KVM: nVMX: Always write vmcs02.GUEST_CR3 during nested VM-Enter
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "trace.h"
14 #include "x86.h"
15
16 static bool __read_mostly enable_shadow_vmcs = 1;
17 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
18
19 static bool __read_mostly nested_early_check = 0;
20 module_param(nested_early_check, bool, S_IRUGO);
21
22 #define CC(consistency_check)                                           \
23 ({                                                                      \
24         bool failed = (consistency_check);                              \
25         if (failed)                                                     \
26                 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
27         failed;                                                         \
28 })
29
30 /*
31  * Hyper-V requires all of these, so mark them as supported even though
32  * they are just treated the same as all-context.
33  */
34 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
35         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
36         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
37         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
38         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
39
40 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
41
42 enum {
43         VMX_VMREAD_BITMAP,
44         VMX_VMWRITE_BITMAP,
45         VMX_BITMAP_NR
46 };
47 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
48
49 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
50 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
51
52 struct shadow_vmcs_field {
53         u16     encoding;
54         u16     offset;
55 };
56 static struct shadow_vmcs_field shadow_read_only_fields[] = {
57 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
58 #include "vmcs_shadow_fields.h"
59 };
60 static int max_shadow_read_only_fields =
61         ARRAY_SIZE(shadow_read_only_fields);
62
63 static struct shadow_vmcs_field shadow_read_write_fields[] = {
64 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
65 #include "vmcs_shadow_fields.h"
66 };
67 static int max_shadow_read_write_fields =
68         ARRAY_SIZE(shadow_read_write_fields);
69
70 static void init_vmcs_shadow_fields(void)
71 {
72         int i, j;
73
74         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
75         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
76
77         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
78                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
79                 u16 field = entry.encoding;
80
81                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
82                     (i + 1 == max_shadow_read_only_fields ||
83                      shadow_read_only_fields[i + 1].encoding != field + 1))
84                         pr_err("Missing field from shadow_read_only_field %x\n",
85                                field + 1);
86
87                 clear_bit(field, vmx_vmread_bitmap);
88                 if (field & 1)
89 #ifdef CONFIG_X86_64
90                         continue;
91 #else
92                         entry.offset += sizeof(u32);
93 #endif
94                 shadow_read_only_fields[j++] = entry;
95         }
96         max_shadow_read_only_fields = j;
97
98         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
99                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
100                 u16 field = entry.encoding;
101
102                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
103                     (i + 1 == max_shadow_read_write_fields ||
104                      shadow_read_write_fields[i + 1].encoding != field + 1))
105                         pr_err("Missing field from shadow_read_write_field %x\n",
106                                field + 1);
107
108                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
109                           field <= GUEST_TR_AR_BYTES,
110                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
111
112                 /*
113                  * PML and the preemption timer can be emulated, but the
114                  * processor cannot vmwrite to fields that don't exist
115                  * on bare metal.
116                  */
117                 switch (field) {
118                 case GUEST_PML_INDEX:
119                         if (!cpu_has_vmx_pml())
120                                 continue;
121                         break;
122                 case VMX_PREEMPTION_TIMER_VALUE:
123                         if (!cpu_has_vmx_preemption_timer())
124                                 continue;
125                         break;
126                 case GUEST_INTR_STATUS:
127                         if (!cpu_has_vmx_apicv())
128                                 continue;
129                         break;
130                 default:
131                         break;
132                 }
133
134                 clear_bit(field, vmx_vmwrite_bitmap);
135                 clear_bit(field, vmx_vmread_bitmap);
136                 if (field & 1)
137 #ifdef CONFIG_X86_64
138                         continue;
139 #else
140                         entry.offset += sizeof(u32);
141 #endif
142                 shadow_read_write_fields[j++] = entry;
143         }
144         max_shadow_read_write_fields = j;
145 }
146
147 /*
148  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
149  * set the success or error code of an emulated VMX instruction (as specified
150  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
151  * instruction.
152  */
153 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
154 {
155         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
156                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
157                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
158         return kvm_skip_emulated_instruction(vcpu);
159 }
160
161 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
162 {
163         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
164                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
165                             X86_EFLAGS_SF | X86_EFLAGS_OF))
166                         | X86_EFLAGS_CF);
167         return kvm_skip_emulated_instruction(vcpu);
168 }
169
170 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
171                                 u32 vm_instruction_error)
172 {
173         struct vcpu_vmx *vmx = to_vmx(vcpu);
174
175         /*
176          * failValid writes the error number to the current VMCS, which
177          * can't be done if there isn't a current VMCS.
178          */
179         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
180                 return nested_vmx_failInvalid(vcpu);
181
182         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
183                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
184                             X86_EFLAGS_SF | X86_EFLAGS_OF))
185                         | X86_EFLAGS_ZF);
186         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
187         /*
188          * We don't need to force a shadow sync because
189          * VM_INSTRUCTION_ERROR is not shadowed
190          */
191         return kvm_skip_emulated_instruction(vcpu);
192 }
193
194 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
195 {
196         /* TODO: not to reset guest simply here. */
197         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
198         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
199 }
200
201 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
202 {
203         return fixed_bits_valid(control, low, high);
204 }
205
206 static inline u64 vmx_control_msr(u32 low, u32 high)
207 {
208         return low | ((u64)high << 32);
209 }
210
211 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
212 {
213         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
214         vmcs_write64(VMCS_LINK_POINTER, -1ull);
215         vmx->nested.need_vmcs12_to_shadow_sync = false;
216 }
217
218 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
219 {
220         struct vcpu_vmx *vmx = to_vmx(vcpu);
221
222         if (!vmx->nested.hv_evmcs)
223                 return;
224
225         kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
226         vmx->nested.hv_evmcs_vmptr = -1ull;
227         vmx->nested.hv_evmcs = NULL;
228 }
229
230 /*
231  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
232  * just stops using VMX.
233  */
234 static void free_nested(struct kvm_vcpu *vcpu)
235 {
236         struct vcpu_vmx *vmx = to_vmx(vcpu);
237
238         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
239                 return;
240
241         kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
242
243         vmx->nested.vmxon = false;
244         vmx->nested.smm.vmxon = false;
245         free_vpid(vmx->nested.vpid02);
246         vmx->nested.posted_intr_nv = -1;
247         vmx->nested.current_vmptr = -1ull;
248         if (enable_shadow_vmcs) {
249                 vmx_disable_shadow_vmcs(vmx);
250                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
251                 free_vmcs(vmx->vmcs01.shadow_vmcs);
252                 vmx->vmcs01.shadow_vmcs = NULL;
253         }
254         kfree(vmx->nested.cached_vmcs12);
255         vmx->nested.cached_vmcs12 = NULL;
256         kfree(vmx->nested.cached_shadow_vmcs12);
257         vmx->nested.cached_shadow_vmcs12 = NULL;
258         /* Unpin physical memory we referred to in the vmcs02 */
259         if (vmx->nested.apic_access_page) {
260                 kvm_release_page_dirty(vmx->nested.apic_access_page);
261                 vmx->nested.apic_access_page = NULL;
262         }
263         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
264         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
265         vmx->nested.pi_desc = NULL;
266
267         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
268
269         nested_release_evmcs(vcpu);
270
271         free_loaded_vmcs(&vmx->nested.vmcs02);
272 }
273
274 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
275                                      struct loaded_vmcs *prev)
276 {
277         struct vmcs_host_state *dest, *src;
278
279         if (unlikely(!vmx->guest_state_loaded))
280                 return;
281
282         src = &prev->host_state;
283         dest = &vmx->loaded_vmcs->host_state;
284
285         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
286         dest->ldt_sel = src->ldt_sel;
287 #ifdef CONFIG_X86_64
288         dest->ds_sel = src->ds_sel;
289         dest->es_sel = src->es_sel;
290 #endif
291 }
292
293 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
294 {
295         struct vcpu_vmx *vmx = to_vmx(vcpu);
296         struct loaded_vmcs *prev;
297         int cpu;
298
299         if (vmx->loaded_vmcs == vmcs)
300                 return;
301
302         cpu = get_cpu();
303         prev = vmx->loaded_vmcs;
304         vmx->loaded_vmcs = vmcs;
305         vmx_vcpu_load_vmcs(vcpu, cpu);
306         vmx_sync_vmcs_host_state(vmx, prev);
307         put_cpu();
308
309         vmx_segment_cache_clear(vmx);
310 }
311
312 /*
313  * Ensure that the current vmcs of the logical processor is the
314  * vmcs01 of the vcpu before calling free_nested().
315  */
316 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
317 {
318         vcpu_load(vcpu);
319         vmx_leave_nested(vcpu);
320         vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
321         free_nested(vcpu);
322         vcpu_put(vcpu);
323 }
324
325 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
326                 struct x86_exception *fault)
327 {
328         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
329         struct vcpu_vmx *vmx = to_vmx(vcpu);
330         u32 exit_reason;
331         unsigned long exit_qualification = vcpu->arch.exit_qualification;
332
333         if (vmx->nested.pml_full) {
334                 exit_reason = EXIT_REASON_PML_FULL;
335                 vmx->nested.pml_full = false;
336                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
337         } else if (fault->error_code & PFERR_RSVD_MASK)
338                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
339         else
340                 exit_reason = EXIT_REASON_EPT_VIOLATION;
341
342         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
343         vmcs12->guest_physical_address = fault->address;
344 }
345
346 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
347 {
348         WARN_ON(mmu_is_nested(vcpu));
349
350         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
351         kvm_init_shadow_ept_mmu(vcpu,
352                         to_vmx(vcpu)->nested.msrs.ept_caps &
353                         VMX_EPT_EXECUTE_ONLY_BIT,
354                         nested_ept_ad_enabled(vcpu),
355                         nested_ept_get_cr3(vcpu));
356         vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
357         vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
358         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
359         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
360
361         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
362 }
363
364 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
365 {
366         vcpu->arch.mmu = &vcpu->arch.root_mmu;
367         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
368 }
369
370 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
371                                             u16 error_code)
372 {
373         bool inequality, bit;
374
375         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
376         inequality =
377                 (error_code & vmcs12->page_fault_error_code_mask) !=
378                  vmcs12->page_fault_error_code_match;
379         return inequality ^ bit;
380 }
381
382
383 /*
384  * KVM wants to inject page-faults which it got to the guest. This function
385  * checks whether in a nested guest, we need to inject them to L1 or L2.
386  */
387 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
388 {
389         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
390         unsigned int nr = vcpu->arch.exception.nr;
391         bool has_payload = vcpu->arch.exception.has_payload;
392         unsigned long payload = vcpu->arch.exception.payload;
393
394         if (nr == PF_VECTOR) {
395                 if (vcpu->arch.exception.nested_apf) {
396                         *exit_qual = vcpu->arch.apf.nested_apf_token;
397                         return 1;
398                 }
399                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
400                                                     vcpu->arch.exception.error_code)) {
401                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
402                         return 1;
403                 }
404         } else if (vmcs12->exception_bitmap & (1u << nr)) {
405                 if (nr == DB_VECTOR) {
406                         if (!has_payload) {
407                                 payload = vcpu->arch.dr6;
408                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
409                                 payload ^= DR6_RTM;
410                         }
411                         *exit_qual = payload;
412                 } else
413                         *exit_qual = 0;
414                 return 1;
415         }
416
417         return 0;
418 }
419
420
421 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
422                 struct x86_exception *fault)
423 {
424         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
425
426         WARN_ON(!is_guest_mode(vcpu));
427
428         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
429                 !to_vmx(vcpu)->nested.nested_run_pending) {
430                 vmcs12->vm_exit_intr_error_code = fault->error_code;
431                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
432                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
433                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
434                                   fault->address);
435         } else {
436                 kvm_inject_page_fault(vcpu, fault);
437         }
438 }
439
440 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
441 {
442         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
443 }
444
445 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
446                                                struct vmcs12 *vmcs12)
447 {
448         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
449                 return 0;
450
451         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
452             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
453                 return -EINVAL;
454
455         return 0;
456 }
457
458 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
459                                                 struct vmcs12 *vmcs12)
460 {
461         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
462                 return 0;
463
464         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
465                 return -EINVAL;
466
467         return 0;
468 }
469
470 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
471                                                 struct vmcs12 *vmcs12)
472 {
473         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
474                 return 0;
475
476         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
477                 return -EINVAL;
478
479         return 0;
480 }
481
482 /*
483  * Check if MSR is intercepted for L01 MSR bitmap.
484  */
485 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
486 {
487         unsigned long *msr_bitmap;
488         int f = sizeof(unsigned long);
489
490         if (!cpu_has_vmx_msr_bitmap())
491                 return true;
492
493         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
494
495         if (msr <= 0x1fff) {
496                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
497         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
498                 msr &= 0x1fff;
499                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
500         }
501
502         return true;
503 }
504
505 /*
506  * If a msr is allowed by L0, we should check whether it is allowed by L1.
507  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
508  */
509 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
510                                                unsigned long *msr_bitmap_nested,
511                                                u32 msr, int type)
512 {
513         int f = sizeof(unsigned long);
514
515         /*
516          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
517          * have the write-low and read-high bitmap offsets the wrong way round.
518          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
519          */
520         if (msr <= 0x1fff) {
521                 if (type & MSR_TYPE_R &&
522                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
523                         /* read-low */
524                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
525
526                 if (type & MSR_TYPE_W &&
527                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
528                         /* write-low */
529                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
530
531         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
532                 msr &= 0x1fff;
533                 if (type & MSR_TYPE_R &&
534                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
535                         /* read-high */
536                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
537
538                 if (type & MSR_TYPE_W &&
539                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
540                         /* write-high */
541                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
542
543         }
544 }
545
546 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) {
547         int msr;
548
549         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
550                 unsigned word = msr / BITS_PER_LONG;
551
552                 msr_bitmap[word] = ~0;
553                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
554         }
555 }
556
557 /*
558  * Merge L0's and L1's MSR bitmap, return false to indicate that
559  * we do not use the hardware.
560  */
561 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
562                                                  struct vmcs12 *vmcs12)
563 {
564         int msr;
565         unsigned long *msr_bitmap_l1;
566         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
567         struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
568
569         /* Nothing to do if the MSR bitmap is not in use.  */
570         if (!cpu_has_vmx_msr_bitmap() ||
571             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
572                 return false;
573
574         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
575                 return false;
576
577         msr_bitmap_l1 = (unsigned long *)map->hva;
578
579         /*
580          * To keep the control flow simple, pay eight 8-byte writes (sixteen
581          * 4-byte writes on 32-bit systems) up front to enable intercepts for
582          * the x2APIC MSR range and selectively disable them below.
583          */
584         enable_x2apic_msr_intercepts(msr_bitmap_l0);
585
586         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
587                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
588                         /*
589                          * L0 need not intercept reads for MSRs between 0x800
590                          * and 0x8ff, it just lets the processor take the value
591                          * from the virtual-APIC page; take those 256 bits
592                          * directly from the L1 bitmap.
593                          */
594                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
595                                 unsigned word = msr / BITS_PER_LONG;
596
597                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
598                         }
599                 }
600
601                 nested_vmx_disable_intercept_for_msr(
602                         msr_bitmap_l1, msr_bitmap_l0,
603                         X2APIC_MSR(APIC_TASKPRI),
604                         MSR_TYPE_R | MSR_TYPE_W);
605
606                 if (nested_cpu_has_vid(vmcs12)) {
607                         nested_vmx_disable_intercept_for_msr(
608                                 msr_bitmap_l1, msr_bitmap_l0,
609                                 X2APIC_MSR(APIC_EOI),
610                                 MSR_TYPE_W);
611                         nested_vmx_disable_intercept_for_msr(
612                                 msr_bitmap_l1, msr_bitmap_l0,
613                                 X2APIC_MSR(APIC_SELF_IPI),
614                                 MSR_TYPE_W);
615                 }
616         }
617
618         /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
619         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
620                                              MSR_FS_BASE, MSR_TYPE_RW);
621
622         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
623                                              MSR_GS_BASE, MSR_TYPE_RW);
624
625         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
626                                              MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
627
628         /*
629          * Checking the L0->L1 bitmap is trying to verify two things:
630          *
631          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
632          *    ensures that we do not accidentally generate an L02 MSR bitmap
633          *    from the L12 MSR bitmap that is too permissive.
634          * 2. That L1 or L2s have actually used the MSR. This avoids
635          *    unnecessarily merging of the bitmap if the MSR is unused. This
636          *    works properly because we only update the L01 MSR bitmap lazily.
637          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
638          *    updated to reflect this when L1 (or its L2s) actually write to
639          *    the MSR.
640          */
641         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
642                 nested_vmx_disable_intercept_for_msr(
643                                         msr_bitmap_l1, msr_bitmap_l0,
644                                         MSR_IA32_SPEC_CTRL,
645                                         MSR_TYPE_R | MSR_TYPE_W);
646
647         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
648                 nested_vmx_disable_intercept_for_msr(
649                                         msr_bitmap_l1, msr_bitmap_l0,
650                                         MSR_IA32_PRED_CMD,
651                                         MSR_TYPE_W);
652
653         kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
654
655         return true;
656 }
657
658 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
659                                        struct vmcs12 *vmcs12)
660 {
661         struct kvm_host_map map;
662         struct vmcs12 *shadow;
663
664         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
665             vmcs12->vmcs_link_pointer == -1ull)
666                 return;
667
668         shadow = get_shadow_vmcs12(vcpu);
669
670         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
671                 return;
672
673         memcpy(shadow, map.hva, VMCS12_SIZE);
674         kvm_vcpu_unmap(vcpu, &map, false);
675 }
676
677 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
678                                               struct vmcs12 *vmcs12)
679 {
680         struct vcpu_vmx *vmx = to_vmx(vcpu);
681
682         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
683             vmcs12->vmcs_link_pointer == -1ull)
684                 return;
685
686         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
687                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
688 }
689
690 /*
691  * In nested virtualization, check if L1 has set
692  * VM_EXIT_ACK_INTR_ON_EXIT
693  */
694 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
695 {
696         return get_vmcs12(vcpu)->vm_exit_controls &
697                 VM_EXIT_ACK_INTR_ON_EXIT;
698 }
699
700 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
701 {
702         return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
703 }
704
705 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
706                                           struct vmcs12 *vmcs12)
707 {
708         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
709             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
710                 return -EINVAL;
711         else
712                 return 0;
713 }
714
715 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
716                                            struct vmcs12 *vmcs12)
717 {
718         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
719             !nested_cpu_has_apic_reg_virt(vmcs12) &&
720             !nested_cpu_has_vid(vmcs12) &&
721             !nested_cpu_has_posted_intr(vmcs12))
722                 return 0;
723
724         /*
725          * If virtualize x2apic mode is enabled,
726          * virtualize apic access must be disabled.
727          */
728         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
729                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
730                 return -EINVAL;
731
732         /*
733          * If virtual interrupt delivery is enabled,
734          * we must exit on external interrupts.
735          */
736         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
737                 return -EINVAL;
738
739         /*
740          * bits 15:8 should be zero in posted_intr_nv,
741          * the descriptor address has been already checked
742          * in nested_get_vmcs12_pages.
743          *
744          * bits 5:0 of posted_intr_desc_addr should be zero.
