cade703d6edbe6158ed7293f31d839031aa896d9
[linux-2.6-microblaze.git] / arch / x86 / kvm / svm / svm.c
1 #define pr_fmt(fmt) "SVM: " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/spec-ctrl.h>
37 #include <asm/cpu_device_id.h>
38 #include <asm/traps.h>
39
40 #include <asm/virtext.h>
41 #include "trace.h"
42
43 #include "svm.h"
44
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 #ifdef MODULE
51 static const struct x86_cpu_id svm_cpu_id[] = {
52         X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
53         {}
54 };
55 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
56 #endif
57
58 #define IOPM_ALLOC_ORDER 2
59 #define MSRPM_ALLOC_ORDER 1
60
61 #define SEG_TYPE_LDT 2
62 #define SEG_TYPE_BUSY_TSS16 3
63
64 #define SVM_FEATURE_LBRV           (1 <<  1)
65 #define SVM_FEATURE_SVML           (1 <<  2)
66 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
67 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
68 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
69 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
70 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
71
72 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
73
74 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
75 #define TSC_RATIO_MIN           0x0000000000000001ULL
76 #define TSC_RATIO_MAX           0x000000ffffffffffULL
77
78 static bool erratum_383_found __read_mostly;
79
80 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
81
82 /*
83  * Set osvw_len to higher value when updated Revision Guides
84  * are published and we know what the new status bits are
85  */
86 static uint64_t osvw_len = 4, osvw_status;
87
88 static DEFINE_PER_CPU(u64, current_tsc_ratio);
89 #define TSC_RATIO_DEFAULT       0x0100000000ULL
90
91 static const struct svm_direct_access_msrs {
92         u32 index;   /* Index of the MSR */
93         bool always; /* True if intercept is always on */
94 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
95         { .index = MSR_STAR,                            .always = true  },
96         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
97 #ifdef CONFIG_X86_64
98         { .index = MSR_GS_BASE,                         .always = true  },
99         { .index = MSR_FS_BASE,                         .always = true  },
100         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
101         { .index = MSR_LSTAR,                           .always = true  },
102         { .index = MSR_CSTAR,                           .always = true  },
103         { .index = MSR_SYSCALL_MASK,                    .always = true  },
104 #endif
105         { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
106         { .index = MSR_IA32_PRED_CMD,                   .always = false },
107         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
108         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
109         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
110         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
111         { .index = MSR_INVALID,                         .always = false },
112 };
113
114 /* enable NPT for AMD64 and X86 with PAE */
115 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
116 bool npt_enabled = true;
117 #else
118 bool npt_enabled;
119 #endif
120
121 /*
122  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
123  * pause_filter_count: On processors that support Pause filtering(indicated
124  *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
125  *      count value. On VMRUN this value is loaded into an internal counter.
126  *      Each time a pause instruction is executed, this counter is decremented
127  *      until it reaches zero at which time a #VMEXIT is generated if pause
128  *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
129  *      Intercept Filtering for more details.
130  *      This also indicate if ple logic enabled.
131  *
132  * pause_filter_thresh: In addition, some processor families support advanced
133  *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
134  *      the amount of time a guest is allowed to execute in a pause loop.
135  *      In this mode, a 16-bit pause filter threshold field is added in the
136  *      VMCB. The threshold value is a cycle count that is used to reset the
137  *      pause counter. As with simple pause filtering, VMRUN loads the pause
138  *      count value from VMCB into an internal counter. Then, on each pause
139  *      instruction the hardware checks the elapsed number of cycles since
140  *      the most recent pause instruction against the pause filter threshold.
141  *      If the elapsed cycle count is greater than the pause filter threshold,
142  *      then the internal pause count is reloaded from the VMCB and execution
143  *      continues. If the elapsed cycle count is less than the pause filter
144  *      threshold, then the internal pause count is decremented. If the count
145  *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
146  *      triggered. If advanced pause filtering is supported and pause filter
147  *      threshold field is set to zero, the filter will operate in the simpler,
148  *      count only mode.
149  */
150
151 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
152 module_param(pause_filter_thresh, ushort, 0444);
153
154 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
155 module_param(pause_filter_count, ushort, 0444);
156
157 /* Default doubles per-vcpu window every exit. */
158 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
159 module_param(pause_filter_count_grow, ushort, 0444);
160
161 /* Default resets per-vcpu window every exit to pause_filter_count. */
162 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
163 module_param(pause_filter_count_shrink, ushort, 0444);
164
165 /* Default is to compute the maximum so we can never overflow. */
166 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
167 module_param(pause_filter_count_max, ushort, 0444);
168
169 /* allow nested paging (virtualized MMU) for all guests */
170 static int npt = true;
171 module_param(npt, int, S_IRUGO);
172
173 /* allow nested virtualization in KVM/SVM */
174 static int nested = true;
175 module_param(nested, int, S_IRUGO);
176
177 /* enable/disable Next RIP Save */
178 static int nrips = true;
179 module_param(nrips, int, 0444);
180
181 /* enable/disable Virtual VMLOAD VMSAVE */
182 static int vls = true;
183 module_param(vls, int, 0444);
184
185 /* enable/disable Virtual GIF */
186 static int vgif = true;
187 module_param(vgif, int, 0444);
188
189 /* enable/disable SEV support */
190 int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
191 module_param(sev, int, 0444);
192
193 /* enable/disable SEV-ES support */
194 int sev_es = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
195 module_param(sev_es, int, 0444);
196
197 static bool __read_mostly dump_invalid_vmcb = 0;
198 module_param(dump_invalid_vmcb, bool, 0644);
199
200 static u8 rsm_ins_bytes[] = "\x0f\xaa";
201
202 static void svm_complete_interrupts(struct vcpu_svm *svm);
203
204 static unsigned long iopm_base;
205
206 struct kvm_ldttss_desc {
207         u16 limit0;
208         u16 base0;
209         unsigned base1:8, type:5, dpl:2, p:1;
210         unsigned limit1:4, zero0:3, g:1, base2:8;
211         u32 base3;
212         u32 zero1;
213 } __attribute__((packed));
214
215 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
216
217 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
218
219 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
220 #define MSRS_RANGE_SIZE 2048
221 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
222
223 u32 svm_msrpm_offset(u32 msr)
224 {
225         u32 offset;
226         int i;
227
228         for (i = 0; i < NUM_MSR_MAPS; i++) {
229                 if (msr < msrpm_ranges[i] ||
230                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
231                         continue;
232
233                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
234                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
235
236                 /* Now we have the u8 offset - but need the u32 offset */
237                 return offset / 4;
238         }
239
240         /* MSR not in any range */
241         return MSR_INVALID;
242 }
243
244 #define MAX_INST_SIZE 15
245
246 static inline void clgi(void)
247 {
248         asm volatile (__ex("clgi"));
249 }
250
251 static inline void stgi(void)
252 {
253         asm volatile (__ex("stgi"));
254 }
255
256 static inline void invlpga(unsigned long addr, u32 asid)
257 {
258         asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
259 }
260
261 static int get_max_npt_level(void)
262 {
263 #ifdef CONFIG_X86_64
264         return PT64_ROOT_4LEVEL;
265 #else
266         return PT32E_ROOT_LEVEL;
267 #endif
268 }
269
270 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
271 {
272         struct vcpu_svm *svm = to_svm(vcpu);
273         u64 old_efer = vcpu->arch.efer;
274         vcpu->arch.efer = efer;
275
276         if (!npt_enabled) {
277                 /* Shadow paging assumes NX to be available.  */
278                 efer |= EFER_NX;
279
280                 if (!(efer & EFER_LMA))
281                         efer &= ~EFER_LME;
282         }
283
284         if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
285                 if (!(efer & EFER_SVME)) {
286                         svm_leave_nested(svm);
287                         svm_set_gif(svm, true);
288
289                         /*
290                          * Free the nested guest state, unless we are in SMM.
291                          * In this case we will return to the nested guest
292                          * as soon as we leave SMM.
293                          */
294                         if (!is_smm(&svm->vcpu))
295                                 svm_free_nested(svm);
296
297                 } else {
298                         int ret = svm_allocate_nested(svm);
299
300                         if (ret) {
301                                 vcpu->arch.efer = old_efer;
302                                 return ret;
303                         }
304                 }
305         }
306
307         svm->vmcb->save.efer = efer | EFER_SVME;
308         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
309         return 0;
310 }
311
312 static int is_external_interrupt(u32 info)
313 {
314         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
315         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
316 }
317
318 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
319 {
320         struct vcpu_svm *svm = to_svm(vcpu);
321         u32 ret = 0;
322
323         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
324                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
325         return ret;
326 }
327
328 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
329 {
330         struct vcpu_svm *svm = to_svm(vcpu);
331
332         if (mask == 0)
333                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
334         else
335                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
336
337 }
338
339 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
340 {
341         struct vcpu_svm *svm = to_svm(vcpu);
342
343         /*
344          * SEV-ES does not expose the next RIP. The RIP update is controlled by
345          * the type of exit and the #VC handler in the guest.
346          */
347         if (sev_es_guest(vcpu->kvm))
348                 goto done;
349
350         if (nrips && svm->vmcb->control.next_rip != 0) {
351                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
352                 svm->next_rip = svm->vmcb->control.next_rip;
353         }
354
355         if (!svm->next_rip) {
356                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
357                         return 0;
358         } else {
359                 kvm_rip_write(vcpu, svm->next_rip);
360         }
361
362 done:
363         svm_set_interrupt_shadow(vcpu, 0);
364
365         return 1;
366 }
367
368 static void svm_queue_exception(struct kvm_vcpu *vcpu)
369 {
370         struct vcpu_svm *svm = to_svm(vcpu);
371         unsigned nr = vcpu->arch.exception.nr;
372         bool has_error_code = vcpu->arch.exception.has_error_code;
373         u32 error_code = vcpu->arch.exception.error_code;
374
375         kvm_deliver_exception_payload(&svm->vcpu);
376
377         if (nr == BP_VECTOR && !nrips) {
378                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
379
380                 /*
381                  * For guest debugging where we have to reinject #BP if some
382                  * INT3 is guest-owned:
383                  * Emulate nRIP by moving RIP forward. Will fail if injection
384                  * raises a fault that is not intercepted. Still better than
385                  * failing in all cases.
386                  */
387                 (void)skip_emulated_instruction(&svm->vcpu);
388                 rip = kvm_rip_read(&svm->vcpu);
389                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
390                 svm->int3_injected = rip - old_rip;
391         }
392
393         svm->vmcb->control.event_inj = nr
394                 | SVM_EVTINJ_VALID
395                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
396                 | SVM_EVTINJ_TYPE_EXEPT;
397         svm->vmcb->control.event_inj_err = error_code;
398 }
399
400 static void svm_init_erratum_383(void)
401 {
402         u32 low, high;
403         int err;
404         u64 val;
405
406         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
407                 return;
408
409         /* Use _safe variants to not break nested virtualization */
410         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
411         if (err)
412                 return;
413
414         val |= (1ULL << 47);
415
416         low  = lower_32_bits(val);
417         high = upper_32_bits(val);
418
419         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
420
421         erratum_383_found = true;
422 }
423
424 static void svm_init_osvw(struct kvm_vcpu *vcpu)
425 {
426         /*
427          * Guests should see errata 400 and 415 as fixed (assuming that
428          * HLT and IO instructions are intercepted).
429          */
430         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
431         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
432
433         /*
434          * By increasing VCPU's osvw.length to 3 we are telling the guest that
435          * all osvw.status bits inside that length, including bit 0 (which is
436          * reserved for erratum 298), are valid. However, if host processor's
437          * osvw_len is 0 then osvw_status[0] carries no information. We need to
438          * be conservative here and therefore we tell the guest that erratum 298
439          * is present (because we really don't know).
440          */
441         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
442                 vcpu->arch.osvw.status |= 1;
443 }
444
445 static int has_svm(void)
446 {
447         const char *msg;
448
449         if (!cpu_has_svm(&msg)) {
450                 printk(KERN_INFO "has_svm: %s\n", msg);
451                 return 0;
452         }
453
454         return 1;
455 }
456
457 static void svm_hardware_disable(void)
458 {
459         /* Make sure we clean up behind us */
460         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
461                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
462
463         cpu_svm_disable();
464
465         amd_pmu_disable_virt();
466 }
467
468 static int svm_hardware_enable(void)
469 {
470
471         struct svm_cpu_data *sd;
472         uint64_t efer;
473         struct desc_struct *gdt;
474         int me = raw_smp_processor_id();
475
476         rdmsrl(MSR_EFER, efer);
477         if (efer & EFER_SVME)
478                 return -EBUSY;
479
480         if (!has_svm()) {
481                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
482                 return -EINVAL;
483         }
484         sd = per_cpu(svm_data, me);
485         if (!sd) {
486                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
487                 return -EINVAL;
488         }
489
490         sd->asid_generation = 1;
491         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
492         sd->next_asid = sd->max_asid + 1;
493         sd->min_asid = max_sev_asid + 1;
494
495         gdt = get_current_gdt_rw();
496         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
497
498         wrmsrl(MSR_EFER, efer | EFER_SVME);
499
500         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
501
502         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
503                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
504                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
505         }
506
507
508         /*
509          * Get OSVW bits.
510          *
511          * Note that it is possible to have a system with mixed processor
512          * revisions and therefore different OSVW bits. If bits are not the same
513          * on different processors then choose the worst case (i.e. if erratum
514          * is present on one processor and not on another then assume that the
515          * erratum is present everywhere).
516          */
517         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
518                 uint64_t len, status = 0;
519                 int err;
520
521                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
522                 if (!err)
523                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
524                                                       &err);
525
526                 if (err)
527                         osvw_status = osvw_len = 0;
528                 else {
529                         if (len < osvw_len)
530                                 osvw_len = len;
531                         osvw_status |= status;
532                         osvw_status &= (1ULL << osvw_len) - 1;
533                 }
534         } else
535                 osvw_status = osvw_len = 0;
536
537         svm_init_erratum_383();
538
539         amd_pmu_enable_virt();
540
541         return 0;
542 }
543
544 static void svm_cpu_uninit(int cpu)
545 {
546         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
547
548         if (!sd)
549                 return;
550
551         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
552         kfree(sd->sev_vmcbs);
553         __free_page(sd->save_area);
554         kfree(sd);
555 }
556
557 static int svm_cpu_init(int cpu)
558 {
559         struct svm_cpu_data *sd;
560
561         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
562         if (!sd)
563                 return -ENOMEM;
564         sd->cpu = cpu;
565         sd->save_area = alloc_page(GFP_KERNEL);
566         if (!sd->save_area)
567                 goto free_cpu_data;
568
569         if (svm_sev_enabled()) {
570                 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
571                                               sizeof(void *),
572                                               GFP_KERNEL);
573                 if (!sd->sev_vmcbs)
574                         goto free_save_area;
575         }
576
577         per_cpu(svm_data, cpu) = sd;
578
579         return 0;
580
581 free_save_area:
582         __free_page(sd->save_area);
583 free_cpu_data:
584         kfree(sd);
585         return -ENOMEM;
586
587 }
588
589 static int direct_access_msr_slot(u32 msr)
590 {
591         u32 i;
592
593         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
594                 if (direct_access_msrs[i].index == msr)
595                         return i;
596
597         return -ENOENT;
598 }
599
600 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
601                                      int write)
602 {
603         struct vcpu_svm *svm = to_svm(vcpu);
604         int slot = direct_access_msr_slot(msr);
605
606         if (slot == -ENOENT)
607                 return;
608
609         /* Set the shadow bitmaps to the desired intercept states */
610         if (read)
611                 set_bit(slot, svm->shadow_msr_intercept.read);
612         else
613                 clear_bit(slot, svm->shadow_msr_intercept.read);
614
615         if (write)
616                 set_bit(slot, svm->shadow_msr_intercept.write);
617         else
618                 clear_bit(slot, svm->shadow_msr_intercept.write);
619 }
620
621 static bool valid_msr_intercept(u32 index)
622 {
623         return direct_access_msr_slot(index) != -ENOENT;
624 }
625
626 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
627 {
628         u8 bit_write;
629         unsigned long tmp;
630         u32 offset;
631         u32 *msrpm;
632
633         msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
634                                       to_svm(vcpu)->msrpm;
635
636         offset    = svm_msrpm_offset(msr);
637         bit_write = 2 * (msr & 0x0f) + 1;
638         tmp       = msrpm[offset];
639
640         BUG_ON(offset == MSR_INVALID);
641
642         return !!test_bit(bit_write,  &tmp);
643 }
644
645 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
646                                         u32 msr, int read, int write)
647 {
648         u8 bit_read, bit_write;
649         unsigned long tmp;
650         u32 offset;
651
652         /*
653          * If this warning triggers extend the direct_access_msrs list at the
654          * beginning of the file
655          */
656         WARN_ON(!valid_msr_intercept(msr));
657
658         /* Enforce non allowed MSRs to trap */
659         if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
660                 read = 0;
661
662         if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
663                 write = 0;
664
665         offset    = svm_msrpm_offset(msr);
666         bit_read  = 2 * (msr & 0x0f);
667         bit_write = 2 * (msr & 0x0f) + 1;
668         tmp       = msrpm[offset];
669
670         BUG_ON(offset == MSR_INVALID);
671
672         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
673         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
674
675         msrpm[offset] = tmp;
676 }
677
678 static void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
679                                  int read, int write)
680 {
681         set_shadow_msr_intercept(vcpu, msr, read, write);
682         set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
683 }
684
685 u32 *svm_vcpu_alloc_msrpm(void)
686 {
687         struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
688         u32 *msrpm;
689
690         if (!pages)
691                 return NULL;
692
693         msrpm = page_address(pages);
694         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
695
696         return msrpm;
697 }
698
699 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
700 {
701         int i;
702
703         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
704                 if (!direct_access_msrs[i].always)
705                         continue;
706                 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
707         }
708 }
709
710
711 void svm_vcpu_free_msrpm(u32 *msrpm)
712 {
713         __free_pages(virt_to_page(msrpm), MSRPM_ALLOC_ORDER);
714 }
715
716 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
717 {
718         struct vcpu_svm *svm = to_svm(vcpu);
719         u32 i;
720
721         /*
722          * Set intercept permissions for all direct access MSRs again. They
723          * will automatically get filtered through the MSR filter, so we are
724          * back in sync after this.
