KVM: x86: Move vendor CR4 validity check to dedicated kvm_x86_ops hook
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/io.h>
40 #include <asm/irq_remapping.h>
41 #include <asm/kexec.h>
42 #include <asm/perf_event.h>
43 #include <asm/mce.h>
44 #include <asm/mmu_context.h>
45 #include <asm/mshyperv.h>
46 #include <asm/mwait.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "irq.h"
55 #include "kvm_cache_regs.h"
56 #include "lapic.h"
57 #include "mmu.h"
58 #include "nested.h"
59 #include "pmu.h"
60 #include "trace.h"
61 #include "vmcs.h"
62 #include "vmcs12.h"
63 #include "vmx.h"
64 #include "x86.h"
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 #ifdef MODULE
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71         X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
72         {}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75 #endif
76
77 bool __read_mostly enable_vpid = 1;
78 module_param_named(vpid, enable_vpid, bool, 0444);
79
80 static bool __read_mostly enable_vnmi = 1;
81 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
82
83 bool __read_mostly flexpriority_enabled = 1;
84 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
85
86 bool __read_mostly enable_ept = 1;
87 module_param_named(ept, enable_ept, bool, S_IRUGO);
88
89 bool __read_mostly enable_unrestricted_guest = 1;
90 module_param_named(unrestricted_guest,
91                         enable_unrestricted_guest, bool, S_IRUGO);
92
93 bool __read_mostly enable_ept_ad_bits = 1;
94 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
95
96 static bool __read_mostly emulate_invalid_guest_state = true;
97 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
98
99 static bool __read_mostly fasteoi = 1;
100 module_param(fasteoi, bool, S_IRUGO);
101
102 bool __read_mostly enable_apicv = 1;
103 module_param(enable_apicv, bool, S_IRUGO);
104
105 /*
106  * If nested=1, nested virtualization is supported, i.e., guests may use
107  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
108  * use VMX instructions.
109  */
110 static bool __read_mostly nested = 1;
111 module_param(nested, bool, S_IRUGO);
112
113 bool __read_mostly enable_pml = 1;
114 module_param_named(pml, enable_pml, bool, S_IRUGO);
115
116 static bool __read_mostly dump_invalid_vmcs = 0;
117 module_param(dump_invalid_vmcs, bool, 0644);
118
119 #define MSR_BITMAP_MODE_X2APIC          1
120 #define MSR_BITMAP_MODE_X2APIC_APICV    2
121
122 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
123
124 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
125 static int __read_mostly cpu_preemption_timer_multi;
126 static bool __read_mostly enable_preemption_timer = 1;
127 #ifdef CONFIG_X86_64
128 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
129 #endif
130
131 extern bool __read_mostly allow_smaller_maxphyaddr;
132 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
133
134 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
135 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
136 #define KVM_VM_CR0_ALWAYS_ON                            \
137         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
138          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
139
140 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
141 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
142 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
143
144 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
145
146 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
147         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
148         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
149         RTIT_STATUS_BYTECNT))
150
151 /*
152  * List of MSRs that can be directly passed to the guest.
153  * In addition to these x2apic and PT MSRs are handled specially.
154  */
155 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
156         MSR_IA32_SPEC_CTRL,
157         MSR_IA32_PRED_CMD,
158         MSR_IA32_TSC,
159         MSR_FS_BASE,
160         MSR_GS_BASE,
161         MSR_KERNEL_GS_BASE,
162         MSR_IA32_SYSENTER_CS,
163         MSR_IA32_SYSENTER_ESP,
164         MSR_IA32_SYSENTER_EIP,
165         MSR_CORE_C1_RES,
166         MSR_CORE_C3_RESIDENCY,
167         MSR_CORE_C6_RESIDENCY,
168         MSR_CORE_C7_RESIDENCY,
169 };
170
171 /*
172  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
173  * ple_gap:    upper bound on the amount of time between two successive
174  *             executions of PAUSE in a loop. Also indicate if ple enabled.
175  *             According to test, this time is usually smaller than 128 cycles.
176  * ple_window: upper bound on the amount of time a guest is allowed to execute
177  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
178  *             less than 2^12 cycles
179  * Time is measured based on a counter that runs at the same rate as the TSC,
180  * refer SDM volume 3b section 21.6.13 & 22.1.3.
181  */
182 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
183 module_param(ple_gap, uint, 0444);
184
185 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
186 module_param(ple_window, uint, 0444);
187
188 /* Default doubles per-vcpu window every exit. */
189 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
190 module_param(ple_window_grow, uint, 0444);
191
192 /* Default resets per-vcpu window every exit to ple_window. */
193 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
194 module_param(ple_window_shrink, uint, 0444);
195
196 /* Default is to compute the maximum so we can never overflow. */
197 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
198 module_param(ple_window_max, uint, 0444);
199
200 /* Default is SYSTEM mode, 1 for host-guest mode */
201 int __read_mostly pt_mode = PT_MODE_SYSTEM;
202 module_param(pt_mode, int, S_IRUGO);
203
204 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
205 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
206 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
207
208 /* Storage for pre module init parameter parsing */
209 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
210
211 static const struct {
212         const char *option;
213         bool for_parse;
214 } vmentry_l1d_param[] = {
215         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
216         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
217         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
218         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
219         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
220         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
221 };
222
223 #define L1D_CACHE_ORDER 4
224 static void *vmx_l1d_flush_pages;
225
226 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
227 {
228         struct page *page;
229         unsigned int i;
230
231         if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
232                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
233                 return 0;
234         }
235
236         if (!enable_ept) {
237                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
238                 return 0;
239         }
240
241         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
242                 u64 msr;
243
244                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
245                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
246                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
247                         return 0;
248                 }
249         }
250
251         /* If set to auto use the default l1tf mitigation method */
252         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
253                 switch (l1tf_mitigation) {
254                 case L1TF_MITIGATION_OFF:
255                         l1tf = VMENTER_L1D_FLUSH_NEVER;
256                         break;
257                 case L1TF_MITIGATION_FLUSH_NOWARN:
258                 case L1TF_MITIGATION_FLUSH:
259                 case L1TF_MITIGATION_FLUSH_NOSMT:
260                         l1tf = VMENTER_L1D_FLUSH_COND;
261                         break;
262                 case L1TF_MITIGATION_FULL:
263                 case L1TF_MITIGATION_FULL_FORCE:
264                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
265                         break;
266                 }
267         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
268                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
269         }
270
271         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
272             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
273                 /*
274                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
275                  * lifetime and so should not be charged to a memcg.
276                  */
277                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
278                 if (!page)
279                         return -ENOMEM;
280                 vmx_l1d_flush_pages = page_address(page);
281
282                 /*
283                  * Initialize each page with a different pattern in
284                  * order to protect against KSM in the nested
285                  * virtualization case.
286                  */
287                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
288                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
289                                PAGE_SIZE);
290                 }
291         }
292
293         l1tf_vmx_mitigation = l1tf;
294
295         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
296                 static_branch_enable(&vmx_l1d_should_flush);
297         else
298                 static_branch_disable(&vmx_l1d_should_flush);
299
300         if (l1tf == VMENTER_L1D_FLUSH_COND)
301                 static_branch_enable(&vmx_l1d_flush_cond);
302         else
303                 static_branch_disable(&vmx_l1d_flush_cond);
304         return 0;
305 }
306
307 static int vmentry_l1d_flush_parse(const char *s)
308 {
309         unsigned int i;
310
311         if (s) {
312                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
313                         if (vmentry_l1d_param[i].for_parse &&
314                             sysfs_streq(s, vmentry_l1d_param[i].option))
315                                 return i;
316                 }
317         }
318         return -EINVAL;
319 }
320
321 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
322 {
323         int l1tf, ret;
324
325         l1tf = vmentry_l1d_flush_parse(s);
326         if (l1tf < 0)
327                 return l1tf;
328
329         if (!boot_cpu_has(X86_BUG_L1TF))
330                 return 0;
331
332         /*
333          * Has vmx_init() run already? If not then this is the pre init
334          * parameter parsing. In that case just store the value and let
335          * vmx_init() do the proper setup after enable_ept has been
336          * established.
337          */
338         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
339                 vmentry_l1d_flush_param = l1tf;
340                 return 0;
341         }
342
343         mutex_lock(&vmx_l1d_flush_mutex);
344         ret = vmx_setup_l1d_flush(l1tf);
345         mutex_unlock(&vmx_l1d_flush_mutex);
346         return ret;
347 }
348
349 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
350 {
351         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
352                 return sprintf(s, "???\n");
353
354         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
355 }
356
357 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
358         .set = vmentry_l1d_flush_set,
359         .get = vmentry_l1d_flush_get,
360 };
361 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
362
363 static u32 vmx_segment_access_rights(struct kvm_segment *var);
364 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
365                                                           u32 msr, int type);
366
367 void vmx_vmexit(void);
368
369 #define vmx_insn_failed(fmt...)         \
370 do {                                    \
371         WARN_ONCE(1, fmt);              \
372         pr_warn_ratelimited(fmt);       \
373 } while (0)
374
375 asmlinkage void vmread_error(unsigned long field, bool fault)
376 {
377         if (fault)
378                 kvm_spurious_fault();
379         else
380                 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
381 }
382
383 noinline void vmwrite_error(unsigned long field, unsigned long value)
384 {
385         vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
386                         field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
387 }
388
389 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
390 {
391         vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
392 }
393
394 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
395 {
396         vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
397 }
398
399 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
400 {
401         vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
402                         ext, vpid, gva);
403 }
404
405 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
406 {
407         vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
408                         ext, eptp, gpa);
409 }
410
411 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
412 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
413 /*
414  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
415  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
416  */
417 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
418
419 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
420 static DEFINE_SPINLOCK(vmx_vpid_lock);
421
422 struct vmcs_config vmcs_config;
423 struct vmx_capability vmx_capability;
424
425 #define VMX_SEGMENT_FIELD(seg)                                  \
426         [VCPU_SREG_##seg] = {                                   \
427                 .selector = GUEST_##seg##_SELECTOR,             \
428                 .base = GUEST_##seg##_BASE,                     \
429                 .limit = GUEST_##seg##_LIMIT,                   \
430                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
431         }
432
433 static const struct kvm_vmx_segment_field {
434         unsigned selector;
435         unsigned base;
436         unsigned limit;
437         unsigned ar_bytes;
438 } kvm_vmx_segment_fields[] = {
439         VMX_SEGMENT_FIELD(CS),
440         VMX_SEGMENT_FIELD(DS),
441         VMX_SEGMENT_FIELD(ES),
442         VMX_SEGMENT_FIELD(FS),
443         VMX_SEGMENT_FIELD(GS),
444         VMX_SEGMENT_FIELD(SS),
445         VMX_SEGMENT_FIELD(TR),
446         VMX_SEGMENT_FIELD(LDTR),
447 };
448
449 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
450 {
451         vmx->segment_cache.bitmask = 0;
452 }
453
454 static unsigned long host_idt_base;
455
456 /*
457  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
458  * will emulate SYSCALL in legacy mode if the vendor string in guest
459  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
460  * support this emulation, IA32_STAR must always be included in
461  * vmx_uret_msrs_list[], even in i386 builds.
462  */
463 static const u32 vmx_uret_msrs_list[] = {
464 #ifdef CONFIG_X86_64
465         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
466 #endif
467         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
468         MSR_IA32_TSX_CTRL,
469 };
470
471 #if IS_ENABLED(CONFIG_HYPERV)
472 static bool __read_mostly enlightened_vmcs = true;
473 module_param(enlightened_vmcs, bool, 0444);
474
475 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
476 static void check_ept_pointer_match(struct kvm *kvm)
477 {
478         struct kvm_vcpu *vcpu;
479         u64 tmp_eptp = INVALID_PAGE;
480         int i;
481
482         kvm_for_each_vcpu(i, vcpu, kvm) {
483                 if (!VALID_PAGE(tmp_eptp)) {
484                         tmp_eptp = to_vmx(vcpu)->ept_pointer;
485                 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
486                         to_kvm_vmx(kvm)->ept_pointers_match
487                                 = EPT_POINTERS_MISMATCH;
488                         return;
489                 }
490         }
491
492         to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
493 }
494
495 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
496                 void *data)
497 {
498         struct kvm_tlb_range *range = data;
499
500         return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
501                         range->pages);
502 }
503
504 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
505                 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
506 {
507         u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
508
509         /*
510          * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
511          * of the base of EPT PML4 table, strip off EPT configuration
512          * information.
513          */
514         if (range)
515                 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
516                                 kvm_fill_hv_flush_list_func, (void *)range);
517         else
518                 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
519 }
520
521 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
522                 struct kvm_tlb_range *range)
523 {
524         struct kvm_vcpu *vcpu;
525         int ret = 0, i;
526
527         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
528
529         if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
530                 check_ept_pointer_match(kvm);
531
532         if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
533                 kvm_for_each_vcpu(i, vcpu, kvm) {
534                         /* If ept_pointer is invalid pointer, bypass flush request. */
535                         if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
536                                 ret |= __hv_remote_flush_tlb_with_range(
537                                         kvm, vcpu, range);
538                 }
539         } else {
540                 ret = __hv_remote_flush_tlb_with_range(kvm,
541                                 kvm_get_vcpu(kvm, 0), range);
542         }
543
544         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
545         return ret;
546 }
547 static int hv_remote_flush_tlb(struct kvm *kvm)
548 {
549         return hv_remote_flush_tlb_with_range(kvm, NULL);
550 }
551
552 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
553 {
554         struct hv_enlightened_vmcs *evmcs;
555         struct hv_partition_assist_pg **p_hv_pa_pg =
556                         &vcpu->kvm->arch.hyperv.hv_pa_pg;
557         /*
558          * Synthetic VM-Exit is not enabled in current code and so All
559          * evmcs in singe VM shares same assist page.
560          */
561         if (!*p_hv_pa_pg)
562                 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
563
564         if (!*p_hv_pa_pg)
565                 return -ENOMEM;
566
567         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
568
569         evmcs->partition_assist_page =
570                 __pa(*p_hv_pa_pg);
571         evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
572         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
573
574         return 0;
575 }
576
577 #endif /* IS_ENABLED(CONFIG_HYPERV) */
578
579 /*
580  * Comment's format: document - errata name - stepping - processor name.
581  * Refer from
582  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
583  */
584 static u32 vmx_preemption_cpu_tfms[] = {
585 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
586 0x000206E6,
587 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
588 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
589 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
590 0x00020652,
591 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
592 0x00020655,
593 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
594 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
595 /*
596  * 320767.pdf - AAP86  - B1 -
597  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
598  */
599 0x000106E5,
600 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
601 0x000106A0,
602 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
603 0x000106A1,
604 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
605 0x000106A4,
606  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
607  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
608  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
609 0x000106A5,
610  /* Xeon E3-1220 V2 */
611 0x000306A8,
612 };
613
614 static inline bool cpu_has_broken_vmx_preemption_timer(void)
615 {
616         u32 eax = cpuid_eax(0x00000001), i;
617
618         /* Clear the reserved bits */
619         eax &= ~(0x3U << 14 | 0xfU << 28);
620         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
621                 if (eax == vmx_preemption_cpu_tfms[i])
622                         return true;
623
624         return false;
625 }
626
627 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
628 {
629         return flexpriority_enabled && lapic_in_kernel(vcpu);
630 }
631
632 static inline bool report_flexpriority(void)
633 {
634         return flexpriority_enabled;
635 }
636
637 static int possible_passthrough_msr_slot(u32 msr)
638 {
639         u32 i;
640
641         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
642                 if (vmx_possible_passthrough_msrs[i] == msr)
643                         return i;
644
645         return -ENOENT;
646 }
647
648 static bool is_valid_passthrough_msr(u32 msr)
649 {
650         bool r;
651
652         switch (msr) {
653         case 0x800 ... 0x8ff:
654                 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
655                 return true;
656         case MSR_IA32_RTIT_STATUS:
657         case MSR_IA32_RTIT_OUTPUT_BASE:
658         case MSR_IA32_RTIT_OUTPUT_MASK:
659         case MSR_IA32_RTIT_CR3_MATCH:
660         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
661                 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
662                 return true;
663         }
664
665         r = possible_passthrough_msr_slot(msr) != -ENOENT;
666
667         WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
668
669         return r;
670 }
671
672 static inline int __vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
673 {
674         int i;
675
676         for (i = 0; i < vmx->nr_uret_msrs; ++i)
677                 if (vmx_uret_msrs_list[vmx->guest_uret_msrs[i].slot] == msr)
678                         return i;
679         return -1;
680 }
681
682 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
683 {
684         int i;
685
686         i = __vmx_find_uret_msr(vmx, msr);
687         if (i >= 0)
688                 return &vmx->guest_uret_msrs[i];
689         return NULL;
690 }
691
692 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
693                                   struct vmx_uret_msr *msr, u64 data)
694 {
695         int ret = 0;
696
697         u64 old_msr_data = msr->data;
698         msr->data = data;
699         if (msr - vmx->guest_uret_msrs < vmx->nr_active_uret_msrs) {
700                 preempt_disable();
701                 ret = kvm_set_user_return_msr(msr->slot, msr->data, msr->mask);
702                 preempt_enable();
703                 if (ret)
704                         msr->data = old_msr_data;
705         }
706         return ret;
707 }
708
709 #ifdef CONFIG_KEXEC_CORE
710 static void crash_vmclear_local_loaded_vmcss(void)
711 {
712         int cpu = raw_smp_processor_id();
713         struct loaded_vmcs *v;
714
715         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
716                             loaded_vmcss_on_cpu_link)
717                 vmcs_clear(v->vmcs);
718 }
719 #endif /* CONFIG_KEXEC_CORE */
720
721 static void __loaded_vmcs_clear(void *arg)
722 {
723         struct loaded_vmcs *loaded_vmcs = arg;
724         int cpu = raw_smp_processor_id();
725
726         if (loaded_vmcs->cpu != cpu)
727                 return; /* vcpu migration can race with cpu offline */
728         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
729                 per_cpu(current_vmcs, cpu) = NULL;
730
731         vmcs_clear(loaded_vmcs->vmcs);
732         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
733                 vmcs_clear(loaded_vmcs->shadow_vmcs);
734
735         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
736
737         /*
738          * Ensure all writes to loaded_vmcs, including deleting it from its
739          * current percpu list, complete before setting loaded_vmcs->vcpu to
740          * -1, otherwise a different cpu can see vcpu == -1 first and add
741          * loaded_vmcs to its percpu list before it's deleted from this cpu's
742          * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
743          */
744         smp_wmb();
745
746         loaded_vmcs->cpu = -1;
747         loaded_vmcs->launched = 0;
748 }
749
750 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
751 {
752         int cpu = loaded_vmcs->cpu;
753
754         if (cpu != -1)
755                 smp_call_function_single(cpu,
756                          __loaded_vmcs_clear, loaded_vmcs, 1);
757 }
758
759 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
760                                        unsigned field)
761 {
762         bool ret;
763         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
764
765         if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
766                 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
767                 vmx->segment_cache.bitmask = 0;
768         }
769         ret = vmx->segment_cache.bitmask & mask;
770         vmx->segment_cache.bitmask |= mask;
771         return ret;
772 }
773
774 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
775 {
776         u16 *p = &vmx->segment_cache.seg[seg].selector;
777
778         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
779                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
780         return *p;
781 }
782
783 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
784 {
785         ulong *p = &vmx->segment_cache.seg[seg].base;
786
787         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
788                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
789         return *p;
790 }
791
792 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
793 {
794         u32 *p = &vmx->segment_cache.seg[seg].limit;
795
796         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
797                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
798         return *p;
799 }
800
801 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
802 {
803         u32 *p = &vmx->segment_cache.seg[seg].ar;
804
805         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
806                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
807         return *p;
808 }
809
810 void update_exception_bitmap(struct kvm_vcpu *vcpu)
811 {
812         u32 eb;
813
814         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
815              (1u << DB_VECTOR) | (1u << AC_VECTOR);
816         /*
817          * Guest access to VMware backdoor ports could legitimately
818          * trigger #GP because of TSS I/O permission bitmap.
819          * We intercept those #GP and allow access to them anyway
820          * as VMware does.
821          */
822         if (enable_vmware_backdoor)
823                 eb |= (1u << GP_VECTOR);
824         if ((vcpu->guest_debug &
825              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
826             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
827                 eb |= 1u << BP_VECTOR;
828         if (to_vmx(vcpu)->rmode.vm86_active)
829                 eb = ~0;
830         if (!vmx_need_pf_intercept(vcpu))
831                 eb &= ~(1u << PF_VECTOR);
832
833         /* When we are running a nested L2 guest and L1 specified for it a
834          * certain exception bitmap, we must trap the same exceptions and pass
835          * them to L1. When running L2, we will only handle the exceptions
836          * specified above if L1 did not want them.
837          */
838         if (is_guest_mode(vcpu))
839                 eb |= get_vmcs12(vcpu)->exception_bitmap;
840         else {
841                 /*
842                  * If EPT is enabled, #PF is only trapped if MAXPHYADDR is mismatched
843                  * between guest and host.  In that case we only care about present
844                  * faults.  For vmcs02, however, PFEC_MASK and PFEC_MATCH are set in
845                  * prepare_vmcs02_rare.
846                  */
847                 bool selective_pf_trap = enable_ept && (eb & (1u << PF_VECTOR));
848                 int mask = selective_pf_trap ? PFERR_PRESENT_MASK : 0;
849                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
850                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, mask);
851         }
852
853         vmcs_write32(EXCEPTION_BITMAP, eb);
854 }
855
856 /*
857  * Check if MSR is intercepted for currently loaded MSR bitmap.
858  */
859 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
860 {
861         unsigned long *msr_bitmap;
862         int f = sizeof(unsigned long);
863
864         if (!cpu_has_vmx_msr_bitmap())
865                 return true;
866
867         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
868
869         if (msr <= 0x1fff) {
870                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
871         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
872                 msr &= 0x1fff;
873                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
874         }
875
876         return true;
877 }
878
879 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
880                 unsigned long entry, unsigned long exit)
881 {
882         vm_entry_controls_clearbit(vmx, entry);
883         vm_exit_controls_clearbit(vmx, exit);
884 }
885
886 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
887 {
888         unsigned int i;
889
890         for (i = 0; i < m->nr; ++i) {
891                 if (m->val[i].index == msr)
892                         return i;
893         }
894         return -ENOENT;
895 }
896
897 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
898 {
899         int i;
900         struct msr_autoload *m = &vmx->msr_autoload;
901
902         switch (msr) {
903         case MSR_EFER:
904                 if (cpu_has_load_ia32_efer()) {
905                         clear_atomic_switch_msr_special(vmx,
906                                         VM_ENTRY_LOAD_IA32_EFER,
907                                         VM_EXIT_LOAD_IA32_EFER);
908                         return;
909                 }
910                 break;
911         case MSR_CORE_PERF_GLOBAL_CTRL:
912                 if (cpu_has_load_perf_global_ctrl()) {
913                         clear_atomic_switch_msr_special(vmx,
914                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
915                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
916                         return;
917                 }
918                 break;
919         }
920         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
921         if (i < 0)
922                 goto skip_guest;
923         --m->guest.nr;
924         m->guest.val[i] = m->guest.val[m->guest.nr];
925         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
926
927 skip_guest:
928         i = vmx_find_loadstore_msr_slot(&m->host, msr);
929         if (i < 0)
930                 return;
931
932         --m->host.nr;
933         m->host.val[i] = m->host.val[m->host.nr];
934         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
935 }
936
937 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
938                 unsigned long entry, unsigned long exit,
939                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
940                 u64 guest_val, u64 host_val)
941 {
942         vmcs_write64(guest_val_vmcs, guest_val);
943         if (host_val_vmcs != HOST_IA32_EFER)
944                 vmcs_write64(host_val_vmcs, host_val);
945         vm_entry_controls_setbit(vmx, entry);
946         vm_exit_controls_setbit(vmx, exit);
947 }
948
949 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
950                                   u64 guest_val, u64 host_val, bool entry_only)
951 {
952         int i, j = 0;
953         struct msr_autoload *m = &vmx->msr_autoload;
954
955         switch (msr) {
956         case MSR_EFER:
957                 if (cpu_has_load_ia32_efer()) {
958                         add_atomic_switch_msr_special(vmx,
959                                         VM_ENTRY_LOAD_IA32_EFER,
960                                         VM_EXIT_LOAD_IA32_EFER,
961                                         GUEST_IA32_EFER,
962                                         HOST_IA32_EFER,
963                                         guest_val, host_val);
964                         return;
965                 }
966                 break;
967         case MSR_CORE_PERF_GLOBAL_CTRL:
968                 if (cpu_has_load_perf_global_ctrl()) {
969                         add_atomic_switch_msr_special(vmx,
970                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
971                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
972                                         GUEST_IA32_PERF_GLOBAL_CTRL,
973                                         HOST_IA32_PERF_GLOBAL_CTRL,
974                                         guest_val, host_val);
975                         return;
976                 }
977                 break;
978         case MSR_IA32_PEBS_ENABLE:
979                 /* PEBS needs a quiescent period after being disabled (to write
980                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
981                  * provide that period, so a CPU could write host's record into
982                  * guest's memory.
983                  */
984                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
985         }
986
987         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
988         if (!entry_only)
989                 j = vmx_find_loadstore_msr_slot(&m->host, msr);
990
991         if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
992             (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
993                 printk_once(KERN_WARNING "Not enough msr switch entries. "
994                                 "Can't add msr %x\n", msr);
995                 return;
996         }
997         if (i < 0) {
998                 i = m->guest.nr++;
999                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1000         }
1001         m->guest.val[i].index = msr;
1002         m->guest.val[i].value = guest_val;
1003
1004         if (entry_only)
1005                 return;
1006
1007         if (j < 0) {
1008                 j = m->host.nr++;
1009                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1010         }
1011         m->host.val[j].index = msr;
1012         m->host.val[j].value = host_val;
1013 }
1014
1015 static bool update_transition_efer(struct vcpu_vmx *vmx)
1016 {
1017         u64 guest_efer = vmx->vcpu.arch.efer;
1018         u64 ignore_bits = 0;
1019         int i;
1020
1021         /* Shadow paging assumes NX to be available.  */
1022         if (!enable_ept)
1023                 guest_efer |= EFER_NX;
1024
1025         /*
1026          * LMA and LME handled by hardware; SCE meaningless outside long mode.
1027          */
1028         ignore_bits |= EFER_SCE;
1029 #ifdef CONFIG_X86_64
1030         ignore_bits |= EFER_LMA | EFER_LME;
1031         /* SCE is meaningful only in long mode on Intel */
1032         if (guest_efer & EFER_LMA)
1033                 ignore_bits &= ~(u64)EFER_SCE;
1034 #endif
1035
1036         /*
1037          * On EPT, we can't emulate NX, so we must switch EFER atomically.
1038          * On CPUs that support "load IA32_EFER", always switch EFER
1039          * atomically, since it's faster than switching it manually.
1040          */
1041         if (cpu_has_load_ia32_efer() ||
1042             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1043                 if (!(guest_efer & EFER_LMA))
1044                         guest_efer &= ~EFER_LME;
1045                 if (guest_efer != host_efer)
1046                         add_atomic_switch_msr(vmx, MSR_EFER,
1047                                               guest_efer, host_efer, false);
1048                 else
1049                         clear_atomic_switch_msr(vmx, MSR_EFER);
1050                 return false;
1051         }
1052
1053         i = __vmx_find_uret_msr(vmx, MSR_EFER);
1054         if (i < 0)
1055                 return false;
1056
1057         clear_atomic_switch_msr(vmx, MSR_EFER);
1058
1059         guest_efer &= ~ignore_bits;
1060         guest_efer |= host_efer & ignore_bits;
1061
1062         vmx->guest_uret_msrs[i].data = guest_efer;
1063         vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1064
1065         return true;
1066 }
1067
1068 #ifdef CONFIG_X86_32
1069 /*
1070  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1071  * VMCS rather than the segment table.  KVM uses this helper to figure
1072  * out the current bases to poke them into the VMCS before entry.