745          */
746         if (nested_cpu_has_posted_intr(vmcs12) &&
747            (CC(!nested_cpu_has_vid(vmcs12)) ||
748             CC(!nested_exit_intr_ack_set(vcpu)) ||
749             CC((vmcs12->posted_intr_nv & 0xff00)) ||
750             CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
751             CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
752                 return -EINVAL;
753
754         /* tpr shadow is needed by all apicv features. */
755         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
756                 return -EINVAL;
757
758         return 0;
759 }
760
761 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
762                                        u32 count, u64 addr)
763 {
764         int maxphyaddr;
765
766         if (count == 0)
767                 return 0;
768         maxphyaddr = cpuid_maxphyaddr(vcpu);
769         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
770             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
771                 return -EINVAL;
772
773         return 0;
774 }
775
776 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
777                                                      struct vmcs12 *vmcs12)
778 {
779         if (CC(nested_vmx_check_msr_switch(vcpu,
780                                            vmcs12->vm_exit_msr_load_count,
781                                            vmcs12->vm_exit_msr_load_addr)) ||
782             CC(nested_vmx_check_msr_switch(vcpu,
783                                            vmcs12->vm_exit_msr_store_count,
784                                            vmcs12->vm_exit_msr_store_addr)))
785                 return -EINVAL;
786
787         return 0;
788 }
789
790 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
791                                                       struct vmcs12 *vmcs12)
792 {
793         if (CC(nested_vmx_check_msr_switch(vcpu,
794                                            vmcs12->vm_entry_msr_load_count,
795                                            vmcs12->vm_entry_msr_load_addr)))
796                 return -EINVAL;
797
798         return 0;
799 }
800
801 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
802                                          struct vmcs12 *vmcs12)
803 {
804         if (!nested_cpu_has_pml(vmcs12))
805                 return 0;
806
807         if (CC(!nested_cpu_has_ept(vmcs12)) ||
808             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
809                 return -EINVAL;
810
811         return 0;
812 }
813
814 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
815                                                         struct vmcs12 *vmcs12)
816 {
817         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
818                !nested_cpu_has_ept(vmcs12)))
819                 return -EINVAL;
820         return 0;
821 }
822
823 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
824                                                          struct vmcs12 *vmcs12)
825 {
826         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
827                !nested_cpu_has_ept(vmcs12)))
828                 return -EINVAL;
829         return 0;
830 }
831
832 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
833                                                  struct vmcs12 *vmcs12)
834 {
835         if (!nested_cpu_has_shadow_vmcs(vmcs12))
836                 return 0;
837
838         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
839             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
840                 return -EINVAL;
841
842         return 0;
843 }
844
845 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
846                                        struct vmx_msr_entry *e)
847 {
848         /* x2APIC MSR accesses are not allowed */
849         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
850                 return -EINVAL;
851         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
852             CC(e->index == MSR_IA32_UCODE_REV))
853                 return -EINVAL;
854         if (CC(e->reserved != 0))
855                 return -EINVAL;
856         return 0;
857 }
858
859 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
860                                      struct vmx_msr_entry *e)
861 {
862         if (CC(e->index == MSR_FS_BASE) ||
863             CC(e->index == MSR_GS_BASE) ||
864             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
865             nested_vmx_msr_check_common(vcpu, e))
866                 return -EINVAL;
867         return 0;
868 }
869
870 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
871                                       struct vmx_msr_entry *e)
872 {
873         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
874             nested_vmx_msr_check_common(vcpu, e))
875                 return -EINVAL;
876         return 0;
877 }
878
879 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
880 {
881         struct vcpu_vmx *vmx = to_vmx(vcpu);
882         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
883                                        vmx->nested.msrs.misc_high);
884
885         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
886 }
887
888 /*
889  * Load guest's/host's msr at nested entry/exit.
890  * return 0 for success, entry index for failure.
891  *
892  * One of the failure modes for MSR load/store is when a list exceeds the
893  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
894  * as possible, process all valid entries before failing rather than precheck
895  * for a capacity violation.
896  */
897 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
898 {
899         u32 i;
900         struct vmx_msr_entry e;
901         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
902
903         for (i = 0; i < count; i++) {
904                 if (unlikely(i >= max_msr_list_size))
905                         goto fail;
906
907                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
908                                         &e, sizeof(e))) {
909                         pr_debug_ratelimited(
910                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
911                                 __func__, i, gpa + i * sizeof(e));
912                         goto fail;
913                 }
914                 if (nested_vmx_load_msr_check(vcpu, &e)) {
915                         pr_debug_ratelimited(
916                                 "%s check failed (%u, 0x%x, 0x%x)\n",
917                                 __func__, i, e.index, e.reserved);
918                         goto fail;
919                 }
920                 if (kvm_set_msr(vcpu, e.index, e.value)) {
921                         pr_debug_ratelimited(
922                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
923                                 __func__, i, e.index, e.value);
924                         goto fail;
925                 }
926         }
927         return 0;
928 fail:
929         return i + 1;
930 }
931
932 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
933 {
934         u64 data;
935         u32 i;
936         struct vmx_msr_entry e;
937         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
938
939         for (i = 0; i < count; i++) {
940                 if (unlikely(i >= max_msr_list_size))
941                         return -EINVAL;
942
943                 if (kvm_vcpu_read_guest(vcpu,
944                                         gpa + i * sizeof(e),
945                                         &e, 2 * sizeof(u32))) {
946                         pr_debug_ratelimited(
947                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
948                                 __func__, i, gpa + i * sizeof(e));
949                         return -EINVAL;
950                 }
951                 if (nested_vmx_store_msr_check(vcpu, &e)) {
952                         pr_debug_ratelimited(
953                                 "%s check failed (%u, 0x%x, 0x%x)\n",
954                                 __func__, i, e.index, e.reserved);
955                         return -EINVAL;
956                 }
957                 if (kvm_get_msr(vcpu, e.index, &data)) {
958                         pr_debug_ratelimited(
959                                 "%s cannot read MSR (%u, 0x%x)\n",
960                                 __func__, i, e.index);
961                         return -EINVAL;
962                 }
963                 if (kvm_vcpu_write_guest(vcpu,
964                                          gpa + i * sizeof(e) +
965                                              offsetof(struct vmx_msr_entry, value),
966                                          &data, sizeof(data))) {
967                         pr_debug_ratelimited(
968                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
969                                 __func__, i, e.index, data);
970                         return -EINVAL;
971                 }
972         }
973         return 0;
974 }
975
976 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
977 {
978         unsigned long invalid_mask;
979
980         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
981         return (val & invalid_mask) == 0;
982 }
983
984 /*
985  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
986  * emulating VM entry into a guest with EPT enabled.
987  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
988  * is assigned to entry_failure_code on failure.
989  */
990 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
991                                u32 *entry_failure_code)
992 {
993         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
994                 if (CC(!nested_cr3_valid(vcpu, cr3))) {
995                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
996                         return -EINVAL;
997                 }
998
999                 /*
1000                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1001                  * must not be dereferenced.
1002                  */
1003                 if (is_pae_paging(vcpu) && !nested_ept) {
1004                         if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1005                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
1006                                 return -EINVAL;
1007                         }
1008                 }
1009         }
1010
1011         if (!nested_ept)
1012                 kvm_mmu_new_cr3(vcpu, cr3, false);
1013
1014         vcpu->arch.cr3 = cr3;
1015         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
1016
1017         kvm_init_mmu(vcpu, false);
1018
1019         return 0;
1020 }
1021
1022 /*
1023  * Returns if KVM is able to config CPU to tag TLB entries
1024  * populated by L2 differently than TLB entries populated
1025  * by L1.
1026  *
1027  * If L1 uses EPT, then TLB entries are tagged with different EPTP.
1028  *
1029  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1030  * with different VPID (L1 entries are tagged with vmx->vpid
1031  * while L2 entries are tagged with vmx->nested.vpid02).
1032  */
1033 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1034 {
1035         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1036
1037         return nested_cpu_has_ept(vmcs12) ||
1038                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1039 }
1040
1041 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
1042 {
1043         struct vcpu_vmx *vmx = to_vmx(vcpu);
1044
1045         return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
1046 }
1047
1048 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1049 {
1050         superset &= mask;
1051         subset &= mask;
1052
1053         return (superset | subset) == superset;
1054 }
1055
1056 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1057 {
1058         const u64 feature_and_reserved =
1059                 /* feature (except bit 48; see below) */
1060                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1061                 /* reserved */
1062                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1063         u64 vmx_basic = vmx->nested.msrs.basic;
1064
1065         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1066                 return -EINVAL;
1067
1068         /*
1069          * KVM does not emulate a version of VMX that constrains physical
1070          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1071          */
1072         if (data & BIT_ULL(48))
1073                 return -EINVAL;
1074
1075         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1076             vmx_basic_vmcs_revision_id(data))
1077                 return -EINVAL;
1078
1079         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1080                 return -EINVAL;
1081
1082         vmx->nested.msrs.basic = data;
1083         return 0;
1084 }
1085
1086 static int
1087 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1088 {
1089         u64 supported;
1090         u32 *lowp, *highp;
1091
1092         switch (msr_index) {
1093         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1094                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1095                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1096                 break;
1097         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1098                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1099                 highp = &vmx->nested.msrs.procbased_ctls_high;
1100                 break;
1101         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1102                 lowp = &vmx->nested.msrs.exit_ctls_low;
1103                 highp = &vmx->nested.msrs.exit_ctls_high;
1104                 break;
1105         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1106                 lowp = &vmx->nested.msrs.entry_ctls_low;
1107                 highp = &vmx->nested.msrs.entry_ctls_high;
1108                 break;
1109         case MSR_IA32_VMX_PROCBASED_CTLS2:
1110                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1111                 highp = &vmx->nested.msrs.secondary_ctls_high;
1112                 break;
1113         default:
1114                 BUG();
1115         }
1116
1117         supported = vmx_control_msr(*lowp, *highp);
1118
1119         /* Check must-be-1 bits are still 1. */
1120         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1121                 return -EINVAL;
1122
1123         /* Check must-be-0 bits are still 0. */
1124         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1125                 return -EINVAL;
1126
1127         *lowp = data;
1128         *highp = data >> 32;
1129         return 0;
1130 }
1131
1132 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1133 {
1134         const u64 feature_and_reserved_bits =
1135                 /* feature */
1136                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1137                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1138                 /* reserved */
1139                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1140         u64 vmx_misc;
1141
1142         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1143                                    vmx->nested.msrs.misc_high);
1144
1145         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1146                 return -EINVAL;
1147
1148         if ((vmx->nested.msrs.pinbased_ctls_high &
1149              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1150             vmx_misc_preemption_timer_rate(data) !=
1151             vmx_misc_preemption_timer_rate(vmx_misc))
1152                 return -EINVAL;
1153
1154         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1155                 return -EINVAL;
1156
1157         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1158                 return -EINVAL;
1159
1160         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1161                 return -EINVAL;
1162
1163         vmx->nested.msrs.misc_low = data;
1164         vmx->nested.msrs.misc_high = data >> 32;
1165
1166         return 0;
1167 }
1168
1169 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1170 {
1171         u64 vmx_ept_vpid_cap;
1172
1173         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1174                                            vmx->nested.msrs.vpid_caps);
1175
1176         /* Every bit is either reserved or a feature bit. */
1177         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1178                 return -EINVAL;
1179
1180         vmx->nested.msrs.ept_caps = data;
1181         vmx->nested.msrs.vpid_caps = data >> 32;
1182         return 0;
1183 }
1184
1185 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1186 {
1187         u64 *msr;
1188
1189         switch (msr_index) {
1190         case MSR_IA32_VMX_CR0_FIXED0:
1191                 msr = &vmx->nested.msrs.cr0_fixed0;
1192                 break;
1193         case MSR_IA32_VMX_CR4_FIXED0:
1194                 msr = &vmx->nested.msrs.cr4_fixed0;
1195                 break;
1196         default:
1197                 BUG();
1198         }
1199
1200         /*
1201          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1202          * must be 1 in the restored value.
1203          */
1204         if (!is_bitwise_subset(data, *msr, -1ULL))
1205                 return -EINVAL;
1206
1207         *msr = data;
1208         return 0;
1209 }
1210
1211 /*
1212  * Called when userspace is restoring VMX MSRs.
1213  *
1214  * Returns 0 on success, non-0 otherwise.
1215  */
1216 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1217 {
1218         struct vcpu_vmx *vmx = to_vmx(vcpu);
1219
1220         /*
1221          * Don't allow changes to the VMX capability MSRs while the vCPU
1222          * is in VMX operation.
1223          */
1224         if (vmx->nested.vmxon)
1225                 return -EBUSY;
1226
1227         switch (msr_index) {
1228         case MSR_IA32_VMX_BASIC:
1229                 return vmx_restore_vmx_basic(vmx, data);
1230         case MSR_IA32_VMX_PINBASED_CTLS:
1231         case MSR_IA32_VMX_PROCBASED_CTLS:
1232         case MSR_IA32_VMX_EXIT_CTLS:
1233         case MSR_IA32_VMX_ENTRY_CTLS:
1234                 /*
1235                  * The "non-true" VMX capability MSRs are generated from the
1236                  * "true" MSRs, so we do not support restoring them directly.
1237                  *
1238                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1239                  * should restore the "true" MSRs with the must-be-1 bits
1240                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1241                  * DEFAULT SETTINGS".
1242                  */
1243                 return -EINVAL;
1244         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1245         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1246         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1247         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1248         case MSR_IA32_VMX_PROCBASED_CTLS2:
1249                 return vmx_restore_control_msr(vmx, msr_index, data);
1250         case MSR_IA32_VMX_MISC:
1251                 return vmx_restore_vmx_misc(vmx, data);
1252         case MSR_IA32_VMX_CR0_FIXED0:
1253         case MSR_IA32_VMX_CR4_FIXED0:
1254                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1255         case MSR_IA32_VMX_CR0_FIXED1:
1256         case MSR_IA32_VMX_CR4_FIXED1:
1257                 /*
1258                  * These MSRs are generated based on the vCPU's CPUID, so we
1259                  * do not support restoring them directly.
1260                  */
1261                 return -EINVAL;
1262         case MSR_IA32_VMX_EPT_VPID_CAP:
1263                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1264         case MSR_IA32_VMX_VMCS_ENUM:
1265                 vmx->nested.msrs.vmcs_enum = data;
1266                 return 0;
1267         case MSR_IA32_VMX_VMFUNC:
1268                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1269                         return -EINVAL;
1270                 vmx->nested.msrs.vmfunc_controls = data;
1271                 return 0;
1272         default:
1273                 /*
1274                  * The rest of the VMX capability MSRs do not support restore.
1275                  */
1276                 return -EINVAL;
1277         }
1278 }
1279
1280 /* Returns 0 on success, non-0 otherwise. */
1281 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1282 {
1283         switch (msr_index) {
1284         case MSR_IA32_VMX_BASIC:
1285                 *pdata = msrs->basic;
1286                 break;
1287         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1288         case MSR_IA32_VMX_PINBASED_CTLS:
1289                 *pdata = vmx_control_msr(
1290                         msrs->pinbased_ctls_low,
1291                         msrs->pinbased_ctls_high);
1292                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1293                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1294                 break;
1295         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1296         case MSR_IA32_VMX_PROCBASED_CTLS:
1297                 *pdata = vmx_control_msr(
1298                         msrs->procbased_ctls_low,
1299                         msrs->procbased_ctls_high);
1300                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1301                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1302                 break;
1303         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1304         case MSR_IA32_VMX_EXIT_CTLS:
1305                 *pdata = vmx_control_msr(
1306                         msrs->exit_ctls_low,
1307                         msrs->exit_ctls_high);
1308                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1309                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1310                 break;
1311         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1312         case MSR_IA32_VMX_ENTRY_CTLS:
1313                 *pdata = vmx_control_msr(
1314                         msrs->entry_ctls_low,
1315                         msrs->entry_ctls_high);
1316                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1317                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1318                 break;
1319         case MSR_IA32_VMX_MISC:
1320                 *pdata = vmx_control_msr(
1321                         msrs->misc_low,
1322                         msrs->misc_high);
1323                 break;
1324         case MSR_IA32_VMX_CR0_FIXED0:
1325                 *pdata = msrs->cr0_fixed0;
1326                 break;
1327         case MSR_IA32_VMX_CR0_FIXED1:
1328                 *pdata = msrs->cr0_fixed1;
1329                 break;
1330         case MSR_IA32_VMX_CR4_FIXED0:
1331                 *pdata = msrs->cr4_fixed0;
1332                 break;
1333         case MSR_IA32_VMX_CR4_FIXED1:
1334                 *pdata = msrs->cr4_fixed1;
1335                 break;
1336         case MSR_IA32_VMX_VMCS_ENUM:
1337                 *pdata = msrs->vmcs_enum;
1338                 break;
1339         case MSR_IA32_VMX_PROCBASED_CTLS2:
1340                 *pdata = vmx_control_msr(
1341                         msrs->secondary_ctls_low,
1342                         msrs->secondary_ctls_high);
1343                 break;
1344         case MSR_IA32_VMX_EPT_VPID_CAP:
1345                 *pdata = msrs->ept_caps |
1346                         ((u64)msrs->vpid_caps << 32);
1347                 break;
1348         case MSR_IA32_VMX_VMFUNC:
1349                 *pdata = msrs->vmfunc_controls;
1350                 break;
1351         default:
1352                 return 1;
1353         }
1354
1355         return 0;
1356 }
1357
1358 /*
1359  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1360  * been modified by the L1 guest.  Note, "writable" in this context means
1361  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1362  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1363  * VM-exit information fields (which are actually writable if the vCPU is
1364  * configured to support "VMWRITE to any supported field in the VMCS").
1365  */
1366 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1367 {
1368         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1369         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1370         struct shadow_vmcs_field field;
1371         unsigned long val;
1372         int i;
1373
1374         if (WARN_ON(!shadow_vmcs))
1375                 return;
1376
1377         preempt_disable();
1378
1379         vmcs_load(shadow_vmcs);
1380
1381         for (i = 0; i < max_shadow_read_write_fields; i++) {
1382                 field = shadow_read_write_fields[i];
1383                 val = __vmcs_readl(field.encoding);
1384                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1385         }
1386
1387         vmcs_clear(shadow_vmcs);
1388         vmcs_load(vmx->loaded_vmcs->vmcs);
1389
1390         preempt_enable();
1391 }
1392
1393 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1394 {
1395         const struct shadow_vmcs_field *fields[] = {
1396                 shadow_read_write_fields,
1397                 shadow_read_only_fields
1398         };
1399         const int max_fields[] = {
1400                 max_shadow_read_write_fields,
1401                 max_shadow_read_only_fields
1402         };
1403         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1404         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1405         struct shadow_vmcs_field field;
1406         unsigned long val;
1407         int i, q;
1408
1409         if (WARN_ON(!shadow_vmcs))
1410                 return;
1411
1412         vmcs_load(shadow_vmcs);
1413
1414         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1415                 for (i = 0; i < max_fields[q]; i++) {
1416                         field = fields[q][i];
1417                         val = vmcs12_read_any(vmcs12, field.encoding,
1418                                               field.offset);
1419                         __vmcs_writel(field.encoding, val);
1420                 }
1421         }
1422
1423         vmcs_clear(shadow_vmcs);
1424         vmcs_load(vmx->loaded_vmcs->vmcs);
1425 }
1426
1427 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1428 {
1429         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1430         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1431
1432         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1433         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1434         vmcs12->guest_rip = evmcs->guest_rip;
1435
1436         if (unlikely(!(evmcs->hv_clean_fields &
1437                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1438                 vmcs12->guest_rsp = evmcs->guest_rsp;
1439                 vmcs12->guest_rflags = evmcs->guest_rflags;
1440                 vmcs12->guest_interruptibility_info =
1441                         evmcs->guest_interruptibility_info;
1442         }
1443
1444         if (unlikely(!(evmcs->hv_clean_fields &
1445                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1446                 vmcs12->cpu_based_vm_exec_control =
1447                         evmcs->cpu_based_vm_exec_control;
1448         }
1449
1450         if (unlikely(!(evmcs->hv_clean_fields &
1451                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1452                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1453         }
1454
1455         if (unlikely(!(evmcs->hv_clean_fields &
1456                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1457                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1458         }
1459
1460         if (unlikely(!(evmcs->hv_clean_fields &
1461                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1462                 vmcs12->vm_entry_intr_info_field =
1463                         evmcs->vm_entry_intr_info_field;
1464                 vmcs12->vm_entry_exception_error_code =
1465                         evmcs->vm_entry_exception_error_code;
1466                 vmcs12->vm_entry_instruction_len =
1467                         evmcs->vm_entry_instruction_len;
1468         }
1469
1470         if (unlikely(!(evmcs->hv_clean_fields &
1471                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1472                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1473                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1474                 vmcs12->host_cr0 = evmcs->host_cr0;
1475                 vmcs12->host_cr3 = evmcs->host_cr3;
1476                 vmcs12->host_cr4 = evmcs->host_cr4;
1477                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1478                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1479                 vmcs12->host_rip = evmcs->host_rip;
1480                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1481                 vmcs12->host_es_selector = evmcs->host_es_selector;
1482                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1483                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1484                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1485                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1486                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1487                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1488         }
1489
1490         if (unlikely(!(evmcs->hv_clean_fields &
1491                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1492                 vmcs12->pin_based_vm_exec_control =
1493                         evmcs->pin_based_vm_exec_control;
1494                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1495                 vmcs12->secondary_vm_exec_control =
1496                         evmcs->secondary_vm_exec_control;
1497         }
1498
1499         if (unlikely(!(evmcs->hv_clean_fields &
1500                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1501                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1502                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1503         }
1504
1505         if (unlikely(!(evmcs->hv_clean_fields &
1506                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1507                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1508         }
1509
1510         if (unlikely(!(evmcs->hv_clean_fields &
1511                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1512                 vmcs12->guest_es_base = evmcs->guest_es_base;
1513                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1514                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1515                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1516                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1517                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1518                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1519                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1520                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1521                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1522                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1523                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1524                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1525                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1526                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1527                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1528                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1529                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1530                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1531                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1532                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1533                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1534                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1535                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1536                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1537                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1538                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1539                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1540                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1541                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1542                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1543                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1544                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1545                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1546                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1547                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1548         }
1549
1550         if (unlikely(!(evmcs->hv_clean_fields &
1551                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1552                 vmcs12->tsc_offset = evmcs->tsc_offset;
1553                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1554                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1555         }
1556
1557         if (unlikely(!(evmcs->hv_clean_fields &
1558                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1559                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1560                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1561                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1562                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1563                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1564                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1565                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1566                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1567         }
1568
1569         if (unlikely(!(evmcs->hv_clean_fields &
1570                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1571                 vmcs12->host_fs_base = evmcs->host_fs_base;
1572                 vmcs12->host_gs_base = evmcs->host_gs_base;
1573                 vmcs12->host_tr_base = evmcs->host_tr_base;
1574                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1575                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1576                 vmcs12->host_rsp = evmcs->host_rsp;
1577         }
1578
1579         if (unlikely(!(evmcs->hv_clean_fields &
1580                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1581                 vmcs12->ept_pointer = evmcs->ept_pointer;
1582                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1583         }
1584
1585         if (unlikely(!(evmcs->hv_clean_fields &
1586                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1587                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1588                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1589                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1590                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1591                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1592                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1593                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1594                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1595                 vmcs12->guest_pending_dbg_exceptions =
1596                         evmcs->guest_pending_dbg_exceptions;
1597                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1598                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1599                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1600                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1601                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1602         }
1603
1604         /*
1605          * Not used?