725          */
726         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
727                 u32 msr = direct_access_msrs[i].index;
728                 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
729                 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
730
731                 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
732         }
733 }
734
735 static void add_msr_offset(u32 offset)
736 {
737         int i;
738
739         for (i = 0; i < MSRPM_OFFSETS; ++i) {
740
741                 /* Offset already in list? */
742                 if (msrpm_offsets[i] == offset)
743                         return;
744
745                 /* Slot used by another offset? */
746                 if (msrpm_offsets[i] != MSR_INVALID)
747                         continue;
748
749                 /* Add offset to list */
750                 msrpm_offsets[i] = offset;
751
752                 return;
753         }
754
755         /*
756          * If this BUG triggers the msrpm_offsets table has an overflow. Just
757          * increase MSRPM_OFFSETS in this case.
758          */
759         BUG();
760 }
761
762 static void init_msrpm_offsets(void)
763 {
764         int i;
765
766         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
767
768         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
769                 u32 offset;
770
771                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
772                 BUG_ON(offset == MSR_INVALID);
773
774                 add_msr_offset(offset);
775         }
776 }
777
778 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
779 {
780         struct vcpu_svm *svm = to_svm(vcpu);
781
782         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
783         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
784         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
785         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
786         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
787 }
788
789 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
790 {
791         struct vcpu_svm *svm = to_svm(vcpu);
792
793         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
794         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
795         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
796         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
797         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
798 }
799
800 void disable_nmi_singlestep(struct vcpu_svm *svm)
801 {
802         svm->nmi_singlestep = false;
803
804         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
805                 /* Clear our flags if they were not set by the guest */
806                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
807                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
808                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
809                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
810         }
811 }
812
813 static void grow_ple_window(struct kvm_vcpu *vcpu)
814 {
815         struct vcpu_svm *svm = to_svm(vcpu);
816         struct vmcb_control_area *control = &svm->vmcb->control;
817         int old = control->pause_filter_count;
818
819         control->pause_filter_count = __grow_ple_window(old,
820                                                         pause_filter_count,
821                                                         pause_filter_count_grow,
822                                                         pause_filter_count_max);
823
824         if (control->pause_filter_count != old) {
825                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
826                 trace_kvm_ple_window_update(vcpu->vcpu_id,
827                                             control->pause_filter_count, old);
828         }
829 }
830
831 static void shrink_ple_window(struct kvm_vcpu *vcpu)
832 {
833         struct vcpu_svm *svm = to_svm(vcpu);
834         struct vmcb_control_area *control = &svm->vmcb->control;
835         int old = control->pause_filter_count;
836
837         control->pause_filter_count =
838                                 __shrink_ple_window(old,
839                                                     pause_filter_count,
840                                                     pause_filter_count_shrink,
841                                                     pause_filter_count);
842         if (control->pause_filter_count != old) {
843                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
844                 trace_kvm_ple_window_update(vcpu->vcpu_id,
845                                             control->pause_filter_count, old);
846         }
847 }
848
849 /*
850  * The default MMIO mask is a single bit (excluding the present bit),
851  * which could conflict with the memory encryption bit. Check for
852  * memory encryption support and override the default MMIO mask if
853  * memory encryption is enabled.
854  */
855 static __init void svm_adjust_mmio_mask(void)
856 {
857         unsigned int enc_bit, mask_bit;
858         u64 msr, mask;
859
860         /* If there is no memory encryption support, use existing mask */
861         if (cpuid_eax(0x80000000) < 0x8000001f)
862                 return;
863
864         /* If memory encryption is not enabled, use existing mask */
865         rdmsrl(MSR_K8_SYSCFG, msr);
866         if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
867                 return;
868
869         enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
870         mask_bit = boot_cpu_data.x86_phys_bits;
871
872         /* Increment the mask bit if it is the same as the encryption bit */
873         if (enc_bit == mask_bit)
874                 mask_bit++;
875
876         /*
877          * If the mask bit location is below 52, then some bits above the
878          * physical addressing limit will always be reserved, so use the
879          * rsvd_bits() function to generate the mask. This mask, along with
880          * the present bit, will be used to generate a page fault with
881          * PFER.RSV = 1.
882          *
883          * If the mask bit location is 52 (or above), then clear the mask.
884          */
885         mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
886
887         kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK);
888 }
889
890 static void svm_hardware_teardown(void)
891 {
892         int cpu;
893
894         if (svm_sev_enabled())
895                 sev_hardware_teardown();
896
897         for_each_possible_cpu(cpu)
898                 svm_cpu_uninit(cpu);
899
900         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
901         iopm_base = 0;
902 }
903
904 static __init void svm_set_cpu_caps(void)
905 {
906         kvm_set_cpu_caps();
907
908         supported_xss = 0;
909
910         /* CPUID 0x80000001 and 0x8000000A (SVM features) */
911         if (nested) {
912                 kvm_cpu_cap_set(X86_FEATURE_SVM);
913
914                 if (nrips)
915                         kvm_cpu_cap_set(X86_FEATURE_NRIPS);
916
917                 if (npt_enabled)
918                         kvm_cpu_cap_set(X86_FEATURE_NPT);
919         }
920
921         /* CPUID 0x80000008 */
922         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
923             boot_cpu_has(X86_FEATURE_AMD_SSBD))
924                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
925
926         /* Enable INVPCID feature */
927         kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
928 }
929
930 static __init int svm_hardware_setup(void)
931 {
932         int cpu;
933         struct page *iopm_pages;
934         void *iopm_va;
935         int r;
936
937         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
938
939         if (!iopm_pages)
940                 return -ENOMEM;
941
942         iopm_va = page_address(iopm_pages);
943         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
944         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
945
946         init_msrpm_offsets();
947
948         supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
949
950         if (boot_cpu_has(X86_FEATURE_NX))
951                 kvm_enable_efer_bits(EFER_NX);
952
953         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
954                 kvm_enable_efer_bits(EFER_FFXSR);
955
956         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
957                 kvm_has_tsc_control = true;
958                 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
959                 kvm_tsc_scaling_ratio_frac_bits = 32;
960         }
961
962         /* Check for pause filtering support */
963         if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
964                 pause_filter_count = 0;
965                 pause_filter_thresh = 0;
966         } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
967                 pause_filter_thresh = 0;
968         }
969
970         if (nested) {
971                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
972                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
973         }
974
975         if (IS_ENABLED(CONFIG_KVM_AMD_SEV) && sev) {
976                 sev_hardware_setup();
977         } else {
978                 sev = false;
979                 sev_es = false;
980         }
981
982         svm_adjust_mmio_mask();
983
984         for_each_possible_cpu(cpu) {
985                 r = svm_cpu_init(cpu);
986                 if (r)
987                         goto err;
988         }
989
990         if (!boot_cpu_has(X86_FEATURE_NPT))
991                 npt_enabled = false;
992
993         if (npt_enabled && !npt)
994                 npt_enabled = false;
995
996         kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G);
997         pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
998
999         if (nrips) {
1000                 if (!boot_cpu_has(X86_FEATURE_NRIPS))
1001                         nrips = false;
1002         }
1003
1004         if (avic) {
1005                 if (!npt_enabled ||
1006                     !boot_cpu_has(X86_FEATURE_AVIC) ||
1007                     !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1008                         avic = false;
1009                 } else {
1010                         pr_info("AVIC enabled\n");
1011
1012                         amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1013                 }
1014         }
1015
1016         if (vls) {
1017                 if (!npt_enabled ||
1018                     !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1019                     !IS_ENABLED(CONFIG_X86_64)) {
1020                         vls = false;
1021                 } else {
1022                         pr_info("Virtual VMLOAD VMSAVE supported\n");
1023                 }
1024         }
1025
1026         if (vgif) {
1027                 if (!boot_cpu_has(X86_FEATURE_VGIF))
1028                         vgif = false;
1029                 else
1030                         pr_info("Virtual GIF supported\n");
1031         }
1032
1033         svm_set_cpu_caps();
1034
1035         /*
1036          * It seems that on AMD processors PTE's accessed bit is
1037          * being set by the CPU hardware before the NPF vmexit.
1038          * This is not expected behaviour and our tests fail because
1039          * of it.
1040          * A workaround here is to disable support for
1041          * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
1042          * In this case userspace can know if there is support using
1043          * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
1044          * it
1045          * If future AMD CPU models change the behaviour described above,
1046          * this variable can be changed accordingly
1047          */
1048         allow_smaller_maxphyaddr = !npt_enabled;
1049
1050         return 0;
1051
1052 err:
1053         svm_hardware_teardown();
1054         return r;
1055 }
1056
1057 static void init_seg(struct vmcb_seg *seg)
1058 {
1059         seg->selector = 0;
1060         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1061                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1062         seg->limit = 0xffff;
1063         seg->base = 0;
1064 }
1065
1066 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1067 {
1068         seg->selector = 0;
1069         seg->attrib = SVM_SELECTOR_P_MASK | type;
1070         seg->limit = 0xffff;
1071         seg->base = 0;
1072 }
1073
1074 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1075 {
1076         struct vcpu_svm *svm = to_svm(vcpu);
1077         u64 g_tsc_offset = 0;
1078
1079         if (is_guest_mode(vcpu)) {
1080                 /* Write L1's TSC offset.  */
1081                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1082                                svm->nested.hsave->control.tsc_offset;
1083                 svm->nested.hsave->control.tsc_offset = offset;
1084         }
1085
1086         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1087                                    svm->vmcb->control.tsc_offset - g_tsc_offset,
1088                                    offset);
1089
1090         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1091
1092         vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1093         return svm->vmcb->control.tsc_offset;
1094 }
1095
1096 static void svm_check_invpcid(struct vcpu_svm *svm)
1097 {
1098         /*
1099          * Intercept INVPCID instruction only if shadow page table is
1100          * enabled. Interception is not required with nested page table
1101          * enabled.
1102          */
1103         if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1104                 if (!npt_enabled)
1105                         svm_set_intercept(svm, INTERCEPT_INVPCID);
1106                 else
1107                         svm_clr_intercept(svm, INTERCEPT_INVPCID);
1108         }
1109 }
1110
1111 static void init_vmcb(struct vcpu_svm *svm)
1112 {
1113         struct vmcb_control_area *control = &svm->vmcb->control;
1114         struct vmcb_save_area *save = &svm->vmcb->save;
1115
1116         svm->vcpu.arch.hflags = 0;
1117
1118         svm_set_intercept(svm, INTERCEPT_CR0_READ);
1119         svm_set_intercept(svm, INTERCEPT_CR3_READ);
1120         svm_set_intercept(svm, INTERCEPT_CR4_READ);
1121         svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1122         svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1123         svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1124         if (!kvm_vcpu_apicv_active(&svm->vcpu))
1125                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1126
1127         set_dr_intercepts(svm);
1128
1129         set_exception_intercept(svm, PF_VECTOR);
1130         set_exception_intercept(svm, UD_VECTOR);
1131         set_exception_intercept(svm, MC_VECTOR);
1132         set_exception_intercept(svm, AC_VECTOR);
1133         set_exception_intercept(svm, DB_VECTOR);
1134         /*
1135          * Guest access to VMware backdoor ports could legitimately
1136          * trigger #GP because of TSS I/O permission bitmap.
1137          * We intercept those #GP and allow access to them anyway
1138          * as VMware does.
1139          */
1140         if (enable_vmware_backdoor)
1141                 set_exception_intercept(svm, GP_VECTOR);
1142
1143         svm_set_intercept(svm, INTERCEPT_INTR);
1144         svm_set_intercept(svm, INTERCEPT_NMI);
1145         svm_set_intercept(svm, INTERCEPT_SMI);
1146         svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1147         svm_set_intercept(svm, INTERCEPT_RDPMC);
1148         svm_set_intercept(svm, INTERCEPT_CPUID);
1149         svm_set_intercept(svm, INTERCEPT_INVD);
1150         svm_set_intercept(svm, INTERCEPT_INVLPG);
1151         svm_set_intercept(svm, INTERCEPT_INVLPGA);
1152         svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1153         svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1154         svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1155         svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1156         svm_set_intercept(svm, INTERCEPT_VMRUN);
1157         svm_set_intercept(svm, INTERCEPT_VMMCALL);
1158         svm_set_intercept(svm, INTERCEPT_VMLOAD);
1159         svm_set_intercept(svm, INTERCEPT_VMSAVE);
1160         svm_set_intercept(svm, INTERCEPT_STGI);
1161         svm_set_intercept(svm, INTERCEPT_CLGI);
1162         svm_set_intercept(svm, INTERCEPT_SKINIT);
1163         svm_set_intercept(svm, INTERCEPT_WBINVD);
1164         svm_set_intercept(svm, INTERCEPT_XSETBV);
1165         svm_set_intercept(svm, INTERCEPT_RDPRU);
1166         svm_set_intercept(svm, INTERCEPT_RSM);
1167
1168         if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1169                 svm_set_intercept(svm, INTERCEPT_MONITOR);
1170                 svm_set_intercept(svm, INTERCEPT_MWAIT);
1171         }
1172
1173         if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1174                 svm_set_intercept(svm, INTERCEPT_HLT);
1175
1176         control->iopm_base_pa = __sme_set(iopm_base);
1177         control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1178         control->int_ctl = V_INTR_MASKING_MASK;
1179
1180         init_seg(&save->es);
1181         init_seg(&save->ss);
1182         init_seg(&save->ds);
1183         init_seg(&save->fs);
1184         init_seg(&save->gs);
1185
1186         save->cs.selector = 0xf000;
1187         save->cs.base = 0xffff0000;
1188         /* Executable/Readable Code Segment */
1189         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1190                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1191         save->cs.limit = 0xffff;
1192
1193         save->gdtr.limit = 0xffff;
1194         save->idtr.limit = 0xffff;
1195
1196         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1197         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1198
1199         svm_set_efer(&svm->vcpu, 0);
1200         save->dr6 = 0xffff0ff0;
1201         kvm_set_rflags(&svm->vcpu, 2);
1202         save->rip = 0x0000fff0;
1203         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1204
1205         /*
1206          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1207          * It also updates the guest-visible cr0 value.
