idt = vmx_get_idt,
7708         .set_idt = vmx_set_idt,
7709         .get_gdt = vmx_get_gdt,
7710         .set_gdt = vmx_set_gdt,
7711         .set_dr7 = vmx_set_dr7,
7712         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7713         .cache_reg = vmx_cache_reg,
7714         .get_rflags = vmx_get_rflags,
7715         .set_rflags = vmx_set_rflags,
7716
7717         .tlb_flush_all = vmx_flush_tlb_all,
7718         .tlb_flush_current = vmx_flush_tlb_current,
7719         .tlb_flush_gva = vmx_flush_tlb_gva,
7720         .tlb_flush_guest = vmx_flush_tlb_guest,
7721
7722         .run = vmx_vcpu_run,
7723         .handle_exit = vmx_handle_exit,
7724         .skip_emulated_instruction = vmx_skip_emulated_instruction,
7725         .update_emulated_instruction = vmx_update_emulated_instruction,
7726         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7727         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7728         .patch_hypercall = vmx_patch_hypercall,
7729         .set_irq = vmx_inject_irq,
7730         .set_nmi = vmx_inject_nmi,
7731         .queue_exception = vmx_queue_exception,
7732         .cancel_injection = vmx_cancel_injection,
7733         .interrupt_allowed = vmx_interrupt_allowed,
7734         .nmi_allowed = vmx_nmi_allowed,
7735         .get_nmi_mask = vmx_get_nmi_mask,
7736         .set_nmi_mask = vmx_set_nmi_mask,
7737         .enable_nmi_window = vmx_enable_nmi_window,
7738         .enable_irq_window = vmx_enable_irq_window,
7739         .update_cr8_intercept = vmx_update_cr8_intercept,
7740         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7741         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7742         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7743         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7744         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7745         .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7746         .hwapic_irr_update = vmx_hwapic_irr_update,
7747         .hwapic_isr_update = vmx_hwapic_isr_update,
7748         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7749         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7750         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7751         .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7752
7753         .set_tss_addr = vmx_set_tss_addr,
7754         .set_identity_map_addr = vmx_set_identity_map_addr,
7755         .get_mt_mask = vmx_get_mt_mask,
7756
7757         .get_exit_info = vmx_get_exit_info,
7758
7759         .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7760
7761         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7762
7763         .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7764
7765         .load_mmu_pgd = vmx_load_mmu_pgd,
7766
7767         .check_intercept = vmx_check_intercept,
7768         .handle_exit_irqoff = vmx_handle_exit_irqoff,
7769
7770         .request_immediate_exit = vmx_request_immediate_exit,
7771
7772         .sched_in = vmx_sched_in,
7773
7774         .cpu_dirty_log_size = PML_ENTITY_NUM,
7775         .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
7776
7777         .pre_block = vmx_pre_block,
7778         .post_block = vmx_post_block,
7779
7780         .pmu_ops = &intel_pmu_ops,
7781         .nested_ops = &vmx_nested_ops,
7782
7783         .update_pi_irte = pi_update_irte,
7784
7785 #ifdef CONFIG_X86_64
7786         .set_hv_timer = vmx_set_hv_timer,
7787         .cancel_hv_timer = vmx_cancel_hv_timer,
7788 #endif
7789
7790         .setup_mce = vmx_setup_mce,
7791
7792         .smi_allowed = vmx_smi_allowed,
7793         .pre_enter_smm = vmx_pre_enter_smm,
7794         .pre_leave_smm = vmx_pre_leave_smm,
7795         .enable_smi_window = vmx_enable_smi_window,
7796
7797         .can_emulate_instruction = vmx_can_emulate_instruction,
7798         .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7799         .migrate_timers = vmx_migrate_timers,
7800
7801         .msr_filter_changed = vmx_msr_filter_changed,
7802         .complete_emulated_msr = kvm_complete_insn_gp,
7803
7804         .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7805 };
7806
7807 static __init int hardware_setup(void)
7808 {
7809         unsigned long host_bndcfgs;
7810         struct desc_ptr dt;
7811         int r, i, ept_lpage_level;
7812
7813         store_idt(&dt);
7814         host_idt_base = dt.address;
7815
7816         for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7817                 kvm_define_user_return_msr(i, vmx_uret_msrs_list[i]);
7818
7819         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7820                 return -EIO;
7821
7822         if (boot_cpu_has(X86_FEATURE_NX))
7823                 kvm_enable_efer_bits(EFER_NX);
7824
7825         if (boot_cpu_has(X86_FEATURE_MPX)) {
7826                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7827                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7828         }
7829
7830         if (!cpu_has_vmx_mpx())
7831                 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7832                                     XFEATURE_MASK_BNDCSR);
7833
7834         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7835             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7836                 enable_vpid = 0;
7837
7838         if (!cpu_has_vmx_ept() ||
7839             !cpu_has_vmx_ept_4levels() ||
7840             !cpu_has_vmx_ept_mt_wb() ||
7841             !cpu_has_vmx_invept_global())
7842                 enable_ept = 0;
7843
7844         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7845                 enable_ept_ad_bits = 0;
7846
7847         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7848                 enable_unrestricted_guest = 0;
7849
7850         if (!cpu_has_vmx_flexpriority())
7851                 flexpriority_enabled = 0;
7852
7853         if (!cpu_has_virtual_nmis())
7854                 enable_vnmi = 0;
7855
7856         /*
7857          * set_apic_access_page_addr() is used to reload apic access
7858          * page upon invalidation.  No need to do anything if not
7859          * using the APIC_ACCESS_ADDR VMCS field.