1606          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1607          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1608          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1609          * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1610          * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1611          * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1612          * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1613          * vmcs12->page_fault_error_code_mask =
1614          *              evmcs->page_fault_error_code_mask;
1615          * vmcs12->page_fault_error_code_match =
1616          *              evmcs->page_fault_error_code_match;
1617          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1618          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1619          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1620          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1621          */
1622
1623         /*
1624          * Read only fields:
1625          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1626          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1627          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1628          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1629          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1630          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1631          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1632          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1633          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1634          * vmcs12->exit_qualification = evmcs->exit_qualification;
1635          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1636          *
1637          * Not present in struct vmcs12:
1638          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1639          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1640          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1641          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1642          */
1643
1644         return 0;
1645 }
1646
1647 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1648 {
1649         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1650         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1651
1652         /*
1653          * Should not be changed by KVM:
1654          *
1655          * evmcs->host_es_selector = vmcs12->host_es_selector;
1656          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1657          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1658          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1659          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1660          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1661          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1662          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1663          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1664          * evmcs->host_cr0 = vmcs12->host_cr0;
1665          * evmcs->host_cr3 = vmcs12->host_cr3;
1666          * evmcs->host_cr4 = vmcs12->host_cr4;
1667          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1668          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1669          * evmcs->host_rip = vmcs12->host_rip;
1670          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1671          * evmcs->host_fs_base = vmcs12->host_fs_base;
1672          * evmcs->host_gs_base = vmcs12->host_gs_base;
1673          * evmcs->host_tr_base = vmcs12->host_tr_base;
1674          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1675          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1676          * evmcs->host_rsp = vmcs12->host_rsp;
1677          * sync_vmcs02_to_vmcs12() doesn't read these:
1678          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1679          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1680          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1681          * evmcs->ept_pointer = vmcs12->ept_pointer;
1682          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1683          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1684          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1685          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1686          * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1687          * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1688          * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1689          * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1690          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1691          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1692          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1693          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1694          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1695          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1696          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1697          * evmcs->page_fault_error_code_mask =
1698          *              vmcs12->page_fault_error_code_mask;
1699          * evmcs->page_fault_error_code_match =
1700          *              vmcs12->page_fault_error_code_match;
1701          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1702          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1703          * evmcs->tsc_offset = vmcs12->tsc_offset;
1704          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1705          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1706          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1707          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1708          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1709          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1710          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1711          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1712          *
1713          * Not present in struct vmcs12:
1714          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1715          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1716          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1717          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1718          */
1719
1720         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1721         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1722         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1723         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1724         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1725         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1726         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1727         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1728
1729         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1730         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1731         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1732         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1733         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1734         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1735         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1736         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1737         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1738         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1739
1740         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1741         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1742         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1743         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1744         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1745         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1746         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1747         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1748
1749         evmcs->guest_es_base = vmcs12->guest_es_base;
1750         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1751         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1752         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1753         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1754         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1755         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1756         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1757         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1758         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1759
1760         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1761         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1762
1763         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1764         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1765         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1766         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1767
1768         evmcs->guest_pending_dbg_exceptions =
1769                 vmcs12->guest_pending_dbg_exceptions;
1770         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1771         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1772
1773         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1774         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1775
1776         evmcs->guest_cr0 = vmcs12->guest_cr0;
1777         evmcs->guest_cr3 = vmcs12->guest_cr3;
1778         evmcs->guest_cr4 = vmcs12->guest_cr4;
1779         evmcs->guest_dr7 = vmcs12->guest_dr7;
1780
1781         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1782
1783         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1784         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1785         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1786         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1787         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1788         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1789         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1790         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1791
1792         evmcs->exit_qualification = vmcs12->exit_qualification;
1793
1794         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1795         evmcs->guest_rsp = vmcs12->guest_rsp;
1796         evmcs->guest_rflags = vmcs12->guest_rflags;
1797
1798         evmcs->guest_interruptibility_info =
1799                 vmcs12->guest_interruptibility_info;
1800         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1801         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1802         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1803         evmcs->vm_entry_exception_error_code =
1804                 vmcs12->vm_entry_exception_error_code;
1805         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1806
1807         evmcs->guest_rip = vmcs12->guest_rip;
1808
1809         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1810
1811         return 0;
1812 }
1813
1814 /*
1815  * This is an equivalent of the nested hypervisor executing the vmptrld
1816  * instruction.
1817  */
1818 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1819                                                  bool from_launch)
1820 {
1821         struct vcpu_vmx *vmx = to_vmx(vcpu);
1822         bool evmcs_gpa_changed = false;
1823         u64 evmcs_gpa;
1824
1825         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1826                 return 1;
1827
1828         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1829                 return 1;
1830
1831         if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1832                 if (!vmx->nested.hv_evmcs)
1833                         vmx->nested.current_vmptr = -1ull;
1834
1835                 nested_release_evmcs(vcpu);
1836
1837                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1838                                  &vmx->nested.hv_evmcs_map))
1839                         return 0;
1840
1841                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1842
1843                 /*
1844                  * Currently, KVM only supports eVMCS version 1
1845                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1846                  * value to first u32 field of eVMCS which should specify eVMCS
1847                  * VersionNumber.
1848                  *
1849                  * Guest should be aware of supported eVMCS versions by host by
1850                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1851                  * expected to set this CPUID leaf according to the value
1852                  * returned in vmcs_version from nested_enable_evmcs().
1853                  *
1854                  * However, it turns out that Microsoft Hyper-V fails to comply
1855                  * to their own invented interface: When Hyper-V use eVMCS, it
1856                  * just sets first u32 field of eVMCS to revision_id specified
1857                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1858                  * which is one of the supported versions specified in
1859                  * CPUID.0x4000000A.EAX[0:15].
1860                  *
1861                  * To overcome Hyper-V bug, we accept here either a supported
1862                  * eVMCS version or VMCS12 revision_id as valid values for first
1863                  * u32 field of eVMCS.
1864                  */
1865                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1866                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1867                         nested_release_evmcs(vcpu);
1868                         return 0;
1869                 }
1870
1871                 vmx->nested.dirty_vmcs12 = true;
1872                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
1873
1874                 evmcs_gpa_changed = true;
1875                 /*
1876                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
1877                  * reloaded from guest's memory (read only fields, fields not
1878                  * present in struct hv_enlightened_vmcs, ...). Make sure there
1879                  * are no leftovers.
1880                  */
1881                 if (from_launch) {
1882                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1883                         memset(vmcs12, 0, sizeof(*vmcs12));
1884                         vmcs12->hdr.revision_id = VMCS12_REVISION;
1885                 }
1886
1887         }
1888
1889         /*
1890          * Clean fields data can't de used on VMLAUNCH and when we switch
1891          * between different L2 guests as KVM keeps a single VMCS12 per L1.
1892          */
1893         if (from_launch || evmcs_gpa_changed)
1894                 vmx->nested.hv_evmcs->hv_clean_fields &=
1895                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1896
1897         return 1;
1898 }
1899
1900 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
1901 {
1902         struct vcpu_vmx *vmx = to_vmx(vcpu);
1903
1904         /*
1905          * hv_evmcs may end up being not mapped after migration (when
1906          * L2 was running), map it here to make sure vmcs12 changes are
1907          * properly reflected.
1908          */
1909         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
1910                 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
1911
1912         if (vmx->nested.hv_evmcs) {
1913                 copy_vmcs12_to_enlightened(vmx);
1914                 /* All fields are clean */
1915                 vmx->nested.hv_evmcs->hv_clean_fields |=
1916                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1917         } else {
1918                 copy_vmcs12_to_shadow(vmx);
1919         }
1920
1921         vmx->nested.need_vmcs12_to_shadow_sync = false;
1922 }
1923
1924 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
1925 {
1926         struct vcpu_vmx *vmx =
1927                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
1928
1929         vmx->nested.preemption_timer_expired = true;
1930         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
1931         kvm_vcpu_kick(&vmx->vcpu);
1932
1933         return HRTIMER_NORESTART;
1934 }
1935
1936 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
1937 {
1938         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
1939         struct vcpu_vmx *vmx = to_vmx(vcpu);
1940
1941         /*
1942          * A timer value of zero is architecturally guaranteed to cause
1943          * a VMExit prior to executing any instructions in the guest.
1944          */
1945         if (preemption_timeout == 0) {
1946                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
1947                 return;
1948         }
1949
1950         if (vcpu->arch.virtual_tsc_khz == 0)
1951                 return;
1952
1953         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
1954         preemption_timeout *= 1000000;
1955         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
1956         hrtimer_start(&vmx->nested.preemption_timer,
1957                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
1958 }
1959
1960 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1961 {
1962         if (vmx->nested.nested_run_pending &&
1963             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
1964                 return vmcs12->guest_ia32_efer;
1965         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
1966                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
1967         else
1968                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
1969 }
1970
1971 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
1972 {
1973         /*
1974          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
1975          * according to L0's settings (vmcs12 is irrelevant here).  Host
1976          * fields that come from L0 and are not constant, e.g. HOST_CR3,
1977          * will be set as needed prior to VMLAUNCH/VMRESUME.
1978          */
1979         if (vmx->nested.vmcs02_initialized)
1980                 return;
1981         vmx->nested.vmcs02_initialized = true;
1982
1983         /*
1984          * We don't care what the EPTP value is we just need to guarantee
1985          * it's valid so we don't get a false positive when doing early
1986          * consistency checks.
1987          */
1988         if (enable_ept && nested_early_check)
1989                 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
1990
1991         /* All VMFUNCs are currently emulated through L0 vmexits.  */
1992         if (cpu_has_vmx_vmfunc())
1993                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
1994
1995         if (cpu_has_vmx_posted_intr())
1996                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
1997
1998         if (cpu_has_vmx_msr_bitmap())
1999                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2000
2001         /*
2002          * The PML address never changes, so it is constant in vmcs02.
2003          * Conceptually we want to copy the PML index from vmcs01 here,
2004          * and then back to vmcs01 on nested vmexit.  But since we flush
2005          * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2006          * index is also effectively constant in vmcs02.
2007          */
2008         if (enable_pml) {
2009                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2010                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2011         }
2012
2013         if (cpu_has_vmx_encls_vmexit())
2014                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2015
2016         /*
2017          * Set the MSR load/store lists to match L0's settings.  Only the
2018          * addresses are constant (for vmcs02), the counts can change based
2019          * on L2's behavior, e.g. switching to/from long mode.
2020          */
2021         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2022         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2023         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2024
2025         vmx_set_constant_host_state(vmx);
2026 }
2027
2028 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2029                                       struct vmcs12 *vmcs12)
2030 {
2031         prepare_vmcs02_constant_state(vmx);
2032
2033         vmcs_write64(VMCS_LINK_POINTER, -1ull);
2034
2035         if (enable_vpid) {
2036                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2037                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2038                 else
2039                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2040         }
2041 }
2042
2043 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2044 {
2045         u32 exec_control, vmcs12_exec_ctrl;
2046         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2047
2048         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2049                 prepare_vmcs02_early_rare(vmx, vmcs12);
2050
2051         /*
2052          * PIN CONTROLS
2053          */
2054         exec_control = vmx_pin_based_exec_ctrl(vmx);
2055         exec_control |= (vmcs12->pin_based_vm_exec_control &
2056                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2057
2058         /* Posted interrupts setting is only taken from vmcs12.  */
2059         if (nested_cpu_has_posted_intr(vmcs12)) {
2060                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2061                 vmx->nested.pi_pending = false;
2062         } else {
2063                 exec_control &= ~PIN_BASED_POSTED_INTR;
2064         }
2065         pin_controls_set(vmx, exec_control);
2066
2067         /*
2068          * EXEC CONTROLS
2069          */
2070         exec_control = vmx_exec_control(vmx); /* L0's desires */
2071         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2072         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2073         exec_control &= ~CPU_BASED_TPR_SHADOW;
2074         exec_control |= vmcs12->cpu_based_vm_exec_control;
2075
2076         if (exec_control & CPU_BASED_TPR_SHADOW)
2077                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2078 #ifdef CONFIG_X86_64
2079         else
2080                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2081                                 CPU_BASED_CR8_STORE_EXITING;
2082 #endif
2083
2084         /*
2085          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2086          * for I/O port accesses.
2087          */
2088         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2089         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2090
2091         /*
2092          * This bit will be computed in nested_get_vmcs12_pages, because
2093          * we do not have access to L1's MSR bitmap yet.  For now, keep
2094          * the same bit as before, hoping to avoid multiple VMWRITEs that
2095          * only set/clear this bit.
2096          */
2097         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2098         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2099
2100         exec_controls_set(vmx, exec_control);
2101
2102         /*
2103          * SECONDARY EXEC CONTROLS
2104          */
2105         if (cpu_has_secondary_exec_ctrls()) {
2106                 exec_control = vmx->secondary_exec_control;
2107
2108                 /* Take the following fields only from vmcs12 */
2109                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2110                                   SECONDARY_EXEC_ENABLE_INVPCID |
2111                                   SECONDARY_EXEC_RDTSCP |
2112                                   SECONDARY_EXEC_XSAVES |
2113                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2114                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2115                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2116                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2117                 if (nested_cpu_has(vmcs12,
2118                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2119                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2120                                 ~SECONDARY_EXEC_ENABLE_PML;
2121                         exec_control |= vmcs12_exec_ctrl;
2122                 }
2123
2124                 /* VMCS shadowing for L2 is emulated for now */
2125                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2126
2127                 /*
2128                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2129                  * will not have to rewrite the controls just for this bit.
2130                  */
2131                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2132                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2133                         exec_control |= SECONDARY_EXEC_DESC;
2134
2135                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2136                         vmcs_write16(GUEST_INTR_STATUS,
2137                                 vmcs12->guest_intr_status);
2138
2139                 secondary_exec_controls_set(vmx, exec_control);
2140         }
2141
2142         /*
2143          * ENTRY CONTROLS
2144          *
2145          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2146          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2147          * on the related bits (if supported by the CPU) in the hope that
2148          * we can avoid VMWrites during vmx_set_efer().
2149          */
2150         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2151                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2152         if (cpu_has_load_ia32_efer()) {
2153                 if (guest_efer & EFER_LMA)
2154                         exec_control |= VM_ENTRY_IA32E_MODE;
2155                 if (guest_efer != host_efer)
2156                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2157         }
2158         vm_entry_controls_set(vmx, exec_control);
2159
2160         /*
2161          * EXIT CONTROLS
2162          *
2163          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2164          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2165          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2166          */
2167         exec_control = vmx_vmexit_ctrl();
2168         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2169                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2170         vm_exit_controls_set(vmx, exec_control);
2171
2172         /*
2173          * Interrupt/Exception Fields
2174          */
2175         if (vmx->nested.nested_run_pending) {
2176                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2177                              vmcs12->vm_entry_intr_info_field);
2178                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2179                              vmcs12->vm_entry_exception_error_code);
2180                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2181                              vmcs12->vm_entry_instruction_len);
2182                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2183                              vmcs12->guest_interruptibility_info);
2184                 vmx->loaded_vmcs->nmi_known_unmasked =
2185                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2186         } else {
2187                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2188         }
2189 }
2190
2191 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2192 {
2193         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2194
2195         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2196                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2197                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2198                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2199                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2200                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2201                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2202                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2203                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2204                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2205                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2206                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2207                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2208                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2209                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2210                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2211                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2212                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2213                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2214                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2215                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2216                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2217                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2218                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2219                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2220                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2221                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2222                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2223                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2224                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2225                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2226                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2227                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2228                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2229                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2230                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2231                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2232                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2233         }
2234
2235         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2236                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2237                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2238                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2239                             vmcs12->guest_pending_dbg_exceptions);
2240                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2241                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2242
2243                 /*
2244                  * L1 may access the L2's PDPTR, so save them to construct
2245                  * vmcs12
2246                  */
2247                 if (enable_ept) {
2248                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2249                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2250                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2251                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2252                 }
2253
2254                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2255                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2256                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2257         }
2258
2259         if (nested_cpu_has_xsaves(vmcs12))
2260                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2261
2262         /*
2263          * Whether page-faults are trapped is determined by a combination of
2264          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2265          * If enable_ept, L0 doesn't care about page faults and we should
2266          * set all of these to L1's desires. However, if !enable_ept, L0 does
2267          * care about (at least some) page faults, and because it is not easy
2268          * (if at all possible?) to merge L0 and L1's desires, we simply ask
2269          * to exit on each and every L2 page fault. This is done by setting
2270          * MASK=MATCH=0 and (see below) EB.PF=1.
2271          * Note that below we don't need special code to set EB.PF beyond the
2272          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2273          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2274          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2275          */
2276         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2277                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2278         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2279                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2280
2281         if (cpu_has_vmx_apicv()) {
2282                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2283                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2284                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2285                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2286         }
2287
2288         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2289         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2290
2291         set_cr4_guest_host_mask(vmx);
2292 }
2293
2294 /*
2295  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2296  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2297  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2298  * guest in a way that will both be appropriate to L1's requests, and our
2299  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2300  * function also has additional necessary side-effects, like setting various
2301  * vcpu->arch fields.
2302  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2303  * is assigned to entry_failure_code on failure.
2304  */
2305 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2306                           u32 *entry_failure_code)
2307 {
2308         struct vcpu_vmx *vmx = to_vmx(vcpu);
2309         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2310         bool load_guest_pdptrs_vmcs12 = false;
2311
2312         if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2313                 prepare_vmcs02_rare(vmx, vmcs12);
2314                 vmx->nested.dirty_vmcs12 = false;
2315
2316                 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2317                         !(hv_evmcs->hv_clean_fields &
2318                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2319         }
2320
2321         if (vmx->nested.nested_run_pending &&
2322             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2323                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2324                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2325         } else {
2326                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2327                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2328         }
2329         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2330             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2331                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2332         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2333
2334         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2335          * bitwise-or of what L1 wants to trap for L2, and what we want to
2336          * trap. Note that CR0.TS also needs updating - we do this later.
2337          */
2338         update_exception_bitmap(vcpu);
2339         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2340         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2341
2342         if (vmx->nested.nested_run_pending &&
2343             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2344                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2345                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2346         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2347                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2348         }
2349
2350         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2351
2352         if (kvm_has_tsc_control)
2353                 decache_tsc_multiplier(vmx);
2354
2355         if (enable_vpid) {
2356                 /*
2357                  * There is no direct mapping between vpid02 and vpid12, the
2358                  * vpid02 is per-vCPU for L0 and reused while the value of
2359                  * vpid12 is changed w/ one invvpid during nested vmentry.
2360                  * The vpid12 is allocated by L1 for L2, so it will not
2361                  * influence global bitmap(for vpid01 and vpid02 allocation)
2362                  * even if spawn a lot of nested vCPUs.
2363                  */
2364                 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2365                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2366                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2367                                 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2368                         }
2369                 } else {
2370                         /*
2371                          * If L1 use EPT, then L0 needs to execute INVEPT on
2372                          * EPTP02 instead of EPTP01. Therefore, delay TLB
2373                          * flush until vmcs02->eptp is fully updated by
2374                          * KVM_REQ_LOAD_CR3. Note that this assumes
2375                          * KVM_REQ_TLB_FLUSH is evaluated after
2376                          * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2377                          */
2378                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2379                 }
2380         }
2381
2382         if (nested_cpu_has_ept(vmcs12))
2383                 nested_ept_init_mmu_context(vcpu);
2384         else if (nested_cpu_has2(vmcs12,
2385                                  SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2386                 vmx_flush_tlb(vcpu, true);
2387
2388         /*
2389          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2390          * bits which we consider mandatory enabled.
2391          * The CR0_READ_SHADOW is what L2 should have expected to read given
2392          * the specifications by L1; It's not enough to take
2393          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2394          * have more bits than L1 expected.
2395          */
2396         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2397         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2398
2399         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2400         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2401
2402         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2403         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2404         vmx_set_efer(vcpu, vcpu->arch.efer);
2405
2406         /*
2407          * Guest state is invalid and unrestricted guest is disabled,
2408          * which means L1 attempted VMEntry to L2 with invalid state.
2409          * Fail the VMEntry.