1208          */
1209         svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1210         kvm_mmu_reset_context(&svm->vcpu);
1211
1212         save->cr4 = X86_CR4_PAE;
1213         /* rdx = ?? */
1214
1215         if (npt_enabled) {
1216                 /* Setup VMCB for Nested Paging */
1217                 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1218                 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1219                 clr_exception_intercept(svm, PF_VECTOR);
1220                 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1221                 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1222                 save->g_pat = svm->vcpu.arch.pat;
1223                 save->cr3 = 0;
1224                 save->cr4 = 0;
1225         }
1226         svm->asid_generation = 0;
1227         svm->asid = 0;
1228
1229         svm->nested.vmcb12_gpa = 0;
1230         svm->vcpu.arch.hflags = 0;
1231
1232         if (!kvm_pause_in_guest(svm->vcpu.kvm)) {
1233                 control->pause_filter_count = pause_filter_count;
1234                 if (pause_filter_thresh)
1235                         control->pause_filter_thresh = pause_filter_thresh;
1236                 svm_set_intercept(svm, INTERCEPT_PAUSE);
1237         } else {
1238                 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1239         }
1240
1241         svm_check_invpcid(svm);
1242
1243         if (kvm_vcpu_apicv_active(&svm->vcpu))
1244                 avic_init_vmcb(svm);
1245
1246         /*
1247          * If hardware supports Virtual VMLOAD VMSAVE then enable it
1248          * in VMCB and clear intercepts to avoid #VMEXIT.
1249          */
1250         if (vls) {
1251                 svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1252                 svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1253                 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1254         }
1255
1256         if (vgif) {
1257                 svm_clr_intercept(svm, INTERCEPT_STGI);
1258                 svm_clr_intercept(svm, INTERCEPT_CLGI);
1259                 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1260         }
1261
1262         if (sev_guest(svm->vcpu.kvm)) {
1263                 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1264                 clr_exception_intercept(svm, UD_VECTOR);
1265         }
1266
1267         vmcb_mark_all_dirty(svm->vmcb);
1268
1269         enable_gif(svm);
1270
1271 }
1272
1273 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1274 {
1275         struct vcpu_svm *svm = to_svm(vcpu);
1276         u32 dummy;
1277         u32 eax = 1;
1278
1279         svm->spec_ctrl = 0;
1280         svm->virt_spec_ctrl = 0;
1281
1282         if (!init_event) {
1283                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1284                                            MSR_IA32_APICBASE_ENABLE;
1285                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1286                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1287         }
1288         init_vmcb(svm);
1289
1290         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1291         kvm_rdx_write(vcpu, eax);
1292
1293         if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1294                 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1295 }
1296
1297 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1298 {
1299         struct vcpu_svm *svm;
1300         struct page *vmcb_page;
1301         struct page *vmsa_page = NULL;
1302         int err;
1303
1304         BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1305         svm = to_svm(vcpu);
1306
1307         err = -ENOMEM;
1308         vmcb_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1309         if (!vmcb_page)
1310                 goto out;
1311
1312         if (sev_es_guest(svm->vcpu.kvm)) {
1313                 /*
1314                  * SEV-ES guests require a separate VMSA page used to contain
1315                  * the encrypted register state of the guest.
1316                  */
1317                 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1318                 if (!vmsa_page)
1319                         goto error_free_vmcb_page;
1320         }
1321
1322         err = avic_init_vcpu(svm);
1323         if (err)
1324                 goto error_free_vmsa_page;
1325
1326         /* We initialize this flag to true to make sure that the is_running
1327          * bit would be set the first time the vcpu is loaded.
1328          */
1329         if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1330                 svm->avic_is_running = true;
1331
1332         svm->msrpm = svm_vcpu_alloc_msrpm();
1333         if (!svm->msrpm)
1334                 goto error_free_vmsa_page;
1335
1336         svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1337
1338         svm->vmcb = page_address(vmcb_page);
1339         svm->vmcb_pa = __sme_set(page_to_pfn(vmcb_page) << PAGE_SHIFT);
1340
1341         if (vmsa_page)
1342                 svm->vmsa = page_address(vmsa_page);
1343
1344         svm->asid_generation = 0;
1345         init_vmcb(svm);
1346
1347         svm_init_osvw(vcpu);
1348         vcpu->arch.microcode_version = 0x01000065;
1349
1350         return 0;
1351
1352 error_free_vmsa_page:
1353         if (vmsa_page)
1354                 __free_page(vmsa_page);
1355 error_free_vmcb_page:
1356         __free_page(vmcb_page);
1357 out:
1358         return err;
1359 }
1360
1361 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1362 {
1363         int i;
1364
1365         for_each_online_cpu(i)
1366                 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1367 }
1368
1369 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1370 {
1371         struct vcpu_svm *svm = to_svm(vcpu);
1372
1373         /*
1374          * The vmcb page can be recycled, causing a false negative in
1375          * svm_vcpu_load(). So, ensure that no logical CPU has this
1376          * vmcb page recorded as its current vmcb.
1377          */
1378         svm_clear_current_vmcb(svm->vmcb);
1379
1380         svm_free_nested(svm);
1381
1382         sev_free_vcpu(vcpu);
1383
1384         __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1385         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1386 }
1387
1388 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1389 {
1390         struct vcpu_svm *svm = to_svm(vcpu);
1391         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1392         int i;
1393
1394         if (unlikely(cpu != vcpu->cpu)) {
1395                 svm->asid_generation = 0;
1396                 vmcb_mark_all_dirty(svm->vmcb);
1397         }
1398
1399 #ifdef CONFIG_X86_64
1400         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1401 #endif
1402         savesegment(fs, svm->host.fs);
1403         savesegment(gs, svm->host.gs);
1404         svm->host.ldt = kvm_read_ldt();
1405
1406         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1407                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1408
1409         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1410                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1411                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1412                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
1413                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1414                 }
1415         }
1416         /* This assumes that the kernel never uses MSR_TSC_AUX */
1417         if (static_cpu_has(X86_FEATURE_RDTSCP))
1418                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1419
1420         if (sd->current_vmcb != svm->vmcb) {
1421                 sd->current_vmcb = svm->vmcb;
1422                 indirect_branch_prediction_barrier();
1423         }
1424         avic_vcpu_load(vcpu, cpu);
1425 }
1426
1427 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1428 {
1429         struct vcpu_svm *svm = to_svm(vcpu);
1430         int i;
1431
1432         avic_vcpu_put(vcpu);
1433
1434         ++vcpu->stat.host_state_reload;
1435         kvm_load_ldt(svm->host.ldt);
1436 #ifdef CONFIG_X86_64
1437         loadsegment(fs, svm->host.fs);
1438         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1439         load_gs_index(svm->host.gs);
1440 #else
1441 #ifdef CONFIG_X86_32_LAZY_GS
1442         loadsegment(gs, svm->host.gs);
1443 #endif
1444 #endif
1445         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1446                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1447 }
1448
1449 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1450 {
1451         struct vcpu_svm *svm = to_svm(vcpu);
1452         unsigned long rflags = svm->vmcb->save.rflags;
1453
1454         if (svm->nmi_singlestep) {
1455                 /* Hide our flags if they were not set by the guest */
1456                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1457                         rflags &= ~X86_EFLAGS_TF;
1458                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1459                         rflags &= ~X86_EFLAGS_RF;
1460         }
1461         return rflags;
1462 }
1463
1464 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1465 {
1466         if (to_svm(vcpu)->nmi_singlestep)
1467                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1468
1469        /*
1470         * Any change of EFLAGS.VM is accompanied by a reload of SS
1471         * (caused by either a task switch or an inter-privilege IRET),
1472         * so we do not need to update the CPL here.
1473         */
1474         to_svm(vcpu)->vmcb->save.rflags = rflags;
1475 }
1476
1477 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1478 {
1479         switch (reg) {
1480         case VCPU_EXREG_PDPTR:
1481                 BUG_ON(!npt_enabled);
1482                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1483                 break;
1484         default:
1485                 WARN_ON_ONCE(1);
1486         }
1487 }
1488
1489 static void svm_set_vintr(struct vcpu_svm *svm)
1490 {
1491         struct vmcb_control_area *control;
1492
1493         /* The following fields are ignored when AVIC is enabled */
1494         WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1495         svm_set_intercept(svm, INTERCEPT_VINTR);
1496
1497         /*
1498          * This is just a dummy VINTR to actually cause a vmexit to happen.
1499          * Actual injection of virtual interrupts happens through EVENTINJ.
1500          */
1501         control = &svm->vmcb->control;
1502         control->int_vector = 0x0;
1503         control->int_ctl &= ~V_INTR_PRIO_MASK;
1504         control->int_ctl |= V_IRQ_MASK |
1505                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1506         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1507 }
1508
1509 static void svm_clear_vintr(struct vcpu_svm *svm)
1510 {
1511         const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK;
1512         svm_clr_intercept(svm, INTERCEPT_VINTR);
1513
1514         /* Drop int_ctl fields related to VINTR injection.  */
1515         svm->vmcb->control.int_ctl &= mask;
1516         if (is_guest_mode(&svm->vcpu)) {
1517                 svm->nested.hsave->control.int_ctl &= mask;
1518
1519                 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1520                         (svm->nested.ctl.int_ctl & V_TPR_MASK));
1521                 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask;
1522         }
1523
1524         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1525 }
1526
1527 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1528 {
1529         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1530
1531         switch (seg) {
1532         case VCPU_SREG_CS: return &save->cs;
1533         case VCPU_SREG_DS: return &save->ds;
1534         case VCPU_SREG_ES: return &save->es;
1535         case VCPU_SREG_FS: return &save->fs;
1536         case VCPU_SREG_GS: return &save->gs;
1537         case VCPU_SREG_SS: return &save->ss;
1538         case VCPU_SREG_TR: return &save->tr;
1539         case VCPU_SREG_LDTR: return &save->ldtr;
1540         }
1541         BUG();
1542         return NULL;
1543 }
1544
1545 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1546 {
1547         struct vmcb_seg *s = svm_seg(vcpu, seg);
1548
1549         return s->base;
1550 }
1551
1552 static void svm_get_segment(struct kvm_vcpu *vcpu,
1553                             struct kvm_segment *var, int seg)
1554 {
1555         struct vmcb_seg *s = svm_seg(vcpu, seg);
1556
1557         var->base = s->base;
1558         var->limit = s->limit;
1559         var->selector = s->selector;
1560         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1561         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1562         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1563         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1564         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1565         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1566         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1567
1568         /*
1569          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1570          * However, the SVM spec states that the G bit is not observed by the
1571          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1572          * So let's synthesize a legal G bit for all segments, this helps
1573          * running KVM nested. It also helps cross-vendor migration, because
1574          * Intel's vmentry has a check on the 'G' bit.
1575          */
1576         var->g = s->limit > 0xfffff;
1577
1578         /*
1579          * AMD's VMCB does not have an explicit unusable field, so emulate it
1580          * for cross vendor migration purposes by "not present"
1581          */
1582         var->unusable = !var->present;
1583
1584         switch (seg) {
1585         case VCPU_SREG_TR:
1586                 /*
1587                  * Work around a bug where the busy flag in the tr selector
1588                  * isn't exposed
1589                  */
1590                 var->type |= 0x2;
1591                 break;
1592         case VCPU_SREG_DS:
1593         case VCPU_SREG_ES:
1594         case VCPU_SREG_FS:
1595         case VCPU_SREG_GS:
1596                 /*
1597                  * The accessed bit must always be set in the segment
1598                  * descriptor cache, although it can be cleared in the
1599                  * descriptor, the cached bit always remains at 1. Since
1600                  * Intel has a check on this, set it here to support
1601                  * cross-vendor migration.
1602                  */
1603                 if (!var->unusable)
1604                         var->type |= 0x1;
1605                 break;
1606         case VCPU_SREG_SS:
1607                 /*
1608                  * On AMD CPUs sometimes the DB bit in the segment
1609                  * descriptor is left as 1, although the whole segment has
1610                  * been made unusable. Clear it here to pass an Intel VMX
1611                  * entry check when cross vendor migrating.
1612                  */
1613                 if (var->unusable)
1614                         var->db = 0;
1615                 /* This is symmetric with svm_set_segment() */
1616                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1617                 break;
1618         }
1619 }
1620
1621 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1622 {
1623         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1624
1625         return save->cpl;
1626 }
1627
1628 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1629 {
1630         struct vcpu_svm *svm = to_svm(vcpu);
1631
1632         dt->size = svm->vmcb->save.idtr.limit;
1633         dt->address = svm->vmcb->save.idtr.base;
1634 }
1635
1636 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1637 {
1638         struct vcpu_svm *svm = to_svm(vcpu);
1639
1640         svm->vmcb->save.idtr.limit = dt->size;
1641         svm->vmcb->save.idtr.base = dt->address ;
1642         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1643 }
1644
1645 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1646 {
1647         struct vcpu_svm *svm = to_svm(vcpu);
1648
1649         dt->size = svm->vmcb->save.gdtr.limit;
1650         dt->address = svm->vmcb->save.gdtr.base;
1651 }
1652
1653 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1654 {
1655         struct vcpu_svm *svm = to_svm(vcpu);
1656
1657         svm->vmcb->save.gdtr.limit = dt->size;
1658         svm->vmcb->save.gdtr.base = dt->address ;
1659         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1660 }
1661
1662 static void update_cr0_intercept(struct vcpu_svm *svm)
1663 {
1664         ulong gcr0;
1665         u64 *hcr0;
1666
1667         /*
1668          * SEV-ES guests must always keep the CR intercepts cleared. CR
1669          * tracking is done using the CR write traps.
1670          */
1671         if (sev_es_guest(svm->vcpu.kvm))
1672                 return;
1673
1674         gcr0 = svm->vcpu.arch.cr0;
1675         hcr0 = &svm->vmcb->save.cr0;
1676         *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1677                 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1678
1679         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1680
1681         if (gcr0 == *hcr0) {
1682                 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1683                 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1684         } else {
1685                 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1686                 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1687         }
1688 }
1689
1690 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1691 {
1692         struct vcpu_svm *svm = to_svm(vcpu);
1693
1694 #ifdef CONFIG_X86_64
1695         if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1696                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1697                         vcpu->arch.efer |= EFER_LMA;
1698                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1699                 }
1700
1701                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1702                         vcpu->arch.efer &= ~EFER_LMA;
1703                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1704                 }
1705         }
1706 #endif
1707         vcpu->arch.cr0 = cr0;
1708
1709         if (!npt_enabled)
1710                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1711
1712         /*
1713          * re-enable caching here because the QEMU bios
1714          * does not do it - this results in some delay at
1715          * reboot
1716          */
1717         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1718                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1719         svm->vmcb->save.cr0 = cr0;
1720         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1721         update_cr0_intercept(svm);
1722 }
1723
1724 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1725 {
1726         return true;
1727 }
1728
1729 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1730 {
1731         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1732         unsigned long old_cr4 = vcpu->arch.cr4;
1733
1734         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1735                 svm_flush_tlb(vcpu);
1736
1737         vcpu->arch.cr4 = cr4;
1738         if (!npt_enabled)
1739                 cr4 |= X86_CR4_PAE;
1740         cr4 |= host_cr4_mce;
1741         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1742         vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1743
1744         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1745                 kvm_update_cpuid_runtime(vcpu);
1746 }
1747
1748 static void svm_set_segment(struct kvm_vcpu *vcpu,
1749                             struct kvm_segment *var, int seg)
1750 {
1751         struct vcpu_svm *svm = to_svm(vcpu);
1752         struct vmcb_seg *s = svm_seg(vcpu, seg);
1753
1754         s->base = var->base;
1755         s->limit = var->limit;
1756         s->selector = var->selector;
1757         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1758         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1759         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1760         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1761         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1762         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1763         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1764         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1765
1766         /*
1767          * This is always accurate, except if SYSRET returned to a segment
1768          * with SS.DPL != 3.  Intel does not have this quirk, and always
1769          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1770          * would entail passing the CPL to userspace and back.
