Merge branches 'kvm-arm64/pt-new' and 'kvm-arm64/pmu-5.9' into kvmarm-master/next
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "trace.h"
15 #include "x86.h"
16
17 static bool __read_mostly enable_shadow_vmcs = 1;
18 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
19
20 static bool __read_mostly nested_early_check = 0;
21 module_param(nested_early_check, bool, S_IRUGO);
22
23 #define CC(consistency_check)                                           \
24 ({                                                                      \
25         bool failed = (consistency_check);                              \
26         if (failed)                                                     \
27                 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
28         failed;                                                         \
29 })
30
31 /*
32  * Hyper-V requires all of these, so mark them as supported even though
33  * they are just treated the same as all-context.
34  */
35 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
36         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
37         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
38         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
39         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
40
41 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
42
43 enum {
44         VMX_VMREAD_BITMAP,
45         VMX_VMWRITE_BITMAP,
46         VMX_BITMAP_NR
47 };
48 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
49
50 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
51 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
52
53 struct shadow_vmcs_field {
54         u16     encoding;
55         u16     offset;
56 };
57 static struct shadow_vmcs_field shadow_read_only_fields[] = {
58 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
59 #include "vmcs_shadow_fields.h"
60 };
61 static int max_shadow_read_only_fields =
62         ARRAY_SIZE(shadow_read_only_fields);
63
64 static struct shadow_vmcs_field shadow_read_write_fields[] = {
65 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
66 #include "vmcs_shadow_fields.h"
67 };
68 static int max_shadow_read_write_fields =
69         ARRAY_SIZE(shadow_read_write_fields);
70
71 static void init_vmcs_shadow_fields(void)
72 {
73         int i, j;
74
75         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
76         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
77
78         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
79                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
80                 u16 field = entry.encoding;
81
82                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
83                     (i + 1 == max_shadow_read_only_fields ||
84                      shadow_read_only_fields[i + 1].encoding != field + 1))
85                         pr_err("Missing field from shadow_read_only_field %x\n",
86                                field + 1);
87
88                 clear_bit(field, vmx_vmread_bitmap);
89                 if (field & 1)
90 #ifdef CONFIG_X86_64
91                         continue;
92 #else
93                         entry.offset += sizeof(u32);
94 #endif
95                 shadow_read_only_fields[j++] = entry;
96         }
97         max_shadow_read_only_fields = j;
98
99         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
100                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
101                 u16 field = entry.encoding;
102
103                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
104                     (i + 1 == max_shadow_read_write_fields ||
105                      shadow_read_write_fields[i + 1].encoding != field + 1))
106                         pr_err("Missing field from shadow_read_write_field %x\n",
107                                field + 1);
108
109                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
110                           field <= GUEST_TR_AR_BYTES,
111                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
112
113                 /*
114                  * PML and the preemption timer can be emulated, but the
115                  * processor cannot vmwrite to fields that don't exist
116                  * on bare metal.
117                  */
118                 switch (field) {
119                 case GUEST_PML_INDEX:
120                         if (!cpu_has_vmx_pml())
121                                 continue;
122                         break;
123                 case VMX_PREEMPTION_TIMER_VALUE:
124                         if (!cpu_has_vmx_preemption_timer())
125                                 continue;
126                         break;
127                 case GUEST_INTR_STATUS:
128                         if (!cpu_has_vmx_apicv())
129                                 continue;
130                         break;
131                 default:
132                         break;
133                 }
134
135                 clear_bit(field, vmx_vmwrite_bitmap);
136                 clear_bit(field, vmx_vmread_bitmap);
137                 if (field & 1)
138 #ifdef CONFIG_X86_64
139                         continue;
140 #else
141                         entry.offset += sizeof(u32);
142 #endif
143                 shadow_read_write_fields[j++] = entry;
144         }
145         max_shadow_read_write_fields = j;
146 }
147
148 /*
149  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
150  * set the success or error code of an emulated VMX instruction (as specified
151  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
152  * instruction.
153  */
154 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
155 {
156         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
157                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
158                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
159         return kvm_skip_emulated_instruction(vcpu);
160 }
161
162 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
163 {
164         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
166                             X86_EFLAGS_SF | X86_EFLAGS_OF))
167                         | X86_EFLAGS_CF);
168         return kvm_skip_emulated_instruction(vcpu);
169 }
170
171 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
172                                 u32 vm_instruction_error)
173 {
174         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
175                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
176                             X86_EFLAGS_SF | X86_EFLAGS_OF))
177                         | X86_EFLAGS_ZF);
178         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
179         /*
180          * We don't need to force a shadow sync because
181          * VM_INSTRUCTION_ERROR is not shadowed
182          */
183         return kvm_skip_emulated_instruction(vcpu);
184 }
185
186 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
187 {
188         struct vcpu_vmx *vmx = to_vmx(vcpu);
189
190         /*
191          * failValid writes the error number to the current VMCS, which
192          * can't be done if there isn't a current VMCS.
193          */
194         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
195                 return nested_vmx_failInvalid(vcpu);
196
197         return nested_vmx_failValid(vcpu, vm_instruction_error);
198 }
199
200 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
201 {
202         /* TODO: not to reset guest simply here. */
203         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
204         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
205 }
206
207 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
208 {
209         return fixed_bits_valid(control, low, high);
210 }
211
212 static inline u64 vmx_control_msr(u32 low, u32 high)
213 {
214         return low | ((u64)high << 32);
215 }
216
217 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
218 {
219         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
220         vmcs_write64(VMCS_LINK_POINTER, -1ull);
221         vmx->nested.need_vmcs12_to_shadow_sync = false;
222 }
223
224 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
225 {
226         struct vcpu_vmx *vmx = to_vmx(vcpu);
227
228         if (!vmx->nested.hv_evmcs)
229                 return;
230
231         kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
232         vmx->nested.hv_evmcs_vmptr = 0;
233         vmx->nested.hv_evmcs = NULL;
234 }
235
236 /*
237  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
238  * just stops using VMX.
239  */
240 static void free_nested(struct kvm_vcpu *vcpu)
241 {
242         struct vcpu_vmx *vmx = to_vmx(vcpu);
243
244         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
245                 return;
246
247         kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
248
249         vmx->nested.vmxon = false;
250         vmx->nested.smm.vmxon = false;
251         free_vpid(vmx->nested.vpid02);
252         vmx->nested.posted_intr_nv = -1;
253         vmx->nested.current_vmptr = -1ull;
254         if (enable_shadow_vmcs) {
255                 vmx_disable_shadow_vmcs(vmx);
256                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
257                 free_vmcs(vmx->vmcs01.shadow_vmcs);
258                 vmx->vmcs01.shadow_vmcs = NULL;
259         }
260         kfree(vmx->nested.cached_vmcs12);
261         vmx->nested.cached_vmcs12 = NULL;
262         kfree(vmx->nested.cached_shadow_vmcs12);
263         vmx->nested.cached_shadow_vmcs12 = NULL;
264         /* Unpin physical memory we referred to in the vmcs02 */
265         if (vmx->nested.apic_access_page) {
266                 kvm_release_page_clean(vmx->nested.apic_access_page);
267                 vmx->nested.apic_access_page = NULL;
268         }
269         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
270         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
271         vmx->nested.pi_desc = NULL;
272
273         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
274
275         nested_release_evmcs(vcpu);
276
277         free_loaded_vmcs(&vmx->nested.vmcs02);
278 }
279
280 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
281                                      struct loaded_vmcs *prev)
282 {
283         struct vmcs_host_state *dest, *src;
284
285         if (unlikely(!vmx->guest_state_loaded))
286                 return;
287
288         src = &prev->host_state;
289         dest = &vmx->loaded_vmcs->host_state;
290
291         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
292         dest->ldt_sel = src->ldt_sel;
293 #ifdef CONFIG_X86_64
294         dest->ds_sel = src->ds_sel;
295         dest->es_sel = src->es_sel;
296 #endif
297 }
298
299 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
300 {
301         struct vcpu_vmx *vmx = to_vmx(vcpu);
302         struct loaded_vmcs *prev;
303         int cpu;
304
305         if (vmx->loaded_vmcs == vmcs)
306                 return;
307
308         cpu = get_cpu();
309         prev = vmx->loaded_vmcs;
310         vmx->loaded_vmcs = vmcs;
311         vmx_vcpu_load_vmcs(vcpu, cpu, prev);
312         vmx_sync_vmcs_host_state(vmx, prev);
313         put_cpu();
314
315         vmx_register_cache_reset(vcpu);
316 }
317
318 /*
319  * Ensure that the current vmcs of the logical processor is the
320  * vmcs01 of the vcpu before calling free_nested().
321  */
322 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
323 {
324         vcpu_load(vcpu);
325         vmx_leave_nested(vcpu);
326         vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
327         free_nested(vcpu);
328         vcpu_put(vcpu);
329 }
330
331 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
332                 struct x86_exception *fault)
333 {
334         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
335         struct vcpu_vmx *vmx = to_vmx(vcpu);
336         u32 vm_exit_reason;
337         unsigned long exit_qualification = vcpu->arch.exit_qualification;
338
339         if (vmx->nested.pml_full) {
340                 vm_exit_reason = EXIT_REASON_PML_FULL;
341                 vmx->nested.pml_full = false;
342                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
343         } else if (fault->error_code & PFERR_RSVD_MASK)
344                 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
345         else
346                 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
347
348         nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
349         vmcs12->guest_physical_address = fault->address;
350 }
351
352 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
353 {
354         WARN_ON(mmu_is_nested(vcpu));
355
356         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
357         kvm_init_shadow_ept_mmu(vcpu,
358                         to_vmx(vcpu)->nested.msrs.ept_caps &
359                         VMX_EPT_EXECUTE_ONLY_BIT,
360                         nested_ept_ad_enabled(vcpu),
361                         nested_ept_get_eptp(vcpu));
362         vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
363         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
364         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
365
366         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
367 }
368
369 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
370 {
371         vcpu->arch.mmu = &vcpu->arch.root_mmu;
372         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
373 }
374
375 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
376                                             u16 error_code)
377 {
378         bool inequality, bit;
379
380         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
381         inequality =
382                 (error_code & vmcs12->page_fault_error_code_mask) !=
383                  vmcs12->page_fault_error_code_match;
384         return inequality ^ bit;
385 }
386
387
388 /*
389  * KVM wants to inject page-faults which it got to the guest. This function
390  * checks whether in a nested guest, we need to inject them to L1 or L2.
391  */
392 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
393 {
394         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
395         unsigned int nr = vcpu->arch.exception.nr;
396         bool has_payload = vcpu->arch.exception.has_payload;
397         unsigned long payload = vcpu->arch.exception.payload;
398
399         if (nr == PF_VECTOR) {
400                 if (vcpu->arch.exception.nested_apf) {
401                         *exit_qual = vcpu->arch.apf.nested_apf_token;
402                         return 1;
403                 }
404                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
405                                                     vcpu->arch.exception.error_code)) {
406                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
407                         return 1;
408                 }
409         } else if (vmcs12->exception_bitmap & (1u << nr)) {
410                 if (nr == DB_VECTOR) {
411                         if (!has_payload) {
412                                 payload = vcpu->arch.dr6;
413                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
414                                 payload ^= DR6_RTM;
415                         }
416                         *exit_qual = payload;
417                 } else
418                         *exit_qual = 0;
419                 return 1;
420         }
421
422         return 0;
423 }
424
425
426 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
427                 struct x86_exception *fault)
428 {
429         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
430
431         WARN_ON(!is_guest_mode(vcpu));
432
433         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
434                 !to_vmx(vcpu)->nested.nested_run_pending) {
435                 vmcs12->vm_exit_intr_error_code = fault->error_code;
436                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
437                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
438                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
439                                   fault->address);
440         } else {
441                 kvm_inject_page_fault(vcpu, fault);
442         }
443 }
444
445 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
446                                                struct vmcs12 *vmcs12)
447 {
448         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
449                 return 0;
450
451         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
452             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
453                 return -EINVAL;
454
455         return 0;
456 }
457
458 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
459                                                 struct vmcs12 *vmcs12)
460 {
461         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
462                 return 0;
463
464         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
465                 return -EINVAL;
466
467         return 0;
468 }
469
470 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
471                                                 struct vmcs12 *vmcs12)
472 {
473         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
474                 return 0;
475
476         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
477                 return -EINVAL;
478
479         return 0;
480 }
481
482 /*
483  * Check if MSR is intercepted for L01 MSR bitmap.
484  */
485 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
486 {
487         unsigned long *msr_bitmap;
488         int f = sizeof(unsigned long);
489
490         if (!cpu_has_vmx_msr_bitmap())
491                 return true;
492
493         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
494
495         if (msr <= 0x1fff) {
496                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
497         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
498                 msr &= 0x1fff;
499                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
500         }
501
502         return true;
503 }
504
505 /*
506  * If a msr is allowed by L0, we should check whether it is allowed by L1.
507  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
508  */
509 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
510                                                unsigned long *msr_bitmap_nested,
511                                                u32 msr, int type)
512 {
513         int f = sizeof(unsigned long);
514
515         /*
516          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
517          * have the write-low and read-high bitmap offsets the wrong way round.
518          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
519          */
520         if (msr <= 0x1fff) {
521                 if (type & MSR_TYPE_R &&
522                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
523                         /* read-low */
524                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
525
526                 if (type & MSR_TYPE_W &&
527                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
528                         /* write-low */
529                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
530
531         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
532                 msr &= 0x1fff;
533                 if (type & MSR_TYPE_R &&
534                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
535                         /* read-high */
536                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
537
538                 if (type & MSR_TYPE_W &&
539                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
540                         /* write-high */
541                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
542
543         }
544 }
545
546 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
547 {
548         int msr;
549
550         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
551                 unsigned word = msr / BITS_PER_LONG;
552
553                 msr_bitmap[word] = ~0;
554                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
555         }
556 }
557
558 /*
559  * Merge L0's and L1's MSR bitmap, return false to indicate that
560  * we do not use the hardware.
561  */
562 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
563                                                  struct vmcs12 *vmcs12)
564 {
565         int msr;
566         unsigned long *msr_bitmap_l1;
567         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
568         struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
569
570         /* Nothing to do if the MSR bitmap is not in use.  */
571         if (!cpu_has_vmx_msr_bitmap() ||
572             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
573                 return false;
574
575         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
576                 return false;
577
578         msr_bitmap_l1 = (unsigned long *)map->hva;
579
580         /*
581          * To keep the control flow simple, pay eight 8-byte writes (sixteen
582          * 4-byte writes on 32-bit systems) up front to enable intercepts for
583          * the x2APIC MSR range and selectively disable them below.
584          */
585         enable_x2apic_msr_intercepts(msr_bitmap_l0);
586
587         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
588                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
589                         /*
590                          * L0 need not intercept reads for MSRs between 0x800
591                          * and 0x8ff, it just lets the processor take the value
592                          * from the virtual-APIC page; take those 256 bits
593                          * directly from the L1 bitmap.
594                          */
595                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
596                                 unsigned word = msr / BITS_PER_LONG;
597
598                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
599                         }
600                 }
601
602                 nested_vmx_disable_intercept_for_msr(
603                         msr_bitmap_l1, msr_bitmap_l0,
604                         X2APIC_MSR(APIC_TASKPRI),
605                         MSR_TYPE_R | MSR_TYPE_W);
606
607                 if (nested_cpu_has_vid(vmcs12)) {
608                         nested_vmx_disable_intercept_for_msr(
609                                 msr_bitmap_l1, msr_bitmap_l0,
610                                 X2APIC_MSR(APIC_EOI),
611                                 MSR_TYPE_W);
612                         nested_vmx_disable_intercept_for_msr(
613                                 msr_bitmap_l1, msr_bitmap_l0,
614                                 X2APIC_MSR(APIC_SELF_IPI),
615                                 MSR_TYPE_W);
616                 }
617         }
618
619         /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
620         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
621                                              MSR_FS_BASE, MSR_TYPE_RW);
622
623         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
624                                              MSR_GS_BASE, MSR_TYPE_RW);
625
626         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
627                                              MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
628
629         /*
630          * Checking the L0->L1 bitmap is trying to verify two things:
631          *
632          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
633          *    ensures that we do not accidentally generate an L02 MSR bitmap
634          *    from the L12 MSR bitmap that is too permissive.
635          * 2. That L1 or L2s have actually used the MSR. This avoids
636          *    unnecessarily merging of the bitmap if the MSR is unused. This
637          *    works properly because we only update the L01 MSR bitmap lazily.
638          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
639          *    updated to reflect this when L1 (or its L2s) actually write to
640          *    the MSR.
641          */
642         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
643                 nested_vmx_disable_intercept_for_msr(
644                                         msr_bitmap_l1, msr_bitmap_l0,
645                                         MSR_IA32_SPEC_CTRL,
646                                         MSR_TYPE_R | MSR_TYPE_W);
647
648         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
649                 nested_vmx_disable_intercept_for_msr(
650                                         msr_bitmap_l1, msr_bitmap_l0,
651                                         MSR_IA32_PRED_CMD,
652                                         MSR_TYPE_W);
653
654         kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
655
656         return true;
657 }
658
659 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
660                                        struct vmcs12 *vmcs12)
661 {
662         struct kvm_host_map map;
663         struct vmcs12 *shadow;
664
665         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
666             vmcs12->vmcs_link_pointer == -1ull)
667                 return;
668
669         shadow = get_shadow_vmcs12(vcpu);
670
671         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
672                 return;
673
674         memcpy(shadow, map.hva, VMCS12_SIZE);
675         kvm_vcpu_unmap(vcpu, &map, false);
676 }
677
678 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
679                                               struct vmcs12 *vmcs12)
680 {
681         struct vcpu_vmx *vmx = to_vmx(vcpu);
682
683         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
684             vmcs12->vmcs_link_pointer == -1ull)
685                 return;
686
687         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
688                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
689 }
690
691 /*
692  * In nested virtualization, check if L1 has set
693  * VM_EXIT_ACK_INTR_ON_EXIT
694  */
695 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
696 {
697         return get_vmcs12(vcpu)->vm_exit_controls &
698                 VM_EXIT_ACK_INTR_ON_EXIT;
699 }
700
701 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
702                                           struct vmcs12 *vmcs12)
703 {
704         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
705             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
706                 return -EINVAL;
707         else
708                 return 0;
709 }
710
711 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
712                                            struct vmcs12 *vmcs12)
713 {
714         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
715             !nested_cpu_has_apic_reg_virt(vmcs12) &&
716             !nested_cpu_has_vid(vmcs12) &&
717             !nested_cpu_has_posted_intr(vmcs12))
718                 return 0;
719
720         /*
721          * If virtualize x2apic mode is enabled,
722          * virtualize apic access must be disabled.
723          */
724         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
725                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
726                 return -EINVAL;
727
728         /*
729          * If virtual interrupt delivery is enabled,
730          * we must exit on external interrupts.
731          */
732         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
733                 return -EINVAL;
734
735         /*
736          * bits 15:8 should be zero in posted_intr_nv,
737          * the descriptor address has been already checked
738          * in nested_get_vmcs12_pages.
739          *
740          * bits 5:0 of posted_intr_desc_addr should be zero.
741          */
742         if (nested_cpu_has_posted_intr(vmcs12) &&
743            (CC(!nested_cpu_has_vid(vmcs12)) ||
744             CC(!nested_exit_intr_ack_set(vcpu)) ||
745             CC((vmcs12->posted_intr_nv & 0xff00)) ||
746             CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
747             CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
748                 return -EINVAL;
749
750         /* tpr shadow is needed by all apicv features. */
751         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
752                 return -EINVAL;
753
754         return 0;
755 }
756
757 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
758                                        u32 count, u64 addr)
759 {
760         int maxphyaddr;
761
762         if (count == 0)
763                 return 0;
764         maxphyaddr = cpuid_maxphyaddr(vcpu);
765         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
766             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
767                 return -EINVAL;
768
769         return 0;
770 }
771
772 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
773                                                      struct vmcs12 *vmcs12)
774 {
775         if (CC(nested_vmx_check_msr_switch(vcpu,
776                                            vmcs12->vm_exit_msr_load_count,
777                                            vmcs12->vm_exit_msr_load_addr)) ||
778             CC(nested_vmx_check_msr_switch(vcpu,
779                                            vmcs12->vm_exit_msr_store_count,
780                                            vmcs12->vm_exit_msr_store_addr)))
781                 return -EINVAL;
782
783         return 0;
784 }
785
786 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
787                                                       struct vmcs12 *vmcs12)
788 {
789         if (CC(nested_vmx_check_msr_switch(vcpu,
790                                            vmcs12->vm_entry_msr_load_count,
791                                            vmcs12->vm_entry_msr_load_addr)))
792                 return -EINVAL;
793
794         return 0;
795 }
796
797 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
798                                          struct vmcs12 *vmcs12)
799 {
800         if (!nested_cpu_has_pml(vmcs12))
801                 return 0;
802
803         if (CC(!nested_cpu_has_ept(vmcs12)) ||
804             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
805                 return -EINVAL;
806
807         return 0;
808 }
809
810 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
811                                                         struct vmcs12 *vmcs12)
812 {
813         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
814                !nested_cpu_has_ept(vmcs12)))
815                 return -EINVAL;
816         return 0;
817 }
818
819 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
820                                                          struct vmcs12 *vmcs12)
821 {
822         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
823                !nested_cpu_has_ept(vmcs12)))
824                 return -EINVAL;
825         return 0;
826 }
827
828 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
829                                                  struct vmcs12 *vmcs12)
830 {
831         if (!nested_cpu_has_shadow_vmcs(vmcs12))
832                 return 0;
833
834         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
835             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
836                 return -EINVAL;
837
838         return 0;
839 }
840
841 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
842                                        struct vmx_msr_entry *e)
843 {
844         /* x2APIC MSR accesses are not allowed */
845         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
846                 return -EINVAL;
847         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
848             CC(e->index == MSR_IA32_UCODE_REV))
849                 return -EINVAL;
850         if (CC(e->reserved != 0))
851                 return -EINVAL;
852         return 0;
853 }
854
855 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
856                                      struct vmx_msr_entry *e)
857 {
858         if (CC(e->index == MSR_FS_BASE) ||
859             CC(e->index == MSR_GS_BASE) ||
860             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
861             nested_vmx_msr_check_common(vcpu, e))
862                 return -EINVAL;
863         return 0;
864 }
865
866 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
867                                       struct vmx_msr_entry *e)
868 {
869         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
870             nested_vmx_msr_check_common(vcpu, e))
871                 return -EINVAL;
872         return 0;
873 }
874
875 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
876 {
877         struct vcpu_vmx *vmx = to_vmx(vcpu);
878         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
879                                        vmx->nested.msrs.misc_high);
880
881         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
882 }
883
884 /*
885  * Load guest's/host's msr at nested entry/exit.
886  * return 0 for success, entry index for failure.
