Merge tag 'dma-mapping-5.12' of git://git.infradead.org/users/hch/dma-mapping
[linux-2.6-microblaze.git] / arch / x86 / kvm / svm / sev.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9
10 #include <linux/kvm_types.h>
11 #include <linux/kvm_host.h>
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/psp-sev.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/processor.h>
18 #include <linux/trace_events.h>
19 #include <asm/fpu/internal.h>
20
21 #include <asm/trapnr.h>
22
23 #include "x86.h"
24 #include "svm.h"
25 #include "svm_ops.h"
26 #include "cpuid.h"
27 #include "trace.h"
28
29 #define __ex(x) __kvm_handle_fault_on_reboot(x)
30
31 static u8 sev_enc_bit;
32 static int sev_flush_asids(void);
33 static DECLARE_RWSEM(sev_deactivate_lock);
34 static DEFINE_MUTEX(sev_bitmap_lock);
35 unsigned int max_sev_asid;
36 static unsigned int min_sev_asid;
37 static unsigned long *sev_asid_bitmap;
38 static unsigned long *sev_reclaim_asid_bitmap;
39
40 struct enc_region {
41         struct list_head list;
42         unsigned long npages;
43         struct page **pages;
44         unsigned long uaddr;
45         unsigned long size;
46 };
47
48 static int sev_flush_asids(void)
49 {
50         int ret, error = 0;
51
52         /*
53          * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
54          * so it must be guarded.
55          */
56         down_write(&sev_deactivate_lock);
57
58         wbinvd_on_all_cpus();
59         ret = sev_guest_df_flush(&error);
60
61         up_write(&sev_deactivate_lock);
62
63         if (ret)
64                 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
65
66         return ret;
67 }
68
69 /* Must be called with the sev_bitmap_lock held */
70 static bool __sev_recycle_asids(int min_asid, int max_asid)
71 {
72         int pos;
73
74         /* Check if there are any ASIDs to reclaim before performing a flush */
75         pos = find_next_bit(sev_reclaim_asid_bitmap, max_sev_asid, min_asid);
76         if (pos >= max_asid)
77                 return false;
78
79         if (sev_flush_asids())
80                 return false;
81
82         /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
83         bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
84                    max_sev_asid);
85         bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid);
86
87         return true;
88 }
89
90 static int sev_asid_new(struct kvm_sev_info *sev)
91 {
92         int pos, min_asid, max_asid;
93         bool retry = true;
94
95         mutex_lock(&sev_bitmap_lock);
96
97         /*
98          * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
99          * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
100          */
101         min_asid = sev->es_active ? 0 : min_sev_asid - 1;
102         max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
103 again:
104         pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_asid);
105         if (pos >= max_asid) {
106                 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
107                         retry = false;
108                         goto again;
109                 }
110                 mutex_unlock(&sev_bitmap_lock);
111                 return -EBUSY;
112         }
113
114         __set_bit(pos, sev_asid_bitmap);
115
116         mutex_unlock(&sev_bitmap_lock);
117
118         return pos + 1;
119 }
120
121 static int sev_get_asid(struct kvm *kvm)
122 {
123         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
124
125         return sev->asid;
126 }
127
128 static void sev_asid_free(int asid)
129 {
130         struct svm_cpu_data *sd;
131         int cpu, pos;
132
133         mutex_lock(&sev_bitmap_lock);
134
135         pos = asid - 1;
136         __set_bit(pos, sev_reclaim_asid_bitmap);
137
138         for_each_possible_cpu(cpu) {
139                 sd = per_cpu(svm_data, cpu);
140                 sd->sev_vmcbs[pos] = NULL;
141         }
142
143         mutex_unlock(&sev_bitmap_lock);
144 }
145
146 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
147 {
148         struct sev_data_decommission *decommission;
149         struct sev_data_deactivate *data;
150
151         if (!handle)
152                 return;
153
154         data = kzalloc(sizeof(*data), GFP_KERNEL);
155         if (!data)
156                 return;
157
158         /* deactivate handle */
159         data->handle = handle;
160
161         /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
162         down_read(&sev_deactivate_lock);
163         sev_guest_deactivate(data, NULL);
164         up_read(&sev_deactivate_lock);
165
166         kfree(data);
167
168         decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
169         if (!decommission)
170                 return;
171
172         /* decommission handle */
173         decommission->handle = handle;
174         sev_guest_decommission(decommission, NULL);
175
176         kfree(decommission);
177 }
178
179 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
180 {
181         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
182         int asid, ret;
183
184         ret = -EBUSY;
185         if (unlikely(sev->active))
186                 return ret;
187
188         asid = sev_asid_new(sev);
189         if (asid < 0)
190                 return ret;
191
192         ret = sev_platform_init(&argp->error);
193         if (ret)
194                 goto e_free;
195
196         sev->active = true;
197         sev->asid = asid;
198         INIT_LIST_HEAD(&sev->regions_list);
199
200         return 0;
201
202 e_free:
203         sev_asid_free(asid);
204         return ret;
205 }
206
207 static int sev_es_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
208 {
209         if (!sev_es)
210                 return -ENOTTY;
211
212         to_kvm_svm(kvm)->sev_info.es_active = true;
213
214         return sev_guest_init(kvm, argp);
215 }
216
217 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
218 {
219         struct sev_data_activate *data;
220         int asid = sev_get_asid(kvm);
221         int ret;
222
223         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
224         if (!data)
225                 return -ENOMEM;
226
227         /* activate ASID on the given handle */
228         data->handle = handle;
229         data->asid   = asid;
230         ret = sev_guest_activate(data, error);
231         kfree(data);
232
233         return ret;
234 }
235
236 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
237 {
238         struct fd f;
239         int ret;
240
241         f = fdget(fd);
242         if (!f.file)
243                 return -EBADF;
244
245         ret = sev_issue_cmd_external_user(f.file, id, data, error);
246
247         fdput(f);
248         return ret;
249 }
250
251 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
252 {
253         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
254
255         return __sev_issue_cmd(sev->fd, id, data, error);
256 }
257
258 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
259 {
260         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
261         struct sev_data_launch_start *start;
262         struct kvm_sev_launch_start params;
263         void *dh_blob, *session_blob;
264         int *error = &argp->error;
265         int ret;
266
267         if (!sev_guest(kvm))
268                 return -ENOTTY;
269
270         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
271                 return -EFAULT;
272
273         start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
274         if (!start)
275                 return -ENOMEM;
276
277         dh_blob = NULL;
278         if (params.dh_uaddr) {
279                 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
280                 if (IS_ERR(dh_blob)) {
281                         ret = PTR_ERR(dh_blob);
282                         goto e_free;
283                 }
284
285                 start->dh_cert_address = __sme_set(__pa(dh_blob));
286                 start->dh_cert_len = params.dh_len;
287         }
288
289         session_blob = NULL;
290         if (params.session_uaddr) {
291                 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
292                 if (IS_ERR(session_blob)) {
293                         ret = PTR_ERR(session_blob);
294                         goto e_free_dh;
295                 }
296
297                 start->session_address = __sme_set(__pa(session_blob));
298                 start->session_len = params.session_len;
299         }
300
301         start->handle = params.handle;
302         start->policy = params.policy;
303
304         /* create memory encryption context */
305         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
306         if (ret)
307                 goto e_free_session;
308
309         /* Bind ASID to this guest */
310         ret = sev_bind_asid(kvm, start->handle, error);
311         if (ret)
312                 goto e_free_session;
313
314         /* return handle to userspace */
315         params.handle = start->handle;
316         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
317                 sev_unbind_asid(kvm, start->handle);
318                 ret = -EFAULT;
319                 goto e_free_session;
320         }
321
322         sev->handle = start->handle;
323         sev->fd = argp->sev_fd;
324
325 e_free_session:
326         kfree(session_blob);
327 e_free_dh:
328         kfree(dh_blob);
329 e_free:
330         kfree(start);
331         return ret;
332 }
333
334 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
335                                     unsigned long ulen, unsigned long *n,
336                                     int write)
337 {
338         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
339         unsigned long npages, size;
340         int npinned;
341         unsigned long locked, lock_limit;
342         struct page **pages;
343         unsigned long first, last;
344         int ret;
345
346         lockdep_assert_held(&kvm->lock);
347
348         if (ulen == 0 || uaddr + ulen < uaddr)
349                 return ERR_PTR(-EINVAL);
350
351         /* Calculate number of pages. */
352         first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
353         last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
354         npages = (last - first + 1);
355
356         locked = sev->pages_locked + npages;
357         lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
358         if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
359                 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
360                 return ERR_PTR(-ENOMEM);