1771          */
1772         if (seg == VCPU_SREG_SS)
1773                 /* This is symmetric with svm_get_segment() */
1774                 svm->vmcb->save.cpl = (var->dpl & 3);
1775
1776         vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1777 }
1778
1779 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1780 {
1781         struct vcpu_svm *svm = to_svm(vcpu);
1782
1783         clr_exception_intercept(svm, BP_VECTOR);
1784
1785         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1786                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1787                         set_exception_intercept(svm, BP_VECTOR);
1788         }
1789 }
1790
1791 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1792 {
1793         if (sd->next_asid > sd->max_asid) {
1794                 ++sd->asid_generation;
1795                 sd->next_asid = sd->min_asid;
1796                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1797                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1798         }
1799
1800         svm->asid_generation = sd->asid_generation;
1801         svm->asid = sd->next_asid++;
1802 }
1803
1804 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1805 {
1806         struct vmcb *vmcb = svm->vmcb;
1807
1808         if (svm->vcpu.arch.guest_state_protected)
1809                 return;
1810
1811         if (unlikely(value != vmcb->save.dr6)) {
1812                 vmcb->save.dr6 = value;
1813                 vmcb_mark_dirty(vmcb, VMCB_DR);
1814         }
1815 }
1816
1817 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1818 {
1819         struct vcpu_svm *svm = to_svm(vcpu);
1820
1821         if (vcpu->arch.guest_state_protected)
1822                 return;
1823
1824         get_debugreg(vcpu->arch.db[0], 0);
1825         get_debugreg(vcpu->arch.db[1], 1);
1826         get_debugreg(vcpu->arch.db[2], 2);
1827         get_debugreg(vcpu->arch.db[3], 3);
1828         /*
1829          * We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here,
1830          * because db_interception might need it.  We can do it before vmentry.
1831          */
1832         vcpu->arch.dr6 = svm->vmcb->save.dr6;
1833         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1834         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1835         set_dr_intercepts(svm);
1836 }
1837
1838 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1839 {
1840         struct vcpu_svm *svm = to_svm(vcpu);
1841
1842         if (vcpu->arch.guest_state_protected)
1843                 return;
1844
1845         svm->vmcb->save.dr7 = value;
1846         vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1847 }
1848
1849 static int pf_interception(struct vcpu_svm *svm)
1850 {
1851         u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1852         u64 error_code = svm->vmcb->control.exit_info_1;
1853
1854         return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
1855                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1856                         svm->vmcb->control.insn_bytes : NULL,
1857                         svm->vmcb->control.insn_len);
1858 }
1859
1860 static int npf_interception(struct vcpu_svm *svm)
1861 {
1862         u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1863         u64 error_code = svm->vmcb->control.exit_info_1;
1864
1865         trace_kvm_page_fault(fault_address, error_code);
1866         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1867                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1868                         svm->vmcb->control.insn_bytes : NULL,
1869                         svm->vmcb->control.insn_len);
1870 }
1871
1872 static int db_interception(struct vcpu_svm *svm)
1873 {
1874         struct kvm_run *kvm_run = svm->vcpu.run;
1875         struct kvm_vcpu *vcpu = &svm->vcpu;
1876
1877         if (!(svm->vcpu.guest_debug &
1878               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1879                 !svm->nmi_singlestep) {
1880                 u32 payload = (svm->vmcb->save.dr6 ^ DR6_RTM) & ~DR6_FIXED_1;
1881                 kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload);
1882                 return 1;
1883         }
1884
1885         if (svm->nmi_singlestep) {
1886                 disable_nmi_singlestep(svm);
1887                 /* Make sure we check for pending NMIs upon entry */
1888                 kvm_make_request(KVM_REQ_EVENT, vcpu);
1889         }
1890
1891         if (svm->vcpu.guest_debug &
1892             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1893                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1894                 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1895                 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1896                 kvm_run->debug.arch.pc =
1897                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1898                 kvm_run->debug.arch.exception = DB_VECTOR;
1899                 return 0;
1900         }
1901
1902         return 1;
1903 }
1904
1905 static int bp_interception(struct vcpu_svm *svm)
1906 {
1907         struct kvm_run *kvm_run = svm->vcpu.run;
1908
1909         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1910         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1911         kvm_run->debug.arch.exception = BP_VECTOR;
1912         return 0;
1913 }
1914
1915 static int ud_interception(struct vcpu_svm *svm)
1916 {
1917         return handle_ud(&svm->vcpu);
1918 }
1919
1920 static int ac_interception(struct vcpu_svm *svm)
1921 {
1922         kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1923         return 1;
1924 }
1925
1926 static int gp_interception(struct vcpu_svm *svm)
1927 {
1928         struct kvm_vcpu *vcpu = &svm->vcpu;
1929         u32 error_code = svm->vmcb->control.exit_info_1;
1930
1931         WARN_ON_ONCE(!enable_vmware_backdoor);
1932
1933         /*
1934          * VMware backdoor emulation on #GP interception only handles IN{S},
1935          * OUT{S}, and RDPMC, none of which generate a non-zero error code.
1936          */
1937         if (error_code) {
1938                 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1939                 return 1;
1940         }
1941         return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
1942 }
1943
1944 static bool is_erratum_383(void)
1945 {
1946         int err, i;
1947         u64 value;
1948
1949         if (!erratum_383_found)
1950                 return false;
1951
1952         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1953         if (err)
1954                 return false;
1955
1956         /* Bit 62 may or may not be set for this mce */
1957         value &= ~(1ULL << 62);
1958
1959         if (value != 0xb600000000010015ULL)
1960                 return false;
1961
1962         /* Clear MCi_STATUS registers */
1963         for (i = 0; i < 6; ++i)
1964                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1965
1966         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1967         if (!err) {
1968                 u32 low, high;
1969
1970                 value &= ~(1ULL << 2);
1971                 low    = lower_32_bits(value);
1972                 high   = upper_32_bits(value);
1973
1974                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1975         }
1976
1977         /* Flush tlb to evict multi-match entries */
1978         __flush_tlb_all();
1979
1980         return true;
1981 }
1982
1983 static void svm_handle_mce(struct vcpu_svm *svm)
1984 {
1985         if (is_erratum_383()) {
1986                 /*
1987                  * Erratum 383 triggered. Guest state is corrupt so kill the
1988                  * guest.
1989                  */
1990                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1991
1992                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1993
1994                 return;
1995         }
1996
1997         /*
1998          * On an #MC intercept the MCE handler is not called automatically in
1999          * the host. So do it by hand here.
2000          */
2001         kvm_machine_check();
2002 }
2003
2004 static int mc_interception(struct vcpu_svm *svm)
2005 {
2006         return 1;
2007 }
2008
2009 static int shutdown_interception(struct vcpu_svm *svm)
2010 {
2011         struct kvm_run *kvm_run = svm->vcpu.run;
2012
2013         /*
2014          * VMCB is undefined after a SHUTDOWN intercept
2015          * so reinitialize it.
2016          */
2017         clear_page(svm->vmcb);
2018         init_vmcb(svm);
2019
2020         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2021         return 0;
2022 }
2023
2024 static int io_interception(struct vcpu_svm *svm)
2025 {
2026         struct kvm_vcpu *vcpu = &svm->vcpu;
2027         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2028         int size, in, string;
2029         unsigned port;
2030
2031         ++svm->vcpu.stat.io_exits;
2032         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2033         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2034         if (string)
2035                 return kvm_emulate_instruction(vcpu, 0);
2036
2037         port = io_info >> 16;
2038         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2039         svm->next_rip = svm->vmcb->control.exit_info_2;
2040
2041         return kvm_fast_pio(&svm->vcpu, size, port, in);
2042 }
2043
2044 static int nmi_interception(struct vcpu_svm *svm)
2045 {
2046         return 1;
2047 }
2048
2049 static int intr_interception(struct vcpu_svm *svm)
2050 {
2051         ++svm->vcpu.stat.irq_exits;
2052         return 1;
2053 }
2054
2055 static int nop_on_interception(struct vcpu_svm *svm)
2056 {
2057         return 1;
2058 }
2059
2060 static int halt_interception(struct vcpu_svm *svm)
2061 {
2062         return kvm_emulate_halt(&svm->vcpu);
2063 }
2064
2065 static int vmmcall_interception(struct vcpu_svm *svm)
2066 {
2067         return kvm_emulate_hypercall(&svm->vcpu);
2068 }
2069
2070 static int vmload_interception(struct vcpu_svm *svm)
2071 {
2072         struct vmcb *nested_vmcb;
2073         struct kvm_host_map map;
2074         int ret;
2075
2076         if (nested_svm_check_permissions(svm))
2077                 return 1;
2078
2079         ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2080         if (ret) {
2081                 if (ret == -EINVAL)
2082                         kvm_inject_gp(&svm->vcpu, 0);
2083                 return 1;
2084         }
2085
2086         nested_vmcb = map.hva;
2087
2088         ret = kvm_skip_emulated_instruction(&svm->vcpu);
2089
2090         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2091         kvm_vcpu_unmap(&svm->vcpu, &map, true);
2092
2093         return ret;
2094 }
2095
2096 static int vmsave_interception(struct vcpu_svm *svm)
2097 {
2098         struct vmcb *nested_vmcb;
2099         struct kvm_host_map map;
2100         int ret;
2101
2102         if (nested_svm_check_permissions(svm))
2103                 return 1;
2104
2105         ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2106         if (ret) {
2107                 if (ret == -EINVAL)
2108                         kvm_inject_gp(&svm->vcpu, 0);
2109                 return 1;
2110         }
2111
2112         nested_vmcb = map.hva;
2113
2114         ret = kvm_skip_emulated_instruction(&svm->vcpu);
2115
2116         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2117         kvm_vcpu_unmap(&svm->vcpu, &map, true);
2118
2119         return ret;
2120 }
2121
2122 static int vmrun_interception(struct vcpu_svm *svm)
2123 {
2124         if (nested_svm_check_permissions(svm))
2125                 return 1;
2126
2127         return nested_svm_vmrun(svm);
2128 }
2129
2130 void svm_set_gif(struct vcpu_svm *svm, bool value)
2131 {
2132         if (value) {
2133                 /*
2134                  * If VGIF is enabled, the STGI intercept is only added to
2135                  * detect the opening of the SMI/NMI window; remove it now.
2136                  * Likewise, clear the VINTR intercept, we will set it
2137                  * again while processing KVM_REQ_EVENT if needed.
2138                  */
2139                 if (vgif_enabled(svm))
2140                         svm_clr_intercept(svm, INTERCEPT_STGI);
2141                 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2142                         svm_clear_vintr(svm);
2143
2144                 enable_gif(svm);
2145                 if (svm->vcpu.arch.smi_pending ||
2146                     svm->vcpu.arch.nmi_pending ||
2147                     kvm_cpu_has_injectable_intr(&svm->vcpu))
2148                         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2149         } else {
2150                 disable_gif(svm);
2151
2152                 /*
2153                  * After a CLGI no interrupts should come.  But if vGIF is
2154                  * in use, we still rely on the VINTR intercept (rather than
2155                  * STGI) to detect an open interrupt window.
2156                 */
2157                 if (!vgif_enabled(svm))
2158                         svm_clear_vintr(svm);
2159         }
2160 }
2161
2162 static int stgi_interception(struct vcpu_svm *svm)
2163 {
2164         int ret;
2165
2166         if (nested_svm_check_permissions(svm))
2167                 return 1;
2168
2169         ret = kvm_skip_emulated_instruction(&svm->vcpu);
2170         svm_set_gif(svm, true);
2171         return ret;
2172 }
2173
2174 static int clgi_interception(struct vcpu_svm *svm)
2175 {
2176         int ret;
2177
2178         if (nested_svm_check_permissions(svm))
2179                 return 1;
2180
2181         ret = kvm_skip_emulated_instruction(&svm->vcpu);
2182         svm_set_gif(svm, false);
2183         return ret;
2184 }
2185
2186 static int invlpga_interception(struct vcpu_svm *svm)
2187 {
2188         struct kvm_vcpu *vcpu = &svm->vcpu;
2189
2190         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
2191                           kvm_rax_read(&svm->vcpu));
2192
2193         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2194         kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
2195
2196         return kvm_skip_emulated_instruction(&svm->vcpu);
2197 }
2198
2199 static int skinit_interception(struct vcpu_svm *svm)
2200 {
2201         trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
2202
2203         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2204         return 1;
2205 }
2206
2207 static int wbinvd_interception(struct vcpu_svm *svm)
2208 {
2209         return kvm_emulate_wbinvd(&svm->vcpu);
2210 }
2211
2212 static int xsetbv_interception(struct vcpu_svm *svm)
2213 {
2214         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2215         u32 index = kvm_rcx_read(&svm->vcpu);
2216
2217         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2218                 return kvm_skip_emulated_instruction(&svm->vcpu);
2219         }
2220
2221         return 1;
2222 }
2223
2224 static int rdpru_interception(struct vcpu_svm *svm)
2225 {
2226         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2227         return 1;
2228 }
2229
2230 static int task_switch_interception(struct vcpu_svm *svm)
2231 {
2232         u16 tss_selector;
2233         int reason;
2234         int int_type = svm->vmcb->control.exit_int_info &
2235                 SVM_EXITINTINFO_TYPE_MASK;
2236         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2237         uint32_t type =
2238                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2239         uint32_t idt_v =
2240                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2241         bool has_error_code = false;
2242         u32 error_code = 0;
2243
2244         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2245
2246         if (svm->vmcb->control.exit_info_2 &
2247             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2248                 reason = TASK_SWITCH_IRET;
2249         else if (svm->vmcb->control.exit_info_2 &
2250                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2251                 reason = TASK_SWITCH_JMP;
2252         else if (idt_v)
2253                 reason = TASK_SWITCH_GATE;
2254         else
2255                 reason = TASK_SWITCH_CALL;
2256
2257         if (reason == TASK_SWITCH_GATE) {
2258                 switch (type) {
2259                 case SVM_EXITINTINFO_TYPE_NMI:
2260                         svm->vcpu.arch.nmi_injected = false;
2261                         break;
2262                 case SVM_EXITINTINFO_TYPE_EXEPT:
2263                         if (svm->vmcb->control.exit_info_2 &
2264                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2265                                 has_error_code = true;
2266                                 error_code =
2267                                         (u32)svm->vmcb->control.exit_info_2;
2268                         }
2269                         kvm_clear_exception_queue(&svm->vcpu);
2270                         break;
2271                 case SVM_EXITINTINFO_TYPE_INTR:
2272                         kvm_clear_interrupt_queue(&svm->vcpu);
2273                         break;
2274                 default:
2275                         break;
2276                 }
2277         }
2278
2279         if (reason != TASK_SWITCH_GATE ||
2280             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2281             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2282              (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2283                 if (!skip_emulated_instruction(&svm->vcpu))
2284                         return 0;
2285         }
2286
2287         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2288                 int_vec = -1;
2289
2290         return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2291                                has_error_code, error_code);
2292 }
2293
2294 static int cpuid_interception(struct vcpu_svm *svm)
2295 {
2296         return kvm_emulate_cpuid(&svm->vcpu);
2297 }
2298
2299 static int iret_interception(struct vcpu_svm *svm)
2300 {
2301         ++svm->vcpu.stat.nmi_window_exits;
2302         svm_clr_intercept(svm, INTERCEPT_IRET);
2303         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2304         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2305         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2306         return 1;
2307 }
2308
2309 static int invd_interception(struct vcpu_svm *svm)
2310 {
2311         /* Treat an INVD instruction as a NOP and just skip it. */
2312         return kvm_skip_emulated_instruction(&svm->vcpu);
2313 }
2314
2315 static int invlpg_interception(struct vcpu_svm *svm)
2316 {
2317         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2318                 return kvm_emulate_instruction(&svm->vcpu, 0);
2319
2320         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2321         return kvm_skip_emulated_instruction(&svm->vcpu);
2322 }
2323
2324 static int emulate_on_interception(struct vcpu_svm *svm)
2325 {
2326         return kvm_emulate_instruction(&svm->vcpu, 0);
2327 }
2328
2329 static int rsm_interception(struct vcpu_svm *svm)
2330 {
2331         return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
2332 }
2333
2334 static int rdpmc_interception(struct vcpu_svm *svm)
2335 {
2336         int err;
2337
2338         if (!nrips)
2339                 return emulate_on_interception(svm);
2340
2341         err = kvm_rdpmc(&svm->vcpu);
2342         return kvm_complete_insn_gp(&svm->vcpu, err);
2343 }
2344
2345 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2346                                             unsigned long val)
2347 {
2348         unsigned long cr0 = svm->vcpu.arch.cr0;
2349         bool ret = false;
2350
2351         if (!is_guest_mode(&svm->vcpu) ||
2352             (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2353                 return false;
2354
2355         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2356         val &= ~SVM_CR0_SELECTIVE_MASK;
2357
2358         if (cr0 ^ val) {
2359                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2360                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2361         }
2362
2363         return ret;
2364 }
2365
2366 #define CR_VALID (1ULL << 63)
2367
2368 static int cr_interception(struct vcpu_svm *svm)
2369 {
2370         int reg, cr;
2371         unsigned long val;
2372         int err;
2373
2374         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2375                 return emulate_on_interception(svm);
2376
2377         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2378                 return emulate_on_interception(svm);
2379
2380         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2381         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2382                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2383         else
2384                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2385
2386         err = 0;
2387         if (cr >= 16) { /* mov to cr */
2388                 cr -= 16;
2389                 val = kvm_register_read(&svm->vcpu, reg);
2390                 trace_kvm_cr_write(cr, val);
2391                 switch (cr) {
2392                 case 0:
2393                         if (!check_selective_cr0_intercepted(svm, val))
2394                                 err = kvm_set_cr0(&svm->vcpu, val);
2395                         else
2396                                 return 1;
2397
2398                         break;
2399                 case 3:
2400                         err = kvm_set_cr3(&svm->vcpu, val);
2401                         break;
2402                 case 4:
2403                         err = kvm_set_cr4(&svm->vcpu, val);
2404                         break;
2405                 case 8:
2406                         err = kvm_set_cr8(&svm->vcpu, val);
2407                         break;
2408                 default:
2409                         WARN(1, "unhandled write to CR%d", cr);
2410                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2411                         return 1;
2412                 }
2413         } else { /* mov from cr */
2414                 switch (cr) {
2415                 case 0:
2416                         val = kvm_read_cr0(&svm->vcpu);
2417                         break;
2418                 case 2:
2419                         val = svm->vcpu.arch.cr2;
2420                         break;
2421                 case 3:
2422                         val = kvm_read_cr3(&svm->vcpu);
2423                         break;
2424                 case 4:
2425                         val = kvm_read_cr4(&svm->vcpu);
2426                         break;
2427                 case 8:
2428                         val = kvm_get_cr8(&svm->vcpu);
2429                         break;
2430                 default:
2431                         WARN(1, "unhandled read from CR%d", cr);
2432                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2433                         return 1;
2434                 }
2435                 kvm_register_write(&svm->vcpu, reg, val);
2436                 trace_kvm_cr_read(cr, val);
2437         }
2438         return kvm_complete_insn_gp(&svm->vcpu, err);
2439 }
2440
2441 static int dr_interception(struct vcpu_svm *svm)
2442 {
2443         int reg, dr;
2444         unsigned long val;
2445
2446         if (svm->vcpu.guest_debug == 0) {
2447                 /*
2448                  * No more DR vmexits; force a reload of the debug registers
2449                  * and reenter on this instruction.  The next vmexit will
2450                  * retrieve the full state of the debug registers.