2410          */
2411         if (vmx->emulation_required) {
2412                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2413                 return -EINVAL;
2414         }
2415
2416         /* Shadow page tables on either EPT or shadow page tables. */
2417         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2418                                 entry_failure_code))
2419                 return -EINVAL;
2420
2421         /*
2422          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2423          * on nested VM-Exit, which can occur without actually running L2 and
2424          * thus without hitting vmx_set_cr3(), e.g. if L1 is entering L2 with
2425          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2426          * transition to HLT instead of running L2.
2427          */
2428         if (enable_ept)
2429                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2430
2431         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2432         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2433             is_pae_paging(vcpu)) {
2434                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2435                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2436                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2437                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2438         }
2439
2440         if (!enable_ept)
2441                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2442
2443         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2444         kvm_rip_write(vcpu, vmcs12->guest_rip);
2445         return 0;
2446 }
2447
2448 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2449 {
2450         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2451                nested_cpu_has_virtual_nmis(vmcs12)))
2452                 return -EINVAL;
2453
2454         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2455                nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING)))
2456                 return -EINVAL;
2457
2458         return 0;
2459 }
2460
2461 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2462 {
2463         struct vcpu_vmx *vmx = to_vmx(vcpu);
2464         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2465
2466         /* Check for memory type validity */
2467         switch (address & VMX_EPTP_MT_MASK) {
2468         case VMX_EPTP_MT_UC:
2469                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2470                         return false;
2471                 break;
2472         case VMX_EPTP_MT_WB:
2473                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2474                         return false;
2475                 break;
2476         default:
2477                 return false;
2478         }
2479
2480         /* only 4 levels page-walk length are valid */
2481         if (CC((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4))
2482                 return false;
2483
2484         /* Reserved bits should not be set */
2485         if (CC(address >> maxphyaddr || ((address >> 7) & 0x1f)))
2486                 return false;
2487
2488         /* AD, if set, should be supported */
2489         if (address & VMX_EPTP_AD_ENABLE_BIT) {
2490                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2491                         return false;
2492         }
2493
2494         return true;
2495 }
2496
2497 /*
2498  * Checks related to VM-Execution Control Fields
2499  */
2500 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2501                                               struct vmcs12 *vmcs12)
2502 {
2503         struct vcpu_vmx *vmx = to_vmx(vcpu);
2504
2505         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2506                                    vmx->nested.msrs.pinbased_ctls_low,
2507                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2508             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2509                                    vmx->nested.msrs.procbased_ctls_low,
2510                                    vmx->nested.msrs.procbased_ctls_high)))
2511                 return -EINVAL;
2512
2513         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2514             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2515                                    vmx->nested.msrs.secondary_ctls_low,
2516                                    vmx->nested.msrs.secondary_ctls_high)))
2517                 return -EINVAL;
2518
2519         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2520             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2521             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2522             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2523             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2524             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2525             nested_vmx_check_nmi_controls(vmcs12) ||
2526             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2527             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2528             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2529             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2530             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2531                 return -EINVAL;
2532
2533         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2534             nested_cpu_has_save_preemption_timer(vmcs12))
2535                 return -EINVAL;
2536
2537         if (nested_cpu_has_ept(vmcs12) &&
2538             CC(!valid_ept_address(vcpu, vmcs12->ept_pointer)))
2539                 return -EINVAL;
2540
2541         if (nested_cpu_has_vmfunc(vmcs12)) {
2542                 if (CC(vmcs12->vm_function_control &
2543                        ~vmx->nested.msrs.vmfunc_controls))
2544                         return -EINVAL;
2545
2546                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2547                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2548                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2549                                 return -EINVAL;
2550                 }
2551         }
2552
2553         return 0;
2554 }
2555
2556 /*
2557  * Checks related to VM-Exit Control Fields
2558  */
2559 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2560                                          struct vmcs12 *vmcs12)
2561 {
2562         struct vcpu_vmx *vmx = to_vmx(vcpu);
2563
2564         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2565                                     vmx->nested.msrs.exit_ctls_low,
2566                                     vmx->nested.msrs.exit_ctls_high)) ||
2567             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2568                 return -EINVAL;
2569
2570         return 0;
2571 }
2572
2573 /*
2574  * Checks related to VM-Entry Control Fields
2575  */
2576 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2577                                           struct vmcs12 *vmcs12)
2578 {
2579         struct vcpu_vmx *vmx = to_vmx(vcpu);
2580
2581         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2582                                     vmx->nested.msrs.entry_ctls_low,
2583                                     vmx->nested.msrs.entry_ctls_high)))
2584                 return -EINVAL;
2585
2586         /*
2587          * From the Intel SDM, volume 3:
2588          * Fields relevant to VM-entry event injection must be set properly.
2589          * These fields are the VM-entry interruption-information field, the
2590          * VM-entry exception error code, and the VM-entry instruction length.
2591          */
2592         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2593                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2594                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2595                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2596                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2597                 bool should_have_error_code;
2598                 bool urg = nested_cpu_has2(vmcs12,
2599                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2600                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2601
2602                 /* VM-entry interruption-info field: interruption type */
2603                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2604                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2605                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2606                         return -EINVAL;
2607
2608                 /* VM-entry interruption-info field: vector */
2609                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2610                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2611                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2612                         return -EINVAL;
2613
2614                 /* VM-entry interruption-info field: deliver error code */
2615                 should_have_error_code =
2616                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2617                         x86_exception_has_error_code(vector);
2618                 if (CC(has_error_code != should_have_error_code))
2619                         return -EINVAL;
2620
2621                 /* VM-entry exception error code */
2622                 if (CC(has_error_code &&
2623                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2624                         return -EINVAL;
2625
2626                 /* VM-entry interruption-info field: reserved bits */
2627                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2628                         return -EINVAL;
2629
2630                 /* VM-entry instruction length */
2631                 switch (intr_type) {
2632                 case INTR_TYPE_SOFT_EXCEPTION:
2633                 case INTR_TYPE_SOFT_INTR:
2634                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2635                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2636                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2637                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2638                                 return -EINVAL;
2639                 }
2640         }
2641
2642         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2643                 return -EINVAL;
2644
2645         return 0;
2646 }
2647
2648 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2649                                      struct vmcs12 *vmcs12)
2650 {
2651         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2652             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2653             nested_check_vm_entry_controls(vcpu, vmcs12))
2654                 return -EINVAL;
2655
2656         return 0;
2657 }
2658
2659 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2660                                        struct vmcs12 *vmcs12)
2661 {
2662         bool ia32e;
2663
2664         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2665             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2666             CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2667                 return -EINVAL;
2668
2669         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2670             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2671                 return -EINVAL;
2672
2673         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2674             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2675                 return -EINVAL;
2676
2677 #ifdef CONFIG_X86_64
2678         ia32e = !!(vcpu->arch.efer & EFER_LMA);
2679 #else
2680         ia32e = false;
2681 #endif
2682
2683         if (ia32e) {
2684                 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2685                     CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2686                         return -EINVAL;
2687         } else {
2688                 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2689                     CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2690                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2691                     CC((vmcs12->host_rip) >> 32))
2692                         return -EINVAL;
2693         }
2694
2695         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2696             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2697             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2698             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2699             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2700             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2701             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2702             CC(vmcs12->host_cs_selector == 0) ||
2703             CC(vmcs12->host_tr_selector == 0) ||
2704             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2705                 return -EINVAL;
2706
2707 #ifdef CONFIG_X86_64
2708         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2709             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2710             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2711             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2712             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2713             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2714                 return -EINVAL;
2715 #endif
2716
2717         /*
2718          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2719          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2720          * the values of the LMA and LME bits in the field must each be that of
2721          * the host address-space size VM-exit control.
2722          */
2723         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2724                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2725                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2726                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2727                         return -EINVAL;
2728         }
2729
2730         return 0;
2731 }
2732
2733 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2734                                           struct vmcs12 *vmcs12)
2735 {
2736         int r = 0;
2737         struct vmcs12 *shadow;
2738         struct kvm_host_map map;
2739
2740         if (vmcs12->vmcs_link_pointer == -1ull)
2741                 return 0;
2742
2743         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2744                 return -EINVAL;
2745
2746         if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2747                 return -EINVAL;
2748
2749         shadow = map.hva;
2750
2751         if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2752             CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2753                 r = -EINVAL;
2754
2755         kvm_vcpu_unmap(vcpu, &map, false);
2756         return r;
2757 }
2758
2759 /*
2760  * Checks related to Guest Non-register State
2761  */
2762 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2763 {
2764         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2765                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2766                 return -EINVAL;
2767
2768         return 0;
2769 }
2770
2771 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2772                                         struct vmcs12 *vmcs12,
2773                                         u32 *exit_qual)
2774 {
2775         bool ia32e;
2776
2777         *exit_qual = ENTRY_FAIL_DEFAULT;
2778
2779         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2780             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2781                 return -EINVAL;
2782
2783         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2784             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2785                 return -EINVAL;
2786
2787         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2788                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2789                 return -EINVAL;
2790         }
2791
2792         /*
2793          * If the load IA32_EFER VM-entry control is 1, the following checks
2794          * are performed on the field for the IA32_EFER MSR:
2795          * - Bits reserved in the IA32_EFER MSR must be 0.
2796          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2797          *   the IA-32e mode guest VM-exit control. It must also be identical
2798          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2799          *   CR0.PG) is 1.
2800          */
2801         if (to_vmx(vcpu)->nested.nested_run_pending &&
2802             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2803                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2804                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2805                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2806                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
2807                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
2808                         return -EINVAL;
2809         }
2810
2811         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2812             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
2813              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
2814                 return -EINVAL;
2815
2816         if (nested_check_guest_non_reg_state(vmcs12))
2817                 return -EINVAL;
2818
2819         return 0;
2820 }
2821
2822 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2823 {
2824         struct vcpu_vmx *vmx = to_vmx(vcpu);
2825         unsigned long cr3, cr4;
2826         bool vm_fail;
2827
2828         if (!nested_early_check)
2829                 return 0;
2830
2831         if (vmx->msr_autoload.host.nr)
2832                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2833         if (vmx->msr_autoload.guest.nr)
2834                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2835
2836         preempt_disable();
2837
2838         vmx_prepare_switch_to_guest(vcpu);
2839
2840         /*
2841          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2842          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2843          * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2844          * there is no need to preserve other bits or save/restore the field.
2845          */
2846         vmcs_writel(GUEST_RFLAGS, 0);
2847
2848         cr3 = __get_current_cr3_fast();
2849         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2850                 vmcs_writel(HOST_CR3, cr3);
2851                 vmx->loaded_vmcs->host_state.cr3 = cr3;
2852         }
2853
2854         cr4 = cr4_read_shadow();
2855         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2856                 vmcs_writel(HOST_CR4, cr4);
2857                 vmx->loaded_vmcs->host_state.cr4 = cr4;
2858         }
2859
2860         asm(
2861                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2862                 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2863                 "je 1f \n\t"
2864                 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
2865                 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2866                 "1: \n\t"
2867                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2868
2869                 /* Check if vmlaunch or vmresume is needed */
2870                 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
2871
2872                 /*
2873                  * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
2874                  * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
2875                  * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
2876                  * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
2877                  */
2878                 "call vmx_vmenter\n\t"
2879
2880                 CC_SET(be)
2881               : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
2882               : [HOST_RSP]"r"((unsigned long)HOST_RSP),
2883                 [loaded_vmcs]"r"(vmx->loaded_vmcs),
2884                 [launched]"i"(offsetof(struct loaded_vmcs, launched)),
2885                 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
2886                 [wordsize]"i"(sizeof(ulong))
2887               : "memory"
2888         );
2889
2890         if (vmx->msr_autoload.host.nr)
2891                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2892         if (vmx->msr_autoload.guest.nr)
2893                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2894
2895         if (vm_fail) {
2896                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
2897
2898                 preempt_enable();
2899
2900                 trace_kvm_nested_vmenter_failed(
2901                         "early hardware check VM-instruction error: ", error);
2902                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
2903                 return 1;
2904         }
2905
2906         /*
2907          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
2908          */
2909         local_irq_enable();
2910         if (hw_breakpoint_active())
2911                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
2912         preempt_enable();
2913
2914         /*
2915          * A non-failing VMEntry means we somehow entered guest mode with
2916          * an illegal RIP, and that's just the tip of the iceberg.  There
2917          * is no telling what memory has been modified or what state has
2918          * been exposed to unknown code.  Hitting this all but guarantees
2919          * a (very critical) hardware issue.
2920          */
2921         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
2922                 VMX_EXIT_REASONS_FAILED_VMENTRY));
2923
2924         return 0;
2925 }
2926
2927 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
2928                                                  struct vmcs12 *vmcs12);
2929
2930 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
2931 {
2932         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2933         struct vcpu_vmx *vmx = to_vmx(vcpu);
2934         struct kvm_host_map *map;
2935         struct page *page;
2936         u64 hpa;
2937
2938         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2939                 /*
2940                  * Translate L1 physical address to host physical
2941                  * address for vmcs02. Keep the page pinned, so this
2942                  * physical address remains valid. We keep a reference
2943                  * to it so we can release it later.
2944                  */
2945                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
2946                         kvm_release_page_dirty(vmx->nested.apic_access_page);
2947                         vmx->nested.apic_access_page = NULL;
2948                 }
2949                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
2950                 /*
2951                  * If translation failed, no matter: This feature asks
2952                  * to exit when accessing the given address, and if it
2953                  * can never be accessed, this feature won't do
2954                  * anything anyway.
2955                  */
2956                 if (!is_error_page(page)) {
2957                         vmx->nested.apic_access_page = page;
2958                         hpa = page_to_phys(vmx->nested.apic_access_page);
2959                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
2960                 } else {
2961                         secondary_exec_controls_clearbit(vmx,
2962                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
2963                 }
2964         }
2965
2966         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
2967                 map = &vmx->nested.virtual_apic_map;
2968
2969                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
2970                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
2971                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
2972                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
2973                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2974                         /*
2975                          * The processor will never use the TPR shadow, simply
2976                          * clear the bit from the execution control.  Such a
2977                          * configuration is useless, but it happens in tests.
2978                          * For any other configuration, failing the vm entry is
2979                          * _not_ what the processor does but it's basically the
2980                          * only possibility we have.
2981                          */
2982                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
2983                 } else {
2984                         /*
2985                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
2986                          * force VM-Entry to fail.
2987                          */
2988                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
2989                 }
2990         }
2991
2992         if (nested_cpu_has_posted_intr(vmcs12)) {
2993                 map = &vmx->nested.pi_desc_map;
2994
2995                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
2996                         vmx->nested.pi_desc =
2997                                 (struct pi_desc *)(((void *)map->hva) +
2998                                 offset_in_page(vmcs12->posted_intr_desc_addr));
2999                         vmcs_write64(POSTED_INTR_DESC_ADDR,
3000                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3001                 }
3002         }
3003         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3004                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3005         else
3006                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3007 }
3008
3009 /*
3010  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3011  * for running VMX instructions (except VMXON, whose prerequisites are
3012  * slightly different). It also specifies what exception to inject otherwise.
3013  * Note that many of these exceptions have priority over VM exits, so they
3014  * don't have to be checked again here.
3015  */
3016 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3017 {
3018         if (!to_vmx(vcpu)->nested.vmxon) {
3019                 kvm_queue_exception(vcpu, UD_VECTOR);
3020                 return 0;
3021         }
3022
3023         if (vmx_get_cpl(vcpu)) {
3024                 kvm_inject_gp(vcpu, 0);
3025                 return 0;
3026         }
3027
3028         return 1;
3029 }
3030
3031 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3032 {
3033         u8 rvi = vmx_get_rvi();
3034         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3035
3036         return ((rvi & 0xf0) > (vppr & 0xf0));
3037 }
3038
3039 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3040                                    struct vmcs12 *vmcs12);
3041
3042 /*
3043  * If from_vmentry is false, this is being called from state restore (either RSM
3044  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3045 + *
3046 + * Returns:
3047 + *   0 - success, i.e. proceed with actual VMEnter
3048 + *   1 - consistency check VMExit
3049 + *  -1 - consistency check VMFail
3050  */
3051 int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
3052 {
3053         struct vcpu_vmx *vmx = to_vmx(vcpu);
3054         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3055         bool evaluate_pending_interrupts;
3056         u32 exit_reason = EXIT_REASON_INVALID_STATE;
3057         u32 exit_qual;
3058
3059         evaluate_pending_interrupts = exec_controls_get(vmx) &
3060                 (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
3061         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3062                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3063
3064         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3065                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3066         if (kvm_mpx_supported() &&
3067                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3068                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3069
3070         /*
3071          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3072          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3073          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3074          * software model to the pre-VMEntry host state.  When EPT is disabled,
3075          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3076          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3077          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3078          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3079          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3080          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3081          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3082          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3083          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3084          * path would need to manually save/restore vmcs01.GUEST_CR3.
3085          */
3086         if (!enable_ept && !nested_early_check)
3087                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3088
3089         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3090
3091         prepare_vmcs02_early(vmx, vmcs12);
3092
3093         if (from_vmentry) {
3094                 nested_get_vmcs12_pages(vcpu);
3095
3096                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3097                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3098                         return -1;
3099                 }
3100
3101                 if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
3102                         goto vmentry_fail_vmexit;
3103         }
3104
3105         enter_guest_mode(vcpu);
3106         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3107                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3108
3109         if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
3110                 goto vmentry_fail_vmexit_guest_mode;
3111
3112         if (from_vmentry) {
3113                 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3114                 exit_qual = nested_vmx_load_msr(vcpu,
3115                                                 vmcs12->vm_entry_msr_load_addr,
3116                                                 vmcs12->vm_entry_msr_load_count);
3117                 if (exit_qual)
3118                         goto vmentry_fail_vmexit_guest_mode;
3119         } else {
3120                 /*
3121                  * The MMU is not initialized to point at the right entities yet and
3122                  * "get pages" would need to read data from the guest (i.e. we will
3123                  * need to perform gpa to hpa translation). Request a call
3124                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3125                  * have already been set at vmentry time and should not be reset.
3126                  */
3127                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3128         }
3129
3130         /*
3131          * If L1 had a pending IRQ/NMI until it executed
3132          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3133          * disallowed (e.g. interrupts disabled), L0 needs to
3134          * evaluate if this pending event should cause an exit from L2
3135          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3136          * intercept EXTERNAL_INTERRUPT).
3137          *
3138          * Usually this would be handled by the processor noticing an
3139          * IRQ/NMI window request, or checking RVI during evaluation of
3140          * pending virtual interrupts.  However, this setting was done
3141          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3142          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3143          */
3144         if (unlikely(evaluate_pending_interrupts))
3145                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3146
3147         /*
3148          * Do not start the preemption timer hrtimer until after we know
3149          * we are successful, so that only nested_vmx_vmexit needs to cancel
3150          * the timer.
3151          */
3152         vmx->nested.preemption_timer_expired = false;
3153         if (nested_cpu_has_preemption_timer(vmcs12))
3154                 vmx_start_preemption_timer(vcpu);
3155
3156         /*
3157          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3158          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3159          * returned as far as L1 is concerned. It will only return (and set
3160          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3161          */
3162         return 0;
3163
3164         /*
3165          * A failed consistency check that leads to a VMExit during L1's
3166          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3167          * 26.7 "VM-entry failures during or after loading guest state".
3168          */
3169 vmentry_fail_vmexit_guest_mode:
3170         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3171                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3172         leave_guest_mode(vcpu);
3173
3174 vmentry_fail_vmexit:
3175         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3176
3177         if (!from_vmentry)
3178                 return 1;
3179
3180         load_vmcs12_host_state(vcpu, vmcs12);
3181         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3182         vmcs12->exit_qualification = exit_qual;
3183         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3184                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3185         return 1;
3186 }
3187
3188 /*
3189  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3190  * for running an L2 nested guest.
3191  */
3192 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3193 {
3194         struct vmcs12 *vmcs12;
3195         struct vcpu_vmx *vmx = to_vmx(vcpu);
3196         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3197         int ret;
3198
3199         if (!nested_vmx_check_permission(vcpu))
3200                 return 1;
3201
3202         if (!nested_vmx_handle_enlightened_vmptrld(vcpu, launch))
3203                 return 1;
3204
3205         if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3206                 return nested_vmx_failInvalid(vcpu);
3207
3208         vmcs12 = get_vmcs12(vcpu);
3209
3210         /*
3211          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3212          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3213          * rather than RFLAGS.ZF, and no error number is stored to the
3214          * VM-instruction error field.
3215          */
3216         if (vmcs12->hdr.shadow_vmcs)
3217                 return nested_vmx_failInvalid(vcpu);
3218
3219         if (vmx->nested.hv_evmcs) {
3220                 copy_enlightened_to_vmcs12(vmx);
3221                 /* Enlightened VMCS doesn't have launch state */
3222                 vmcs12->launch_state = !launch;
3223         } else if (enable_shadow_vmcs) {
3224                 copy_shadow_to_vmcs12(vmx);
3225         }
3226
3227         /*
3228          * The nested entry process starts with enforcing various prerequisites
3229          * on vmcs12 as required by the Intel SDM, and act appropriately when
3230          * they fail: As the SDM explains, some conditions should cause the
3231          * instruction to fail, while others will cause the instruction to seem
3232          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3233          * To speed up the normal (success) code path, we should avoid checking
3234          * for misconfigurations which will anyway be caught by the processor
3235          * when using the merged vmcs02.