887  *
888  * One of the failure modes for MSR load/store is when a list exceeds the
889  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
890  * as possible, process all valid entries before failing rather than precheck
891  * for a capacity violation.
892  */
893 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
894 {
895         u32 i;
896         struct vmx_msr_entry e;
897         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
898
899         for (i = 0; i < count; i++) {
900                 if (unlikely(i >= max_msr_list_size))
901                         goto fail;
902
903                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
904                                         &e, sizeof(e))) {
905                         pr_debug_ratelimited(
906                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
907                                 __func__, i, gpa + i * sizeof(e));
908                         goto fail;
909                 }
910                 if (nested_vmx_load_msr_check(vcpu, &e)) {
911                         pr_debug_ratelimited(
912                                 "%s check failed (%u, 0x%x, 0x%x)\n",
913                                 __func__, i, e.index, e.reserved);
914                         goto fail;
915                 }
916                 if (kvm_set_msr(vcpu, e.index, e.value)) {
917                         pr_debug_ratelimited(
918                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
919                                 __func__, i, e.index, e.value);
920                         goto fail;
921                 }
922         }
923         return 0;
924 fail:
925         /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
926         return i + 1;
927 }
928
929 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
930                                             u32 msr_index,
931                                             u64 *data)
932 {
933         struct vcpu_vmx *vmx = to_vmx(vcpu);
934
935         /*
936          * If the L0 hypervisor stored a more accurate value for the TSC that
937          * does not include the time taken for emulation of the L2->L1
938          * VM-exit in L0, use the more accurate value.
939          */
940         if (msr_index == MSR_IA32_TSC) {
941                 int index = vmx_find_msr_index(&vmx->msr_autostore.guest,
942                                                MSR_IA32_TSC);
943
944                 if (index >= 0) {
945                         u64 val = vmx->msr_autostore.guest.val[index].value;
946
947                         *data = kvm_read_l1_tsc(vcpu, val);
948                         return true;
949                 }
950         }
951
952         if (kvm_get_msr(vcpu, msr_index, data)) {
953                 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
954                         msr_index);
955                 return false;
956         }
957         return true;
958 }
959
960 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
961                                      struct vmx_msr_entry *e)
962 {
963         if (kvm_vcpu_read_guest(vcpu,
964                                 gpa + i * sizeof(*e),
965                                 e, 2 * sizeof(u32))) {
966                 pr_debug_ratelimited(
967                         "%s cannot read MSR entry (%u, 0x%08llx)\n",
968                         __func__, i, gpa + i * sizeof(*e));
969                 return false;
970         }
971         if (nested_vmx_store_msr_check(vcpu, e)) {
972                 pr_debug_ratelimited(
973                         "%s check failed (%u, 0x%x, 0x%x)\n",
974                         __func__, i, e->index, e->reserved);
975                 return false;
976         }
977         return true;
978 }
979
980 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
981 {
982         u64 data;
983         u32 i;
984         struct vmx_msr_entry e;
985         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
986
987         for (i = 0; i < count; i++) {
988                 if (unlikely(i >= max_msr_list_size))
989                         return -EINVAL;
990
991                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
992                         return -EINVAL;
993
994                 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
995                         return -EINVAL;
996
997                 if (kvm_vcpu_write_guest(vcpu,
998                                          gpa + i * sizeof(e) +
999                                              offsetof(struct vmx_msr_entry, value),
1000                                          &data, sizeof(data))) {
1001                         pr_debug_ratelimited(
1002                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1003                                 __func__, i, e.index, data);
1004                         return -EINVAL;
1005                 }
1006         }
1007         return 0;
1008 }
1009
1010 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1011 {
1012         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1013         u32 count = vmcs12->vm_exit_msr_store_count;
1014         u64 gpa = vmcs12->vm_exit_msr_store_addr;
1015         struct vmx_msr_entry e;
1016         u32 i;
1017
1018         for (i = 0; i < count; i++) {
1019                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1020                         return false;
1021
1022                 if (e.index == msr_index)
1023                         return true;
1024         }
1025         return false;
1026 }
1027
1028 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1029                                            u32 msr_index)
1030 {
1031         struct vcpu_vmx *vmx = to_vmx(vcpu);
1032         struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1033         bool in_vmcs12_store_list;
1034         int msr_autostore_index;
1035         bool in_autostore_list;
1036         int last;
1037
1038         msr_autostore_index = vmx_find_msr_index(autostore, msr_index);
1039         in_autostore_list = msr_autostore_index >= 0;
1040         in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1041
1042         if (in_vmcs12_store_list && !in_autostore_list) {
1043                 if (autostore->nr == NR_LOADSTORE_MSRS) {
1044                         /*
1045                          * Emulated VMEntry does not fail here.  Instead a less
1046                          * accurate value will be returned by
1047                          * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1048                          * instead of reading the value from the vmcs02 VMExit
1049                          * MSR-store area.
1050                          */
1051                         pr_warn_ratelimited(
1052                                 "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1053                                 msr_index);
1054                         return;
1055                 }
1056                 last = autostore->nr++;
1057                 autostore->val[last].index = msr_index;
1058         } else if (!in_vmcs12_store_list && in_autostore_list) {
1059                 last = --autostore->nr;
1060                 autostore->val[msr_autostore_index] = autostore->val[last];
1061         }
1062 }
1063
1064 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
1065 {
1066         unsigned long invalid_mask;
1067
1068         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1069         return (val & invalid_mask) == 0;
1070 }
1071
1072 /*
1073  * Returns true if the MMU needs to be sync'd on nested VM-Enter/VM-Exit.
1074  * tl;dr: the MMU needs a sync if L0 is using shadow paging and L1 didn't
1075  * enable VPID for L2 (implying it expects a TLB flush on VMX transitions).
1076  * Here's why.
1077  *
1078  * If EPT is enabled by L0 a sync is never needed:
1079  * - if it is disabled by L1, then L0 is not shadowing L1 or L2 PTEs, there
1080  *   cannot be unsync'd SPTEs for either L1 or L2.
1081  *
1082  * - if it is also enabled by L1, then L0 doesn't need to sync on VM-Enter
1083  *   VM-Enter as VM-Enter isn't required to invalidate guest-physical mappings
1084  *   (irrespective of VPID), i.e. L1 can't rely on the (virtual) CPU to flush
1085  *   stale guest-physical mappings for L2 from the TLB.  And as above, L0 isn't
1086  *   shadowing L1 PTEs so there are no unsync'd SPTEs to sync on VM-Exit.
1087  *
1088  * If EPT is disabled by L0:
1089  * - if VPID is enabled by L1 (for L2), the situation is similar to when L1
1090  *   enables EPT: L0 doesn't need to sync as VM-Enter and VM-Exit aren't
1091  *   required to invalidate linear mappings (EPT is disabled so there are
1092  *   no combined or guest-physical mappings), i.e. L1 can't rely on the
1093  *   (virtual) CPU to flush stale linear mappings for either L2 or itself (L1).
1094  *
1095  * - however if VPID is disabled by L1, then a sync is needed as L1 expects all
1096  *   linear mappings (EPT is disabled so there are no combined or guest-physical
1097  *   mappings) to be invalidated on both VM-Enter and VM-Exit.
1098  *
1099  * Note, this logic is subtly different than nested_has_guest_tlb_tag(), which
1100  * additionally checks that L2 has been assigned a VPID (when EPT is disabled).
1101  * Whether or not L2 has been assigned a VPID by L0 is irrelevant with respect
1102  * to L1's expectations, e.g. L0 needs to invalidate hardware TLB entries if L2
1103  * doesn't have a unique VPID to prevent reusing L1's entries (assuming L1 has
1104  * been assigned a VPID), but L0 doesn't need to do a MMU sync because L1
1105  * doesn't expect stale (virtual) TLB entries to be flushed, i.e. L1 doesn't
1106  * know that L0 will flush the TLB and so L1 will do INVVPID as needed to flush
1107  * stale TLB entries, at which point L0 will sync L2's MMU.
1108  */
1109 static bool nested_vmx_transition_mmu_sync(struct kvm_vcpu *vcpu)
1110 {
1111         return !enable_ept && !nested_cpu_has_vpid(get_vmcs12(vcpu));
1112 }
1113
1114 /*
1115  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1116  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1117  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1118  * @entry_failure_code.
1119  */
1120 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
1121                                enum vm_entry_failure_code *entry_failure_code)
1122 {
1123         if (CC(!nested_cr3_valid(vcpu, cr3))) {
1124                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1125                 return -EINVAL;
1126         }
1127
1128         /*
1129          * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1130          * must not be dereferenced.
1131          */
1132         if (!nested_ept && is_pae_paging(vcpu) &&
1133             (cr3 != kvm_read_cr3(vcpu) || pdptrs_changed(vcpu))) {
1134                 if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1135                         *entry_failure_code = ENTRY_FAIL_PDPTE;
1136                         return -EINVAL;
1137                 }
1138         }
1139
1140         /*
1141          * Unconditionally skip the TLB flush on fast CR3 switch, all TLB
1142          * flushes are handled by nested_vmx_transition_tlb_flush().  See
1143          * nested_vmx_transition_mmu_sync for details on skipping the MMU sync.
1144          */
1145         if (!nested_ept)
1146                 kvm_mmu_new_pgd(vcpu, cr3, true,
1147                                 !nested_vmx_transition_mmu_sync(vcpu));
1148
1149         vcpu->arch.cr3 = cr3;
1150         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1151
1152         kvm_init_mmu(vcpu, false);
1153
1154         return 0;
1155 }
1156
1157 /*
1158  * Returns if KVM is able to config CPU to tag TLB entries
1159  * populated by L2 differently than TLB entries populated
1160  * by L1.
1161  *
1162  * If L0 uses EPT, L1 and L2 run with different EPTP because
1163  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1164  * are tagged with different EPTP.
1165  *
1166  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1167  * with different VPID (L1 entries are tagged with vmx->vpid
1168  * while L2 entries are tagged with vmx->nested.vpid02).
1169  */
1170 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1171 {
1172         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1173
1174         return enable_ept ||
1175                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1176 }
1177
1178 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1179                                             struct vmcs12 *vmcs12,
1180                                             bool is_vmenter)
1181 {
1182         struct vcpu_vmx *vmx = to_vmx(vcpu);
1183
1184         /*
1185          * If VPID is disabled, linear and combined mappings are flushed on
1186          * VM-Enter/VM-Exit, and guest-physical mappings are valid only for
1187          * their associated EPTP.
1188          */
1189         if (!enable_vpid)
1190                 return;
1191
1192         /*
1193          * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1194          * for *all* contexts to be flushed on VM-Enter/VM-Exit.
1195          *
1196          * If VPID is enabled and used by vmc12, but L2 does not have a unique
1197          * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
1198          * a VPID for L2, flush the current context as the effective ASID is
1199          * common to both L1 and L2.
1200          *
1201          * Defer the flush so that it runs after vmcs02.EPTP has been set by
1202          * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
1203          * redundant flushes further down the nested pipeline.
1204          *
1205          * If a TLB flush isn't required due to any of the above, and vpid12 is
1206          * changing then the new "virtual" VPID (vpid12) will reuse the same
1207          * "real" VPID (vpid02), and so needs to be sync'd.  There is no direct
1208          * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
1209          * all nested vCPUs.
1210          */
1211         if (!nested_cpu_has_vpid(vmcs12)) {
1212                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1213         } else if (!nested_has_guest_tlb_tag(vcpu)) {
1214                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1215         } else if (is_vmenter &&
1216                    vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1217                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1218                 vpid_sync_context(nested_get_vpid02(vcpu));
1219         }
1220 }
1221
1222 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1223 {
1224         superset &= mask;
1225         subset &= mask;
1226
1227         return (superset | subset) == superset;
1228 }
1229
1230 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1231 {
1232         const u64 feature_and_reserved =
1233                 /* feature (except bit 48; see below) */
1234                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1235                 /* reserved */
1236                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1237         u64 vmx_basic = vmx->nested.msrs.basic;
1238
1239         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1240                 return -EINVAL;
1241
1242         /*
1243          * KVM does not emulate a version of VMX that constrains physical
1244          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1245          */
1246         if (data & BIT_ULL(48))
1247                 return -EINVAL;
1248
1249         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1250             vmx_basic_vmcs_revision_id(data))
1251                 return -EINVAL;
1252
1253         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1254                 return -EINVAL;
1255
1256         vmx->nested.msrs.basic = data;
1257         return 0;
1258 }
1259
1260 static int
1261 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1262 {
1263         u64 supported;
1264         u32 *lowp, *highp;
1265
1266         switch (msr_index) {
1267         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1268                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1269                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1270                 break;
1271         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1272                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1273                 highp = &vmx->nested.msrs.procbased_ctls_high;
1274                 break;
1275         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1276                 lowp = &vmx->nested.msrs.exit_ctls_low;
1277                 highp = &vmx->nested.msrs.exit_ctls_high;
1278                 break;
1279         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1280                 lowp = &vmx->nested.msrs.entry_ctls_low;
1281                 highp = &vmx->nested.msrs.entry_ctls_high;
1282                 break;
1283         case MSR_IA32_VMX_PROCBASED_CTLS2:
1284                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1285                 highp = &vmx->nested.msrs.secondary_ctls_high;
1286                 break;
1287         default:
1288                 BUG();
1289         }
1290
1291         supported = vmx_control_msr(*lowp, *highp);
1292
1293         /* Check must-be-1 bits are still 1. */
1294         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1295                 return -EINVAL;
1296
1297         /* Check must-be-0 bits are still 0. */
1298         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1299                 return -EINVAL;
1300
1301         *lowp = data;
1302         *highp = data >> 32;
1303         return 0;
1304 }
1305
1306 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1307 {
1308         const u64 feature_and_reserved_bits =
1309                 /* feature */
1310                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1311                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1312                 /* reserved */
1313                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1314         u64 vmx_misc;
1315
1316         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1317                                    vmx->nested.msrs.misc_high);
1318
1319         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1320                 return -EINVAL;
1321
1322         if ((vmx->nested.msrs.pinbased_ctls_high &
1323              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1324             vmx_misc_preemption_timer_rate(data) !=
1325             vmx_misc_preemption_timer_rate(vmx_misc))
1326                 return -EINVAL;
1327
1328         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1329                 return -EINVAL;
1330
1331         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1332                 return -EINVAL;
1333
1334         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1335                 return -EINVAL;
1336
1337         vmx->nested.msrs.misc_low = data;
1338         vmx->nested.msrs.misc_high = data >> 32;
1339
1340         return 0;
1341 }
1342
1343 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1344 {
1345         u64 vmx_ept_vpid_cap;
1346
1347         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1348                                            vmx->nested.msrs.vpid_caps);
1349
1350         /* Every bit is either reserved or a feature bit. */
1351         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1352                 return -EINVAL;
1353
1354         vmx->nested.msrs.ept_caps = data;
1355         vmx->nested.msrs.vpid_caps = data >> 32;
1356         return 0;
1357 }
1358
1359 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1360 {
1361         u64 *msr;
1362
1363         switch (msr_index) {
1364         case MSR_IA32_VMX_CR0_FIXED0:
1365                 msr = &vmx->nested.msrs.cr0_fixed0;
1366                 break;
1367         case MSR_IA32_VMX_CR4_FIXED0:
1368                 msr = &vmx->nested.msrs.cr4_fixed0;
1369                 break;
1370         default:
1371                 BUG();
1372         }
1373
1374         /*
1375          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1376          * must be 1 in the restored value.
1377          */
1378         if (!is_bitwise_subset(data, *msr, -1ULL))
1379                 return -EINVAL;
1380
1381         *msr = data;
1382         return 0;
1383 }
1384
1385 /*
1386  * Called when userspace is restoring VMX MSRs.
1387  *
1388  * Returns 0 on success, non-0 otherwise.
1389  */
1390 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1391 {
1392         struct vcpu_vmx *vmx = to_vmx(vcpu);
1393
1394         /*
1395          * Don't allow changes to the VMX capability MSRs while the vCPU
1396          * is in VMX operation.
1397          */
1398         if (vmx->nested.vmxon)
1399                 return -EBUSY;
1400
1401         switch (msr_index) {
1402         case MSR_IA32_VMX_BASIC:
1403                 return vmx_restore_vmx_basic(vmx, data);
1404         case MSR_IA32_VMX_PINBASED_CTLS:
1405         case MSR_IA32_VMX_PROCBASED_CTLS:
1406         case MSR_IA32_VMX_EXIT_CTLS:
1407         case MSR_IA32_VMX_ENTRY_CTLS:
1408                 /*
1409                  * The "non-true" VMX capability MSRs are generated from the
1410                  * "true" MSRs, so we do not support restoring them directly.
1411                  *
1412                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1413                  * should restore the "true" MSRs with the must-be-1 bits
1414                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1415                  * DEFAULT SETTINGS".
1416                  */
1417                 return -EINVAL;
1418         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1419         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1420         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1421         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1422         case MSR_IA32_VMX_PROCBASED_CTLS2:
1423                 return vmx_restore_control_msr(vmx, msr_index, data);
1424         case MSR_IA32_VMX_MISC:
1425                 return vmx_restore_vmx_misc(vmx, data);
1426         case MSR_IA32_VMX_CR0_FIXED0:
1427         case MSR_IA32_VMX_CR4_FIXED0:
1428                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1429         case MSR_IA32_VMX_CR0_FIXED1:
1430         case MSR_IA32_VMX_CR4_FIXED1:
1431                 /*
1432                  * These MSRs are generated based on the vCPU's CPUID, so we
1433                  * do not support restoring them directly.
1434                  */
1435                 return -EINVAL;
1436         case MSR_IA32_VMX_EPT_VPID_CAP:
1437                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1438         case MSR_IA32_VMX_VMCS_ENUM:
1439                 vmx->nested.msrs.vmcs_enum = data;
1440                 return 0;
1441         case MSR_IA32_VMX_VMFUNC:
1442                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1443                         return -EINVAL;
1444                 vmx->nested.msrs.vmfunc_controls = data;
1445                 return 0;
1446         default:
1447                 /*
1448                  * The rest of the VMX capability MSRs do not support restore.
1449                  */
1450                 return -EINVAL;
1451         }
1452 }
1453
1454 /* Returns 0 on success, non-0 otherwise. */
1455 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1456 {
1457         switch (msr_index) {
1458         case MSR_IA32_VMX_BASIC:
1459                 *pdata = msrs->basic;
1460                 break;
1461         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1462         case MSR_IA32_VMX_PINBASED_CTLS:
1463                 *pdata = vmx_control_msr(
1464                         msrs->pinbased_ctls_low,
1465                         msrs->pinbased_ctls_high);
1466                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1467                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1468                 break;
1469         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1470         case MSR_IA32_VMX_PROCBASED_CTLS:
1471                 *pdata = vmx_control_msr(
1472                         msrs->procbased_ctls_low,
1473                         msrs->procbased_ctls_high);
1474                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1475                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1476                 break;
1477         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1478         case MSR_IA32_VMX_EXIT_CTLS:
1479                 *pdata = vmx_control_msr(
1480                         msrs->exit_ctls_low,
1481                         msrs->exit_ctls_high);
1482                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1483                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1484                 break;
1485         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1486         case MSR_IA32_VMX_ENTRY_CTLS:
1487                 *pdata = vmx_control_msr(
1488                         msrs->entry_ctls_low,
1489                         msrs->entry_ctls_high);
1490                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1491                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1492                 break;
1493         case MSR_IA32_VMX_MISC:
1494                 *pdata = vmx_control_msr(
1495                         msrs->misc_low,
1496                         msrs->misc_high);
1497                 break;
1498         case MSR_IA32_VMX_CR0_FIXED0:
1499                 *pdata = msrs->cr0_fixed0;
1500                 break;
1501         case MSR_IA32_VMX_CR0_FIXED1:
1502                 *pdata = msrs->cr0_fixed1;
1503                 break;
1504         case MSR_IA32_VMX_CR4_FIXED0:
1505                 *pdata = msrs->cr4_fixed0;
1506                 break;
1507         case MSR_IA32_VMX_CR4_FIXED1:
1508                 *pdata = msrs->cr4_fixed1;
1509                 break;
1510         case MSR_IA32_VMX_VMCS_ENUM:
1511                 *pdata = msrs->vmcs_enum;
1512                 break;
1513         case MSR_IA32_VMX_PROCBASED_CTLS2:
1514                 *pdata = vmx_control_msr(
1515                         msrs->secondary_ctls_low,
1516                         msrs->secondary_ctls_high);
1517                 break;
1518         case MSR_IA32_VMX_EPT_VPID_CAP:
1519                 *pdata = msrs->ept_caps |
1520                         ((u64)msrs->vpid_caps << 32);
1521                 break;
1522         case MSR_IA32_VMX_VMFUNC:
1523                 *pdata = msrs->vmfunc_controls;
1524                 break;
1525         default:
1526                 return 1;
1527         }
1528
1529         return 0;
1530 }
1531
1532 /*
1533  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1534  * been modified by the L1 guest.  Note, "writable" in this context means
1535  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1536  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1537  * VM-exit information fields (which are actually writable if the vCPU is
1538  * configured to support "VMWRITE to any supported field in the VMCS").