2451                  */
2452                 clr_dr_intercepts(svm);
2453                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2454                 return 1;
2455         }
2456
2457         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2458                 return emulate_on_interception(svm);
2459
2460         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2461         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2462
2463         if (dr >= 16) { /* mov to DRn */
2464                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
2465                         return 1;
2466                 val = kvm_register_read(&svm->vcpu, reg);
2467                 kvm_set_dr(&svm->vcpu, dr - 16, val);
2468         } else {
2469                 if (!kvm_require_dr(&svm->vcpu, dr))
2470                         return 1;
2471                 kvm_get_dr(&svm->vcpu, dr, &val);
2472                 kvm_register_write(&svm->vcpu, reg, val);
2473         }
2474
2475         return kvm_skip_emulated_instruction(&svm->vcpu);
2476 }
2477
2478 static int cr8_write_interception(struct vcpu_svm *svm)
2479 {
2480         struct kvm_run *kvm_run = svm->vcpu.run;
2481         int r;
2482
2483         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2484         /* instruction emulation calls kvm_set_cr8() */
2485         r = cr_interception(svm);
2486         if (lapic_in_kernel(&svm->vcpu))
2487                 return r;
2488         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2489                 return r;
2490         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2491         return 0;
2492 }
2493
2494 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2495 {
2496         msr->data = 0;
2497
2498         switch (msr->index) {
2499         case MSR_F10H_DECFG:
2500                 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2501                         msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2502                 break;
2503         case MSR_IA32_PERF_CAPABILITIES:
2504                 return 0;
2505         default:
2506                 return KVM_MSR_RET_INVALID;
2507         }
2508
2509         return 0;
2510 }
2511
2512 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2513 {
2514         struct vcpu_svm *svm = to_svm(vcpu);
2515
2516         switch (msr_info->index) {
2517         case MSR_STAR:
2518                 msr_info->data = svm->vmcb->save.star;
2519                 break;
2520 #ifdef CONFIG_X86_64
2521         case MSR_LSTAR:
2522                 msr_info->data = svm->vmcb->save.lstar;
2523                 break;
2524         case MSR_CSTAR:
2525                 msr_info->data = svm->vmcb->save.cstar;
2526                 break;
2527         case MSR_KERNEL_GS_BASE:
2528                 msr_info->data = svm->vmcb->save.kernel_gs_base;
2529                 break;
2530         case MSR_SYSCALL_MASK:
2531                 msr_info->data = svm->vmcb->save.sfmask;
2532                 break;
2533 #endif
2534         case MSR_IA32_SYSENTER_CS:
2535                 msr_info->data = svm->vmcb->save.sysenter_cs;
2536                 break;
2537         case MSR_IA32_SYSENTER_EIP:
2538                 msr_info->data = svm->sysenter_eip;
2539                 break;
2540         case MSR_IA32_SYSENTER_ESP:
2541                 msr_info->data = svm->sysenter_esp;
2542                 break;
2543         case MSR_TSC_AUX:
2544                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2545                         return 1;
2546                 msr_info->data = svm->tsc_aux;
2547                 break;
2548         /*
2549          * Nobody will change the following 5 values in the VMCB so we can
2550          * safely return them on rdmsr. They will always be 0 until LBRV is
2551          * implemented.
2552          */
2553         case MSR_IA32_DEBUGCTLMSR:
2554                 msr_info->data = svm->vmcb->save.dbgctl;
2555                 break;
2556         case MSR_IA32_LASTBRANCHFROMIP:
2557                 msr_info->data = svm->vmcb->save.br_from;
2558                 break;
2559         case MSR_IA32_LASTBRANCHTOIP:
2560                 msr_info->data = svm->vmcb->save.br_to;
2561                 break;
2562         case MSR_IA32_LASTINTFROMIP:
2563                 msr_info->data = svm->vmcb->save.last_excp_from;
2564                 break;
2565         case MSR_IA32_LASTINTTOIP:
2566                 msr_info->data = svm->vmcb->save.last_excp_to;
2567                 break;
2568         case MSR_VM_HSAVE_PA:
2569                 msr_info->data = svm->nested.hsave_msr;
2570                 break;
2571         case MSR_VM_CR:
2572                 msr_info->data = svm->nested.vm_cr_msr;
2573                 break;
2574         case MSR_IA32_SPEC_CTRL:
2575                 if (!msr_info->host_initiated &&
2576                     !guest_has_spec_ctrl_msr(vcpu))
2577                         return 1;
2578
2579                 msr_info->data = svm->spec_ctrl;
2580                 break;
2581         case MSR_AMD64_VIRT_SPEC_CTRL:
2582                 if (!msr_info->host_initiated &&
2583                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2584                         return 1;
2585
2586                 msr_info->data = svm->virt_spec_ctrl;
2587                 break;
2588         case MSR_F15H_IC_CFG: {
2589
2590                 int family, model;
2591
2592                 family = guest_cpuid_family(vcpu);
2593                 model  = guest_cpuid_model(vcpu);
2594
2595                 if (family < 0 || model < 0)
2596                         return kvm_get_msr_common(vcpu, msr_info);
2597
2598                 msr_info->data = 0;
2599
2600                 if (family == 0x15 &&
2601                     (model >= 0x2 && model < 0x20))
2602                         msr_info->data = 0x1E;
2603                 }
2604                 break;
2605         case MSR_F10H_DECFG:
2606                 msr_info->data = svm->msr_decfg;
2607                 break;
2608         default:
2609                 return kvm_get_msr_common(vcpu, msr_info);
2610         }
2611         return 0;
2612 }
2613
2614 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2615 {
2616         struct vcpu_svm *svm = to_svm(vcpu);
2617         if (!sev_es_guest(svm->vcpu.kvm) || !err)
2618                 return kvm_complete_insn_gp(&svm->vcpu, err);
2619
2620         ghcb_set_sw_exit_info_1(svm->ghcb, 1);
2621         ghcb_set_sw_exit_info_2(svm->ghcb,
2622                                 X86_TRAP_GP |
2623                                 SVM_EVTINJ_TYPE_EXEPT |
2624                                 SVM_EVTINJ_VALID);
2625         return 1;
2626 }
2627
2628 static int rdmsr_interception(struct vcpu_svm *svm)
2629 {
2630         return kvm_emulate_rdmsr(&svm->vcpu);
2631 }
2632
2633 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2634 {
2635         struct vcpu_svm *svm = to_svm(vcpu);
2636         int svm_dis, chg_mask;
2637
2638         if (data & ~SVM_VM_CR_VALID_MASK)
2639                 return 1;
2640
2641         chg_mask = SVM_VM_CR_VALID_MASK;
2642
2643         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2644                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2645
2646         svm->nested.vm_cr_msr &= ~chg_mask;
2647         svm->nested.vm_cr_msr |= (data & chg_mask);
2648
2649         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2650
2651         /* check for svm_disable while efer.svme is set */
2652         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2653                 return 1;
2654
2655         return 0;
2656 }
2657
2658 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2659 {
2660         struct vcpu_svm *svm = to_svm(vcpu);
2661
2662         u32 ecx = msr->index;
2663         u64 data = msr->data;
2664         switch (ecx) {
2665         case MSR_IA32_CR_PAT:
2666                 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2667                         return 1;
2668                 vcpu->arch.pat = data;
2669                 svm->vmcb->save.g_pat = data;
2670                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2671                 break;
2672         case MSR_IA32_SPEC_CTRL:
2673                 if (!msr->host_initiated &&
2674                     !guest_has_spec_ctrl_msr(vcpu))
2675                         return 1;
2676
2677                 if (kvm_spec_ctrl_test_value(data))
2678                         return 1;
2679
2680                 svm->spec_ctrl = data;
2681                 if (!data)
2682                         break;
2683
2684                 /*
2685                  * For non-nested:
2686                  * When it's written (to non-zero) for the first time, pass
2687                  * it through.
2688                  *
2689                  * For nested:
2690                  * The handling of the MSR bitmap for L2 guests is done in
2691                  * nested_svm_vmrun_msrpm.
2692                  * We update the L1 MSR bit as well since it will end up
2693                  * touching the MSR anyway now.
2694                  */
2695                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2696                 break;
2697         case MSR_IA32_PRED_CMD:
2698                 if (!msr->host_initiated &&
2699                     !guest_has_pred_cmd_msr(vcpu))
2700                         return 1;
2701
2702                 if (data & ~PRED_CMD_IBPB)
2703                         return 1;
2704                 if (!boot_cpu_has(X86_FEATURE_IBPB))
2705                         return 1;
2706                 if (!data)
2707                         break;
2708
2709                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2710                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2711                 break;
2712         case MSR_AMD64_VIRT_SPEC_CTRL:
2713                 if (!msr->host_initiated &&
2714                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2715                         return 1;
2716
2717                 if (data & ~SPEC_CTRL_SSBD)
2718                         return 1;
2719
2720                 svm->virt_spec_ctrl = data;
2721                 break;
2722         case MSR_STAR:
2723                 svm->vmcb->save.star = data;
2724                 break;
2725 #ifdef CONFIG_X86_64
2726         case MSR_LSTAR:
2727                 svm->vmcb->save.lstar = data;
2728                 break;
2729         case MSR_CSTAR:
2730                 svm->vmcb->save.cstar = data;
2731                 break;
2732         case MSR_KERNEL_GS_BASE:
2733                 svm->vmcb->save.kernel_gs_base = data;
2734                 break;
2735         case MSR_SYSCALL_MASK:
2736                 svm->vmcb->save.sfmask = data;
2737                 break;
2738 #endif
2739         case MSR_IA32_SYSENTER_CS:
2740                 svm->vmcb->save.sysenter_cs = data;
2741                 break;
2742         case MSR_IA32_SYSENTER_EIP:
2743                 svm->sysenter_eip = data;
2744                 svm->vmcb->save.sysenter_eip = data;
2745                 break;
2746         case MSR_IA32_SYSENTER_ESP:
2747                 svm->sysenter_esp = data;
2748                 svm->vmcb->save.sysenter_esp = data;
2749                 break;
2750         case MSR_TSC_AUX:
2751                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2752                         return 1;
2753
2754                 /*
2755                  * This is rare, so we update the MSR here instead of using
2756                  * direct_access_msrs.  Doing that would require a rdmsr in
2757                  * svm_vcpu_put.
2758                  */
2759                 svm->tsc_aux = data;
2760                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2761                 break;
2762         case MSR_IA32_DEBUGCTLMSR:
2763                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2764                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2765                                     __func__, data);
2766                         break;
2767                 }
2768                 if (data & DEBUGCTL_RESERVED_BITS)
2769                         return 1;
2770
2771                 svm->vmcb->save.dbgctl = data;
2772                 vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2773                 if (data & (1ULL<<0))
2774                         svm_enable_lbrv(vcpu);
2775                 else
2776                         svm_disable_lbrv(vcpu);
2777                 break;
2778         case MSR_VM_HSAVE_PA:
2779                 svm->nested.hsave_msr = data;
2780                 break;
2781         case MSR_VM_CR:
2782                 return svm_set_vm_cr(vcpu, data);
2783         case MSR_VM_IGNNE:
2784                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2785                 break;
2786         case MSR_F10H_DECFG: {
2787                 struct kvm_msr_entry msr_entry;
2788
2789                 msr_entry.index = msr->index;
2790                 if (svm_get_msr_feature(&msr_entry))
2791                         return 1;
2792
2793                 /* Check the supported bits */
2794                 if (data & ~msr_entry.data)
2795                         return 1;
2796
2797                 /* Don't allow the guest to change a bit, #GP */
2798                 if (!msr->host_initiated && (data ^ msr_entry.data))
2799                         return 1;
2800
2801                 svm->msr_decfg = data;
2802                 break;
2803         }
2804         case MSR_IA32_APICBASE:
2805                 if (kvm_vcpu_apicv_active(vcpu))
2806                         avic_update_vapic_bar(to_svm(vcpu), data);
2807                 fallthrough;
2808         default:
2809                 return kvm_set_msr_common(vcpu, msr);
2810         }
2811         return 0;
2812 }
2813
2814 static int wrmsr_interception(struct vcpu_svm *svm)
2815 {
2816         return kvm_emulate_wrmsr(&svm->vcpu);
2817 }
2818
2819 static int msr_interception(struct vcpu_svm *svm)
2820 {
2821         if (svm->vmcb->control.exit_info_1)
2822                 return wrmsr_interception(svm);
2823         else
2824                 return rdmsr_interception(svm);
2825 }
2826
2827 static int interrupt_window_interception(struct vcpu_svm *svm)
2828 {
2829         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2830         svm_clear_vintr(svm);
2831
2832         /*
2833          * For AVIC, the only reason to end up here is ExtINTs.
2834          * In this case AVIC was temporarily disabled for
2835          * requesting the IRQ window and we have to re-enable it.
2836          */
2837         svm_toggle_avic_for_irq_window(&svm->vcpu, true);
2838
2839         ++svm->vcpu.stat.irq_window_exits;
2840         return 1;
2841 }
2842
2843 static int pause_interception(struct vcpu_svm *svm)
2844 {
2845         struct kvm_vcpu *vcpu = &svm->vcpu;
2846         bool in_kernel;
2847
2848         /*
2849          * CPL is not made available for an SEV-ES guest, therefore
2850          * vcpu->arch.preempted_in_kernel can never be true.  Just
2851          * set in_kernel to false as well.