3236          */
3237         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3238                 return nested_vmx_failValid(vcpu,
3239                         VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3240
3241         if (vmcs12->launch_state == launch)
3242                 return nested_vmx_failValid(vcpu,
3243                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3244                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3245
3246         if (nested_vmx_check_controls(vcpu, vmcs12))
3247                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3248
3249         if (nested_vmx_check_host_state(vcpu, vmcs12))
3250                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3251
3252         /*
3253          * We're finally done with prerequisite checking, and can start with
3254          * the nested entry.
3255          */
3256         vmx->nested.nested_run_pending = 1;
3257         ret = nested_vmx_enter_non_root_mode(vcpu, true);
3258         vmx->nested.nested_run_pending = !ret;
3259         if (ret > 0)
3260                 return 1;
3261         else if (ret)
3262                 return nested_vmx_failValid(vcpu,
3263                         VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3264
3265         /* Hide L1D cache contents from the nested guest.  */
3266         vmx->vcpu.arch.l1tf_flush_l1d = true;
3267
3268         /*
3269          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3270          * also be used as part of restoring nVMX state for
3271          * snapshot restore (migration).
3272          *
3273          * In this flow, it is assumed that vmcs12 cache was
3274          * trasferred as part of captured nVMX state and should
3275          * therefore not be read from guest memory (which may not
3276          * exist on destination host yet).
3277          */
3278         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3279
3280         /*
3281          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3282          * awakened by event injection or by an NMI-window VM-exit or
3283          * by an interrupt-window VM-exit, halt the vcpu.
3284          */
3285         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3286             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3287             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
3288             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
3289               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3290                 vmx->nested.nested_run_pending = 0;
3291                 return kvm_vcpu_halt(vcpu);
3292         }
3293         return 1;
3294 }
3295
3296 /*
3297  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3298  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3299  * This function returns the new value we should put in vmcs12.guest_cr0.
3300  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3301  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3302  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3303  *     didn't trap the bit, because if L1 did, so would L0).
3304  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3305  *     been modified by L2, and L1 knows it. So just leave the old value of
3306  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3307  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3308  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3309  *     changed these bits, and therefore they need to be updated, but L0
3310  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3311  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3312  */
3313 static inline unsigned long
3314 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3315 {
3316         return
3317         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3318         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3319         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3320                         vcpu->arch.cr0_guest_owned_bits));
3321 }
3322
3323 static inline unsigned long
3324 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3325 {
3326         return
3327         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3328         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3329         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3330                         vcpu->arch.cr4_guest_owned_bits));
3331 }
3332
3333 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3334                                       struct vmcs12 *vmcs12)
3335 {
3336         u32 idt_vectoring;
3337         unsigned int nr;
3338
3339         if (vcpu->arch.exception.injected) {
3340                 nr = vcpu->arch.exception.nr;
3341                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3342
3343                 if (kvm_exception_is_soft(nr)) {
3344                         vmcs12->vm_exit_instruction_len =
3345                                 vcpu->arch.event_exit_inst_len;
3346                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3347                 } else
3348                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3349
3350                 if (vcpu->arch.exception.has_error_code) {
3351                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3352                         vmcs12->idt_vectoring_error_code =
3353                                 vcpu->arch.exception.error_code;
3354                 }
3355
3356                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3357         } else if (vcpu->arch.nmi_injected) {
3358                 vmcs12->idt_vectoring_info_field =
3359                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3360         } else if (vcpu->arch.interrupt.injected) {
3361                 nr = vcpu->arch.interrupt.nr;
3362                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3363
3364                 if (vcpu->arch.interrupt.soft) {
3365                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3366                         vmcs12->vm_entry_instruction_len =
3367                                 vcpu->arch.event_exit_inst_len;
3368                 } else
3369                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3370
3371                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3372         }
3373 }
3374
3375
3376 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3377 {
3378         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3379         gfn_t gfn;
3380
3381         /*
3382          * Don't need to mark the APIC access page dirty; it is never
3383          * written to by the CPU during APIC virtualization.
3384          */
3385
3386         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3387                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3388                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3389         }
3390
3391         if (nested_cpu_has_posted_intr(vmcs12)) {
3392                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3393                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3394         }
3395 }
3396
3397 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3398 {
3399         struct vcpu_vmx *vmx = to_vmx(vcpu);
3400         int max_irr;
3401         void *vapic_page;
3402         u16 status;
3403
3404         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3405                 return;
3406
3407         vmx->nested.pi_pending = false;
3408         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3409                 return;
3410
3411         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3412         if (max_irr != 256) {
3413                 vapic_page = vmx->nested.virtual_apic_map.hva;
3414                 if (!vapic_page)
3415                         return;
3416
3417                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3418                         vapic_page, &max_irr);
3419                 status = vmcs_read16(GUEST_INTR_STATUS);
3420                 if ((u8)max_irr > ((u8)status & 0xff)) {
3421                         status &= ~0xff;
3422                         status |= (u8)max_irr;
3423                         vmcs_write16(GUEST_INTR_STATUS, status);
3424                 }
3425         }
3426
3427         nested_mark_vmcs12_pages_dirty(vcpu);
3428 }
3429
3430 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3431                                                unsigned long exit_qual)
3432 {
3433         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3434         unsigned int nr = vcpu->arch.exception.nr;
3435         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3436
3437         if (vcpu->arch.exception.has_error_code) {
3438                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3439                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3440         }
3441
3442         if (kvm_exception_is_soft(nr))
3443                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3444         else
3445                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3446
3447         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3448             vmx_get_nmi_mask(vcpu))
3449                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3450
3451         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3452 }
3453
3454 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3455 {
3456         struct vcpu_vmx *vmx = to_vmx(vcpu);
3457         unsigned long exit_qual;
3458         bool block_nested_events =
3459             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3460         struct kvm_lapic *apic = vcpu->arch.apic;
3461
3462         if (lapic_in_kernel(vcpu) &&
3463                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3464                 if (block_nested_events)
3465                         return -EBUSY;
3466                 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3467                 return 0;
3468         }
3469
3470         if (vcpu->arch.exception.pending &&
3471                 nested_vmx_check_exception(vcpu, &exit_qual)) {
3472                 if (block_nested_events)
3473                         return -EBUSY;
3474                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3475                 return 0;
3476         }
3477
3478         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3479             vmx->nested.preemption_timer_expired) {
3480                 if (block_nested_events)
3481                         return -EBUSY;
3482                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3483                 return 0;
3484         }
3485
3486         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3487                 if (block_nested_events)
3488                         return -EBUSY;
3489                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3490                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3491                                   INTR_INFO_VALID_MASK, 0);
3492                 /*
3493                  * The NMI-triggered VM exit counts as injection:
3494                  * clear this one and block further NMIs.
3495                  */
3496                 vcpu->arch.nmi_pending = 0;
3497                 vmx_set_nmi_mask(vcpu, true);
3498                 return 0;
3499         }
3500
3501         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3502             nested_exit_on_intr(vcpu)) {
3503                 if (block_nested_events)
3504                         return -EBUSY;
3505                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3506                 return 0;
3507         }
3508
3509         vmx_complete_nested_posted_interrupt(vcpu);
3510         return 0;
3511 }
3512
3513 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3514 {
3515         ktime_t remaining =
3516                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3517         u64 value;
3518
3519         if (ktime_to_ns(remaining) <= 0)
3520                 return 0;
3521
3522         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3523         do_div(value, 1000000);
3524         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3525 }
3526
3527 static bool is_vmcs12_ext_field(unsigned long field)
3528 {
3529         switch (field) {
3530         case GUEST_ES_SELECTOR:
3531         case GUEST_CS_SELECTOR:
3532         case GUEST_SS_SELECTOR:
3533         case GUEST_DS_SELECTOR:
3534         case GUEST_FS_SELECTOR:
3535         case GUEST_GS_SELECTOR:
3536         case GUEST_LDTR_SELECTOR:
3537         case GUEST_TR_SELECTOR:
3538         case GUEST_ES_LIMIT:
3539         case GUEST_CS_LIMIT:
3540         case GUEST_SS_LIMIT:
3541         case GUEST_DS_LIMIT:
3542         case GUEST_FS_LIMIT:
3543         case GUEST_GS_LIMIT:
3544         case GUEST_LDTR_LIMIT:
3545         case GUEST_TR_LIMIT:
3546         case GUEST_GDTR_LIMIT:
3547         case GUEST_IDTR_LIMIT:
3548         case GUEST_ES_AR_BYTES:
3549         case GUEST_DS_AR_BYTES:
3550         case GUEST_FS_AR_BYTES:
3551         case GUEST_GS_AR_BYTES:
3552         case GUEST_LDTR_AR_BYTES:
3553         case GUEST_TR_AR_BYTES:
3554         case GUEST_ES_BASE:
3555         case GUEST_CS_BASE:
3556         case GUEST_SS_BASE:
3557         case GUEST_DS_BASE:
3558         case GUEST_FS_BASE:
3559         case GUEST_GS_BASE:
3560         case GUEST_LDTR_BASE:
3561         case GUEST_TR_BASE:
3562         case GUEST_GDTR_BASE:
3563         case GUEST_IDTR_BASE:
3564         case GUEST_PENDING_DBG_EXCEPTIONS:
3565         case GUEST_BNDCFGS:
3566                 return true;
3567         default:
3568                 break;
3569         }
3570
3571         return false;
3572 }
3573
3574 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3575                                        struct vmcs12 *vmcs12)
3576 {
3577         struct vcpu_vmx *vmx = to_vmx(vcpu);
3578
3579         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3580         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3581         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3582         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3583         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3584         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3585         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3586         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3587         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3588         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3589         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3590         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3591         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3592         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3593         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3594         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3595         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3596         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3597         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3598         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3599         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3600         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3601         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3602         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3603         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3604         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3605         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3606         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3607         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3608         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3609         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3610         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3611         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3612         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3613         vmcs12->guest_pending_dbg_exceptions =
3614                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3615         if (kvm_mpx_supported())
3616                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3617
3618         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3619 }
3620
3621 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3622                                        struct vmcs12 *vmcs12)
3623 {
3624         struct vcpu_vmx *vmx = to_vmx(vcpu);
3625         int cpu;
3626
3627         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3628                 return;
3629
3630
3631         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3632
3633         cpu = get_cpu();
3634         vmx->loaded_vmcs = &vmx->nested.vmcs02;
3635         vmx_vcpu_load(&vmx->vcpu, cpu);
3636
3637         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3638
3639         vmx->loaded_vmcs = &vmx->vmcs01;
3640         vmx_vcpu_load(&vmx->vcpu, cpu);
3641         put_cpu();
3642 }
3643
3644 /*
3645  * Update the guest state fields of vmcs12 to reflect changes that
3646  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3647  * VM-entry controls is also updated, since this is really a guest
3648  * state bit.)
3649  */
3650 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3651 {
3652         struct vcpu_vmx *vmx = to_vmx(vcpu);
3653
3654         if (vmx->nested.hv_evmcs)
3655                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3656
3657         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
3658
3659         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3660         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3661
3662         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
3663         vmcs12->guest_rip = kvm_rip_read(vcpu);
3664         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3665
3666         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3667         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3668
3669         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3670         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3671         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3672
3673         vmcs12->guest_interruptibility_info =
3674                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3675
3676         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3677                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3678         else
3679                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3680
3681         if (nested_cpu_has_preemption_timer(vmcs12) &&
3682             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3683                         vmcs12->vmx_preemption_timer_value =
3684                                 vmx_get_preemption_timer_value(vcpu);
3685
3686         /*
3687          * In some cases (usually, nested EPT), L2 is allowed to change its
3688          * own CR3 without exiting. If it has changed it, we must keep it.
3689          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3690          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3691          *
3692          * Additionally, restore L2's PDPTR to vmcs12.
3693          */
3694         if (enable_ept) {
3695                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3696                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3697                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3698                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3699                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3700                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3701                 }
3702         }
3703
3704         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3705
3706         if (nested_cpu_has_vid(vmcs12))
3707                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3708
3709         vmcs12->vm_entry_controls =
3710                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3711                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3712
3713         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
3714                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3715
3716         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3717                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3718 }
3719
3720 /*
3721  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3722  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3723  * and this function updates it to reflect the changes to the guest state while
3724  * L2 was running (and perhaps made some exits which were handled directly by L0
3725  * without going back to L1), and to reflect the exit reason.
3726  * Note that we do not have to copy here all VMCS fields, just those that
3727  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3728  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3729  * which already writes to vmcs12 directly.
3730  */
3731 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3732                            u32 exit_reason, u32 exit_intr_info,
3733                            unsigned long exit_qualification)
3734 {
3735         /* update exit information fields: */
3736         vmcs12->vm_exit_reason = exit_reason;
3737         vmcs12->exit_qualification = exit_qualification;
3738         vmcs12->vm_exit_intr_info = exit_intr_info;
3739
3740         vmcs12->idt_vectoring_info_field = 0;
3741         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3742         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3743
3744         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3745                 vmcs12->launch_state = 1;
3746
3747                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3748                  * instead of reading the real value. */
3749                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3750
3751                 /*
3752                  * Transfer the event that L0 or L1 may wanted to inject into
3753                  * L2 to IDT_VECTORING_INFO_FIELD.
3754                  */
3755                 vmcs12_save_pending_event(vcpu, vmcs12);
3756
3757                 /*
3758                  * According to spec, there's no need to store the guest's
3759                  * MSRs if the exit is due to a VM-entry failure that occurs
3760                  * during or after loading the guest state. Since this exit
3761                  * does not fall in that category, we need to save the MSRs.
3762                  */
3763                 if (nested_vmx_store_msr(vcpu,
3764                                          vmcs12->vm_exit_msr_store_addr,
3765                                          vmcs12->vm_exit_msr_store_count))
3766                         nested_vmx_abort(vcpu,
3767                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3768         }
3769
3770         /*
3771          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3772          * preserved above and would only end up incorrectly in L1.
3773          */
3774         vcpu->arch.nmi_injected = false;
3775         kvm_clear_exception_queue(vcpu);
3776         kvm_clear_interrupt_queue(vcpu);
3777 }
3778
3779 /*
3780  * A part of what we need to when the nested L2 guest exits and we want to
3781  * run its L1 parent, is to reset L1's guest state to the host state specified
3782  * in vmcs12.
3783  * This function is to be called not only on normal nested exit, but also on
3784  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3785  * Failures During or After Loading Guest State").
3786  * This function should be called when the active VMCS is L1's (vmcs01).
3787  */
3788 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3789                                    struct vmcs12 *vmcs12)
3790 {
3791         struct kvm_segment seg;
3792         u32 entry_failure_code;
3793
3794         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3795                 vcpu->arch.efer = vmcs12->host_ia32_efer;
3796         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3797                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3798         else
3799                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3800         vmx_set_efer(vcpu, vcpu->arch.efer);
3801
3802         kvm_rsp_write(vcpu, vmcs12->host_rsp);
3803         kvm_rip_write(vcpu, vmcs12->host_rip);
3804         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3805         vmx_set_interrupt_shadow(vcpu, 0);
3806
3807         /*
3808          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3809          * actually changed, because vmx_set_cr0 refers to efer set above.
3810          *
3811          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3812          * (KVM doesn't change it);
3813          */
3814         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3815         vmx_set_cr0(vcpu, vmcs12->host_cr0);
3816
3817         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
3818         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3819         vmx_set_cr4(vcpu, vmcs12->host_cr4);
3820
3821         nested_ept_uninit_mmu_context(vcpu);
3822
3823         /*
3824          * Only PDPTE load can fail as the value of cr3 was checked on entry and
3825          * couldn't have changed.
3826          */
3827         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3828                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3829
3830         if (!enable_ept)
3831                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3832
3833         /*
3834          * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3835          * VMEntry/VMExit. Thus, no need to flush TLB.
3836          *
3837          * If vmcs12 doesn't use VPID, L1 expects TLB to be
3838          * flushed on every VMEntry/VMExit.
3839          *
3840          * Otherwise, we can preserve TLB entries as long as we are
3841          * able to tag L1 TLB entries differently than L2 TLB entries.
3842          *
3843          * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3844          * and therefore we request the TLB flush to happen only after VMCS EPTP
3845          * has been set by KVM_REQ_LOAD_CR3.
3846          */
3847         if (enable_vpid &&
3848             (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3849                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3850         }
3851
3852         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3853         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3854         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3855         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3856         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3857         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3858         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3859
3860         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
3861         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3862                 vmcs_write64(GUEST_BNDCFGS, 0);
3863
3864         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3865                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3866                 vcpu->arch.pat = vmcs12->host_ia32_pat;
3867         }
3868         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3869                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
3870                         vmcs12->host_ia32_perf_global_ctrl);
3871
3872         /* Set L1 segment info according to Intel SDM
3873             27.5.2 Loading Host Segment and Descriptor-Table Registers */
3874         seg = (struct kvm_segment) {
3875                 .base = 0,
3876                 .limit = 0xFFFFFFFF,
3877                 .selector = vmcs12->host_cs_selector,
3878                 .type = 11,
3879                 .present = 1,
3880                 .s = 1,
3881                 .g = 1
3882         };
3883         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3884                 seg.l = 1;
3885         else
3886                 seg.db = 1;
3887         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
3888         seg = (struct kvm_segment) {
3889                 .base = 0,
3890                 .limit = 0xFFFFFFFF,
3891                 .type = 3,
3892                 .present = 1,
3893                 .s = 1,
3894                 .db = 1,
3895                 .g = 1
3896         };
3897         seg.selector = vmcs12->host_ds_selector;
3898         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
3899         seg.selector = vmcs12->host_es_selector;
3900         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
3901         seg.selector = vmcs12->host_ss_selector;
3902         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
3903         seg.selector = vmcs12->host_fs_selector;
3904         seg.base = vmcs12->host_fs_base;
3905         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
3906         seg.selector = vmcs12->host_gs_selector;
3907         seg.base = vmcs12->host_gs_base;
3908         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
3909         seg = (struct kvm_segment) {
3910                 .base = vmcs12->host_tr_base,
3911                 .limit = 0x67,
3912                 .selector = vmcs12->host_tr_selector,
3913                 .type = 11,
3914                 .present = 1
3915         };
3916         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
3917
3918         kvm_set_dr(vcpu, 7, 0x400);
3919         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3920
3921         if (cpu_has_vmx_msr_bitmap())
3922                 vmx_update_msr_bitmap(vcpu);
3923
3924         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
3925                                 vmcs12->vm_exit_msr_load_count))
3926                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3927 }
3928
3929 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
3930 {
3931         struct shared_msr_entry *efer_msr;
3932         unsigned int i;
3933
3934         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
3935                 return vmcs_read64(GUEST_IA32_EFER);
3936
3937         if (cpu_has_load_ia32_efer())
3938                 return host_efer;
3939
3940         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
3941                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
3942                         return vmx->msr_autoload.guest.val[i].value;
3943         }
3944
3945         efer_msr = find_msr_entry(vmx, MSR_EFER);
3946         if (efer_msr)
3947                 return efer_msr->data;
3948
3949         return host_efer;
3950 }
3951
3952 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
3953 {
3954         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3955         struct vcpu_vmx *vmx = to_vmx(vcpu);
3956         struct vmx_msr_entry g, h;
3957         gpa_t gpa;
3958         u32 i, j;
3959
3960         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
3961
3962         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
3963                 /*
3964                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
3965                  * as vmcs01.GUEST_DR7 contains a userspace defined value
3966                  * and vcpu->arch.dr7 is not squirreled away before the
3967                  * nested VMENTER (not worth adding a variable in nested_vmx).
3968                  */
3969                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
3970                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
3971                 else
3972                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
3973         }
3974
3975         /*
3976          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
3977          * handle a variety of side effects to KVM's software model.
3978          */
3979         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
3980
3981         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3982         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
3983
3984         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3985         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
3986
3987         nested_ept_uninit_mmu_context(vcpu);
3988         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3989         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3990
3991         /*
3992          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
3993          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
3994          * VMFail, like everything else we just need to ensure our
3995          * software model is up-to-date.
3996          */
3997         if (enable_ept)
3998                 ept_save_pdptrs(vcpu);
3999
4000         kvm_mmu_reset_context(vcpu);
4001
4002         if (cpu_has_vmx_msr_bitmap())
4003                 vmx_update_msr_bitmap(vcpu);
4004
4005         /*
4006          * This nasty bit of open coding is a compromise between blindly
4007          * loading L1's MSRs using the exit load lists (incorrect emulation
4008          * of VMFail), leaving the nested VM's MSRs in the software model
4009          * (incorrect behavior) and snapshotting the modified MSRs (too
4010          * expensive since the lists are unbound by hardware).  For each
4011          * MSR that was (prematurely) loaded from the nested VMEntry load
4012          * list, reload it from the exit load list if it exists and differs
4013          * from the guest value.  The intent is to stuff host state as
4014          * silently as possible, not to fully process the exit load list.