1539  */
1540 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1541 {
1542         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1543         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1544         struct shadow_vmcs_field field;
1545         unsigned long val;
1546         int i;
1547
1548         if (WARN_ON(!shadow_vmcs))
1549                 return;
1550
1551         preempt_disable();
1552
1553         vmcs_load(shadow_vmcs);
1554
1555         for (i = 0; i < max_shadow_read_write_fields; i++) {
1556                 field = shadow_read_write_fields[i];
1557                 val = __vmcs_readl(field.encoding);
1558                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1559         }
1560
1561         vmcs_clear(shadow_vmcs);
1562         vmcs_load(vmx->loaded_vmcs->vmcs);
1563
1564         preempt_enable();
1565 }
1566
1567 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1568 {
1569         const struct shadow_vmcs_field *fields[] = {
1570                 shadow_read_write_fields,
1571                 shadow_read_only_fields
1572         };
1573         const int max_fields[] = {
1574                 max_shadow_read_write_fields,
1575                 max_shadow_read_only_fields
1576         };
1577         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1578         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1579         struct shadow_vmcs_field field;
1580         unsigned long val;
1581         int i, q;
1582
1583         if (WARN_ON(!shadow_vmcs))
1584                 return;
1585
1586         vmcs_load(shadow_vmcs);
1587
1588         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1589                 for (i = 0; i < max_fields[q]; i++) {
1590                         field = fields[q][i];
1591                         val = vmcs12_read_any(vmcs12, field.encoding,
1592                                               field.offset);
1593                         __vmcs_writel(field.encoding, val);
1594                 }
1595         }
1596
1597         vmcs_clear(shadow_vmcs);
1598         vmcs_load(vmx->loaded_vmcs->vmcs);
1599 }
1600
1601 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1602 {
1603         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1604         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1605
1606         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1607         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1608         vmcs12->guest_rip = evmcs->guest_rip;
1609
1610         if (unlikely(!(evmcs->hv_clean_fields &
1611                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1612                 vmcs12->guest_rsp = evmcs->guest_rsp;
1613                 vmcs12->guest_rflags = evmcs->guest_rflags;
1614                 vmcs12->guest_interruptibility_info =
1615                         evmcs->guest_interruptibility_info;
1616         }
1617
1618         if (unlikely(!(evmcs->hv_clean_fields &
1619                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1620                 vmcs12->cpu_based_vm_exec_control =
1621                         evmcs->cpu_based_vm_exec_control;
1622         }
1623
1624         if (unlikely(!(evmcs->hv_clean_fields &
1625                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1626                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1627         }
1628
1629         if (unlikely(!(evmcs->hv_clean_fields &
1630                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1631                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1632         }
1633
1634         if (unlikely(!(evmcs->hv_clean_fields &
1635                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1636                 vmcs12->vm_entry_intr_info_field =
1637                         evmcs->vm_entry_intr_info_field;
1638                 vmcs12->vm_entry_exception_error_code =
1639                         evmcs->vm_entry_exception_error_code;
1640                 vmcs12->vm_entry_instruction_len =
1641                         evmcs->vm_entry_instruction_len;
1642         }
1643
1644         if (unlikely(!(evmcs->hv_clean_fields &
1645                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1646                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1647                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1648                 vmcs12->host_cr0 = evmcs->host_cr0;
1649                 vmcs12->host_cr3 = evmcs->host_cr3;
1650                 vmcs12->host_cr4 = evmcs->host_cr4;
1651                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1652                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1653                 vmcs12->host_rip = evmcs->host_rip;
1654                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1655                 vmcs12->host_es_selector = evmcs->host_es_selector;
1656                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1657                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1658                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1659                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1660                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1661                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1662         }
1663
1664         if (unlikely(!(evmcs->hv_clean_fields &
1665                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1666                 vmcs12->pin_based_vm_exec_control =
1667                         evmcs->pin_based_vm_exec_control;
1668                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1669                 vmcs12->secondary_vm_exec_control =
1670                         evmcs->secondary_vm_exec_control;
1671         }
1672
1673         if (unlikely(!(evmcs->hv_clean_fields &
1674                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1675                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1676                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1677         }
1678
1679         if (unlikely(!(evmcs->hv_clean_fields &
1680                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1681                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1682         }
1683
1684         if (unlikely(!(evmcs->hv_clean_fields &
1685                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1686                 vmcs12->guest_es_base = evmcs->guest_es_base;
1687                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1688                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1689                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1690                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1691                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1692                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1693                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1694                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1695                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1696                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1697                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1698                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1699                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1700                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1701                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1702                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1703                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1704                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1705                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1706                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1707                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1708                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1709                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1710                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1711                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1712                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1713                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1714                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1715                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1716                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1717                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1718                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1719                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1720                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1721                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1722         }
1723
1724         if (unlikely(!(evmcs->hv_clean_fields &
1725                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1726                 vmcs12->tsc_offset = evmcs->tsc_offset;
1727                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1728                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1729         }
1730
1731         if (unlikely(!(evmcs->hv_clean_fields &
1732                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1733                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1734                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1735                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1736                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1737                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1738                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1739                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1740                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1741         }
1742
1743         if (unlikely(!(evmcs->hv_clean_fields &
1744                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1745                 vmcs12->host_fs_base = evmcs->host_fs_base;
1746                 vmcs12->host_gs_base = evmcs->host_gs_base;
1747                 vmcs12->host_tr_base = evmcs->host_tr_base;
1748                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1749                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1750                 vmcs12->host_rsp = evmcs->host_rsp;
1751         }
1752
1753         if (unlikely(!(evmcs->hv_clean_fields &
1754                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1755                 vmcs12->ept_pointer = evmcs->ept_pointer;
1756                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1757         }
1758
1759         if (unlikely(!(evmcs->hv_clean_fields &
1760                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1761                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1762                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1763                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1764                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1765                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1766                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1767                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1768                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1769                 vmcs12->guest_pending_dbg_exceptions =
1770                         evmcs->guest_pending_dbg_exceptions;
1771                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1772                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1773                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1774                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1775                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1776         }
1777
1778         /*
1779          * Not used?
1780          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1781          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1782          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1783          * vmcs12->page_fault_error_code_mask =
1784          *              evmcs->page_fault_error_code_mask;
1785          * vmcs12->page_fault_error_code_match =
1786          *              evmcs->page_fault_error_code_match;
1787          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1788          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1789          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1790          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1791          */
1792
1793         /*
1794          * Read only fields:
1795          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1796          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1797          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1798          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1799          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1800          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1801          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1802          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1803          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1804          * vmcs12->exit_qualification = evmcs->exit_qualification;
1805          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1806          *
1807          * Not present in struct vmcs12:
1808          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1809          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1810          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1811          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1812          */
1813
1814         return 0;
1815 }
1816
1817 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1818 {
1819         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1820         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1821
1822         /*
1823          * Should not be changed by KVM:
1824          *
1825          * evmcs->host_es_selector = vmcs12->host_es_selector;
1826          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1827          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1828          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1829          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1830          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1831          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1832          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1833          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1834          * evmcs->host_cr0 = vmcs12->host_cr0;
1835          * evmcs->host_cr3 = vmcs12->host_cr3;
1836          * evmcs->host_cr4 = vmcs12->host_cr4;
1837          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1838          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1839          * evmcs->host_rip = vmcs12->host_rip;
1840          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1841          * evmcs->host_fs_base = vmcs12->host_fs_base;
1842          * evmcs->host_gs_base = vmcs12->host_gs_base;
1843          * evmcs->host_tr_base = vmcs12->host_tr_base;
1844          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1845          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1846          * evmcs->host_rsp = vmcs12->host_rsp;
1847          * sync_vmcs02_to_vmcs12() doesn't read these:
1848          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1849          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1850          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1851          * evmcs->ept_pointer = vmcs12->ept_pointer;
1852          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1853          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1854          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1855          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1856          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1857          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1858          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1859          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1860          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1861          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1862          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1863          * evmcs->page_fault_error_code_mask =
1864          *              vmcs12->page_fault_error_code_mask;
1865          * evmcs->page_fault_error_code_match =
1866          *              vmcs12->page_fault_error_code_match;
1867          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1868          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1869          * evmcs->tsc_offset = vmcs12->tsc_offset;
1870          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1871          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1872          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1873          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1874          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1875          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1876          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1877          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1878          *
1879          * Not present in struct vmcs12:
1880          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1881          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1882          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1883          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1884          */
1885
1886         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1887         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1888         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1889         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1890         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1891         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1892         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1893         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1894
1895         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1896         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1897         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1898         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1899         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1900         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1901         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1902         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1903         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1904         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1905
1906         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1907         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1908         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1909         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1910         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1911         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1912         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1913         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1914
1915         evmcs->guest_es_base = vmcs12->guest_es_base;
1916         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1917         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1918         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1919         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1920         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1921         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1922         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1923         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1924         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1925
1926         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1927         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1928
1929         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1930         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1931         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1932         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1933
1934         evmcs->guest_pending_dbg_exceptions =
1935                 vmcs12->guest_pending_dbg_exceptions;
1936         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1937         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1938
1939         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1940         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1941
1942         evmcs->guest_cr0 = vmcs12->guest_cr0;
1943         evmcs->guest_cr3 = vmcs12->guest_cr3;
1944         evmcs->guest_cr4 = vmcs12->guest_cr4;
1945         evmcs->guest_dr7 = vmcs12->guest_dr7;
1946
1947         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1948
1949         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1950         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1951         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1952         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1953         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1954         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1955         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1956         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1957
1958         evmcs->exit_qualification = vmcs12->exit_qualification;
1959
1960         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1961         evmcs->guest_rsp = vmcs12->guest_rsp;
1962         evmcs->guest_rflags = vmcs12->guest_rflags;
1963
1964         evmcs->guest_interruptibility_info =
1965                 vmcs12->guest_interruptibility_info;
1966         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1967         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1968         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1969         evmcs->vm_entry_exception_error_code =
1970                 vmcs12->vm_entry_exception_error_code;
1971         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1972
1973         evmcs->guest_rip = vmcs12->guest_rip;
1974
1975         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1976
1977         return 0;
1978 }
1979
1980 /*
1981  * This is an equivalent of the nested hypervisor executing the vmptrld
1982  * instruction.
1983  */
1984 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1985         struct kvm_vcpu *vcpu, bool from_launch)
1986 {
1987         struct vcpu_vmx *vmx = to_vmx(vcpu);
1988         bool evmcs_gpa_changed = false;
1989         u64 evmcs_gpa;
1990
1991         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1992                 return EVMPTRLD_DISABLED;
1993
1994         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1995                 return EVMPTRLD_DISABLED;
1996
1997         if (unlikely(!vmx->nested.hv_evmcs ||
1998                      evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1999                 if (!vmx->nested.hv_evmcs)
2000                         vmx->nested.current_vmptr = -1ull;
2001
2002                 nested_release_evmcs(vcpu);
2003
2004                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2005                                  &vmx->nested.hv_evmcs_map))
2006                         return EVMPTRLD_ERROR;
2007
2008                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2009
2010                 /*
2011                  * Currently, KVM only supports eVMCS version 1
2012                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2013                  * value to first u32 field of eVMCS which should specify eVMCS
2014                  * VersionNumber.
2015                  *
2016                  * Guest should be aware of supported eVMCS versions by host by
2017                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2018                  * expected to set this CPUID leaf according to the value
2019                  * returned in vmcs_version from nested_enable_evmcs().
2020                  *
2021                  * However, it turns out that Microsoft Hyper-V fails to comply
2022                  * to their own invented interface: When Hyper-V use eVMCS, it
2023                  * just sets first u32 field of eVMCS to revision_id specified
2024                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2025                  * which is one of the supported versions specified in
2026                  * CPUID.0x4000000A.EAX[0:15].
2027                  *
2028                  * To overcome Hyper-V bug, we accept here either a supported
2029                  * eVMCS version or VMCS12 revision_id as valid values for first
2030                  * u32 field of eVMCS.
2031                  */
2032                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2033                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2034                         nested_release_evmcs(vcpu);
2035                         return EVMPTRLD_VMFAIL;
2036                 }
2037
2038                 vmx->nested.dirty_vmcs12 = true;
2039                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2040
2041                 evmcs_gpa_changed = true;
2042                 /*
2043                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
2044                  * reloaded from guest's memory (read only fields, fields not
2045                  * present in struct hv_enlightened_vmcs, ...). Make sure there
2046                  * are no leftovers.
2047                  */
2048                 if (from_launch) {
2049                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2050                         memset(vmcs12, 0, sizeof(*vmcs12));
2051                         vmcs12->hdr.revision_id = VMCS12_REVISION;
2052                 }
2053
2054         }
2055
2056         /*
2057          * Clean fields data can't be used on VMLAUNCH and when we switch
2058          * between different L2 guests as KVM keeps a single VMCS12 per L1.
2059          */
2060         if (from_launch || evmcs_gpa_changed)
2061                 vmx->nested.hv_evmcs->hv_clean_fields &=
2062                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2063
2064         return EVMPTRLD_SUCCEEDED;
2065 }
2066
2067 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2068 {
2069         struct vcpu_vmx *vmx = to_vmx(vcpu);
2070
2071         if (vmx->nested.hv_evmcs) {
2072                 copy_vmcs12_to_enlightened(vmx);
2073                 /* All fields are clean */
2074                 vmx->nested.hv_evmcs->hv_clean_fields |=
2075                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2076         } else {
2077                 copy_vmcs12_to_shadow(vmx);
2078         }
2079
2080         vmx->nested.need_vmcs12_to_shadow_sync = false;
2081 }
2082
2083 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2084 {
2085         struct vcpu_vmx *vmx =
2086                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2087
2088         vmx->nested.preemption_timer_expired = true;
2089         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2090         kvm_vcpu_kick(&vmx->vcpu);
2091
2092         return HRTIMER_NORESTART;
2093 }
2094
2095 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2096 {
2097         struct vcpu_vmx *vmx = to_vmx(vcpu);
2098         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2099
2100         u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2101                             VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2102
2103         if (!vmx->nested.has_preemption_timer_deadline) {
2104                 vmx->nested.preemption_timer_deadline =
2105                         vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2106                 vmx->nested.has_preemption_timer_deadline = true;
2107         }
2108         return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2109 }
2110
2111 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2112                                         u64 preemption_timeout)
2113 {
2114         struct vcpu_vmx *vmx = to_vmx(vcpu);
2115
2116         /*
2117          * A timer value of zero is architecturally guaranteed to cause
2118          * a VMExit prior to executing any instructions in the guest.
2119          */
2120         if (preemption_timeout == 0) {
2121                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2122                 return;
2123         }
2124
2125         if (vcpu->arch.virtual_tsc_khz == 0)
2126                 return;
2127
2128         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2129         preemption_timeout *= 1000000;
2130         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2131         hrtimer_start(&vmx->nested.preemption_timer,
2132                       ktime_add_ns(ktime_get(), preemption_timeout),
2133                       HRTIMER_MODE_ABS_PINNED);
2134 }
2135
2136 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2137 {
2138         if (vmx->nested.nested_run_pending &&
2139             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2140                 return vmcs12->guest_ia32_efer;
2141         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2142                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2143         else
2144                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2145 }
2146
2147 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2148 {
2149         /*
2150          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2151          * according to L0's settings (vmcs12 is irrelevant here).  Host
2152          * fields that come from L0 and are not constant, e.g. HOST_CR3,
2153          * will be set as needed prior to VMLAUNCH/VMRESUME.
2154          */
2155         if (vmx->nested.vmcs02_initialized)
2156                 return;
2157         vmx->nested.vmcs02_initialized = true;
2158
2159         /*
2160          * We don't care what the EPTP value is we just need to guarantee
2161          * it's valid so we don't get a false positive when doing early
2162          * consistency checks.
2163          */
2164         if (enable_ept && nested_early_check)
2165                 vmcs_write64(EPT_POINTER,
2166                              construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2167
2168         /* All VMFUNCs are currently emulated through L0 vmexits.  */
2169         if (cpu_has_vmx_vmfunc())
2170                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2171
2172         if (cpu_has_vmx_posted_intr())
2173                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2174
2175         if (cpu_has_vmx_msr_bitmap())
2176                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2177
2178         /*
2179          * The PML address never changes, so it is constant in vmcs02.
2180          * Conceptually we want to copy the PML index from vmcs01 here,
2181          * and then back to vmcs01 on nested vmexit.  But since we flush
2182          * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2183          * index is also effectively constant in vmcs02.
2184          */
2185         if (enable_pml) {
2186                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2187                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2188         }
2189
2190         if (cpu_has_vmx_encls_vmexit())
2191                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2192
2193         /*
2194          * Set the MSR load/store lists to match L0's settings.  Only the
2195          * addresses are constant (for vmcs02), the counts can change based
2196          * on L2's behavior, e.g. switching to/from long mode.
2197          */
2198         vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2199         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2200         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2201
2202         vmx_set_constant_host_state(vmx);
2203 }
2204
2205 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2206                                       struct vmcs12 *vmcs12)
2207 {
2208         prepare_vmcs02_constant_state(vmx);
2209
2210         vmcs_write64(VMCS_LINK_POINTER, -1ull);
2211
2212         if (enable_vpid) {
2213                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2214                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2215                 else
2216                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2217         }
2218 }
2219
2220 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2221 {
2222         u32 exec_control, vmcs12_exec_ctrl;
2223         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2224
2225         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2226                 prepare_vmcs02_early_rare(vmx, vmcs12);
2227
2228         /*
2229          * PIN CONTROLS
2230          */
2231         exec_control = vmx_pin_based_exec_ctrl(vmx);
2232         exec_control |= (vmcs12->pin_based_vm_exec_control &
2233                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2234
2235         /* Posted interrupts setting is only taken from vmcs12.  */
2236         if (nested_cpu_has_posted_intr(vmcs12)) {
2237                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2238                 vmx->nested.pi_pending = false;
2239         } else {
2240                 exec_control &= ~PIN_BASED_POSTED_INTR;
2241         }
2242         pin_controls_set(vmx, exec_control);
2243
2244         /*
2245          * EXEC CONTROLS
2246          */
2247         exec_control = vmx_exec_control(vmx); /* L0's desires */
2248         exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2249         exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2250         exec_control &= ~CPU_BASED_TPR_SHADOW;
2251         exec_control |= vmcs12->cpu_based_vm_exec_control;
2252
2253         vmx->nested.l1_tpr_threshold = -1;
2254         if (exec_control & CPU_BASED_TPR_SHADOW)
2255                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2256 #ifdef CONFIG_X86_64
2257         else
2258                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2259                                 CPU_BASED_CR8_STORE_EXITING;
2260 #endif
2261
2262         /*
2263          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2264          * for I/O port accesses.
2265          */
2266         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2267         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2268
2269         /*
2270          * This bit will be computed in nested_get_vmcs12_pages, because
2271          * we do not have access to L1's MSR bitmap yet.  For now, keep
2272          * the same bit as before, hoping to avoid multiple VMWRITEs that
2273          * only set/clear this bit.
2274          */
2275         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2276         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2277
2278         exec_controls_set(vmx, exec_control);
2279
2280         /*
2281          * SECONDARY EXEC CONTROLS
2282          */
2283         if (cpu_has_secondary_exec_ctrls()) {
2284                 exec_control = vmx->secondary_exec_control;
2285
2286                 /* Take the following fields only from vmcs12 */
2287                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2288                                   SECONDARY_EXEC_ENABLE_INVPCID |
2289                                   SECONDARY_EXEC_RDTSCP |
2290                                   SECONDARY_EXEC_XSAVES |
2291                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2292                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2293                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2294                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2295                 if (nested_cpu_has(vmcs12,
2296                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2297                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2298                                 ~SECONDARY_EXEC_ENABLE_PML;
2299                         exec_control |= vmcs12_exec_ctrl;
2300                 }
2301
2302                 /* VMCS shadowing for L2 is emulated for now */
2303                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2304
2305                 /*
2306                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2307                  * will not have to rewrite the controls just for this bit.
2308                  */
2309                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2310                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2311                         exec_control |= SECONDARY_EXEC_DESC;
2312
2313                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2314                         vmcs_write16(GUEST_INTR_STATUS,
2315                                 vmcs12->guest_intr_status);
2316
2317                 secondary_exec_controls_set(vmx, exec_control);
2318         }
2319
2320         /*
2321          * ENTRY CONTROLS
2322          *
2323          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2324          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2325          * on the related bits (if supported by the CPU) in the hope that
2326          * we can avoid VMWrites during vmx_set_efer().
2327          */
2328         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2329                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2330         if (cpu_has_load_ia32_efer()) {
2331                 if (guest_efer & EFER_LMA)
2332                         exec_control |= VM_ENTRY_IA32E_MODE;
2333                 if (guest_efer != host_efer)
2334                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2335         }
2336         vm_entry_controls_set(vmx, exec_control);
2337
2338         /*
2339          * EXIT CONTROLS
2340          *
2341          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2342          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2343          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2344          */
2345         exec_control = vmx_vmexit_ctrl();
2346         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2347                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2348         vm_exit_controls_set(vmx, exec_control);
2349
2350         /*
2351          * Interrupt/Exception Fields
2352          */
2353         if (vmx->nested.nested_run_pending) {
2354                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2355                              vmcs12->vm_entry_intr_info_field);
2356                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2357                              vmcs12->vm_entry_exception_error_code);
2358                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2359                              vmcs12->vm_entry_instruction_len);
2360                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2361                              vmcs12->guest_interruptibility_info);
2362                 vmx->loaded_vmcs->nmi_known_unmasked =
2363                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2364         } else {
2365                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2366         }
2367 }
2368
2369 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2370 {
2371         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2372
2373         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2374                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2375                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2376                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2377                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2378                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2379                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2380                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2381                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2382                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2383                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2384                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2385                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2386                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2387                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2388                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2389                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2390                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2391                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2392                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2393                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2394                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2395                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2396                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2397                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2398                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2399                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2400                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2401                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2402                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2403                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2404                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2405                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2406                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2407                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2408                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2409                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2410                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2411         }
2412
2413         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2414                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2415                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2416                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2417                             vmcs12->guest_pending_dbg_exceptions);
2418                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2419                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2420
2421                 /*
2422                  * L1 may access the L2's PDPTR, so save them to construct
2423                  * vmcs12
2424                  */
2425                 if (enable_ept) {
2426                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2427                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2428                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2429                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2430                 }
2431
2432                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2433                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2434                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2435         }
2436
2437         if (nested_cpu_has_xsaves(vmcs12))
2438                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2439
2440         /*
2441          * Whether page-faults are trapped is determined by a combination of
2442          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2443          * doesn't care about page faults then we should set all of these to
2444          * L1's desires. However, if L0 does care about (some) page faults, it
2445          * is not easy (if at all possible?) to merge L0 and L1's desires, we
2446          * simply ask to exit on each and every L2 page fault. This is done by
2447          * setting MASK=MATCH=0 and (see below) EB.PF=1.
2448          * Note that below we don't need special code to set EB.PF beyond the
2449          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2450          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2451          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2452          */
2453         if (vmx_need_pf_intercept(&vmx->vcpu)) {
2454                 /*
2455                  * TODO: if both L0 and L1 need the same MASK and MATCH,
2456                  * go ahead and use it?
2457                  */
2458                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2459                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2460         } else {
2461                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2462                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2463         }
2464
2465         if (cpu_has_vmx_apicv()) {
2466                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2467                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2468                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2469                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2470         }
2471
2472         /*
2473          * Make sure the msr_autostore list is up to date before we set the
2474          * count in the vmcs02.
2475          */
2476         prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2477
2478         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2479         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2480         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2481
2482         set_cr4_guest_host_mask(vmx);
2483 }
2484
2485 /*
2486  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2487  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2488  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2489  * guest in a way that will both be appropriate to L1's requests, and our
2490  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2491  * function also has additional necessary side-effects, like setting various
2492  * vcpu->arch fields.
2493  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2494  * is assigned to entry_failure_code on failure.
2495  */
2496 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2497                           enum vm_entry_failure_code *entry_failure_code)
2498 {
2499         struct vcpu_vmx *vmx = to_vmx(vcpu);
2500         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2501         bool load_guest_pdptrs_vmcs12 = false;
2502
2503         if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2504                 prepare_vmcs02_rare(vmx, vmcs12);
2505                 vmx->nested.dirty_vmcs12 = false;
2506
2507                 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2508                         !(hv_evmcs->hv_clean_fields &
2509                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2510         }
2511
2512         if (vmx->nested.nested_run_pending &&
2513             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2514                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2515                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2516         } else {
2517                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2518                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2519         }
2520         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2521             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2522                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2523         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2524
2525         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2526          * bitwise-or of what L1 wants to trap for L2, and what we want to
2527          * trap. Note that CR0.TS also needs updating - we do this later.