1073  */
1074 static unsigned long segment_base(u16 selector)
1075 {
1076         struct desc_struct *table;
1077         unsigned long v;
1078
1079         if (!(selector & ~SEGMENT_RPL_MASK))
1080                 return 0;
1081
1082         table = get_current_gdt_ro();
1083
1084         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1085                 u16 ldt_selector = kvm_read_ldt();
1086
1087                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1088                         return 0;
1089
1090                 table = (struct desc_struct *)segment_base(ldt_selector);
1091         }
1092         v = get_desc_base(&table[selector >> 3]);
1093         return v;
1094 }
1095 #endif
1096
1097 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1098 {
1099         return vmx_pt_mode_is_host_guest() &&
1100                !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1101 }
1102
1103 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1104 {
1105         /* The base must be 128-byte aligned and a legal physical address. */
1106         return !kvm_vcpu_is_illegal_gpa(vcpu, base) && !(base & 0x7f);
1107 }
1108
1109 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1110 {
1111         u32 i;
1112
1113         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1114         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1115         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1116         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1117         for (i = 0; i < addr_range; i++) {
1118                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1119                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1120         }
1121 }
1122
1123 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1124 {
1125         u32 i;
1126
1127         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1128         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1129         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1130         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1131         for (i = 0; i < addr_range; i++) {
1132                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1133                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1134         }
1135 }
1136
1137 static void pt_guest_enter(struct vcpu_vmx *vmx)
1138 {
1139         if (vmx_pt_mode_is_system())
1140                 return;
1141
1142         /*
1143          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1144          * Save host state before VM entry.
1145          */
1146         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1147         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1148                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1149                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1150                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1151         }
1152 }
1153
1154 static void pt_guest_exit(struct vcpu_vmx *vmx)
1155 {
1156         if (vmx_pt_mode_is_system())
1157                 return;
1158
1159         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1160                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1161                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1162         }
1163
1164         /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1165         wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1166 }
1167
1168 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1169                         unsigned long fs_base, unsigned long gs_base)
1170 {
1171         if (unlikely(fs_sel != host->fs_sel)) {
1172                 if (!(fs_sel & 7))
1173                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1174                 else
1175                         vmcs_write16(HOST_FS_SELECTOR, 0);
1176                 host->fs_sel = fs_sel;
1177         }
1178         if (unlikely(gs_sel != host->gs_sel)) {
1179                 if (!(gs_sel & 7))
1180                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1181                 else
1182                         vmcs_write16(HOST_GS_SELECTOR, 0);
1183                 host->gs_sel = gs_sel;
1184         }
1185         if (unlikely(fs_base != host->fs_base)) {
1186                 vmcs_writel(HOST_FS_BASE, fs_base);
1187                 host->fs_base = fs_base;
1188         }
1189         if (unlikely(gs_base != host->gs_base)) {
1190                 vmcs_writel(HOST_GS_BASE, gs_base);
1191                 host->gs_base = gs_base;
1192         }
1193 }
1194
1195 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1196 {
1197         struct vcpu_vmx *vmx = to_vmx(vcpu);
1198         struct vmcs_host_state *host_state;
1199 #ifdef CONFIG_X86_64
1200         int cpu = raw_smp_processor_id();
1201 #endif
1202         unsigned long fs_base, gs_base;
1203         u16 fs_sel, gs_sel;
1204         int i;
1205
1206         vmx->req_immediate_exit = false;
1207
1208         /*
1209          * Note that guest MSRs to be saved/restored can also be changed
1210          * when guest state is loaded. This happens when guest transitions
1211          * to/from long-mode by setting MSR_EFER.LMA.
1212          */
1213         if (!vmx->guest_uret_msrs_loaded) {
1214                 vmx->guest_uret_msrs_loaded = true;
1215                 for (i = 0; i < vmx->nr_active_uret_msrs; ++i)
1216                         kvm_set_user_return_msr(vmx->guest_uret_msrs[i].slot,
1217                                                 vmx->guest_uret_msrs[i].data,
1218                                                 vmx->guest_uret_msrs[i].mask);
1219
1220         }
1221
1222         if (vmx->nested.need_vmcs12_to_shadow_sync)
1223                 nested_sync_vmcs12_to_shadow(vcpu);
1224
1225         if (vmx->guest_state_loaded)
1226                 return;
1227
1228         host_state = &vmx->loaded_vmcs->host_state;
1229
1230         /*
1231          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1232          * allow segment selectors with cpl > 0 or ti == 1.
1233          */
1234         host_state->ldt_sel = kvm_read_ldt();
1235
1236 #ifdef CONFIG_X86_64
1237         savesegment(ds, host_state->ds_sel);
1238         savesegment(es, host_state->es_sel);
1239
1240         gs_base = cpu_kernelmode_gs_base(cpu);
1241         if (likely(is_64bit_mm(current->mm))) {
1242                 current_save_fsgs();
1243                 fs_sel = current->thread.fsindex;
1244                 gs_sel = current->thread.gsindex;
1245                 fs_base = current->thread.fsbase;
1246                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1247         } else {
1248                 savesegment(fs, fs_sel);
1249                 savesegment(gs, gs_sel);
1250                 fs_base = read_msr(MSR_FS_BASE);
1251                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1252         }
1253
1254         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1255 #else
1256         savesegment(fs, fs_sel);
1257         savesegment(gs, gs_sel);
1258         fs_base = segment_base(fs_sel);
1259         gs_base = segment_base(gs_sel);
1260 #endif
1261
1262         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1263         vmx->guest_state_loaded = true;
1264 }
1265
1266 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1267 {
1268         struct vmcs_host_state *host_state;
1269
1270         if (!vmx->guest_state_loaded)
1271                 return;
1272
1273         host_state = &vmx->loaded_vmcs->host_state;
1274
1275         ++vmx->vcpu.stat.host_state_reload;
1276
1277 #ifdef CONFIG_X86_64
1278         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1279 #endif
1280         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1281                 kvm_load_ldt(host_state->ldt_sel);
1282 #ifdef CONFIG_X86_64
1283                 load_gs_index(host_state->gs_sel);
1284 #else
1285                 loadsegment(gs, host_state->gs_sel);
1286 #endif
1287         }
1288         if (host_state->fs_sel & 7)
1289                 loadsegment(fs, host_state->fs_sel);
1290 #ifdef CONFIG_X86_64
1291         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1292                 loadsegment(ds, host_state->ds_sel);
1293                 loadsegment(es, host_state->es_sel);
1294         }
1295 #endif
1296         invalidate_tss_limit();
1297 #ifdef CONFIG_X86_64
1298         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1299 #endif
1300         load_fixmap_gdt(raw_smp_processor_id());
1301         vmx->guest_state_loaded = false;
1302         vmx->guest_uret_msrs_loaded = false;
1303 }
1304
1305 #ifdef CONFIG_X86_64
1306 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1307 {
1308         preempt_disable();
1309         if (vmx->guest_state_loaded)
1310                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1311         preempt_enable();
1312         return vmx->msr_guest_kernel_gs_base;
1313 }
1314
1315 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1316 {
1317         preempt_disable();
1318         if (vmx->guest_state_loaded)
1319                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1320         preempt_enable();
1321         vmx->msr_guest_kernel_gs_base = data;
1322 }
1323 #endif
1324
1325 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1326                         struct loaded_vmcs *buddy)
1327 {
1328         struct vcpu_vmx *vmx = to_vmx(vcpu);
1329         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1330         struct vmcs *prev;
1331
1332         if (!already_loaded) {
1333                 loaded_vmcs_clear(vmx->loaded_vmcs);
1334                 local_irq_disable();
1335
1336                 /*
1337                  * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1338                  * this cpu's percpu list, otherwise it may not yet be deleted
1339                  * from its previous cpu's percpu list.  Pairs with the
1340                  * smb_wmb() in __loaded_vmcs_clear().
1341                  */
1342                 smp_rmb();
1343
1344                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1345                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1346                 local_irq_enable();
1347         }
1348
1349         prev = per_cpu(current_vmcs, cpu);
1350         if (prev != vmx->loaded_vmcs->vmcs) {
1351                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1352                 vmcs_load(vmx->loaded_vmcs->vmcs);
1353
1354                 /*
1355                  * No indirect branch prediction barrier needed when switching
1356                  * the active VMCS within a guest, e.g. on nested VM-Enter.
1357                  * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1358                  */
1359                 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1360                         indirect_branch_prediction_barrier();
1361         }
1362
1363         if (!already_loaded) {
1364                 void *gdt = get_current_gdt_ro();
1365                 unsigned long sysenter_esp;
1366
1367                 /*
1368                  * Flush all EPTP/VPID contexts, the new pCPU may have stale
1369                  * TLB entries from its previous association with the vCPU.
1370                  */
1371                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1372
1373                 /*
1374                  * Linux uses per-cpu TSS and GDT, so set these when switching
1375                  * processors.  See 22.2.4.
1376                  */
1377                 vmcs_writel(HOST_TR_BASE,
1378                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1379                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1380
1381                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1382                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1383
1384                 vmx->loaded_vmcs->cpu = cpu;
1385         }
1386
1387         /* Setup TSC multiplier */
1388         if (kvm_has_tsc_control &&
1389             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1390                 decache_tsc_multiplier(vmx);
1391 }
1392
1393 /*
1394  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1395  * vcpu mutex is already taken.
1396  */
1397 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1398 {
1399         struct vcpu_vmx *vmx = to_vmx(vcpu);
1400
1401         vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1402
1403         vmx_vcpu_pi_load(vcpu, cpu);
1404
1405         vmx->host_debugctlmsr = get_debugctlmsr();
1406 }
1407
1408 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1409 {
1410         vmx_vcpu_pi_put(vcpu);
1411
1412         vmx_prepare_switch_to_host(to_vmx(vcpu));
1413 }
1414
1415 static bool emulation_required(struct kvm_vcpu *vcpu)
1416 {
1417         return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1418 }
1419
1420 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1421 {
1422         struct vcpu_vmx *vmx = to_vmx(vcpu);
1423         unsigned long rflags, save_rflags;
1424
1425         if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1426                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1427                 rflags = vmcs_readl(GUEST_RFLAGS);
1428                 if (vmx->rmode.vm86_active) {
1429                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1430                         save_rflags = vmx->rmode.save_rflags;
1431                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1432                 }
1433                 vmx->rflags = rflags;
1434         }
1435         return vmx->rflags;
1436 }
1437
1438 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1439 {
1440         struct vcpu_vmx *vmx = to_vmx(vcpu);
1441         unsigned long old_rflags;
1442
1443         if (is_unrestricted_guest(vcpu)) {
1444                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1445                 vmx->rflags = rflags;
1446                 vmcs_writel(GUEST_RFLAGS, rflags);
1447                 return;
1448         }
1449
1450         old_rflags = vmx_get_rflags(vcpu);
1451         vmx->rflags = rflags;
1452         if (vmx->rmode.vm86_active) {
1453                 vmx->rmode.save_rflags = rflags;
1454                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1455         }
1456         vmcs_writel(GUEST_RFLAGS, rflags);
1457
1458         if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1459                 vmx->emulation_required = emulation_required(vcpu);
1460 }
1461
1462 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1463 {
1464         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1465         int ret = 0;
1466
1467         if (interruptibility & GUEST_INTR_STATE_STI)
1468                 ret |= KVM_X86_SHADOW_INT_STI;
1469         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1470                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1471
1472         return ret;
1473 }
1474
1475 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1476 {
1477         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1478         u32 interruptibility = interruptibility_old;
1479
1480         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1481
1482         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1483                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1484         else if (mask & KVM_X86_SHADOW_INT_STI)
1485                 interruptibility |= GUEST_INTR_STATE_STI;
1486
1487         if ((interruptibility != interruptibility_old))
1488                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1489 }
1490
1491 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1492 {
1493         struct vcpu_vmx *vmx = to_vmx(vcpu);
1494         unsigned long value;
1495
1496         /*
1497          * Any MSR write that attempts to change bits marked reserved will
1498          * case a #GP fault.
1499          */
1500         if (data & vmx->pt_desc.ctl_bitmask)
1501                 return 1;
1502
1503         /*
1504          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1505          * result in a #GP unless the same write also clears TraceEn.
1506          */
1507         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1508                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1509                 return 1;
1510
1511         /*
1512          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1513          * and FabricEn would cause #GP, if
1514          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1515          */
1516         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1517                 !(data & RTIT_CTL_FABRIC_EN) &&
1518                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1519                                         PT_CAP_single_range_output))
1520                 return 1;
1521
1522         /*
1523          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1524          * utilize encodings marked reserved will casue a #GP fault.
1525          */
1526         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1527         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1528                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1529                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1530                 return 1;
1531         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1532                                                 PT_CAP_cycle_thresholds);
1533         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1534                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1535                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1536                 return 1;
1537         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1538         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1539                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1540                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1541                 return 1;
1542
1543         /*
1544          * If ADDRx_CFG is reserved or the encodings is >2 will
1545          * cause a #GP fault.
1546          */
1547         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1548         if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1549                 return 1;
1550         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1551         if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1552                 return 1;
1553         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1554         if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1555                 return 1;
1556         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1557         if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1558                 return 1;
1559
1560         return 0;
1561 }
1562
1563 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1564 {
1565         return true;
1566 }
1567
1568 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1569 {
1570         unsigned long rip, orig_rip;
1571
1572         /*
1573          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1574          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1575          * set when EPT misconfig occurs.  In practice, real hardware updates
1576          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1577          * (namely Hyper-V) don't set it due to it being undefined behavior,
1578          * i.e. we end up advancing IP with some random value.
1579          */
1580         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1581             to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1582                 orig_rip = kvm_rip_read(vcpu);
1583                 rip = orig_rip + vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1584 #ifdef CONFIG_X86_64
1585                 /*
1586                  * We need to mask out the high 32 bits of RIP if not in 64-bit
1587                  * mode, but just finding out that we are in 64-bit mode is
1588                  * quite expensive.  Only do it if there was a carry.
1589                  */
1590                 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1591                         rip = (u32)rip;
1592 #endif
1593                 kvm_rip_write(vcpu, rip);
1594         } else {
1595                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1596                         return 0;
1597         }
1598
1599         /* skipping an emulated instruction also counts */
1600         vmx_set_interrupt_shadow(vcpu, 0);
1601
1602         return 1;
1603 }
1604
1605 /*
1606  * Recognizes a pending MTF VM-exit and records the nested state for later
1607  * delivery.
1608  */
1609 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1610 {
1611         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1612         struct vcpu_vmx *vmx = to_vmx(vcpu);
1613
1614         if (!is_guest_mode(vcpu))
1615                 return;
1616
1617         /*
1618          * Per the SDM, MTF takes priority over debug-trap exceptions besides
1619          * T-bit traps. As instruction emulation is completed (i.e. at the
1620          * instruction boundary), any #DB exception pending delivery must be a
1621          * debug-trap. Record the pending MTF state to be delivered in
1622          * vmx_check_nested_events().
1623          */
1624         if (nested_cpu_has_mtf(vmcs12) &&
1625             (!vcpu->arch.exception.pending ||
1626              vcpu->arch.exception.nr == DB_VECTOR))
1627                 vmx->nested.mtf_pending = true;
1628         else
1629                 vmx->nested.mtf_pending = false;
1630 }
1631
1632 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1633 {
1634         vmx_update_emulated_instruction(vcpu);
1635         return skip_emulated_instruction(vcpu);
1636 }
1637
1638 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1639 {
1640         /*
1641          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1642          * explicitly skip the instruction because if the HLT state is set,
1643          * then the instruction is already executing and RIP has already been
1644          * advanced.
1645          */
1646         if (kvm_hlt_in_guest(vcpu->kvm) &&
1647                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1648                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1649 }
1650
1651 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1652 {
1653         struct vcpu_vmx *vmx = to_vmx(vcpu);
1654         unsigned nr = vcpu->arch.exception.nr;
1655         bool has_error_code = vcpu->arch.exception.has_error_code;
1656         u32 error_code = vcpu->arch.exception.error_code;
1657         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1658
1659         kvm_deliver_exception_payload(vcpu);
1660
1661         if (has_error_code) {
1662                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1663                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1664         }
1665
1666         if (vmx->rmode.vm86_active) {
1667                 int inc_eip = 0;
1668                 if (kvm_exception_is_soft(nr))
1669                         inc_eip = vcpu->arch.event_exit_inst_len;
1670                 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1671                 return;
1672         }
1673
1674         WARN_ON_ONCE(vmx->emulation_required);
1675
1676         if (kvm_exception_is_soft(nr)) {
1677                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1678                              vmx->vcpu.arch.event_exit_inst_len);
1679                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1680         } else
1681                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1682
1683         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1684
1685         vmx_clear_hlt(vcpu);
1686 }
1687
1688 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr)
1689 {
1690         struct vmx_uret_msr tmp;
1691         int from, to;
1692
1693         from = __vmx_find_uret_msr(vmx, msr);
1694         if (from < 0)
1695                 return;
1696         to = vmx->nr_active_uret_msrs++;
1697
1698         tmp = vmx->guest_uret_msrs[to];
1699         vmx->guest_uret_msrs[to] = vmx->guest_uret_msrs[from];
1700         vmx->guest_uret_msrs[from] = tmp;
1701 }
1702
1703 /*
1704  * Set up the vmcs to automatically save and restore system
1705  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1706  * mode, as fiddling with msrs is very expensive.
1707  */
1708 static void setup_msrs(struct vcpu_vmx *vmx)
1709 {
1710         vmx->guest_uret_msrs_loaded = false;
1711         vmx->nr_active_uret_msrs = 0;
1712 #ifdef CONFIG_X86_64
1713         /*
1714          * The SYSCALL MSRs are only needed on long mode guests, and only
1715          * when EFER.SCE is set.
1716          */
1717         if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1718                 vmx_setup_uret_msr(vmx, MSR_STAR);
1719                 vmx_setup_uret_msr(vmx, MSR_LSTAR);
1720                 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK);
1721         }
1722 #endif
1723         if (update_transition_efer(vmx))
1724                 vmx_setup_uret_msr(vmx, MSR_EFER);
1725
1726         if (guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1727                 vmx_setup_uret_msr(vmx, MSR_TSC_AUX);
1728
1729         vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL);
1730
1731         if (cpu_has_vmx_msr_bitmap())
1732                 vmx_update_msr_bitmap(&vmx->vcpu);
1733 }
1734
1735 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1736 {
1737         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1738         u64 g_tsc_offset = 0;
1739
1740         /*
1741          * We're here if L1 chose not to trap WRMSR to TSC. According
1742          * to the spec, this should set L1's TSC; The offset that L1
1743          * set for L2 remains unchanged, and still needs to be added
1744          * to the newly set TSC to get L2's TSC.
1745          */
1746         if (is_guest_mode(vcpu) &&
1747             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1748                 g_tsc_offset = vmcs12->tsc_offset;
1749
1750         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1751                                    vcpu->arch.tsc_offset - g_tsc_offset,
1752                                    offset);
1753         vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1754         return offset + g_tsc_offset;
1755 }
1756
1757 /*
1758  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1759  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1760  * all guests if the "nested" module option is off, and can also be disabled
1761  * for a single guest by disabling its VMX cpuid bit.
1762  */
1763 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1764 {
1765         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1766 }
1767
1768 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1769                                                  uint64_t val)
1770 {
1771         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1772
1773         return !(val & ~valid_bits);
1774 }
1775
1776 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1777 {
1778         switch (msr->index) {
1779         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1780                 if (!nested)
1781                         return 1;
1782                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1783         case MSR_IA32_PERF_CAPABILITIES:
1784                 msr->data = vmx_get_perf_capabilities();
1785                 return 0;
1786         default:
1787                 return KVM_MSR_RET_INVALID;
1788         }
1789 }
1790
1791 /*
1792  * Reads an msr value (of 'msr_index') into 'pdata'.
1793  * Returns 0 on success, non-0 otherwise.
1794  * Assumes vcpu_load() was already called.
1795  */
1796 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1797 {
1798         struct vcpu_vmx *vmx = to_vmx(vcpu);
1799         struct vmx_uret_msr *msr;
1800         u32 index;
1801
1802         switch (msr_info->index) {
1803 #ifdef CONFIG_X86_64
1804         case MSR_FS_BASE:
1805                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1806                 break;
1807         case MSR_GS_BASE:
1808                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1809                 break;
1810         case MSR_KERNEL_GS_BASE:
1811                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1812                 break;
1813 #endif
1814         case MSR_EFER:
1815                 return kvm_get_msr_common(vcpu, msr_info);
1816         case MSR_IA32_TSX_CTRL:
1817                 if (!msr_info->host_initiated &&
1818                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1819                         return 1;
1820                 goto find_uret_msr;
1821         case MSR_IA32_UMWAIT_CONTROL:
1822                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1823                         return 1;
1824
1825                 msr_info->data = vmx->msr_ia32_umwait_control;
1826                 break;
1827         case MSR_IA32_SPEC_CTRL:
1828                 if (!msr_info->host_initiated &&
1829                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1830                         return 1;
1831
1832                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1833                 break;
1834         case MSR_IA32_SYSENTER_CS:
1835                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1836                 break;
1837         case MSR_IA32_SYSENTER_EIP:
1838                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1839                 break;
1840         case MSR_IA32_SYSENTER_ESP:
1841                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1842                 break;
1843         case MSR_IA32_BNDCFGS:
1844                 if (!kvm_mpx_supported() ||
1845                     (!msr_info->host_initiated &&
1846                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1847                         return 1;
1848                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1849                 break;
1850         case MSR_IA32_MCG_EXT_CTL:
1851                 if (!msr_info->host_initiated &&
1852                     !(vmx->msr_ia32_feature_control &
1853                       FEAT_CTL_LMCE_ENABLED))
1854                         return 1;
1855                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1856                 break;
1857         case MSR_IA32_FEAT_CTL:
1858                 msr_info->data = vmx->msr_ia32_feature_control;
1859                 break;
1860         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1861                 if (!nested_vmx_allowed(vcpu))
1862                         return 1;
1863                 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1864                                     &msr_info->data))
1865                         return 1;
1866                 /*
1867                  * Enlightened VMCS v1 doesn't have certain fields, but buggy
1868                  * Hyper-V versions are still trying to use corresponding
1869                  * features when they are exposed. Filter out the essential
1870                  * minimum.
1871                  */
1872                 if (!msr_info->host_initiated &&
1873                     vmx->nested.enlightened_vmcs_enabled)
1874                         nested_evmcs_filter_control_msr(msr_info->index,
1875                                                         &msr_info->data);
1876                 break;
1877         case MSR_IA32_RTIT_CTL:
1878                 if (!vmx_pt_mode_is_host_guest())
1879                         return 1;
1880                 msr_info->data = vmx->pt_desc.guest.ctl;
1881                 break;
1882         case MSR_IA32_RTIT_STATUS:
1883                 if (!vmx_pt_mode_is_host_guest())
1884                         return 1;
1885                 msr_info->data = vmx->pt_desc.guest.status;
1886                 break;
1887         case MSR_IA32_RTIT_CR3_MATCH:
1888                 if (!vmx_pt_mode_is_host_guest() ||
1889                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1890                                                 PT_CAP_cr3_filtering))
1891                         return 1;
1892                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1893                 break;
1894         case MSR_IA32_RTIT_OUTPUT_BASE:
1895                 if (!vmx_pt_mode_is_host_guest() ||
1896                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1897                                         PT_CAP_topa_output) &&
1898                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1899                                         PT_CAP_single_range_output)))
1900                         return 1;
1901                 msr_info->data = vmx->pt_desc.guest.output_base;
1902                 break;
1903         case MSR_IA32_RTIT_OUTPUT_MASK:
1904                 if (!vmx_pt_mode_is_host_guest() ||
1905                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1906                                         PT_CAP_topa_output) &&
1907                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1908                                         PT_CAP_single_range_output)))
1909                         return 1;
1910                 msr_info->data = vmx->pt_desc.guest.output_mask;
1911                 break;
1912         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1913                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1914                 if (!vmx_pt_mode_is_host_guest() ||
1915                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1916                                         PT_CAP_num_address_ranges)))
1917                         return 1;
1918                 if (index % 2)
1919                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1920                 else
1921                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1922                 break;
1923         case MSR_TSC_AUX:
1924                 if (!msr_info->host_initiated &&
1925                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1926                         return 1;
1927                 goto find_uret_msr;
1928         default:
1929         find_uret_msr:
1930                 msr = vmx_find_uret_msr(vmx, msr_info->index);
1931                 if (msr) {
1932                         msr_info->data = msr->data;
1933                         break;
1934                 }
1935                 return kvm_get_msr_common(vcpu, msr_info);
1936         }
1937
1938         return 0;
1939 }
1940
1941 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1942                                                     u64 data)
1943 {
1944 #ifdef CONFIG_X86_64
1945         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1946                 return (u32)data;
1947 #endif
1948         return (unsigned long)data;
1949 }
1950
1951 /*
1952  * Writes msr value into the appropriate "register".
1953  * Returns 0 on success, non-0 otherwise.
1954  * Assumes vcpu_load() was already called.
1955  */
1956 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1957 {
1958         struct vcpu_vmx *vmx = to_vmx(vcpu);
1959         struct vmx_uret_msr *msr;
1960         int ret = 0;
1961         u32 msr_index = msr_info->index;
1962         u64 data = msr_info->data;
1963         u32 index;
1964
1965         switch (msr_index) {
1966         case MSR_EFER:
1967                 ret = kvm_set_msr_common(vcpu, msr_info);
1968                 break;
1969 #ifdef CONFIG_X86_64
1970         case MSR_FS_BASE:
1971                 vmx_segment_cache_clear(vmx);
1972                 vmcs_writel(GUEST_FS_BASE, data);
1973                 break;
1974         case MSR_GS_BASE:
1975                 vmx_segment_cache_clear(vmx);
1976                 vmcs_writel(GUEST_GS_BASE, data);
1977                 break;
1978         case MSR_KERNEL_GS_BASE:
1979                 vmx_write_guest_kernel_gs_base(vmx, data);
1980                 break;
1981 #endif
1982         case MSR_IA32_SYSENTER_CS:
1983                 if (is_guest_mode(vcpu))
1984                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
1985                 vmcs_write32(GUEST_SYSENTER_CS, data);
1986                 break;
1987         case MSR_IA32_SYSENTER_EIP:
1988                 if (is_guest_mode(vcpu)) {
1989                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1990                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
1991                 }
1992                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1993                 break;
1994         case MSR_IA32_SYSENTER_ESP:
1995                 if (is_guest_mode(vcpu)) {
1996                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1997                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
1998                 }
1999                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2000                 break;
2001         case MSR_IA32_DEBUGCTLMSR:
2002                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2003                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
2004                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2005
2006                 ret = kvm_set_msr_common(vcpu, msr_info);
2007                 break;
2008
2009         case MSR_IA32_BNDCFGS:
2010                 if (!kvm_mpx_supported() ||
2011                     (!msr_info->host_initiated &&
2012                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2013                         return 1;
2014                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2015                     (data & MSR_IA32_BNDCFGS_RSVD))
2016                         return 1;
2017                 vmcs_write64(GUEST_BNDCFGS, data);
2018                 break;
2019         case MSR_IA32_UMWAIT_CONTROL:
2020                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2021                         return 1;
2022
2023                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2024                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2025                         return 1;
2026
2027                 vmx->msr_ia32_umwait_control = data;
2028                 break;
2029         case MSR_IA32_SPEC_CTRL:
2030                 if (!msr_info->host_initiated &&
2031                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2032                         return 1;
2033
2034                 if (kvm_spec_ctrl_test_value(data))
2035                         return 1;
2036
2037                 vmx->spec_ctrl = data;
2038                 if (!data)
2039                         break;
2040
2041                 /*
2042                  * For non-nested:
2043                  * When it's written (to non-zero) for the first time, pass
2044                  * it through.