361         }
362
363         if (WARN_ON_ONCE(npages > INT_MAX))
364                 return ERR_PTR(-EINVAL);
365
366         /* Avoid using vmalloc for smaller buffers. */
367         size = npages * sizeof(struct page *);
368         if (size > PAGE_SIZE)
369                 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
370         else
371                 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
372
373         if (!pages)
374                 return ERR_PTR(-ENOMEM);
375
376         /* Pin the user virtual address. */
377         npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
378         if (npinned != npages) {
379                 pr_err("SEV: Failure locking %lu pages.\n", npages);
380                 ret = -ENOMEM;
381                 goto err;
382         }
383
384         *n = npages;
385         sev->pages_locked = locked;
386
387         return pages;
388
389 err:
390         if (npinned > 0)
391                 unpin_user_pages(pages, npinned);
392
393         kvfree(pages);
394         return ERR_PTR(ret);
395 }
396
397 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
398                              unsigned long npages)
399 {
400         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
401
402         unpin_user_pages(pages, npages);
403         kvfree(pages);
404         sev->pages_locked -= npages;
405 }
406
407 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
408 {
409         uint8_t *page_virtual;
410         unsigned long i;
411
412         if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
413             pages == NULL)
414                 return;
415
416         for (i = 0; i < npages; i++) {
417                 page_virtual = kmap_atomic(pages[i]);
418                 clflush_cache_range(page_virtual, PAGE_SIZE);
419                 kunmap_atomic(page_virtual);
420         }
421 }
422
423 static unsigned long get_num_contig_pages(unsigned long idx,
424                                 struct page **inpages, unsigned long npages)
425 {
426         unsigned long paddr, next_paddr;
427         unsigned long i = idx + 1, pages = 1;
428
429         /* find the number of contiguous pages starting from idx */
430         paddr = __sme_page_pa(inpages[idx]);
431         while (i < npages) {
432                 next_paddr = __sme_page_pa(inpages[i++]);
433                 if ((paddr + PAGE_SIZE) == next_paddr) {
434                         pages++;
435                         paddr = next_paddr;
436                         continue;
437                 }
438                 break;
439         }
440
441         return pages;
442 }
443
444 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
445 {
446         unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
447         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
448         struct kvm_sev_launch_update_data params;
449         struct sev_data_launch_update_data *data;
450         struct page **inpages;
451         int ret;
452
453         if (!sev_guest(kvm))
454                 return -ENOTTY;
455
456         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
457                 return -EFAULT;
458
459         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
460         if (!data)
461                 return -ENOMEM;
462
463         vaddr = params.uaddr;
464         size = params.len;
465         vaddr_end = vaddr + size;
466
467         /* Lock the user memory. */
468         inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
469         if (IS_ERR(inpages)) {
470                 ret = PTR_ERR(inpages);
471                 goto e_free;
472         }
473
474         /*
475          * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
476          * place; the cache may contain the data that was written unencrypted.
477          */
478         sev_clflush_pages(inpages, npages);
479
480         for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
481                 int offset, len;
482
483                 /*
484                  * If the user buffer is not page-aligned, calculate the offset
485                  * within the page.
486                  */
487                 offset = vaddr & (PAGE_SIZE - 1);
488
489                 /* Calculate the number of pages that can be encrypted in one go. */
490                 pages = get_num_contig_pages(i, inpages, npages);
491
492                 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
493
494                 data->handle = sev->handle;
495                 data->len = len;
496                 data->address = __sme_page_pa(inpages[i]) + offset;
497                 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
498                 if (ret)
499                         goto e_unpin;
500
501                 size -= len;
502                 next_vaddr = vaddr + len;
503         }
504
505 e_unpin:
506         /* content of memory is updated, mark pages dirty */
507         for (i = 0; i < npages; i++) {
508                 set_page_dirty_lock(inpages[i]);
509                 mark_page_accessed(inpages[i]);
510         }
511         /* unlock the user pages */
512         sev_unpin_memory(kvm, inpages, npages);
513 e_free:
514         kfree(data);
515         return ret;
516 }
517
518 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
519 {
520         struct vmcb_save_area *save = &svm->vmcb->save;
521
522         /* Check some debug related fields before encrypting the VMSA */
523         if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1))
524                 return -EINVAL;
525
526         /* Sync registgers */
527         save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
528         save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
529         save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
530         save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
531         save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
532         save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
533         save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
534         save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
535 #ifdef CONFIG_X86_64
536         save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
537         save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
538         save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
539         save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
540         save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
541         save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
542         save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
543         save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
544 #endif
545         save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
546
547         /* Sync some non-GPR registers before encrypting */
548         save->xcr0 = svm->vcpu.arch.xcr0;
549         save->pkru = svm->vcpu.arch.pkru;
550         save->xss  = svm->vcpu.arch.ia32_xss;
551
552         /*
553          * SEV-ES will use a VMSA that is pointed to by the VMCB, not
554          * the traditional VMSA that is part of the VMCB. Copy the
555          * traditional VMSA as it has been built so far (in prep
556          * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
557          */
558         memcpy(svm->vmsa, save, sizeof(*save));
559
560         return 0;
561 }
562
563 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
564 {
565         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
566         struct sev_data_launch_update_vmsa *vmsa;
567         int i, ret;
568
569         if (!sev_es_guest(kvm))
570                 return -ENOTTY;
571
572         vmsa = kzalloc(sizeof(*vmsa), GFP_KERNEL);
573         if (!vmsa)
574                 return -ENOMEM;
575
576         for (i = 0; i < kvm->created_vcpus; i++) {
577                 struct vcpu_svm *svm = to_svm(kvm->vcpus[i]);
578
579                 /* Perform some pre-encryption checks against the VMSA */
580                 ret = sev_es_sync_vmsa(svm);
581                 if (ret)
582                         goto e_free;
583
584                 /*
585                  * The LAUNCH_UPDATE_VMSA command will perform in-place
586                  * encryption of the VMSA memory content (i.e it will write
587                  * the same memory region with the guest's key), so invalidate
588                  * it first.
589                  */
590                 clflush_cache_range(svm->vmsa, PAGE_SIZE);
591
592                 vmsa->handle = sev->handle;
593                 vmsa->address = __sme_pa(svm->vmsa);
594                 vmsa->len = PAGE_SIZE;
595                 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, vmsa,
596                                     &argp->error);
597                 if (ret)
598                         goto e_free;
599
600                 svm->vcpu.arch.guest_state_protected = true;
601         }
602
603 e_free:
604         kfree(vmsa);
605         return ret;
606 }
607
608 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
609 {
610         void __user *measure = (void __user *)(uintptr_t)argp->data;
611         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
612         struct sev_data_launch_measure *data;
613         struct kvm_sev_launch_measure params;
614         void __user *p = NULL;
615         void *blob = NULL;
616         int ret;
617
618         if (!sev_guest(kvm))
619                 return -ENOTTY;
620
621         if (copy_from_user(&params, measure, sizeof(params)))
622                 return -EFAULT;
623
624         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
625         if (!data)
626                 return -ENOMEM;
627
628         /* User wants to query the blob length */
629         if (!params.len)
630                 goto cmd;
631
632         p = (void __user *)(uintptr_t)params.uaddr;
633         if (p) {
634                 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
635                         ret = -EINVAL;
636                         goto e_free;
637                 }
638
639                 ret = -ENOMEM;
640                 blob = kmalloc(params.len, GFP_KERNEL);
641                 if (!blob)
642                         goto e_free;
643
644                 data->address = __psp_pa(blob);
645                 data->len = params.len;
646         }
647
648 cmd:
649         data->handle = sev->handle;
650         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
651
652         /*
653          * If we query the session length, FW responded with expected data.