2852          */
2853         in_kernel = !sev_es_guest(svm->vcpu.kvm) && svm_get_cpl(vcpu) == 0;
2854
2855         if (!kvm_pause_in_guest(vcpu->kvm))
2856                 grow_ple_window(vcpu);
2857
2858         kvm_vcpu_on_spin(vcpu, in_kernel);
2859         return 1;
2860 }
2861
2862 static int nop_interception(struct vcpu_svm *svm)
2863 {
2864         return kvm_skip_emulated_instruction(&(svm->vcpu));
2865 }
2866
2867 static int monitor_interception(struct vcpu_svm *svm)
2868 {
2869         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
2870         return nop_interception(svm);
2871 }
2872
2873 static int mwait_interception(struct vcpu_svm *svm)
2874 {
2875         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
2876         return nop_interception(svm);
2877 }
2878
2879 static int invpcid_interception(struct vcpu_svm *svm)
2880 {
2881         struct kvm_vcpu *vcpu = &svm->vcpu;
2882         unsigned long type;
2883         gva_t gva;
2884
2885         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
2886                 kvm_queue_exception(vcpu, UD_VECTOR);
2887                 return 1;
2888         }
2889
2890         /*
2891          * For an INVPCID intercept:
2892          * EXITINFO1 provides the linear address of the memory operand.
2893          * EXITINFO2 provides the contents of the register operand.
2894          */
2895         type = svm->vmcb->control.exit_info_2;
2896         gva = svm->vmcb->control.exit_info_1;
2897
2898         if (type > 3) {
2899                 kvm_inject_gp(vcpu, 0);
2900                 return 1;
2901         }
2902
2903         return kvm_handle_invpcid(vcpu, type, gva);
2904 }
2905
2906 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
2907         [SVM_EXIT_READ_CR0]                     = cr_interception,
2908         [SVM_EXIT_READ_CR3]                     = cr_interception,
2909         [SVM_EXIT_READ_CR4]                     = cr_interception,
2910         [SVM_EXIT_READ_CR8]                     = cr_interception,
2911         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
2912         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
2913         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
2914         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
2915         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2916         [SVM_EXIT_READ_DR0]                     = dr_interception,
2917         [SVM_EXIT_READ_DR1]                     = dr_interception,
2918         [SVM_EXIT_READ_DR2]                     = dr_interception,
2919         [SVM_EXIT_READ_DR3]                     = dr_interception,
2920         [SVM_EXIT_READ_DR4]                     = dr_interception,
2921         [SVM_EXIT_READ_DR5]                     = dr_interception,
2922         [SVM_EXIT_READ_DR6]                     = dr_interception,
2923         [SVM_EXIT_READ_DR7]                     = dr_interception,
2924         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
2925         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
2926         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
2927         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
2928         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
2929         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
2930         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
2931         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
2932         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2933         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2934         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2935         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2936         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2937         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
2938         [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
2939         [SVM_EXIT_INTR]                         = intr_interception,
2940         [SVM_EXIT_NMI]                          = nmi_interception,
2941         [SVM_EXIT_SMI]                          = nop_on_interception,
2942         [SVM_EXIT_INIT]                         = nop_on_interception,
2943         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2944         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
2945         [SVM_EXIT_CPUID]                        = cpuid_interception,
2946         [SVM_EXIT_IRET]                         = iret_interception,
2947         [SVM_EXIT_INVD]                         = invd_interception,
2948         [SVM_EXIT_PAUSE]                        = pause_interception,
2949         [SVM_EXIT_HLT]                          = halt_interception,
2950         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2951         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2952         [SVM_EXIT_IOIO]                         = io_interception,
2953         [SVM_EXIT_MSR]                          = msr_interception,
2954         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2955         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2956         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2957         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2958         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2959         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2960         [SVM_EXIT_STGI]                         = stgi_interception,
2961         [SVM_EXIT_CLGI]                         = clgi_interception,
2962         [SVM_EXIT_SKINIT]                       = skinit_interception,
2963         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
2964         [SVM_EXIT_MONITOR]                      = monitor_interception,
2965         [SVM_EXIT_MWAIT]                        = mwait_interception,
2966         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
2967         [SVM_EXIT_RDPRU]                        = rdpru_interception,
2968         [SVM_EXIT_INVPCID]                      = invpcid_interception,
2969         [SVM_EXIT_NPF]                          = npf_interception,
2970         [SVM_EXIT_RSM]                          = rsm_interception,
2971         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
2972         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
2973 };
2974
2975 static void dump_vmcb(struct kvm_vcpu *vcpu)
2976 {
2977         struct vcpu_svm *svm = to_svm(vcpu);
2978         struct vmcb_control_area *control = &svm->vmcb->control;
2979         struct vmcb_save_area *save = &svm->vmcb->save;
2980
2981         if (!dump_invalid_vmcb) {
2982                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2983                 return;
2984         }
2985
2986         pr_err("VMCB Control Area:\n");
2987         pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
2988         pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
2989         pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
2990         pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
2991         pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
2992         pr_err("%-20s%08x %08x\n", "intercepts:",
2993               control->intercepts[INTERCEPT_WORD3],
2994                control->intercepts[INTERCEPT_WORD4]);
2995         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
2996         pr_err("%-20s%d\n", "pause filter threshold:",
2997                control->pause_filter_thresh);
2998         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
2999         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3000         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3001         pr_err("%-20s%d\n", "asid:", control->asid);
3002         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3003         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3004         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3005         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3006         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3007         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3008         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3009         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3010         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3011         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3012         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3013         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3014         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3015         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3016         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3017         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3018         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3019         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3020         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3021         pr_err("VMCB State Save Area:\n");
3022         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3023                "es:",
3024                save->es.selector, save->es.attrib,
3025                save->es.limit, save->es.base);
3026         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3027                "cs:",
3028                save->cs.selector, save->cs.attrib,
3029                save->cs.limit, save->cs.base);
3030         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3031                "ss:",
3032                save->ss.selector, save->ss.attrib,
3033                save->ss.limit, save->ss.base);
3034         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3035                "ds:",
3036                save->ds.selector, save->ds.attrib,
3037                save->ds.limit, save->ds.base);
3038         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3039                "fs:",
3040                save->fs.selector, save->fs.attrib,
3041                save->fs.limit, save->fs.base);
3042         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3043                "gs:",
3044                save->gs.selector, save->gs.attrib,
3045                save->gs.limit, save->gs.base);
3046         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3047                "gdtr:",
3048                save->gdtr.selector, save->gdtr.attrib,
3049                save->gdtr.limit, save->gdtr.base);
3050         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3051                "ldtr:",
3052                save->ldtr.selector, save->ldtr.attrib,
3053                save->ldtr.limit, save->ldtr.base);
3054         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3055                "idtr:",
3056                save->idtr.selector, save->idtr.attrib,
3057                save->idtr.limit, save->idtr.base);
3058         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3059                "tr:",
3060                save->tr.selector, save->tr.attrib,
3061                save->tr.limit, save->tr.base);
3062         pr_err("cpl:            %d                efer:         %016llx\n",
3063                 save->cpl, save->efer);
3064         pr_err("%-15s %016llx %-13s %016llx\n",
3065                "cr0:", save->cr0, "cr2:", save->cr2);
3066         pr_err("%-15s %016llx %-13s %016llx\n",
3067                "cr3:", save->cr3, "cr4:", save->cr4);
3068         pr_err("%-15s %016llx %-13s %016llx\n",
3069                "dr6:", save->dr6, "dr7:", save->dr7);
3070         pr_err("%-15s %016llx %-13s %016llx\n",
3071                "rip:", save->rip, "rflags:", save->rflags);
3072         pr_err("%-15s %016llx %-13s %016llx\n",
3073                "rsp:", save->rsp, "rax:", save->rax);
3074         pr_err("%-15s %016llx %-13s %016llx\n",
3075                "star:", save->star, "lstar:", save->lstar);
3076         pr_err("%-15s %016llx %-13s %016llx\n",
3077                "cstar:", save->cstar, "sfmask:", save->sfmask);
3078         pr_err("%-15s %016llx %-13s %016llx\n",
3079                "kernel_gs_base:", save->kernel_gs_base,
3080                "sysenter_cs:", save->sysenter_cs);
3081         pr_err("%-15s %016llx %-13s %016llx\n",
3082                "sysenter_esp:", save->sysenter_esp,
3083                "sysenter_eip:", save->sysenter_eip);
3084         pr_err("%-15s %016llx %-13s %016llx\n",
3085                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3086         pr_err("%-15s %016llx %-13s %016llx\n",
3087                "br_from:", save->br_from, "br_to:", save->br_to);
3088         pr_err("%-15s %016llx %-13s %016llx\n",
3089                "excp_from:", save->last_excp_from,
3090                "excp_to:", save->last_excp_to);
3091 }
3092
3093 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
3094                               u32 *intr_info, u32 *error_code)
3095 {
3096         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3097
3098         *info1 = control->exit_info_1;
3099         *info2 = control->exit_info_2;
3100         *intr_info = control->exit_int_info;
3101         if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3102             (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3103                 *error_code = control->exit_int_info_err;
3104         else
3105                 *error_code = 0;
3106 }
3107
3108 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3109 {
3110         struct vcpu_svm *svm = to_svm(vcpu);
3111         struct kvm_run *kvm_run = vcpu->run;
3112         u32 exit_code = svm->vmcb->control.exit_code;
3113
3114         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3115
3116         /* SEV-ES guests must use the CR write traps to track CR registers. */
3117         if (!sev_es_guest(vcpu->kvm)) {
3118                 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3119                         vcpu->arch.cr0 = svm->vmcb->save.cr0;
3120                 if (npt_enabled)
3121                         vcpu->arch.cr3 = svm->vmcb->save.cr3;
3122         }
3123
3124         if (is_guest_mode(vcpu)) {
3125                 int vmexit;
3126
3127                 trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM);
3128
3129                 vmexit = nested_svm_exit_special(svm);
3130
3131                 if (vmexit == NESTED_EXIT_CONTINUE)
3132                         vmexit = nested_svm_exit_handled(svm);
3133
3134                 if (vmexit == NESTED_EXIT_DONE)
3135                         return 1;
3136         }
3137
3138         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3139                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3140                 kvm_run->fail_entry.hardware_entry_failure_reason
3141                         = svm->vmcb->control.exit_code;
3142                 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3143                 dump_vmcb(vcpu);
3144                 return 0;
3145         }
3146
3147         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3148             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3149             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3150             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3151                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3152                        "exit_code 0x%x\n",
3153                        __func__, svm->vmcb->control.exit_int_info,
3154                        exit_code);
3155
3156         if (exit_fastpath != EXIT_FASTPATH_NONE)
3157                 return 1;
3158
3159         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3160             || !svm_exit_handlers[exit_code]) {
3161                 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
3162                 dump_vmcb(vcpu);
3163                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3164                 vcpu->run->internal.suberror =
3165                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3166                 vcpu->run->internal.ndata = 2;
3167                 vcpu->run->internal.data[0] = exit_code;
3168                 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3169                 return 0;
3170         }
3171
3172 #ifdef CONFIG_RETPOLINE
3173         if (exit_code == SVM_EXIT_MSR)
3174                 return msr_interception(svm);
3175         else if (exit_code == SVM_EXIT_VINTR)
3176                 return interrupt_window_interception(svm);
3177         else if (exit_code == SVM_EXIT_INTR)
3178                 return intr_interception(svm);
3179         else if (exit_code == SVM_EXIT_HLT)
3180                 return halt_interception(svm);
3181         else if (exit_code == SVM_EXIT_NPF)
3182                 return npf_interception(svm);
3183 #endif
3184         return svm_exit_handlers[exit_code](svm);
3185 }
3186
3187 static void reload_tss(struct kvm_vcpu *vcpu)
3188 {
3189         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3190
3191         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3192         load_TR_desc();
3193 }
3194
3195 static void pre_svm_run(struct vcpu_svm *svm)
3196 {
3197         struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu);
3198
3199         if (sev_guest(svm->vcpu.kvm))
3200                 return pre_sev_run(svm, svm->vcpu.cpu);
3201
3202         /* FIXME: handle wraparound of asid_generation */
3203         if (svm->asid_generation != sd->asid_generation)
3204                 new_asid(svm, sd);
3205 }
3206
3207 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3208 {
3209         struct vcpu_svm *svm = to_svm(vcpu);
3210
3211         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3212         vcpu->arch.hflags |= HF_NMI_MASK;
3213         svm_set_intercept(svm, INTERCEPT_IRET);
3214         ++vcpu->stat.nmi_injections;
3215 }
3216
3217 static void svm_set_irq(struct kvm_vcpu *vcpu)
3218 {
3219         struct vcpu_svm *svm = to_svm(vcpu);
3220
3221         BUG_ON(!(gif_set(svm)));
3222
3223         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3224         ++vcpu->stat.irq_injections;
3225
3226         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3227                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3228 }
3229
3230 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3231 {
3232         struct vcpu_svm *svm = to_svm(vcpu);
3233
3234         /*
3235          * SEV-ES guests must always keep the CR intercepts cleared. CR
3236          * tracking is done using the CR write traps.
3237          */
3238         if (sev_es_guest(vcpu->kvm))
3239                 return;
3240
3241         if (nested_svm_virtualize_tpr(vcpu))
3242                 return;
3243
3244         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3245
3246         if (irr == -1)
3247                 return;
3248
3249         if (tpr >= irr)
3250                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3251 }
3252
3253 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3254 {
3255         struct vcpu_svm *svm = to_svm(vcpu);
3256         struct vmcb *vmcb = svm->vmcb;
3257         bool ret;
3258
3259         if (!gif_set(svm))
3260                 return true;
3261
3262         if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3263                 return false;
3264
3265         ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3266               (svm->vcpu.arch.hflags & HF_NMI_MASK);
3267
3268         return ret;
3269 }
3270
3271 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3272 {
3273         struct vcpu_svm *svm = to_svm(vcpu);
3274         if (svm->nested.nested_run_pending)
3275                 return -EBUSY;
3276
3277         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3278         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3279                 return -EBUSY;
3280
3281         return !svm_nmi_blocked(vcpu);
3282 }
3283
3284 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3285 {
3286         struct vcpu_svm *svm = to_svm(vcpu);
3287
3288         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3289 }
3290
3291 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3292 {
3293         struct vcpu_svm *svm = to_svm(vcpu);
3294
3295         if (masked) {
3296                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3297                 svm_set_intercept(svm, INTERCEPT_IRET);
3298         } else {
3299                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3300                 svm_clr_intercept(svm, INTERCEPT_IRET);
3301         }
3302 }
3303
3304 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3305 {
3306         struct vcpu_svm *svm = to_svm(vcpu);
3307         struct vmcb *vmcb = svm->vmcb;
3308
3309         if (!gif_set(svm))
3310                 return true;
3311
3312         if (sev_es_guest(svm->vcpu.kvm)) {
3313                 /*
3314                  * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask
3315                  * bit to determine the state of the IF flag.
3316                  */
3317                 if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK))
3318                         return true;
3319         } else if (is_guest_mode(vcpu)) {
3320                 /* As long as interrupts are being delivered...  */
3321                 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3322                     ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF)
3323                     : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3324                         return true;
3325
3326                 /* ... vmexits aren't blocked by the interrupt shadow  */
3327                 if (nested_exit_on_intr(svm))
3328                         return false;
3329         } else {
3330                 if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3331                         return true;
3332         }
3333
3334         return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3335 }
3336
3337 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3338 {
3339         struct vcpu_svm *svm = to_svm(vcpu);
3340         if (svm->nested.nested_run_pending)
3341                 return -EBUSY;
3342
3343         /*
3344          * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3345          * e.g. if the IRQ arrived asynchronously after checking nested events.
3346          */
3347         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3348                 return -EBUSY;
3349
3350         return !svm_interrupt_blocked(vcpu);
3351 }
3352
3353 static void enable_irq_window(struct kvm_vcpu *vcpu)
3354 {
3355         struct vcpu_svm *svm = to_svm(vcpu);
3356
3357         /*
3358          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3359          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3360          * get that intercept, this function will be called again though and
3361          * we'll get the vintr intercept. However, if the vGIF feature is
3362          * enabled, the STGI interception will not occur. Enable the irq
3363          * window under the assumption that the hardware will set the GIF.