2045                  *
2046                  * For nested:
2047                  * The handling of the MSR bitmap for L2 guests is done in
2048                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2049                  * vmcs02.msr_bitmap here since it gets completely overwritten
2050                  * in the merging. We update the vmcs01 here for L1 as well
2051                  * since it will end up touching the MSR anyway now.
2052                  */
2053                 vmx_disable_intercept_for_msr(vcpu,
2054                                               MSR_IA32_SPEC_CTRL,
2055                                               MSR_TYPE_RW);
2056                 break;
2057         case MSR_IA32_TSX_CTRL:
2058                 if (!msr_info->host_initiated &&
2059                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2060                         return 1;
2061                 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2062                         return 1;
2063                 goto find_uret_msr;
2064         case MSR_IA32_PRED_CMD:
2065                 if (!msr_info->host_initiated &&
2066                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2067                         return 1;
2068
2069                 if (data & ~PRED_CMD_IBPB)
2070                         return 1;
2071                 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL))
2072                         return 1;
2073                 if (!data)
2074                         break;
2075
2076                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2077
2078                 /*
2079                  * For non-nested:
2080                  * When it's written (to non-zero) for the first time, pass
2081                  * it through.
2082                  *
2083                  * For nested:
2084                  * The handling of the MSR bitmap for L2 guests is done in
2085                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2086                  * vmcs02.msr_bitmap here since it gets completely overwritten
2087                  * in the merging.
2088                  */
2089                 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2090                 break;
2091         case MSR_IA32_CR_PAT:
2092                 if (!kvm_pat_valid(data))
2093                         return 1;
2094
2095                 if (is_guest_mode(vcpu) &&
2096                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2097                         get_vmcs12(vcpu)->guest_ia32_pat = data;
2098
2099                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2100                         vmcs_write64(GUEST_IA32_PAT, data);
2101                         vcpu->arch.pat = data;
2102                         break;
2103                 }
2104                 ret = kvm_set_msr_common(vcpu, msr_info);
2105                 break;
2106         case MSR_IA32_TSC_ADJUST:
2107                 ret = kvm_set_msr_common(vcpu, msr_info);
2108                 break;
2109         case MSR_IA32_MCG_EXT_CTL:
2110                 if ((!msr_info->host_initiated &&
2111                      !(to_vmx(vcpu)->msr_ia32_feature_control &
2112                        FEAT_CTL_LMCE_ENABLED)) ||
2113                     (data & ~MCG_EXT_CTL_LMCE_EN))
2114                         return 1;
2115                 vcpu->arch.mcg_ext_ctl = data;
2116                 break;
2117         case MSR_IA32_FEAT_CTL:
2118                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2119                     (to_vmx(vcpu)->msr_ia32_feature_control &
2120                      FEAT_CTL_LOCKED && !msr_info->host_initiated))
2121                         return 1;
2122                 vmx->msr_ia32_feature_control = data;
2123                 if (msr_info->host_initiated && data == 0)
2124                         vmx_leave_nested(vcpu);
2125                 break;
2126         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2127                 if (!msr_info->host_initiated)
2128                         return 1; /* they are read-only */
2129                 if (!nested_vmx_allowed(vcpu))
2130                         return 1;
2131                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2132         case MSR_IA32_RTIT_CTL:
2133                 if (!vmx_pt_mode_is_host_guest() ||
2134                         vmx_rtit_ctl_check(vcpu, data) ||
2135                         vmx->nested.vmxon)
2136                         return 1;
2137                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2138                 vmx->pt_desc.guest.ctl = data;
2139                 pt_update_intercept_for_msr(vcpu);
2140                 break;
2141         case MSR_IA32_RTIT_STATUS:
2142                 if (!pt_can_write_msr(vmx))
2143                         return 1;
2144                 if (data & MSR_IA32_RTIT_STATUS_MASK)
2145                         return 1;
2146                 vmx->pt_desc.guest.status = data;
2147                 break;
2148         case MSR_IA32_RTIT_CR3_MATCH:
2149                 if (!pt_can_write_msr(vmx))
2150                         return 1;
2151                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2152                                            PT_CAP_cr3_filtering))
2153                         return 1;
2154                 vmx->pt_desc.guest.cr3_match = data;
2155                 break;
2156         case MSR_IA32_RTIT_OUTPUT_BASE:
2157                 if (!pt_can_write_msr(vmx))
2158                         return 1;
2159                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2160                                            PT_CAP_topa_output) &&
2161                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2162                                            PT_CAP_single_range_output))
2163                         return 1;
2164                 if (!pt_output_base_valid(vcpu, data))
2165                         return 1;
2166                 vmx->pt_desc.guest.output_base = data;
2167                 break;
2168         case MSR_IA32_RTIT_OUTPUT_MASK:
2169                 if (!pt_can_write_msr(vmx))
2170                         return 1;
2171                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2172                                            PT_CAP_topa_output) &&
2173                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2174                                            PT_CAP_single_range_output))
2175                         return 1;
2176                 vmx->pt_desc.guest.output_mask = data;
2177                 break;
2178         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2179                 if (!pt_can_write_msr(vmx))
2180                         return 1;
2181                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2182                 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2183                                                        PT_CAP_num_address_ranges))
2184                         return 1;
2185                 if (is_noncanonical_address(data, vcpu))
2186                         return 1;
2187                 if (index % 2)
2188                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2189                 else
2190                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2191                 break;
2192         case MSR_TSC_AUX:
2193                 if (!msr_info->host_initiated &&
2194                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2195                         return 1;
2196                 /* Check reserved bit, higher 32 bits should be zero */
2197                 if ((data >> 32) != 0)
2198                         return 1;
2199                 goto find_uret_msr;
2200
2201         default:
2202         find_uret_msr:
2203                 msr = vmx_find_uret_msr(vmx, msr_index);
2204                 if (msr)
2205                         ret = vmx_set_guest_uret_msr(vmx, msr, data);
2206                 else
2207                         ret = kvm_set_msr_common(vcpu, msr_info);
2208         }
2209
2210         return ret;
2211 }
2212
2213 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2214 {
2215         unsigned long guest_owned_bits;
2216
2217         kvm_register_mark_available(vcpu, reg);
2218
2219         switch (reg) {
2220         case VCPU_REGS_RSP:
2221                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2222                 break;
2223         case VCPU_REGS_RIP:
2224                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2225                 break;
2226         case VCPU_EXREG_PDPTR:
2227                 if (enable_ept)
2228                         ept_save_pdptrs(vcpu);
2229                 break;
2230         case VCPU_EXREG_CR0:
2231                 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2232
2233                 vcpu->arch.cr0 &= ~guest_owned_bits;
2234                 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2235                 break;
2236         case VCPU_EXREG_CR3:
2237                 if (is_unrestricted_guest(vcpu) ||
2238                     (enable_ept && is_paging(vcpu)))
2239                         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2240                 break;
2241         case VCPU_EXREG_CR4:
2242                 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2243
2244                 vcpu->arch.cr4 &= ~guest_owned_bits;
2245                 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2246                 break;
2247         default:
2248                 WARN_ON_ONCE(1);
2249                 break;
2250         }
2251 }
2252
2253 static __init int cpu_has_kvm_support(void)
2254 {
2255         return cpu_has_vmx();
2256 }
2257
2258 static __init int vmx_disabled_by_bios(void)
2259 {
2260         return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2261                !boot_cpu_has(X86_FEATURE_VMX);
2262 }
2263
2264 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2265 {
2266         u64 msr;
2267
2268         cr4_set_bits(X86_CR4_VMXE);
2269         intel_pt_handle_vmx(1);
2270
2271         asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2272                           _ASM_EXTABLE(1b, %l[fault])
2273                           : : [vmxon_pointer] "m"(vmxon_pointer)
2274                           : : fault);
2275         return 0;
2276
2277 fault:
2278         WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2279                   rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2280         intel_pt_handle_vmx(0);
2281         cr4_clear_bits(X86_CR4_VMXE);
2282
2283         return -EFAULT;
2284 }
2285
2286 static int hardware_enable(void)
2287 {
2288         int cpu = raw_smp_processor_id();
2289         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2290         int r;
2291
2292         if (cr4_read_shadow() & X86_CR4_VMXE)
2293                 return -EBUSY;
2294
2295         /*
2296          * This can happen if we hot-added a CPU but failed to allocate
2297          * VP assist page for it.
2298          */
2299         if (static_branch_unlikely(&enable_evmcs) &&
2300             !hv_get_vp_assist_page(cpu))
2301                 return -EFAULT;
2302
2303         r = kvm_cpu_vmxon(phys_addr);
2304         if (r)
2305                 return r;
2306
2307         if (enable_ept)
2308                 ept_sync_global();
2309
2310         return 0;
2311 }
2312
2313 static void vmclear_local_loaded_vmcss(void)
2314 {
2315         int cpu = raw_smp_processor_id();
2316         struct loaded_vmcs *v, *n;
2317
2318         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2319                                  loaded_vmcss_on_cpu_link)
2320                 __loaded_vmcs_clear(v);
2321 }
2322
2323
2324 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2325  * tricks.
2326  */
2327 static void kvm_cpu_vmxoff(void)
2328 {
2329         asm volatile (__ex("vmxoff"));
2330
2331         intel_pt_handle_vmx(0);
2332         cr4_clear_bits(X86_CR4_VMXE);
2333 }
2334
2335 static void hardware_disable(void)
2336 {
2337         vmclear_local_loaded_vmcss();
2338         kvm_cpu_vmxoff();
2339 }
2340
2341 /*
2342  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2343  * directly instead of going through cpu_has(), to ensure KVM is trapping
2344  * ENCLS whenever it's supported in hardware.  It does not matter whether
2345  * the host OS supports or has enabled SGX.
2346  */
2347 static bool cpu_has_sgx(void)
2348 {
2349         return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2350 }
2351
2352 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2353                                       u32 msr, u32 *result)
2354 {
2355         u32 vmx_msr_low, vmx_msr_high;
2356         u32 ctl = ctl_min | ctl_opt;
2357
2358         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2359
2360         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2361         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2362
2363         /* Ensure minimum (required) set of control bits are supported. */
2364         if (ctl_min & ~ctl)
2365                 return -EIO;
2366
2367         *result = ctl;
2368         return 0;
2369 }
2370
2371 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2372                                     struct vmx_capability *vmx_cap)
2373 {
2374         u32 vmx_msr_low, vmx_msr_high;
2375         u32 min, opt, min2, opt2;
2376         u32 _pin_based_exec_control = 0;
2377         u32 _cpu_based_exec_control = 0;
2378         u32 _cpu_based_2nd_exec_control = 0;
2379         u32 _vmexit_control = 0;
2380         u32 _vmentry_control = 0;
2381
2382         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2383         min = CPU_BASED_HLT_EXITING |
2384 #ifdef CONFIG_X86_64
2385               CPU_BASED_CR8_LOAD_EXITING |
2386               CPU_BASED_CR8_STORE_EXITING |
2387 #endif
2388               CPU_BASED_CR3_LOAD_EXITING |
2389               CPU_BASED_CR3_STORE_EXITING |
2390               CPU_BASED_UNCOND_IO_EXITING |
2391               CPU_BASED_MOV_DR_EXITING |
2392               CPU_BASED_USE_TSC_OFFSETTING |
2393               CPU_BASED_MWAIT_EXITING |
2394               CPU_BASED_MONITOR_EXITING |
2395               CPU_BASED_INVLPG_EXITING |
2396               CPU_BASED_RDPMC_EXITING;
2397
2398         opt = CPU_BASED_TPR_SHADOW |
2399               CPU_BASED_USE_MSR_BITMAPS |
2400               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2401         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2402                                 &_cpu_based_exec_control) < 0)
2403                 return -EIO;
2404 #ifdef CONFIG_X86_64
2405         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2406                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2407                                            ~CPU_BASED_CR8_STORE_EXITING;
2408 #endif
2409         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2410                 min2 = 0;
2411                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2412                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2413                         SECONDARY_EXEC_WBINVD_EXITING |
2414                         SECONDARY_EXEC_ENABLE_VPID |
2415                         SECONDARY_EXEC_ENABLE_EPT |
2416                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2417                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2418                         SECONDARY_EXEC_DESC |
2419                         SECONDARY_EXEC_ENABLE_RDTSCP |
2420                         SECONDARY_EXEC_ENABLE_INVPCID |
2421                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2422                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2423                         SECONDARY_EXEC_SHADOW_VMCS |
2424                         SECONDARY_EXEC_XSAVES |
2425                         SECONDARY_EXEC_RDSEED_EXITING |
2426                         SECONDARY_EXEC_RDRAND_EXITING |
2427                         SECONDARY_EXEC_ENABLE_PML |
2428                         SECONDARY_EXEC_TSC_SCALING |
2429                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2430                         SECONDARY_EXEC_PT_USE_GPA |
2431                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2432                         SECONDARY_EXEC_ENABLE_VMFUNC;
2433                 if (cpu_has_sgx())
2434                         opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2435                 if (adjust_vmx_controls(min2, opt2,
2436                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2437                                         &_cpu_based_2nd_exec_control) < 0)
2438                         return -EIO;
2439         }
2440 #ifndef CONFIG_X86_64
2441         if (!(_cpu_based_2nd_exec_control &
2442                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2443                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2444 #endif
2445
2446         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2447                 _cpu_based_2nd_exec_control &= ~(
2448                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2449                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2450                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2451
2452         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2453                 &vmx_cap->ept, &vmx_cap->vpid);
2454
2455         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2456                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2457                    enabled */
2458                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2459                                              CPU_BASED_CR3_STORE_EXITING |
2460                                              CPU_BASED_INVLPG_EXITING);
2461         } else if (vmx_cap->ept) {
2462                 vmx_cap->ept = 0;
2463                 pr_warn_once("EPT CAP should not exist if not support "
2464                                 "1-setting enable EPT VM-execution control\n");
2465         }
2466         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2467                 vmx_cap->vpid) {
2468                 vmx_cap->vpid = 0;
2469                 pr_warn_once("VPID CAP should not exist if not support "
2470                                 "1-setting enable VPID VM-execution control\n");
2471         }
2472
2473         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2474 #ifdef CONFIG_X86_64
2475         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2476 #endif
2477         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2478               VM_EXIT_LOAD_IA32_PAT |
2479               VM_EXIT_LOAD_IA32_EFER |
2480               VM_EXIT_CLEAR_BNDCFGS |
2481               VM_EXIT_PT_CONCEAL_PIP |
2482               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2483         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2484                                 &_vmexit_control) < 0)
2485                 return -EIO;
2486
2487         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2488         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2489                  PIN_BASED_VMX_PREEMPTION_TIMER;
2490         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2491                                 &_pin_based_exec_control) < 0)
2492                 return -EIO;
2493
2494         if (cpu_has_broken_vmx_preemption_timer())
2495                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2496         if (!(_cpu_based_2nd_exec_control &
2497                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2498                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2499
2500         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2501         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2502               VM_ENTRY_LOAD_IA32_PAT |
2503               VM_ENTRY_LOAD_IA32_EFER |
2504               VM_ENTRY_LOAD_BNDCFGS |
2505               VM_ENTRY_PT_CONCEAL_PIP |
2506               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2507         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2508                                 &_vmentry_control) < 0)
2509                 return -EIO;
2510
2511         /*
2512          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2513          * can't be used due to an errata where VM Exit may incorrectly clear
2514          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2515          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2516          */
2517         if (boot_cpu_data.x86 == 0x6) {
2518                 switch (boot_cpu_data.x86_model) {
2519                 case 26: /* AAK155 */
2520                 case 30: /* AAP115 */
2521                 case 37: /* AAT100 */
2522                 case 44: /* BC86,AAY89,BD102 */
2523                 case 46: /* BA97 */
2524                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2525                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2526                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2527                                         "does not work properly. Using workaround\n");
2528                         break;
2529                 default:
2530                         break;
2531                 }
2532         }
2533
2534
2535         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2536
2537         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2538         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2539                 return -EIO;
2540
2541 #ifdef CONFIG_X86_64
2542         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2543         if (vmx_msr_high & (1u<<16))
2544                 return -EIO;
2545 #endif
2546
2547         /* Require Write-Back (WB) memory type for VMCS accesses. */
2548         if (((vmx_msr_high >> 18) & 15) != 6)
2549                 return -EIO;
2550
2551         vmcs_conf->size = vmx_msr_high & 0x1fff;
2552         vmcs_conf->order = get_order(vmcs_conf->size);
2553         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2554
2555         vmcs_conf->revision_id = vmx_msr_low;
2556
2557         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2558         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2559         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2560         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2561         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2562
2563 #if IS_ENABLED(CONFIG_HYPERV)
2564         if (enlightened_vmcs)
2565                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2566 #endif
2567
2568         return 0;
2569 }
2570
2571 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2572 {
2573         int node = cpu_to_node(cpu);
2574         struct page *pages;
2575         struct vmcs *vmcs;
2576
2577         pages = __alloc_pages_node(node, flags, vmcs_config.order);
2578         if (!pages)
2579                 return NULL;
2580         vmcs = page_address(pages);
2581         memset(vmcs, 0, vmcs_config.size);
2582
2583         /* KVM supports Enlightened VMCS v1 only */
2584         if (static_branch_unlikely(&enable_evmcs))
2585                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2586         else
2587                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2588
2589         if (shadow)
2590                 vmcs->hdr.shadow_vmcs = 1;
2591         return vmcs;
2592 }
2593
2594 void free_vmcs(struct vmcs *vmcs)
2595 {
2596         free_pages((unsigned long)vmcs, vmcs_config.order);
2597 }
2598
2599 /*
2600  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2601  */
2602 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2603 {
2604         if (!loaded_vmcs->vmcs)
2605                 return;
2606         loaded_vmcs_clear(loaded_vmcs);
2607         free_vmcs(loaded_vmcs->vmcs);
2608         loaded_vmcs->vmcs = NULL;
2609         if (loaded_vmcs->msr_bitmap)
2610                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2611         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2612 }
2613
2614 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2615 {
2616         loaded_vmcs->vmcs = alloc_vmcs(false);
2617         if (!loaded_vmcs->vmcs)
2618                 return -ENOMEM;
2619
2620         vmcs_clear(loaded_vmcs->vmcs);
2621
2622         loaded_vmcs->shadow_vmcs = NULL;
2623         loaded_vmcs->hv_timer_soft_disabled = false;
2624         loaded_vmcs->cpu = -1;
2625         loaded_vmcs->launched = 0;
2626
2627         if (cpu_has_vmx_msr_bitmap()) {
2628                 loaded_vmcs->msr_bitmap = (unsigned long *)
2629                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2630                 if (!loaded_vmcs->msr_bitmap)
2631                         goto out_vmcs;
2632                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2633
2634                 if (IS_ENABLED(CONFIG_HYPERV) &&
2635                     static_branch_unlikely(&enable_evmcs) &&
2636                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2637                         struct hv_enlightened_vmcs *evmcs =
2638                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2639
2640                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
2641                 }
2642         }
2643
2644         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2645         memset(&loaded_vmcs->controls_shadow, 0,
2646                 sizeof(struct vmcs_controls_shadow));
2647
2648         return 0;
2649
2650 out_vmcs:
2651         free_loaded_vmcs(loaded_vmcs);
2652         return -ENOMEM;
2653 }
2654
2655 static void free_kvm_area(void)
2656 {
2657         int cpu;
2658
2659         for_each_possible_cpu(cpu) {
2660                 free_vmcs(per_cpu(vmxarea, cpu));
2661                 per_cpu(vmxarea, cpu) = NULL;
2662         }
2663 }
2664
2665 static __init int alloc_kvm_area(void)
2666 {
2667         int cpu;
2668
2669         for_each_possible_cpu(cpu) {
2670                 struct vmcs *vmcs;
2671
2672                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2673                 if (!vmcs) {
2674                         free_kvm_area();
2675                         return -ENOMEM;
2676                 }
2677
2678                 /*
2679                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2680                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2681                  * revision_id reported by MSR_IA32_VMX_BASIC.
2682                  *
2683                  * However, even though not explicitly documented by
2684                  * TLFS, VMXArea passed as VMXON argument should
2685                  * still be marked with revision_id reported by
2686                  * physical CPU.
2687                  */
2688                 if (static_branch_unlikely(&enable_evmcs))
2689                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2690
2691                 per_cpu(vmxarea, cpu) = vmcs;
2692         }
2693         return 0;
2694 }
2695
2696 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2697                 struct kvm_segment *save)
2698 {
2699         if (!emulate_invalid_guest_state) {
2700                 /*
2701                  * CS and SS RPL should be equal during guest entry according
2702                  * to VMX spec, but in reality it is not always so. Since vcpu
2703                  * is in the middle of the transition from real mode to
2704                  * protected mode it is safe to assume that RPL 0 is a good
2705                  * default value.
2706                  */
2707                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2708                         save->selector &= ~SEGMENT_RPL_MASK;
2709                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2710                 save->s = 1;
2711         }
2712         vmx_set_segment(vcpu, save, seg);
2713 }
2714
2715 static void enter_pmode(struct kvm_vcpu *vcpu)
2716 {
2717         unsigned long flags;
2718         struct vcpu_vmx *vmx = to_vmx(vcpu);
2719
2720         /*
2721          * Update real mode segment cache. It may be not up-to-date if sement
2722          * register was written while vcpu was in a guest mode.
2723          */
2724         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2725         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2726         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2727         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2728         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2729         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2730
2731         vmx->rmode.vm86_active = 0;
2732
2733         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2734
2735         flags = vmcs_readl(GUEST_RFLAGS);
2736         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2737         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2738         vmcs_writel(GUEST_RFLAGS, flags);
2739
2740         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2741                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2742
2743         update_exception_bitmap(vcpu);
2744
2745         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2746         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2747         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2748         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2749         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2750         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2751 }
2752
2753 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2754 {
2755         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2756         struct kvm_segment var = *save;
2757
2758         var.dpl = 0x3;
2759         if (seg == VCPU_SREG_CS)
2760                 var.type = 0x3;
2761
2762         if (!emulate_invalid_guest_state) {
2763                 var.selector = var.base >> 4;
2764                 var.base = var.base & 0xffff0;
2765                 var.limit = 0xffff;
2766                 var.g = 0;
2767                 var.db = 0;
2768                 var.present = 1;
2769                 var.s = 1;
2770                 var.l = 0;
2771                 var.unusable = 0;
2772                 var.type = 0x3;
2773                 var.avl = 0;
2774                 if (save->base & 0xf)
2775                         printk_once(KERN_WARNING "kvm: segment base is not "
2776                                         "paragraph aligned when entering "
2777                                         "protected mode (seg=%d)", seg);
2778         }
2779
2780         vmcs_write16(sf->selector, var.selector);
2781         vmcs_writel(sf->base, var.base);
2782         vmcs_write32(sf->limit, var.limit);
2783         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2784 }
2785
2786 static void enter_rmode(struct kvm_vcpu *vcpu)
2787 {
2788         unsigned long flags;
2789         struct vcpu_vmx *vmx = to_vmx(vcpu);
2790         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2791
2792         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2793         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2794         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2795         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2796         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2797         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2798         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2799
2800         vmx->rmode.vm86_active = 1;
2801
2802         /*
2803          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2804          * vcpu. Warn the user that an update is overdue.
2805          */
2806         if (!kvm_vmx->tss_addr)
2807                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2808                              "called before entering vcpu\n");
2809
2810         vmx_segment_cache_clear(vmx);
2811
2812         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2813         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2814         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2815
2816         flags = vmcs_readl(GUEST_RFLAGS);
2817         vmx->rmode.save_rflags = flags;
2818
2819         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2820
2821         vmcs_writel(GUEST_RFLAGS, flags);
2822         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2823         update_exception_bitmap(vcpu);
2824
2825         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2826         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2827         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2828         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2829         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2830         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2831
2832         kvm_mmu_reset_context(vcpu);
2833 }
2834
2835 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2836 {
2837         struct vcpu_vmx *vmx = to_vmx(vcpu);
2838         struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2839
2840         /* Nothing to do if hardware doesn't support EFER. */
2841         if (!msr)
2842                 return 0;
2843
2844         vcpu->arch.efer = efer;
2845         if (efer & EFER_LMA) {
2846                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2847                 msr->data = efer;
2848         } else {
2849                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2850
2851                 msr->data = efer & ~EFER_LME;
2852         }
2853         setup_msrs(vmx);
2854         return 0;
2855 }
2856
2857 #ifdef CONFIG_X86_64
2858
2859 static void enter_lmode(struct kvm_vcpu *vcpu)
2860 {
2861         u32 guest_tr_ar;
2862
2863         vmx_segment_cache_clear(to_vmx(vcpu));
2864
2865         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2866         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2867                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2868                                      __func__);
2869                 vmcs_write32(GUEST_TR_AR_BYTES,
2870                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2871                              | VMX_AR_TYPE_BUSY_64_TSS);
2872         }
2873         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2874 }
2875
2876 static void exit_lmode(struct kvm_vcpu *vcpu)
2877 {
2878         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2879         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2880 }
2881
2882 #endif
2883
2884 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2885 {
2886         struct vcpu_vmx *vmx = to_vmx(vcpu);
2887
2888         /*
2889          * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2890          * the CPU is not required to invalidate guest-physical mappings on
2891          * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2892          * associated with the root EPT structure and not any particular VPID
2893          * (INVVPID also isn't required to invalidate guest-physical mappings).
2894          */
2895         if (enable_ept) {
2896                 ept_sync_global();
2897         } else if (enable_vpid) {
2898                 if (cpu_has_vmx_invvpid_global()) {
2899                         vpid_sync_vcpu_global();
2900                 } else {
2901                         vpid_sync_vcpu_single(vmx->vpid);
2902                         vpid_sync_vcpu_single(vmx->nested.vpid02);
2903                 }
2904         }
2905 }
2906
2907 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2908 {
2909         struct kvm_mmu *mmu = vcpu->arch.mmu;
2910         u64 root_hpa = mmu->root_hpa;
2911
2912         /* No flush required if the current context is invalid. */
2913         if (!VALID_PAGE(root_hpa))
2914                 return;
2915
2916         if (enable_ept)
2917                 ept_sync_context(construct_eptp(vcpu, root_hpa,
2918                                                 mmu->shadow_root_level));
2919         else if (!is_guest_mode(vcpu))
2920                 vpid_sync_context(to_vmx(vcpu)->vpid);
2921         else
2922                 vpid_sync_context(nested_get_vpid02(vcpu));
2923 }
2924
2925 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2926 {
2927         /*
2928          * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
2929          * vmx_flush_tlb_guest() for an explanation of why this is ok.
2930          */
2931         vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
2932 }
2933
2934 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2935 {
2936         /*
2937          * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
2938          * or a vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit
2939          * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2940          * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2941          * i.e. no explicit INVVPID is necessary.