2528          */
2529         update_exception_bitmap(vcpu);
2530         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2531         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2532
2533         if (vmx->nested.nested_run_pending &&
2534             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2535                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2536                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2537         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2538                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2539         }
2540
2541         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2542
2543         if (kvm_has_tsc_control)
2544                 decache_tsc_multiplier(vmx);
2545
2546         nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2547
2548         if (nested_cpu_has_ept(vmcs12))
2549                 nested_ept_init_mmu_context(vcpu);
2550
2551         /*
2552          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2553          * bits which we consider mandatory enabled.
2554          * The CR0_READ_SHADOW is what L2 should have expected to read given
2555          * the specifications by L1; It's not enough to take
2556          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2557          * have more bits than L1 expected.
2558          */
2559         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2560         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2561
2562         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2563         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2564
2565         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2566         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2567         vmx_set_efer(vcpu, vcpu->arch.efer);
2568
2569         /*
2570          * Guest state is invalid and unrestricted guest is disabled,
2571          * which means L1 attempted VMEntry to L2 with invalid state.
2572          * Fail the VMEntry.
2573          */
2574         if (vmx->emulation_required) {
2575                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2576                 return -EINVAL;
2577         }
2578
2579         /* Shadow page tables on either EPT or shadow page tables. */
2580         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2581                                 entry_failure_code))
2582                 return -EINVAL;
2583
2584         /*
2585          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2586          * on nested VM-Exit, which can occur without actually running L2 and
2587          * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2588          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2589          * transition to HLT instead of running L2.
2590          */
2591         if (enable_ept)
2592                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2593
2594         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2595         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2596             is_pae_paging(vcpu)) {
2597                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2598                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2599                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2600                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2601         }
2602
2603         if (!enable_ept)
2604                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2605
2606         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2607             WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2608                                      vmcs12->guest_ia32_perf_global_ctrl)))
2609                 return -EINVAL;
2610
2611         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2612         kvm_rip_write(vcpu, vmcs12->guest_rip);
2613         return 0;
2614 }
2615
2616 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2617 {
2618         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2619                nested_cpu_has_virtual_nmis(vmcs12)))
2620                 return -EINVAL;
2621
2622         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2623                nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2624                 return -EINVAL;
2625
2626         return 0;
2627 }
2628
2629 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2630 {
2631         struct vcpu_vmx *vmx = to_vmx(vcpu);
2632         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2633
2634         /* Check for memory type validity */
2635         switch (new_eptp & VMX_EPTP_MT_MASK) {
2636         case VMX_EPTP_MT_UC:
2637                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2638                         return false;
2639                 break;
2640         case VMX_EPTP_MT_WB:
2641                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2642                         return false;
2643                 break;
2644         default:
2645                 return false;
2646         }
2647
2648         /* Page-walk levels validity. */
2649         switch (new_eptp & VMX_EPTP_PWL_MASK) {
2650         case VMX_EPTP_PWL_5:
2651                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2652                         return false;
2653                 break;
2654         case VMX_EPTP_PWL_4:
2655                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2656                         return false;
2657                 break;
2658         default:
2659                 return false;
2660         }
2661
2662         /* Reserved bits should not be set */
2663         if (CC(new_eptp >> maxphyaddr || ((new_eptp >> 7) & 0x1f)))
2664                 return false;
2665
2666         /* AD, if set, should be supported */
2667         if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2668                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2669                         return false;
2670         }
2671
2672         return true;
2673 }
2674
2675 /*
2676  * Checks related to VM-Execution Control Fields
2677  */
2678 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2679                                               struct vmcs12 *vmcs12)
2680 {
2681         struct vcpu_vmx *vmx = to_vmx(vcpu);
2682
2683         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2684                                    vmx->nested.msrs.pinbased_ctls_low,
2685                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2686             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2687                                    vmx->nested.msrs.procbased_ctls_low,
2688                                    vmx->nested.msrs.procbased_ctls_high)))
2689                 return -EINVAL;
2690
2691         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2692             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2693                                    vmx->nested.msrs.secondary_ctls_low,
2694                                    vmx->nested.msrs.secondary_ctls_high)))
2695                 return -EINVAL;
2696
2697         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2698             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2699             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2700             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2701             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2702             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2703             nested_vmx_check_nmi_controls(vmcs12) ||
2704             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2705             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2706             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2707             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2708             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2709                 return -EINVAL;
2710
2711         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2712             nested_cpu_has_save_preemption_timer(vmcs12))
2713                 return -EINVAL;
2714
2715         if (nested_cpu_has_ept(vmcs12) &&
2716             CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2717                 return -EINVAL;
2718
2719         if (nested_cpu_has_vmfunc(vmcs12)) {
2720                 if (CC(vmcs12->vm_function_control &
2721                        ~vmx->nested.msrs.vmfunc_controls))
2722                         return -EINVAL;
2723
2724                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2725                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2726                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2727                                 return -EINVAL;
2728                 }
2729         }
2730
2731         return 0;
2732 }
2733
2734 /*
2735  * Checks related to VM-Exit Control Fields
2736  */
2737 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2738                                          struct vmcs12 *vmcs12)
2739 {
2740         struct vcpu_vmx *vmx = to_vmx(vcpu);
2741
2742         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2743                                     vmx->nested.msrs.exit_ctls_low,
2744                                     vmx->nested.msrs.exit_ctls_high)) ||
2745             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2746                 return -EINVAL;
2747
2748         return 0;
2749 }
2750
2751 /*
2752  * Checks related to VM-Entry Control Fields
2753  */
2754 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2755                                           struct vmcs12 *vmcs12)
2756 {
2757         struct vcpu_vmx *vmx = to_vmx(vcpu);
2758
2759         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2760                                     vmx->nested.msrs.entry_ctls_low,
2761                                     vmx->nested.msrs.entry_ctls_high)))
2762                 return -EINVAL;
2763
2764         /*
2765          * From the Intel SDM, volume 3:
2766          * Fields relevant to VM-entry event injection must be set properly.
2767          * These fields are the VM-entry interruption-information field, the
2768          * VM-entry exception error code, and the VM-entry instruction length.
2769          */
2770         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2771                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2772                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2773                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2774                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2775                 bool should_have_error_code;
2776                 bool urg = nested_cpu_has2(vmcs12,
2777                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2778                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2779
2780                 /* VM-entry interruption-info field: interruption type */
2781                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2782                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2783                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2784                         return -EINVAL;
2785
2786                 /* VM-entry interruption-info field: vector */
2787                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2788                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2789                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2790                         return -EINVAL;
2791
2792                 /* VM-entry interruption-info field: deliver error code */
2793                 should_have_error_code =
2794                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2795                         x86_exception_has_error_code(vector);
2796                 if (CC(has_error_code != should_have_error_code))
2797                         return -EINVAL;
2798
2799                 /* VM-entry exception error code */
2800                 if (CC(has_error_code &&
2801                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2802                         return -EINVAL;
2803
2804                 /* VM-entry interruption-info field: reserved bits */
2805                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2806                         return -EINVAL;
2807
2808                 /* VM-entry instruction length */
2809                 switch (intr_type) {
2810                 case INTR_TYPE_SOFT_EXCEPTION:
2811                 case INTR_TYPE_SOFT_INTR:
2812                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2813                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2814                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2815                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2816                                 return -EINVAL;
2817                 }
2818         }
2819
2820         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2821                 return -EINVAL;
2822
2823         return 0;
2824 }
2825
2826 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2827                                      struct vmcs12 *vmcs12)
2828 {
2829         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2830             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2831             nested_check_vm_entry_controls(vcpu, vmcs12))
2832                 return -EINVAL;
2833
2834         if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2835                 return nested_evmcs_check_controls(vmcs12);
2836
2837         return 0;
2838 }
2839
2840 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2841                                        struct vmcs12 *vmcs12)
2842 {
2843         bool ia32e;
2844
2845         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2846             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2847             CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2848                 return -EINVAL;
2849
2850         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2851             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2852                 return -EINVAL;
2853
2854         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2855             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2856                 return -EINVAL;
2857
2858         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2859             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2860                                            vmcs12->host_ia32_perf_global_ctrl)))
2861                 return -EINVAL;
2862
2863 #ifdef CONFIG_X86_64
2864         ia32e = !!(vcpu->arch.efer & EFER_LMA);
2865 #else
2866         ia32e = false;
2867 #endif
2868
2869         if (ia32e) {
2870                 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2871                     CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2872                         return -EINVAL;
2873         } else {
2874                 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2875                     CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2876                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2877                     CC((vmcs12->host_rip) >> 32))
2878                         return -EINVAL;
2879         }
2880
2881         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2882             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2883             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2884             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2885             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2886             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2887             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2888             CC(vmcs12->host_cs_selector == 0) ||
2889             CC(vmcs12->host_tr_selector == 0) ||
2890             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2891                 return -EINVAL;
2892
2893         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2894             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2895             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2896             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2897             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2898             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2899                 return -EINVAL;
2900
2901         /*
2902          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2903          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2904          * the values of the LMA and LME bits in the field must each be that of
2905          * the host address-space size VM-exit control.
2906          */
2907         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2908                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2909                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2910                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2911                         return -EINVAL;
2912         }
2913
2914         return 0;
2915 }
2916
2917 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2918                                           struct vmcs12 *vmcs12)
2919 {
2920         int r = 0;
2921         struct vmcs12 *shadow;
2922         struct kvm_host_map map;
2923
2924         if (vmcs12->vmcs_link_pointer == -1ull)
2925                 return 0;
2926
2927         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2928                 return -EINVAL;
2929
2930         if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2931                 return -EINVAL;
2932
2933         shadow = map.hva;
2934
2935         if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2936             CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2937                 r = -EINVAL;
2938
2939         kvm_vcpu_unmap(vcpu, &map, false);
2940         return r;
2941 }
2942
2943 /*
2944  * Checks related to Guest Non-register State
2945  */
2946 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2947 {
2948         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2949                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2950                 return -EINVAL;
2951
2952         return 0;
2953 }
2954
2955 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2956                                         struct vmcs12 *vmcs12,
2957                                         enum vm_entry_failure_code *entry_failure_code)
2958 {
2959         bool ia32e;
2960
2961         *entry_failure_code = ENTRY_FAIL_DEFAULT;
2962
2963         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2964             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2965                 return -EINVAL;
2966
2967         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2968             CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2969                 return -EINVAL;
2970
2971         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2972             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2973                 return -EINVAL;
2974
2975         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2976                 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
2977                 return -EINVAL;
2978         }
2979
2980         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2981             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2982                                            vmcs12->guest_ia32_perf_global_ctrl)))
2983                 return -EINVAL;
2984
2985         /*
2986          * If the load IA32_EFER VM-entry control is 1, the following checks
2987          * are performed on the field for the IA32_EFER MSR:
2988          * - Bits reserved in the IA32_EFER MSR must be 0.
2989          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2990          *   the IA-32e mode guest VM-exit control. It must also be identical
2991          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2992          *   CR0.PG) is 1.
2993          */
2994         if (to_vmx(vcpu)->nested.nested_run_pending &&
2995             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2996                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2997                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2998                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2999                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3000                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3001                         return -EINVAL;
3002         }
3003
3004         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3005             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3006              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3007                 return -EINVAL;
3008
3009         if (nested_check_guest_non_reg_state(vmcs12))
3010                 return -EINVAL;
3011
3012         return 0;
3013 }
3014
3015 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3016 {
3017         struct vcpu_vmx *vmx = to_vmx(vcpu);
3018         unsigned long cr3, cr4;
3019         bool vm_fail;
3020
3021         if (!nested_early_check)
3022                 return 0;
3023
3024         if (vmx->msr_autoload.host.nr)
3025                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3026         if (vmx->msr_autoload.guest.nr)
3027                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3028
3029         preempt_disable();
3030
3031         vmx_prepare_switch_to_guest(vcpu);
3032
3033         /*
3034          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3035          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3036          * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3037          * there is no need to preserve other bits or save/restore the field.
3038          */
3039         vmcs_writel(GUEST_RFLAGS, 0);
3040
3041         cr3 = __get_current_cr3_fast();
3042         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3043                 vmcs_writel(HOST_CR3, cr3);
3044                 vmx->loaded_vmcs->host_state.cr3 = cr3;
3045         }
3046
3047         cr4 = cr4_read_shadow();
3048         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3049                 vmcs_writel(HOST_CR4, cr4);
3050                 vmx->loaded_vmcs->host_state.cr4 = cr4;
3051         }
3052
3053         asm(
3054                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
3055                 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
3056                 "je 1f \n\t"
3057                 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
3058                 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
3059                 "1: \n\t"
3060                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
3061
3062                 /* Check if vmlaunch or vmresume is needed */
3063                 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
3064
3065                 /*
3066                  * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
3067                  * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
3068                  * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
3069                  * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
3070                  */
3071                 "call vmx_vmenter\n\t"
3072
3073                 CC_SET(be)
3074               : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
3075               : [HOST_RSP]"r"((unsigned long)HOST_RSP),
3076                 [loaded_vmcs]"r"(vmx->loaded_vmcs),
3077                 [launched]"i"(offsetof(struct loaded_vmcs, launched)),
3078                 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
3079                 [wordsize]"i"(sizeof(ulong))
3080               : "memory"
3081         );
3082
3083         if (vmx->msr_autoload.host.nr)
3084                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3085         if (vmx->msr_autoload.guest.nr)
3086                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3087
3088         if (vm_fail) {
3089                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3090
3091                 preempt_enable();
3092
3093                 trace_kvm_nested_vmenter_failed(
3094                         "early hardware check VM-instruction error: ", error);
3095                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3096                 return 1;
3097         }
3098
3099         /*
3100          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3101          */
3102         if (hw_breakpoint_active())
3103                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3104         local_irq_enable();
3105         preempt_enable();
3106
3107         /*
3108          * A non-failing VMEntry means we somehow entered guest mode with
3109          * an illegal RIP, and that's just the tip of the iceberg.  There
3110          * is no telling what memory has been modified or what state has
3111          * been exposed to unknown code.  Hitting this all but guarantees
3112          * a (very critical) hardware issue.
3113          */
3114         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3115                 VMX_EXIT_REASONS_FAILED_VMENTRY));
3116
3117         return 0;
3118 }
3119
3120 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3121 {
3122         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3123         struct vcpu_vmx *vmx = to_vmx(vcpu);
3124         struct kvm_host_map *map;
3125         struct page *page;
3126         u64 hpa;
3127
3128         /*
3129          * hv_evmcs may end up being not mapped after migration (when
3130          * L2 was running), map it here to make sure vmcs12 changes are
3131          * properly reflected.
3132          */
3133         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) {
3134                 enum nested_evmptrld_status evmptrld_status =
3135                         nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3136
3137                 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3138                     evmptrld_status == EVMPTRLD_ERROR) {
3139                         pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3140                                              __func__);
3141                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3142                         vcpu->run->internal.suberror =
3143                                 KVM_INTERNAL_ERROR_EMULATION;
3144                         vcpu->run->internal.ndata = 0;
3145                         return false;
3146                 }
3147         }
3148
3149         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3150                 /*
3151                  * Translate L1 physical address to host physical
3152                  * address for vmcs02. Keep the page pinned, so this
3153                  * physical address remains valid. We keep a reference
3154                  * to it so we can release it later.
3155                  */
3156                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3157                         kvm_release_page_clean(vmx->nested.apic_access_page);
3158                         vmx->nested.apic_access_page = NULL;
3159                 }
3160                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3161                 if (!is_error_page(page)) {
3162                         vmx->nested.apic_access_page = page;
3163                         hpa = page_to_phys(vmx->nested.apic_access_page);
3164                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
3165                 } else {
3166                         pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3167                                              __func__);
3168                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3169                         vcpu->run->internal.suberror =
3170                                 KVM_INTERNAL_ERROR_EMULATION;
3171                         vcpu->run->internal.ndata = 0;
3172                         return false;
3173                 }
3174         }
3175
3176         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3177                 map = &vmx->nested.virtual_apic_map;
3178
3179                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3180                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3181                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3182                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3183                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3184                         /*
3185                          * The processor will never use the TPR shadow, simply
3186                          * clear the bit from the execution control.  Such a
3187                          * configuration is useless, but it happens in tests.
3188                          * For any other configuration, failing the vm entry is
3189                          * _not_ what the processor does but it's basically the
3190                          * only possibility we have.
3191                          */
3192                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3193                 } else {
3194                         /*
3195                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3196                          * force VM-Entry to fail.
3197                          */
3198                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3199                 }
3200         }
3201
3202         if (nested_cpu_has_posted_intr(vmcs12)) {
3203                 map = &vmx->nested.pi_desc_map;
3204
3205                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3206                         vmx->nested.pi_desc =
3207                                 (struct pi_desc *)(((void *)map->hva) +
3208                                 offset_in_page(vmcs12->posted_intr_desc_addr));
3209                         vmcs_write64(POSTED_INTR_DESC_ADDR,
3210                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3211                 }
3212         }
3213         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3214                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3215         else
3216                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3217         return true;
3218 }
3219
3220 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3221 {
3222         struct vmcs12 *vmcs12;
3223         struct vcpu_vmx *vmx = to_vmx(vcpu);
3224         gpa_t dst;
3225
3226         if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3227                 return 0;
3228
3229         if (WARN_ON_ONCE(vmx->nested.pml_full))
3230                 return 1;
3231
3232         /*
3233          * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3234          * set is already checked as part of A/D emulation.
3235          */
3236         vmcs12 = get_vmcs12(vcpu);
3237         if (!nested_cpu_has_pml(vmcs12))
3238                 return 0;
3239
3240         if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3241                 vmx->nested.pml_full = true;
3242                 return 1;
3243         }
3244
3245         gpa &= ~0xFFFull;
3246         dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3247
3248         if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3249                                  offset_in_page(dst), sizeof(gpa)))
3250                 return 0;
3251
3252         vmcs12->guest_pml_index--;
3253
3254         return 0;
3255 }
3256
3257 /*
3258  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3259  * for running VMX instructions (except VMXON, whose prerequisites are
3260  * slightly different). It also specifies what exception to inject otherwise.
3261  * Note that many of these exceptions have priority over VM exits, so they
3262  * don't have to be checked again here.
3263  */
3264 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3265 {
3266         if (!to_vmx(vcpu)->nested.vmxon) {
3267                 kvm_queue_exception(vcpu, UD_VECTOR);
3268                 return 0;
3269         }
3270
3271         if (vmx_get_cpl(vcpu)) {
3272                 kvm_inject_gp(vcpu, 0);
3273                 return 0;
3274         }
3275
3276         return 1;
3277 }
3278
3279 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3280 {
3281         u8 rvi = vmx_get_rvi();
3282         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3283
3284         return ((rvi & 0xf0) > (vppr & 0xf0));
3285 }
3286
3287 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3288                                    struct vmcs12 *vmcs12);
3289
3290 /*
3291  * If from_vmentry is false, this is being called from state restore (either RSM
3292  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3293  *
3294  * Returns:
3295  *      NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3296  *      NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3297  *      NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3298  *      NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3299  */
3300 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3301                                                         bool from_vmentry)
3302 {
3303         struct vcpu_vmx *vmx = to_vmx(vcpu);
3304         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3305         enum vm_entry_failure_code entry_failure_code;
3306         bool evaluate_pending_interrupts;
3307         u32 exit_reason, failed_index;
3308
3309         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3310                 kvm_vcpu_flush_tlb_current(vcpu);
3311
3312         evaluate_pending_interrupts = exec_controls_get(vmx) &
3313                 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3314         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3315                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3316
3317         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3318                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3319         if (kvm_mpx_supported() &&
3320                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3321                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3322
3323         /*
3324          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3325          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3326          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3327          * software model to the pre-VMEntry host state.  When EPT is disabled,
3328          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3329          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3330          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3331          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3332          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3333          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3334          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3335          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3336          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3337          * path would need to manually save/restore vmcs01.GUEST_CR3.
3338          */
3339         if (!enable_ept && !nested_early_check)
3340                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3341
3342         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3343
3344         prepare_vmcs02_early(vmx, vmcs12);
3345
3346         if (from_vmentry) {
3347                 if (unlikely(!nested_get_vmcs12_pages(vcpu)))
3348                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3349
3350                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3351                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3352                         return NVMX_VMENTRY_VMFAIL;
3353                 }
3354
3355                 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3356                                                  &entry_failure_code)) {
3357                         exit_reason = EXIT_REASON_INVALID_STATE;
3358                         vmcs12->exit_qualification = entry_failure_code;
3359                         goto vmentry_fail_vmexit;
3360                 }
3361         }
3362
3363         enter_guest_mode(vcpu);
3364         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3365                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3366
3367         if (prepare_vmcs02(vcpu, vmcs12, &entry_failure_code)) {
3368                 exit_reason = EXIT_REASON_INVALID_STATE;
3369                 vmcs12->exit_qualification = entry_failure_code;
3370                 goto vmentry_fail_vmexit_guest_mode;
3371         }
3372
3373         if (from_vmentry) {
3374                 failed_index = nested_vmx_load_msr(vcpu,
3375                                                    vmcs12->vm_entry_msr_load_addr,
3376                                                    vmcs12->vm_entry_msr_load_count);
3377                 if (failed_index) {
3378                         exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3379                         vmcs12->exit_qualification = failed_index;
3380                         goto vmentry_fail_vmexit_guest_mode;
3381                 }
3382         } else {
3383                 /*
3384                  * The MMU is not initialized to point at the right entities yet and
3385                  * "get pages" would need to read data from the guest (i.e. we will
3386                  * need to perform gpa to hpa translation). Request a call
3387                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3388                  * have already been set at vmentry time and should not be reset.
3389                  */
3390                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3391         }
3392
3393         /*
3394          * If L1 had a pending IRQ/NMI until it executed
3395          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3396          * disallowed (e.g. interrupts disabled), L0 needs to
3397          * evaluate if this pending event should cause an exit from L2
3398          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3399          * intercept EXTERNAL_INTERRUPT).
3400          *
3401          * Usually this would be handled by the processor noticing an
3402          * IRQ/NMI window request, or checking RVI during evaluation of
3403          * pending virtual interrupts.  However, this setting was done
3404          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3405          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3406          */
3407         if (unlikely(evaluate_pending_interrupts))
3408                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3409
3410         /*
3411          * Do not start the preemption timer hrtimer until after we know
3412          * we are successful, so that only nested_vmx_vmexit needs to cancel
3413          * the timer.
3414          */
3415         vmx->nested.preemption_timer_expired = false;
3416         if (nested_cpu_has_preemption_timer(vmcs12)) {
3417                 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3418                 vmx_start_preemption_timer(vcpu, timer_value);
3419         }
3420
3421         /*
3422          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3423          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3424          * returned as far as L1 is concerned. It will only return (and set
3425          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3426          */
3427         return NVMX_VMENTRY_SUCCESS;
3428
3429         /*
3430          * A failed consistency check that leads to a VMExit during L1's
3431          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3432          * 26.7 "VM-entry failures during or after loading guest state".