7860          */
7861         if (!flexpriority_enabled)
7862                 vmx_x86_ops.set_apic_access_page_addr = NULL;
7863
7864         if (!cpu_has_vmx_tpr_shadow())
7865                 vmx_x86_ops.update_cr8_intercept = NULL;
7866
7867 #if IS_ENABLED(CONFIG_HYPERV)
7868         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7869             && enable_ept) {
7870                 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7871                 vmx_x86_ops.tlb_remote_flush_with_range =
7872                                 hv_remote_flush_tlb_with_range;
7873         }
7874 #endif
7875
7876         if (!cpu_has_vmx_ple()) {
7877                 ple_gap = 0;
7878                 ple_window = 0;
7879                 ple_window_grow = 0;
7880                 ple_window_max = 0;
7881                 ple_window_shrink = 0;
7882         }
7883
7884         if (!cpu_has_vmx_apicv()) {
7885                 enable_apicv = 0;
7886                 vmx_x86_ops.sync_pir_to_irr = NULL;
7887         }
7888
7889         if (cpu_has_vmx_tsc_scaling()) {
7890                 kvm_has_tsc_control = true;
7891                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7892                 kvm_tsc_scaling_ratio_frac_bits = 48;
7893         }
7894
7895         kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
7896
7897         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7898
7899         if (enable_ept)
7900                 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
7901                                       cpu_has_vmx_ept_execute_only());
7902
7903         if (!enable_ept)
7904                 ept_lpage_level = 0;
7905         else if (cpu_has_vmx_ept_1g_page())
7906                 ept_lpage_level = PG_LEVEL_1G;
7907         else if (cpu_has_vmx_ept_2m_page())
7908                 ept_lpage_level = PG_LEVEL_2M;
7909         else
7910                 ept_lpage_level = PG_LEVEL_4K;
7911         kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level);
7912
7913         /*
7914          * Only enable PML when hardware supports PML feature, and both EPT
7915          * and EPT A/D bit features are enabled -- PML depends on them to work.
7916          */
7917         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7918                 enable_pml = 0;
7919
7920         if (!enable_pml)
7921                 vmx_x86_ops.cpu_dirty_log_size = 0;
7922
7923         if (!cpu_has_vmx_preemption_timer())
7924                 enable_preemption_timer = false;
7925
7926         if (enable_preemption_timer) {
7927                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7928                 u64 vmx_msr;
7929
7930                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7931                 cpu_preemption_timer_multi =
7932                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7933
7934                 if (tsc_khz)
7935                         use_timer_freq = (u64)tsc_khz * 1000;
7936                 use_timer_freq >>= cpu_preemption_timer_multi;
7937
7938                 /*
7939                  * KVM "disables" the preemption timer by setting it to its max
7940                  * value.  Don't use the timer if it might cause spurious exits
7941                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7942                  */
7943                 if (use_timer_freq > 0xffffffffu / 10)
7944                         enable_preemption_timer = false;
7945         }
7946
7947         if (!enable_preemption_timer) {
7948                 vmx_x86_ops.set_hv_timer = NULL;
7949                 vmx_x86_ops.cancel_hv_timer = NULL;
7950                 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7951         }
7952
7953         kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
7954
7955         kvm_mce_cap_supported |= MCG_LMCE_P;
7956
7957         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7958                 return -EINVAL;
7959         if (!enable_ept || !cpu_has_vmx_intel_pt())
7960                 pt_mode = PT_MODE_SYSTEM;
7961
7962         setup_default_sgx_lepubkeyhash();
7963
7964         if (nested) {
7965                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7966                                            vmx_capability.ept);
7967
7968                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7969                 if (r)
7970                         return r;
7971         }
7972
7973         vmx_set_cpu_caps();
7974
7975         r = alloc_kvm_area();
7976         if (r)
7977                 nested_vmx_hardware_unsetup();
7978         return r;
7979 }
7980
7981 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7982         .cpu_has_kvm_support = cpu_has_kvm_support,