2942          */
2943         vpid_sync_context(to_vmx(vcpu)->vpid);
2944 }
2945
2946 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
2947 {
2948         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2949
2950         if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2951                 return;
2952
2953         if (is_pae_paging(vcpu)) {
2954                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2955                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2956                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2957                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2958         }
2959 }
2960
2961 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2962 {
2963         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2964
2965         if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2966                 return;
2967
2968         mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2969         mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2970         mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2971         mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2972
2973         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2974 }
2975
2976 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2977                                         unsigned long cr0,
2978                                         struct kvm_vcpu *vcpu)
2979 {
2980         struct vcpu_vmx *vmx = to_vmx(vcpu);
2981
2982         if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
2983                 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
2984         if (!(cr0 & X86_CR0_PG)) {
2985                 /* From paging/starting to nonpaging */
2986                 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2987                                           CPU_BASED_CR3_STORE_EXITING);
2988                 vcpu->arch.cr0 = cr0;
2989                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2990         } else if (!is_paging(vcpu)) {
2991                 /* From nonpaging to paging */
2992                 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2993                                             CPU_BASED_CR3_STORE_EXITING);
2994                 vcpu->arch.cr0 = cr0;
2995                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2996         }
2997
2998         if (!(cr0 & X86_CR0_WP))
2999                 *hw_cr0 &= ~X86_CR0_WP;
3000 }
3001
3002 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3003 {
3004         struct vcpu_vmx *vmx = to_vmx(vcpu);
3005         unsigned long hw_cr0;
3006
3007         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3008         if (is_unrestricted_guest(vcpu))
3009                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3010         else {
3011                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3012
3013                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3014                         enter_pmode(vcpu);
3015
3016                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3017                         enter_rmode(vcpu);
3018         }
3019
3020 #ifdef CONFIG_X86_64
3021         if (vcpu->arch.efer & EFER_LME) {
3022                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3023                         enter_lmode(vcpu);
3024                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3025                         exit_lmode(vcpu);
3026         }
3027 #endif
3028
3029         if (enable_ept && !is_unrestricted_guest(vcpu))
3030                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3031
3032         vmcs_writel(CR0_READ_SHADOW, cr0);
3033         vmcs_writel(GUEST_CR0, hw_cr0);
3034         vcpu->arch.cr0 = cr0;
3035         kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3036
3037         /* depends on vcpu->arch.cr0 to be set to a new value */
3038         vmx->emulation_required = emulation_required(vcpu);
3039 }
3040
3041 static int vmx_get_max_tdp_level(void)
3042 {
3043         if (cpu_has_vmx_ept_5levels())
3044                 return 5;
3045         return 4;
3046 }
3047
3048 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa,
3049                    int root_level)
3050 {
3051         u64 eptp = VMX_EPTP_MT_WB;
3052
3053         eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3054
3055         if (enable_ept_ad_bits &&
3056             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3057                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3058         eptp |= (root_hpa & PAGE_MASK);
3059
3060         return eptp;
3061 }
3062
3063 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd,
3064                              int pgd_level)
3065 {
3066         struct kvm *kvm = vcpu->kvm;
3067         bool update_guest_cr3 = true;
3068         unsigned long guest_cr3;
3069         u64 eptp;
3070
3071         if (enable_ept) {
3072                 eptp = construct_eptp(vcpu, pgd, pgd_level);
3073                 vmcs_write64(EPT_POINTER, eptp);
3074
3075                 if (kvm_x86_ops.tlb_remote_flush) {
3076                         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3077                         to_vmx(vcpu)->ept_pointer = eptp;
3078                         to_kvm_vmx(kvm)->ept_pointers_match
3079                                 = EPT_POINTERS_CHECK;
3080                         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3081                 }
3082
3083                 if (!enable_unrestricted_guest && !is_paging(vcpu))
3084                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3085                 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3086                         guest_cr3 = vcpu->arch.cr3;
3087                 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3088                         update_guest_cr3 = false;
3089                 vmx_ept_load_pdptrs(vcpu);
3090         } else {
3091                 guest_cr3 = pgd;
3092         }
3093
3094         if (update_guest_cr3)
3095                 vmcs_writel(GUEST_CR3, guest_cr3);
3096 }
3097
3098 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3099 {
3100         /*
3101          * We operate under the default treatment of SMM, so VMX cannot be
3102          * enabled under SMM.  Note, whether or not VMXE is allowed at all is
3103          * handled by kvm_valid_cr4().
3104          */
3105         if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3106                 return false;
3107
3108         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3109                 return false;
3110
3111         return true;
3112 }
3113
3114 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3115 {
3116         struct vcpu_vmx *vmx = to_vmx(vcpu);
3117         /*
3118          * Pass through host's Machine Check Enable value to hw_cr4, which
3119          * is in force while we are in guest mode.  Do not let guests control
3120          * this bit, even if host CR4.MCE == 0.
3121          */
3122         unsigned long hw_cr4;
3123
3124         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3125         if (is_unrestricted_guest(vcpu))
3126                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3127         else if (vmx->rmode.vm86_active)
3128                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3129         else
3130                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3131
3132         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3133                 if (cr4 & X86_CR4_UMIP) {
3134                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3135                         hw_cr4 &= ~X86_CR4_UMIP;
3136                 } else if (!is_guest_mode(vcpu) ||
3137                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3138                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3139                 }
3140         }
3141
3142         vcpu->arch.cr4 = cr4;
3143         kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3144
3145         if (!is_unrestricted_guest(vcpu)) {
3146                 if (enable_ept) {
3147                         if (!is_paging(vcpu)) {
3148                                 hw_cr4 &= ~X86_CR4_PAE;
3149                                 hw_cr4 |= X86_CR4_PSE;
3150                         } else if (!(cr4 & X86_CR4_PAE)) {
3151                                 hw_cr4 &= ~X86_CR4_PAE;
3152                         }
3153                 }
3154
3155                 /*
3156                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3157                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3158                  * to be manually disabled when guest switches to non-paging
3159                  * mode.
3160                  *
3161                  * If !enable_unrestricted_guest, the CPU is always running
3162                  * with CR0.PG=1 and CR4 needs to be modified.
3163                  * If enable_unrestricted_guest, the CPU automatically
3164                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3165                  */
3166                 if (!is_paging(vcpu))
3167                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3168         }
3169
3170         vmcs_writel(CR4_READ_SHADOW, cr4);
3171         vmcs_writel(GUEST_CR4, hw_cr4);
3172 }
3173
3174 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3175 {
3176         struct vcpu_vmx *vmx = to_vmx(vcpu);
3177         u32 ar;
3178
3179         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3180                 *var = vmx->rmode.segs[seg];
3181                 if (seg == VCPU_SREG_TR
3182                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3183                         return;
3184                 var->base = vmx_read_guest_seg_base(vmx, seg);
3185                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3186                 return;
3187         }
3188         var->base = vmx_read_guest_seg_base(vmx, seg);
3189         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3190         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3191         ar = vmx_read_guest_seg_ar(vmx, seg);
3192         var->unusable = (ar >> 16) & 1;
3193         var->type = ar & 15;
3194         var->s = (ar >> 4) & 1;
3195         var->dpl = (ar >> 5) & 3;
3196         /*
3197          * Some userspaces do not preserve unusable property. Since usable
3198          * segment has to be present according to VMX spec we can use present
3199          * property to amend userspace bug by making unusable segment always
3200          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3201          * segment as unusable.
3202          */
3203         var->present = !var->unusable;
3204         var->avl = (ar >> 12) & 1;
3205         var->l = (ar >> 13) & 1;
3206         var->db = (ar >> 14) & 1;
3207         var->g = (ar >> 15) & 1;
3208 }
3209
3210 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3211 {
3212         struct kvm_segment s;
3213
3214         if (to_vmx(vcpu)->rmode.vm86_active) {
3215                 vmx_get_segment(vcpu, &s, seg);
3216                 return s.base;
3217         }
3218         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3219 }
3220
3221 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3222 {
3223         struct vcpu_vmx *vmx = to_vmx(vcpu);
3224
3225         if (unlikely(vmx->rmode.vm86_active))
3226                 return 0;
3227         else {
3228                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3229                 return VMX_AR_DPL(ar);
3230         }
3231 }
3232
3233 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3234 {
3235         u32 ar;
3236
3237         if (var->unusable || !var->present)
3238                 ar = 1 << 16;
3239         else {
3240                 ar = var->type & 15;
3241                 ar |= (var->s & 1) << 4;
3242                 ar |= (var->dpl & 3) << 5;
3243                 ar |= (var->present & 1) << 7;
3244                 ar |= (var->avl & 1) << 12;
3245                 ar |= (var->l & 1) << 13;
3246                 ar |= (var->db & 1) << 14;
3247                 ar |= (var->g & 1) << 15;
3248         }
3249
3250         return ar;
3251 }
3252
3253 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3254 {
3255         struct vcpu_vmx *vmx = to_vmx(vcpu);
3256         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3257
3258         vmx_segment_cache_clear(vmx);
3259
3260         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3261                 vmx->rmode.segs[seg] = *var;
3262                 if (seg == VCPU_SREG_TR)
3263                         vmcs_write16(sf->selector, var->selector);
3264                 else if (var->s)
3265                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3266                 goto out;
3267         }
3268
3269         vmcs_writel(sf->base, var->base);
3270         vmcs_write32(sf->limit, var->limit);
3271         vmcs_write16(sf->selector, var->selector);
3272
3273         /*
3274          *   Fix the "Accessed" bit in AR field of segment registers for older
3275          * qemu binaries.
3276          *   IA32 arch specifies that at the time of processor reset the
3277          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3278          * is setting it to 0 in the userland code. This causes invalid guest
3279          * state vmexit when "unrestricted guest" mode is turned on.
3280          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3281          * tree. Newer qemu binaries with that qemu fix would not need this
3282          * kvm hack.
3283          */
3284         if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3285                 var->type |= 0x1; /* Accessed */
3286
3287         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3288
3289 out:
3290         vmx->emulation_required = emulation_required(vcpu);
3291 }
3292
3293 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3294 {
3295         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3296
3297         *db = (ar >> 14) & 1;
3298         *l = (ar >> 13) & 1;
3299 }
3300
3301 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3302 {
3303         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3304         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3305 }
3306
3307 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3308 {
3309         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3310         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3311 }
3312
3313 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3314 {
3315         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3316         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3317 }
3318
3319 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3320 {
3321         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3322         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3323 }
3324
3325 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3326 {
3327         struct kvm_segment var;
3328         u32 ar;
3329
3330         vmx_get_segment(vcpu, &var, seg);
3331         var.dpl = 0x3;
3332         if (seg == VCPU_SREG_CS)
3333                 var.type = 0x3;
3334         ar = vmx_segment_access_rights(&var);
3335
3336         if (var.base != (var.selector << 4))
3337                 return false;
3338         if (var.limit != 0xffff)
3339                 return false;
3340         if (ar != 0xf3)
3341                 return false;
3342
3343         return true;
3344 }
3345
3346 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3347 {
3348         struct kvm_segment cs;
3349         unsigned int cs_rpl;
3350
3351         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3352         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3353
3354         if (cs.unusable)
3355                 return false;
3356         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3357                 return false;
3358         if (!cs.s)
3359                 return false;
3360         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3361                 if (cs.dpl > cs_rpl)
3362                         return false;
3363         } else {
3364                 if (cs.dpl != cs_rpl)
3365                         return false;
3366         }
3367         if (!cs.present)
3368                 return false;
3369
3370         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3371         return true;
3372 }
3373
3374 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3375 {
3376         struct kvm_segment ss;
3377         unsigned int ss_rpl;
3378
3379         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3380         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3381
3382         if (ss.unusable)
3383                 return true;
3384         if (ss.type != 3 && ss.type != 7)
3385                 return false;
3386         if (!ss.s)
3387                 return false;
3388         if (ss.dpl != ss_rpl) /* DPL != RPL */
3389                 return false;
3390         if (!ss.present)
3391                 return false;
3392
3393         return true;
3394 }
3395
3396 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3397 {
3398         struct kvm_segment var;
3399         unsigned int rpl;
3400
3401         vmx_get_segment(vcpu, &var, seg);
3402         rpl = var.selector & SEGMENT_RPL_MASK;
3403
3404         if (var.unusable)
3405                 return true;
3406         if (!var.s)
3407                 return false;
3408         if (!var.present)
3409                 return false;
3410         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3411                 if (var.dpl < rpl) /* DPL < RPL */
3412                         return false;
3413         }
3414
3415         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3416          * rights flags
3417          */
3418         return true;
3419 }
3420
3421 static bool tr_valid(struct kvm_vcpu *vcpu)
3422 {
3423         struct kvm_segment tr;
3424
3425         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3426
3427         if (tr.unusable)
3428                 return false;
3429         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3430                 return false;
3431         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3432                 return false;
3433         if (!tr.present)
3434                 return false;
3435
3436         return true;
3437 }
3438
3439 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3440 {
3441         struct kvm_segment ldtr;
3442
3443         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3444
3445         if (ldtr.unusable)
3446                 return true;
3447         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3448                 return false;
3449         if (ldtr.type != 2)
3450                 return false;
3451         if (!ldtr.present)
3452                 return false;
3453
3454         return true;
3455 }
3456
3457 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3458 {
3459         struct kvm_segment cs, ss;
3460
3461         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3462         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3463
3464         return ((cs.selector & SEGMENT_RPL_MASK) ==
3465                  (ss.selector & SEGMENT_RPL_MASK));
3466 }
3467
3468 /*
3469  * Check if guest state is valid. Returns true if valid, false if
3470  * not.
3471  * We assume that registers are always usable
3472  */
3473 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3474 {
3475         /* real mode guest state checks */
3476         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3477                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3478                         return false;
3479                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3480                         return false;
3481                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3482                         return false;
3483                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3484                         return false;
3485                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3486                         return false;
3487                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3488                         return false;
3489         } else {
3490         /* protected mode guest state checks */
3491                 if (!cs_ss_rpl_check(vcpu))
3492                         return false;
3493                 if (!code_segment_valid(vcpu))
3494                         return false;
3495                 if (!stack_segment_valid(vcpu))
3496                         return false;
3497                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3498                         return false;
3499                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3500                         return false;
3501                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3502                         return false;
3503                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3504                         return false;
3505                 if (!tr_valid(vcpu))
3506                         return false;
3507                 if (!ldtr_valid(vcpu))
3508                         return false;
3509         }
3510         /* TODO:
3511          * - Add checks on RIP
3512          * - Add checks on RFLAGS
3513          */
3514
3515         return true;
3516 }
3517
3518 static int init_rmode_tss(struct kvm *kvm)
3519 {
3520         gfn_t fn;
3521         u16 data = 0;
3522         int idx, r;
3523
3524         idx = srcu_read_lock(&kvm->srcu);
3525         fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3526         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3527         if (r < 0)
3528                 goto out;
3529         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3530         r = kvm_write_guest_page(kvm, fn++, &data,
3531                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3532         if (r < 0)
3533                 goto out;
3534         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3535         if (r < 0)
3536                 goto out;
3537         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3538         if (r < 0)
3539                 goto out;
3540         data = ~0;
3541         r = kvm_write_guest_page(kvm, fn, &data,
3542                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3543                                  sizeof(u8));
3544 out:
3545         srcu_read_unlock(&kvm->srcu, idx);
3546         return r;
3547 }
3548
3549 static int init_rmode_identity_map(struct kvm *kvm)
3550 {
3551         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3552         int i, r = 0;
3553         kvm_pfn_t identity_map_pfn;
3554         u32 tmp;
3555
3556         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3557         mutex_lock(&kvm->slots_lock);
3558
3559         if (likely(kvm_vmx->ept_identity_pagetable_done))
3560                 goto out;
3561
3562         if (!kvm_vmx->ept_identity_map_addr)
3563                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3564         identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3565
3566         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3567                                     kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3568         if (r < 0)
3569                 goto out;
3570
3571         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3572         if (r < 0)
3573                 goto out;
3574         /* Set up identity-mapping pagetable for EPT in real mode */
3575         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3576                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3577                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3578                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3579                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3580                 if (r < 0)
3581                         goto out;
3582         }
3583         kvm_vmx->ept_identity_pagetable_done = true;
3584
3585 out:
3586         mutex_unlock(&kvm->slots_lock);
3587         return r;
3588 }
3589
3590 static void seg_setup(int seg)
3591 {
3592         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3593         unsigned int ar;
3594
3595         vmcs_write16(sf->selector, 0);
3596         vmcs_writel(sf->base, 0);
3597         vmcs_write32(sf->limit, 0xffff);
3598         ar = 0x93;
3599         if (seg == VCPU_SREG_CS)
3600                 ar |= 0x08; /* code segment */
3601
3602         vmcs_write32(sf->ar_bytes, ar);
3603 }
3604
3605 static int alloc_apic_access_page(struct kvm *kvm)
3606 {
3607         struct page *page;
3608         int r = 0;
3609
3610         mutex_lock(&kvm->slots_lock);
3611         if (kvm->arch.apic_access_page_done)
3612                 goto out;
3613         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3614                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3615         if (r)
3616                 goto out;
3617
3618         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3619         if (is_error_page(page)) {
3620                 r = -EFAULT;
3621                 goto out;
3622         }
3623
3624         /*
3625          * Do not pin the page in memory, so that memory hot-unplug
3626          * is able to migrate it.
3627          */
3628         put_page(page);
3629         kvm->arch.apic_access_page_done = true;
3630 out:
3631         mutex_unlock(&kvm->slots_lock);
3632         return r;
3633 }
3634
3635 int allocate_vpid(void)
3636 {
3637         int vpid;
3638
3639         if (!enable_vpid)
3640                 return 0;
3641         spin_lock(&vmx_vpid_lock);
3642         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3643         if (vpid < VMX_NR_VPIDS)
3644                 __set_bit(vpid, vmx_vpid_bitmap);
3645         else
3646                 vpid = 0;
3647         spin_unlock(&vmx_vpid_lock);
3648         return vpid;
3649 }
3650
3651 void free_vpid(int vpid)
3652 {
3653         if (!enable_vpid || vpid == 0)
3654                 return;
3655         spin_lock(&vmx_vpid_lock);
3656         __clear_bit(vpid, vmx_vpid_bitmap);
3657         spin_unlock(&vmx_vpid_lock);
3658 }
3659
3660 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3661 {
3662         int f = sizeof(unsigned long);
3663
3664         if (msr <= 0x1fff)
3665                 __clear_bit(msr, msr_bitmap + 0x000 / f);
3666         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3667                 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3668 }
3669
3670 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3671 {
3672         int f = sizeof(unsigned long);
3673
3674         if (msr <= 0x1fff)
3675                 __clear_bit(msr, msr_bitmap + 0x800 / f);
3676         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3677                 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3678 }
3679
3680 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3681 {
3682         int f = sizeof(unsigned long);
3683
3684         if (msr <= 0x1fff)
3685                 __set_bit(msr, msr_bitmap + 0x000 / f);
3686         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3687                 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3688 }
3689
3690 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3691 {
3692         int f = sizeof(unsigned long);
3693
3694         if (msr <= 0x1fff)
3695                 __set_bit(msr, msr_bitmap + 0x800 / f);
3696         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3697                 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3698 }
3699
3700 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
3701                                                           u32 msr, int type)
3702 {
3703         struct vcpu_vmx *vmx = to_vmx(vcpu);
3704         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3705
3706         if (!cpu_has_vmx_msr_bitmap())
3707                 return;
3708
3709         if (static_branch_unlikely(&enable_evmcs))
3710                 evmcs_touch_msr_bitmap();
3711
3712         /*
3713          * Mark the desired intercept state in shadow bitmap, this is needed
3714          * for resync when the MSR filters change.
3715         */
3716         if (is_valid_passthrough_msr(msr)) {
3717                 int idx = possible_passthrough_msr_slot(msr);
3718
3719                 if (idx != -ENOENT) {
3720                         if (type & MSR_TYPE_R)
3721                                 clear_bit(idx, vmx->shadow_msr_intercept.read);
3722                         if (type & MSR_TYPE_W)
3723                                 clear_bit(idx, vmx->shadow_msr_intercept.write);
3724                 }
3725         }
3726
3727         if ((type & MSR_TYPE_R) &&
3728             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3729                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3730                 type &= ~MSR_TYPE_R;
3731         }
3732
3733         if ((type & MSR_TYPE_W) &&
3734             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3735                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3736                 type &= ~MSR_TYPE_W;
3737         }
3738
3739         if (type & MSR_TYPE_R)
3740                 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3741
3742         if (type & MSR_TYPE_W)
3743                 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3744 }
3745
3746 static __always_inline void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu,
3747                                                          u32 msr, int type)
3748 {
3749         struct vcpu_vmx *vmx = to_vmx(vcpu);
3750         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3751
3752         if (!cpu_has_vmx_msr_bitmap())
3753                 return;
3754
3755         if (static_branch_unlikely(&enable_evmcs))
3756                 evmcs_touch_msr_bitmap();
3757
3758         /*
3759          * Mark the desired intercept state in shadow bitmap, this is needed
3760          * for resync when the MSR filter changes.
3761         */
3762         if (is_valid_passthrough_msr(msr)) {
3763                 int idx = possible_passthrough_msr_slot(msr);
3764
3765                 if (idx != -ENOENT) {
3766                         if (type & MSR_TYPE_R)
3767                                 set_bit(idx, vmx->shadow_msr_intercept.read);
3768                         if (type & MSR_TYPE_W)
3769                                 set_bit(idx, vmx->shadow_msr_intercept.write);
3770                 }
3771         }
3772
3773         if (type & MSR_TYPE_R)
3774                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3775
3776         if (type & MSR_TYPE_W)
3777                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3778 }
3779
3780 static __always_inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu,
3781                                                       u32 msr, int type, bool value)
3782 {
3783         if (value)
3784                 vmx_enable_intercept_for_msr(vcpu, msr, type);
3785         else
3786                 vmx_disable_intercept_for_msr(vcpu, msr, type);
3787 }
3788
3789 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3790 {
3791         u8 mode = 0;
3792
3793         if (cpu_has_secondary_exec_ctrls() &&
3794             (secondary_exec_controls_get(to_vmx(vcpu)) &
3795              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3796                 mode |= MSR_BITMAP_MODE_X2APIC;
3797                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3798                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3799         }
3800
3801         return mode;
3802 }
3803
3804 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3805 {
3806         unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3807         unsigned long read_intercept;
3808         int msr;
3809
3810         read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3811
3812         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3813                 unsigned int read_idx = msr / BITS_PER_LONG;
3814                 unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3815
3816                 msr_bitmap[read_idx] = read_intercept;
3817                 msr_bitmap[write_idx] = ~0ul;
3818         }
3819 }
3820
3821 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode)
3822 {
3823         if (!cpu_has_vmx_msr_bitmap())
3824                 return;
3825
3826         vmx_reset_x2apic_msrs(vcpu, mode);
3827
3828         /*
3829          * TPR reads and writes can be virtualized even if virtual interrupt
3830          * delivery is not in use.
3831          */
3832         vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3833                                   !(mode & MSR_BITMAP_MODE_X2APIC));
3834
3835         if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3836                 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3837                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3838                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3839         }
3840 }
3841
3842 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3843 {
3844         struct vcpu_vmx *vmx = to_vmx(vcpu);
3845         u8 mode = vmx_msr_bitmap_mode(vcpu);
3846         u8 changed = mode ^ vmx->msr_bitmap_mode;
3847
3848         if (!changed)
3849                 return;
3850
3851         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3852                 vmx_update_msr_bitmap_x2apic(vcpu, mode);
3853
3854         vmx->msr_bitmap_mode = mode;
3855 }
3856
3857 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3858 {
3859         struct vcpu_vmx *vmx = to_vmx(vcpu);
3860         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3861         u32 i;
3862
3863         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3864         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3865         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3866         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3867         for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3868                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3869                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3870         }
3871 }
3872
3873 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3874 {
3875         struct vcpu_vmx *vmx = to_vmx(vcpu);
3876         void *vapic_page;
3877         u32 vppr;
3878         int rvi;
3879
3880         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3881                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3882                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3883                 return false;
3884
3885         rvi = vmx_get_rvi();
3886
3887         vapic_page = vmx->nested.virtual_apic_map.hva;
3888         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3889
3890         return ((rvi & 0xf0) > (vppr & 0xf0));
3891 }
3892
3893 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3894 {
3895         struct vcpu_vmx *vmx = to_vmx(vcpu);
3896         u32 i;
3897
3898         /*
3899          * Set intercept permissions for all potentially passed through MSRs
3900          * again. They will automatically get filtered through the MSR filter,
3901          * so we are back in sync after this.
3902          */
3903         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3904                 u32 msr = vmx_possible_passthrough_msrs[i];
3905                 bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3906                 bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3907
3908                 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3909                 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3910         }
3911
3912         pt_update_intercept_for_msr(vcpu);
3913         vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu));
3914 }
3915
3916 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3917                                                      bool nested)
3918 {
3919 #ifdef CONFIG_SMP
3920         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3921
3922         if (vcpu->mode == IN_GUEST_MODE) {
3923                 /*
3924                  * The vector of interrupt to be delivered to vcpu had
3925                  * been set in PIR before this function.
3926                  *
3927                  * Following cases will be reached in this block, and
3928                  * we always send a notification event in all cases as
3929                  * explained below.
3930                  *
3931                  * Case 1: vcpu keeps in non-root mode. Sending a
3932                  * notification event posts the interrupt to vcpu.
3933                  *
3934                  * Case 2: vcpu exits to root mode and is still
3935                  * runnable. PIR will be synced to vIRR before the
3936                  * next vcpu entry. Sending a notification event in
3937                  * this case has no effect, as vcpu is not in root
3938                  * mode.
3939                  *
3940                  * Case 3: vcpu exits to root mode and is blocked.
3941                  * vcpu_block() has already synced PIR to vIRR and
3942                  * never blocks vcpu if vIRR is not cleared. Therefore,
3943                  * a blocked vcpu here does not wait for any requested
3944                  * interrupts in PIR, and sending a notification event
3945                  * which has no effect is safe here.
3946                  */
3947
3948                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3949                 return true;
3950         }
3951 #endif
3952         return false;
3953 }
3954
3955 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3956                                                 int vector)
3957 {
3958         struct vcpu_vmx *vmx = to_vmx(vcpu);
3959
3960         if (is_guest_mode(vcpu) &&
3961             vector == vmx->nested.posted_intr_nv) {
3962                 /*
3963                  * If a posted intr is not recognized by hardware,
3964                  * we will accomplish it in the next vmentry.
3965                  */
3966                 vmx->nested.pi_pending = true;
3967                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3968                 /* the PIR and ON have been set by L1. */
3969                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3970                         kvm_vcpu_kick(vcpu);
3971                 return 0;
3972         }
3973         return -1;
3974 }
3975 /*
3976  * Send interrupt to vcpu via posted interrupt way.
3977  * 1. If target vcpu is running(non-root mode), send posted interrupt
3978  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3979  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3980  * interrupt from PIR in next vmentry.
3981  */
3982 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3983 {
3984         struct vcpu_vmx *vmx = to_vmx(vcpu);
3985         int r;
3986
3987         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3988         if (!r)
3989                 return 0;
3990
3991         if (!vcpu->arch.apicv_active)
3992                 return -1;
3993
3994         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3995                 return 0;
3996
3997         /* If a previous notification has sent the IPI, nothing to do.  */
3998         if (pi_test_and_set_on(&vmx->pi_desc))
3999                 return 0;
4000
4001         if (vcpu != kvm_get_running_vcpu() &&
4002             !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4003                 kvm_vcpu_kick(vcpu);
4004
4005         return 0;
4006 }
4007
4008 /*
4009  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4010  * will not change in the lifetime of the guest.
4011  * Note that host-state that does change is set elsewhere. E.g., host-state
4012  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4013  */
4014 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4015 {
4016         u32 low32, high32;
4017         unsigned long tmpl;
4018         unsigned long cr0, cr3, cr4;
4019
4020         cr0 = read_cr0();
4021         WARN_ON(cr0 & X86_CR0_TS);
4022         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4023
4024         /*
4025          * Save the most likely value for this task's CR3 in the VMCS.
4026          * We can't use __get_current_cr3_fast() because we're not atomic.
4027          */
4028         cr3 = __read_cr3();
4029         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
4030         vmx->loaded_vmcs->host_state.cr3 = cr3;
4031
4032         /* Save the most likely value for this task's CR4 in the VMCS. */
4033         cr4 = cr4_read_shadow();
4034         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4035         vmx->loaded_vmcs->host_state.cr4 = cr4;
4036
4037         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4038 #ifdef CONFIG_X86_64
4039         /*
4040          * Load null selectors, so we can avoid reloading them in
4041          * vmx_prepare_switch_to_host(), in case userspace uses
4042          * the null selectors too (the expected case).