3433          */
3434 vmentry_fail_vmexit_guest_mode:
3435         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3436                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3437         leave_guest_mode(vcpu);
3438
3439 vmentry_fail_vmexit:
3440         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3441
3442         if (!from_vmentry)
3443                 return NVMX_VMENTRY_VMEXIT;
3444
3445         load_vmcs12_host_state(vcpu, vmcs12);
3446         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3447         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3448                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3449         return NVMX_VMENTRY_VMEXIT;
3450 }
3451
3452 /*
3453  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3454  * for running an L2 nested guest.
3455  */
3456 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3457 {
3458         struct vmcs12 *vmcs12;
3459         enum nvmx_vmentry_status status;
3460         struct vcpu_vmx *vmx = to_vmx(vcpu);
3461         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3462         enum nested_evmptrld_status evmptrld_status;
3463
3464         if (!nested_vmx_check_permission(vcpu))
3465                 return 1;
3466
3467         evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3468         if (evmptrld_status == EVMPTRLD_ERROR) {
3469                 kvm_queue_exception(vcpu, UD_VECTOR);
3470                 return 1;
3471         } else if (evmptrld_status == EVMPTRLD_VMFAIL) {
3472                 return nested_vmx_failInvalid(vcpu);
3473         }
3474
3475         if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3476                 return nested_vmx_failInvalid(vcpu);
3477
3478         vmcs12 = get_vmcs12(vcpu);
3479
3480         /*
3481          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3482          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3483          * rather than RFLAGS.ZF, and no error number is stored to the
3484          * VM-instruction error field.
3485          */
3486         if (vmcs12->hdr.shadow_vmcs)
3487                 return nested_vmx_failInvalid(vcpu);
3488
3489         if (vmx->nested.hv_evmcs) {
3490                 copy_enlightened_to_vmcs12(vmx);
3491                 /* Enlightened VMCS doesn't have launch state */
3492                 vmcs12->launch_state = !launch;
3493         } else if (enable_shadow_vmcs) {
3494                 copy_shadow_to_vmcs12(vmx);
3495         }
3496
3497         /*
3498          * The nested entry process starts with enforcing various prerequisites
3499          * on vmcs12 as required by the Intel SDM, and act appropriately when
3500          * they fail: As the SDM explains, some conditions should cause the
3501          * instruction to fail, while others will cause the instruction to seem
3502          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3503          * To speed up the normal (success) code path, we should avoid checking
3504          * for misconfigurations which will anyway be caught by the processor
3505          * when using the merged vmcs02.
3506          */
3507         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3508                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3509
3510         if (vmcs12->launch_state == launch)
3511                 return nested_vmx_fail(vcpu,
3512                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3513                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3514
3515         if (nested_vmx_check_controls(vcpu, vmcs12))
3516                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3517
3518         if (nested_vmx_check_host_state(vcpu, vmcs12))
3519                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3520
3521         /*
3522          * We're finally done with prerequisite checking, and can start with
3523          * the nested entry.
3524          */
3525         vmx->nested.nested_run_pending = 1;
3526         vmx->nested.has_preemption_timer_deadline = false;
3527         status = nested_vmx_enter_non_root_mode(vcpu, true);
3528         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3529                 goto vmentry_failed;
3530
3531         /* Hide L1D cache contents from the nested guest.  */
3532         vmx->vcpu.arch.l1tf_flush_l1d = true;
3533
3534         /*
3535          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3536          * also be used as part of restoring nVMX state for
3537          * snapshot restore (migration).
3538          *
3539          * In this flow, it is assumed that vmcs12 cache was
3540          * trasferred as part of captured nVMX state and should
3541          * therefore not be read from guest memory (which may not
3542          * exist on destination host yet).
3543          */
3544         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3545
3546         /*
3547          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3548          * awakened by event injection or by an NMI-window VM-exit or
3549          * by an interrupt-window VM-exit, halt the vcpu.
3550          */
3551         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3552             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3553             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_NMI_WINDOW_EXITING) &&
3554             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_INTR_WINDOW_EXITING) &&
3555               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3556                 vmx->nested.nested_run_pending = 0;
3557                 return kvm_vcpu_halt(vcpu);
3558         }
3559         return 1;
3560
3561 vmentry_failed:
3562         vmx->nested.nested_run_pending = 0;
3563         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3564                 return 0;
3565         if (status == NVMX_VMENTRY_VMEXIT)
3566                 return 1;
3567         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3568         return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3569 }
3570
3571 /*
3572  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3573  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3574  * This function returns the new value we should put in vmcs12.guest_cr0.
3575  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3576  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3577  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3578  *     didn't trap the bit, because if L1 did, so would L0).
3579  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3580  *     been modified by L2, and L1 knows it. So just leave the old value of
3581  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3582  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3583  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3584  *     changed these bits, and therefore they need to be updated, but L0
3585  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3586  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3587  */
3588 static inline unsigned long
3589 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3590 {
3591         return
3592         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3593         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3594         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3595                         vcpu->arch.cr0_guest_owned_bits));
3596 }
3597
3598 static inline unsigned long
3599 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3600 {
3601         return
3602         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3603         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3604         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3605                         vcpu->arch.cr4_guest_owned_bits));
3606 }
3607
3608 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3609                                       struct vmcs12 *vmcs12)
3610 {
3611         u32 idt_vectoring;
3612         unsigned int nr;
3613
3614         if (vcpu->arch.exception.injected) {
3615                 nr = vcpu->arch.exception.nr;
3616                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3617
3618                 if (kvm_exception_is_soft(nr)) {
3619                         vmcs12->vm_exit_instruction_len =
3620                                 vcpu->arch.event_exit_inst_len;
3621                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3622                 } else
3623                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3624
3625                 if (vcpu->arch.exception.has_error_code) {
3626                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3627                         vmcs12->idt_vectoring_error_code =
3628                                 vcpu->arch.exception.error_code;
3629                 }
3630
3631                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3632         } else if (vcpu->arch.nmi_injected) {
3633                 vmcs12->idt_vectoring_info_field =
3634                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3635         } else if (vcpu->arch.interrupt.injected) {
3636                 nr = vcpu->arch.interrupt.nr;
3637                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3638
3639                 if (vcpu->arch.interrupt.soft) {
3640                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3641                         vmcs12->vm_entry_instruction_len =
3642                                 vcpu->arch.event_exit_inst_len;
3643                 } else
3644                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3645
3646                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3647         }
3648 }
3649
3650
3651 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3652 {
3653         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3654         gfn_t gfn;
3655
3656         /*
3657          * Don't need to mark the APIC access page dirty; it is never
3658          * written to by the CPU during APIC virtualization.
3659          */
3660
3661         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3662                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3663                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3664         }
3665
3666         if (nested_cpu_has_posted_intr(vmcs12)) {
3667                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3668                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3669         }
3670 }
3671
3672 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3673 {
3674         struct vcpu_vmx *vmx = to_vmx(vcpu);
3675         int max_irr;
3676         void *vapic_page;
3677         u16 status;
3678
3679         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3680                 return;
3681
3682         vmx->nested.pi_pending = false;
3683         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3684                 return;
3685
3686         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3687         if (max_irr != 256) {
3688                 vapic_page = vmx->nested.virtual_apic_map.hva;
3689                 if (!vapic_page)
3690                         return;
3691
3692                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3693                         vapic_page, &max_irr);
3694                 status = vmcs_read16(GUEST_INTR_STATUS);
3695                 if ((u8)max_irr > ((u8)status & 0xff)) {
3696                         status &= ~0xff;
3697                         status |= (u8)max_irr;
3698                         vmcs_write16(GUEST_INTR_STATUS, status);
3699                 }
3700         }
3701
3702         nested_mark_vmcs12_pages_dirty(vcpu);
3703 }
3704
3705 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3706                                                unsigned long exit_qual)
3707 {
3708         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3709         unsigned int nr = vcpu->arch.exception.nr;
3710         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3711
3712         if (vcpu->arch.exception.has_error_code) {
3713                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3714                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3715         }
3716
3717         if (kvm_exception_is_soft(nr))
3718                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3719         else
3720                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3721
3722         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3723             vmx_get_nmi_mask(vcpu))
3724                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3725
3726         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3727 }
3728
3729 /*
3730  * Returns true if a debug trap is pending delivery.
3731  *
3732  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3733  * exception may be inferred from the presence of an exception payload.
3734  */
3735 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3736 {
3737         return vcpu->arch.exception.pending &&
3738                         vcpu->arch.exception.nr == DB_VECTOR &&
3739                         vcpu->arch.exception.payload;
3740 }
3741
3742 /*
3743  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3744  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3745  * represents these debug traps with a payload that is said to be compatible
3746  * with the 'pending debug exceptions' field, write the payload to the VMCS
3747  * field if a VM-exit is delivered before the debug trap.
3748  */
3749 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3750 {
3751         if (vmx_pending_dbg_trap(vcpu))
3752                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3753                             vcpu->arch.exception.payload);
3754 }
3755
3756 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3757 {
3758         return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3759                to_vmx(vcpu)->nested.preemption_timer_expired;
3760 }
3761
3762 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3763 {
3764         struct vcpu_vmx *vmx = to_vmx(vcpu);
3765         unsigned long exit_qual;
3766         bool block_nested_events =
3767             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3768         bool mtf_pending = vmx->nested.mtf_pending;
3769         struct kvm_lapic *apic = vcpu->arch.apic;
3770
3771         /*
3772          * Clear the MTF state. If a higher priority VM-exit is delivered first,
3773          * this state is discarded.
3774          */
3775         if (!block_nested_events)
3776                 vmx->nested.mtf_pending = false;
3777
3778         if (lapic_in_kernel(vcpu) &&
3779                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3780                 if (block_nested_events)
3781                         return -EBUSY;
3782                 nested_vmx_update_pending_dbg(vcpu);
3783                 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3784                 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3785                 return 0;
3786         }
3787
3788         /*
3789          * Process any exceptions that are not debug traps before MTF.
3790          */
3791         if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3792                 if (block_nested_events)
3793                         return -EBUSY;
3794                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3795                         goto no_vmexit;
3796                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3797                 return 0;
3798         }
3799
3800         if (mtf_pending) {
3801                 if (block_nested_events)
3802                         return -EBUSY;
3803                 nested_vmx_update_pending_dbg(vcpu);
3804                 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3805                 return 0;
3806         }
3807
3808         if (vcpu->arch.exception.pending) {
3809                 if (block_nested_events)
3810                         return -EBUSY;
3811                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3812                         goto no_vmexit;
3813                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3814                 return 0;
3815         }
3816
3817         if (nested_vmx_preemption_timer_pending(vcpu)) {
3818                 if (block_nested_events)
3819                         return -EBUSY;
3820                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3821                 return 0;
3822         }
3823
3824         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3825                 if (block_nested_events)
3826                         return -EBUSY;
3827                 goto no_vmexit;
3828         }
3829
3830         if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3831                 if (block_nested_events)
3832                         return -EBUSY;
3833                 if (!nested_exit_on_nmi(vcpu))
3834                         goto no_vmexit;
3835
3836                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3837                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3838                                   INTR_INFO_VALID_MASK, 0);
3839                 /*
3840                  * The NMI-triggered VM exit counts as injection:
3841                  * clear this one and block further NMIs.
3842                  */
3843                 vcpu->arch.nmi_pending = 0;
3844                 vmx_set_nmi_mask(vcpu, true);
3845                 return 0;
3846         }
3847
3848         if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3849                 if (block_nested_events)
3850                         return -EBUSY;
3851                 if (!nested_exit_on_intr(vcpu))
3852                         goto no_vmexit;
3853                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3854                 return 0;
3855         }
3856
3857 no_vmexit:
3858         vmx_complete_nested_posted_interrupt(vcpu);
3859         return 0;
3860 }
3861
3862 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3863 {
3864         ktime_t remaining =
3865                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3866         u64 value;
3867
3868         if (ktime_to_ns(remaining) <= 0)
3869                 return 0;
3870
3871         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3872         do_div(value, 1000000);
3873         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3874 }
3875
3876 static bool is_vmcs12_ext_field(unsigned long field)
3877 {
3878         switch (field) {
3879         case GUEST_ES_SELECTOR:
3880         case GUEST_CS_SELECTOR:
3881         case GUEST_SS_SELECTOR:
3882         case GUEST_DS_SELECTOR:
3883         case GUEST_FS_SELECTOR:
3884         case GUEST_GS_SELECTOR:
3885         case GUEST_LDTR_SELECTOR:
3886         case GUEST_TR_SELECTOR:
3887         case GUEST_ES_LIMIT:
3888         case GUEST_CS_LIMIT:
3889         case GUEST_SS_LIMIT:
3890         case GUEST_DS_LIMIT:
3891         case GUEST_FS_LIMIT:
3892         case GUEST_GS_LIMIT:
3893         case GUEST_LDTR_LIMIT:
3894         case GUEST_TR_LIMIT:
3895         case GUEST_GDTR_LIMIT:
3896         case GUEST_IDTR_LIMIT:
3897         case GUEST_ES_AR_BYTES:
3898         case GUEST_DS_AR_BYTES:
3899         case GUEST_FS_AR_BYTES:
3900         case GUEST_GS_AR_BYTES:
3901         case GUEST_LDTR_AR_BYTES:
3902         case GUEST_TR_AR_BYTES:
3903         case GUEST_ES_BASE:
3904         case GUEST_CS_BASE:
3905         case GUEST_SS_BASE:
3906         case GUEST_DS_BASE:
3907         case GUEST_FS_BASE:
3908         case GUEST_GS_BASE:
3909         case GUEST_LDTR_BASE:
3910         case GUEST_TR_BASE:
3911         case GUEST_GDTR_BASE:
3912         case GUEST_IDTR_BASE:
3913         case GUEST_PENDING_DBG_EXCEPTIONS:
3914         case GUEST_BNDCFGS:
3915                 return true;
3916         default:
3917                 break;
3918         }
3919
3920         return false;
3921 }
3922
3923 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3924                                        struct vmcs12 *vmcs12)
3925 {
3926         struct vcpu_vmx *vmx = to_vmx(vcpu);
3927
3928         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3929         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3930         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3931         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3932         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3933         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3934         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3935         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3936         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3937         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3938         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3939         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3940         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3941         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3942         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3943         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3944         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3945         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3946         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3947         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3948         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3949         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3950         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3951         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3952         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3953         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3954         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3955         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3956         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3957         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3958         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3959         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3960         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3961         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3962         vmcs12->guest_pending_dbg_exceptions =
3963                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3964         if (kvm_mpx_supported())
3965                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3966
3967         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3968 }
3969
3970 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3971                                        struct vmcs12 *vmcs12)
3972 {
3973         struct vcpu_vmx *vmx = to_vmx(vcpu);
3974         int cpu;
3975
3976         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3977                 return;
3978
3979
3980         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3981
3982         cpu = get_cpu();
3983         vmx->loaded_vmcs = &vmx->nested.vmcs02;
3984         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
3985
3986         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3987
3988         vmx->loaded_vmcs = &vmx->vmcs01;
3989         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
3990         put_cpu();
3991 }
3992
3993 /*
3994  * Update the guest state fields of vmcs12 to reflect changes that
3995  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3996  * VM-entry controls is also updated, since this is really a guest
3997  * state bit.)
3998  */
3999 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4000 {
4001         struct vcpu_vmx *vmx = to_vmx(vcpu);
4002
4003         if (vmx->nested.hv_evmcs)
4004                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4005
4006         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
4007
4008         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4009         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4010
4011         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4012         vmcs12->guest_rip = kvm_rip_read(vcpu);
4013         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4014
4015         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4016         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4017
4018         vmcs12->guest_interruptibility_info =
4019                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4020
4021         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4022                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4023         else
4024                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4025
4026         if (nested_cpu_has_preemption_timer(vmcs12) &&
4027             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4028             !vmx->nested.nested_run_pending)
4029                 vmcs12->vmx_preemption_timer_value =
4030                         vmx_get_preemption_timer_value(vcpu);
4031
4032         /*
4033          * In some cases (usually, nested EPT), L2 is allowed to change its
4034          * own CR3 without exiting. If it has changed it, we must keep it.
4035          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4036          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4037          *
4038          * Additionally, restore L2's PDPTR to vmcs12.
4039          */
4040         if (enable_ept) {
4041                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4042                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4043                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4044                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4045                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4046                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4047                 }
4048         }
4049
4050         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4051
4052         if (nested_cpu_has_vid(vmcs12))
4053                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4054
4055         vmcs12->vm_entry_controls =
4056                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4057                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4058
4059         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4060                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4061
4062         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4063                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4064 }
4065
4066 /*
4067  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4068  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4069  * and this function updates it to reflect the changes to the guest state while
4070  * L2 was running (and perhaps made some exits which were handled directly by L0
4071  * without going back to L1), and to reflect the exit reason.
4072  * Note that we do not have to copy here all VMCS fields, just those that
4073  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4074  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4075  * which already writes to vmcs12 directly.
4076  */
4077 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4078                            u32 vm_exit_reason, u32 exit_intr_info,
4079                            unsigned long exit_qualification)
4080 {
4081         /* update exit information fields: */
4082         vmcs12->vm_exit_reason = vm_exit_reason;
4083         vmcs12->exit_qualification = exit_qualification;
4084         vmcs12->vm_exit_intr_info = exit_intr_info;
4085
4086         vmcs12->idt_vectoring_info_field = 0;
4087         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4088         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4089
4090         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4091                 vmcs12->launch_state = 1;
4092
4093                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4094                  * instead of reading the real value. */
4095                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4096
4097                 /*
4098                  * Transfer the event that L0 or L1 may wanted to inject into
4099                  * L2 to IDT_VECTORING_INFO_FIELD.
4100                  */
4101                 vmcs12_save_pending_event(vcpu, vmcs12);
4102
4103                 /*
4104                  * According to spec, there's no need to store the guest's
4105                  * MSRs if the exit is due to a VM-entry failure that occurs
4106                  * during or after loading the guest state. Since this exit
4107                  * does not fall in that category, we need to save the MSRs.
4108                  */
4109                 if (nested_vmx_store_msr(vcpu,
4110                                          vmcs12->vm_exit_msr_store_addr,
4111                                          vmcs12->vm_exit_msr_store_count))
4112                         nested_vmx_abort(vcpu,
4113                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4114         }
4115
4116         /*
4117          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4118          * preserved above and would only end up incorrectly in L1.
4119          */
4120         vcpu->arch.nmi_injected = false;
4121         kvm_clear_exception_queue(vcpu);
4122         kvm_clear_interrupt_queue(vcpu);
4123 }
4124
4125 /*
4126  * A part of what we need to when the nested L2 guest exits and we want to
4127  * run its L1 parent, is to reset L1's guest state to the host state specified
4128  * in vmcs12.
4129  * This function is to be called not only on normal nested exit, but also on
4130  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4131  * Failures During or After Loading Guest State").
4132  * This function should be called when the active VMCS is L1's (vmcs01).
4133  */
4134 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4135                                    struct vmcs12 *vmcs12)
4136 {
4137         enum vm_entry_failure_code ignored;
4138         struct kvm_segment seg;
4139
4140         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4141                 vcpu->arch.efer = vmcs12->host_ia32_efer;
4142         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4143                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4144         else
4145                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4146         vmx_set_efer(vcpu, vcpu->arch.efer);
4147
4148         kvm_rsp_write(vcpu, vmcs12->host_rsp);
4149         kvm_rip_write(vcpu, vmcs12->host_rip);
4150         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4151         vmx_set_interrupt_shadow(vcpu, 0);
4152
4153         /*
4154          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4155          * actually changed, because vmx_set_cr0 refers to efer set above.
4156          *
4157          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4158          * (KVM doesn't change it);
4159          */
4160         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4161         vmx_set_cr0(vcpu, vmcs12->host_cr0);
4162
4163         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
4164         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4165         vmx_set_cr4(vcpu, vmcs12->host_cr4);
4166
4167         nested_ept_uninit_mmu_context(vcpu);
4168
4169         /*
4170          * Only PDPTE load can fail as the value of cr3 was checked on entry and
4171          * couldn't have changed.
4172          */
4173         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &ignored))
4174                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4175
4176         if (!enable_ept)
4177                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
4178
4179         nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4180
4181         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4182         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4183         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4184         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4185         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4186         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4187         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4188
4189         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4190         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4191                 vmcs_write64(GUEST_BNDCFGS, 0);
4192
4193         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4194                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4195                 vcpu->arch.pat = vmcs12->host_ia32_pat;
4196         }
4197         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4198                 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4199                                          vmcs12->host_ia32_perf_global_ctrl));
4200
4201         /* Set L1 segment info according to Intel SDM
4202             27.5.2 Loading Host Segment and Descriptor-Table Registers */
4203         seg = (struct kvm_segment) {
4204                 .base = 0,
4205                 .limit = 0xFFFFFFFF,
4206                 .selector = vmcs12->host_cs_selector,
4207                 .type = 11,
4208                 .present = 1,
4209                 .s = 1,
4210                 .g = 1
4211         };
4212         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4213                 seg.l = 1;
4214         else
4215                 seg.db = 1;
4216         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4217         seg = (struct kvm_segment) {
4218                 .base = 0,
4219                 .limit = 0xFFFFFFFF,
4220                 .type = 3,
4221                 .present = 1,
4222                 .s = 1,
4223                 .db = 1,
4224                 .g = 1
4225         };
4226         seg.selector = vmcs12->host_ds_selector;
4227         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4228         seg.selector = vmcs12->host_es_selector;
4229         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4230         seg.selector = vmcs12->host_ss_selector;
4231         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4232         seg.selector = vmcs12->host_fs_selector;
4233         seg.base = vmcs12->host_fs_base;
4234         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4235         seg.selector = vmcs12->host_gs_selector;
4236         seg.base = vmcs12->host_gs_base;
4237         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4238         seg = (struct kvm_segment) {
4239                 .base = vmcs12->host_tr_base,
4240                 .limit = 0x67,
4241                 .selector = vmcs12->host_tr_selector,
4242                 .type = 11,
4243                 .present = 1
4244         };
4245         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4246
4247         kvm_set_dr(vcpu, 7, 0x400);
4248         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4249
4250         if (cpu_has_vmx_msr_bitmap())
4251                 vmx_update_msr_bitmap(vcpu);
4252
4253         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4254                                 vmcs12->vm_exit_msr_load_count))
4255                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4256 }
4257
4258 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4259 {
4260         struct shared_msr_entry *efer_msr;
4261         unsigned int i;
4262
4263         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4264                 return vmcs_read64(GUEST_IA32_EFER);
4265
4266         if (cpu_has_load_ia32_efer())
4267                 return host_efer;
4268
4269         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4270                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4271                         return vmx->msr_autoload.guest.val[i].value;
4272         }
4273
4274         efer_msr = find_msr_entry(vmx, MSR_EFER);
4275         if (efer_msr)
4276                 return efer_msr->data;
4277
4278         return host_efer;
4279 }
4280
4281 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4282 {
4283         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4284         struct vcpu_vmx *vmx = to_vmx(vcpu);
4285         struct vmx_msr_entry g, h;
4286         gpa_t gpa;
4287         u32 i, j;
4288
4289         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4290
4291         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4292                 /*
4293                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4294                  * as vmcs01.GUEST_DR7 contains a userspace defined value
4295                  * and vcpu->arch.dr7 is not squirreled away before the
4296                  * nested VMENTER (not worth adding a variable in nested_vmx).