654          */
655         if (!params.len)
656                 goto done;
657
658         if (ret)
659                 goto e_free_blob;
660
661         if (blob) {
662                 if (copy_to_user(p, blob, params.len))
663                         ret = -EFAULT;
664         }
665
666 done:
667         params.len = data->len;
668         if (copy_to_user(measure, &params, sizeof(params)))
669                 ret = -EFAULT;
670 e_free_blob:
671         kfree(blob);
672 e_free:
673         kfree(data);
674         return ret;
675 }
676
677 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
678 {
679         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
680         struct sev_data_launch_finish *data;
681         int ret;
682
683         if (!sev_guest(kvm))
684                 return -ENOTTY;
685
686         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
687         if (!data)
688                 return -ENOMEM;
689
690         data->handle = sev->handle;
691         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
692
693         kfree(data);
694         return ret;
695 }
696
697 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
698 {
699         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
700         struct kvm_sev_guest_status params;
701         struct sev_data_guest_status *data;
702         int ret;
703
704         if (!sev_guest(kvm))
705                 return -ENOTTY;
706
707         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
708         if (!data)
709                 return -ENOMEM;
710
711         data->handle = sev->handle;
712         ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
713         if (ret)
714                 goto e_free;
715
716         params.policy = data->policy;
717         params.state = data->state;
718         params.handle = data->handle;
719
720         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
721                 ret = -EFAULT;
722 e_free:
723         kfree(data);
724         return ret;
725 }
726
727 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
728                                unsigned long dst, int size,
729                                int *error, bool enc)
730 {
731         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
732         struct sev_data_dbg *data;
733         int ret;
734
735         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
736         if (!data)
737                 return -ENOMEM;
738
739         data->handle = sev->handle;
740         data->dst_addr = dst;
741         data->src_addr = src;
742         data->len = size;
743
744         ret = sev_issue_cmd(kvm,
745                             enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
746                             data, error);
747         kfree(data);
748         return ret;
749 }
750
751 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
752                              unsigned long dst_paddr, int sz, int *err)
753 {
754         int offset;
755
756         /*
757          * Its safe to read more than we are asked, caller should ensure that
758          * destination has enough space.
759          */
760         offset = src_paddr & 15;
761         src_paddr = round_down(src_paddr, 16);
762         sz = round_up(sz + offset, 16);
763
764         return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
765 }
766
767 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
768                                   unsigned long __user dst_uaddr,
769                                   unsigned long dst_paddr,
770                                   int size, int *err)
771 {
772         struct page *tpage = NULL;
773         int ret, offset;
774
775         /* if inputs are not 16-byte then use intermediate buffer */
776         if (!IS_ALIGNED(dst_paddr, 16) ||
777             !IS_ALIGNED(paddr,     16) ||
778             !IS_ALIGNED(size,      16)) {
779                 tpage = (void *)alloc_page(GFP_KERNEL);
780                 if (!tpage)
781                         return -ENOMEM;
782
783                 dst_paddr = __sme_page_pa(tpage);
784         }
785
786         ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
787         if (ret)
788                 goto e_free;
789
790         if (tpage) {
791                 offset = paddr & 15;
792                 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
793                                  page_address(tpage) + offset, size))
794                         ret = -EFAULT;
795         }
796
797 e_free:
798         if (tpage)
799                 __free_page(tpage);
800
801         return ret;
802 }
803
804 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
805                                   unsigned long __user vaddr,
806                                   unsigned long dst_paddr,
807                                   unsigned long __user dst_vaddr,
808                                   int size, int *error)
809 {
810         struct page *src_tpage = NULL;
811         struct page *dst_tpage = NULL;
812         int ret, len = size;
813
814         /* If source buffer is not aligned then use an intermediate buffer */
815         if (!IS_ALIGNED(vaddr, 16)) {
816                 src_tpage = alloc_page(GFP_KERNEL);
817                 if (!src_tpage)
818                         return -ENOMEM;
819
820                 if (copy_from_user(page_address(src_tpage),
821                                 (void __user *)(uintptr_t)vaddr, size)) {
822                         __free_page(src_tpage);
823                         return -EFAULT;
824                 }
825
826                 paddr = __sme_page_pa(src_tpage);
827         }
828
829         /*
830          *  If destination buffer or length is not aligned then do read-modify-write:
831          *   - decrypt destination in an intermediate buffer
832          *   - copy the source buffer in an intermediate buffer
833          *   - use the intermediate buffer as source buffer
834          */
835         if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
836                 int dst_offset;
837
838                 dst_tpage = alloc_page(GFP_KERNEL);
839                 if (!dst_tpage) {
840                         ret = -ENOMEM;
841                         goto e_free;
842                 }
843
844                 ret = __sev_dbg_decrypt(kvm, dst_paddr,
845                                         __sme_page_pa(dst_tpage), size, error);
846                 if (ret)
847                         goto e_free;
848
849                 /*
850                  *  If source is kernel buffer then use memcpy() otherwise
851                  *  copy_from_user().
852                  */
853                 dst_offset = dst_paddr & 15;
854
855                 if (src_tpage)
856                         memcpy(page_address(dst_tpage) + dst_offset,
857                                page_address(src_tpage), size);
858                 else {
859                         if (copy_from_user(page_address(dst_tpage) + dst_offset,
860                                            (void __user *)(uintptr_t)vaddr, size)) {
861                                 ret = -EFAULT;
862                                 goto e_free;
863                         }
864                 }
865
866                 paddr = __sme_page_pa(dst_tpage);
867                 dst_paddr = round_down(dst_paddr, 16);
868                 len = round_up(size, 16);
869         }
870
871         ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
872
873 e_free:
874         if (src_tpage)
875                 __free_page(src_tpage);
876         if (dst_tpage)
877                 __free_page(dst_tpage);
878         return ret;
879 }
880
881 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
882 {
883         unsigned long vaddr, vaddr_end, next_vaddr;
884         unsigned long dst_vaddr;
885         struct page **src_p, **dst_p;
886         struct kvm_sev_dbg debug;
887         unsigned long n;
888         unsigned int size;
889         int ret;
890
891         if (!sev_guest(kvm))
892                 return -ENOTTY;
893
894         if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
895                 return -EFAULT;
896
897         if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
898                 return -EINVAL;
899         if (!debug.dst_uaddr)
900                 return -EINVAL;
901
902         vaddr = debug.src_uaddr;
903         size = debug.len;
904         vaddr_end = vaddr + size;
905         dst_vaddr = debug.dst_uaddr;
906
907         for (; vaddr < vaddr_end; vaddr = next_vaddr) {
908                 int len, s_off, d_off;
909
910                 /* lock userspace source and destination page */
911                 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
912                 if (IS_ERR(src_p))
913                         return PTR_ERR(src_p);
914
915                 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
916                 if (IS_ERR(dst_p)) {
917                         sev_unpin_memory(kvm, src_p, n);
918                         return PTR_ERR(dst_p);
919                 }
920
921                 /*
922                  * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
923                  * the pages; flush the destination too so that future accesses do not
924                  * see stale data.