4043          */
4044         vmcs_write16(HOST_DS_SELECTOR, 0);
4045         vmcs_write16(HOST_ES_SELECTOR, 0);
4046 #else
4047         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4048         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4049 #endif
4050         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4051         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4052
4053         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4054
4055         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4056
4057         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4058         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4059         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4060         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4061
4062         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4063                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4064                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4065         }
4066
4067         if (cpu_has_load_ia32_efer())
4068                 vmcs_write64(HOST_IA32_EFER, host_efer);
4069 }
4070
4071 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4072 {
4073         struct kvm_vcpu *vcpu = &vmx->vcpu;
4074
4075         vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4076                                           ~vcpu->arch.cr4_guest_rsvd_bits;
4077         if (!enable_ept)
4078                 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4079         if (is_guest_mode(&vmx->vcpu))
4080                 vcpu->arch.cr4_guest_owned_bits &=
4081                         ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4082         vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4083 }
4084
4085 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4086 {
4087         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4088
4089         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4090                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4091
4092         if (!enable_vnmi)
4093                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4094
4095         if (!enable_preemption_timer)
4096                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4097
4098         return pin_based_exec_ctrl;
4099 }
4100
4101 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4102 {
4103         struct vcpu_vmx *vmx = to_vmx(vcpu);
4104
4105         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4106         if (cpu_has_secondary_exec_ctrls()) {
4107                 if (kvm_vcpu_apicv_active(vcpu))
4108                         secondary_exec_controls_setbit(vmx,
4109                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4110                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4111                 else
4112                         secondary_exec_controls_clearbit(vmx,
4113                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
4114                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4115         }
4116
4117         if (cpu_has_vmx_msr_bitmap())
4118                 vmx_update_msr_bitmap(vcpu);
4119 }
4120
4121 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4122 {
4123         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4124
4125         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4126                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4127
4128         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4129                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4130 #ifdef CONFIG_X86_64
4131                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4132                                 CPU_BASED_CR8_LOAD_EXITING;
4133 #endif
4134         }
4135         if (!enable_ept)
4136                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4137                                 CPU_BASED_CR3_LOAD_EXITING  |
4138                                 CPU_BASED_INVLPG_EXITING;
4139         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4140                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4141                                 CPU_BASED_MONITOR_EXITING);
4142         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4143                 exec_control &= ~CPU_BASED_HLT_EXITING;
4144         return exec_control;
4145 }
4146
4147 /*
4148  * Adjust a single secondary execution control bit to intercept/allow an
4149  * instruction in the guest.  This is usually done based on whether or not a
4150  * feature has been exposed to the guest in order to correctly emulate faults.
4151  */
4152 static inline void
4153 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4154                                   u32 control, bool enabled, bool exiting)
4155 {
4156         /*
4157          * If the control is for an opt-in feature, clear the control if the
4158          * feature is not exposed to the guest, i.e. not enabled.  If the
4159          * control is opt-out, i.e. an exiting control, clear the control if
4160          * the feature _is_ exposed to the guest, i.e. exiting/interception is
4161          * disabled for the associated instruction.  Note, the caller is
4162          * responsible presetting exec_control to set all supported bits.
4163          */
4164         if (enabled == exiting)
4165                 *exec_control &= ~control;
4166
4167         /*
4168          * Update the nested MSR settings so that a nested VMM can/can't set
4169          * controls for features that are/aren't exposed to the guest.
4170          */
4171         if (nested) {
4172                 if (enabled)
4173                         vmx->nested.msrs.secondary_ctls_high |= control;
4174                 else
4175                         vmx->nested.msrs.secondary_ctls_high &= ~control;
4176         }
4177 }
4178
4179 /*
4180  * Wrapper macro for the common case of adjusting a secondary execution control
4181  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4182  * verifies that the control is actually supported by KVM and hardware.
4183  */
4184 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4185 ({                                                                       \
4186         bool __enabled;                                                  \
4187                                                                          \
4188         if (cpu_has_vmx_##name()) {                                      \
4189                 __enabled = guest_cpuid_has(&(vmx)->vcpu,                \
4190                                             X86_FEATURE_##feat_name);    \
4191                 vmx_adjust_secondary_exec_control(vmx, exec_control,     \
4192                         SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4193         }                                                                \
4194 })
4195
4196 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4197 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4198         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4199
4200 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4201         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4202
4203 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4204 {
4205         struct kvm_vcpu *vcpu = &vmx->vcpu;
4206
4207         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4208
4209         if (vmx_pt_mode_is_system())
4210                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4211         if (!cpu_need_virtualize_apic_accesses(vcpu))
4212                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4213         if (vmx->vpid == 0)
4214                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4215         if (!enable_ept) {
4216                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4217                 enable_unrestricted_guest = 0;
4218         }
4219         if (!enable_unrestricted_guest)
4220                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4221         if (kvm_pause_in_guest(vmx->vcpu.kvm))
4222                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4223         if (!kvm_vcpu_apicv_active(vcpu))
4224                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4225                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4226         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4227
4228         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4229          * in vmx_set_cr4.  */
4230         exec_control &= ~SECONDARY_EXEC_DESC;
4231
4232         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4233            (handle_vmptrld).
4234            We can NOT enable shadow_vmcs here because we don't have yet
4235            a current VMCS12
4236         */
4237         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4238
4239         if (!enable_pml)
4240                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4241
4242         if (cpu_has_vmx_xsaves()) {
4243                 /* Exposing XSAVES only when XSAVE is exposed */
4244                 bool xsaves_enabled =
4245                         boot_cpu_has(X86_FEATURE_XSAVE) &&
4246                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4247                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4248
4249                 vcpu->arch.xsaves_enabled = xsaves_enabled;
4250
4251                 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4252                                                   SECONDARY_EXEC_XSAVES,
4253                                                   xsaves_enabled, false);
4254         }
4255
4256         vmx_adjust_sec_exec_feature(vmx, &exec_control, rdtscp, RDTSCP);
4257
4258         /*
4259          * Expose INVPCID if and only if PCID is also exposed to the guest.
4260          * INVPCID takes a #UD when it's disabled in the VMCS, but a #GP or #PF
4261          * if CR4.PCIDE=0.  Enumerating CPUID.INVPCID=1 would lead to incorrect
4262          * behavior from the guest perspective (it would expect #GP or #PF).
4263          */
4264         if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
4265                 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4266         vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4267
4268
4269         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4270         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4271
4272         vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4273                                     ENABLE_USR_WAIT_PAUSE, false);
4274
4275         vmx->secondary_exec_control = exec_control;
4276 }
4277
4278 static void ept_set_mmio_spte_mask(void)
4279 {
4280         /*
4281          * EPT Misconfigurations can be generated if the value of bits 2:0
4282          * of an EPT paging-structure entry is 110b (write/execute).
4283          */
4284         kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 0);
4285 }
4286
4287 #define VMX_XSS_EXIT_BITMAP 0
4288
4289 /*
4290  * Noting that the initialization of Guest-state Area of VMCS is in
4291  * vmx_vcpu_reset().
4292  */
4293 static void init_vmcs(struct vcpu_vmx *vmx)
4294 {
4295         if (nested)
4296                 nested_vmx_set_vmcs_shadowing_bitmap();
4297
4298         if (cpu_has_vmx_msr_bitmap())
4299                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4300
4301         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4302
4303         /* Control */
4304         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4305
4306         exec_controls_set(vmx, vmx_exec_control(vmx));
4307
4308         if (cpu_has_secondary_exec_ctrls()) {
4309                 vmx_compute_secondary_exec_control(vmx);
4310                 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4311         }
4312
4313         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4314                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4315                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4316                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4317                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4318
4319                 vmcs_write16(GUEST_INTR_STATUS, 0);
4320
4321                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4322                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4323         }
4324
4325         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4326                 vmcs_write32(PLE_GAP, ple_gap);
4327                 vmx->ple_window = ple_window;
4328                 vmx->ple_window_dirty = true;
4329         }
4330
4331         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4332         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4333         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4334
4335         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4336         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4337         vmx_set_constant_host_state(vmx);
4338         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4339         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4340
4341         if (cpu_has_vmx_vmfunc())
4342                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4343
4344         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4345         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4346         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4347         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4348         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4349
4350         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4351                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4352
4353         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4354
4355         /* 22.2.1, 20.8.1 */
4356         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4357
4358         vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4359         vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4360
4361         set_cr4_guest_host_mask(vmx);
4362
4363         if (vmx->vpid != 0)
4364                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4365
4366         if (cpu_has_vmx_xsaves())
4367                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4368
4369         if (enable_pml) {
4370                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4371                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4372         }
4373
4374         if (cpu_has_vmx_encls_vmexit())
4375                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4376
4377         if (vmx_pt_mode_is_host_guest()) {
4378                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4379                 /* Bit[6~0] are forced to 1, writes are ignored. */
4380                 vmx->pt_desc.guest.output_mask = 0x7F;
4381                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4382         }
4383 }
4384
4385 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4386 {
4387         struct vcpu_vmx *vmx = to_vmx(vcpu);
4388         struct msr_data apic_base_msr;
4389         u64 cr0;
4390
4391         vmx->rmode.vm86_active = 0;
4392         vmx->spec_ctrl = 0;
4393
4394         vmx->msr_ia32_umwait_control = 0;
4395
4396         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4397         vmx->hv_deadline_tsc = -1;
4398         kvm_set_cr8(vcpu, 0);
4399
4400         if (!init_event) {
4401                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4402                                      MSR_IA32_APICBASE_ENABLE;
4403                 if (kvm_vcpu_is_reset_bsp(vcpu))
4404                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4405                 apic_base_msr.host_initiated = true;
4406                 kvm_set_apic_base(vcpu, &apic_base_msr);
4407         }
4408
4409         vmx_segment_cache_clear(vmx);
4410
4411         seg_setup(VCPU_SREG_CS);
4412         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4413         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4414
4415         seg_setup(VCPU_SREG_DS);
4416         seg_setup(VCPU_SREG_ES);
4417         seg_setup(VCPU_SREG_FS);
4418         seg_setup(VCPU_SREG_GS);
4419         seg_setup(VCPU_SREG_SS);
4420
4421         vmcs_write16(GUEST_TR_SELECTOR, 0);
4422         vmcs_writel(GUEST_TR_BASE, 0);
4423         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4424         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4425
4426         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4427         vmcs_writel(GUEST_LDTR_BASE, 0);
4428         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4429         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4430
4431         if (!init_event) {
4432                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4433                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4434                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4435                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4436         }
4437
4438         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4439         kvm_rip_write(vcpu, 0xfff0);
4440
4441         vmcs_writel(GUEST_GDTR_BASE, 0);
4442         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4443
4444         vmcs_writel(GUEST_IDTR_BASE, 0);
4445         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4446
4447         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4448         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4449         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4450         if (kvm_mpx_supported())
4451                 vmcs_write64(GUEST_BNDCFGS, 0);
4452
4453         setup_msrs(vmx);
4454
4455         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4456
4457         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4458                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4459                 if (cpu_need_tpr_shadow(vcpu))
4460                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4461                                      __pa(vcpu->arch.apic->regs));
4462                 vmcs_write32(TPR_THRESHOLD, 0);
4463         }
4464
4465         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4466
4467         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4468         vmx->vcpu.arch.cr0 = cr0;
4469         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4470         vmx_set_cr4(vcpu, 0);
4471         vmx_set_efer(vcpu, 0);
4472
4473         update_exception_bitmap(vcpu);
4474
4475         vpid_sync_context(vmx->vpid);
4476         if (init_event)
4477                 vmx_clear_hlt(vcpu);
4478 }
4479
4480 static void enable_irq_window(struct kvm_vcpu *vcpu)
4481 {
4482         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4483 }
4484
4485 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4486 {
4487         if (!enable_vnmi ||
4488             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4489                 enable_irq_window(vcpu);
4490                 return;
4491         }
4492
4493         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4494 }
4495
4496 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4497 {
4498         struct vcpu_vmx *vmx = to_vmx(vcpu);
4499         uint32_t intr;
4500         int irq = vcpu->arch.interrupt.nr;
4501
4502         trace_kvm_inj_virq(irq);
4503
4504         ++vcpu->stat.irq_injections;
4505         if (vmx->rmode.vm86_active) {
4506                 int inc_eip = 0;
4507                 if (vcpu->arch.interrupt.soft)
4508                         inc_eip = vcpu->arch.event_exit_inst_len;
4509                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4510                 return;
4511         }
4512         intr = irq | INTR_INFO_VALID_MASK;
4513         if (vcpu->arch.interrupt.soft) {
4514                 intr |= INTR_TYPE_SOFT_INTR;
4515                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4516                              vmx->vcpu.arch.event_exit_inst_len);
4517         } else
4518                 intr |= INTR_TYPE_EXT_INTR;
4519         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4520
4521         vmx_clear_hlt(vcpu);
4522 }
4523
4524 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4525 {
4526         struct vcpu_vmx *vmx = to_vmx(vcpu);
4527
4528         if (!enable_vnmi) {
4529                 /*
4530                  * Tracking the NMI-blocked state in software is built upon
4531                  * finding the next open IRQ window. This, in turn, depends on
4532                  * well-behaving guests: They have to keep IRQs disabled at
4533                  * least as long as the NMI handler runs. Otherwise we may
4534                  * cause NMI nesting, maybe breaking the guest. But as this is
4535                  * highly unlikely, we can live with the residual risk.
4536                  */
4537                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4538                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4539         }
4540
4541         ++vcpu->stat.nmi_injections;
4542         vmx->loaded_vmcs->nmi_known_unmasked = false;
4543
4544         if (vmx->rmode.vm86_active) {
4545                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4546                 return;
4547         }
4548
4549         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4550                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4551
4552         vmx_clear_hlt(vcpu);
4553 }
4554
4555 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4556 {
4557         struct vcpu_vmx *vmx = to_vmx(vcpu);
4558         bool masked;
4559
4560         if (!enable_vnmi)
4561                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4562         if (vmx->loaded_vmcs->nmi_known_unmasked)
4563                 return false;
4564         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4565         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4566         return masked;
4567 }
4568
4569 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4570 {
4571         struct vcpu_vmx *vmx = to_vmx(vcpu);
4572
4573         if (!enable_vnmi) {
4574                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4575                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4576                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4577                 }
4578         } else {
4579                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4580                 if (masked)
4581                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4582                                       GUEST_INTR_STATE_NMI);
4583                 else
4584                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4585                                         GUEST_INTR_STATE_NMI);
4586         }
4587 }
4588
4589 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4590 {
4591         if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4592                 return false;
4593
4594         if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4595                 return true;
4596
4597         return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4598                 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4599                  GUEST_INTR_STATE_NMI));
4600 }
4601
4602 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4603 {
4604         if (to_vmx(vcpu)->nested.nested_run_pending)
4605                 return -EBUSY;
4606
4607         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4608         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4609                 return -EBUSY;
4610
4611         return !vmx_nmi_blocked(vcpu);
4612 }
4613
4614 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4615 {
4616         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4617                 return false;
4618
4619         return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4620                (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4621                 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4622 }
4623
4624 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4625 {
4626         if (to_vmx(vcpu)->nested.nested_run_pending)
4627                 return -EBUSY;
4628
4629        /*
4630         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4631         * e.g. if the IRQ arrived asynchronously after checking nested events.
4632         */
4633         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4634                 return -EBUSY;
4635
4636         return !vmx_interrupt_blocked(vcpu);
4637 }
4638
4639 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4640 {
4641         int ret;
4642
4643         if (enable_unrestricted_guest)
4644                 return 0;
4645
4646         mutex_lock(&kvm->slots_lock);
4647         ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4648                                       PAGE_SIZE * 3);
4649         mutex_unlock(&kvm->slots_lock);
4650
4651         if (ret)
4652                 return ret;
4653         to_kvm_vmx(kvm)->tss_addr = addr;
4654         return init_rmode_tss(kvm);
4655 }
4656
4657 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4658 {
4659         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4660         return 0;
4661 }
4662
4663 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4664 {
4665         switch (vec) {
4666         case BP_VECTOR:
4667                 /*
4668                  * Update instruction length as we may reinject the exception
4669                  * from user space while in guest debugging mode.
4670                  */
4671                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4672                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4673                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4674                         return false;
4675                 fallthrough;
4676         case DB_VECTOR:
4677                 return !(vcpu->guest_debug &
4678                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4679         case DE_VECTOR:
4680         case OF_VECTOR:
4681         case BR_VECTOR:
4682         case UD_VECTOR:
4683         case DF_VECTOR:
4684         case SS_VECTOR:
4685         case GP_VECTOR:
4686         case MF_VECTOR:
4687                 return true;
4688         }
4689         return false;
4690 }
4691
4692 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4693                                   int vec, u32 err_code)
4694 {
4695         /*
4696          * Instruction with address size override prefix opcode 0x67
4697          * Cause the #SS fault with 0 error code in VM86 mode.
4698          */
4699         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4700                 if (kvm_emulate_instruction(vcpu, 0)) {
4701                         if (vcpu->arch.halt_request) {
4702                                 vcpu->arch.halt_request = 0;
4703                                 return kvm_vcpu_halt(vcpu);
4704                         }
4705                         return 1;
4706                 }
4707                 return 0;
4708         }
4709
4710         /*
4711          * Forward all other exceptions that are valid in real mode.
4712          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4713          *        the required debugging infrastructure rework.
4714          */
4715         kvm_queue_exception(vcpu, vec);
4716         return 1;
4717 }
4718
4719 /*
4720  * Trigger machine check on the host. We assume all the MSRs are already set up
4721  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4722  * We pass a fake environment to the machine check handler because we want
4723  * the guest to be always treated like user space, no matter what context
4724  * it used internally.
4725  */
4726 static void kvm_machine_check(void)
4727 {
4728 #if defined(CONFIG_X86_MCE)
4729         struct pt_regs regs = {
4730                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4731                 .flags = X86_EFLAGS_IF,
4732         };
4733
4734         do_machine_check(&regs);
4735 #endif
4736 }
4737
4738 static int handle_machine_check(struct kvm_vcpu *vcpu)
4739 {
4740         /* handled by vmx_vcpu_run() */
4741         return 1;
4742 }
4743
4744 /*
4745  * If the host has split lock detection disabled, then #AC is
4746  * unconditionally injected into the guest, which is the pre split lock
4747  * detection behaviour.
4748  *
4749  * If the host has split lock detection enabled then #AC is
4750  * only injected into the guest when:
4751  *  - Guest CPL == 3 (user mode)
4752  *  - Guest has #AC detection enabled in CR0
4753  *  - Guest EFLAGS has AC bit set
4754  */
4755 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu)
4756 {
4757         if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4758                 return true;
4759
4760         return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4761                (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4762 }
4763
4764 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4765 {
4766         struct vcpu_vmx *vmx = to_vmx(vcpu);
4767         struct kvm_run *kvm_run = vcpu->run;
4768         u32 intr_info, ex_no, error_code;
4769         unsigned long cr2, rip, dr6;
4770         u32 vect_info;
4771
4772         vect_info = vmx->idt_vectoring_info;
4773         intr_info = vmx_get_intr_info(vcpu);
4774
4775         if (is_machine_check(intr_info) || is_nmi(intr_info))
4776                 return 1; /* handled by handle_exception_nmi_irqoff() */
4777
4778         if (is_invalid_opcode(intr_info))
4779                 return handle_ud(vcpu);
4780
4781         error_code = 0;
4782         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4783                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4784
4785         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4786                 WARN_ON_ONCE(!enable_vmware_backdoor);
4787
4788                 /*
4789                  * VMware backdoor emulation on #GP interception only handles
4790                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4791                  * error code on #GP.
4792                  */
4793                 if (error_code) {
4794                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4795                         return 1;
4796                 }
4797                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4798         }
4799
4800         /*
4801          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4802          * MMIO, it is better to report an internal error.
4803          * See the comments in vmx_handle_exit.
4804          */
4805         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4806             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4807                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4808                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4809                 vcpu->run->internal.ndata = 4;
4810                 vcpu->run->internal.data[0] = vect_info;
4811                 vcpu->run->internal.data[1] = intr_info;
4812                 vcpu->run->internal.data[2] = error_code;
4813                 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4814                 return 0;
4815         }
4816
4817         if (is_page_fault(intr_info)) {
4818                 cr2 = vmx_get_exit_qual(vcpu);
4819                 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4820                         /*
4821                          * EPT will cause page fault only if we need to
4822                          * detect illegal GPAs.
4823                          */
4824                         WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4825                         kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4826                         return 1;
4827                 } else
4828                         return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4829         }
4830
4831         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4832
4833         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4834                 return handle_rmode_exception(vcpu, ex_no, error_code);
4835
4836         switch (ex_no) {
4837         case DB_VECTOR:
4838                 dr6 = vmx_get_exit_qual(vcpu);
4839                 if (!(vcpu->guest_debug &
4840                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4841                         if (is_icebp(intr_info))
4842                                 WARN_ON(!skip_emulated_instruction(vcpu));
4843
4844                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4845                         return 1;
4846                 }
4847                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
4848                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4849                 fallthrough;
4850         case BP_VECTOR:
4851                 /*
4852                  * Update instruction length as we may reinject #BP from
4853                  * user space while in guest debugging mode. Reading it for
4854                  * #DB as well causes no harm, it is not used in that case.
4855                  */
4856                 vmx->vcpu.arch.event_exit_inst_len =
4857                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4858                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4859                 rip = kvm_rip_read(vcpu);
4860                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4861                 kvm_run->debug.arch.exception = ex_no;
4862                 break;
4863         case AC_VECTOR:
4864                 if (guest_inject_ac(vcpu)) {
4865                         kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4866                         return 1;
4867                 }
4868
4869                 /*
4870                  * Handle split lock. Depending on detection mode this will
4871                  * either warn and disable split lock detection for this
4872                  * task or force SIGBUS on it.
4873                  */
4874                 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4875                         return 1;
4876                 fallthrough;
4877         default:
4878                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4879                 kvm_run->ex.exception = ex_no;
4880                 kvm_run->ex.error_code = error_code;
4881                 break;
4882         }
4883         return 0;
4884 }
4885
4886 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4887 {
4888         ++vcpu->stat.irq_exits;
4889         return 1;
4890 }
4891
4892 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4893 {
4894         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4895         vcpu->mmio_needed = 0;
4896         return 0;
4897 }
4898
4899 static int handle_io(struct kvm_vcpu *vcpu)
4900 {
4901         unsigned long exit_qualification;
4902         int size, in, string;
4903         unsigned port;
4904
4905         exit_qualification = vmx_get_exit_qual(vcpu);
4906         string = (exit_qualification & 16) != 0;
4907
4908         ++vcpu->stat.io_exits;
4909
4910         if (string)
4911                 return kvm_emulate_instruction(vcpu, 0);
4912
4913         port = exit_qualification >> 16;
4914         size = (exit_qualification & 7) + 1;
4915         in = (exit_qualification & 8) != 0;
4916
4917         return kvm_fast_pio(vcpu, size, port, in);
4918 }
4919
4920 static void
4921 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4922 {
4923         /*
4924          * Patch in the VMCALL instruction:
4925          */
4926         hypercall[0] = 0x0f;
4927         hypercall[1] = 0x01;
4928         hypercall[2] = 0xc1;
4929 }
4930
4931 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4932 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4933 {
4934         if (is_guest_mode(vcpu)) {
4935                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4936                 unsigned long orig_val = val;
4937
4938                 /*
4939                  * We get here when L2 changed cr0 in a way that did not change
4940                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4941                  * but did change L0 shadowed bits. So we first calculate the
4942                  * effective cr0 value that L1 would like to write into the
4943                  * hardware. It consists of the L2-owned bits from the new
4944                  * value combined with the L1-owned bits from L1's guest_cr0.
4945                  */
4946                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4947                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4948
4949                 if (!nested_guest_cr0_valid(vcpu, val))
4950                         return 1;
4951
4952                 if (kvm_set_cr0(vcpu, val))
4953                         return 1;
4954                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4955                 return 0;
4956         } else {
4957                 if (to_vmx(vcpu)->nested.vmxon &&
4958                     !nested_host_cr0_valid(vcpu, val))
4959                         return 1;
4960
4961                 return kvm_set_cr0(vcpu, val);
4962         }
4963 }
4964
4965 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4966 {
4967         if (is_guest_mode(vcpu)) {
4968                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4969                 unsigned long orig_val = val;
4970
4971                 /* analogously to handle_set_cr0 */
4972                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4973                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4974                 if (kvm_set_cr4(vcpu, val))
4975                         return 1;
4976                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4977                 return 0;
4978         } else
4979                 return kvm_set_cr4(vcpu, val);
4980 }
4981
4982 static int handle_desc(struct kvm_vcpu *vcpu)
4983 {
4984         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4985         return kvm_emulate_instruction(vcpu, 0);
4986 }
4987
4988 static int handle_cr(struct kvm_vcpu *vcpu)
4989 {
4990         unsigned long exit_qualification, val;
4991         int cr;
4992         int reg;
4993         int err;
4994         int ret;
4995
4996         exit_qualification = vmx_get_exit_qual(vcpu);
4997         cr = exit_qualification & 15;
4998         reg = (exit_qualification >> 8) & 15;
4999         switch ((exit_qualification >> 4) & 3) {
5000         case 0: /* mov to cr */
5001                 val = kvm_register_readl(vcpu, reg);
5002                 trace_kvm_cr_write(cr, val);
5003                 switch (cr) {
5004                 case 0:
5005                         err = handle_set_cr0(vcpu, val);
5006                         return kvm_complete_insn_gp(vcpu, err);
5007                 case 3:
5008                         WARN_ON_ONCE(enable_unrestricted_guest);
5009                         err = kvm_set_cr3(vcpu, val);
5010                         return kvm_complete_insn_gp(vcpu, err);
5011                 case 4:
5012                         err = handle_set_cr4(vcpu, val);
5013                         return kvm_complete_insn_gp(vcpu, err);
5014                 case 8: {
5015                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5016                                 u8 cr8 = (u8)val;
5017                                 err = kvm_set_cr8(vcpu, cr8);
5018                                 ret = kvm_complete_insn_gp(vcpu, err);
5019                                 if (lapic_in_kernel(vcpu))
5020                                         return ret;
5021                                 if (cr8_prev <= cr8)
5022                                         return ret;
5023                                 /*
5024                                  * TODO: we might be squashing a
5025                                  * KVM_GUESTDBG_SINGLESTEP-triggered
5026                                  * KVM_EXIT_DEBUG here.
5027                                  */
5028                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5029                                 return 0;
5030                         }
5031                 }
5032                 break;
5033         case 2: /* clts */
5034                 WARN_ONCE(1, "Guest should always own CR0.TS");
5035                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5036                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5037                 return kvm_skip_emulated_instruction(vcpu);
5038         case 1: /*mov from cr*/
5039                 switch (cr) {
5040                 case 3:
5041                         WARN_ON_ONCE(enable_unrestricted_guest);
5042                         val = kvm_read_cr3(vcpu);
5043                         kvm_register_write(vcpu, reg, val);
5044                         trace_kvm_cr_read(cr, val);
5045                         return kvm_skip_emulated_instruction(vcpu);
5046                 case 8:
5047                         val = kvm_get_cr8(vcpu);
5048                         kvm_register_write(vcpu, reg, val);
5049                         trace_kvm_cr_read(cr, val);
5050                         return kvm_skip_emulated_instruction(vcpu);
5051                 }
5052                 break;
5053         case 3: /* lmsw */
5054                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5055                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5056                 kvm_lmsw(vcpu, val);
5057
5058                 return kvm_skip_emulated_instruction(vcpu);
5059         default:
5060                 break;
5061         }
5062         vcpu->run->exit_reason = 0;
5063         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5064                (int)(exit_qualification >> 4) & 3, cr);
5065         return 0;
5066 }
5067
5068 static int handle_dr(struct kvm_vcpu *vcpu)
5069 {
5070         unsigned long exit_qualification;
5071         int dr, dr7, reg;
5072
5073         exit_qualification = vmx_get_exit_qual(vcpu);
5074         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5075
5076         /* First, if DR does not exist, trigger UD */
5077         if (!kvm_require_dr(vcpu, dr))
5078                 return 1;
5079
5080         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5081         if (!kvm_require_cpl(vcpu, 0))
5082                 return 1;
5083         dr7 = vmcs_readl(GUEST_DR7);
5084         if (dr7 & DR7_GD) {
5085                 /*
5086                  * As the vm-exit takes precedence over the debug trap, we
5087                  * need to emulate the latter, either for the host or the
5088                  * guest debugging itself.