4297                  */
4298                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4299                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4300                 else
4301                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4302         }
4303
4304         /*
4305          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4306          * handle a variety of side effects to KVM's software model.
4307          */
4308         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4309
4310         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4311         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4312
4313         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4314         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4315
4316         nested_ept_uninit_mmu_context(vcpu);
4317         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4318         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4319
4320         /*
4321          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4322          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4323          * VMFail, like everything else we just need to ensure our
4324          * software model is up-to-date.
4325          */
4326         if (enable_ept && is_pae_paging(vcpu))
4327                 ept_save_pdptrs(vcpu);
4328
4329         kvm_mmu_reset_context(vcpu);
4330
4331         if (cpu_has_vmx_msr_bitmap())
4332                 vmx_update_msr_bitmap(vcpu);
4333
4334         /*
4335          * This nasty bit of open coding is a compromise between blindly
4336          * loading L1's MSRs using the exit load lists (incorrect emulation
4337          * of VMFail), leaving the nested VM's MSRs in the software model
4338          * (incorrect behavior) and snapshotting the modified MSRs (too
4339          * expensive since the lists are unbound by hardware).  For each
4340          * MSR that was (prematurely) loaded from the nested VMEntry load
4341          * list, reload it from the exit load list if it exists and differs
4342          * from the guest value.  The intent is to stuff host state as
4343          * silently as possible, not to fully process the exit load list.
4344          */
4345         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4346                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4347                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4348                         pr_debug_ratelimited(
4349                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4350                                 __func__, i, gpa);
4351                         goto vmabort;
4352                 }
4353
4354                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4355                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4356                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4357                                 pr_debug_ratelimited(
4358                                         "%s read MSR failed (%u, 0x%08llx)\n",
4359                                         __func__, j, gpa);
4360                                 goto vmabort;
4361                         }
4362                         if (h.index != g.index)
4363                                 continue;
4364                         if (h.value == g.value)
4365                                 break;
4366
4367                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4368                                 pr_debug_ratelimited(
4369                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4370                                         __func__, j, h.index, h.reserved);
4371                                 goto vmabort;
4372                         }
4373
4374                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4375                                 pr_debug_ratelimited(
4376                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4377                                         __func__, j, h.index, h.value);
4378                                 goto vmabort;
4379                         }
4380                 }
4381         }
4382
4383         return;
4384
4385 vmabort:
4386         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4387 }
4388
4389 /*
4390  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4391  * and modify vmcs12 to make it see what it would expect to see there if
4392  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4393  */
4394 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4395                        u32 exit_intr_info, unsigned long exit_qualification)
4396 {
4397         struct vcpu_vmx *vmx = to_vmx(vcpu);
4398         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4399
4400         /* trying to cancel vmlaunch/vmresume is a bug */
4401         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4402
4403         /* Service the TLB flush request for L2 before switching to L1. */
4404         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
4405                 kvm_vcpu_flush_tlb_current(vcpu);
4406
4407         leave_guest_mode(vcpu);
4408
4409         if (nested_cpu_has_preemption_timer(vmcs12))
4410                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4411
4412         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
4413                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4414
4415         if (likely(!vmx->fail)) {
4416                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4417
4418                 if (vm_exit_reason != -1)
4419                         prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4420                                        exit_intr_info, exit_qualification);
4421
4422                 /*
4423                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4424                  * also be used to capture vmcs12 cache as part of
4425                  * capturing nVMX state for snapshot (migration).
4426                  *
4427                  * Otherwise, this flush will dirty guest memory at a
4428                  * point it is already assumed by user-space to be
4429                  * immutable.
4430                  */
4431                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4432         } else {
4433                 /*
4434                  * The only expected VM-instruction error is "VM entry with
4435                  * invalid control field(s)." Anything else indicates a
4436                  * problem with L0.  And we should never get here with a
4437                  * VMFail of any type if early consistency checks are enabled.
4438                  */
4439                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4440                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4441                 WARN_ON_ONCE(nested_early_check);
4442         }
4443
4444         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4445
4446         /* Update any VMCS fields that might have changed while L2 ran */
4447         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4448         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4449         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4450         if (vmx->nested.l1_tpr_threshold != -1)
4451                 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4452
4453         if (kvm_has_tsc_control)
4454                 decache_tsc_multiplier(vmx);
4455
4456         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4457                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4458                 vmx_set_virtual_apic_mode(vcpu);
4459         }
4460
4461         /* Unpin physical memory we referred to in vmcs02 */
4462         if (vmx->nested.apic_access_page) {
4463                 kvm_release_page_clean(vmx->nested.apic_access_page);
4464                 vmx->nested.apic_access_page = NULL;
4465         }
4466         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4467         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4468         vmx->nested.pi_desc = NULL;
4469
4470         if (vmx->nested.reload_vmcs01_apic_access_page) {
4471                 vmx->nested.reload_vmcs01_apic_access_page = false;
4472                 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4473         }
4474
4475         if ((vm_exit_reason != -1) &&
4476             (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4477                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4478
4479         /* in case we halted in L2 */
4480         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4481
4482         if (likely(!vmx->fail)) {
4483                 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4484                     nested_exit_intr_ack_set(vcpu)) {
4485                         int irq = kvm_cpu_get_interrupt(vcpu);
4486                         WARN_ON(irq < 0);
4487                         vmcs12->vm_exit_intr_info = irq |
4488                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4489                 }
4490
4491                 if (vm_exit_reason != -1)
4492                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4493                                                        vmcs12->exit_qualification,
4494                                                        vmcs12->idt_vectoring_info_field,
4495                                                        vmcs12->vm_exit_intr_info,
4496                                                        vmcs12->vm_exit_intr_error_code,
4497                                                        KVM_ISA_VMX);
4498
4499                 load_vmcs12_host_state(vcpu, vmcs12);
4500
4501                 return;
4502         }
4503
4504         /*
4505          * After an early L2 VM-entry failure, we're now back
4506          * in L1 which thinks it just finished a VMLAUNCH or
4507          * VMRESUME instruction, so we need to set the failure
4508          * flag and the VM-instruction error field of the VMCS
4509          * accordingly, and skip the emulated instruction.
4510          */
4511         (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4512
4513         /*
4514          * Restore L1's host state to KVM's software model.  We're here
4515          * because a consistency check was caught by hardware, which
4516          * means some amount of guest state has been propagated to KVM's
4517          * model and needs to be unwound to the host's state.
4518          */
4519         nested_vmx_restore_host_state(vcpu);
4520
4521         vmx->fail = 0;
4522 }
4523
4524 /*
4525  * Decode the memory-address operand of a vmx instruction, as recorded on an
4526  * exit caused by such an instruction (run by a guest hypervisor).
4527  * On success, returns 0. When the operand is invalid, returns 1 and throws
4528  * #UD, #GP, or #SS.
4529  */
4530 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4531                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4532 {
4533         gva_t off;
4534         bool exn;
4535         struct kvm_segment s;
4536
4537         /*
4538          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4539          * Execution", on an exit, vmx_instruction_info holds most of the
4540          * addressing components of the operand. Only the displacement part
4541          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4542          * For how an actual address is calculated from all these components,
4543          * refer to Vol. 1, "Operand Addressing".
4544          */
4545         int  scaling = vmx_instruction_info & 3;
4546         int  addr_size = (vmx_instruction_info >> 7) & 7;
4547         bool is_reg = vmx_instruction_info & (1u << 10);
4548         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4549         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4550         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4551         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4552         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4553
4554         if (is_reg) {
4555                 kvm_queue_exception(vcpu, UD_VECTOR);
4556                 return 1;
4557         }
4558
4559         /* Addr = segment_base + offset */
4560         /* offset = base + [index * scale] + displacement */
4561         off = exit_qualification; /* holds the displacement */
4562         if (addr_size == 1)
4563                 off = (gva_t)sign_extend64(off, 31);
4564         else if (addr_size == 0)
4565                 off = (gva_t)sign_extend64(off, 15);
4566         if (base_is_valid)
4567                 off += kvm_register_read(vcpu, base_reg);
4568         if (index_is_valid)
4569                 off += kvm_register_read(vcpu, index_reg) << scaling;
4570         vmx_get_segment(vcpu, &s, seg_reg);
4571
4572         /*
4573          * The effective address, i.e. @off, of a memory operand is truncated
4574          * based on the address size of the instruction.  Note that this is
4575          * the *effective address*, i.e. the address prior to accounting for
4576          * the segment's base.
4577          */
4578         if (addr_size == 1) /* 32 bit */
4579                 off &= 0xffffffff;
4580         else if (addr_size == 0) /* 16 bit */
4581                 off &= 0xffff;
4582
4583         /* Checks for #GP/#SS exceptions. */
4584         exn = false;
4585         if (is_long_mode(vcpu)) {
4586                 /*
4587                  * The virtual/linear address is never truncated in 64-bit
4588                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4589                  * address when using FS/GS with a non-zero base.
4590                  */
4591                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4592                         *ret = s.base + off;
4593                 else
4594                         *ret = off;
4595
4596                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4597                  * non-canonical form. This is the only check on the memory
4598                  * destination for long mode!
4599                  */
4600                 exn = is_noncanonical_address(*ret, vcpu);
4601         } else {
4602                 /*
4603                  * When not in long mode, the virtual/linear address is
4604                  * unconditionally truncated to 32 bits regardless of the
4605                  * address size.
4606                  */
4607                 *ret = (s.base + off) & 0xffffffff;
4608
4609                 /* Protected mode: apply checks for segment validity in the
4610                  * following order:
4611                  * - segment type check (#GP(0) may be thrown)
4612                  * - usability check (#GP(0)/#SS(0))
4613                  * - limit check (#GP(0)/#SS(0))
4614                  */
4615                 if (wr)
4616                         /* #GP(0) if the destination operand is located in a
4617                          * read-only data segment or any code segment.
4618                          */
4619                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4620                 else
4621                         /* #GP(0) if the source operand is located in an
4622                          * execute-only code segment
4623                          */
4624                         exn = ((s.type & 0xa) == 8);
4625                 if (exn) {
4626                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4627                         return 1;
4628                 }
4629                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4630                  */
4631                 exn = (s.unusable != 0);
4632
4633                 /*
4634                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4635                  * outside the segment limit.  All CPUs that support VMX ignore
4636                  * limit checks for flat segments, i.e. segments with base==0,
4637                  * limit==0xffffffff and of type expand-up data or code.
4638                  */
4639                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4640                      ((s.type & 8) || !(s.type & 4))))
4641                         exn = exn || ((u64)off + len - 1 > s.limit);
4642         }
4643         if (exn) {
4644                 kvm_queue_exception_e(vcpu,
4645                                       seg_reg == VCPU_SREG_SS ?
4646                                                 SS_VECTOR : GP_VECTOR,
4647                                       0);
4648                 return 1;
4649         }
4650
4651         return 0;
4652 }
4653
4654 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4655 {
4656         struct vcpu_vmx *vmx;
4657
4658         if (!nested_vmx_allowed(vcpu))
4659                 return;
4660
4661         vmx = to_vmx(vcpu);
4662         if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4663                 vmx->nested.msrs.entry_ctls_high |=
4664                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4665                 vmx->nested.msrs.exit_ctls_high |=
4666                                 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4667         } else {
4668                 vmx->nested.msrs.entry_ctls_high &=
4669                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4670                 vmx->nested.msrs.exit_ctls_high &=
4671                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4672         }
4673 }
4674
4675 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4676                                 int *ret)
4677 {
4678         gva_t gva;
4679         struct x86_exception e;
4680         int r;
4681
4682         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4683                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4684                                 sizeof(*vmpointer), &gva)) {
4685                 *ret = 1;
4686                 return -EINVAL;
4687         }
4688
4689         r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4690         if (r != X86EMUL_CONTINUE) {
4691                 *ret = vmx_handle_memory_failure(vcpu, r, &e);
4692                 return -EINVAL;
4693         }
4694
4695         return 0;
4696 }
4697
4698 /*
4699  * Allocate a shadow VMCS and associate it with the currently loaded
4700  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4701  * VMCS is also VMCLEARed, so that it is ready for use.
4702  */
4703 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4704 {
4705         struct vcpu_vmx *vmx = to_vmx(vcpu);
4706         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4707
4708         /*
4709          * We should allocate a shadow vmcs for vmcs01 only when L1
4710          * executes VMXON and free it when L1 executes VMXOFF.
4711          * As it is invalid to execute VMXON twice, we shouldn't reach
4712          * here when vmcs01 already have an allocated shadow vmcs.
4713          */
4714         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4715
4716         if (!loaded_vmcs->shadow_vmcs) {
4717                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4718                 if (loaded_vmcs->shadow_vmcs)
4719                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4720         }
4721         return loaded_vmcs->shadow_vmcs;
4722 }
4723
4724 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4725 {
4726         struct vcpu_vmx *vmx = to_vmx(vcpu);
4727         int r;
4728
4729         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4730         if (r < 0)
4731                 goto out_vmcs02;
4732
4733         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4734         if (!vmx->nested.cached_vmcs12)
4735                 goto out_cached_vmcs12;
4736
4737         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4738         if (!vmx->nested.cached_shadow_vmcs12)
4739                 goto out_cached_shadow_vmcs12;
4740
4741         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4742                 goto out_shadow_vmcs;
4743
4744         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4745                      HRTIMER_MODE_ABS_PINNED);
4746         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4747
4748         vmx->nested.vpid02 = allocate_vpid();
4749
4750         vmx->nested.vmcs02_initialized = false;
4751         vmx->nested.vmxon = true;
4752
4753         if (vmx_pt_mode_is_host_guest()) {
4754                 vmx->pt_desc.guest.ctl = 0;
4755                 pt_update_intercept_for_msr(vmx);
4756         }
4757
4758         return 0;
4759
4760 out_shadow_vmcs:
4761         kfree(vmx->nested.cached_shadow_vmcs12);
4762
4763 out_cached_shadow_vmcs12:
4764         kfree(vmx->nested.cached_vmcs12);
4765
4766 out_cached_vmcs12:
4767         free_loaded_vmcs(&vmx->nested.vmcs02);
4768
4769 out_vmcs02:
4770         return -ENOMEM;
4771 }
4772
4773 /*
4774  * Emulate the VMXON instruction.
4775  * Currently, we just remember that VMX is active, and do not save or even
4776  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4777  * do not currently need to store anything in that guest-allocated memory
4778  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4779  * argument is different from the VMXON pointer (which the spec says they do).
4780  */
4781 static int handle_vmon(struct kvm_vcpu *vcpu)
4782 {
4783         int ret;
4784         gpa_t vmptr;
4785         uint32_t revision;
4786         struct vcpu_vmx *vmx = to_vmx(vcpu);
4787         const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4788                 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4789
4790         /*
4791          * The Intel VMX Instruction Reference lists a bunch of bits that are
4792          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4793          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4794          * Otherwise, we should fail with #UD.  But most faulting conditions
4795          * have already been checked by hardware, prior to the VM-exit for
4796          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4797          * that bit set to 1 in non-root mode.
4798          */
4799         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4800                 kvm_queue_exception(vcpu, UD_VECTOR);
4801                 return 1;
4802         }
4803
4804         /* CPL=0 must be checked manually. */
4805         if (vmx_get_cpl(vcpu)) {
4806                 kvm_inject_gp(vcpu, 0);
4807                 return 1;
4808         }
4809
4810         if (vmx->nested.vmxon)
4811                 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4812
4813         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4814                         != VMXON_NEEDED_FEATURES) {
4815                 kvm_inject_gp(vcpu, 0);
4816                 return 1;
4817         }
4818
4819         if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4820                 return ret;
4821
4822         /*
4823          * SDM 3: 24.11.5
4824          * The first 4 bytes of VMXON region contain the supported
4825          * VMCS revision identifier
4826          *
4827          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4828          * which replaces physical address width with 32
4829          */
4830         if (!page_address_valid(vcpu, vmptr))
4831                 return nested_vmx_failInvalid(vcpu);
4832
4833         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4834             revision != VMCS12_REVISION)
4835                 return nested_vmx_failInvalid(vcpu);
4836
4837         vmx->nested.vmxon_ptr = vmptr;
4838         ret = enter_vmx_operation(vcpu);
4839         if (ret)
4840                 return ret;
4841
4842         return nested_vmx_succeed(vcpu);
4843 }
4844
4845 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4846 {
4847         struct vcpu_vmx *vmx = to_vmx(vcpu);
4848
4849         if (vmx->nested.current_vmptr == -1ull)
4850                 return;
4851
4852         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4853
4854         if (enable_shadow_vmcs) {
4855                 /* copy to memory all shadowed fields in case
4856                    they were modified */
4857                 copy_shadow_to_vmcs12(vmx);
4858                 vmx_disable_shadow_vmcs(vmx);
4859         }
4860         vmx->nested.posted_intr_nv = -1;
4861
4862         /* Flush VMCS12 to guest memory */
4863         kvm_vcpu_write_guest_page(vcpu,
4864                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4865                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4866
4867         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4868
4869         vmx->nested.current_vmptr = -1ull;
4870 }
4871
4872 /* Emulate the VMXOFF instruction */
4873 static int handle_vmoff(struct kvm_vcpu *vcpu)
4874 {
4875         if (!nested_vmx_check_permission(vcpu))
4876                 return 1;
4877
4878         free_nested(vcpu);
4879
4880         /* Process a latched INIT during time CPU was in VMX operation */
4881         kvm_make_request(KVM_REQ_EVENT, vcpu);
4882
4883         return nested_vmx_succeed(vcpu);
4884 }
4885
4886 /* Emulate the VMCLEAR instruction */
4887 static int handle_vmclear(struct kvm_vcpu *vcpu)
4888 {
4889         struct vcpu_vmx *vmx = to_vmx(vcpu);
4890         u32 zero = 0;
4891         gpa_t vmptr;
4892         u64 evmcs_gpa;
4893         int r;
4894
4895         if (!nested_vmx_check_permission(vcpu))
4896                 return 1;
4897
4898         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
4899                 return r;
4900
4901         if (!page_address_valid(vcpu, vmptr))
4902                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
4903
4904         if (vmptr == vmx->nested.vmxon_ptr)
4905                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
4906
4907         /*
4908          * When Enlightened VMEntry is enabled on the calling CPU we treat
4909          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4910          * way to distinguish it from VMCS12) and we must not corrupt it by
4911          * writing to the non-existent 'launch_state' field. The area doesn't
4912          * have to be the currently active EVMCS on the calling CPU and there's
4913          * nothing KVM has to do to transition it from 'active' to 'non-active'
4914          * state. It is possible that the area will stay mapped as
4915          * vmx->nested.hv_evmcs but this shouldn't be a problem.
4916          */
4917         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4918                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4919                 if (vmptr == vmx->nested.current_vmptr)
4920                         nested_release_vmcs12(vcpu);
4921
4922                 kvm_vcpu_write_guest(vcpu,
4923                                      vmptr + offsetof(struct vmcs12,
4924                                                       launch_state),
4925                                      &zero, sizeof(zero));
4926         }
4927
4928         return nested_vmx_succeed(vcpu);
4929 }
4930
4931 /* Emulate the VMLAUNCH instruction */
4932 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4933 {
4934         return nested_vmx_run(vcpu, true);
4935 }
4936
4937 /* Emulate the VMRESUME instruction */
4938 static int handle_vmresume(struct kvm_vcpu *vcpu)
4939 {
4940
4941         return nested_vmx_run(vcpu, false);
4942 }
4943
4944 static int handle_vmread(struct kvm_vcpu *vcpu)
4945 {
4946         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4947                                                     : get_vmcs12(vcpu);
4948         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
4949         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4950         struct vcpu_vmx *vmx = to_vmx(vcpu);
4951         struct x86_exception e;
4952         unsigned long field;
4953         u64 value;
4954         gva_t gva = 0;
4955         short offset;
4956         int len, r;
4957
4958         if (!nested_vmx_check_permission(vcpu))
4959                 return 1;
4960
4961         /*
4962          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4963          * any VMREAD sets the ALU flags for VMfailInvalid.
4964          */
4965         if (vmx->nested.current_vmptr == -1ull ||
4966             (is_guest_mode(vcpu) &&
4967              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4968                 return nested_vmx_failInvalid(vcpu);
4969
4970         /* Decode instruction info and find the field to read */
4971         field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
4972
4973         offset = vmcs_field_to_offset(field);
4974         if (offset < 0)
4975                 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4976
4977         if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
4978                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4979
4980         /* Read the field, zero-extended to a u64 value */
4981         value = vmcs12_read_any(vmcs12, field, offset);
4982
4983         /*
4984          * Now copy part of this value to register or memory, as requested.
4985          * Note that the number of bits actually copied is 32 or 64 depending
4986          * on the guest's mode (32 or 64 bit), not on the given field's length.
4987          */
4988         if (instr_info & BIT(10)) {
4989                 kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value);
4990         } else {
4991                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4992                 if (get_vmx_mem_address(vcpu, exit_qualification,
4993                                         instr_info, true, len, &gva))
4994                         return 1;
4995                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4996                 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
4997                 if (r != X86EMUL_CONTINUE)
4998                         return vmx_handle_memory_failure(vcpu, r, &e);
4999         }
5000
5001         return nested_vmx_succeed(vcpu);
5002 }
5003
5004 static bool is_shadow_field_rw(unsigned long field)
5005 {
5006         switch (field) {
5007 #define SHADOW_FIELD_RW(x, y) case x:
5008 #include "vmcs_shadow_fields.h"
5009                 return true;
5010         default:
5011                 break;
5012         }
5013         return false;
5014 }
5015
5016 static bool is_shadow_field_ro(unsigned long field)
5017 {
5018         switch (field) {
5019 #define SHADOW_FIELD_RO(x, y) case x:
5020 #include "vmcs_shadow_fields.h"
5021                 return true;
5022         default:
5023                 break;
5024         }
5025         return false;
5026 }
5027
5028 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5029 {
5030         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5031                                                     : get_vmcs12(vcpu);
5032         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5033         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5034         struct vcpu_vmx *vmx = to_vmx(vcpu);
5035         struct x86_exception e;
5036         unsigned long field;
5037         short offset;
5038         gva_t gva;
5039         int len, r;
5040
5041         /*
5042          * The value to write might be 32 or 64 bits, depending on L1's long
5043          * mode, and eventually we need to write that into a field of several
5044          * possible lengths. The code below first zero-extends the value to 64
5045          * bit (value), and then copies only the appropriate number of
5046          * bits into the vmcs12 field.