4015          */
4016         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4017                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4018                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4019                         pr_debug_ratelimited(
4020                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4021                                 __func__, i, gpa);
4022                         goto vmabort;
4023                 }
4024
4025                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4026                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4027                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4028                                 pr_debug_ratelimited(
4029                                         "%s read MSR failed (%u, 0x%08llx)\n",
4030                                         __func__, j, gpa);
4031                                 goto vmabort;
4032                         }
4033                         if (h.index != g.index)
4034                                 continue;
4035                         if (h.value == g.value)
4036                                 break;
4037
4038                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4039                                 pr_debug_ratelimited(
4040                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4041                                         __func__, j, h.index, h.reserved);
4042                                 goto vmabort;
4043                         }
4044
4045                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4046                                 pr_debug_ratelimited(
4047                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4048                                         __func__, j, h.index, h.value);
4049                                 goto vmabort;
4050                         }
4051                 }
4052         }
4053
4054         return;
4055
4056 vmabort:
4057         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4058 }
4059
4060 /*
4061  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4062  * and modify vmcs12 to make it see what it would expect to see there if
4063  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4064  */
4065 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
4066                        u32 exit_intr_info, unsigned long exit_qualification)
4067 {
4068         struct vcpu_vmx *vmx = to_vmx(vcpu);
4069         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4070
4071         /* trying to cancel vmlaunch/vmresume is a bug */
4072         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4073
4074         leave_guest_mode(vcpu);
4075
4076         if (nested_cpu_has_preemption_timer(vmcs12))
4077                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4078
4079         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
4080                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4081
4082         if (likely(!vmx->fail)) {
4083                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4084
4085                 if (exit_reason != -1)
4086                         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
4087                                        exit_qualification);
4088
4089                 /*
4090                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4091                  * also be used to capture vmcs12 cache as part of
4092                  * capturing nVMX state for snapshot (migration).
4093                  *
4094                  * Otherwise, this flush will dirty guest memory at a
4095                  * point it is already assumed by user-space to be
4096                  * immutable.
4097                  */
4098                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4099         } else {
4100                 /*
4101                  * The only expected VM-instruction error is "VM entry with
4102                  * invalid control field(s)." Anything else indicates a
4103                  * problem with L0.  And we should never get here with a
4104                  * VMFail of any type if early consistency checks are enabled.
4105                  */
4106                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4107                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4108                 WARN_ON_ONCE(nested_early_check);
4109         }
4110
4111         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4112
4113         /* Update any VMCS fields that might have changed while L2 ran */
4114         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4115         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4116         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4117
4118         if (kvm_has_tsc_control)
4119                 decache_tsc_multiplier(vmx);
4120
4121         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4122                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4123                 vmx_set_virtual_apic_mode(vcpu);
4124         } else if (!nested_cpu_has_ept(vmcs12) &&
4125                    nested_cpu_has2(vmcs12,
4126                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
4127                 vmx_flush_tlb(vcpu, true);
4128         }
4129
4130         /* Unpin physical memory we referred to in vmcs02 */
4131         if (vmx->nested.apic_access_page) {
4132                 kvm_release_page_dirty(vmx->nested.apic_access_page);
4133                 vmx->nested.apic_access_page = NULL;
4134         }
4135         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4136         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4137         vmx->nested.pi_desc = NULL;
4138
4139         /*
4140          * We are now running in L2, mmu_notifier will force to reload the
4141          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
4142          */
4143         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4144
4145         if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4146                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4147
4148         /* in case we halted in L2 */
4149         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4150
4151         if (likely(!vmx->fail)) {
4152                 /*
4153                  * TODO: SDM says that with acknowledge interrupt on
4154                  * exit, bit 31 of the VM-exit interrupt information
4155                  * (valid interrupt) is always set to 1 on
4156                  * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
4157                  * need kvm_cpu_has_interrupt().  See the commit
4158                  * message for details.
4159                  */
4160                 if (nested_exit_intr_ack_set(vcpu) &&
4161                     exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4162                     kvm_cpu_has_interrupt(vcpu)) {
4163                         int irq = kvm_cpu_get_interrupt(vcpu);
4164                         WARN_ON(irq < 0);
4165                         vmcs12->vm_exit_intr_info = irq |
4166                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4167                 }
4168
4169                 if (exit_reason != -1)
4170                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4171                                                        vmcs12->exit_qualification,
4172                                                        vmcs12->idt_vectoring_info_field,
4173                                                        vmcs12->vm_exit_intr_info,
4174                                                        vmcs12->vm_exit_intr_error_code,
4175                                                        KVM_ISA_VMX);
4176
4177                 load_vmcs12_host_state(vcpu, vmcs12);
4178
4179                 return;
4180         }
4181
4182         /*
4183          * After an early L2 VM-entry failure, we're now back
4184          * in L1 which thinks it just finished a VMLAUNCH or
4185          * VMRESUME instruction, so we need to set the failure
4186          * flag and the VM-instruction error field of the VMCS
4187          * accordingly, and skip the emulated instruction.
4188          */
4189         (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4190
4191         /*
4192          * Restore L1's host state to KVM's software model.  We're here
4193          * because a consistency check was caught by hardware, which
4194          * means some amount of guest state has been propagated to KVM's
4195          * model and needs to be unwound to the host's state.
4196          */
4197         nested_vmx_restore_host_state(vcpu);
4198
4199         vmx->fail = 0;
4200 }
4201
4202 /*
4203  * Decode the memory-address operand of a vmx instruction, as recorded on an
4204  * exit caused by such an instruction (run by a guest hypervisor).
4205  * On success, returns 0. When the operand is invalid, returns 1 and throws
4206  * #UD or #GP.
4207  */
4208 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4209                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4210 {
4211         gva_t off;
4212         bool exn;
4213         struct kvm_segment s;
4214
4215         /*
4216          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4217          * Execution", on an exit, vmx_instruction_info holds most of the
4218          * addressing components of the operand. Only the displacement part
4219          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4220          * For how an actual address is calculated from all these components,
4221          * refer to Vol. 1, "Operand Addressing".
4222          */
4223         int  scaling = vmx_instruction_info & 3;
4224         int  addr_size = (vmx_instruction_info >> 7) & 7;
4225         bool is_reg = vmx_instruction_info & (1u << 10);
4226         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4227         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4228         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4229         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4230         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4231
4232         if (is_reg) {
4233                 kvm_queue_exception(vcpu, UD_VECTOR);
4234                 return 1;
4235         }
4236
4237         /* Addr = segment_base + offset */
4238         /* offset = base + [index * scale] + displacement */
4239         off = exit_qualification; /* holds the displacement */
4240         if (addr_size == 1)
4241                 off = (gva_t)sign_extend64(off, 31);
4242         else if (addr_size == 0)
4243                 off = (gva_t)sign_extend64(off, 15);
4244         if (base_is_valid)
4245                 off += kvm_register_read(vcpu, base_reg);
4246         if (index_is_valid)
4247                 off += kvm_register_read(vcpu, index_reg)<<scaling;
4248         vmx_get_segment(vcpu, &s, seg_reg);
4249
4250         /*
4251          * The effective address, i.e. @off, of a memory operand is truncated
4252          * based on the address size of the instruction.  Note that this is
4253          * the *effective address*, i.e. the address prior to accounting for
4254          * the segment's base.
4255          */
4256         if (addr_size == 1) /* 32 bit */
4257                 off &= 0xffffffff;
4258         else if (addr_size == 0) /* 16 bit */
4259                 off &= 0xffff;
4260
4261         /* Checks for #GP/#SS exceptions. */
4262         exn = false;
4263         if (is_long_mode(vcpu)) {
4264                 /*
4265                  * The virtual/linear address is never truncated in 64-bit
4266                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4267                  * address when using FS/GS with a non-zero base.
4268                  */
4269                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4270                         *ret = s.base + off;
4271                 else
4272                         *ret = off;
4273
4274                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4275                  * non-canonical form. This is the only check on the memory
4276                  * destination for long mode!
4277                  */
4278                 exn = is_noncanonical_address(*ret, vcpu);
4279         } else {
4280                 /*
4281                  * When not in long mode, the virtual/linear address is
4282                  * unconditionally truncated to 32 bits regardless of the
4283                  * address size.
4284                  */
4285                 *ret = (s.base + off) & 0xffffffff;
4286
4287                 /* Protected mode: apply checks for segment validity in the
4288                  * following order:
4289                  * - segment type check (#GP(0) may be thrown)
4290                  * - usability check (#GP(0)/#SS(0))
4291                  * - limit check (#GP(0)/#SS(0))
4292                  */
4293                 if (wr)
4294                         /* #GP(0) if the destination operand is located in a
4295                          * read-only data segment or any code segment.
4296                          */
4297                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4298                 else
4299                         /* #GP(0) if the source operand is located in an
4300                          * execute-only code segment
4301                          */
4302                         exn = ((s.type & 0xa) == 8);
4303                 if (exn) {
4304                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4305                         return 1;
4306                 }
4307                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4308                  */
4309                 exn = (s.unusable != 0);
4310
4311                 /*
4312                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4313                  * outside the segment limit.  All CPUs that support VMX ignore
4314                  * limit checks for flat segments, i.e. segments with base==0,
4315                  * limit==0xffffffff and of type expand-up data or code.
4316                  */
4317                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4318                      ((s.type & 8) || !(s.type & 4))))
4319                         exn = exn || ((u64)off + len - 1 > s.limit);
4320         }
4321         if (exn) {
4322                 kvm_queue_exception_e(vcpu,
4323                                       seg_reg == VCPU_SREG_SS ?
4324                                                 SS_VECTOR : GP_VECTOR,
4325                                       0);
4326                 return 1;
4327         }
4328
4329         return 0;
4330 }
4331
4332 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4333 {
4334         gva_t gva;
4335         struct x86_exception e;
4336
4337         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4338                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4339                                 sizeof(*vmpointer), &gva))
4340                 return 1;
4341
4342         if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4343                 kvm_inject_page_fault(vcpu, &e);
4344                 return 1;
4345         }
4346
4347         return 0;
4348 }
4349
4350 /*
4351  * Allocate a shadow VMCS and associate it with the currently loaded
4352  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4353  * VMCS is also VMCLEARed, so that it is ready for use.
4354  */
4355 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4356 {
4357         struct vcpu_vmx *vmx = to_vmx(vcpu);
4358         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4359
4360         /*
4361          * We should allocate a shadow vmcs for vmcs01 only when L1
4362          * executes VMXON and free it when L1 executes VMXOFF.
4363          * As it is invalid to execute VMXON twice, we shouldn't reach
4364          * here when vmcs01 already have an allocated shadow vmcs.
4365          */
4366         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4367
4368         if (!loaded_vmcs->shadow_vmcs) {
4369                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4370                 if (loaded_vmcs->shadow_vmcs)
4371                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4372         }
4373         return loaded_vmcs->shadow_vmcs;
4374 }
4375
4376 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4377 {
4378         struct vcpu_vmx *vmx = to_vmx(vcpu);
4379         int r;
4380
4381         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4382         if (r < 0)
4383                 goto out_vmcs02;
4384
4385         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4386         if (!vmx->nested.cached_vmcs12)
4387                 goto out_cached_vmcs12;
4388
4389         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4390         if (!vmx->nested.cached_shadow_vmcs12)
4391                 goto out_cached_shadow_vmcs12;
4392
4393         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4394                 goto out_shadow_vmcs;
4395
4396         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4397                      HRTIMER_MODE_REL_PINNED);
4398         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4399
4400         vmx->nested.vpid02 = allocate_vpid();
4401
4402         vmx->nested.vmcs02_initialized = false;
4403         vmx->nested.vmxon = true;
4404
4405         if (pt_mode == PT_MODE_HOST_GUEST) {
4406                 vmx->pt_desc.guest.ctl = 0;
4407                 pt_update_intercept_for_msr(vmx);
4408         }
4409
4410         return 0;
4411
4412 out_shadow_vmcs:
4413         kfree(vmx->nested.cached_shadow_vmcs12);
4414
4415 out_cached_shadow_vmcs12:
4416         kfree(vmx->nested.cached_vmcs12);
4417
4418 out_cached_vmcs12:
4419         free_loaded_vmcs(&vmx->nested.vmcs02);
4420
4421 out_vmcs02:
4422         return -ENOMEM;
4423 }
4424
4425 /*
4426  * Emulate the VMXON instruction.
4427  * Currently, we just remember that VMX is active, and do not save or even
4428  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4429  * do not currently need to store anything in that guest-allocated memory
4430  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4431  * argument is different from the VMXON pointer (which the spec says they do).
4432  */
4433 static int handle_vmon(struct kvm_vcpu *vcpu)
4434 {
4435         int ret;
4436         gpa_t vmptr;
4437         uint32_t revision;
4438         struct vcpu_vmx *vmx = to_vmx(vcpu);
4439         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
4440                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4441
4442         /*
4443          * The Intel VMX Instruction Reference lists a bunch of bits that are
4444          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4445          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4446          * Otherwise, we should fail with #UD.  But most faulting conditions
4447          * have already been checked by hardware, prior to the VM-exit for
4448          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4449          * that bit set to 1 in non-root mode.
4450          */
4451         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4452                 kvm_queue_exception(vcpu, UD_VECTOR);
4453                 return 1;
4454         }
4455
4456         /* CPL=0 must be checked manually. */
4457         if (vmx_get_cpl(vcpu)) {
4458                 kvm_inject_gp(vcpu, 0);
4459                 return 1;
4460         }
4461
4462         if (vmx->nested.vmxon)
4463                 return nested_vmx_failValid(vcpu,
4464                         VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4465
4466         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4467                         != VMXON_NEEDED_FEATURES) {
4468                 kvm_inject_gp(vcpu, 0);
4469                 return 1;
4470         }
4471
4472         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4473                 return 1;
4474
4475         /*
4476          * SDM 3: 24.11.5
4477          * The first 4 bytes of VMXON region contain the supported
4478          * VMCS revision identifier
4479          *
4480          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4481          * which replaces physical address width with 32
4482          */
4483         if (!page_address_valid(vcpu, vmptr))
4484                 return nested_vmx_failInvalid(vcpu);
4485
4486         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4487             revision != VMCS12_REVISION)
4488                 return nested_vmx_failInvalid(vcpu);
4489
4490         vmx->nested.vmxon_ptr = vmptr;
4491         ret = enter_vmx_operation(vcpu);
4492         if (ret)
4493                 return ret;
4494
4495         return nested_vmx_succeed(vcpu);
4496 }
4497
4498 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4499 {
4500         struct vcpu_vmx *vmx = to_vmx(vcpu);
4501
4502         if (vmx->nested.current_vmptr == -1ull)
4503                 return;
4504
4505         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4506
4507         if (enable_shadow_vmcs) {
4508                 /* copy to memory all shadowed fields in case
4509                    they were modified */
4510                 copy_shadow_to_vmcs12(vmx);
4511                 vmx_disable_shadow_vmcs(vmx);
4512         }
4513         vmx->nested.posted_intr_nv = -1;
4514
4515         /* Flush VMCS12 to guest memory */
4516         kvm_vcpu_write_guest_page(vcpu,
4517                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4518                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4519
4520         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4521
4522         vmx->nested.current_vmptr = -1ull;
4523 }
4524
4525 /* Emulate the VMXOFF instruction */
4526 static int handle_vmoff(struct kvm_vcpu *vcpu)
4527 {
4528         if (!nested_vmx_check_permission(vcpu))
4529                 return 1;
4530
4531         free_nested(vcpu);
4532
4533         /* Process a latched INIT during time CPU was in VMX operation */
4534         kvm_make_request(KVM_REQ_EVENT, vcpu);
4535
4536         return nested_vmx_succeed(vcpu);
4537 }
4538
4539 /* Emulate the VMCLEAR instruction */
4540 static int handle_vmclear(struct kvm_vcpu *vcpu)
4541 {
4542         struct vcpu_vmx *vmx = to_vmx(vcpu);
4543         u32 zero = 0;
4544         gpa_t vmptr;
4545         u64 evmcs_gpa;
4546
4547         if (!nested_vmx_check_permission(vcpu))
4548                 return 1;
4549
4550         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4551                 return 1;
4552
4553         if (!page_address_valid(vcpu, vmptr))
4554                 return nested_vmx_failValid(vcpu,
4555                         VMXERR_VMCLEAR_INVALID_ADDRESS);
4556
4557         if (vmptr == vmx->nested.vmxon_ptr)
4558                 return nested_vmx_failValid(vcpu,
4559                         VMXERR_VMCLEAR_VMXON_POINTER);
4560
4561         /*
4562          * When Enlightened VMEntry is enabled on the calling CPU we treat
4563          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4564          * way to distinguish it from VMCS12) and we must not corrupt it by
4565          * writing to the non-existent 'launch_state' field. The area doesn't
4566          * have to be the currently active EVMCS on the calling CPU and there's
4567          * nothing KVM has to do to transition it from 'active' to 'non-active'
4568          * state. It is possible that the area will stay mapped as
4569          * vmx->nested.hv_evmcs but this shouldn't be a problem.
4570          */
4571         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4572                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4573                 if (vmptr == vmx->nested.current_vmptr)
4574                         nested_release_vmcs12(vcpu);
4575
4576                 kvm_vcpu_write_guest(vcpu,
4577                                      vmptr + offsetof(struct vmcs12,
4578                                                       launch_state),
4579                                      &zero, sizeof(zero));
4580         }
4581
4582         return nested_vmx_succeed(vcpu);
4583 }
4584
4585 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4586
4587 /* Emulate the VMLAUNCH instruction */
4588 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4589 {
4590         return nested_vmx_run(vcpu, true);
4591 }
4592
4593 /* Emulate the VMRESUME instruction */
4594 static int handle_vmresume(struct kvm_vcpu *vcpu)
4595 {
4596
4597         return nested_vmx_run(vcpu, false);
4598 }
4599
4600 static int handle_vmread(struct kvm_vcpu *vcpu)
4601 {
4602         unsigned long field;
4603         u64 field_value;
4604         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4605         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4606         int len;
4607         gva_t gva = 0;
4608         struct vmcs12 *vmcs12;
4609         struct x86_exception e;
4610         short offset;
4611
4612         if (!nested_vmx_check_permission(vcpu))
4613                 return 1;
4614
4615         if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
4616                 return nested_vmx_failInvalid(vcpu);
4617
4618         if (!is_guest_mode(vcpu))
4619                 vmcs12 = get_vmcs12(vcpu);
4620         else {
4621                 /*
4622                  * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
4623                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4624                  */
4625                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4626                         return nested_vmx_failInvalid(vcpu);
4627                 vmcs12 = get_shadow_vmcs12(vcpu);
4628         }
4629
4630         /* Decode instruction info and find the field to read */
4631         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4632
4633         offset = vmcs_field_to_offset(field);
4634         if (offset < 0)
4635                 return nested_vmx_failValid(vcpu,
4636                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4637
4638         if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
4639                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4640
4641         /* Read the field, zero-extended to a u64 field_value */
4642         field_value = vmcs12_read_any(vmcs12, field, offset);
4643
4644         /*
4645          * Now copy part of this value to register or memory, as requested.
4646          * Note that the number of bits actually copied is 32 or 64 depending
4647          * on the guest's mode (32 or 64 bit), not on the given field's length.
4648          */
4649         if (vmx_instruction_info & (1u << 10)) {
4650                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4651                         field_value);
4652         } else {
4653                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4654                 if (get_vmx_mem_address(vcpu, exit_qualification,
4655                                 vmx_instruction_info, true, len, &gva))
4656                         return 1;
4657                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4658                 if (kvm_write_guest_virt_system(vcpu, gva, &field_value, len, &e))
4659                         kvm_inject_page_fault(vcpu, &e);
4660         }
4661
4662         return nested_vmx_succeed(vcpu);
4663 }
4664
4665 static bool is_shadow_field_rw(unsigned long field)
4666 {
4667         switch (field) {
4668 #define SHADOW_FIELD_RW(x, y) case x:
4669 #include "vmcs_shadow_fields.h"
4670                 return true;
4671         default:
4672                 break;
4673         }
4674         return false;
4675 }
4676
4677 static bool is_shadow_field_ro(unsigned long field)
4678 {
4679         switch (field) {
4680 #define SHADOW_FIELD_RO(x, y) case x:
4681 #include "vmcs_shadow_fields.h"
4682                 return true;
4683         default:
4684                 break;
4685         }
4686         return false;
4687 }
4688
4689 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4690 {
4691         unsigned long field;
4692         int len;
4693         gva_t gva;
4694         struct vcpu_vmx *vmx = to_vmx(vcpu);
4695         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4696         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4697
4698         /* The value to write might be 32 or 64 bits, depending on L1's long
4699          * mode, and eventually we need to write that into a field of several
4700          * possible lengths. The code below first zero-extends the value to 64
4701          * bit (field_value), and then copies only the appropriate number of
4702          * bits into the vmcs12 field.