5089                  */
5090                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5091                         vcpu->run->debug.arch.dr6 = DR6_BD | DR6_RTM | DR6_FIXED_1;
5092                         vcpu->run->debug.arch.dr7 = dr7;
5093                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5094                         vcpu->run->debug.arch.exception = DB_VECTOR;
5095                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5096                         return 0;
5097                 } else {
5098                         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5099                         return 1;
5100                 }
5101         }
5102
5103         if (vcpu->guest_debug == 0) {
5104                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5105
5106                 /*
5107                  * No more DR vmexits; force a reload of the debug registers
5108                  * and reenter on this instruction.  The next vmexit will
5109                  * retrieve the full state of the debug registers.
5110                  */
5111                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5112                 return 1;
5113         }
5114
5115         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5116         if (exit_qualification & TYPE_MOV_FROM_DR) {
5117                 unsigned long val;
5118
5119                 if (kvm_get_dr(vcpu, dr, &val))
5120                         return 1;
5121                 kvm_register_write(vcpu, reg, val);
5122         } else
5123                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5124                         return 1;
5125
5126         return kvm_skip_emulated_instruction(vcpu);
5127 }
5128
5129 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5130 {
5131         get_debugreg(vcpu->arch.db[0], 0);
5132         get_debugreg(vcpu->arch.db[1], 1);
5133         get_debugreg(vcpu->arch.db[2], 2);
5134         get_debugreg(vcpu->arch.db[3], 3);
5135         get_debugreg(vcpu->arch.dr6, 6);
5136         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5137
5138         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5139         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5140 }
5141
5142 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5143 {
5144         vmcs_writel(GUEST_DR7, val);
5145 }
5146
5147 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5148 {
5149         kvm_apic_update_ppr(vcpu);
5150         return 1;
5151 }
5152
5153 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5154 {
5155         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5156
5157         kvm_make_request(KVM_REQ_EVENT, vcpu);
5158
5159         ++vcpu->stat.irq_window_exits;
5160         return 1;
5161 }
5162
5163 static int handle_vmcall(struct kvm_vcpu *vcpu)
5164 {
5165         return kvm_emulate_hypercall(vcpu);
5166 }
5167
5168 static int handle_invd(struct kvm_vcpu *vcpu)
5169 {
5170         /* Treat an INVD instruction as a NOP and just skip it. */
5171         return kvm_skip_emulated_instruction(vcpu);
5172 }
5173
5174 static int handle_invlpg(struct kvm_vcpu *vcpu)
5175 {
5176         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5177
5178         kvm_mmu_invlpg(vcpu, exit_qualification);
5179         return kvm_skip_emulated_instruction(vcpu);
5180 }
5181
5182 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5183 {
5184         int err;
5185
5186         err = kvm_rdpmc(vcpu);
5187         return kvm_complete_insn_gp(vcpu, err);
5188 }
5189
5190 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5191 {
5192         return kvm_emulate_wbinvd(vcpu);
5193 }
5194
5195 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5196 {
5197         u64 new_bv = kvm_read_edx_eax(vcpu);
5198         u32 index = kvm_rcx_read(vcpu);
5199
5200         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5201                 return kvm_skip_emulated_instruction(vcpu);
5202         return 1;
5203 }
5204
5205 static int handle_apic_access(struct kvm_vcpu *vcpu)
5206 {
5207         if (likely(fasteoi)) {
5208                 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5209                 int access_type, offset;
5210
5211                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5212                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5213                 /*
5214                  * Sane guest uses MOV to write EOI, with written value
5215                  * not cared. So make a short-circuit here by avoiding
5216                  * heavy instruction emulation.
5217                  */
5218                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5219                     (offset == APIC_EOI)) {
5220                         kvm_lapic_set_eoi(vcpu);
5221                         return kvm_skip_emulated_instruction(vcpu);
5222                 }
5223         }
5224         return kvm_emulate_instruction(vcpu, 0);
5225 }
5226
5227 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5228 {
5229         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5230         int vector = exit_qualification & 0xff;
5231
5232         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5233         kvm_apic_set_eoi_accelerated(vcpu, vector);
5234         return 1;
5235 }
5236
5237 static int handle_apic_write(struct kvm_vcpu *vcpu)
5238 {
5239         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5240         u32 offset = exit_qualification & 0xfff;
5241
5242         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5243         kvm_apic_write_nodecode(vcpu, offset);
5244         return 1;
5245 }
5246
5247 static int handle_task_switch(struct kvm_vcpu *vcpu)
5248 {
5249         struct vcpu_vmx *vmx = to_vmx(vcpu);
5250         unsigned long exit_qualification;
5251         bool has_error_code = false;
5252         u32 error_code = 0;
5253         u16 tss_selector;
5254         int reason, type, idt_v, idt_index;
5255
5256         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5257         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5258         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5259
5260         exit_qualification = vmx_get_exit_qual(vcpu);
5261
5262         reason = (u32)exit_qualification >> 30;
5263         if (reason == TASK_SWITCH_GATE && idt_v) {
5264                 switch (type) {
5265                 case INTR_TYPE_NMI_INTR:
5266                         vcpu->arch.nmi_injected = false;
5267                         vmx_set_nmi_mask(vcpu, true);
5268                         break;
5269                 case INTR_TYPE_EXT_INTR:
5270                 case INTR_TYPE_SOFT_INTR:
5271                         kvm_clear_interrupt_queue(vcpu);
5272                         break;
5273                 case INTR_TYPE_HARD_EXCEPTION:
5274                         if (vmx->idt_vectoring_info &
5275                             VECTORING_INFO_DELIVER_CODE_MASK) {
5276                                 has_error_code = true;
5277                                 error_code =
5278                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5279                         }
5280                         fallthrough;
5281                 case INTR_TYPE_SOFT_EXCEPTION:
5282                         kvm_clear_exception_queue(vcpu);
5283                         break;
5284                 default:
5285                         break;
5286                 }
5287         }
5288         tss_selector = exit_qualification;
5289
5290         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5291                        type != INTR_TYPE_EXT_INTR &&
5292                        type != INTR_TYPE_NMI_INTR))
5293                 WARN_ON(!skip_emulated_instruction(vcpu));
5294
5295         /*
5296          * TODO: What about debug traps on tss switch?
5297          *       Are we supposed to inject them and update dr6?
5298          */
5299         return kvm_task_switch(vcpu, tss_selector,
5300                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5301                                reason, has_error_code, error_code);
5302 }
5303
5304 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5305 {
5306         unsigned long exit_qualification;
5307         gpa_t gpa;
5308         u64 error_code;
5309
5310         exit_qualification = vmx_get_exit_qual(vcpu);
5311
5312         /*
5313          * EPT violation happened while executing iret from NMI,
5314          * "blocked by NMI" bit has to be set before next VM entry.
5315          * There are errata that may cause this bit to not be set:
5316          * AAK134, BY25.
5317          */
5318         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5319                         enable_vnmi &&
5320                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5321                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5322
5323         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5324         trace_kvm_page_fault(gpa, exit_qualification);
5325
5326         /* Is it a read fault? */
5327         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5328                      ? PFERR_USER_MASK : 0;
5329         /* Is it a write fault? */
5330         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5331                       ? PFERR_WRITE_MASK : 0;
5332         /* Is it a fetch fault? */
5333         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5334                       ? PFERR_FETCH_MASK : 0;
5335         /* ept page table entry is present? */
5336         error_code |= (exit_qualification &
5337                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5338                         EPT_VIOLATION_EXECUTABLE))
5339                       ? PFERR_PRESENT_MASK : 0;
5340
5341         error_code |= (exit_qualification & 0x100) != 0 ?
5342                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5343
5344         vcpu->arch.exit_qualification = exit_qualification;
5345
5346         /*
5347          * Check that the GPA doesn't exceed physical memory limits, as that is
5348          * a guest page fault.  We have to emulate the instruction here, because
5349          * if the illegal address is that of a paging structure, then
5350          * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5351          * would also use advanced VM-exit information for EPT violations to
5352          * reconstruct the page fault error code.
5353          */
5354         if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5355                 return kvm_emulate_instruction(vcpu, 0);
5356
5357         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5358 }
5359
5360 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5361 {
5362         gpa_t gpa;
5363
5364         /*
5365          * A nested guest cannot optimize MMIO vmexits, because we have an
5366          * nGPA here instead of the required GPA.
5367          */
5368         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5369         if (!is_guest_mode(vcpu) &&
5370             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5371                 trace_kvm_fast_mmio(gpa);
5372                 return kvm_skip_emulated_instruction(vcpu);
5373         }
5374
5375         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5376 }
5377
5378 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5379 {
5380         WARN_ON_ONCE(!enable_vnmi);
5381         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5382         ++vcpu->stat.nmi_window_exits;
5383         kvm_make_request(KVM_REQ_EVENT, vcpu);
5384
5385         return 1;
5386 }
5387
5388 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5389 {
5390         struct vcpu_vmx *vmx = to_vmx(vcpu);
5391         bool intr_window_requested;
5392         unsigned count = 130;
5393
5394         intr_window_requested = exec_controls_get(vmx) &
5395                                 CPU_BASED_INTR_WINDOW_EXITING;
5396
5397         while (vmx->emulation_required && count-- != 0) {
5398                 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5399                         return handle_interrupt_window(&vmx->vcpu);
5400
5401                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5402                         return 1;
5403
5404                 if (!kvm_emulate_instruction(vcpu, 0))
5405                         return 0;
5406
5407                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5408                     vcpu->arch.exception.pending) {
5409                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5410                         vcpu->run->internal.suberror =
5411                                                 KVM_INTERNAL_ERROR_EMULATION;
5412                         vcpu->run->internal.ndata = 0;
5413                         return 0;
5414                 }
5415
5416                 if (vcpu->arch.halt_request) {
5417                         vcpu->arch.halt_request = 0;
5418                         return kvm_vcpu_halt(vcpu);
5419                 }
5420
5421                 /*
5422                  * Note, return 1 and not 0, vcpu_run() will invoke
5423                  * xfer_to_guest_mode() which will create a proper return
5424                  * code.
5425                  */
5426                 if (__xfer_to_guest_mode_work_pending())
5427                         return 1;
5428         }
5429
5430         return 1;
5431 }
5432
5433 static void grow_ple_window(struct kvm_vcpu *vcpu)
5434 {
5435         struct vcpu_vmx *vmx = to_vmx(vcpu);
5436         unsigned int old = vmx->ple_window;
5437
5438         vmx->ple_window = __grow_ple_window(old, ple_window,
5439                                             ple_window_grow,
5440                                             ple_window_max);
5441
5442         if (vmx->ple_window != old) {
5443                 vmx->ple_window_dirty = true;
5444                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5445                                             vmx->ple_window, old);
5446         }
5447 }
5448
5449 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5450 {
5451         struct vcpu_vmx *vmx = to_vmx(vcpu);
5452         unsigned int old = vmx->ple_window;
5453
5454         vmx->ple_window = __shrink_ple_window(old, ple_window,
5455                                               ple_window_shrink,
5456                                               ple_window);
5457
5458         if (vmx->ple_window != old) {
5459                 vmx->ple_window_dirty = true;
5460                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5461                                             vmx->ple_window, old);
5462         }
5463 }
5464
5465 static void vmx_enable_tdp(void)
5466 {
5467         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5468                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5469                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5470                 0ull, VMX_EPT_EXECUTABLE_MASK,
5471                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5472                 VMX_EPT_RWX_MASK, 0ull);
5473
5474         ept_set_mmio_spte_mask();
5475 }
5476
5477 /*
5478  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5479  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5480  */
5481 static int handle_pause(struct kvm_vcpu *vcpu)
5482 {
5483         if (!kvm_pause_in_guest(vcpu->kvm))
5484                 grow_ple_window(vcpu);
5485
5486         /*
5487          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5488          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5489          * never set PAUSE_EXITING and just set PLE if supported,
5490          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5491          */
5492         kvm_vcpu_on_spin(vcpu, true);
5493         return kvm_skip_emulated_instruction(vcpu);
5494 }
5495
5496 static int handle_nop(struct kvm_vcpu *vcpu)
5497 {
5498         return kvm_skip_emulated_instruction(vcpu);
5499 }
5500
5501 static int handle_mwait(struct kvm_vcpu *vcpu)
5502 {
5503         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5504         return handle_nop(vcpu);
5505 }
5506
5507 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5508 {
5509         kvm_queue_exception(vcpu, UD_VECTOR);
5510         return 1;
5511 }
5512
5513 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5514 {
5515         return 1;
5516 }
5517
5518 static int handle_monitor(struct kvm_vcpu *vcpu)
5519 {
5520         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5521         return handle_nop(vcpu);
5522 }
5523
5524 static int handle_invpcid(struct kvm_vcpu *vcpu)
5525 {
5526         u32 vmx_instruction_info;
5527         unsigned long type;
5528         gva_t gva;
5529         struct {
5530                 u64 pcid;
5531                 u64 gla;
5532         } operand;
5533
5534         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5535                 kvm_queue_exception(vcpu, UD_VECTOR);
5536                 return 1;
5537         }
5538
5539         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5540         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5541
5542         if (type > 3) {
5543                 kvm_inject_gp(vcpu, 0);
5544                 return 1;
5545         }
5546
5547         /* According to the Intel instruction reference, the memory operand
5548          * is read even if it isn't needed (e.g., for type==all)
5549          */
5550         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5551                                 vmx_instruction_info, false,
5552                                 sizeof(operand), &gva))
5553                 return 1;
5554
5555         return kvm_handle_invpcid(vcpu, type, gva);
5556 }
5557
5558 static int handle_pml_full(struct kvm_vcpu *vcpu)
5559 {
5560         unsigned long exit_qualification;
5561
5562         trace_kvm_pml_full(vcpu->vcpu_id);
5563
5564         exit_qualification = vmx_get_exit_qual(vcpu);
5565
5566         /*
5567          * PML buffer FULL happened while executing iret from NMI,
5568          * "blocked by NMI" bit has to be set before next VM entry.
5569          */
5570         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5571                         enable_vnmi &&
5572                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5573                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5574                                 GUEST_INTR_STATE_NMI);
5575
5576         /*
5577          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5578          * here.., and there's no userspace involvement needed for PML.
5579          */
5580         return 1;
5581 }
5582
5583 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5584 {
5585         struct vcpu_vmx *vmx = to_vmx(vcpu);
5586
5587         if (!vmx->req_immediate_exit &&
5588             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5589                 kvm_lapic_expired_hv_timer(vcpu);
5590                 return EXIT_FASTPATH_REENTER_GUEST;
5591         }
5592
5593         return EXIT_FASTPATH_NONE;
5594 }
5595
5596 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5597 {
5598         handle_fastpath_preemption_timer(vcpu);
5599         return 1;
5600 }
5601
5602 /*
5603  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5604  * are overwritten by nested_vmx_setup() when nested=1.
5605  */
5606 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5607 {
5608         kvm_queue_exception(vcpu, UD_VECTOR);
5609         return 1;
5610 }
5611
5612 static int handle_encls(struct kvm_vcpu *vcpu)
5613 {
5614         /*
5615          * SGX virtualization is not yet supported.  There is no software
5616          * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5617          * to prevent the guest from executing ENCLS.
5618          */
5619         kvm_queue_exception(vcpu, UD_VECTOR);
5620         return 1;
5621 }
5622
5623 /*
5624  * The exit handlers return 1 if the exit was handled fully and guest execution
5625  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5626  * to be done to userspace and return 0.
5627  */
5628 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5629         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5630         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5631         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5632         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5633         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5634         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5635         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5636         [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5637         [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5638         [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5639         [EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5640         [EXIT_REASON_HLT]                     = kvm_emulate_halt,
5641         [EXIT_REASON_INVD]                    = handle_invd,
5642         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5643         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5644         [EXIT_REASON_VMCALL]                  = handle_vmcall,
5645         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5646         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5647         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5648         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5649         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5650         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5651         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5652         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5653         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5654         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5655         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5656         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5657         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5658         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5659         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5660         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5661         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5662         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5663         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5664         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5665         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5666         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5667         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
5668         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5669         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5670         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5671         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5672         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
5673         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
5674         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5675         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5676         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5677         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5678         [EXIT_REASON_ENCLS]                   = handle_encls,
5679 };
5680
5681 static const int kvm_vmx_max_exit_handlers =
5682         ARRAY_SIZE(kvm_vmx_exit_handlers);
5683
5684 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5685                               u32 *intr_info, u32 *error_code)
5686 {
5687         struct vcpu_vmx *vmx = to_vmx(vcpu);
5688
5689         *info1 = vmx_get_exit_qual(vcpu);
5690         if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
5691                 *info2 = vmx->idt_vectoring_info;
5692                 *intr_info = vmx_get_intr_info(vcpu);
5693                 if (is_exception_with_error_code(*intr_info))
5694                         *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5695                 else
5696                         *error_code = 0;
5697         } else {
5698                 *info2 = 0;
5699                 *intr_info = 0;
5700                 *error_code = 0;
5701         }
5702 }
5703
5704 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5705 {
5706         if (vmx->pml_pg) {
5707                 __free_page(vmx->pml_pg);
5708                 vmx->pml_pg = NULL;
5709         }
5710 }
5711
5712 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5713 {
5714         struct vcpu_vmx *vmx = to_vmx(vcpu);
5715         u64 *pml_buf;
5716         u16 pml_idx;
5717
5718         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5719
5720         /* Do nothing if PML buffer is empty */
5721         if (pml_idx == (PML_ENTITY_NUM - 1))
5722                 return;
5723
5724         /* PML index always points to next available PML buffer entity */
5725         if (pml_idx >= PML_ENTITY_NUM)
5726                 pml_idx = 0;
5727         else
5728                 pml_idx++;
5729
5730         pml_buf = page_address(vmx->pml_pg);
5731         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5732                 u64 gpa;
5733
5734                 gpa = pml_buf[pml_idx];
5735                 WARN_ON(gpa & (PAGE_SIZE - 1));
5736                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5737         }
5738
5739         /* reset PML index */
5740         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5741 }
5742
5743 /*
5744  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5745  * Called before reporting dirty_bitmap to userspace.
5746  */
5747 static void kvm_flush_pml_buffers(struct kvm *kvm)
5748 {
5749         int i;
5750         struct kvm_vcpu *vcpu;
5751         /*
5752          * We only need to kick vcpu out of guest mode here, as PML buffer
5753          * is flushed at beginning of all VMEXITs, and it's obvious that only
5754          * vcpus running in guest are possible to have unflushed GPAs in PML
5755          * buffer.
5756          */
5757         kvm_for_each_vcpu(i, vcpu, kvm)
5758                 kvm_vcpu_kick(vcpu);
5759 }
5760
5761 static void vmx_dump_sel(char *name, uint32_t sel)
5762 {
5763         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5764                name, vmcs_read16(sel),
5765                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5766                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5767                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5768 }
5769
5770 static void vmx_dump_dtsel(char *name, uint32_t limit)
5771 {
5772         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5773                name, vmcs_read32(limit),
5774                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5775 }
5776
5777 void dump_vmcs(void)
5778 {
5779         u32 vmentry_ctl, vmexit_ctl;
5780         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5781         unsigned long cr4;
5782         u64 efer;
5783
5784         if (!dump_invalid_vmcs) {
5785                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5786                 return;
5787         }
5788
5789         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5790         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5791         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5792         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5793         cr4 = vmcs_readl(GUEST_CR4);
5794         efer = vmcs_read64(GUEST_IA32_EFER);
5795         secondary_exec_control = 0;
5796         if (cpu_has_secondary_exec_ctrls())
5797                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5798
5799         pr_err("*** Guest State ***\n");
5800         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5801                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5802                vmcs_readl(CR0_GUEST_HOST_MASK));
5803         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5804                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5805         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5806         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5807             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5808         {
5809                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5810                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5811                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5812                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5813         }
5814         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5815                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5816         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5817                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5818         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5819                vmcs_readl(GUEST_SYSENTER_ESP),
5820                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5821         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5822         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5823         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5824         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5825         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5826         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5827         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5828         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5829         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5830         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5831         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5832             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5833                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5834                        efer, vmcs_read64(GUEST_IA32_PAT));
5835         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5836                vmcs_read64(GUEST_IA32_DEBUGCTL),
5837                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5838         if (cpu_has_load_perf_global_ctrl() &&
5839             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5840                 pr_err("PerfGlobCtl = 0x%016llx\n",
5841                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5842         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5843                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5844         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5845                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5846                vmcs_read32(GUEST_ACTIVITY_STATE));
5847         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5848                 pr_err("InterruptStatus = %04x\n",
5849                        vmcs_read16(GUEST_INTR_STATUS));
5850
5851         pr_err("*** Host State ***\n");
5852         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5853                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5854         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5855                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5856                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5857                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5858                vmcs_read16(HOST_TR_SELECTOR));
5859         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5860                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5861                vmcs_readl(HOST_TR_BASE));
5862         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5863                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5864         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5865                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5866                vmcs_readl(HOST_CR4));
5867         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5868                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5869                vmcs_read32(HOST_IA32_SYSENTER_CS),
5870                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5871         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5872                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5873                        vmcs_read64(HOST_IA32_EFER),
5874                        vmcs_read64(HOST_IA32_PAT));
5875         if (cpu_has_load_perf_global_ctrl() &&
5876             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5877                 pr_err("PerfGlobCtl = 0x%016llx\n",
5878                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5879
5880         pr_err("*** Control State ***\n");
5881         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5882                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5883         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5884         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5885                vmcs_read32(EXCEPTION_BITMAP),
5886                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5887                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5888         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5889                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5890                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5891                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5892         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5893                vmcs_read32(VM_EXIT_INTR_INFO),
5894                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5895                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5896         pr_err("        reason=%08x qualification=%016lx\n",
5897                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5898         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5899                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5900                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5901         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5902         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5903                 pr_err("TSC Multiplier = 0x%016llx\n",
5904                        vmcs_read64(TSC_MULTIPLIER));
5905         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5906                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5907                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
5908                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5909                 }
5910                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5911                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5912                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5913                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5914         }
5915         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5916                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5917         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5918                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5919         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5920                 pr_err("PLE Gap=%08x Window=%08x\n",
5921                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5922         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5923                 pr_err("Virtual processor ID = 0x%04x\n",
5924                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
5925 }
5926
5927 /*
5928  * The guest has exited.  See if we can fix it or if we need userspace
5929  * assistance.
5930  */
5931 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5932 {
5933         struct vcpu_vmx *vmx = to_vmx(vcpu);
5934         u32 exit_reason = vmx->exit_reason;
5935         u32 vectoring_info = vmx->idt_vectoring_info;
5936
5937         /*
5938          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5939          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5940          * querying dirty_bitmap, we only need to kick all vcpus out of guest
5941          * mode as if vcpus is in root mode, the PML buffer must has been
5942          * flushed already.
5943          */
5944         if (enable_pml)
5945                 vmx_flush_pml_buffer(vcpu);
5946
5947         /*
5948          * We should never reach this point with a pending nested VM-Enter, and
5949          * more specifically emulation of L2 due to invalid guest state (see
5950          * below) should never happen as that means we incorrectly allowed a
5951          * nested VM-Enter with an invalid vmcs12.
5952          */
5953         WARN_ON_ONCE(vmx->nested.nested_run_pending);
5954
5955         /* If guest state is invalid, start emulating */
5956         if (vmx->emulation_required)
5957                 return handle_invalid_guest_state(vcpu);
5958
5959         if (is_guest_mode(vcpu)) {
5960                 /*
5961                  * The host physical addresses of some pages of guest memory
5962                  * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5963                  * Page). The CPU may write to these pages via their host
5964                  * physical address while L2 is running, bypassing any
5965                  * address-translation-based dirty tracking (e.g. EPT write
5966                  * protection).
5967                  *
5968                  * Mark them dirty on every exit from L2 to prevent them from
5969                  * getting out of sync with dirty tracking.
5970                  */
5971                 nested_mark_vmcs12_pages_dirty(vcpu);
5972
5973                 if (nested_vmx_reflect_vmexit(vcpu))
5974                         return 1;
5975         }
5976
5977         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5978                 dump_vmcs();
5979                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5980                 vcpu->run->fail_entry.hardware_entry_failure_reason
5981                         = exit_reason;
5982                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5983                 return 0;
5984         }
5985
5986         if (unlikely(vmx->fail)) {
5987                 dump_vmcs();
5988                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5989                 vcpu->run->fail_entry.hardware_entry_failure_reason
5990                         = vmcs_read32(VM_INSTRUCTION_ERROR);
5991                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5992                 return 0;
5993         }
5994
5995         /*
5996          * Note:
5997          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5998          * delivery event since it indicates guest is accessing MMIO.
5999          * The vm-exit can be triggered again after return to guest that
6000          * will cause infinite loop.
6001          */
6002         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6003                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6004                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
6005                         exit_reason != EXIT_REASON_PML_FULL &&
6006                         exit_reason != EXIT_REASON_APIC_ACCESS &&
6007                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
6008                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6009                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6010                 vcpu->run->internal.ndata = 3;
6011                 vcpu->run->internal.data[0] = vectoring_info;
6012                 vcpu->run->internal.data[1] = exit_reason;
6013                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6014                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
6015                         vcpu->run->internal.ndata++;
6016                         vcpu->run->internal.data[3] =
6017                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6018                 }
6019                 vcpu->run->internal.data[vcpu->run->internal.ndata++] =
6020                         vcpu->arch.last_vmentry_cpu;
6021                 return 0;
6022         }
6023
6024         if (unlikely(!enable_vnmi &&
6025                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
6026                 if (!vmx_interrupt_blocked(vcpu)) {
6027                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6028                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6029                            vcpu->arch.nmi_pending) {
6030                         /*
6031                          * This CPU don't support us in finding the end of an
6032                          * NMI-blocked window if the guest runs with IRQs
6033                          * disabled. So we pull the trigger after 1 s of
6034                          * futile waiting, but inform the user about this.
6035                          */
6036                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6037                                "state on VCPU %d after 1 s timeout\n",
6038                                __func__, vcpu->vcpu_id);
6039                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6040                 }
6041         }
6042
6043         if (exit_fastpath != EXIT_FASTPATH_NONE)
6044                 return 1;
6045
6046         if (exit_reason >= kvm_vmx_max_exit_handlers)
6047                 goto unexpected_vmexit;
6048 #ifdef CONFIG_RETPOLINE
6049         if (exit_reason == EXIT_REASON_MSR_WRITE)
6050                 return kvm_emulate_wrmsr(vcpu);
6051         else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER)
6052                 return handle_preemption_timer(vcpu);
6053         else if (exit_reason == EXIT_REASON_INTERRUPT_WINDOW)
6054                 return handle_interrupt_window(vcpu);
6055         else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6056                 return handle_external_interrupt(vcpu);
6057         else if (exit_reason == EXIT_REASON_HLT)
6058                 return kvm_emulate_halt(vcpu);
6059         else if (exit_reason == EXIT_REASON_EPT_MISCONFIG)
6060                 return handle_ept_misconfig(vcpu);
6061 #endif
6062
6063         exit_reason = array_index_nospec(exit_reason,
6064                                          kvm_vmx_max_exit_handlers);
6065         if (!kvm_vmx_exit_handlers[exit_reason])
6066                 goto unexpected_vmexit;
6067
6068         return kvm_vmx_exit_handlers[exit_reason](vcpu);
6069
6070 unexpected_vmexit:
6071         vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", exit_reason);
6072         dump_vmcs();
6073         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6074         vcpu->run->internal.suberror =
6075                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6076         vcpu->run->internal.ndata = 2;
6077         vcpu->run->internal.data[0] = exit_reason;
6078         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6079         return 0;
6080 }
6081
6082 /*
6083  * Software based L1D cache flush which is used when microcode providing
6084  * the cache control MSR is not loaded.
6085  *
6086  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6087  * flush it is required to read in 64 KiB because the replacement algorithm
6088  * is not exactly LRU. This could be sized at runtime via topology
6089  * information but as all relevant affected CPUs have 32KiB L1D cache size
6090  * there is no point in doing so.