925                  */
926                 sev_clflush_pages(src_p, 1);
927                 sev_clflush_pages(dst_p, 1);
928
929                 /*
930                  * Since user buffer may not be page aligned, calculate the
931                  * offset within the page.
932                  */
933                 s_off = vaddr & ~PAGE_MASK;
934                 d_off = dst_vaddr & ~PAGE_MASK;
935                 len = min_t(size_t, (PAGE_SIZE - s_off), size);
936
937                 if (dec)
938                         ret = __sev_dbg_decrypt_user(kvm,
939                                                      __sme_page_pa(src_p[0]) + s_off,
940                                                      dst_vaddr,
941                                                      __sme_page_pa(dst_p[0]) + d_off,
942                                                      len, &argp->error);
943                 else
944                         ret = __sev_dbg_encrypt_user(kvm,
945                                                      __sme_page_pa(src_p[0]) + s_off,
946                                                      vaddr,
947                                                      __sme_page_pa(dst_p[0]) + d_off,
948                                                      dst_vaddr,
949                                                      len, &argp->error);
950
951                 sev_unpin_memory(kvm, src_p, n);
952                 sev_unpin_memory(kvm, dst_p, n);
953
954                 if (ret)
955                         goto err;
956
957                 next_vaddr = vaddr + len;
958                 dst_vaddr = dst_vaddr + len;
959                 size -= len;
960         }
961 err:
962         return ret;
963 }
964
965 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
966 {
967         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
968         struct sev_data_launch_secret *data;
969         struct kvm_sev_launch_secret params;
970         struct page **pages;
971         void *blob, *hdr;
972         unsigned long n, i;
973         int ret, offset;
974
975         if (!sev_guest(kvm))
976                 return -ENOTTY;
977
978         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
979                 return -EFAULT;
980
981         pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
982         if (IS_ERR(pages))
983                 return PTR_ERR(pages);
984
985         /*
986          * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
987          * place; the cache may contain the data that was written unencrypted.
988          */
989         sev_clflush_pages(pages, n);
990
991         /*
992          * The secret must be copied into contiguous memory region, lets verify
993          * that userspace memory pages are contiguous before we issue command.
994          */
995         if (get_num_contig_pages(0, pages, n) != n) {
996                 ret = -EINVAL;
997                 goto e_unpin_memory;
998         }
999
1000         ret = -ENOMEM;
1001         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
1002         if (!data)
1003                 goto e_unpin_memory;
1004
1005         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1006         data->guest_address = __sme_page_pa(pages[0]) + offset;
1007         data->guest_len = params.guest_len;
1008
1009         blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1010         if (IS_ERR(blob)) {
1011                 ret = PTR_ERR(blob);
1012                 goto e_free;
1013         }
1014
1015         data->trans_address = __psp_pa(blob);
1016         data->trans_len = params.trans_len;
1017
1018         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1019         if (IS_ERR(hdr)) {
1020                 ret = PTR_ERR(hdr);
1021                 goto e_free_blob;
1022         }
1023         data->hdr_address = __psp_pa(hdr);
1024         data->hdr_len = params.hdr_len;
1025
1026         data->handle = sev->handle;
1027         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
1028
1029         kfree(hdr);
1030
1031 e_free_blob:
1032         kfree(blob);
1033 e_free:
1034         kfree(data);
1035 e_unpin_memory:
1036         /* content of memory is updated, mark pages dirty */
1037         for (i = 0; i < n; i++) {
1038                 set_page_dirty_lock(pages[i]);
1039                 mark_page_accessed(pages[i]);
1040         }
1041         sev_unpin_memory(kvm, pages, n);
1042         return ret;
1043 }
1044
1045 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1046 {
1047         void __user *report = (void __user *)(uintptr_t)argp->data;
1048         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1049         struct sev_data_attestation_report *data;
1050         struct kvm_sev_attestation_report params;
1051         void __user *p;
1052         void *blob = NULL;
1053         int ret;
1054
1055         if (!sev_guest(kvm))
1056                 return -ENOTTY;
1057
1058         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1059                 return -EFAULT;
1060
1061         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
1062         if (!data)
1063                 return -ENOMEM;
1064
1065         /* User wants to query the blob length */
1066         if (!params.len)
1067                 goto cmd;
1068
1069         p = (void __user *)(uintptr_t)params.uaddr;
1070         if (p) {
1071                 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
1072                         ret = -EINVAL;
1073                         goto e_free;
1074                 }
1075
1076                 ret = -ENOMEM;
1077                 blob = kmalloc(params.len, GFP_KERNEL);
1078                 if (!blob)
1079                         goto e_free;
1080
1081                 data->address = __psp_pa(blob);
1082                 data->len = params.len;
1083                 memcpy(data->mnonce, params.mnonce, sizeof(params.mnonce));
1084         }
1085 cmd:
1086         data->handle = sev->handle;
1087         ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, data, &argp->error);
1088         /*
1089          * If we query the session length, FW responded with expected data.
1090          */
1091         if (!params.len)
1092                 goto done;
1093
1094         if (ret)
1095                 goto e_free_blob;
1096
1097         if (blob) {
1098                 if (copy_to_user(p, blob, params.len))
1099                         ret = -EFAULT;
1100         }
1101
1102 done:
1103         params.len = data->len;
1104         if (copy_to_user(report, &params, sizeof(params)))
1105                 ret = -EFAULT;
1106 e_free_blob:
1107         kfree(blob);
1108 e_free:
1109         kfree(data);
1110         return ret;
1111 }
1112
1113 int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
1114 {
1115         struct kvm_sev_cmd sev_cmd;
1116         int r;
1117
1118         if (!svm_sev_enabled() || !sev)
1119                 return -ENOTTY;
1120
1121         if (!argp)
1122                 return 0;
1123
1124         if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1125                 return -EFAULT;
1126
1127         mutex_lock(&kvm->lock);
1128
1129         switch (sev_cmd.id) {
1130         case KVM_SEV_INIT:
1131                 r = sev_guest_init(kvm, &sev_cmd);
1132                 break;
1133         case KVM_SEV_ES_INIT:
1134                 r = sev_es_guest_init(kvm, &sev_cmd);
1135                 break;
1136         case KVM_SEV_LAUNCH_START:
1137                 r = sev_launch_start(kvm, &sev_cmd);
1138                 break;
1139         case KVM_SEV_LAUNCH_UPDATE_DATA:
1140                 r = sev_launch_update_data(kvm, &sev_cmd);
1141                 break;
1142         case KVM_SEV_LAUNCH_UPDATE_VMSA:
1143                 r = sev_launch_update_vmsa(kvm, &sev_cmd);
1144                 break;
1145         case KVM_SEV_LAUNCH_MEASURE:
1146                 r = sev_launch_measure(kvm, &sev_cmd);
1147                 break;
1148         case KVM_SEV_LAUNCH_FINISH:
1149                 r = sev_launch_finish(kvm, &sev_cmd);
1150                 break;
1151         case KVM_SEV_GUEST_STATUS:
1152                 r = sev_guest_status(kvm, &sev_cmd);
1153                 break;
1154         case KVM_SEV_DBG_DECRYPT:
1155                 r = sev_dbg_crypt(kvm, &sev_cmd, true);
1156                 break;
1157         case KVM_SEV_DBG_ENCRYPT:
1158                 r = sev_dbg_crypt(kvm, &sev_cmd, false);
1159                 break;
1160         case KVM_SEV_LAUNCH_SECRET:
1161                 r = sev_launch_secret(kvm, &sev_cmd);
1162                 break;
1163         case KVM_SEV_GET_ATTESTATION_REPORT:
1164                 r = sev_get_attestation_report(kvm, &sev_cmd);
1165                 break;
1166         default:
1167                 r = -EINVAL;
1168                 goto out;
1169         }
1170
1171         if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1172                 r = -EFAULT;
1173
1174 out:
1175         mutex_unlock(&kvm->lock);
1176         return r;
1177 }
1178
1179 int svm_register_enc_region(struct kvm *kvm,
1180                             struct kvm_enc_region *range)
1181 {
1182         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1183         struct enc_region *region;
1184         int ret = 0;
1185
1186         if (!sev_guest(kvm))
1187                 return -ENOTTY;
1188
1189         if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1190                 return -EINVAL;
1191
1192         region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1193         if (!region)
1194                 return -ENOMEM;
1195
1196         mutex_lock(&kvm->lock);
1197         region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1198         if (IS_ERR(region->pages)) {
1199                 ret = PTR_ERR(region->pages);
1200                 mutex_unlock(&kvm->lock);
1201                 goto e_free;
1202         }
1203
1204         region->uaddr = range->addr;
1205         region->size = range->size;
1206
1207         list_add_tail(&region->list, &sev->regions_list);
1208         mutex_unlock(&kvm->lock);
1209
1210         /*
1211          * The guest may change the memory encryption attribute from C=0 -> C=1
1212          * or vice versa for this memory range. Lets make sure caches are
1213          * flushed to ensure that guest data gets written into memory with
1214          * correct C-bit.