4703          */
4704         u64 field_value = 0;
4705         struct x86_exception e;
4706         struct vmcs12 *vmcs12;
4707         short offset;
4708
4709         if (!nested_vmx_check_permission(vcpu))
4710                 return 1;
4711
4712         if (vmx->nested.current_vmptr == -1ull)
4713                 return nested_vmx_failInvalid(vcpu);
4714
4715         if (vmx_instruction_info & (1u << 10))
4716                 field_value = kvm_register_readl(vcpu,
4717                         (((vmx_instruction_info) >> 3) & 0xf));
4718         else {
4719                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4720                 if (get_vmx_mem_address(vcpu, exit_qualification,
4721                                 vmx_instruction_info, false, len, &gva))
4722                         return 1;
4723                 if (kvm_read_guest_virt(vcpu, gva, &field_value, len, &e)) {
4724                         kvm_inject_page_fault(vcpu, &e);
4725                         return 1;
4726                 }
4727         }
4728
4729
4730         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4731         /*
4732          * If the vCPU supports "VMWRITE to any supported field in the
4733          * VMCS," then the "read-only" fields are actually read/write.
4734          */
4735         if (vmcs_field_readonly(field) &&
4736             !nested_cpu_has_vmwrite_any_field(vcpu))
4737                 return nested_vmx_failValid(vcpu,
4738                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4739
4740         if (!is_guest_mode(vcpu)) {
4741                 vmcs12 = get_vmcs12(vcpu);
4742
4743                 /*
4744                  * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
4745                  * vmcs12, else we may crush a field or consume a stale value.
4746                  */
4747                 if (!is_shadow_field_rw(field))
4748                         copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4749         } else {
4750                 /*
4751                  * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
4752                  * to shadowed-field sets the ALU flags for VMfailInvalid.
4753                  */
4754                 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4755                         return nested_vmx_failInvalid(vcpu);
4756                 vmcs12 = get_shadow_vmcs12(vcpu);
4757         }
4758
4759         offset = vmcs_field_to_offset(field);
4760         if (offset < 0)
4761                 return nested_vmx_failValid(vcpu,
4762                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4763
4764         /*
4765          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
4766          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
4767          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
4768          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
4769          * from L1 will return a different value than VMREAD from L2 (L1 sees
4770          * the stripped down value, L2 sees the full value as stored by KVM).
4771          */
4772         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
4773                 field_value &= 0x1f0ff;
4774
4775         vmcs12_write_any(vmcs12, field, offset, field_value);
4776
4777         /*
4778          * Do not track vmcs12 dirty-state if in guest-mode as we actually
4779          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
4780          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
4781          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
4782          */
4783         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
4784                 /*
4785                  * L1 can read these fields without exiting, ensure the
4786                  * shadow VMCS is up-to-date.
4787                  */
4788                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
4789                         preempt_disable();
4790                         vmcs_load(vmx->vmcs01.shadow_vmcs);
4791
4792                         __vmcs_writel(field, field_value);
4793
4794                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
4795                         vmcs_load(vmx->loaded_vmcs->vmcs);
4796                         preempt_enable();
4797                 }
4798                 vmx->nested.dirty_vmcs12 = true;
4799         }
4800
4801         return nested_vmx_succeed(vcpu);
4802 }
4803
4804 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4805 {
4806         vmx->nested.current_vmptr = vmptr;
4807         if (enable_shadow_vmcs) {
4808                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
4809                 vmcs_write64(VMCS_LINK_POINTER,
4810                              __pa(vmx->vmcs01.shadow_vmcs));
4811                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4812         }
4813         vmx->nested.dirty_vmcs12 = true;
4814 }
4815
4816 /* Emulate the VMPTRLD instruction */
4817 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4818 {
4819         struct vcpu_vmx *vmx = to_vmx(vcpu);
4820         gpa_t vmptr;
4821
4822         if (!nested_vmx_check_permission(vcpu))
4823                 return 1;
4824
4825         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4826                 return 1;
4827
4828         if (!page_address_valid(vcpu, vmptr))
4829                 return nested_vmx_failValid(vcpu,
4830                         VMXERR_VMPTRLD_INVALID_ADDRESS);
4831
4832         if (vmptr == vmx->nested.vmxon_ptr)
4833                 return nested_vmx_failValid(vcpu,
4834                         VMXERR_VMPTRLD_VMXON_POINTER);
4835
4836         /* Forbid normal VMPTRLD if Enlightened version was used */
4837         if (vmx->nested.hv_evmcs)
4838                 return 1;
4839
4840         if (vmx->nested.current_vmptr != vmptr) {
4841                 struct kvm_host_map map;
4842                 struct vmcs12 *new_vmcs12;
4843
4844                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
4845                         /*
4846                          * Reads from an unbacked page return all 1s,
4847                          * which means that the 32 bits located at the
4848                          * given physical address won't match the required
4849                          * VMCS12_REVISION identifier.
4850                          */
4851                         return nested_vmx_failValid(vcpu,
4852                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4853                 }
4854
4855                 new_vmcs12 = map.hva;
4856
4857                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4858                     (new_vmcs12->hdr.shadow_vmcs &&
4859                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4860                         kvm_vcpu_unmap(vcpu, &map, false);
4861                         return nested_vmx_failValid(vcpu,
4862                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4863                 }
4864
4865                 nested_release_vmcs12(vcpu);
4866
4867                 /*
4868                  * Load VMCS12 from guest memory since it is not already
4869                  * cached.
4870                  */
4871                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
4872                 kvm_vcpu_unmap(vcpu, &map, false);
4873
4874                 set_current_vmptr(vmx, vmptr);
4875         }
4876
4877         return nested_vmx_succeed(vcpu);
4878 }
4879
4880 /* Emulate the VMPTRST instruction */
4881 static int handle_vmptrst(struct kvm_vcpu *vcpu)
4882 {
4883         unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
4884         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4885         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
4886         struct x86_exception e;
4887         gva_t gva;
4888
4889         if (!nested_vmx_check_permission(vcpu))
4890                 return 1;
4891
4892         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
4893                 return 1;
4894
4895         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
4896                                 true, sizeof(gpa_t), &gva))
4897                 return 1;
4898         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
4899         if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
4900                                         sizeof(gpa_t), &e)) {
4901                 kvm_inject_page_fault(vcpu, &e);
4902                 return 1;
4903         }
4904         return nested_vmx_succeed(vcpu);
4905 }
4906
4907 /* Emulate the INVEPT instruction */
4908 static int handle_invept(struct kvm_vcpu *vcpu)
4909 {
4910         struct vcpu_vmx *vmx = to_vmx(vcpu);
4911         u32 vmx_instruction_info, types;
4912         unsigned long type;
4913         gva_t gva;
4914         struct x86_exception e;
4915         struct {
4916                 u64 eptp, gpa;
4917         } operand;
4918
4919         if (!(vmx->nested.msrs.secondary_ctls_high &
4920               SECONDARY_EXEC_ENABLE_EPT) ||
4921             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
4922                 kvm_queue_exception(vcpu, UD_VECTOR);
4923                 return 1;
4924         }
4925
4926         if (!nested_vmx_check_permission(vcpu))
4927                 return 1;
4928
4929         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4930         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4931
4932         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
4933
4934         if (type >= 32 || !(types & (1 << type)))
4935                 return nested_vmx_failValid(vcpu,
4936                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4937
4938         /* According to the Intel VMX instruction reference, the memory
4939          * operand is read even if it isn't needed (e.g., for type==global)
4940          */
4941         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4942                         vmx_instruction_info, false, sizeof(operand), &gva))
4943                 return 1;
4944         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4945                 kvm_inject_page_fault(vcpu, &e);
4946                 return 1;
4947         }
4948
4949         switch (type) {
4950         case VMX_EPT_EXTENT_GLOBAL:
4951         case VMX_EPT_EXTENT_CONTEXT:
4952         /*
4953          * TODO: Sync the necessary shadow EPT roots here, rather than
4954          * at the next emulated VM-entry.
4955          */
4956                 break;
4957         default:
4958                 BUG_ON(1);
4959                 break;
4960         }
4961
4962         return nested_vmx_succeed(vcpu);
4963 }
4964
4965 static int handle_invvpid(struct kvm_vcpu *vcpu)
4966 {
4967         struct vcpu_vmx *vmx = to_vmx(vcpu);
4968         u32 vmx_instruction_info;
4969         unsigned long type, types;
4970         gva_t gva;
4971         struct x86_exception e;
4972         struct {
4973                 u64 vpid;
4974                 u64 gla;
4975         } operand;
4976         u16 vpid02;
4977
4978         if (!(vmx->nested.msrs.secondary_ctls_high &
4979               SECONDARY_EXEC_ENABLE_VPID) ||
4980                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
4981                 kvm_queue_exception(vcpu, UD_VECTOR);
4982                 return 1;
4983         }
4984
4985         if (!nested_vmx_check_permission(vcpu))
4986                 return 1;
4987
4988         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4989         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4990
4991         types = (vmx->nested.msrs.vpid_caps &
4992                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
4993
4994         if (type >= 32 || !(types & (1 << type)))
4995                 return nested_vmx_failValid(vcpu,
4996                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4997
4998         /* according to the intel vmx instruction reference, the memory
4999          * operand is read even if it isn't needed (e.g., for type==global)
5000          */
5001         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5002                         vmx_instruction_info, false, sizeof(operand), &gva))
5003                 return 1;
5004         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5005                 kvm_inject_page_fault(vcpu, &e);
5006                 return 1;
5007         }
5008         if (operand.vpid >> 16)
5009                 return nested_vmx_failValid(vcpu,
5010                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5011
5012         vpid02 = nested_get_vpid02(vcpu);
5013         switch (type) {
5014         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5015                 if (!operand.vpid ||
5016                     is_noncanonical_address(operand.gla, vcpu))
5017                         return nested_vmx_failValid(vcpu,
5018                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5019                 if (cpu_has_vmx_invvpid_individual_addr()) {
5020                         __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
5021                                 vpid02, operand.gla);
5022                 } else
5023                         __vmx_flush_tlb(vcpu, vpid02, false);
5024                 break;
5025         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5026         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5027                 if (!operand.vpid)
5028                         return nested_vmx_failValid(vcpu,
5029                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5030                 __vmx_flush_tlb(vcpu, vpid02, false);
5031                 break;
5032         case VMX_VPID_EXTENT_ALL_CONTEXT:
5033                 __vmx_flush_tlb(vcpu, vpid02, false);
5034                 break;
5035         default:
5036                 WARN_ON_ONCE(1);
5037                 return kvm_skip_emulated_instruction(vcpu);
5038         }
5039
5040         return nested_vmx_succeed(vcpu);
5041 }
5042
5043 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5044                                      struct vmcs12 *vmcs12)
5045 {
5046         u32 index = kvm_rcx_read(vcpu);
5047         u64 address;
5048         bool accessed_dirty;
5049         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5050
5051         if (!nested_cpu_has_eptp_switching(vmcs12) ||
5052             !nested_cpu_has_ept(vmcs12))
5053                 return 1;
5054
5055         if (index >= VMFUNC_EPTP_ENTRIES)
5056                 return 1;
5057
5058
5059         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5060                                      &address, index * 8, 8))
5061                 return 1;
5062
5063         accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
5064
5065         /*
5066          * If the (L2) guest does a vmfunc to the currently
5067          * active ept pointer, we don't have to do anything else
5068          */
5069         if (vmcs12->ept_pointer != address) {
5070                 if (!valid_ept_address(vcpu, address))
5071                         return 1;
5072
5073                 kvm_mmu_unload(vcpu);
5074                 mmu->ept_ad = accessed_dirty;
5075                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5076                 vmcs12->ept_pointer = address;
5077                 /*
5078                  * TODO: Check what's the correct approach in case
5079                  * mmu reload fails. Currently, we just let the next
5080                  * reload potentially fail
5081                  */
5082                 kvm_mmu_reload(vcpu);
5083         }
5084
5085         return 0;
5086 }
5087
5088 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5089 {
5090         struct vcpu_vmx *vmx = to_vmx(vcpu);
5091         struct vmcs12 *vmcs12;
5092         u32 function = kvm_rax_read(vcpu);
5093
5094         /*
5095          * VMFUNC is only supported for nested guests, but we always enable the
5096          * secondary control for simplicity; for non-nested mode, fake that we
5097          * didn't by injecting #UD.
5098          */
5099         if (!is_guest_mode(vcpu)) {
5100                 kvm_queue_exception(vcpu, UD_VECTOR);
5101                 return 1;
5102         }
5103
5104         vmcs12 = get_vmcs12(vcpu);
5105         if ((vmcs12->vm_function_control & (1 << function)) == 0)
5106                 goto fail;
5107
5108         switch (function) {
5109         case 0:
5110                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5111                         goto fail;
5112                 break;
5113         default:
5114                 goto fail;
5115         }
5116         return kvm_skip_emulated_instruction(vcpu);
5117
5118 fail:
5119         nested_vmx_vmexit(vcpu, vmx->exit_reason,
5120                           vmcs_read32(VM_EXIT_INTR_INFO),
5121                           vmcs_readl(EXIT_QUALIFICATION));
5122         return 1;
5123 }
5124
5125
5126 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5127                                        struct vmcs12 *vmcs12)
5128 {
5129         unsigned long exit_qualification;
5130         gpa_t bitmap, last_bitmap;
5131         unsigned int port;
5132         int size;
5133         u8 b;
5134
5135         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5136                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5137
5138         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5139
5140         port = exit_qualification >> 16;
5141         size = (exit_qualification & 7) + 1;
5142
5143         last_bitmap = (gpa_t)-1;
5144         b = -1;
5145
5146         while (size > 0) {
5147                 if (port < 0x8000)
5148                         bitmap = vmcs12->io_bitmap_a;
5149                 else if (port < 0x10000)
5150                         bitmap = vmcs12->io_bitmap_b;
5151                 else
5152                         return true;
5153                 bitmap += (port & 0x7fff) / 8;
5154
5155                 if (last_bitmap != bitmap)
5156                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5157                                 return true;
5158                 if (b & (1 << (port & 7)))
5159                         return true;
5160
5161                 port++;
5162                 size--;
5163                 last_bitmap = bitmap;
5164         }
5165
5166         return false;
5167 }
5168
5169 /*
5170  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5171  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5172  * disinterest in the current event (read or write a specific MSR) by using an
5173  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5174  */
5175 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5176         struct vmcs12 *vmcs12, u32 exit_reason)
5177 {
5178         u32 msr_index = kvm_rcx_read(vcpu);
5179         gpa_t bitmap;
5180
5181         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5182                 return true;
5183
5184         /*
5185          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5186          * for the four combinations of read/write and low/high MSR numbers.
5187          * First we need to figure out which of the four to use:
5188          */
5189         bitmap = vmcs12->msr_bitmap;
5190         if (exit_reason == EXIT_REASON_MSR_WRITE)
5191                 bitmap += 2048;
5192         if (msr_index >= 0xc0000000) {
5193                 msr_index -= 0xc0000000;
5194                 bitmap += 1024;
5195         }
5196
5197         /* Then read the msr_index'th bit from this bitmap: */
5198         if (msr_index < 1024*8) {
5199                 unsigned char b;
5200                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5201                         return true;
5202                 return 1 & (b >> (msr_index & 7));
5203         } else
5204                 return true; /* let L1 handle the wrong parameter */
5205 }
5206
5207 /*
5208  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5209  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5210  * intercept (via guest_host_mask etc.) the current event.
5211  */
5212 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5213         struct vmcs12 *vmcs12)
5214 {
5215         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5216         int cr = exit_qualification & 15;
5217         int reg;
5218         unsigned long val;
5219
5220         switch ((exit_qualification >> 4) & 3) {
5221         case 0: /* mov to cr */
5222                 reg = (exit_qualification >> 8) & 15;
5223                 val = kvm_register_readl(vcpu, reg);
5224                 switch (cr) {
5225                 case 0:
5226                         if (vmcs12->cr0_guest_host_mask &
5227                             (val ^ vmcs12->cr0_read_shadow))
5228                                 return true;
5229                         break;
5230                 case 3:
5231                         if ((vmcs12->cr3_target_count >= 1 &&
5232                                         vmcs12->cr3_target_value0 == val) ||
5233                                 (vmcs12->cr3_target_count >= 2 &&
5234                                         vmcs12->cr3_target_value1 == val) ||
5235                                 (vmcs12->cr3_target_count >= 3 &&
5236                                         vmcs12->cr3_target_value2 == val) ||
5237                                 (vmcs12->cr3_target_count >= 4 &&
5238                                         vmcs12->cr3_target_value3 == val))
5239                                 return false;
5240                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5241                                 return true;
5242                         break;
5243                 case 4:
5244                         if (vmcs12->cr4_guest_host_mask &
5245                             (vmcs12->cr4_read_shadow ^ val))
5246                                 return true;
5247                         break;
5248                 case 8:
5249                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5250                                 return true;
5251                         break;
5252                 }
5253                 break;
5254         case 2: /* clts */
5255                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5256                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5257                         return true;
5258                 break;
5259         case 1: /* mov from cr */
5260                 switch (cr) {
5261                 case 3:
5262                         if (vmcs12->cpu_based_vm_exec_control &
5263                             CPU_BASED_CR3_STORE_EXITING)
5264                                 return true;
5265                         break;
5266                 case 8:
5267                         if (vmcs12->cpu_based_vm_exec_control &
5268                             CPU_BASED_CR8_STORE_EXITING)
5269                                 return true;
5270                         break;
5271                 }
5272                 break;
5273         case 3: /* lmsw */
5274                 /*
5275                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5276                  * cr0. Other attempted changes are ignored, with no exit.
5277                  */
5278                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5279                 if (vmcs12->cr0_guest_host_mask & 0xe &
5280                     (val ^ vmcs12->cr0_read_shadow))
5281                         return true;
5282                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5283                     !(vmcs12->cr0_read_shadow & 0x1) &&
5284                     (val & 0x1))
5285                         return true;
5286                 break;
5287         }
5288         return false;
5289 }
5290
5291 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5292         struct vmcs12 *vmcs12, gpa_t bitmap)
5293 {
5294         u32 vmx_instruction_info;
5295         unsigned long field;
5296         u8 b;
5297
5298         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5299                 return true;
5300
5301         /* Decode instruction info and find the field to access */
5302         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5303         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5304
5305         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5306         if (field >> 15)
5307                 return true;
5308
5309         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5310                 return true;
5311
5312         return 1 & (b >> (field & 7));
5313 }
5314
5315 /*
5316  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5317  * should handle it ourselves in L0 (and then continue L2). Only call this
5318  * when in is_guest_mode (L2).
5319  */
5320 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5321 {
5322         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5323         struct vcpu_vmx *vmx = to_vmx(vcpu);
5324         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5325
5326         if (vmx->nested.nested_run_pending)
5327                 return false;
5328
5329         if (unlikely(vmx->fail)) {
5330                 trace_kvm_nested_vmenter_failed(
5331                         "hardware VM-instruction error: ",
5332                         vmcs_read32(VM_INSTRUCTION_ERROR));
5333                 return true;
5334         }
5335
5336         /*
5337          * The host physical addresses of some pages of guest memory
5338          * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5339          * Page). The CPU may write to these pages via their host
5340          * physical address while L2 is running, bypassing any
5341          * address-translation-based dirty tracking (e.g. EPT write
5342          * protection).
5343          *
5344          * Mark them dirty on every exit from L2 to prevent them from
5345          * getting out of sync with dirty tracking.