3364          */
3365         if (vgif_enabled(svm) || gif_set(svm)) {
3366                 /*
3367                  * IRQ window is not needed when AVIC is enabled,
3368                  * unless we have pending ExtINT since it cannot be injected
3369                  * via AVIC. In such case, we need to temporarily disable AVIC,
3370                  * and fallback to injecting IRQ via V_IRQ.
3371                  */
3372                 svm_toggle_avic_for_irq_window(vcpu, false);
3373                 svm_set_vintr(svm);
3374         }
3375 }
3376
3377 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3378 {
3379         struct vcpu_svm *svm = to_svm(vcpu);
3380
3381         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3382             == HF_NMI_MASK)
3383                 return; /* IRET will cause a vm exit */
3384
3385         if (!gif_set(svm)) {
3386                 if (vgif_enabled(svm))
3387                         svm_set_intercept(svm, INTERCEPT_STGI);
3388                 return; /* STGI will cause a vm exit */
3389         }
3390
3391         /*
3392          * Something prevents NMI from been injected. Single step over possible
3393          * problem (IRET or exception injection or interrupt shadow)
3394          */
3395         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3396         svm->nmi_singlestep = true;
3397         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3398 }
3399
3400 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3401 {
3402         return 0;
3403 }
3404
3405 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3406 {
3407         return 0;
3408 }
3409
3410 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3411 {
3412         struct vcpu_svm *svm = to_svm(vcpu);
3413
3414         /*
3415          * Flush only the current ASID even if the TLB flush was invoked via
3416          * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3417          * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3418          * unconditionally does a TLB flush on both nested VM-Enter and nested
3419          * VM-Exit (via kvm_mmu_reset_context()).
3420          */
3421         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3422                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3423         else
3424                 svm->asid_generation--;
3425 }
3426
3427 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3428 {
3429         struct vcpu_svm *svm = to_svm(vcpu);
3430
3431         invlpga(gva, svm->vmcb->control.asid);
3432 }
3433
3434 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3435 {
3436 }
3437
3438 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3439 {
3440         struct vcpu_svm *svm = to_svm(vcpu);
3441
3442         if (nested_svm_virtualize_tpr(vcpu))
3443                 return;
3444
3445         if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3446                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3447                 kvm_set_cr8(vcpu, cr8);
3448         }
3449 }
3450
3451 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3452 {
3453         struct vcpu_svm *svm = to_svm(vcpu);
3454         u64 cr8;
3455
3456         if (nested_svm_virtualize_tpr(vcpu) ||
3457             kvm_vcpu_apicv_active(vcpu))
3458                 return;
3459
3460         cr8 = kvm_get_cr8(vcpu);
3461         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3462         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3463 }
3464
3465 static void svm_complete_interrupts(struct vcpu_svm *svm)
3466 {
3467         u8 vector;
3468         int type;
3469         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3470         unsigned int3_injected = svm->int3_injected;
3471
3472         svm->int3_injected = 0;
3473
3474         /*
3475          * If we've made progress since setting HF_IRET_MASK, we've
3476          * executed an IRET and can allow NMI injection.
3477          */
3478         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3479             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3480                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3481                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3482         }
3483
3484         svm->vcpu.arch.nmi_injected = false;
3485         kvm_clear_exception_queue(&svm->vcpu);
3486         kvm_clear_interrupt_queue(&svm->vcpu);
3487
3488         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3489                 return;
3490
3491         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3492
3493         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3494         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3495
3496         switch (type) {
3497         case SVM_EXITINTINFO_TYPE_NMI:
3498                 svm->vcpu.arch.nmi_injected = true;
3499                 break;
3500         case SVM_EXITINTINFO_TYPE_EXEPT:
3501                 /*
3502                  * Never re-inject a #VC exception.
3503                  */
3504                 if (vector == X86_TRAP_VC)
3505                         break;
3506
3507                 /*
3508                  * In case of software exceptions, do not reinject the vector,
3509                  * but re-execute the instruction instead. Rewind RIP first
3510                  * if we emulated INT3 before.
3511                  */
3512                 if (kvm_exception_is_soft(vector)) {
3513                         if (vector == BP_VECTOR && int3_injected &&
3514                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3515                                 kvm_rip_write(&svm->vcpu,
3516                                               kvm_rip_read(&svm->vcpu) -
3517                                               int3_injected);
3518                         break;
3519                 }
3520                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3521                         u32 err = svm->vmcb->control.exit_int_info_err;
3522                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3523
3524                 } else
3525                         kvm_requeue_exception(&svm->vcpu, vector);
3526                 break;
3527         case SVM_EXITINTINFO_TYPE_INTR:
3528                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3529                 break;
3530         default:
3531                 break;
3532         }
3533 }
3534
3535 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3536 {
3537         struct vcpu_svm *svm = to_svm(vcpu);
3538         struct vmcb_control_area *control = &svm->vmcb->control;
3539
3540         control->exit_int_info = control->event_inj;
3541         control->exit_int_info_err = control->event_inj_err;
3542         control->event_inj = 0;
3543         svm_complete_interrupts(svm);
3544 }
3545
3546 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3547 {
3548         if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3549             to_svm(vcpu)->vmcb->control.exit_info_1)
3550                 return handle_fastpath_set_msr_irqoff(vcpu);
3551
3552         return EXIT_FASTPATH_NONE;
3553 }
3554
3555 void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs);
3556
3557 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu,
3558                                         struct vcpu_svm *svm)
3559 {
3560         /*
3561          * VMENTER enables interrupts (host state), but the kernel state is
3562          * interrupts disabled when this is invoked. Also tell RCU about
3563          * it. This is the same logic as for exit_to_user_mode().
3564          *
3565          * This ensures that e.g. latency analysis on the host observes
3566          * guest mode as interrupt enabled.
3567          *
3568          * guest_enter_irqoff() informs context tracking about the
3569          * transition to guest mode and if enabled adjusts RCU state
3570          * accordingly.
3571          */
3572         instrumentation_begin();
3573         trace_hardirqs_on_prepare();
3574         lockdep_hardirqs_on_prepare(CALLER_ADDR0);
3575         instrumentation_end();
3576
3577         guest_enter_irqoff();
3578         lockdep_hardirqs_on(CALLER_ADDR0);
3579
3580         __svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
3581
3582 #ifdef CONFIG_X86_64
3583         native_wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3584 #else
3585         loadsegment(fs, svm->host.fs);
3586 #ifndef CONFIG_X86_32_LAZY_GS
3587         loadsegment(gs, svm->host.gs);
3588 #endif
3589 #endif
3590
3591         /*
3592          * VMEXIT disables interrupts (host state), but tracing and lockdep
3593          * have them in state 'on' as recorded before entering guest mode.
3594          * Same as enter_from_user_mode().
3595          *
3596          * guest_exit_irqoff() restores host context and reinstates RCU if
3597          * enabled and required.
3598          *
3599          * This needs to be done before the below as native_read_msr()
3600          * contains a tracepoint and x86_spec_ctrl_restore_host() calls
3601          * into world and some more.
3602          */
3603         lockdep_hardirqs_off(CALLER_ADDR0);
3604         guest_exit_irqoff();
3605
3606         instrumentation_begin();
3607         trace_hardirqs_off_finish();
3608         instrumentation_end();
3609 }
3610
3611 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3612 {
3613         struct vcpu_svm *svm = to_svm(vcpu);
3614
3615         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3616         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3617         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3618
3619         /*
3620          * Disable singlestep if we're injecting an interrupt/exception.
3621          * We don't want our modified rflags to be pushed on the stack where
3622          * we might not be able to easily reset them if we disabled NMI
3623          * singlestep later.
3624          */
3625         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3626                 /*
3627                  * Event injection happens before external interrupts cause a
3628                  * vmexit and interrupts are disabled here, so smp_send_reschedule
3629                  * is enough to force an immediate vmexit.
3630                  */
3631                 disable_nmi_singlestep(svm);
3632                 smp_send_reschedule(vcpu->cpu);
3633         }
3634
3635         pre_svm_run(svm);
3636
3637         sync_lapic_to_cr8(vcpu);
3638
3639         if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3640                 svm->vmcb->control.asid = svm->asid;
3641                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3642         }
3643         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3644
3645         /*
3646          * Run with all-zero DR6 unless needed, so that we can get the exact cause
3647          * of a #DB.
3648          */
3649         if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3650                 svm_set_dr6(svm, vcpu->arch.dr6);
3651         else
3652                 svm_set_dr6(svm, DR6_FIXED_1 | DR6_RTM);
3653
3654         clgi();
3655         kvm_load_guest_xsave_state(vcpu);
3656
3657         kvm_wait_lapic_expire(vcpu);
3658
3659         /*
3660          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3661          * it's non-zero. Since vmentry is serialising on affected CPUs, there
3662          * is no need to worry about the conditional branch over the wrmsr
3663          * being speculatively taken.
3664          */
3665         x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3666
3667         svm_vcpu_enter_exit(vcpu, svm);
3668
3669         /*
3670          * We do not use IBRS in the kernel. If this vCPU has used the
3671          * SPEC_CTRL MSR it may have left it on; save the value and
3672          * turn it off. This is much more efficient than blindly adding
3673          * it to the atomic save/restore list. Especially as the former
3674          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3675          *
3676          * For non-nested case:
3677          * If the L01 MSR bitmap does not intercept the MSR, then we need to
3678          * save it.
3679          *
3680          * For nested case:
3681          * If the L02 MSR bitmap does not intercept the MSR, then we need to
3682          * save it.
3683          */
3684         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3685                 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3686
3687         reload_tss(vcpu);
3688
3689         x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3690
3691         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3692         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3693         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3694         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3695
3696         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3697                 kvm_before_interrupt(&svm->vcpu);
3698
3699         kvm_load_host_xsave_state(vcpu);
3700         stgi();
3701
3702         /* Any pending NMI will happen here */
3703
3704         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3705                 kvm_after_interrupt(&svm->vcpu);
3706
3707         sync_cr8_to_lapic(vcpu);
3708
3709         svm->next_rip = 0;
3710         if (is_guest_mode(&svm->vcpu)) {
3711                 sync_nested_vmcb_control(svm);
3712                 svm->nested.nested_run_pending = 0;
3713         }
3714
3715         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3716         vmcb_mark_all_clean(svm->vmcb);
3717
3718         /* if exit due to PF check for async PF */
3719         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3720                 svm->vcpu.arch.apf.host_apf_flags =
3721                         kvm_read_and_reset_apf_flags();
3722
3723         if (npt_enabled) {
3724                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3725                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3726         }
3727
3728         /*
3729          * We need to handle MC intercepts here before the vcpu has a chance to
3730          * change the physical cpu
3731          */
3732         if (unlikely(svm->vmcb->control.exit_code ==
3733                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3734                 svm_handle_mce(svm);
3735
3736         svm_complete_interrupts(svm);
3737
3738         if (is_guest_mode(vcpu))
3739                 return EXIT_FASTPATH_NONE;
3740
3741         return svm_exit_handlers_fastpath(vcpu);
3742 }
3743
3744 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root,
3745                              int root_level)
3746 {
3747         struct vcpu_svm *svm = to_svm(vcpu);
3748         unsigned long cr3;
3749
3750         cr3 = __sme_set(root);
3751         if (npt_enabled) {
3752                 svm->vmcb->control.nested_cr3 = cr3;
3753                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3754
3755                 /* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
3756                 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3757                         return;
3758                 cr3 = vcpu->arch.cr3;
3759         }
3760
3761         svm->vmcb->save.cr3 = cr3;
3762         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3763 }
3764
3765 static int is_disabled(void)
3766 {
3767         u64 vm_cr;
3768
3769         rdmsrl(MSR_VM_CR, vm_cr);
3770         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3771                 return 1;
3772
3773         return 0;
3774 }
3775
3776 static void
3777 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3778 {
3779         /*
3780          * Patch in the VMMCALL instruction:
3781          */
3782         hypercall[0] = 0x0f;
3783         hypercall[1] = 0x01;
3784         hypercall[2] = 0xd9;
3785 }
3786
3787 static int __init svm_check_processor_compat(void)
3788 {
3789         return 0;
3790 }
3791
3792 static bool svm_cpu_has_accelerated_tpr(void)
3793 {
3794         return false;
3795 }
3796
3797 static bool svm_has_emulated_msr(u32 index)
3798 {
3799         switch (index) {
3800         case MSR_IA32_MCG_EXT_CTL:
3801         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3802                 return false;
3803         default:
3804                 break;
3805         }
3806
3807         return true;
3808 }
3809
3810 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3811 {
3812         return 0;
3813 }
3814
3815 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
3816 {
3817         struct vcpu_svm *svm = to_svm(vcpu);
3818         struct kvm_cpuid_entry2 *best;
3819
3820         vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3821                                     boot_cpu_has(X86_FEATURE_XSAVE) &&
3822                                     boot_cpu_has(X86_FEATURE_XSAVES);
3823
3824         /* Update nrips enabled cache */
3825         svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3826                              guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
3827
3828         /* Check again if INVPCID interception if required */
3829         svm_check_invpcid(svm);
3830
3831         /* For sev guests, the memory encryption bit is not reserved in CR3.  */
3832         if (sev_guest(vcpu->kvm)) {
3833                 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
3834                 if (best)
3835                         vcpu->arch.cr3_lm_rsvd_bits &= ~(1UL << (best->ebx & 0x3f));
3836         }
3837
3838         if (!kvm_vcpu_apicv_active(vcpu))
3839                 return;
3840
3841         /*
3842          * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3843          * is exposed to the guest, disable AVIC.
3844          */
3845         if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
3846                 kvm_request_apicv_update(vcpu->kvm, false,
3847                                          APICV_INHIBIT_REASON_X2APIC);
3848
3849         /*
3850          * Currently, AVIC does not work with nested virtualization.