7983         .disabled_by_bios = vmx_disabled_by_bios,
7984         .check_processor_compatibility = vmx_check_processor_compat,
7985         .hardware_setup = hardware_setup,
7986
7987         .runtime_ops = &vmx_x86_ops,
7988 };
7989
7990 static void vmx_cleanup_l1d_flush(void)
7991 {
7992         if (vmx_l1d_flush_pages) {
7993                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7994                 vmx_l1d_flush_pages = NULL;
7995         }
7996         /* Restore state so sysfs ignores VMX */
7997         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7998 }
7999
8000 static void vmx_exit(void)
8001 {
8002 #ifdef CONFIG_KEXEC_CORE
8003         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8004         synchronize_rcu();
8005 #endif
8006
8007         kvm_exit();
8008
8009 #if IS_ENABLED(CONFIG_HYPERV)
8010         if (static_branch_unlikely(&enable_evmcs)) {
8011                 int cpu;
8012                 struct hv_vp_assist_page *vp_ap;
8013                 /*
8014                  * Reset everything to support using non-enlightened VMCS
8015                  * access later (e.g. when we reload the module with
8016                  * enlightened_vmcs=0)
8017                  */
8018                 for_each_online_cpu(cpu) {
8019                         vp_ap = hv_get_vp_assist_page(cpu);
8020
8021                         if (!vp_ap)
8022                                 continue;
8023
8024                         vp_ap->nested_control.features.directhypercall = 0;
8025                         vp_ap->current_nested_vmcs = 0;
8026                         vp_ap->enlighten_vmentry = 0;
8027                 }
8028
8029                 static_branch_disable(&enable_evmcs);
8030         }
8031 #endif
8032         vmx_cleanup_l1d_flush();
8033 }
8034 module_exit(vmx_exit);
8035
8036 static int __init vmx_init(void)
8037 {
8038         int r, cpu;
8039
8040 #if IS_ENABLED(CONFIG_HYPERV)
8041         /*
8042          * Enlightened VMCS usage should be recommended and the host needs
8043          * to support eVMCS v1 or above. We can also disable eVMCS support
8044          * with module parameter.
8045          */
8046         if (enlightened_vmcs &&
8047             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8048             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8049             KVM_EVMCS_VERSION) {
8050                 int cpu;
8051
8052                 /* Check that we have assist pages on all online CPUs */
8053                 for_each_online_cpu(cpu) {
8054                         if (!hv_get_vp_assist_page(cpu)) {
8055                                 enlightened_vmcs = false;
8056                                 break;
8057                         }
8058                 }
8059
8060                 if (enlightened_vmcs) {
8061                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8062                         static_branch_enable(&enable_evmcs);
8063                 }
8064
8065                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8066                         vmx_x86_ops.enable_direct_tlbflush
8067                                 = hv_enable_direct_tlbflush;
8068
8069         } else {
8070                 enlightened_vmcs = false;
8071         }
8072 #endif
8073
8074         r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8075                      __alignof__(struct vcpu_vmx), THIS_MODULE);
8076         if (r)
8077                 return r;
8078
8079         /*
8080          * Must be called after kvm_init() so enable_ept is properly set
8081          * up. Hand the parameter mitigation value in which was stored in
8082          * the pre module init parser. If no parameter was given, it will
8083          * contain 'auto' which will be turned into the default 'cond'
8084          * mitigation mode.
8085          */
8086         r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8087         if (r) {
8088                 vmx_exit();
8089                 return r;
8090         }
8091
8092         for_each_possible_cpu(cpu) {
8093                 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8094
8095                 pi_init_cpu(cpu);
8096         }
8097
8098 #ifdef CONFIG_KEXEC_CORE
8099         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8100                            crash_vmclear_local_loaded_vmcss);
8101 #endif
8102         vmx_check_vmcs12_offsets();
8103
8104         /*
8105          * Shadow paging doesn't have a (further) performance penalty
8106          * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8107          * by default
8108          */
8109         if (!enable_ept)
8110                 allow_smaller_maxphyaddr = true;
8111
8112         return 0;
8113 }
8114 module_init(vmx_init);