5346          */
5347         nested_mark_vmcs12_pages_dirty(vcpu);
5348
5349         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5350                                 vmcs_readl(EXIT_QUALIFICATION),
5351                                 vmx->idt_vectoring_info,
5352                                 intr_info,
5353                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5354                                 KVM_ISA_VMX);
5355
5356         switch (exit_reason) {
5357         case EXIT_REASON_EXCEPTION_NMI:
5358                 if (is_nmi(intr_info))
5359                         return false;
5360                 else if (is_page_fault(intr_info))
5361                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5362                 else if (is_debug(intr_info) &&
5363                          vcpu->guest_debug &
5364                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5365                         return false;
5366                 else if (is_breakpoint(intr_info) &&
5367                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5368                         return false;
5369                 return vmcs12->exception_bitmap &
5370                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5371         case EXIT_REASON_EXTERNAL_INTERRUPT:
5372                 return false;
5373         case EXIT_REASON_TRIPLE_FAULT:
5374                 return true;
5375         case EXIT_REASON_PENDING_INTERRUPT:
5376                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
5377         case EXIT_REASON_NMI_WINDOW:
5378                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
5379         case EXIT_REASON_TASK_SWITCH:
5380                 return true;
5381         case EXIT_REASON_CPUID:
5382                 return true;
5383         case EXIT_REASON_HLT:
5384                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5385         case EXIT_REASON_INVD:
5386                 return true;
5387         case EXIT_REASON_INVLPG:
5388                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5389         case EXIT_REASON_RDPMC:
5390                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5391         case EXIT_REASON_RDRAND:
5392                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5393         case EXIT_REASON_RDSEED:
5394                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5395         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5396                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5397         case EXIT_REASON_VMREAD:
5398                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5399                         vmcs12->vmread_bitmap);
5400         case EXIT_REASON_VMWRITE:
5401                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5402                         vmcs12->vmwrite_bitmap);
5403         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5404         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5405         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5406         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5407         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5408                 /*
5409                  * VMX instructions trap unconditionally. This allows L1 to
5410                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5411                  */
5412                 return true;
5413         case EXIT_REASON_CR_ACCESS:
5414                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5415         case EXIT_REASON_DR_ACCESS:
5416                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5417         case EXIT_REASON_IO_INSTRUCTION:
5418                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5419         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5420                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5421         case EXIT_REASON_MSR_READ:
5422         case EXIT_REASON_MSR_WRITE:
5423                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5424         case EXIT_REASON_INVALID_STATE:
5425                 return true;
5426         case EXIT_REASON_MWAIT_INSTRUCTION:
5427                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5428         case EXIT_REASON_MONITOR_TRAP_FLAG:
5429                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5430         case EXIT_REASON_MONITOR_INSTRUCTION:
5431                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5432         case EXIT_REASON_PAUSE_INSTRUCTION:
5433                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5434                         nested_cpu_has2(vmcs12,
5435                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5436         case EXIT_REASON_MCE_DURING_VMENTRY:
5437                 return false;
5438         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5439                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5440         case EXIT_REASON_APIC_ACCESS:
5441         case EXIT_REASON_APIC_WRITE:
5442         case EXIT_REASON_EOI_INDUCED:
5443                 /*
5444                  * The controls for "virtualize APIC accesses," "APIC-
5445                  * register virtualization," and "virtual-interrupt
5446                  * delivery" only come from vmcs12.
5447                  */
5448                 return true;
5449         case EXIT_REASON_EPT_VIOLATION:
5450                 /*
5451                  * L0 always deals with the EPT violation. If nested EPT is
5452                  * used, and the nested mmu code discovers that the address is
5453                  * missing in the guest EPT table (EPT12), the EPT violation
5454                  * will be injected with nested_ept_inject_page_fault()
5455                  */
5456                 return false;
5457         case EXIT_REASON_EPT_MISCONFIG:
5458                 /*
5459                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5460                  * table (shadow on EPT) or a merged EPT table that L0 built
5461                  * (EPT on EPT). So any problems with the structure of the
5462                  * table is L0's fault.
5463                  */
5464                 return false;
5465         case EXIT_REASON_INVPCID:
5466                 return
5467                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5468                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5469         case EXIT_REASON_WBINVD:
5470                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5471         case EXIT_REASON_XSETBV:
5472                 return true;
5473         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5474                 /*
5475                  * This should never happen, since it is not possible to
5476                  * set XSS to a non-zero value---neither in L1 nor in L2.
5477                  * If if it were, XSS would have to be checked against
5478                  * the XSS exit bitmap in vmcs12.
5479                  */
5480                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5481         case EXIT_REASON_PREEMPTION_TIMER:
5482                 return false;
5483         case EXIT_REASON_PML_FULL:
5484                 /* We emulate PML support to L1. */
5485                 return false;
5486         case EXIT_REASON_VMFUNC:
5487                 /* VM functions are emulated through L2->L0 vmexits. */
5488                 return false;
5489         case EXIT_REASON_ENCLS:
5490                 /* SGX is never exposed to L1 */
5491                 return false;
5492         case EXIT_REASON_UMWAIT:
5493         case EXIT_REASON_TPAUSE:
5494                 return nested_cpu_has2(vmcs12,
5495                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5496         default:
5497                 return true;
5498         }
5499 }
5500
5501
5502 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5503                                 struct kvm_nested_state __user *user_kvm_nested_state,
5504                                 u32 user_data_size)
5505 {
5506         struct vcpu_vmx *vmx;
5507         struct vmcs12 *vmcs12;
5508         struct kvm_nested_state kvm_state = {
5509                 .flags = 0,
5510                 .format = KVM_STATE_NESTED_FORMAT_VMX,
5511                 .size = sizeof(kvm_state),
5512                 .hdr.vmx.vmxon_pa = -1ull,
5513                 .hdr.vmx.vmcs12_pa = -1ull,
5514         };
5515         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5516                 &user_kvm_nested_state->data.vmx[0];
5517
5518         if (!vcpu)
5519                 return kvm_state.size + sizeof(*user_vmx_nested_state);
5520
5521         vmx = to_vmx(vcpu);
5522         vmcs12 = get_vmcs12(vcpu);
5523
5524         if (nested_vmx_allowed(vcpu) &&
5525             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5526                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5527                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5528
5529                 if (vmx_has_valid_vmcs12(vcpu)) {
5530                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5531
5532                         if (vmx->nested.hv_evmcs)
5533                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5534
5535                         if (is_guest_mode(vcpu) &&
5536                             nested_cpu_has_shadow_vmcs(vmcs12) &&
5537                             vmcs12->vmcs_link_pointer != -1ull)
5538                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
5539                 }
5540
5541                 if (vmx->nested.smm.vmxon)
5542                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5543
5544                 if (vmx->nested.smm.guest_mode)
5545                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5546
5547                 if (is_guest_mode(vcpu)) {
5548                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5549
5550                         if (vmx->nested.nested_run_pending)
5551                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5552                 }
5553         }
5554
5555         if (user_data_size < kvm_state.size)
5556                 goto out;
5557
5558         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5559                 return -EFAULT;
5560
5561         if (!vmx_has_valid_vmcs12(vcpu))
5562                 goto out;
5563
5564         /*
5565          * When running L2, the authoritative vmcs12 state is in the
5566          * vmcs02. When running L1, the authoritative vmcs12 state is
5567          * in the shadow or enlightened vmcs linked to vmcs01, unless
5568          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
5569          * vmcs12 state is in the vmcs12 already.
5570          */
5571         if (is_guest_mode(vcpu)) {
5572                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5573                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5574         } else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
5575                 if (vmx->nested.hv_evmcs)
5576                         copy_enlightened_to_vmcs12(vmx);
5577                 else if (enable_shadow_vmcs)
5578                         copy_shadow_to_vmcs12(vmx);
5579         }
5580
5581         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
5582         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
5583
5584         /*
5585          * Copy over the full allocated size of vmcs12 rather than just the size
5586          * of the struct.
5587          */
5588         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
5589                 return -EFAULT;
5590
5591         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5592             vmcs12->vmcs_link_pointer != -1ull) {
5593                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
5594                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5595                         return -EFAULT;
5596         }
5597
5598 out:
5599         return kvm_state.size;
5600 }
5601
5602 /*
5603  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5604  */
5605 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5606 {
5607         if (is_guest_mode(vcpu)) {
5608                 to_vmx(vcpu)->nested.nested_run_pending = 0;
5609                 nested_vmx_vmexit(vcpu, -1, 0, 0);
5610         }
5611         free_nested(vcpu);
5612 }
5613
5614 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5615                                 struct kvm_nested_state __user *user_kvm_nested_state,
5616                                 struct kvm_nested_state *kvm_state)
5617 {
5618         struct vcpu_vmx *vmx = to_vmx(vcpu);
5619         struct vmcs12 *vmcs12;
5620         u32 exit_qual;
5621         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5622                 &user_kvm_nested_state->data.vmx[0];
5623         int ret;
5624
5625         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
5626                 return -EINVAL;
5627
5628         if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
5629                 if (kvm_state->hdr.vmx.smm.flags)
5630                         return -EINVAL;
5631
5632                 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
5633                         return -EINVAL;
5634
5635                 /*
5636                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
5637                  * enable eVMCS capability on vCPU. However, since then
5638                  * code was changed such that flag signals vmcs12 should
5639                  * be copied into eVMCS in guest memory.
5640                  *
5641                  * To preserve backwards compatability, allow user
5642                  * to set this flag even when there is no VMXON region.
5643                  */
5644                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
5645                         return -EINVAL;
5646         } else {
5647                 if (!nested_vmx_allowed(vcpu))
5648                         return -EINVAL;
5649
5650                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
5651                         return -EINVAL;
5652         }
5653
5654         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5655             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5656                 return -EINVAL;
5657
5658         if (kvm_state->hdr.vmx.smm.flags &
5659             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5660                 return -EINVAL;
5661
5662         /*
5663          * SMM temporarily disables VMX, so we cannot be in guest mode,
5664          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5665          * must be zero.
5666          */
5667         if (is_smm(vcpu) ?
5668                 (kvm_state->flags &
5669                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
5670                 : kvm_state->hdr.vmx.smm.flags)
5671                 return -EINVAL;
5672
5673         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5674             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5675                 return -EINVAL;
5676
5677         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
5678                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
5679                         return -EINVAL;
5680
5681         vmx_leave_nested(vcpu);
5682
5683         if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
5684                 return 0;
5685
5686         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
5687         ret = enter_vmx_operation(vcpu);
5688         if (ret)
5689                 return ret;
5690
5691         /* Empty 'VMXON' state is permitted */
5692         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
5693                 return 0;
5694
5695         if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
5696                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
5697                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
5698                         return -EINVAL;
5699
5700                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
5701         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5702                 /*
5703                  * Sync eVMCS upon entry as we may not have
5704                  * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5705                  */
5706                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5707         } else {
5708                 return -EINVAL;
5709         }
5710
5711         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5712                 vmx->nested.smm.vmxon = true;
5713                 vmx->nested.vmxon = false;
5714
5715                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5716                         vmx->nested.smm.guest_mode = true;
5717         }
5718
5719         vmcs12 = get_vmcs12(vcpu);
5720         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
5721                 return -EFAULT;
5722
5723         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5724                 return -EINVAL;
5725
5726         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5727                 return 0;
5728
5729         vmx->nested.nested_run_pending =
5730                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5731
5732         ret = -EINVAL;
5733         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5734             vmcs12->vmcs_link_pointer != -1ull) {
5735                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5736
5737                 if (kvm_state->size <
5738                     sizeof(*kvm_state) +
5739                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
5740                         goto error_guest_mode;
5741
5742                 if (copy_from_user(shadow_vmcs12,
5743                                    user_vmx_nested_state->shadow_vmcs12,
5744                                    sizeof(*shadow_vmcs12))) {
5745                         ret = -EFAULT;
5746                         goto error_guest_mode;
5747                 }
5748
5749                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5750                     !shadow_vmcs12->hdr.shadow_vmcs)
5751                         goto error_guest_mode;
5752         }
5753
5754         if (nested_vmx_check_controls(vcpu, vmcs12) ||
5755             nested_vmx_check_host_state(vcpu, vmcs12) ||
5756             nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
5757                 goto error_guest_mode;
5758
5759         vmx->nested.dirty_vmcs12 = true;
5760         ret = nested_vmx_enter_non_root_mode(vcpu, false);
5761         if (ret)
5762                 goto error_guest_mode;
5763
5764         return 0;
5765
5766 error_guest_mode:
5767         vmx->nested.nested_run_pending = 0;
5768         return ret;
5769 }
5770
5771 void nested_vmx_vcpu_setup(void)
5772 {
5773         if (enable_shadow_vmcs) {
5774                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5775                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5776         }
5777 }
5778
5779 /*
5780  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5781  * returned for the various VMX controls MSRs when nested VMX is enabled.
5782  * The same values should also be used to verify that vmcs12 control fields are
5783  * valid during nested entry from L1 to L2.
5784  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5785  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5786  * bit in the high half is on if the corresponding bit in the control field
5787  * may be on. See also vmx_control_verify().
5788  */
5789 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5790                                 bool apicv)
5791 {
5792         /*
5793          * Note that as a general rule, the high half of the MSRs (bits in
5794          * the control fields which may be 1) should be initialized by the
5795          * intersection of the underlying hardware's MSR (i.e., features which
5796          * can be supported) and the list of features we want to expose -
5797          * because they are known to be properly supported in our code.
5798          * Also, usually, the low half of the MSRs (bits which must be 1) can
5799          * be set to 0, meaning that L1 may turn off any of these bits. The
5800          * reason is that if one of these bits is necessary, it will appear
5801          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5802          * fields of vmcs01 and vmcs02, will turn these bits off - and
5803          * nested_vmx_exit_reflected() will not pass related exits to L1.
5804          * These rules have exceptions below.
5805          */
5806
5807         /* pin-based controls */
5808         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5809                 msrs->pinbased_ctls_low,
5810                 msrs->pinbased_ctls_high);
5811         msrs->pinbased_ctls_low |=
5812                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5813         msrs->pinbased_ctls_high &=
5814                 PIN_BASED_EXT_INTR_MASK |
5815                 PIN_BASED_NMI_EXITING |
5816                 PIN_BASED_VIRTUAL_NMIS |
5817                 (apicv ? PIN_BASED_POSTED_INTR : 0);
5818         msrs->pinbased_ctls_high |=
5819                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5820                 PIN_BASED_VMX_PREEMPTION_TIMER;
5821
5822         /* exit controls */
5823         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5824                 msrs->exit_ctls_low,
5825                 msrs->exit_ctls_high);
5826         msrs->exit_ctls_low =
5827                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5828
5829         msrs->exit_ctls_high &=
5830 #ifdef CONFIG_X86_64
5831                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
5832 #endif
5833                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5834         msrs->exit_ctls_high |=
5835                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5836                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5837                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5838
5839         /* We support free control of debug control saving. */
5840         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5841
5842         /* entry controls */
5843         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5844                 msrs->entry_ctls_low,
5845                 msrs->entry_ctls_high);
5846         msrs->entry_ctls_low =
5847                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5848         msrs->entry_ctls_high &=
5849 #ifdef CONFIG_X86_64
5850                 VM_ENTRY_IA32E_MODE |
5851 #endif
5852                 VM_ENTRY_LOAD_IA32_PAT;
5853         msrs->entry_ctls_high |=
5854                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5855
5856         /* We support free control of debug control loading. */
5857         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5858
5859         /* cpu-based controls */
5860         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5861                 msrs->procbased_ctls_low,
5862                 msrs->procbased_ctls_high);
5863         msrs->procbased_ctls_low =
5864                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5865         msrs->procbased_ctls_high &=
5866                 CPU_BASED_VIRTUAL_INTR_PENDING |
5867                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
5868                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
5869                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
5870                 CPU_BASED_CR3_STORE_EXITING |
5871 #ifdef CONFIG_X86_64
5872                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
5873 #endif
5874                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5875                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
5876                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
5877                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
5878                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
5879         /*
5880          * We can allow some features even when not supported by the
5881          * hardware. For example, L1 can specify an MSR bitmap - and we
5882          * can use it to avoid exits to L1 - even when L0 runs L2
5883          * without MSR bitmaps.
5884          */
5885         msrs->procbased_ctls_high |=
5886                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5887                 CPU_BASED_USE_MSR_BITMAPS;
5888
5889         /* We support free control of CR3 access interception. */
5890         msrs->procbased_ctls_low &=
5891                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
5892
5893         /*
5894          * secondary cpu-based controls.  Do not include those that
5895          * depend on CPUID bits, they are added later by vmx_cpuid_update.
5896          */
5897         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
5898                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
5899                       msrs->secondary_ctls_low,
5900                       msrs->secondary_ctls_high);
5901
5902         msrs->secondary_ctls_low = 0;
5903         msrs->secondary_ctls_high &=
5904                 SECONDARY_EXEC_DESC |
5905                 SECONDARY_EXEC_RDTSCP |
5906                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5907                 SECONDARY_EXEC_WBINVD_EXITING |
5908                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5909                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
5910                 SECONDARY_EXEC_RDRAND_EXITING |
5911                 SECONDARY_EXEC_ENABLE_INVPCID |
5912                 SECONDARY_EXEC_RDSEED_EXITING |
5913                 SECONDARY_EXEC_XSAVES;
5914
5915         /*
5916          * We can emulate "VMCS shadowing," even if the hardware
5917          * doesn't support it.
5918          */
5919         msrs->secondary_ctls_high |=
5920                 SECONDARY_EXEC_SHADOW_VMCS;
5921
5922         if (enable_ept) {
5923                 /* nested EPT: emulate EPT also to L1 */
5924                 msrs->secondary_ctls_high |=
5925                         SECONDARY_EXEC_ENABLE_EPT;
5926                 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
5927                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
5928                 if (cpu_has_vmx_ept_execute_only())
5929                         msrs->ept_caps |=
5930                                 VMX_EPT_EXECUTE_ONLY_BIT;
5931                 msrs->ept_caps &= ept_caps;
5932                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
5933                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
5934                         VMX_EPT_1GB_PAGE_BIT;
5935                 if (enable_ept_ad_bits) {
5936                         msrs->secondary_ctls_high |=
5937                                 SECONDARY_EXEC_ENABLE_PML;
5938                         msrs->ept_caps |= VMX_EPT_AD_BIT;
5939                 }
5940         }
5941
5942         if (cpu_has_vmx_vmfunc()) {
5943                 msrs->secondary_ctls_high |=
5944                         SECONDARY_EXEC_ENABLE_VMFUNC;
5945                 /*
5946                  * Advertise EPTP switching unconditionally
5947                  * since we emulate it
5948                  */
5949                 if (enable_ept)
5950                         msrs->vmfunc_controls =
5951                                 VMX_VMFUNC_EPTP_SWITCHING;
5952         }
5953
5954         /*
5955          * Old versions of KVM use the single-context version without
5956          * checking for support, so declare that it is supported even
5957          * though it is treated as global context.  The alternative is
5958          * not failing the single-context invvpid, and it is worse.
5959          */
5960         if (enable_vpid) {
5961                 msrs->secondary_ctls_high |=
5962                         SECONDARY_EXEC_ENABLE_VPID;
5963                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
5964                         VMX_VPID_EXTENT_SUPPORTED_MASK;
5965         }
5966
5967         if (enable_unrestricted_guest)
5968                 msrs->secondary_ctls_high |=
5969                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
5970
5971         if (flexpriority_enabled)
5972                 msrs->secondary_ctls_high |=
5973                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5974
5975         /* miscellaneous data */
5976         rdmsr(MSR_IA32_VMX_MISC,
5977                 msrs->misc_low,
5978                 msrs->misc_high);
5979         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
5980         msrs->misc_low |=
5981                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
5982                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
5983                 VMX_MISC_ACTIVITY_HLT;
5984         msrs->misc_high = 0;
5985
5986         /*
5987          * This MSR reports some information about VMX support. We
5988          * should return information about the VMX we emulate for the
5989          * guest, and the VMCS structure we give it - not about the
5990          * VMX support of the underlying hardware.
5991          */
5992         msrs->basic =
5993                 VMCS12_REVISION |
5994                 VMX_BASIC_TRUE_CTLS |
5995                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
5996                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
5997
5998         if (cpu_has_vmx_basic_inout())
5999                 msrs->basic |= VMX_BASIC_INOUT;
6000
6001         /*
6002          * These MSRs specify bits which the guest must keep fixed on
6003          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6004          * We picked the standard core2 setting.
6005          */
6006 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6007 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6008         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6009         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6010
6011         /* These MSRs specify bits which the guest must keep fixed off. */
6012         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6013         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6014
6015         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6016         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6017 }
6018
6019 void nested_vmx_hardware_unsetup(void)
6020 {
6021         int i;
6022
6023         if (enable_shadow_vmcs) {
6024                 for (i = 0; i < VMX_BITMAP_NR; i++)
6025                         free_page((unsigned long)vmx_bitmap[i]);
6026         }
6027 }
6028
6029 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6030 {
6031         int i;
6032
6033         if (!cpu_has_vmx_shadow_vmcs())
6034                 enable_shadow_vmcs = 0;
6035         if (enable_shadow_vmcs) {
6036                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6037                         /*
6038                          * The vmx_bitmap is not tied to a VM and so should
6039                          * not be charged to a memcg.
6040                          */
6041                         vmx_bitmap[i] = (unsigned long *)
6042                                 __get_free_page(GFP_KERNEL);
6043                         if (!vmx_bitmap[i]) {
6044                                 nested_vmx_hardware_unsetup();
6045                                 return -ENOMEM;
6046                         }
6047                 }
6048
6049                 init_vmcs_shadow_fields();
6050         }
6051
6052         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear,
6053         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch,
6054         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld,
6055         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst,
6056         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread,
6057         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume,
6058         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite,
6059         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff,
6060         exit_handlers[EXIT_REASON_VMON]         = handle_vmon,
6061         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept,
6062         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid,
6063         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc,
6064
6065         kvm_x86_ops->check_nested_events = vmx_check_nested_events;
6066         kvm_x86_ops->get_nested_state = vmx_get_nested_state;
6067         kvm_x86_ops->set_nested_state = vmx_set_nested_state;
6068         kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
6069         kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
6070         kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
6071
6072         return 0;
6073 }