1215          */
1216         sev_clflush_pages(region->pages, region->npages);
1217
1218         return ret;
1219
1220 e_free:
1221         kfree(region);
1222         return ret;
1223 }
1224
1225 static struct enc_region *
1226 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1227 {
1228         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1229         struct list_head *head = &sev->regions_list;
1230         struct enc_region *i;
1231
1232         list_for_each_entry(i, head, list) {
1233                 if (i->uaddr == range->addr &&
1234                     i->size == range->size)
1235                         return i;
1236         }
1237
1238         return NULL;
1239 }
1240
1241 static void __unregister_enc_region_locked(struct kvm *kvm,
1242                                            struct enc_region *region)
1243 {
1244         sev_unpin_memory(kvm, region->pages, region->npages);
1245         list_del(&region->list);
1246         kfree(region);
1247 }
1248
1249 int svm_unregister_enc_region(struct kvm *kvm,
1250                               struct kvm_enc_region *range)
1251 {
1252         struct enc_region *region;
1253         int ret;
1254
1255         mutex_lock(&kvm->lock);
1256
1257         if (!sev_guest(kvm)) {
1258                 ret = -ENOTTY;
1259                 goto failed;
1260         }
1261
1262         region = find_enc_region(kvm, range);
1263         if (!region) {
1264                 ret = -EINVAL;
1265                 goto failed;
1266         }
1267
1268         /*
1269          * Ensure that all guest tagged cache entries are flushed before
1270          * releasing the pages back to the system for use. CLFLUSH will
1271          * not do this, so issue a WBINVD.
1272          */
1273         wbinvd_on_all_cpus();
1274
1275         __unregister_enc_region_locked(kvm, region);
1276
1277         mutex_unlock(&kvm->lock);
1278         return 0;
1279
1280 failed:
1281         mutex_unlock(&kvm->lock);
1282         return ret;
1283 }
1284
1285 void sev_vm_destroy(struct kvm *kvm)
1286 {
1287         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1288         struct list_head *head = &sev->regions_list;
1289         struct list_head *pos, *q;
1290
1291         if (!sev_guest(kvm))
1292                 return;
1293
1294         mutex_lock(&kvm->lock);
1295
1296         /*
1297          * Ensure that all guest tagged cache entries are flushed before
1298          * releasing the pages back to the system for use. CLFLUSH will
1299          * not do this, so issue a WBINVD.
1300          */
1301         wbinvd_on_all_cpus();
1302
1303         /*
1304          * if userspace was terminated before unregistering the memory regions
1305          * then lets unpin all the registered memory.
1306          */
1307         if (!list_empty(head)) {
1308                 list_for_each_safe(pos, q, head) {
1309                         __unregister_enc_region_locked(kvm,
1310                                 list_entry(pos, struct enc_region, list));
1311                         cond_resched();
1312                 }
1313         }
1314
1315         mutex_unlock(&kvm->lock);
1316
1317         sev_unbind_asid(kvm, sev->handle);
1318         sev_asid_free(sev->asid);
1319 }
1320
1321 void __init sev_hardware_setup(void)
1322 {
1323         unsigned int eax, ebx, ecx, edx;
1324         bool sev_es_supported = false;
1325         bool sev_supported = false;
1326
1327         /* Does the CPU support SEV? */
1328         if (!boot_cpu_has(X86_FEATURE_SEV))
1329                 goto out;
1330
1331         /* Retrieve SEV CPUID information */
1332         cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
1333
1334         /* Set encryption bit location for SEV-ES guests */
1335         sev_enc_bit = ebx & 0x3f;
1336
1337         /* Maximum number of encrypted guests supported simultaneously */
1338         max_sev_asid = ecx;
1339
1340         if (!svm_sev_enabled())
1341                 goto out;
1342
1343         /* Minimum ASID value that should be used for SEV guest */
1344         min_sev_asid = edx;
1345
1346         /* Initialize SEV ASID bitmaps */
1347         sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1348         if (!sev_asid_bitmap)
1349                 goto out;
1350
1351         sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1352         if (!sev_reclaim_asid_bitmap)
1353                 goto out;
1354
1355         pr_info("SEV supported: %u ASIDs\n", max_sev_asid - min_sev_asid + 1);
1356         sev_supported = true;
1357
1358         /* SEV-ES support requested? */
1359         if (!sev_es)
1360                 goto out;
1361
1362         /* Does the CPU support SEV-ES? */
1363         if (!boot_cpu_has(X86_FEATURE_SEV_ES))
1364                 goto out;
1365
1366         /* Has the system been allocated ASIDs for SEV-ES? */
1367         if (min_sev_asid == 1)
1368                 goto out;
1369
1370         pr_info("SEV-ES supported: %u ASIDs\n", min_sev_asid - 1);
1371         sev_es_supported = true;
1372
1373 out:
1374         sev = sev_supported;
1375         sev_es = sev_es_supported;
1376 }
1377
1378 void sev_hardware_teardown(void)
1379 {
1380         if (!svm_sev_enabled())
1381                 return;
1382
1383         bitmap_free(sev_asid_bitmap);
1384         bitmap_free(sev_reclaim_asid_bitmap);
1385
1386         sev_flush_asids();
1387 }
1388
1389 /*
1390  * Pages used by hardware to hold guest encrypted state must be flushed before
1391  * returning them to the system.
1392  */
1393 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va,
1394                                    unsigned long len)
1395 {
1396         /*
1397          * If hardware enforced cache coherency for encrypted mappings of the
1398          * same physical page is supported, nothing to do.
1399          */
1400         if (boot_cpu_has(X86_FEATURE_SME_COHERENT))
1401                 return;
1402
1403         /*
1404          * If the VM Page Flush MSR is supported, use it to flush the page
1405          * (using the page virtual address and the guest ASID).
1406          */
1407         if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) {
1408                 struct kvm_sev_info *sev;
1409                 unsigned long va_start;
1410                 u64 start, stop;
1411
1412                 /* Align start and stop to page boundaries. */
1413                 va_start = (unsigned long)va;
1414                 start = (u64)va_start & PAGE_MASK;
1415                 stop = PAGE_ALIGN((u64)va_start + len);
1416
1417                 if (start < stop) {
1418                         sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
1419
1420                         while (start < stop) {
1421                                 wrmsrl(MSR_AMD64_VM_PAGE_FLUSH,
1422                                        start | sev->asid);
1423
1424                                 start += PAGE_SIZE;
1425                         }
1426
1427                         return;
1428                 }
1429
1430                 WARN(1, "Address overflow, using WBINVD\n");
1431         }
1432
1433         /*
1434          * Hardware should always have one of the above features,
1435          * but if not, use WBINVD and issue a warning.