6091  */
6092 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6093 {
6094         int size = PAGE_SIZE << L1D_CACHE_ORDER;
6095
6096         /*
6097          * This code is only executed when the the flush mode is 'cond' or
6098          * 'always'
6099          */
6100         if (static_branch_likely(&vmx_l1d_flush_cond)) {
6101                 bool flush_l1d;
6102
6103                 /*
6104                  * Clear the per-vcpu flush bit, it gets set again
6105                  * either from vcpu_run() or from one of the unsafe
6106                  * VMEXIT handlers.
6107                  */
6108                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6109                 vcpu->arch.l1tf_flush_l1d = false;
6110
6111                 /*
6112                  * Clear the per-cpu flush bit, it gets set again from
6113                  * the interrupt handlers.
6114                  */
6115                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6116                 kvm_clear_cpu_l1tf_flush_l1d();
6117
6118                 if (!flush_l1d)
6119                         return;
6120         }
6121
6122         vcpu->stat.l1d_flush++;
6123
6124         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6125                 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6126                 return;
6127         }
6128
6129         asm volatile(
6130                 /* First ensure the pages are in the TLB */
6131                 "xorl   %%eax, %%eax\n"
6132                 ".Lpopulate_tlb:\n\t"
6133                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6134                 "addl   $4096, %%eax\n\t"
6135                 "cmpl   %%eax, %[size]\n\t"
6136                 "jne    .Lpopulate_tlb\n\t"
6137                 "xorl   %%eax, %%eax\n\t"
6138                 "cpuid\n\t"
6139                 /* Now fill the cache */
6140                 "xorl   %%eax, %%eax\n"
6141                 ".Lfill_cache:\n"
6142                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6143                 "addl   $64, %%eax\n\t"
6144                 "cmpl   %%eax, %[size]\n\t"
6145                 "jne    .Lfill_cache\n\t"
6146                 "lfence\n"
6147                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6148                     [size] "r" (size)
6149                 : "eax", "ebx", "ecx", "edx");
6150 }
6151
6152 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6153 {
6154         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6155         int tpr_threshold;
6156
6157         if (is_guest_mode(vcpu) &&
6158                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6159                 return;
6160
6161         tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6162         if (is_guest_mode(vcpu))
6163                 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6164         else
6165                 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6166 }
6167
6168 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6169 {
6170         struct vcpu_vmx *vmx = to_vmx(vcpu);
6171         u32 sec_exec_control;
6172
6173         if (!lapic_in_kernel(vcpu))
6174                 return;
6175
6176         if (!flexpriority_enabled &&
6177             !cpu_has_vmx_virtualize_x2apic_mode())
6178                 return;
6179
6180         /* Postpone execution until vmcs01 is the current VMCS. */
6181         if (is_guest_mode(vcpu)) {
6182                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6183                 return;
6184         }
6185
6186         sec_exec_control = secondary_exec_controls_get(vmx);
6187         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6188                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6189
6190         switch (kvm_get_apic_mode(vcpu)) {
6191         case LAPIC_MODE_INVALID:
6192                 WARN_ONCE(true, "Invalid local APIC state");
6193         case LAPIC_MODE_DISABLED:
6194                 break;
6195         case LAPIC_MODE_XAPIC:
6196                 if (flexpriority_enabled) {
6197                         sec_exec_control |=
6198                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6199                         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6200
6201                         /*
6202                          * Flush the TLB, reloading the APIC access page will
6203                          * only do so if its physical address has changed, but
6204                          * the guest may have inserted a non-APIC mapping into
6205                          * the TLB while the APIC access page was disabled.
6206                          */
6207                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6208                 }
6209                 break;
6210         case LAPIC_MODE_X2APIC:
6211                 if (cpu_has_vmx_virtualize_x2apic_mode())
6212                         sec_exec_control |=
6213                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6214                 break;
6215         }
6216         secondary_exec_controls_set(vmx, sec_exec_control);
6217
6218         vmx_update_msr_bitmap(vcpu);
6219 }
6220
6221 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6222 {
6223         struct page *page;
6224
6225         /* Defer reload until vmcs01 is the current VMCS. */
6226         if (is_guest_mode(vcpu)) {
6227                 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6228                 return;
6229         }
6230
6231         if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6232             SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6233                 return;
6234
6235         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6236         if (is_error_page(page))
6237                 return;
6238
6239         vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6240         vmx_flush_tlb_current(vcpu);
6241
6242         /*
6243          * Do not pin apic access page in memory, the MMU notifier
6244          * will call us again if it is migrated or swapped out.
6245          */
6246         put_page(page);
6247 }
6248
6249 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6250 {
6251         u16 status;
6252         u8 old;
6253
6254         if (max_isr == -1)
6255                 max_isr = 0;
6256
6257         status = vmcs_read16(GUEST_INTR_STATUS);
6258         old = status >> 8;
6259         if (max_isr != old) {
6260                 status &= 0xff;
6261                 status |= max_isr << 8;
6262                 vmcs_write16(GUEST_INTR_STATUS, status);
6263         }
6264 }
6265
6266 static void vmx_set_rvi(int vector)
6267 {
6268         u16 status;
6269         u8 old;
6270
6271         if (vector == -1)
6272                 vector = 0;
6273
6274         status = vmcs_read16(GUEST_INTR_STATUS);
6275         old = (u8)status & 0xff;
6276         if ((u8)vector != old) {
6277                 status &= ~0xff;
6278                 status |= (u8)vector;
6279                 vmcs_write16(GUEST_INTR_STATUS, status);
6280         }
6281 }
6282
6283 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6284 {
6285         /*
6286          * When running L2, updating RVI is only relevant when
6287          * vmcs12 virtual-interrupt-delivery enabled.
6288          * However, it can be enabled only when L1 also
6289          * intercepts external-interrupts and in that case
6290          * we should not update vmcs02 RVI but instead intercept
6291          * interrupt. Therefore, do nothing when running L2.
6292          */
6293         if (!is_guest_mode(vcpu))
6294                 vmx_set_rvi(max_irr);
6295 }
6296
6297 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6298 {
6299         struct vcpu_vmx *vmx = to_vmx(vcpu);
6300         int max_irr;
6301         bool max_irr_updated;
6302
6303         WARN_ON(!vcpu->arch.apicv_active);
6304         if (pi_test_on(&vmx->pi_desc)) {
6305                 pi_clear_on(&vmx->pi_desc);
6306                 /*
6307                  * IOMMU can write to PID.ON, so the barrier matters even on UP.
6308                  * But on x86 this is just a compiler barrier anyway.
6309                  */
6310                 smp_mb__after_atomic();
6311                 max_irr_updated =
6312                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6313
6314                 /*
6315                  * If we are running L2 and L1 has a new pending interrupt
6316                  * which can be injected, we should re-evaluate
6317                  * what should be done with this new L1 interrupt.
6318                  * If L1 intercepts external-interrupts, we should
6319                  * exit from L2 to L1. Otherwise, interrupt should be
6320                  * delivered directly to L2.
6321                  */
6322                 if (is_guest_mode(vcpu) && max_irr_updated) {
6323                         if (nested_exit_on_intr(vcpu))
6324                                 kvm_vcpu_exiting_guest_mode(vcpu);
6325                         else
6326                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6327                 }
6328         } else {
6329                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6330         }
6331         vmx_hwapic_irr_update(vcpu, max_irr);
6332         return max_irr;
6333 }
6334
6335 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6336 {
6337         if (!kvm_vcpu_apicv_active(vcpu))
6338                 return;
6339
6340         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6341         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6342         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6343         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6344 }
6345
6346 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6347 {
6348         struct vcpu_vmx *vmx = to_vmx(vcpu);
6349
6350         pi_clear_on(&vmx->pi_desc);
6351         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6352 }
6353
6354 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6355
6356 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
6357 {
6358         unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6359         gate_desc *desc = (gate_desc *)host_idt_base + vector;
6360
6361         kvm_before_interrupt(vcpu);
6362         vmx_do_interrupt_nmi_irqoff(gate_offset(desc));
6363         kvm_after_interrupt(vcpu);
6364 }
6365
6366 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6367 {
6368         u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6369
6370         /* if exit due to PF check for async PF */
6371         if (is_page_fault(intr_info))
6372                 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6373         /* Handle machine checks before interrupts are enabled */
6374         else if (is_machine_check(intr_info))
6375                 kvm_machine_check();
6376         /* We need to handle NMIs before interrupts are enabled */
6377         else if (is_nmi(intr_info))
6378                 handle_interrupt_nmi_irqoff(&vmx->vcpu, intr_info);
6379 }
6380
6381 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6382 {
6383         u32 intr_info = vmx_get_intr_info(vcpu);
6384
6385         if (WARN_ONCE(!is_external_intr(intr_info),
6386             "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6387                 return;
6388
6389         handle_interrupt_nmi_irqoff(vcpu, intr_info);
6390 }
6391
6392 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6393 {
6394         struct vcpu_vmx *vmx = to_vmx(vcpu);
6395
6396         if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6397                 handle_external_interrupt_irqoff(vcpu);
6398         else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6399                 handle_exception_nmi_irqoff(vmx);
6400 }
6401
6402 static bool vmx_has_emulated_msr(u32 index)
6403 {
6404         switch (index) {
6405         case MSR_IA32_SMBASE:
6406                 /*
6407                  * We cannot do SMM unless we can run the guest in big
6408                  * real mode.
6409                  */
6410                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6411         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6412                 return nested;
6413         case MSR_AMD64_VIRT_SPEC_CTRL:
6414                 /* This is AMD only.  */
6415                 return false;
6416         default:
6417                 return true;
6418         }
6419 }
6420
6421 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6422 {
6423         u32 exit_intr_info;
6424         bool unblock_nmi;
6425         u8 vector;
6426         bool idtv_info_valid;
6427
6428         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6429
6430         if (enable_vnmi) {
6431                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6432                         return;
6433
6434                 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6435                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6436                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6437                 /*
6438                  * SDM 3: 27.7.1.2 (September 2008)
6439                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6440                  * a guest IRET fault.
6441                  * SDM 3: 23.2.2 (September 2008)
6442                  * Bit 12 is undefined in any of the following cases:
6443                  *  If the VM exit sets the valid bit in the IDT-vectoring
6444                  *   information field.
6445                  *  If the VM exit is due to a double fault.
6446                  */
6447                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6448                     vector != DF_VECTOR && !idtv_info_valid)
6449                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6450                                       GUEST_INTR_STATE_NMI);
6451                 else
6452                         vmx->loaded_vmcs->nmi_known_unmasked =
6453                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6454                                   & GUEST_INTR_STATE_NMI);
6455         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6456                 vmx->loaded_vmcs->vnmi_blocked_time +=
6457                         ktime_to_ns(ktime_sub(ktime_get(),
6458                                               vmx->loaded_vmcs->entry_time));
6459 }
6460
6461 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6462                                       u32 idt_vectoring_info,
6463                                       int instr_len_field,
6464                                       int error_code_field)
6465 {
6466         u8 vector;
6467         int type;
6468         bool idtv_info_valid;
6469
6470         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6471
6472         vcpu->arch.nmi_injected = false;
6473         kvm_clear_exception_queue(vcpu);
6474         kvm_clear_interrupt_queue(vcpu);
6475
6476         if (!idtv_info_valid)
6477                 return;
6478
6479         kvm_make_request(KVM_REQ_EVENT, vcpu);
6480
6481         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6482         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6483
6484         switch (type) {
6485         case INTR_TYPE_NMI_INTR:
6486                 vcpu->arch.nmi_injected = true;
6487                 /*
6488                  * SDM 3: 27.7.1.2 (September 2008)
6489                  * Clear bit "block by NMI" before VM entry if a NMI
6490                  * delivery faulted.
6491                  */
6492                 vmx_set_nmi_mask(vcpu, false);
6493                 break;
6494         case INTR_TYPE_SOFT_EXCEPTION:
6495                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6496                 fallthrough;
6497         case INTR_TYPE_HARD_EXCEPTION:
6498                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6499                         u32 err = vmcs_read32(error_code_field);
6500                         kvm_requeue_exception_e(vcpu, vector, err);
6501                 } else
6502                         kvm_requeue_exception(vcpu, vector);
6503                 break;
6504         case INTR_TYPE_SOFT_INTR:
6505                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6506                 fallthrough;
6507         case INTR_TYPE_EXT_INTR:
6508                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6509                 break;
6510         default:
6511                 break;
6512         }
6513 }
6514
6515 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6516 {
6517         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6518                                   VM_EXIT_INSTRUCTION_LEN,
6519                                   IDT_VECTORING_ERROR_CODE);
6520 }
6521
6522 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6523 {
6524         __vmx_complete_interrupts(vcpu,
6525                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6526                                   VM_ENTRY_INSTRUCTION_LEN,
6527                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6528
6529         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6530 }
6531
6532 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6533 {
6534         int i, nr_msrs;
6535         struct perf_guest_switch_msr *msrs;
6536
6537         msrs = perf_guest_get_msrs(&nr_msrs);
6538
6539         if (!msrs)
6540                 return;
6541
6542         for (i = 0; i < nr_msrs; i++)
6543                 if (msrs[i].host == msrs[i].guest)
6544                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6545                 else
6546                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6547                                         msrs[i].host, false);
6548 }
6549
6550 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6551 {
6552         struct vcpu_vmx *vmx = to_vmx(vcpu);
6553         u64 tscl;
6554         u32 delta_tsc;
6555
6556         if (vmx->req_immediate_exit) {
6557                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6558                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6559         } else if (vmx->hv_deadline_tsc != -1) {
6560                 tscl = rdtsc();
6561                 if (vmx->hv_deadline_tsc > tscl)
6562                         /* set_hv_timer ensures the delta fits in 32-bits */
6563                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6564                                 cpu_preemption_timer_multi);
6565                 else
6566                         delta_tsc = 0;
6567
6568                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6569                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6570         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6571                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6572                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6573         }
6574 }
6575
6576 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6577 {
6578         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6579                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6580                 vmcs_writel(HOST_RSP, host_rsp);
6581         }
6582 }
6583
6584 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6585 {
6586         switch (to_vmx(vcpu)->exit_reason) {
6587         case EXIT_REASON_MSR_WRITE:
6588                 return handle_fastpath_set_msr_irqoff(vcpu);
6589         case EXIT_REASON_PREEMPTION_TIMER:
6590                 return handle_fastpath_preemption_timer(vcpu);
6591         default:
6592                 return EXIT_FASTPATH_NONE;
6593         }
6594 }
6595
6596 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6597
6598 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6599                                         struct vcpu_vmx *vmx)
6600 {
6601         /*
6602          * VMENTER enables interrupts (host state), but the kernel state is
6603          * interrupts disabled when this is invoked. Also tell RCU about
6604          * it. This is the same logic as for exit_to_user_mode().
6605          *
6606          * This ensures that e.g. latency analysis on the host observes
6607          * guest mode as interrupt enabled.
6608          *
6609          * guest_enter_irqoff() informs context tracking about the
6610          * transition to guest mode and if enabled adjusts RCU state
6611          * accordingly.
6612          */
6613         instrumentation_begin();
6614         trace_hardirqs_on_prepare();
6615         lockdep_hardirqs_on_prepare(CALLER_ADDR0);
6616         instrumentation_end();
6617
6618         guest_enter_irqoff();
6619         lockdep_hardirqs_on(CALLER_ADDR0);
6620
6621         /* L1D Flush includes CPU buffer clear to mitigate MDS */
6622         if (static_branch_unlikely(&vmx_l1d_should_flush))
6623                 vmx_l1d_flush(vcpu);
6624         else if (static_branch_unlikely(&mds_user_clear))
6625                 mds_clear_cpu_buffers();
6626
6627         if (vcpu->arch.cr2 != native_read_cr2())
6628                 native_write_cr2(vcpu->arch.cr2);
6629
6630         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6631                                    vmx->loaded_vmcs->launched);
6632
6633         vcpu->arch.cr2 = native_read_cr2();
6634
6635         /*
6636          * VMEXIT disables interrupts (host state), but tracing and lockdep
6637          * have them in state 'on' as recorded before entering guest mode.
6638          * Same as enter_from_user_mode().
6639          *
6640          * guest_exit_irqoff() restores host context and reinstates RCU if
6641          * enabled and required.
6642          *
6643          * This needs to be done before the below as native_read_msr()
6644          * contains a tracepoint and x86_spec_ctrl_restore_host() calls
6645          * into world and some more.
6646          */
6647         lockdep_hardirqs_off(CALLER_ADDR0);
6648         guest_exit_irqoff();
6649
6650         instrumentation_begin();
6651         trace_hardirqs_off_finish();
6652         instrumentation_end();
6653 }
6654
6655 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6656 {
6657         fastpath_t exit_fastpath;
6658         struct vcpu_vmx *vmx = to_vmx(vcpu);
6659         unsigned long cr3, cr4;
6660
6661 reenter_guest:
6662         /* Record the guest's net vcpu time for enforced NMI injections. */
6663         if (unlikely(!enable_vnmi &&
6664                      vmx->loaded_vmcs->soft_vnmi_blocked))
6665                 vmx->loaded_vmcs->entry_time = ktime_get();
6666
6667         /* Don't enter VMX if guest state is invalid, let the exit handler
6668            start emulation until we arrive back to a valid state */
6669         if (vmx->emulation_required)
6670                 return EXIT_FASTPATH_NONE;
6671
6672         if (vmx->ple_window_dirty) {
6673                 vmx->ple_window_dirty = false;
6674                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6675         }
6676
6677         /*
6678          * We did this in prepare_switch_to_guest, because it needs to
6679          * be within srcu_read_lock.
6680          */
6681         WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6682
6683         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6684                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6685         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6686                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6687
6688         cr3 = __get_current_cr3_fast();
6689         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6690                 vmcs_writel(HOST_CR3, cr3);
6691                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6692         }
6693
6694         cr4 = cr4_read_shadow();
6695         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6696                 vmcs_writel(HOST_CR4, cr4);
6697                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6698         }
6699
6700         /* When single-stepping over STI and MOV SS, we must clear the
6701          * corresponding interruptibility bits in the guest state. Otherwise
6702          * vmentry fails as it then expects bit 14 (BS) in pending debug
6703          * exceptions being set, but that's not correct for the guest debugging
6704          * case. */
6705         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6706                 vmx_set_interrupt_shadow(vcpu, 0);
6707
6708         kvm_load_guest_xsave_state(vcpu);
6709
6710         pt_guest_enter(vmx);
6711
6712         atomic_switch_perf_msrs(vmx);
6713
6714         if (enable_preemption_timer)
6715                 vmx_update_hv_timer(vcpu);
6716
6717         kvm_wait_lapic_expire(vcpu);
6718
6719         /*
6720          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6721          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6722          * is no need to worry about the conditional branch over the wrmsr
6723          * being speculatively taken.
6724          */
6725         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6726
6727         /* The actual VMENTER/EXIT is in the .noinstr.text section. */
6728         vmx_vcpu_enter_exit(vcpu, vmx);
6729
6730         /*
6731          * We do not use IBRS in the kernel. If this vCPU has used the
6732          * SPEC_CTRL MSR it may have left it on; save the value and
6733          * turn it off. This is much more efficient than blindly adding
6734          * it to the atomic save/restore list. Especially as the former
6735          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6736          *
6737          * For non-nested case:
6738          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6739          * save it.
6740          *
6741          * For nested case:
6742          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6743          * save it.
6744          */
6745         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6746                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6747
6748         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6749
6750         /* All fields are clean at this point */
6751         if (static_branch_unlikely(&enable_evmcs))
6752                 current_evmcs->hv_clean_fields |=
6753                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6754
6755         if (static_branch_unlikely(&enable_evmcs))
6756                 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6757
6758         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6759         if (vmx->host_debugctlmsr)
6760                 update_debugctlmsr(vmx->host_debugctlmsr);
6761
6762 #ifndef CONFIG_X86_64
6763         /*
6764          * The sysexit path does not restore ds/es, so we must set them to
6765          * a reasonable value ourselves.
6766          *
6767          * We can't defer this to vmx_prepare_switch_to_host() since that
6768          * function may be executed in interrupt context, which saves and
6769          * restore segments around it, nullifying its effect.
6770          */
6771         loadsegment(ds, __USER_DS);
6772         loadsegment(es, __USER_DS);
6773 #endif
6774
6775         vmx_register_cache_reset(vcpu);
6776
6777         pt_guest_exit(vmx);
6778
6779         kvm_load_host_xsave_state(vcpu);
6780
6781         vmx->nested.nested_run_pending = 0;
6782         vmx->idt_vectoring_info = 0;
6783
6784         if (unlikely(vmx->fail)) {
6785                 vmx->exit_reason = 0xdead;
6786                 return EXIT_FASTPATH_NONE;
6787         }
6788
6789         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6790         if (unlikely((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY))
6791                 kvm_machine_check();
6792
6793         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6794
6795         if (unlikely(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6796                 return EXIT_FASTPATH_NONE;
6797
6798         vmx->loaded_vmcs->launched = 1;
6799         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6800
6801         vmx_recover_nmi_blocking(vmx);
6802         vmx_complete_interrupts(vmx);
6803
6804         if (is_guest_mode(vcpu))
6805                 return EXIT_FASTPATH_NONE;
6806
6807         exit_fastpath = vmx_exit_handlers_fastpath(vcpu);
6808         if (exit_fastpath == EXIT_FASTPATH_REENTER_GUEST) {
6809                 if (!kvm_vcpu_exit_request(vcpu)) {
6810                         /*
6811                          * FIXME: this goto should be a loop in vcpu_enter_guest,
6812                          * but it would incur the cost of a retpoline for now.
6813                          * Revisit once static calls are available.
6814                          */
6815                         if (vcpu->arch.apicv_active)
6816                                 vmx_sync_pir_to_irr(vcpu);
6817                         goto reenter_guest;
6818                 }
6819                 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
6820         }
6821
6822         return exit_fastpath;
6823 }
6824
6825 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6826 {
6827         struct vcpu_vmx *vmx = to_vmx(vcpu);
6828
6829         if (enable_pml)
6830                 vmx_destroy_pml_buffer(vmx);
6831         free_vpid(vmx->vpid);
6832         nested_vmx_free_vcpu(vcpu);
6833         free_loaded_vmcs(vmx->loaded_vmcs);
6834 }
6835
6836 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6837 {
6838         struct vcpu_vmx *vmx;
6839         int i, cpu, err;
6840
6841         BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6842         vmx = to_vmx(vcpu);
6843
6844         err = -ENOMEM;
6845
6846         vmx->vpid = allocate_vpid();
6847
6848         /*
6849          * If PML is turned on, failure on enabling PML just results in failure
6850          * of creating the vcpu, therefore we can simplify PML logic (by
6851          * avoiding dealing with cases, such as enabling PML partially on vcpus
6852          * for the guest), etc.
6853          */
6854         if (enable_pml) {
6855                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6856                 if (!vmx->pml_pg)
6857                         goto free_vpid;
6858         }
6859
6860         BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
6861
6862         for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) {
6863                 u32 index = vmx_uret_msrs_list[i];
6864                 u32 data_low, data_high;
6865                 int j = vmx->nr_uret_msrs;
6866
6867                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
6868                         continue;
6869                 if (wrmsr_safe(index, data_low, data_high) < 0)
6870                         continue;
6871
6872                 vmx->guest_uret_msrs[j].slot = i;
6873                 vmx->guest_uret_msrs[j].data = 0;
6874                 switch (index) {
6875                 case MSR_IA32_TSX_CTRL:
6876                         /*
6877                          * No need to pass TSX_CTRL_CPUID_CLEAR through, so
6878                          * let's avoid changing CPUID bits under the host
6879                          * kernel's feet.
6880                          */
6881                         vmx->guest_uret_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6882                         break;
6883                 default:
6884                         vmx->guest_uret_msrs[j].mask = -1ull;
6885                         break;
6886                 }
6887                 ++vmx->nr_uret_msrs;
6888         }
6889
6890         err = alloc_loaded_vmcs(&vmx->vmcs01);
6891         if (err < 0)
6892                 goto free_pml;
6893
6894         /* The MSR bitmap starts with all ones */
6895         bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6896         bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6897
6898         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
6899         vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
6900         vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
6901         vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6902         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6903         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6904         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6905         if (kvm_cstate_in_guest(vcpu->kvm)) {
6906                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
6907                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6908                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6909                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6910         }
6911         vmx->msr_bitmap_mode = 0;
6912
6913         vmx->loaded_vmcs = &vmx->vmcs01;
6914         cpu = get_cpu();
6915         vmx_vcpu_load(vcpu, cpu);
6916         vcpu->cpu = cpu;
6917         init_vmcs(vmx);
6918         vmx_vcpu_put(vcpu);
6919         put_cpu();
6920         if (cpu_need_virtualize_apic_accesses(vcpu)) {
6921                 err = alloc_apic_access_page(vcpu->kvm);
6922                 if (err)
6923                         goto free_vmcs;
6924         }
6925
6926         if (enable_ept && !enable_unrestricted_guest) {
6927                 err = init_rmode_identity_map(vcpu->kvm);
6928                 if (err)
6929                         goto free_vmcs;
6930         }
6931
6932         if (nested)
6933                 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
6934         else
6935                 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6936
6937         vmx->nested.posted_intr_nv = -1;
6938         vmx->nested.current_vmptr = -1ull;
6939
6940         vcpu->arch.microcode_version = 0x100000000ULL;
6941         vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6942
6943         /*
6944          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6945          * or POSTED_INTR_WAKEUP_VECTOR.
6946          */
6947         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6948         vmx->pi_desc.sn = 1;
6949
6950         vmx->ept_pointer = INVALID_PAGE;
6951
6952         return 0;
6953
6954 free_vmcs:
6955         free_loaded_vmcs(vmx->loaded_vmcs);
6956 free_pml:
6957         vmx_destroy_pml_buffer(vmx);
6958 free_vpid:
6959         free_vpid(vmx->vpid);
6960         return err;
6961 }
6962
6963 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6964 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6965
6966 static int vmx_vm_init(struct kvm *kvm)
6967 {
6968         spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6969
6970         if (!ple_gap)
6971                 kvm->arch.pause_in_guest = true;
6972
6973         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6974                 switch (l1tf_mitigation) {
6975                 case L1TF_MITIGATION_OFF:
6976                 case L1TF_MITIGATION_FLUSH_NOWARN:
6977                         /* 'I explicitly don't care' is set */
6978                         break;
6979                 case L1TF_MITIGATION_FLUSH:
6980                 case L1TF_MITIGATION_FLUSH_NOSMT:
6981                 case L1TF_MITIGATION_FULL:
6982                         /*
6983                          * Warn upon starting the first VM in a potentially
6984                          * insecure environment.
6985                          */
6986                         if (sched_smt_active())
6987                                 pr_warn_once(L1TF_MSG_SMT);
6988                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6989                                 pr_warn_once(L1TF_MSG_L1D);
6990                         break;
6991                 case L1TF_MITIGATION_FULL_FORCE:
6992                         /* Flush is enforced */
6993                         break;
6994                 }
6995         }
6996         kvm_apicv_init(kvm, enable_apicv);
6997         return 0;
6998 }
6999
7000 static int __init vmx_check_processor_compat(void)
7001 {
7002         struct vmcs_config vmcs_conf;
7003         struct vmx_capability vmx_cap;
7004
7005         if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7006             !this_cpu_has(X86_FEATURE_VMX)) {
7007                 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7008                 return -EIO;
7009         }
7010
7011         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7012                 return -EIO;
7013         if (nested)
7014                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7015         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7016                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7017                                 smp_processor_id());
7018                 return -EIO;
7019         }
7020         return 0;
7021 }
7022
7023 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7024 {
7025         u8 cache;
7026         u64 ipat = 0;
7027
7028         /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7029          * memory aliases with conflicting memory types and sometimes MCEs.
7030          * We have to be careful as to what are honored and when.
7031          *
7032          * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7033          * UC.  The effective memory type is UC or WC depending on guest PAT.
7034          * This was historically the source of MCEs and we want to be
7035          * conservative.