3851          * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3852          */
3853         if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
3854                 kvm_request_apicv_update(vcpu->kvm, false,
3855                                          APICV_INHIBIT_REASON_NESTED);
3856 }
3857
3858 static bool svm_has_wbinvd_exit(void)
3859 {
3860         return true;
3861 }
3862
3863 #define PRE_EX(exit)  { .exit_code = (exit), \
3864                         .stage = X86_ICPT_PRE_EXCEPT, }
3865 #define POST_EX(exit) { .exit_code = (exit), \
3866                         .stage = X86_ICPT_POST_EXCEPT, }
3867 #define POST_MEM(exit) { .exit_code = (exit), \
3868                         .stage = X86_ICPT_POST_MEMACCESS, }
3869
3870 static const struct __x86_intercept {
3871         u32 exit_code;
3872         enum x86_intercept_stage stage;
3873 } x86_intercept_map[] = {
3874         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
3875         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
3876         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
3877         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
3878         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
3879         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
3880         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
3881         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
3882         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
3883         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
3884         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
3885         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
3886         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
3887         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
3888         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
3889         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
3890         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
3891         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
3892         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
3893         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
3894         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
3895         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
3896         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
3897         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
3898         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
3899         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
3900         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
3901         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
3902         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
3903         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
3904         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
3905         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
3906         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
3907         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
3908         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
3909         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
3910         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
3911         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
3912         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
3913         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
3914         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
3915         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
3916         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
3917         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
3918         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
3919         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
3920         [x86_intercept_xsetbv]          = PRE_EX(SVM_EXIT_XSETBV),
3921 };
3922
3923 #undef PRE_EX
3924 #undef POST_EX
3925 #undef POST_MEM
3926
3927 static int svm_check_intercept(struct kvm_vcpu *vcpu,
3928                                struct x86_instruction_info *info,
3929                                enum x86_intercept_stage stage,
3930                                struct x86_exception *exception)
3931 {
3932         struct vcpu_svm *svm = to_svm(vcpu);
3933         int vmexit, ret = X86EMUL_CONTINUE;
3934         struct __x86_intercept icpt_info;
3935         struct vmcb *vmcb = svm->vmcb;
3936
3937         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
3938                 goto out;
3939
3940         icpt_info = x86_intercept_map[info->intercept];
3941
3942         if (stage != icpt_info.stage)
3943                 goto out;
3944
3945         switch (icpt_info.exit_code) {
3946         case SVM_EXIT_READ_CR0:
3947                 if (info->intercept == x86_intercept_cr_read)
3948                         icpt_info.exit_code += info->modrm_reg;
3949                 break;
3950         case SVM_EXIT_WRITE_CR0: {
3951                 unsigned long cr0, val;
3952
3953                 if (info->intercept == x86_intercept_cr_write)
3954                         icpt_info.exit_code += info->modrm_reg;
3955
3956                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
3957                     info->intercept == x86_intercept_clts)
3958                         break;
3959
3960                 if (!(vmcb_is_intercept(&svm->nested.ctl,
3961                                         INTERCEPT_SELECTIVE_CR0)))
3962                         break;
3963
3964                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
3965                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
3966
3967                 if (info->intercept == x86_intercept_lmsw) {
3968                         cr0 &= 0xfUL;
3969                         val &= 0xfUL;
3970                         /* lmsw can't clear PE - catch this here */
3971                         if (cr0 & X86_CR0_PE)
3972                                 val |= X86_CR0_PE;
3973                 }
3974
3975                 if (cr0 ^ val)
3976                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3977
3978                 break;
3979         }
3980         case SVM_EXIT_READ_DR0:
3981         case SVM_EXIT_WRITE_DR0:
3982                 icpt_info.exit_code += info->modrm_reg;
3983                 break;
3984         case SVM_EXIT_MSR:
3985                 if (info->intercept == x86_intercept_wrmsr)
3986                         vmcb->control.exit_info_1 = 1;
3987                 else
3988                         vmcb->control.exit_info_1 = 0;
3989                 break;
3990         case SVM_EXIT_PAUSE:
3991                 /*
3992                  * We get this for NOP only, but pause
3993                  * is rep not, check this here
3994                  */
3995                 if (info->rep_prefix != REPE_PREFIX)
3996                         goto out;
3997                 break;
3998         case SVM_EXIT_IOIO: {
3999                 u64 exit_info;
4000                 u32 bytes;
4001
4002                 if (info->intercept == x86_intercept_in ||
4003                     info->intercept == x86_intercept_ins) {
4004                         exit_info = ((info->src_val & 0xffff) << 16) |
4005                                 SVM_IOIO_TYPE_MASK;
4006                         bytes = info->dst_bytes;
4007                 } else {
4008                         exit_info = (info->dst_val & 0xffff) << 16;
4009                         bytes = info->src_bytes;
4010                 }
4011
4012                 if (info->intercept == x86_intercept_outs ||
4013                     info->intercept == x86_intercept_ins)
4014                         exit_info |= SVM_IOIO_STR_MASK;
4015
4016                 if (info->rep_prefix)
4017                         exit_info |= SVM_IOIO_REP_MASK;
4018
4019                 bytes = min(bytes, 4u);
4020
4021                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4022
4023                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4024
4025                 vmcb->control.exit_info_1 = exit_info;
4026                 vmcb->control.exit_info_2 = info->next_rip;
4027
4028                 break;
4029         }
4030         default:
4031                 break;
4032         }
4033
4034         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4035         if (static_cpu_has(X86_FEATURE_NRIPS))
4036                 vmcb->control.next_rip  = info->next_rip;
4037         vmcb->control.exit_code = icpt_info.exit_code;
4038         vmexit = nested_svm_exit_handled(svm);
4039
4040         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4041                                            : X86EMUL_CONTINUE;
4042
4043 out:
4044         return ret;
4045 }
4046
4047 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4048 {
4049 }
4050
4051 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4052 {
4053         if (!kvm_pause_in_guest(vcpu->kvm))
4054                 shrink_ple_window(vcpu);
4055 }
4056
4057 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4058 {
4059         /* [63:9] are reserved. */
4060         vcpu->arch.mcg_cap &= 0x1ff;
4061 }
4062
4063 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4064 {
4065         struct vcpu_svm *svm = to_svm(vcpu);
4066
4067         /* Per APM Vol.2 15.22.2 "Response to SMI" */
4068         if (!gif_set(svm))
4069                 return true;
4070
4071         return is_smm(vcpu);
4072 }
4073
4074 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4075 {
4076         struct vcpu_svm *svm = to_svm(vcpu);
4077         if (svm->nested.nested_run_pending)
4078                 return -EBUSY;
4079
4080         /* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4081         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4082                 return -EBUSY;
4083
4084         return !svm_smi_blocked(vcpu);
4085 }
4086
4087 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4088 {
4089         struct vcpu_svm *svm = to_svm(vcpu);
4090         int ret;
4091
4092         if (is_guest_mode(vcpu)) {
4093                 /* FED8h - SVM Guest */
4094                 put_smstate(u64, smstate, 0x7ed8, 1);
4095                 /* FEE0h - SVM Guest VMCB Physical Address */
4096                 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4097
4098                 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4099                 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4100                 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4101
4102                 ret = nested_svm_vmexit(svm);
4103                 if (ret)
4104                         return ret;
4105         }
4106         return 0;
4107 }
4108
4109 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4110 {
4111         struct vcpu_svm *svm = to_svm(vcpu);
4112         struct kvm_host_map map;
4113         int ret = 0;
4114
4115         if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
4116                 u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4117                 u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
4118                 u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4119
4120                 if (guest) {
4121                         if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4122                                 return 1;
4123
4124                         if (!(saved_efer & EFER_SVME))
4125                                 return 1;
4126
4127                         if (kvm_vcpu_map(&svm->vcpu,
4128                                          gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4129                                 return 1;
4130
4131                         if (svm_allocate_nested(svm))
4132                                 return 1;
4133
4134                         ret = enter_svm_guest_mode(svm, vmcb12_gpa, map.hva);
4135                         kvm_vcpu_unmap(&svm->vcpu, &map, true);
4136                 }
4137         }
4138
4139         return ret;
4140 }
4141
4142 static void enable_smi_window(struct kvm_vcpu *vcpu)
4143 {
4144         struct vcpu_svm *svm = to_svm(vcpu);
4145
4146         if (!gif_set(svm)) {
4147                 if (vgif_enabled(svm))
4148                         svm_set_intercept(svm, INTERCEPT_STGI);
4149                 /* STGI will cause a vm exit */
4150         } else {
4151                 /* We must be in SMM; RSM will cause a vmexit anyway.  */
4152         }
4153 }
4154
4155 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
4156 {
4157         bool smep, smap, is_user;
4158         unsigned long cr4;
4159
4160         /*
4161          * When the guest is an SEV-ES guest, emulation is not possible.
4162          */
4163         if (sev_es_guest(vcpu->kvm))
4164                 return false;
4165
4166         /*
4167          * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4168          *
4169          * Errata:
4170          * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
4171          * possible that CPU microcode implementing DecodeAssist will fail
4172          * to read bytes of instruction which caused #NPF. In this case,
4173          * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
4174          * return 0 instead of the correct guest instruction bytes.
4175          *
4176          * This happens because CPU microcode reading instruction bytes
4177          * uses a special opcode which attempts to read data using CPL=0
4178          * priviledges. The microcode reads CS:RIP and if it hits a SMAP
4179          * fault, it gives up and returns no instruction bytes.
4180          *
4181          * Detection:
4182          * We reach here in case CPU supports DecodeAssist, raised #NPF and
4183          * returned 0 in GuestIntrBytes field of the VMCB.
4184          * First, errata can only be triggered in case vCPU CR4.SMAP=1.
4185          * Second, if vCPU CR4.SMEP=1, errata could only be triggered
4186          * in case vCPU CPL==3 (Because otherwise guest would have triggered
4187          * a SMEP fault instead of #NPF).
4188          * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
4189          * As most guests enable SMAP if they have also enabled SMEP, use above
4190          * logic in order to attempt minimize false-positive of detecting errata
4191          * while still preserving all cases semantic correctness.
4192          *
4193          * Workaround:
4194          * To determine what instruction the guest was executing, the hypervisor
4195          * will have to decode the instruction at the instruction pointer.
4196          *
4197          * In non SEV guest, hypervisor will be able to read the guest
4198          * memory to decode the instruction pointer when insn_len is zero
4199          * so we return true to indicate that decoding is possible.
4200          *
4201          * But in the SEV guest, the guest memory is encrypted with the
4202          * guest specific key and hypervisor will not be able to decode the
4203          * instruction pointer so we will not able to workaround it. Lets
4204          * print the error and request to kill the guest.
4205          */
4206         if (likely(!insn || insn_len))
4207                 return true;
4208
4209         /*
4210          * If RIP is invalid, go ahead with emulation which will cause an
4211          * internal error exit.
4212          */
4213         if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
4214                 return true;
4215
4216         cr4 = kvm_read_cr4(vcpu);
4217         smep = cr4 & X86_CR4_SMEP;
4218         smap = cr4 & X86_CR4_SMAP;
4219         is_user = svm_get_cpl(vcpu) == 3;
4220         if (smap && (!smep || is_user)) {
4221                 if (!sev_guest(vcpu->kvm))
4222                         return true;
4223
4224                 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4225                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4226         }
4227
4228         return false;
4229 }
4230
4231 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4232 {
4233         struct vcpu_svm *svm = to_svm(vcpu);
4234
4235         /*
4236          * TODO: Last condition latch INIT signals on vCPU when
4237          * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4238          * To properly emulate the INIT intercept,
4239          * svm_check_nested_events() should call nested_svm_vmexit()
4240          * if an INIT signal is pending.
4241          */
4242         return !gif_set(svm) ||
4243                    (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4244 }
4245
4246 static void svm_vm_destroy(struct kvm *kvm)
4247 {
4248         avic_vm_destroy(kvm);
4249         sev_vm_destroy(kvm);
4250 }
4251
4252 static int svm_vm_init(struct kvm *kvm)
4253 {
4254         if (!pause_filter_count || !pause_filter_thresh)
4255                 kvm->arch.pause_in_guest = true;
4256
4257         if (avic) {
4258                 int ret = avic_vm_init(kvm);
4259                 if (ret)
4260                         return ret;
4261         }
4262
4263         kvm_apicv_init(kvm, avic);
4264         return 0;
4265 }
4266
4267 static struct kvm_x86_ops svm_x86_ops __initdata = {
4268         .hardware_unsetup = svm_hardware_teardown,
4269         .hardware_enable = svm_hardware_enable,
4270         .hardware_disable = svm_hardware_disable,
4271         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4272         .has_emulated_msr = svm_has_emulated_msr,
4273
4274         .vcpu_create = svm_create_vcpu,
4275         .vcpu_free = svm_free_vcpu,
4276         .vcpu_reset = svm_vcpu_reset,
4277
4278         .vm_size = sizeof(struct kvm_svm),
4279         .vm_init = svm_vm_init,
4280         .vm_destroy = svm_vm_destroy,
4281
4282         .prepare_guest_switch = svm_prepare_guest_switch,
4283         .vcpu_load = svm_vcpu_load,
4284         .vcpu_put = svm_vcpu_put,
4285         .vcpu_blocking = svm_vcpu_blocking,
4286         .vcpu_unblocking = svm_vcpu_unblocking,
4287
4288         .update_exception_bitmap = update_exception_bitmap,
4289         .get_msr_feature = svm_get_msr_feature,
4290         .get_msr = svm_get_msr,
4291         .set_msr = svm_set_msr,
4292         .get_segment_base = svm_get_segment_base,
4293         .get_segment = svm_get_segment,
4294         .set_segment = svm_set_segment,
4295         .get_cpl = svm_get_cpl,
4296         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4297         .set_cr0 = svm_set_cr0,
4298         .is_valid_cr4 = svm_is_valid_cr4,
4299         .set_cr4 = svm_set_cr4,
4300         .set_efer = svm_set_efer,
4301         .get_idt = svm_get_idt,
4302         .set_idt = svm_set_idt,
4303         .get_gdt = svm_get_gdt,
4304         .set_gdt = svm_set_gdt,
4305         .set_dr7 = svm_set_dr7,
4306         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4307         .cache_reg = svm_cache_reg,
4308         .get_rflags = svm_get_rflags,
4309         .set_rflags = svm_set_rflags,
4310
4311         .tlb_flush_all = svm_flush_tlb,
4312         .tlb_flush_current = svm_flush_tlb,
4313         .tlb_flush_gva = svm_flush_tlb_gva,
4314         .tlb_flush_guest = svm_flush_tlb,
4315
4316         .run = svm_vcpu_run,
4317         .handle_exit = handle_exit,
4318         .skip_emulated_instruction = skip_emulated_instruction,
4319         .update_emulated_instruction = NULL,
4320         .set_interrupt_shadow = svm_set_interrupt_shadow,
4321         .get_interrupt_shadow = svm_get_interrupt_shadow,
4322         .patch_hypercall = svm_patch_hypercall,
4323         .set_irq = svm_set_irq,
4324         .set_nmi = svm_inject_nmi,
4325         .queue_exception = svm_queue_exception,
4326         .cancel_injection = svm_cancel_injection,
4327         .interrupt_allowed = svm_interrupt_allowed,
4328         .nmi_allowed = svm_nmi_allowed,
4329         .get_nmi_mask = svm_get_nmi_mask,
4330         .set_nmi_mask = svm_set_nmi_mask,
4331         .enable_nmi_window = enable_nmi_window,
4332         .enable_irq_window = enable_irq_window,
4333         .update_cr8_intercept = update_cr8_intercept,
4334         .set_virtual_apic_mode = svm_set_virtual_apic_mode,
4335         .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4336         .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4337         .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
4338         .load_eoi_exitmap = svm_load_eoi_exitmap,
4339         .hwapic_irr_update = svm_hwapic_irr_update,
4340         .hwapic_isr_update = svm_hwapic_isr_update,
4341         .sync_pir_to_irr = kvm_lapic_find_highest_irr,
4342         .apicv_post_state_restore = avic_post_state_restore,
4343
4344         .set_tss_addr = svm_set_tss_addr,
4345         .set_identity_map_addr = svm_set_identity_map_addr,
4346         .get_mt_mask = svm_get_mt_mask,
4347
4348         .get_exit_info = svm_get_exit_info,
4349
4350         .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4351
4352         .has_wbinvd_exit = svm_has_wbinvd_exit,
4353
4354         .write_l1_tsc_offset = svm_write_l1_tsc_offset,
4355
4356         .load_mmu_pgd = svm_load_mmu_pgd,
4357
4358         .check_intercept = svm_check_intercept,
4359         .handle_exit_irqoff = svm_handle_exit_irqoff,
4360
4361         .request_immediate_exit = __kvm_request_immediate_exit,
4362
4363         .sched_in = svm_sched_in,
4364
4365         .pmu_ops = &amd_pmu_ops,
4366         .nested_ops = &svm_nested_ops,
4367
4368         .deliver_posted_interrupt = svm_deliver_avic_intr,
4369         .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4370         .update_pi_irte = svm_update_pi_irte,
4371         .setup_mce = svm_setup_mce,
4372
4373         .smi_allowed = svm_smi_allowed,
4374         .pre_enter_smm = svm_pre_enter_smm,
4375         .pre_leave_smm = svm_pre_leave_smm,
4376         .enable_smi_window = enable_smi_window,
4377
4378         .mem_enc_op = svm_mem_enc_op,
4379         .mem_enc_reg_region = svm_register_enc_region,
4380         .mem_enc_unreg_region = svm_unregister_enc_region,
4381
4382         .can_emulate_instruction = svm_can_emulate_instruction,
4383
4384         .apic_init_signal_blocked = svm_apic_init_signal_blocked,
4385
4386         .msr_filter_changed = svm_msr_filter_changed,
4387         .complete_emulated_msr = svm_complete_emulated_msr,
4388 };
4389
4390 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4391         .cpu_has_kvm_support = has_svm,
4392         .disabled_by_bios = is_disabled,
4393         .hardware_setup = svm_hardware_setup,
4394         .check_processor_compatibility = svm_check_processor_compat,
4395
4396         .runtime_ops = &svm_x86_ops,
4397 };
4398
4399 static int __init svm_init(void)
4400 {
4401         __unused_size_checks();
4402
4403         return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4404                         __alignof__(struct vcpu_svm), THIS_MODULE);
4405 }
4406
4407 static void __exit svm_exit(void)
4408 {
4409         kvm_exit();
4410 }
4411
4412 module_init(svm_init)
4413 module_exit(svm_exit)