1436          */
1437         WARN_ONCE(1, "Using WBINVD to flush guest memory\n");
1438         wbinvd_on_all_cpus();
1439 }
1440
1441 void sev_free_vcpu(struct kvm_vcpu *vcpu)
1442 {
1443         struct vcpu_svm *svm;
1444
1445         if (!sev_es_guest(vcpu->kvm))
1446                 return;
1447
1448         svm = to_svm(vcpu);
1449
1450         if (vcpu->arch.guest_state_protected)
1451                 sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE);
1452         __free_page(virt_to_page(svm->vmsa));
1453
1454         if (svm->ghcb_sa_free)
1455                 kfree(svm->ghcb_sa);
1456 }
1457
1458 static void dump_ghcb(struct vcpu_svm *svm)
1459 {
1460         struct ghcb *ghcb = svm->ghcb;
1461         unsigned int nbits;
1462
1463         /* Re-use the dump_invalid_vmcb module parameter */
1464         if (!dump_invalid_vmcb) {
1465                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
1466                 return;
1467         }
1468
1469         nbits = sizeof(ghcb->save.valid_bitmap) * 8;
1470
1471         pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
1472         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
1473                ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
1474         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
1475                ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
1476         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
1477                ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
1478         pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
1479                ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
1480         pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
1481 }
1482
1483 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
1484 {
1485         struct kvm_vcpu *vcpu = &svm->vcpu;
1486         struct ghcb *ghcb = svm->ghcb;
1487
1488         /*
1489          * The GHCB protocol so far allows for the following data
1490          * to be returned:
1491          *   GPRs RAX, RBX, RCX, RDX
1492          *
1493          * Copy their values, even if they may not have been written during the
1494          * VM-Exit.  It's the guest's responsibility to not consume random data.
1495          */
1496         ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
1497         ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
1498         ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
1499         ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
1500 }
1501
1502 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
1503 {
1504         struct vmcb_control_area *control = &svm->vmcb->control;
1505         struct kvm_vcpu *vcpu = &svm->vcpu;
1506         struct ghcb *ghcb = svm->ghcb;
1507         u64 exit_code;
1508
1509         /*
1510          * The GHCB protocol so far allows for the following data
1511          * to be supplied:
1512          *   GPRs RAX, RBX, RCX, RDX
1513          *   XCR0
1514          *   CPL
1515          *
1516          * VMMCALL allows the guest to provide extra registers. KVM also
1517          * expects RSI for hypercalls, so include that, too.
1518          *
1519          * Copy their values to the appropriate location if supplied.
1520          */
1521         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
1522
1523         vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
1524         vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
1525         vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
1526         vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
1527         vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
1528
1529         svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
1530
1531         if (ghcb_xcr0_is_valid(ghcb)) {
1532                 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
1533                 kvm_update_cpuid_runtime(vcpu);
1534         }
1535
1536         /* Copy the GHCB exit information into the VMCB fields */
1537         exit_code = ghcb_get_sw_exit_code(ghcb);
1538         control->exit_code = lower_32_bits(exit_code);
1539         control->exit_code_hi = upper_32_bits(exit_code);
1540         control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
1541         control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
1542
1543         /* Clear the valid entries fields */
1544         memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
1545 }
1546
1547 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
1548 {
1549         struct kvm_vcpu *vcpu;
1550         struct ghcb *ghcb;
1551         u64 exit_code = 0;
1552
1553         ghcb = svm->ghcb;
1554
1555         /* Only GHCB Usage code 0 is supported */
1556         if (ghcb->ghcb_usage)
1557                 goto vmgexit_err;
1558
1559         /*
1560          * Retrieve the exit code now even though is may not be marked valid
1561          * as it could help with debugging.
1562          */
1563         exit_code = ghcb_get_sw_exit_code(ghcb);
1564
1565         if (!ghcb_sw_exit_code_is_valid(ghcb) ||
1566             !ghcb_sw_exit_info_1_is_valid(ghcb) ||
1567             !ghcb_sw_exit_info_2_is_valid(ghcb))
1568                 goto vmgexit_err;
1569
1570         switch (ghcb_get_sw_exit_code(ghcb)) {
1571         case SVM_EXIT_READ_DR7:
1572                 break;
1573         case SVM_EXIT_WRITE_DR7:
1574                 if (!ghcb_rax_is_valid(ghcb))
1575                         goto vmgexit_err;
1576                 break;
1577         case SVM_EXIT_RDTSC:
1578                 break;
1579         case SVM_EXIT_RDPMC:
1580                 if (!ghcb_rcx_is_valid(ghcb))
1581                         goto vmgexit_err;
1582                 break;
1583         case SVM_EXIT_CPUID:
1584                 if (!ghcb_rax_is_valid(ghcb) ||
1585                     !ghcb_rcx_is_valid(ghcb))
1586                         goto vmgexit_err;
1587                 if (ghcb_get_rax(ghcb) == 0xd)
1588                         if (!ghcb_xcr0_is_valid(ghcb))
1589                                 goto vmgexit_err;
1590                 break;
1591         case SVM_EXIT_INVD:
1592                 break;
1593         case SVM_EXIT_IOIO:
1594                 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
1595                         if (!ghcb_sw_scratch_is_valid(ghcb))
1596                                 goto vmgexit_err;
1597                 } else {
1598                         if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
1599                                 if (!ghcb_rax_is_valid(ghcb))
1600                                         goto vmgexit_err;
1601                 }
1602                 break;
1603         case SVM_EXIT_MSR:
1604                 if (!ghcb_rcx_is_valid(ghcb))
1605                         goto vmgexit_err;
1606                 if (ghcb_get_sw_exit_info_1(ghcb)) {
1607                         if (!ghcb_rax_is_valid(ghcb) ||
1608                             !ghcb_rdx_is_valid(ghcb))
1609                                 goto vmgexit_err;
1610                 }
1611                 break;
1612         case SVM_EXIT_VMMCALL:
1613                 if (!ghcb_rax_is_valid(ghcb) ||
1614                     !ghcb_cpl_is_valid(ghcb))
1615                         goto vmgexit_err;
1616                 break;
1617         case SVM_EXIT_RDTSCP:
1618                 break;
1619         case SVM_EXIT_WBINVD:
1620                 break;
1621         case SVM_EXIT_MONITOR:
1622                 if (!ghcb_rax_is_valid(ghcb) ||
1623                     !ghcb_rcx_is_valid(ghcb) ||
1624                     !ghcb_rdx_is_valid(ghcb))
1625                         goto vmgexit_err;
1626                 break;
1627         case SVM_EXIT_MWAIT:
1628                 if (!ghcb_rax_is_valid(ghcb) ||
1629                     !ghcb_rcx_is_valid(ghcb))
1630                         goto vmgexit_err;
1631                 break;
1632         case SVM_VMGEXIT_MMIO_READ:
1633         case SVM_VMGEXIT_MMIO_WRITE:
1634                 if (!ghcb_sw_scratch_is_valid(ghcb))
1635                         goto vmgexit_err;
1636                 break;
1637         case SVM_VMGEXIT_NMI_COMPLETE:
1638         case SVM_VMGEXIT_AP_HLT_LOOP:
1639         case SVM_VMGEXIT_AP_JUMP_TABLE:
1640         case SVM_VMGEXIT_UNSUPPORTED_EVENT:
1641                 break;
1642         default:
1643                 goto vmgexit_err;
1644         }
1645
1646         return 0;
1647
1648 vmgexit_err:
1649         vcpu = &svm->vcpu;
1650
1651         if (ghcb->ghcb_usage) {
1652                 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
1653                             ghcb->ghcb_usage);
1654         } else {
1655                 vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n",
1656                             exit_code);
1657                 dump_ghcb(svm);
1658         }
1659
1660         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1661         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
1662         vcpu->run->internal.ndata = 2;
1663         vcpu->run->internal.data[0] = exit_code;
1664         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
1665
1666         return -EINVAL;
1667 }
1668
1669 static void pre_sev_es_run(struct vcpu_svm *svm)
1670 {
1671         if (!svm->ghcb)
1672                 return;
1673
1674         if (svm->ghcb_sa_free) {
1675                 /*
1676                  * The scratch area lives outside the GHCB, so there is a
1677                  * buffer that, depending on the operation performed, may
1678                  * need to be synced, then freed.