7036          *
7037          * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7038          * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7039          * EPT memory type is set to WB.  The effective memory type is forced
7040          * WB.
7041          *
7042          * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7043          * EPT memory type is used to emulate guest CD/MTRR.
7044          */
7045
7046         if (is_mmio) {
7047                 cache = MTRR_TYPE_UNCACHABLE;
7048                 goto exit;
7049         }
7050
7051         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7052                 ipat = VMX_EPT_IPAT_BIT;
7053                 cache = MTRR_TYPE_WRBACK;
7054                 goto exit;
7055         }
7056
7057         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7058                 ipat = VMX_EPT_IPAT_BIT;
7059                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7060                         cache = MTRR_TYPE_WRBACK;
7061                 else
7062                         cache = MTRR_TYPE_UNCACHABLE;
7063                 goto exit;
7064         }
7065
7066         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7067
7068 exit:
7069         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7070 }
7071
7072 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7073 {
7074         /*
7075          * These bits in the secondary execution controls field
7076          * are dynamic, the others are mostly based on the hypervisor
7077          * architecture and the guest's CPUID.  Do not touch the
7078          * dynamic bits.
7079          */
7080         u32 mask =
7081                 SECONDARY_EXEC_SHADOW_VMCS |
7082                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7083                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7084                 SECONDARY_EXEC_DESC;
7085
7086         u32 new_ctl = vmx->secondary_exec_control;
7087         u32 cur_ctl = secondary_exec_controls_get(vmx);
7088
7089         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7090 }
7091
7092 /*
7093  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7094  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7095  */
7096 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7097 {
7098         struct vcpu_vmx *vmx = to_vmx(vcpu);
7099         struct kvm_cpuid_entry2 *entry;
7100
7101         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7102         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7103
7104 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
7105         if (entry && (entry->_reg & (_cpuid_mask)))                     \
7106                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
7107 } while (0)
7108
7109         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7110         cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7111         cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7112         cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7113         cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7114         cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7115         cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7116         cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7117         cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7118         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7119         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7120         cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7121         cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7122         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7123         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7124
7125         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7126         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7127         cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7128         cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7129         cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7130         cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7131         cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7132
7133 #undef cr4_fixed1_update
7134 }
7135
7136 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7137 {
7138         struct vcpu_vmx *vmx = to_vmx(vcpu);
7139
7140         if (kvm_mpx_supported()) {
7141                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7142
7143                 if (mpx_enabled) {
7144                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7145                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7146                 } else {
7147                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7148                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7149                 }
7150         }
7151 }
7152
7153 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7154 {
7155         struct vcpu_vmx *vmx = to_vmx(vcpu);
7156         struct kvm_cpuid_entry2 *best = NULL;
7157         int i;
7158
7159         for (i = 0; i < PT_CPUID_LEAVES; i++) {
7160                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7161                 if (!best)
7162                         return;
7163                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7164                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7165                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7166                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7167         }
7168
7169         /* Get the number of configurable Address Ranges for filtering */
7170         vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7171                                                 PT_CAP_num_address_ranges);
7172
7173         /* Initialize and clear the no dependency bits */
7174         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7175                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7176
7177         /*
7178          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7179          * will inject an #GP
7180          */
7181         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7182                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7183
7184         /*
7185          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7186          * PSBFreq can be set
7187          */
7188         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7189                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7190                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7191
7192         /*
7193          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7194          * MTCFreq can be set
7195          */
7196         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7197                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7198                                 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7199
7200         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7201         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7202                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7203                                                         RTIT_CTL_PTW_EN);
7204
7205         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7206         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7207                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7208
7209         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7210         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7211                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7212
7213         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7214         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7215                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7216
7217         /* unmask address range configure area */
7218         for (i = 0; i < vmx->pt_desc.addr_range; i++)
7219                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7220 }
7221
7222 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7223 {
7224         struct vcpu_vmx *vmx = to_vmx(vcpu);
7225
7226         /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7227         vcpu->arch.xsaves_enabled = false;
7228
7229         if (cpu_has_secondary_exec_ctrls()) {
7230                 vmx_compute_secondary_exec_control(vmx);
7231                 vmcs_set_secondary_exec_control(vmx);
7232         }
7233
7234         if (nested_vmx_allowed(vcpu))
7235                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7236                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7237                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7238         else
7239                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7240                         ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7241                           FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7242
7243         if (nested_vmx_allowed(vcpu)) {
7244                 nested_vmx_cr_fixed1_bits_update(vcpu);
7245                 nested_vmx_entry_exit_ctls_update(vcpu);
7246         }
7247
7248         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7249                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7250                 update_intel_pt_cfg(vcpu);
7251
7252         if (boot_cpu_has(X86_FEATURE_RTM)) {
7253                 struct vmx_uret_msr *msr;
7254                 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7255                 if (msr) {
7256                         bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7257                         vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7258                 }
7259         }
7260
7261         set_cr4_guest_host_mask(vmx);
7262
7263         /* Refresh #PF interception to account for MAXPHYADDR changes. */
7264         update_exception_bitmap(vcpu);
7265 }
7266
7267 static __init void vmx_set_cpu_caps(void)
7268 {
7269         kvm_set_cpu_caps();
7270
7271         /* CPUID 0x1 */
7272         if (nested)
7273                 kvm_cpu_cap_set(X86_FEATURE_VMX);
7274
7275         /* CPUID 0x7 */
7276         if (kvm_mpx_supported())
7277                 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7278         if (cpu_has_vmx_invpcid())
7279                 kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
7280         if (vmx_pt_mode_is_host_guest())
7281                 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7282
7283         if (vmx_umip_emulated())
7284                 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7285
7286         /* CPUID 0xD.1 */
7287         supported_xss = 0;
7288         if (!cpu_has_vmx_xsaves())
7289                 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7290
7291         /* CPUID 0x80000001 */
7292         if (!cpu_has_vmx_rdtscp())
7293                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7294
7295         if (cpu_has_vmx_waitpkg())
7296                 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7297 }
7298
7299 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7300 {
7301         to_vmx(vcpu)->req_immediate_exit = true;
7302 }
7303
7304 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7305                                   struct x86_instruction_info *info)
7306 {
7307         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7308         unsigned short port;
7309         bool intercept;
7310         int size;
7311
7312         if (info->intercept == x86_intercept_in ||
7313             info->intercept == x86_intercept_ins) {
7314                 port = info->src_val;
7315                 size = info->dst_bytes;
7316         } else {
7317                 port = info->dst_val;
7318                 size = info->src_bytes;
7319         }
7320
7321         /*
7322          * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7323          * VM-exits depend on the 'unconditional IO exiting' VM-execution
7324          * control.
7325          *
7326          * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7327          */
7328         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7329                 intercept = nested_cpu_has(vmcs12,
7330                                            CPU_BASED_UNCOND_IO_EXITING);
7331         else
7332                 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7333
7334         /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7335         return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7336 }
7337
7338 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7339                                struct x86_instruction_info *info,
7340                                enum x86_intercept_stage stage,
7341                                struct x86_exception *exception)
7342 {
7343         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7344
7345         switch (info->intercept) {
7346         /*
7347          * RDPID causes #UD if disabled through secondary execution controls.
7348          * Because it is marked as EmulateOnUD, we need to intercept it here.
7349          */
7350         case x86_intercept_rdtscp:
7351                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7352                         exception->vector = UD_VECTOR;
7353                         exception->error_code_valid = false;
7354                         return X86EMUL_PROPAGATE_FAULT;
7355                 }
7356                 break;
7357
7358         case x86_intercept_in:
7359         case x86_intercept_ins:
7360         case x86_intercept_out:
7361         case x86_intercept_outs:
7362                 return vmx_check_intercept_io(vcpu, info);
7363
7364         case x86_intercept_lgdt:
7365         case x86_intercept_lidt:
7366         case x86_intercept_lldt:
7367         case x86_intercept_ltr:
7368         case x86_intercept_sgdt:
7369         case x86_intercept_sidt:
7370         case x86_intercept_sldt:
7371         case x86_intercept_str:
7372                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7373                         return X86EMUL_CONTINUE;
7374
7375                 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7376                 break;
7377
7378         /* TODO: check more intercepts... */
7379         default:
7380                 break;
7381         }
7382
7383         return X86EMUL_UNHANDLEABLE;
7384 }
7385
7386 #ifdef CONFIG_X86_64
7387 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7388 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7389                                   u64 divisor, u64 *result)
7390 {
7391         u64 low = a << shift, high = a >> (64 - shift);
7392
7393         /* To avoid the overflow on divq */
7394         if (high >= divisor)
7395                 return 1;
7396
7397         /* Low hold the result, high hold rem which is discarded */
7398         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7399             "rm" (divisor), "0" (low), "1" (high));
7400         *result = low;
7401
7402         return 0;
7403 }
7404
7405 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7406                             bool *expired)
7407 {
7408         struct vcpu_vmx *vmx;
7409         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7410         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7411
7412         vmx = to_vmx(vcpu);
7413         tscl = rdtsc();
7414         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7415         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7416         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7417                                                     ktimer->timer_advance_ns);
7418
7419         if (delta_tsc > lapic_timer_advance_cycles)
7420                 delta_tsc -= lapic_timer_advance_cycles;
7421         else
7422                 delta_tsc = 0;
7423
7424         /* Convert to host delta tsc if tsc scaling is enabled */
7425         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7426             delta_tsc && u64_shl_div_u64(delta_tsc,
7427                                 kvm_tsc_scaling_ratio_frac_bits,
7428                                 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7429                 return -ERANGE;
7430
7431         /*
7432          * If the delta tsc can't fit in the 32 bit after the multi shift,
7433          * we can't use the preemption timer.
7434          * It's possible that it fits on later vmentries, but checking
7435          * on every vmentry is costly so we just use an hrtimer.
7436          */
7437         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7438                 return -ERANGE;
7439
7440         vmx->hv_deadline_tsc = tscl + delta_tsc;
7441         *expired = !delta_tsc;
7442         return 0;
7443 }
7444
7445 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7446 {
7447         to_vmx(vcpu)->hv_deadline_tsc = -1;
7448 }
7449 #endif
7450
7451 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7452 {
7453         if (!kvm_pause_in_guest(vcpu->kvm))
7454                 shrink_ple_window(vcpu);
7455 }
7456
7457 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7458                                      struct kvm_memory_slot *slot)
7459 {
7460         if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
7461                 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7462         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7463 }
7464
7465 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7466                                        struct kvm_memory_slot *slot)
7467 {
7468         kvm_mmu_slot_set_dirty(kvm, slot);
7469 }
7470
7471 static void vmx_flush_log_dirty(struct kvm *kvm)
7472 {
7473         kvm_flush_pml_buffers(kvm);
7474 }
7475
7476 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7477                                            struct kvm_memory_slot *memslot,
7478                                            gfn_t offset, unsigned long mask)
7479 {
7480         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7481 }
7482
7483 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7484 {
7485         if (pi_pre_block(vcpu))
7486                 return 1;
7487
7488         if (kvm_lapic_hv_timer_in_use(vcpu))
7489                 kvm_lapic_switch_to_sw_timer(vcpu);
7490
7491         return 0;
7492 }
7493
7494 static void vmx_post_block(struct kvm_vcpu *vcpu)
7495 {
7496         if (kvm_x86_ops.set_hv_timer)
7497                 kvm_lapic_switch_to_hv_timer(vcpu);
7498
7499         pi_post_block(vcpu);
7500 }
7501
7502 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7503 {
7504         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7505                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7506                         FEAT_CTL_LMCE_ENABLED;
7507         else
7508                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7509                         ~FEAT_CTL_LMCE_ENABLED;
7510 }
7511
7512 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7513 {
7514         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7515         if (to_vmx(vcpu)->nested.nested_run_pending)
7516                 return -EBUSY;
7517         return !is_smm(vcpu);
7518 }
7519
7520 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7521 {
7522         struct vcpu_vmx *vmx = to_vmx(vcpu);
7523
7524         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7525         if (vmx->nested.smm.guest_mode)
7526                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7527
7528         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7529         vmx->nested.vmxon = false;
7530         vmx_clear_hlt(vcpu);
7531         return 0;
7532 }
7533
7534 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7535 {
7536         struct vcpu_vmx *vmx = to_vmx(vcpu);
7537         int ret;
7538
7539         if (vmx->nested.smm.vmxon) {
7540                 vmx->nested.vmxon = true;
7541                 vmx->nested.smm.vmxon = false;
7542         }
7543
7544         if (vmx->nested.smm.guest_mode) {
7545                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7546                 if (ret)
7547                         return ret;
7548
7549                 vmx->nested.smm.guest_mode = false;
7550         }
7551         return 0;
7552 }
7553
7554 static void enable_smi_window(struct kvm_vcpu *vcpu)
7555 {
7556         /* RSM will cause a vmexit anyway.  */
7557 }
7558
7559 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7560 {
7561         return to_vmx(vcpu)->nested.vmxon;
7562 }
7563
7564 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7565 {
7566         if (is_guest_mode(vcpu)) {
7567                 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7568
7569                 if (hrtimer_try_to_cancel(timer) == 1)
7570                         hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7571         }
7572 }
7573
7574 static void hardware_unsetup(void)
7575 {
7576         if (nested)
7577                 nested_vmx_hardware_unsetup();
7578
7579         free_kvm_area();
7580 }
7581
7582 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7583 {
7584         ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7585                           BIT(APICV_INHIBIT_REASON_HYPERV);
7586
7587         return supported & BIT(bit);
7588 }
7589
7590 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7591         .hardware_unsetup = hardware_unsetup,
7592
7593         .hardware_enable = hardware_enable,
7594         .hardware_disable = hardware_disable,
7595         .cpu_has_accelerated_tpr = report_flexpriority,
7596         .has_emulated_msr = vmx_has_emulated_msr,
7597
7598         .vm_size = sizeof(struct kvm_vmx),
7599         .vm_init = vmx_vm_init,
7600
7601         .vcpu_create = vmx_create_vcpu,
7602         .vcpu_free = vmx_free_vcpu,
7603         .vcpu_reset = vmx_vcpu_reset,
7604
7605         .prepare_guest_switch = vmx_prepare_switch_to_guest,
7606         .vcpu_load = vmx_vcpu_load,
7607         .vcpu_put = vmx_vcpu_put,
7608
7609         .update_exception_bitmap = update_exception_bitmap,
7610         .get_msr_feature = vmx_get_msr_feature,
7611         .get_msr = vmx_get_msr,
7612         .set_msr = vmx_set_msr,
7613         .get_segment_base = vmx_get_segment_base,
7614         .get_segment = vmx_get_segment,
7615         .set_segment = vmx_set_segment,
7616         .get_cpl = vmx_get_cpl,
7617         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7618         .set_cr0 = vmx_set_cr0,
7619         .is_valid_cr4 = vmx_is_valid_cr4,
7620         .set_cr4 = vmx_set_cr4,
7621         .set_efer = vmx_set_efer,
7622         .get_idt = vmx_get_idt,
7623         .set_idt = vmx_set_idt,
7624         .get_gdt = vmx_get_gdt,
7625         .set_gdt = vmx_set_gdt,
7626         .set_dr7 = vmx_set_dr7,
7627         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7628         .cache_reg = vmx_cache_reg,
7629         .get_rflags = vmx_get_rflags,
7630         .set_rflags = vmx_set_rflags,
7631
7632         .tlb_flush_all = vmx_flush_tlb_all,
7633         .tlb_flush_current = vmx_flush_tlb_current,
7634         .tlb_flush_gva = vmx_flush_tlb_gva,
7635         .tlb_flush_guest = vmx_flush_tlb_guest,
7636
7637         .run = vmx_vcpu_run,
7638         .handle_exit = vmx_handle_exit,
7639         .skip_emulated_instruction = vmx_skip_emulated_instruction,
7640         .update_emulated_instruction = vmx_update_emulated_instruction,
7641         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7642         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7643         .patch_hypercall = vmx_patch_hypercall,
7644         .set_irq = vmx_inject_irq,
7645         .set_nmi = vmx_inject_nmi,
7646         .queue_exception = vmx_queue_exception,
7647         .cancel_injection = vmx_cancel_injection,
7648         .interrupt_allowed = vmx_interrupt_allowed,
7649         .nmi_allowed = vmx_nmi_allowed,
7650         .get_nmi_mask = vmx_get_nmi_mask,
7651         .set_nmi_mask = vmx_set_nmi_mask,
7652         .enable_nmi_window = enable_nmi_window,
7653         .enable_irq_window = enable_irq_window,
7654         .update_cr8_intercept = update_cr8_intercept,
7655         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7656         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7657         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7658         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7659         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7660         .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7661         .hwapic_irr_update = vmx_hwapic_irr_update,
7662         .hwapic_isr_update = vmx_hwapic_isr_update,
7663         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7664         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7665         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7666         .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7667
7668         .set_tss_addr = vmx_set_tss_addr,
7669         .set_identity_map_addr = vmx_set_identity_map_addr,
7670         .get_mt_mask = vmx_get_mt_mask,
7671
7672         .get_exit_info = vmx_get_exit_info,
7673
7674         .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7675
7676         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7677
7678         .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7679
7680         .load_mmu_pgd = vmx_load_mmu_pgd,
7681
7682         .check_intercept = vmx_check_intercept,
7683         .handle_exit_irqoff = vmx_handle_exit_irqoff,
7684
7685         .request_immediate_exit = vmx_request_immediate_exit,
7686
7687         .sched_in = vmx_sched_in,
7688
7689         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7690         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7691         .flush_log_dirty = vmx_flush_log_dirty,
7692         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7693
7694         .pre_block = vmx_pre_block,
7695         .post_block = vmx_post_block,
7696
7697         .pmu_ops = &intel_pmu_ops,
7698         .nested_ops = &vmx_nested_ops,
7699
7700         .update_pi_irte = pi_update_irte,
7701
7702 #ifdef CONFIG_X86_64
7703         .set_hv_timer = vmx_set_hv_timer,
7704         .cancel_hv_timer = vmx_cancel_hv_timer,
7705 #endif
7706
7707         .setup_mce = vmx_setup_mce,
7708
7709         .smi_allowed = vmx_smi_allowed,
7710         .pre_enter_smm = vmx_pre_enter_smm,
7711         .pre_leave_smm = vmx_pre_leave_smm,
7712         .enable_smi_window = enable_smi_window,
7713
7714         .can_emulate_instruction = vmx_can_emulate_instruction,
7715         .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7716         .migrate_timers = vmx_migrate_timers,
7717
7718         .msr_filter_changed = vmx_msr_filter_changed,
7719 };
7720
7721 static __init int hardware_setup(void)
7722 {
7723         unsigned long host_bndcfgs;
7724         struct desc_ptr dt;
7725         int r, i, ept_lpage_level;
7726
7727         store_idt(&dt);
7728         host_idt_base = dt.address;
7729
7730         for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7731                 kvm_define_user_return_msr(i, vmx_uret_msrs_list[i]);
7732
7733         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7734                 return -EIO;
7735
7736         if (boot_cpu_has(X86_FEATURE_NX))
7737                 kvm_enable_efer_bits(EFER_NX);
7738
7739         if (boot_cpu_has(X86_FEATURE_MPX)) {
7740                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7741                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7742         }
7743
7744         if (!cpu_has_vmx_mpx())
7745                 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7746                                     XFEATURE_MASK_BNDCSR);
7747
7748         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7749             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7750                 enable_vpid = 0;
7751
7752         if (!cpu_has_vmx_ept() ||
7753             !cpu_has_vmx_ept_4levels() ||
7754             !cpu_has_vmx_ept_mt_wb() ||
7755             !cpu_has_vmx_invept_global())
7756                 enable_ept = 0;
7757
7758         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7759                 enable_ept_ad_bits = 0;
7760
7761         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7762                 enable_unrestricted_guest = 0;
7763
7764         if (!cpu_has_vmx_flexpriority())
7765                 flexpriority_enabled = 0;
7766
7767         if (!cpu_has_virtual_nmis())
7768                 enable_vnmi = 0;
7769
7770         /*
7771          * set_apic_access_page_addr() is used to reload apic access
7772          * page upon invalidation.  No need to do anything if not
7773          * using the APIC_ACCESS_ADDR VMCS field.
7774          */
7775         if (!flexpriority_enabled)
7776                 vmx_x86_ops.set_apic_access_page_addr = NULL;
7777
7778         if (!cpu_has_vmx_tpr_shadow())
7779                 vmx_x86_ops.update_cr8_intercept = NULL;
7780
7781 #if IS_ENABLED(CONFIG_HYPERV)
7782         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7783             && enable_ept) {
7784                 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7785                 vmx_x86_ops.tlb_remote_flush_with_range =
7786                                 hv_remote_flush_tlb_with_range;
7787         }
7788 #endif
7789
7790         if (!cpu_has_vmx_ple()) {
7791                 ple_gap = 0;
7792                 ple_window = 0;
7793                 ple_window_grow = 0;
7794                 ple_window_max = 0;
7795                 ple_window_shrink = 0;
7796         }
7797
7798         if (!cpu_has_vmx_apicv()) {
7799                 enable_apicv = 0;
7800                 vmx_x86_ops.sync_pir_to_irr = NULL;
7801         }
7802
7803         if (cpu_has_vmx_tsc_scaling()) {
7804                 kvm_has_tsc_control = true;
7805                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7806                 kvm_tsc_scaling_ratio_frac_bits = 48;
7807         }
7808
7809         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7810
7811         if (enable_ept)
7812                 vmx_enable_tdp();
7813
7814         if (!enable_ept)
7815                 ept_lpage_level = 0;
7816         else if (cpu_has_vmx_ept_1g_page())
7817                 ept_lpage_level = PG_LEVEL_1G;
7818         else if (cpu_has_vmx_ept_2m_page())
7819                 ept_lpage_level = PG_LEVEL_2M;
7820         else
7821                 ept_lpage_level = PG_LEVEL_4K;
7822         kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level);
7823
7824         /*
7825          * Only enable PML when hardware supports PML feature, and both EPT
7826          * and EPT A/D bit features are enabled -- PML depends on them to work.
7827          */
7828         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7829                 enable_pml = 0;
7830
7831         if (!enable_pml) {
7832                 vmx_x86_ops.slot_enable_log_dirty = NULL;
7833                 vmx_x86_ops.slot_disable_log_dirty = NULL;
7834                 vmx_x86_ops.flush_log_dirty = NULL;
7835                 vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
7836         }
7837
7838         if (!cpu_has_vmx_preemption_timer())
7839                 enable_preemption_timer = false;
7840
7841         if (enable_preemption_timer) {
7842                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7843                 u64 vmx_msr;
7844
7845                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7846                 cpu_preemption_timer_multi =
7847                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7848
7849                 if (tsc_khz)
7850                         use_timer_freq = (u64)tsc_khz * 1000;
7851                 use_timer_freq >>= cpu_preemption_timer_multi;
7852
7853                 /*
7854                  * KVM "disables" the preemption timer by setting it to its max
7855                  * value.  Don't use the timer if it might cause spurious exits
7856                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7857                  */
7858                 if (use_timer_freq > 0xffffffffu / 10)
7859                         enable_preemption_timer = false;
7860         }
7861
7862         if (!enable_preemption_timer) {
7863                 vmx_x86_ops.set_hv_timer = NULL;
7864                 vmx_x86_ops.cancel_hv_timer = NULL;
7865                 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7866         }
7867
7868         kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
7869
7870         kvm_mce_cap_supported |= MCG_LMCE_P;
7871
7872         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7873                 return -EINVAL;
7874         if (!enable_ept || !cpu_has_vmx_intel_pt())
7875                 pt_mode = PT_MODE_SYSTEM;
7876
7877         if (nested) {
7878                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7879                                            vmx_capability.ept);
7880
7881                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7882                 if (r)
7883                         return r;
7884         }
7885
7886         vmx_set_cpu_caps();
7887
7888         r = alloc_kvm_area();
7889         if (r)
7890                 nested_vmx_hardware_unsetup();
7891         return r;
7892 }
7893
7894 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7895         .cpu_has_kvm_support = cpu_has_kvm_support,
7896         .disabled_by_bios = vmx_disabled_by_bios,
7897         .check_processor_compatibility = vmx_check_processor_compat,
7898         .hardware_setup = hardware_setup,
7899
7900         .runtime_ops = &vmx_x86_ops,
7901 };
7902
7903 static void vmx_cleanup_l1d_flush(void)
7904 {
7905         if (vmx_l1d_flush_pages) {
7906                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7907                 vmx_l1d_flush_pages = NULL;
7908         }
7909         /* Restore state so sysfs ignores VMX */
7910         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7911 }
7912
7913 static void vmx_exit(void)
7914 {
7915 #ifdef CONFIG_KEXEC_CORE
7916         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7917         synchronize_rcu();
7918 #endif
7919
7920         kvm_exit();
7921
7922 #if IS_ENABLED(CONFIG_HYPERV)
7923         if (static_branch_unlikely(&enable_evmcs)) {
7924                 int cpu;
7925                 struct hv_vp_assist_page *vp_ap;
7926                 /*
7927                  * Reset everything to support using non-enlightened VMCS
7928                  * access later (e.g. when we reload the module with
7929                  * enlightened_vmcs=0)
7930                  */
7931                 for_each_online_cpu(cpu) {
7932                         vp_ap = hv_get_vp_assist_page(cpu);
7933
7934                         if (!vp_ap)
7935                                 continue;
7936
7937                         vp_ap->nested_control.features.directhypercall = 0;
7938                         vp_ap->current_nested_vmcs = 0;
7939                         vp_ap->enlighten_vmentry = 0;
7940                 }
7941
7942                 static_branch_disable(&enable_evmcs);
7943         }
7944 #endif
7945         vmx_cleanup_l1d_flush();
7946 }
7947 module_exit(vmx_exit);
7948
7949 static int __init vmx_init(void)
7950 {
7951         int r, cpu;
7952
7953 #if IS_ENABLED(CONFIG_HYPERV)
7954         /*
7955          * Enlightened VMCS usage should be recommended and the host needs
7956          * to support eVMCS v1 or above. We can also disable eVMCS support
7957          * with module parameter.
7958          */
7959         if (enlightened_vmcs &&
7960             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7961             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7962             KVM_EVMCS_VERSION) {
7963                 int cpu;
7964
7965                 /* Check that we have assist pages on all online CPUs */
7966                 for_each_online_cpu(cpu) {
7967                         if (!hv_get_vp_assist_page(cpu)) {
7968                                 enlightened_vmcs = false;
7969                                 break;
7970                         }
7971                 }
7972
7973                 if (enlightened_vmcs) {
7974                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7975                         static_branch_enable(&enable_evmcs);
7976                 }
7977
7978                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7979                         vmx_x86_ops.enable_direct_tlbflush
7980                                 = hv_enable_direct_tlbflush;
7981
7982         } else {
7983                 enlightened_vmcs = false;
7984         }
7985 #endif
7986
7987         r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
7988                      __alignof__(struct vcpu_vmx), THIS_MODULE);
7989         if (r)
7990                 return r;
7991
7992         /*
7993          * Must be called after kvm_init() so enable_ept is properly set
7994          * up. Hand the parameter mitigation value in which was stored in
7995          * the pre module init parser. If no parameter was given, it will
7996          * contain 'auto' which will be turned into the default 'cond'
7997          * mitigation mode.
7998          */
7999         r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8000         if (r) {
8001                 vmx_exit();
8002                 return r;
8003         }
8004
8005         for_each_possible_cpu(cpu) {
8006                 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8007
8008                 pi_init_cpu(cpu);
8009         }
8010
8011 #ifdef CONFIG_KEXEC_CORE
8012         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8013                            crash_vmclear_local_loaded_vmcss);
8014 #endif
8015         vmx_check_vmcs12_offsets();
8016
8017         /*
8018          * Shadow paging doesn't have a (further) performance penalty
8019          * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8020          * by default
8021          */
8022         if (!enable_ept)
8023                 allow_smaller_maxphyaddr = true;
8024
8025         return 0;
8026 }
8027 module_init(vmx_init);