5047          */
5048         u64 value = 0;
5049
5050         if (!nested_vmx_check_permission(vcpu))
5051                 return 1;
5052
5053         /*
5054          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5055          * any VMWRITE sets the ALU flags for VMfailInvalid.
5056          */
5057         if (vmx->nested.current_vmptr == -1ull ||
5058             (is_guest_mode(vcpu) &&
5059              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5060                 return nested_vmx_failInvalid(vcpu);
5061
5062         if (instr_info & BIT(10))
5063                 value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf));
5064         else {
5065                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5066                 if (get_vmx_mem_address(vcpu, exit_qualification,
5067                                         instr_info, false, len, &gva))
5068                         return 1;
5069                 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5070                 if (r != X86EMUL_CONTINUE)
5071                         return vmx_handle_memory_failure(vcpu, r, &e);
5072         }
5073
5074         field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
5075
5076         offset = vmcs_field_to_offset(field);
5077         if (offset < 0)
5078                 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5079
5080         /*
5081          * If the vCPU supports "VMWRITE to any supported field in the
5082          * VMCS," then the "read-only" fields are actually read/write.
5083          */
5084         if (vmcs_field_readonly(field) &&
5085             !nested_cpu_has_vmwrite_any_field(vcpu))
5086                 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5087
5088         /*
5089          * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5090          * vmcs12, else we may crush a field or consume a stale value.
5091          */
5092         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5093                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5094
5095         /*
5096          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5097          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5098          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5099          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5100          * from L1 will return a different value than VMREAD from L2 (L1 sees
5101          * the stripped down value, L2 sees the full value as stored by KVM).
5102          */
5103         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5104                 value &= 0x1f0ff;
5105
5106         vmcs12_write_any(vmcs12, field, offset, value);
5107
5108         /*
5109          * Do not track vmcs12 dirty-state if in guest-mode as we actually
5110          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5111          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5112          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5113          */
5114         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5115                 /*
5116                  * L1 can read these fields without exiting, ensure the
5117                  * shadow VMCS is up-to-date.
5118                  */
5119                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5120                         preempt_disable();
5121                         vmcs_load(vmx->vmcs01.shadow_vmcs);
5122
5123                         __vmcs_writel(field, value);
5124
5125                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
5126                         vmcs_load(vmx->loaded_vmcs->vmcs);
5127                         preempt_enable();
5128                 }
5129                 vmx->nested.dirty_vmcs12 = true;
5130         }
5131
5132         return nested_vmx_succeed(vcpu);
5133 }
5134
5135 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5136 {
5137         vmx->nested.current_vmptr = vmptr;
5138         if (enable_shadow_vmcs) {
5139                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5140                 vmcs_write64(VMCS_LINK_POINTER,
5141                              __pa(vmx->vmcs01.shadow_vmcs));
5142                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5143         }
5144         vmx->nested.dirty_vmcs12 = true;
5145 }
5146
5147 /* Emulate the VMPTRLD instruction */
5148 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5149 {
5150         struct vcpu_vmx *vmx = to_vmx(vcpu);
5151         gpa_t vmptr;
5152         int r;
5153
5154         if (!nested_vmx_check_permission(vcpu))
5155                 return 1;
5156
5157         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5158                 return r;
5159
5160         if (!page_address_valid(vcpu, vmptr))
5161                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5162
5163         if (vmptr == vmx->nested.vmxon_ptr)
5164                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5165
5166         /* Forbid normal VMPTRLD if Enlightened version was used */
5167         if (vmx->nested.hv_evmcs)
5168                 return 1;
5169
5170         if (vmx->nested.current_vmptr != vmptr) {
5171                 struct kvm_host_map map;
5172                 struct vmcs12 *new_vmcs12;
5173
5174                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5175                         /*
5176                          * Reads from an unbacked page return all 1s,
5177                          * which means that the 32 bits located at the
5178                          * given physical address won't match the required
5179                          * VMCS12_REVISION identifier.
5180                          */
5181                         return nested_vmx_fail(vcpu,
5182                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5183                 }
5184
5185                 new_vmcs12 = map.hva;
5186
5187                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5188                     (new_vmcs12->hdr.shadow_vmcs &&
5189                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5190                         kvm_vcpu_unmap(vcpu, &map, false);
5191                         return nested_vmx_fail(vcpu,
5192                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5193                 }
5194
5195                 nested_release_vmcs12(vcpu);
5196
5197                 /*
5198                  * Load VMCS12 from guest memory since it is not already
5199                  * cached.
5200                  */
5201                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5202                 kvm_vcpu_unmap(vcpu, &map, false);
5203
5204                 set_current_vmptr(vmx, vmptr);
5205         }
5206
5207         return nested_vmx_succeed(vcpu);
5208 }
5209
5210 /* Emulate the VMPTRST instruction */
5211 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5212 {
5213         unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5214         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5215         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5216         struct x86_exception e;
5217         gva_t gva;
5218         int r;
5219
5220         if (!nested_vmx_check_permission(vcpu))
5221                 return 1;
5222
5223         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
5224                 return 1;
5225
5226         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5227                                 true, sizeof(gpa_t), &gva))
5228                 return 1;
5229         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5230         r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5231                                         sizeof(gpa_t), &e);
5232         if (r != X86EMUL_CONTINUE)
5233                 return vmx_handle_memory_failure(vcpu, r, &e);
5234
5235         return nested_vmx_succeed(vcpu);
5236 }
5237
5238 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
5239
5240 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
5241 {
5242         return VALID_PAGE(root_hpa) &&
5243                 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
5244 }
5245
5246 /* Emulate the INVEPT instruction */
5247 static int handle_invept(struct kvm_vcpu *vcpu)
5248 {
5249         struct vcpu_vmx *vmx = to_vmx(vcpu);
5250         u32 vmx_instruction_info, types;
5251         unsigned long type, roots_to_free;
5252         struct kvm_mmu *mmu;
5253         gva_t gva;
5254         struct x86_exception e;
5255         struct {
5256                 u64 eptp, gpa;
5257         } operand;
5258         int i, r;
5259
5260         if (!(vmx->nested.msrs.secondary_ctls_high &
5261               SECONDARY_EXEC_ENABLE_EPT) ||
5262             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5263                 kvm_queue_exception(vcpu, UD_VECTOR);
5264                 return 1;
5265         }
5266
5267         if (!nested_vmx_check_permission(vcpu))
5268                 return 1;
5269
5270         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5271         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5272
5273         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5274
5275         if (type >= 32 || !(types & (1 << type)))
5276                 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5277
5278         /* According to the Intel VMX instruction reference, the memory
5279          * operand is read even if it isn't needed (e.g., for type==global)
5280          */
5281         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5282                         vmx_instruction_info, false, sizeof(operand), &gva))
5283                 return 1;
5284         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5285         if (r != X86EMUL_CONTINUE)
5286                 return vmx_handle_memory_failure(vcpu, r, &e);
5287
5288         /*
5289          * Nested EPT roots are always held through guest_mmu,
5290          * not root_mmu.
5291          */
5292         mmu = &vcpu->arch.guest_mmu;
5293
5294         switch (type) {
5295         case VMX_EPT_EXTENT_CONTEXT:
5296                 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5297                         return nested_vmx_fail(vcpu,
5298                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5299
5300                 roots_to_free = 0;
5301                 if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5302                                             operand.eptp))
5303                         roots_to_free |= KVM_MMU_ROOT_CURRENT;
5304
5305                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5306                         if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5307                                                     mmu->prev_roots[i].pgd,
5308                                                     operand.eptp))
5309                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5310                 }
5311                 break;
5312         case VMX_EPT_EXTENT_GLOBAL:
5313                 roots_to_free = KVM_MMU_ROOTS_ALL;
5314                 break;
5315         default:
5316                 BUG();
5317                 break;
5318         }
5319
5320         if (roots_to_free)
5321                 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5322
5323         return nested_vmx_succeed(vcpu);
5324 }
5325
5326 static int handle_invvpid(struct kvm_vcpu *vcpu)
5327 {
5328         struct vcpu_vmx *vmx = to_vmx(vcpu);
5329         u32 vmx_instruction_info;
5330         unsigned long type, types;
5331         gva_t gva;
5332         struct x86_exception e;
5333         struct {
5334                 u64 vpid;
5335                 u64 gla;
5336         } operand;
5337         u16 vpid02;
5338         int r;
5339
5340         if (!(vmx->nested.msrs.secondary_ctls_high &
5341               SECONDARY_EXEC_ENABLE_VPID) ||
5342                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5343                 kvm_queue_exception(vcpu, UD_VECTOR);
5344                 return 1;
5345         }
5346
5347         if (!nested_vmx_check_permission(vcpu))
5348                 return 1;
5349
5350         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5351         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5352
5353         types = (vmx->nested.msrs.vpid_caps &
5354                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5355
5356         if (type >= 32 || !(types & (1 << type)))
5357                 return nested_vmx_fail(vcpu,
5358                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5359
5360         /* according to the intel vmx instruction reference, the memory
5361          * operand is read even if it isn't needed (e.g., for type==global)
5362          */
5363         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5364                         vmx_instruction_info, false, sizeof(operand), &gva))
5365                 return 1;
5366         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5367         if (r != X86EMUL_CONTINUE)
5368                 return vmx_handle_memory_failure(vcpu, r, &e);
5369
5370         if (operand.vpid >> 16)
5371                 return nested_vmx_fail(vcpu,
5372                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5373
5374         vpid02 = nested_get_vpid02(vcpu);
5375         switch (type) {
5376         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5377                 if (!operand.vpid ||
5378                     is_noncanonical_address(operand.gla, vcpu))
5379                         return nested_vmx_fail(vcpu,
5380                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5381                 vpid_sync_vcpu_addr(vpid02, operand.gla);
5382                 break;
5383         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5384         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5385                 if (!operand.vpid)
5386                         return nested_vmx_fail(vcpu,
5387                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5388                 vpid_sync_context(vpid02);
5389                 break;
5390         case VMX_VPID_EXTENT_ALL_CONTEXT:
5391                 vpid_sync_context(vpid02);
5392                 break;
5393         default:
5394                 WARN_ON_ONCE(1);
5395                 return kvm_skip_emulated_instruction(vcpu);
5396         }
5397
5398         /*
5399          * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5400          * linear mappings for L2 (tagged with L2's VPID).  Free all roots as
5401          * VPIDs are not tracked in the MMU role.
5402          *
5403          * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5404          * an MMU when EPT is disabled.
5405          *
5406          * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5407          */
5408         if (!enable_ept)
5409                 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu,
5410                                    KVM_MMU_ROOTS_ALL);
5411
5412         return nested_vmx_succeed(vcpu);
5413 }
5414
5415 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5416                                      struct vmcs12 *vmcs12)
5417 {
5418         u32 index = kvm_rcx_read(vcpu);
5419         u64 new_eptp;
5420         bool accessed_dirty;
5421         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5422
5423         if (!nested_cpu_has_eptp_switching(vmcs12) ||
5424             !nested_cpu_has_ept(vmcs12))
5425                 return 1;
5426
5427         if (index >= VMFUNC_EPTP_ENTRIES)
5428                 return 1;
5429
5430
5431         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5432                                      &new_eptp, index * 8, 8))
5433                 return 1;
5434
5435         accessed_dirty = !!(new_eptp & VMX_EPTP_AD_ENABLE_BIT);
5436
5437         /*
5438          * If the (L2) guest does a vmfunc to the currently
5439          * active ept pointer, we don't have to do anything else
5440          */
5441         if (vmcs12->ept_pointer != new_eptp) {
5442                 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5443                         return 1;
5444
5445                 kvm_mmu_unload(vcpu);
5446                 mmu->ept_ad = accessed_dirty;
5447                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5448                 vmcs12->ept_pointer = new_eptp;
5449                 /*
5450                  * TODO: Check what's the correct approach in case
5451                  * mmu reload fails. Currently, we just let the next
5452                  * reload potentially fail
5453                  */
5454                 kvm_mmu_reload(vcpu);
5455         }
5456
5457         return 0;
5458 }
5459
5460 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5461 {
5462         struct vcpu_vmx *vmx = to_vmx(vcpu);
5463         struct vmcs12 *vmcs12;
5464         u32 function = kvm_rax_read(vcpu);
5465
5466         /*
5467          * VMFUNC is only supported for nested guests, but we always enable the
5468          * secondary control for simplicity; for non-nested mode, fake that we
5469          * didn't by injecting #UD.
5470          */
5471         if (!is_guest_mode(vcpu)) {
5472                 kvm_queue_exception(vcpu, UD_VECTOR);
5473                 return 1;
5474         }
5475
5476         vmcs12 = get_vmcs12(vcpu);
5477         if ((vmcs12->vm_function_control & (1 << function)) == 0)
5478                 goto fail;
5479
5480         switch (function) {
5481         case 0:
5482                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5483                         goto fail;
5484                 break;
5485         default:
5486                 goto fail;
5487         }
5488         return kvm_skip_emulated_instruction(vcpu);
5489
5490 fail:
5491         nested_vmx_vmexit(vcpu, vmx->exit_reason,
5492                           vmx_get_intr_info(vcpu),
5493                           vmx_get_exit_qual(vcpu));
5494         return 1;
5495 }
5496
5497 /*
5498  * Return true if an IO instruction with the specified port and size should cause
5499  * a VM-exit into L1.
5500  */
5501 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5502                                  int size)
5503 {
5504         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5505         gpa_t bitmap, last_bitmap;
5506         u8 b;
5507
5508         last_bitmap = (gpa_t)-1;
5509         b = -1;
5510
5511         while (size > 0) {
5512                 if (port < 0x8000)
5513                         bitmap = vmcs12->io_bitmap_a;
5514                 else if (port < 0x10000)
5515                         bitmap = vmcs12->io_bitmap_b;
5516                 else
5517                         return true;
5518                 bitmap += (port & 0x7fff) / 8;
5519
5520                 if (last_bitmap != bitmap)
5521                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5522                                 return true;
5523                 if (b & (1 << (port & 7)))
5524                         return true;
5525
5526                 port++;
5527                 size--;
5528                 last_bitmap = bitmap;
5529         }
5530
5531         return false;
5532 }
5533
5534 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5535                                        struct vmcs12 *vmcs12)
5536 {
5537         unsigned long exit_qualification;
5538         unsigned short port;
5539         int size;
5540
5541         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5542                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5543
5544         exit_qualification = vmx_get_exit_qual(vcpu);
5545
5546         port = exit_qualification >> 16;
5547         size = (exit_qualification & 7) + 1;
5548
5549         return nested_vmx_check_io_bitmaps(vcpu, port, size);
5550 }
5551
5552 /*
5553  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5554  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5555  * disinterest in the current event (read or write a specific MSR) by using an
5556  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5557  */
5558 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5559         struct vmcs12 *vmcs12, u32 exit_reason)
5560 {
5561         u32 msr_index = kvm_rcx_read(vcpu);
5562         gpa_t bitmap;
5563
5564         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5565                 return true;
5566
5567         /*
5568          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5569          * for the four combinations of read/write and low/high MSR numbers.
5570          * First we need to figure out which of the four to use:
5571          */
5572         bitmap = vmcs12->msr_bitmap;
5573         if (exit_reason == EXIT_REASON_MSR_WRITE)
5574                 bitmap += 2048;
5575         if (msr_index >= 0xc0000000) {
5576                 msr_index -= 0xc0000000;
5577                 bitmap += 1024;
5578         }
5579
5580         /* Then read the msr_index'th bit from this bitmap: */
5581         if (msr_index < 1024*8) {
5582                 unsigned char b;
5583                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5584                         return true;
5585                 return 1 & (b >> (msr_index & 7));
5586         } else
5587                 return true; /* let L1 handle the wrong parameter */
5588 }
5589
5590 /*
5591  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5592  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5593  * intercept (via guest_host_mask etc.) the current event.
5594  */
5595 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5596         struct vmcs12 *vmcs12)
5597 {
5598         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5599         int cr = exit_qualification & 15;
5600         int reg;
5601         unsigned long val;
5602
5603         switch ((exit_qualification >> 4) & 3) {
5604         case 0: /* mov to cr */
5605                 reg = (exit_qualification >> 8) & 15;
5606                 val = kvm_register_readl(vcpu, reg);
5607                 switch (cr) {
5608                 case 0:
5609                         if (vmcs12->cr0_guest_host_mask &
5610                             (val ^ vmcs12->cr0_read_shadow))
5611                                 return true;
5612                         break;
5613                 case 3:
5614                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5615                                 return true;
5616                         break;
5617                 case 4:
5618                         if (vmcs12->cr4_guest_host_mask &
5619                             (vmcs12->cr4_read_shadow ^ val))
5620                                 return true;
5621                         break;
5622                 case 8:
5623                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5624                                 return true;
5625                         break;
5626                 }
5627                 break;
5628         case 2: /* clts */
5629                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5630                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5631                         return true;
5632                 break;
5633         case 1: /* mov from cr */
5634                 switch (cr) {
5635                 case 3:
5636                         if (vmcs12->cpu_based_vm_exec_control &
5637                             CPU_BASED_CR3_STORE_EXITING)
5638                                 return true;
5639                         break;
5640                 case 8:
5641                         if (vmcs12->cpu_based_vm_exec_control &
5642                             CPU_BASED_CR8_STORE_EXITING)
5643                                 return true;
5644                         break;
5645                 }
5646                 break;
5647         case 3: /* lmsw */
5648                 /*
5649                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5650                  * cr0. Other attempted changes are ignored, with no exit.
5651                  */
5652                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5653                 if (vmcs12->cr0_guest_host_mask & 0xe &
5654                     (val ^ vmcs12->cr0_read_shadow))
5655                         return true;
5656                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5657                     !(vmcs12->cr0_read_shadow & 0x1) &&
5658                     (val & 0x1))
5659                         return true;
5660                 break;
5661         }
5662         return false;
5663 }
5664
5665 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5666         struct vmcs12 *vmcs12, gpa_t bitmap)
5667 {
5668         u32 vmx_instruction_info;
5669         unsigned long field;
5670         u8 b;
5671
5672         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5673                 return true;
5674
5675         /* Decode instruction info and find the field to access */
5676         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5677         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5678
5679         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5680         if (field >> 15)
5681                 return true;
5682
5683         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5684                 return true;
5685
5686         return 1 & (b >> (field & 7));
5687 }
5688
5689 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5690 {
5691         u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5692
5693         if (nested_cpu_has_mtf(vmcs12))
5694                 return true;
5695
5696         /*
5697          * An MTF VM-exit may be injected into the guest by setting the
5698          * interruption-type to 7 (other event) and the vector field to 0. Such
5699          * is the case regardless of the 'monitor trap flag' VM-execution
5700          * control.
5701          */
5702         return entry_intr_info == (INTR_INFO_VALID_MASK
5703                                    | INTR_TYPE_OTHER_EVENT);
5704 }
5705
5706 /*
5707  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5708  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5709  */
5710 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu, u32 exit_reason)
5711 {
5712         u32 intr_info;
5713
5714         switch ((u16)exit_reason) {
5715         case EXIT_REASON_EXCEPTION_NMI:
5716                 intr_info = vmx_get_intr_info(vcpu);
5717                 if (is_nmi(intr_info))
5718                         return true;
5719                 else if (is_page_fault(intr_info))
5720                         return vcpu->arch.apf.host_apf_flags || !enable_ept;
5721                 else if (is_debug(intr_info) &&
5722                          vcpu->guest_debug &
5723                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5724                         return true;
5725                 else if (is_breakpoint(intr_info) &&
5726                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5727                         return true;
5728                 return false;
5729         case EXIT_REASON_EXTERNAL_INTERRUPT:
5730                 return true;
5731         case EXIT_REASON_MCE_DURING_VMENTRY:
5732                 return true;
5733         case EXIT_REASON_EPT_VIOLATION:
5734                 /*
5735                  * L0 always deals with the EPT violation. If nested EPT is
5736                  * used, and the nested mmu code discovers that the address is
5737                  * missing in the guest EPT table (EPT12), the EPT violation
5738                  * will be injected with nested_ept_inject_page_fault()
5739                  */
5740                 return true;
5741         case EXIT_REASON_EPT_MISCONFIG:
5742                 /*
5743                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5744                  * table (shadow on EPT) or a merged EPT table that L0 built
5745                  * (EPT on EPT). So any problems with the structure of the
5746                  * table is L0's fault.
5747                  */
5748                 return true;
5749         case EXIT_REASON_PREEMPTION_TIMER:
5750                 return true;
5751         case EXIT_REASON_PML_FULL:
5752                 /* We emulate PML support to L1. */
5753                 return true;
5754         case EXIT_REASON_VMFUNC:
5755                 /* VM functions are emulated through L2->L0 vmexits. */
5756                 return true;
5757         case EXIT_REASON_ENCLS:
5758                 /* SGX is never exposed to L1 */
5759                 return true;
5760         default:
5761                 break;
5762         }
5763         return false;
5764 }
5765
5766 /*
5767  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
5768  * is_guest_mode (L2).