1679                  */
1680                 if (svm->ghcb_sa_sync) {
1681                         kvm_write_guest(svm->vcpu.kvm,
1682                                         ghcb_get_sw_scratch(svm->ghcb),
1683                                         svm->ghcb_sa, svm->ghcb_sa_len);
1684                         svm->ghcb_sa_sync = false;
1685                 }
1686
1687                 kfree(svm->ghcb_sa);
1688                 svm->ghcb_sa = NULL;
1689                 svm->ghcb_sa_free = false;
1690         }
1691
1692         trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb);
1693
1694         sev_es_sync_to_ghcb(svm);
1695
1696         kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true);
1697         svm->ghcb = NULL;
1698 }
1699
1700 void pre_sev_run(struct vcpu_svm *svm, int cpu)
1701 {
1702         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1703         int asid = sev_get_asid(svm->vcpu.kvm);
1704
1705         /* Perform any SEV-ES pre-run actions */
1706         pre_sev_es_run(svm);
1707
1708         /* Assign the asid allocated with this SEV guest */
1709         svm->asid = asid;
1710
1711         /*
1712          * Flush guest TLB:
1713          *
1714          * 1) when different VMCB for the same ASID is to be run on the same host CPU.
1715          * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
1716          */
1717         if (sd->sev_vmcbs[asid] == svm->vmcb &&
1718             svm->vcpu.arch.last_vmentry_cpu == cpu)
1719                 return;
1720
1721         sd->sev_vmcbs[asid] = svm->vmcb;
1722         svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
1723         vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1724 }
1725
1726 #define GHCB_SCRATCH_AREA_LIMIT         (16ULL * PAGE_SIZE)
1727 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
1728 {
1729         struct vmcb_control_area *control = &svm->vmcb->control;
1730         struct ghcb *ghcb = svm->ghcb;
1731         u64 ghcb_scratch_beg, ghcb_scratch_end;
1732         u64 scratch_gpa_beg, scratch_gpa_end;
1733         void *scratch_va;
1734
1735         scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
1736         if (!scratch_gpa_beg) {
1737                 pr_err("vmgexit: scratch gpa not provided\n");
1738                 return false;
1739         }
1740
1741         scratch_gpa_end = scratch_gpa_beg + len;
1742         if (scratch_gpa_end < scratch_gpa_beg) {
1743                 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
1744                        len, scratch_gpa_beg);
1745                 return false;
1746         }
1747
1748         if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
1749                 /* Scratch area begins within GHCB */
1750                 ghcb_scratch_beg = control->ghcb_gpa +
1751                                    offsetof(struct ghcb, shared_buffer);
1752                 ghcb_scratch_end = control->ghcb_gpa +
1753                                    offsetof(struct ghcb, reserved_1);
1754
1755                 /*
1756                  * If the scratch area begins within the GHCB, it must be
1757                  * completely contained in the GHCB shared buffer area.
1758                  */
1759                 if (scratch_gpa_beg < ghcb_scratch_beg ||
1760                     scratch_gpa_end > ghcb_scratch_end) {
1761                         pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
1762                                scratch_gpa_beg, scratch_gpa_end);
1763                         return false;
1764                 }
1765
1766                 scratch_va = (void *)svm->ghcb;
1767                 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
1768         } else {
1769                 /*
1770                  * The guest memory must be read into a kernel buffer, so
1771                  * limit the size
1772                  */
1773                 if (len > GHCB_SCRATCH_AREA_LIMIT) {
1774                         pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
1775                                len, GHCB_SCRATCH_AREA_LIMIT);
1776                         return false;
1777                 }
1778                 scratch_va = kzalloc(len, GFP_KERNEL);
1779                 if (!scratch_va)
1780                         return false;
1781
1782                 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
1783                         /* Unable to copy scratch area from guest */
1784                         pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
1785
1786                         kfree(scratch_va);
1787                         return false;
1788                 }
1789
1790                 /*
1791                  * The scratch area is outside the GHCB. The operation will
1792                  * dictate whether the buffer needs to be synced before running
1793                  * the vCPU next time (i.e. a read was requested so the data
1794                  * must be written back to the guest memory).
1795                  */
1796                 svm->ghcb_sa_sync = sync;
1797                 svm->ghcb_sa_free = true;
1798         }
1799
1800         svm->ghcb_sa = scratch_va;
1801         svm->ghcb_sa_len = len;
1802
1803         return true;
1804 }
1805
1806 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
1807                               unsigned int pos)
1808 {
1809         svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
1810         svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
1811 }
1812
1813 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
1814 {
1815         return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
1816 }
1817
1818 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
1819 {
1820         svm->vmcb->control.ghcb_gpa = value;
1821 }
1822
1823 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
1824 {
1825         struct vmcb_control_area *control = &svm->vmcb->control;
1826         struct kvm_vcpu *vcpu = &svm->vcpu;
1827         u64 ghcb_info;
1828         int ret = 1;
1829
1830         ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
1831
1832         trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
1833                                              control->ghcb_gpa);
1834
1835         switch (ghcb_info) {
1836         case GHCB_MSR_SEV_INFO_REQ:
1837                 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
1838                                                     GHCB_VERSION_MIN,
1839                                                     sev_enc_bit));
1840                 break;
1841         case GHCB_MSR_CPUID_REQ: {
1842                 u64 cpuid_fn, cpuid_reg, cpuid_value;
1843
1844                 cpuid_fn = get_ghcb_msr_bits(svm,
1845                                              GHCB_MSR_CPUID_FUNC_MASK,
1846                                              GHCB_MSR_CPUID_FUNC_POS);
1847
1848                 /* Initialize the registers needed by the CPUID intercept */
1849                 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
1850                 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
1851
1852                 ret = svm_invoke_exit_handler(svm, SVM_EXIT_CPUID);
1853                 if (!ret) {
1854                         ret = -EINVAL;
1855                         break;
1856                 }
1857
1858                 cpuid_reg = get_ghcb_msr_bits(svm,
1859                                               GHCB_MSR_CPUID_REG_MASK,
1860                                               GHCB_MSR_CPUID_REG_POS);
1861                 if (cpuid_reg == 0)
1862                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
1863                 else if (cpuid_reg == 1)
1864                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
1865                 else if (cpuid_reg == 2)
1866                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
1867                 else
1868                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
1869
1870                 set_ghcb_msr_bits(svm, cpuid_value,
1871                                   GHCB_MSR_CPUID_VALUE_MASK,
1872                                   GHCB_MSR_CPUID_VALUE_POS);
1873
1874                 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
1875                                   GHCB_MSR_INFO_MASK,
1876                                   GHCB_MSR_INFO_POS);
1877                 break;
1878         }
1879         case GHCB_MSR_TERM_REQ: {
1880                 u64 reason_set, reason_code;
1881
1882                 reason_set = get_ghcb_msr_bits(svm,
1883                                                GHCB_MSR_TERM_REASON_SET_MASK,
1884                                                GHCB_MSR_TERM_REASON_SET_POS);
1885                 reason_code = get_ghcb_msr_bits(svm,
1886                                                 GHCB_MSR_TERM_REASON_MASK,
1887                                                 GHCB_MSR_TERM_REASON_POS);
1888                 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