5769  */
5770 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu, u32 exit_reason)
5771 {
5772         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5773         u32 intr_info;
5774
5775         switch ((u16)exit_reason) {
5776         case EXIT_REASON_EXCEPTION_NMI:
5777                 intr_info = vmx_get_intr_info(vcpu);
5778                 if (is_nmi(intr_info))
5779                         return true;
5780                 else if (is_page_fault(intr_info))
5781                         return true;
5782                 return vmcs12->exception_bitmap &
5783                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5784         case EXIT_REASON_EXTERNAL_INTERRUPT:
5785                 return nested_exit_on_intr(vcpu);
5786         case EXIT_REASON_TRIPLE_FAULT:
5787                 return true;
5788         case EXIT_REASON_INTERRUPT_WINDOW:
5789                 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5790         case EXIT_REASON_NMI_WINDOW:
5791                 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5792         case EXIT_REASON_TASK_SWITCH:
5793                 return true;
5794         case EXIT_REASON_CPUID:
5795                 return true;
5796         case EXIT_REASON_HLT:
5797                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5798         case EXIT_REASON_INVD:
5799                 return true;
5800         case EXIT_REASON_INVLPG:
5801                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5802         case EXIT_REASON_RDPMC:
5803                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5804         case EXIT_REASON_RDRAND:
5805                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5806         case EXIT_REASON_RDSEED:
5807                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5808         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5809                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5810         case EXIT_REASON_VMREAD:
5811                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5812                         vmcs12->vmread_bitmap);
5813         case EXIT_REASON_VMWRITE:
5814                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5815                         vmcs12->vmwrite_bitmap);
5816         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5817         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5818         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5819         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5820         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5821                 /*
5822                  * VMX instructions trap unconditionally. This allows L1 to
5823                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5824                  */
5825                 return true;
5826         case EXIT_REASON_CR_ACCESS:
5827                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5828         case EXIT_REASON_DR_ACCESS:
5829                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5830         case EXIT_REASON_IO_INSTRUCTION:
5831                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5832         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5833                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5834         case EXIT_REASON_MSR_READ:
5835         case EXIT_REASON_MSR_WRITE:
5836                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5837         case EXIT_REASON_INVALID_STATE:
5838                 return true;
5839         case EXIT_REASON_MWAIT_INSTRUCTION:
5840                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5841         case EXIT_REASON_MONITOR_TRAP_FLAG:
5842                 return nested_vmx_exit_handled_mtf(vmcs12);
5843         case EXIT_REASON_MONITOR_INSTRUCTION:
5844                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5845         case EXIT_REASON_PAUSE_INSTRUCTION:
5846                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5847                         nested_cpu_has2(vmcs12,
5848                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5849         case EXIT_REASON_MCE_DURING_VMENTRY:
5850                 return true;
5851         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5852                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5853         case EXIT_REASON_APIC_ACCESS:
5854         case EXIT_REASON_APIC_WRITE:
5855         case EXIT_REASON_EOI_INDUCED:
5856                 /*
5857                  * The controls for "virtualize APIC accesses," "APIC-
5858                  * register virtualization," and "virtual-interrupt
5859                  * delivery" only come from vmcs12.
5860                  */
5861                 return true;
5862         case EXIT_REASON_INVPCID:
5863                 return
5864                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5865                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5866         case EXIT_REASON_WBINVD:
5867                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5868         case EXIT_REASON_XSETBV:
5869                 return true;
5870         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5871                 /*
5872                  * This should never happen, since it is not possible to
5873                  * set XSS to a non-zero value---neither in L1 nor in L2.
5874                  * If if it were, XSS would have to be checked against
5875                  * the XSS exit bitmap in vmcs12.
5876                  */
5877                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5878         case EXIT_REASON_UMWAIT:
5879         case EXIT_REASON_TPAUSE:
5880                 return nested_cpu_has2(vmcs12,
5881                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5882         default:
5883                 return true;
5884         }
5885 }
5886
5887 /*
5888  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
5889  * reflected into L1.
5890  */
5891 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
5892 {
5893         struct vcpu_vmx *vmx = to_vmx(vcpu);
5894         u32 exit_reason = vmx->exit_reason;
5895         unsigned long exit_qual;
5896         u32 exit_intr_info;
5897
5898         WARN_ON_ONCE(vmx->nested.nested_run_pending);
5899
5900         /*
5901          * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
5902          * has already loaded L2's state.
5903          */
5904         if (unlikely(vmx->fail)) {
5905                 trace_kvm_nested_vmenter_failed(
5906                         "hardware VM-instruction error: ",
5907                         vmcs_read32(VM_INSTRUCTION_ERROR));
5908                 exit_intr_info = 0;
5909                 exit_qual = 0;
5910                 goto reflect_vmexit;
5911         }
5912
5913         exit_intr_info = vmx_get_intr_info(vcpu);
5914         exit_qual = vmx_get_exit_qual(vcpu);
5915
5916         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason, exit_qual,
5917                                 vmx->idt_vectoring_info, exit_intr_info,
5918                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5919                                 KVM_ISA_VMX);
5920
5921         /* If L0 (KVM) wants the exit, it trumps L1's desires. */
5922         if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
5923                 return false;
5924
5925         /* If L1 doesn't want the exit, handle it in L0. */
5926         if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
5927                 return false;
5928
5929         /*
5930          * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
5931          * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
5932          * need to be synthesized by querying the in-kernel LAPIC, but external
5933          * interrupts are never reflected to L1 so it's a non-issue.
5934          */
5935         if ((exit_intr_info &
5936              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
5937             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
5938                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5939
5940                 vmcs12->vm_exit_intr_error_code =
5941                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5942         }
5943
5944 reflect_vmexit:
5945         nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info, exit_qual);
5946         return true;
5947 }
5948
5949 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5950                                 struct kvm_nested_state __user *user_kvm_nested_state,
5951                                 u32 user_data_size)
5952 {
5953         struct vcpu_vmx *vmx;
5954         struct vmcs12 *vmcs12;
5955         struct kvm_nested_state kvm_state = {
5956                 .flags = 0,
5957                 .format = KVM_STATE_NESTED_FORMAT_VMX,
5958                 .size = sizeof(kvm_state),
5959                 .hdr.vmx.flags = 0,
5960                 .hdr.vmx.vmxon_pa = -1ull,
5961                 .hdr.vmx.vmcs12_pa = -1ull,
5962                 .hdr.vmx.preemption_timer_deadline = 0,
5963         };
5964         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5965                 &user_kvm_nested_state->data.vmx[0];
5966
5967         if (!vcpu)
5968                 return kvm_state.size + sizeof(*user_vmx_nested_state);
5969
5970         vmx = to_vmx(vcpu);
5971         vmcs12 = get_vmcs12(vcpu);
5972
5973         if (nested_vmx_allowed(vcpu) &&
5974             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5975                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5976                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5977
5978                 if (vmx_has_valid_vmcs12(vcpu)) {
5979                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5980
5981                         if (vmx->nested.hv_evmcs)
5982                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5983
5984                         if (is_guest_mode(vcpu) &&
5985                             nested_cpu_has_shadow_vmcs(vmcs12) &&
5986                             vmcs12->vmcs_link_pointer != -1ull)
5987                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
5988                 }
5989
5990                 if (vmx->nested.smm.vmxon)
5991                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5992
5993                 if (vmx->nested.smm.guest_mode)
5994                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5995
5996                 if (is_guest_mode(vcpu)) {
5997                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5998
5999                         if (vmx->nested.nested_run_pending)
6000                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6001
6002                         if (vmx->nested.mtf_pending)
6003                                 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6004
6005                         if (nested_cpu_has_preemption_timer(vmcs12) &&
6006                             vmx->nested.has_preemption_timer_deadline) {
6007                                 kvm_state.hdr.vmx.flags |=
6008                                         KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6009                                 kvm_state.hdr.vmx.preemption_timer_deadline =
6010                                         vmx->nested.preemption_timer_deadline;
6011                         }
6012                 }
6013         }
6014
6015         if (user_data_size < kvm_state.size)
6016                 goto out;
6017
6018         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6019                 return -EFAULT;
6020
6021         if (!vmx_has_valid_vmcs12(vcpu))
6022                 goto out;
6023
6024         /*
6025          * When running L2, the authoritative vmcs12 state is in the
6026          * vmcs02. When running L1, the authoritative vmcs12 state is
6027          * in the shadow or enlightened vmcs linked to vmcs01, unless
6028          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6029          * vmcs12 state is in the vmcs12 already.
6030          */
6031         if (is_guest_mode(vcpu)) {
6032                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6033                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6034         } else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6035                 if (vmx->nested.hv_evmcs)
6036                         copy_enlightened_to_vmcs12(vmx);
6037                 else if (enable_shadow_vmcs)
6038                         copy_shadow_to_vmcs12(vmx);
6039         }
6040
6041         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6042         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6043
6044         /*
6045          * Copy over the full allocated size of vmcs12 rather than just the size
6046          * of the struct.
6047          */
6048         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6049                 return -EFAULT;
6050
6051         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6052             vmcs12->vmcs_link_pointer != -1ull) {
6053                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6054                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6055                         return -EFAULT;
6056         }
6057 out:
6058         return kvm_state.size;
6059 }
6060
6061 /*
6062  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6063  */
6064 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6065 {
6066         if (is_guest_mode(vcpu)) {
6067                 to_vmx(vcpu)->nested.nested_run_pending = 0;
6068                 nested_vmx_vmexit(vcpu, -1, 0, 0);
6069         }
6070         free_nested(vcpu);
6071 }
6072
6073 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6074                                 struct kvm_nested_state __user *user_kvm_nested_state,
6075                                 struct kvm_nested_state *kvm_state)
6076 {
6077         struct vcpu_vmx *vmx = to_vmx(vcpu);
6078         struct vmcs12 *vmcs12;
6079         enum vm_entry_failure_code ignored;
6080         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6081                 &user_kvm_nested_state->data.vmx[0];
6082         int ret;
6083
6084         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6085                 return -EINVAL;
6086
6087         if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6088                 if (kvm_state->hdr.vmx.smm.flags)
6089                         return -EINVAL;
6090
6091                 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6092                         return -EINVAL;
6093
6094                 /*
6095                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6096                  * enable eVMCS capability on vCPU. However, since then
6097                  * code was changed such that flag signals vmcs12 should
6098                  * be copied into eVMCS in guest memory.
6099                  *
6100                  * To preserve backwards compatability, allow user
6101                  * to set this flag even when there is no VMXON region.
6102                  */
6103                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6104                         return -EINVAL;
6105         } else {
6106                 if (!nested_vmx_allowed(vcpu))
6107                         return -EINVAL;
6108
6109                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6110                         return -EINVAL;
6111         }
6112
6113         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6114             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6115                 return -EINVAL;
6116
6117         if (kvm_state->hdr.vmx.smm.flags &
6118             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6119                 return -EINVAL;
6120
6121         if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6122                 return -EINVAL;
6123
6124         /*
6125          * SMM temporarily disables VMX, so we cannot be in guest mode,
6126          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6127          * must be zero.
6128          */
6129         if (is_smm(vcpu) ?
6130                 (kvm_state->flags &
6131                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6132                 : kvm_state->hdr.vmx.smm.flags)
6133                 return -EINVAL;
6134
6135         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6136             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6137                 return -EINVAL;
6138
6139         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6140                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6141                         return -EINVAL;
6142
6143         vmx_leave_nested(vcpu);
6144
6145         if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6146                 return 0;
6147
6148         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6149         ret = enter_vmx_operation(vcpu);
6150         if (ret)
6151                 return ret;
6152
6153         /* Empty 'VMXON' state is permitted if no VMCS loaded */
6154         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6155                 /* See vmx_has_valid_vmcs12.  */
6156                 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6157                     (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6158                     (kvm_state->hdr.vmx.vmcs12_pa != -1ull))
6159                         return -EINVAL;
6160                 else
6161                         return 0;
6162         }
6163
6164         if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6165                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6166                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6167                         return -EINVAL;
6168
6169                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6170         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6171                 /*
6172                  * nested_vmx_handle_enlightened_vmptrld() cannot be called
6173                  * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6174                  * restored yet. EVMCS will be mapped from
6175                  * nested_get_vmcs12_pages().
6176                  */
6177                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
6178         } else {
6179                 return -EINVAL;
6180         }
6181
6182         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6183                 vmx->nested.smm.vmxon = true;
6184                 vmx->nested.vmxon = false;
6185
6186                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6187                         vmx->nested.smm.guest_mode = true;
6188         }
6189
6190         vmcs12 = get_vmcs12(vcpu);
6191         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6192                 return -EFAULT;
6193
6194         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6195                 return -EINVAL;
6196
6197         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6198                 return 0;
6199
6200         vmx->nested.nested_run_pending =
6201                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6202
6203         vmx->nested.mtf_pending =
6204                 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6205
6206         ret = -EINVAL;
6207         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6208             vmcs12->vmcs_link_pointer != -1ull) {
6209                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6210
6211                 if (kvm_state->size <
6212                     sizeof(*kvm_state) +
6213                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6214                         goto error_guest_mode;
6215
6216                 if (copy_from_user(shadow_vmcs12,
6217                                    user_vmx_nested_state->shadow_vmcs12,
6218                                    sizeof(*shadow_vmcs12))) {
6219                         ret = -EFAULT;
6220                         goto error_guest_mode;
6221                 }
6222
6223                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6224                     !shadow_vmcs12->hdr.shadow_vmcs)
6225                         goto error_guest_mode;
6226         }
6227
6228         vmx->nested.has_preemption_timer_deadline = false;
6229         if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6230                 vmx->nested.has_preemption_timer_deadline = true;
6231                 vmx->nested.preemption_timer_deadline =
6232                         kvm_state->hdr.vmx.preemption_timer_deadline;
6233         }
6234
6235         if (nested_vmx_check_controls(vcpu, vmcs12) ||
6236             nested_vmx_check_host_state(vcpu, vmcs12) ||
6237             nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6238                 goto error_guest_mode;
6239
6240         vmx->nested.dirty_vmcs12 = true;
6241         ret = nested_vmx_enter_non_root_mode(vcpu, false);
6242         if (ret)
6243                 goto error_guest_mode;
6244
6245         return 0;
6246
6247 error_guest_mode:
6248         vmx->nested.nested_run_pending = 0;
6249         return ret;
6250 }
6251
6252 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6253 {
6254         if (enable_shadow_vmcs) {
6255                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6256                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6257         }
6258 }
6259
6260 /*
6261  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6262  * returned for the various VMX controls MSRs when nested VMX is enabled.
6263  * The same values should also be used to verify that vmcs12 control fields are
6264  * valid during nested entry from L1 to L2.
6265  * Each of these control msrs has a low and high 32-bit half: A low bit is on
6266  * if the corresponding bit in the (32-bit) control field *must* be on, and a
6267  * bit in the high half is on if the corresponding bit in the control field
6268  * may be on. See also vmx_control_verify().
6269  */
6270 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6271 {
6272         /*
6273          * Note that as a general rule, the high half of the MSRs (bits in
6274          * the control fields which may be 1) should be initialized by the
6275          * intersection of the underlying hardware's MSR (i.e., features which
6276          * can be supported) and the list of features we want to expose -
6277          * because they are known to be properly supported in our code.
6278          * Also, usually, the low half of the MSRs (bits which must be 1) can
6279          * be set to 0, meaning that L1 may turn off any of these bits. The
6280          * reason is that if one of these bits is necessary, it will appear
6281          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6282          * fields of vmcs01 and vmcs02, will turn these bits off - and
6283          * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6284          * These rules have exceptions below.
6285          */
6286
6287         /* pin-based controls */
6288         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6289                 msrs->pinbased_ctls_low,
6290                 msrs->pinbased_ctls_high);
6291         msrs->pinbased_ctls_low |=
6292                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6293         msrs->pinbased_ctls_high &=
6294                 PIN_BASED_EXT_INTR_MASK |
6295                 PIN_BASED_NMI_EXITING |
6296                 PIN_BASED_VIRTUAL_NMIS |
6297                 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6298         msrs->pinbased_ctls_high |=
6299                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6300                 PIN_BASED_VMX_PREEMPTION_TIMER;
6301
6302         /* exit controls */
6303         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6304                 msrs->exit_ctls_low,
6305                 msrs->exit_ctls_high);
6306         msrs->exit_ctls_low =
6307                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6308
6309         msrs->exit_ctls_high &=
6310 #ifdef CONFIG_X86_64
6311                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6312 #endif
6313                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
6314         msrs->exit_ctls_high |=
6315                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6316                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6317                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6318
6319         /* We support free control of debug control saving. */
6320         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6321
6322         /* entry controls */
6323         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6324                 msrs->entry_ctls_low,
6325                 msrs->entry_ctls_high);
6326         msrs->entry_ctls_low =
6327                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6328         msrs->entry_ctls_high &=
6329 #ifdef CONFIG_X86_64
6330                 VM_ENTRY_IA32E_MODE |
6331 #endif
6332                 VM_ENTRY_LOAD_IA32_PAT;
6333         msrs->entry_ctls_high |=
6334                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6335
6336         /* We support free control of debug control loading. */
6337         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6338
6339         /* cpu-based controls */
6340         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6341                 msrs->procbased_ctls_low,
6342                 msrs->procbased_ctls_high);
6343         msrs->procbased_ctls_low =
6344                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6345         msrs->procbased_ctls_high &=
6346                 CPU_BASED_INTR_WINDOW_EXITING |
6347                 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6348                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6349                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6350                 CPU_BASED_CR3_STORE_EXITING |
6351 #ifdef CONFIG_X86_64
6352                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6353 #endif
6354                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6355                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6356                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6357                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6358                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6359         /*
6360          * We can allow some features even when not supported by the
6361          * hardware. For example, L1 can specify an MSR bitmap - and we
6362          * can use it to avoid exits to L1 - even when L0 runs L2
6363          * without MSR bitmaps.
6364          */
6365         msrs->procbased_ctls_high |=
6366                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6367                 CPU_BASED_USE_MSR_BITMAPS;
6368
6369         /* We support free control of CR3 access interception. */
6370         msrs->procbased_ctls_low &=
6371                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6372
6373         /*
6374          * secondary cpu-based controls.  Do not include those that
6375          * depend on CPUID bits, they are added later by
6376          * vmx_vcpu_after_set_cpuid.
6377          */
6378         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6379                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6380                       msrs->secondary_ctls_low,
6381                       msrs->secondary_ctls_high);
6382
6383         msrs->secondary_ctls_low = 0;
6384         msrs->secondary_ctls_high &=
6385                 SECONDARY_EXEC_DESC |
6386                 SECONDARY_EXEC_RDTSCP |
6387                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6388                 SECONDARY_EXEC_WBINVD_EXITING |
6389                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6390                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6391                 SECONDARY_EXEC_RDRAND_EXITING |
6392                 SECONDARY_EXEC_ENABLE_INVPCID |
6393                 SECONDARY_EXEC_RDSEED_EXITING |
6394                 SECONDARY_EXEC_XSAVES;
6395
6396         /*
6397          * We can emulate "VMCS shadowing," even if the hardware
6398          * doesn't support it.
6399          */
6400         msrs->secondary_ctls_high |=
6401                 SECONDARY_EXEC_SHADOW_VMCS;
6402
6403         if (enable_ept) {
6404                 /* nested EPT: emulate EPT also to L1 */
6405                 msrs->secondary_ctls_high |=
6406                         SECONDARY_EXEC_ENABLE_EPT;
6407                 msrs->ept_caps =
6408                         VMX_EPT_PAGE_WALK_4_BIT |
6409                         VMX_EPT_PAGE_WALK_5_BIT |
6410                         VMX_EPTP_WB_BIT |
6411                         VMX_EPT_INVEPT_BIT |
6412                         VMX_EPT_EXECUTE_ONLY_BIT;
6413
6414                 msrs->ept_caps &= ept_caps;
6415                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6416                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6417                         VMX_EPT_1GB_PAGE_BIT;
6418                 if (enable_ept_ad_bits) {
6419                         msrs->secondary_ctls_high |=
6420                                 SECONDARY_EXEC_ENABLE_PML;
6421                         msrs->ept_caps |= VMX_EPT_AD_BIT;
6422                 }
6423         }
6424
6425         if (cpu_has_vmx_vmfunc()) {
6426                 msrs->secondary_ctls_high |=
6427                         SECONDARY_EXEC_ENABLE_VMFUNC;
6428                 /*
6429                  * Advertise EPTP switching unconditionally
6430                  * since we emulate it
6431                  */
6432                 if (enable_ept)
6433                         msrs->vmfunc_controls =
6434                                 VMX_VMFUNC_EPTP_SWITCHING;
6435         }
6436
6437         /*
6438          * Old versions of KVM use the single-context version without
6439          * checking for support, so declare that it is supported even
6440          * though it is treated as global context.  The alternative is
6441          * not failing the single-context invvpid, and it is worse.
6442          */
6443         if (enable_vpid) {
6444                 msrs->secondary_ctls_high |=
6445                         SECONDARY_EXEC_ENABLE_VPID;
6446                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6447                         VMX_VPID_EXTENT_SUPPORTED_MASK;
6448         }
6449
6450         if (enable_unrestricted_guest)
6451                 msrs->secondary_ctls_high |=
6452                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
6453
6454         if (flexpriority_enabled)
6455                 msrs->secondary_ctls_high |=
6456                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6457
6458         /* miscellaneous data */
6459         rdmsr(MSR_IA32_VMX_MISC,
6460                 msrs->misc_low,
6461                 msrs->misc_high);
6462         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6463         msrs->misc_low |=
6464                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6465                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6466                 VMX_MISC_ACTIVITY_HLT;
6467         msrs->misc_high = 0;
6468
6469         /*
6470          * This MSR reports some information about VMX support. We
6471          * should return information about the VMX we emulate for the
6472          * guest, and the VMCS structure we give it - not about the
6473          * VMX support of the underlying hardware.
6474          */
6475         msrs->basic =
6476                 VMCS12_REVISION |
6477                 VMX_BASIC_TRUE_CTLS |
6478                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6479                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6480
6481         if (cpu_has_vmx_basic_inout())
6482                 msrs->basic |= VMX_BASIC_INOUT;
6483
6484         /*
6485          * These MSRs specify bits which the guest must keep fixed on
6486          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6487          * We picked the standard core2 setting.
6488          */
6489 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6490 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6491         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6492         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6493
6494         /* These MSRs specify bits which the guest must keep fixed off. */
6495         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6496         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6497
6498         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6499         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6500 }
6501
6502 void nested_vmx_hardware_unsetup(void)
6503 {
6504         int i;
6505
6506         if (enable_shadow_vmcs) {
6507                 for (i = 0; i < VMX_BITMAP_NR; i++)
6508                         free_page((unsigned long)vmx_bitmap[i]);
6509         }
6510 }
6511
6512 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6513 {
6514         int i;
6515
6516         if (!cpu_has_vmx_shadow_vmcs())
6517                 enable_shadow_vmcs = 0;
6518         if (enable_shadow_vmcs) {
6519                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6520                         /*
6521                          * The vmx_bitmap is not tied to a VM and so should
6522                          * not be charged to a memcg.
6523                          */
6524                         vmx_bitmap[i] = (unsigned long *)
6525                                 __get_free_page(GFP_KERNEL);
6526                         if (!vmx_bitmap[i]) {
6527                                 nested_vmx_hardware_unsetup();
6528                                 return -ENOMEM;
6529                         }
6530                 }
6531
6532                 init_vmcs_shadow_fields();
6533         }
6534
6535         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
6536         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
6537         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
6538         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
6539         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
6540         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
6541         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
6542         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff;
6543         exit_handlers[EXIT_REASON_VMON]         = handle_vmon;
6544         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
6545         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
6546         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
6547
6548         return 0;
6549 }
6550
6551 struct kvm_x86_nested_ops vmx_nested_ops = {
6552         .check_events = vmx_check_nested_events,
6553         .hv_timer_pending = nested_vmx_preemption_timer_pending,
6554         .get_state = vmx_get_nested_state,
6555         .set_state = vmx_set_nested_state,
6556         .get_vmcs12_pages = nested_get_vmcs12_pages,
6557         .write_log_dirty = nested_vmx_write_pml_buffer,
6558         .enable_evmcs = nested_enable_evmcs,
6559         .get_evmcs_version = nested_get_evmcs_version,
6560 };