1889                         reason_set, reason_code);
1890                 fallthrough;
1891         }
1892         default:
1893                 ret = -EINVAL;
1894         }
1895
1896         trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
1897                                             control->ghcb_gpa, ret);
1898
1899         return ret;
1900 }
1901
1902 int sev_handle_vmgexit(struct vcpu_svm *svm)
1903 {
1904         struct vmcb_control_area *control = &svm->vmcb->control;
1905         u64 ghcb_gpa, exit_code;
1906         struct ghcb *ghcb;
1907         int ret;
1908
1909         /* Validate the GHCB */
1910         ghcb_gpa = control->ghcb_gpa;
1911         if (ghcb_gpa & GHCB_MSR_INFO_MASK)
1912                 return sev_handle_vmgexit_msr_protocol(svm);
1913
1914         if (!ghcb_gpa) {
1915                 vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB gpa is not set\n");
1916                 return -EINVAL;
1917         }
1918
1919         if (kvm_vcpu_map(&svm->vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) {
1920                 /* Unable to map GHCB from guest */
1921                 vcpu_unimpl(&svm->vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
1922                             ghcb_gpa);
1923                 return -EINVAL;
1924         }
1925
1926         svm->ghcb = svm->ghcb_map.hva;
1927         ghcb = svm->ghcb_map.hva;
1928
1929         trace_kvm_vmgexit_enter(svm->vcpu.vcpu_id, ghcb);
1930
1931         exit_code = ghcb_get_sw_exit_code(ghcb);
1932
1933         ret = sev_es_validate_vmgexit(svm);
1934         if (ret)
1935                 return ret;
1936
1937         sev_es_sync_from_ghcb(svm);
1938         ghcb_set_sw_exit_info_1(ghcb, 0);
1939         ghcb_set_sw_exit_info_2(ghcb, 0);
1940
1941         ret = -EINVAL;
1942         switch (exit_code) {
1943         case SVM_VMGEXIT_MMIO_READ:
1944                 if (!setup_vmgexit_scratch(svm, true, control->exit_info_2))
1945                         break;
1946
1947                 ret = kvm_sev_es_mmio_read(&svm->vcpu,
1948                                            control->exit_info_1,
1949                                            control->exit_info_2,
1950                                            svm->ghcb_sa);
1951                 break;
1952         case SVM_VMGEXIT_MMIO_WRITE:
1953                 if (!setup_vmgexit_scratch(svm, false, control->exit_info_2))
1954                         break;
1955
1956                 ret = kvm_sev_es_mmio_write(&svm->vcpu,
1957                                             control->exit_info_1,
1958                                             control->exit_info_2,
1959                                             svm->ghcb_sa);
1960                 break;
1961         case SVM_VMGEXIT_NMI_COMPLETE:
1962                 ret = svm_invoke_exit_handler(svm, SVM_EXIT_IRET);
1963                 break;
1964         case SVM_VMGEXIT_AP_HLT_LOOP:
1965                 ret = kvm_emulate_ap_reset_hold(&svm->vcpu);
1966                 break;
1967         case SVM_VMGEXIT_AP_JUMP_TABLE: {
1968                 struct kvm_sev_info *sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
1969
1970                 switch (control->exit_info_1) {
1971                 case 0:
1972                         /* Set AP jump table address */
1973                         sev->ap_jump_table = control->exit_info_2;
1974                         break;
1975                 case 1:
1976                         /* Get AP jump table address */
1977                         ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
1978                         break;
1979                 default:
1980                         pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
1981                                control->exit_info_1);
1982                         ghcb_set_sw_exit_info_1(ghcb, 1);
1983                         ghcb_set_sw_exit_info_2(ghcb,
1984                                                 X86_TRAP_UD |
1985                                                 SVM_EVTINJ_TYPE_EXEPT |
1986                                                 SVM_EVTINJ_VALID);
1987                 }
1988
1989                 ret = 1;
1990                 break;
1991         }
1992         case SVM_VMGEXIT_UNSUPPORTED_EVENT:
1993                 vcpu_unimpl(&svm->vcpu,
1994                             "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
1995                             control->exit_info_1, control->exit_info_2);
1996                 break;
1997         default:
1998                 ret = svm_invoke_exit_handler(svm, exit_code);
1999         }
2000
2001         return ret;
2002 }
2003
2004 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2005 {
2006         if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2))
2007                 return -EINVAL;
2008
2009         return kvm_sev_es_string_io(&svm->vcpu, size, port,
2010                                     svm->ghcb_sa, svm->ghcb_sa_len, in);
2011 }
2012
2013 void sev_es_init_vmcb(struct vcpu_svm *svm)
2014 {
2015         struct kvm_vcpu *vcpu = &svm->vcpu;
2016
2017         svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2018         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2019
2020         /*
2021          * An SEV-ES guest requires a VMSA area that is a separate from the
2022          * VMCB page. Do not include the encryption mask on the VMSA physical
2023          * address since hardware will access it using the guest key.
2024          */
2025         svm->vmcb->control.vmsa_pa = __pa(svm->vmsa);
2026
2027         /* Can't intercept CR register access, HV can't modify CR registers */
2028         svm_clr_intercept(svm, INTERCEPT_CR0_READ);
2029         svm_clr_intercept(svm, INTERCEPT_CR4_READ);
2030         svm_clr_intercept(svm, INTERCEPT_CR8_READ);
2031         svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
2032         svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
2033         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
2034
2035         svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
2036
2037         /* Track EFER/CR register changes */
2038         svm_set_intercept(svm, TRAP_EFER_WRITE);
2039         svm_set_intercept(svm, TRAP_CR0_WRITE);
2040         svm_set_intercept(svm, TRAP_CR4_WRITE);
2041         svm_set_intercept(svm, TRAP_CR8_WRITE);
2042
2043         /* No support for enable_vmware_backdoor */
2044         clr_exception_intercept(svm, GP_VECTOR);
2045
2046         /* Can't intercept XSETBV, HV can't modify XCR0 directly */
2047         svm_clr_intercept(svm, INTERCEPT_XSETBV);
2048
2049         /* Clear intercepts on selected MSRs */
2050         set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
2051         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
2052         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
2053         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
2054         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
2055         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
2056 }
2057
2058 void sev_es_create_vcpu(struct vcpu_svm *svm)
2059 {
2060         /*
2061          * Set the GHCB MSR value as per the GHCB specification when creating
2062          * a vCPU for an SEV-ES guest.
2063          */
2064         set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2065                                             GHCB_VERSION_MIN,
2066                                             sev_enc_bit));
2067 }
2068
2069 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu)
2070 {
2071         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2072         struct vmcb_save_area *hostsa;
2073
2074         /*
2075          * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
2076          * of which one step is to perform a VMLOAD. Since hardware does not
2077          * perform a VMSAVE on VMRUN, the host savearea must be updated.
2078          */
2079         vmsave(__sme_page_pa(sd->save_area));
2080
2081         /* XCR0 is restored on VMEXIT, save the current host value */
2082         hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400);
2083         hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
2084
2085         /* PKRU is restored on VMEXIT, save the curent host value */
2086         hostsa->pkru = read_pkru();
2087
2088         /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
2089         hostsa->xss = host_xss;
2090 }
2091
2092 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
2093 {
2094         struct vcpu_svm *svm = to_svm(vcpu);
2095
2096         /* First SIPI: Use the values as initially set by the VMM */
2097         if (!svm->received_first_sipi) {
2098                 svm->received_first_sipi = true;
2099                 return;
2100         }
2101
2102         /*
2103          * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
2104          * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
2105          * non-zero value.
2106          */
2107         ghcb_set_sw_exit_info_2(svm->ghcb, 1);
2108 }