doc: give a more thorough id handling explanation
[linux-2.6-microblaze.git] / arch / x86 / kvm / svm / sev.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9
10 #include <linux/kvm_types.h>
11 #include <linux/kvm_host.h>
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/psp-sev.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/misc_cgroup.h>
18 #include <linux/processor.h>
19 #include <linux/trace_events.h>
20 #include <asm/fpu/internal.h>
21
22 #include <asm/pkru.h>
23 #include <asm/trapnr.h>
24
25 #include "x86.h"
26 #include "svm.h"
27 #include "svm_ops.h"
28 #include "cpuid.h"
29 #include "trace.h"
30
31 #define __ex(x) __kvm_handle_fault_on_reboot(x)
32
33 #ifndef CONFIG_KVM_AMD_SEV
34 /*
35  * When this config is not defined, SEV feature is not supported and APIs in
36  * this file are not used but this file still gets compiled into the KVM AMD
37  * module.
38  *
39  * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
40  * misc_res_type {} defined in linux/misc_cgroup.h.
41  *
42  * Below macros allow compilation to succeed.
43  */
44 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
45 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
46 #endif
47
48 #ifdef CONFIG_KVM_AMD_SEV
49 /* enable/disable SEV support */
50 static bool sev_enabled = true;
51 module_param_named(sev, sev_enabled, bool, 0444);
52
53 /* enable/disable SEV-ES support */
54 static bool sev_es_enabled = true;
55 module_param_named(sev_es, sev_es_enabled, bool, 0444);
56 #else
57 #define sev_enabled false
58 #define sev_es_enabled false
59 #endif /* CONFIG_KVM_AMD_SEV */
60
61 static u8 sev_enc_bit;
62 static DECLARE_RWSEM(sev_deactivate_lock);
63 static DEFINE_MUTEX(sev_bitmap_lock);
64 unsigned int max_sev_asid;
65 static unsigned int min_sev_asid;
66 static unsigned long sev_me_mask;
67 static unsigned long *sev_asid_bitmap;
68 static unsigned long *sev_reclaim_asid_bitmap;
69
70 struct enc_region {
71         struct list_head list;
72         unsigned long npages;
73         struct page **pages;
74         unsigned long uaddr;
75         unsigned long size;
76 };
77
78 /* Called with the sev_bitmap_lock held, or on shutdown  */
79 static int sev_flush_asids(int min_asid, int max_asid)
80 {
81         int ret, pos, error = 0;
82
83         /* Check if there are any ASIDs to reclaim before performing a flush */
84         pos = find_next_bit(sev_reclaim_asid_bitmap, max_asid, min_asid);
85         if (pos >= max_asid)
86                 return -EBUSY;
87
88         /*
89          * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
90          * so it must be guarded.
91          */
92         down_write(&sev_deactivate_lock);
93
94         wbinvd_on_all_cpus();
95         ret = sev_guest_df_flush(&error);
96
97         up_write(&sev_deactivate_lock);
98
99         if (ret)
100                 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
101
102         return ret;
103 }
104
105 static inline bool is_mirroring_enc_context(struct kvm *kvm)
106 {
107         return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
108 }
109
110 /* Must be called with the sev_bitmap_lock held */
111 static bool __sev_recycle_asids(int min_asid, int max_asid)
112 {
113         if (sev_flush_asids(min_asid, max_asid))
114                 return false;
115
116         /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
117         bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
118                    max_sev_asid);
119         bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid);
120
121         return true;
122 }
123
124 static int sev_asid_new(struct kvm_sev_info *sev)
125 {
126         int pos, min_asid, max_asid, ret;
127         bool retry = true;
128         enum misc_res_type type;
129
130         type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
131         WARN_ON(sev->misc_cg);
132         sev->misc_cg = get_current_misc_cg();
133         ret = misc_cg_try_charge(type, sev->misc_cg, 1);
134         if (ret) {
135                 put_misc_cg(sev->misc_cg);
136                 sev->misc_cg = NULL;
137                 return ret;
138         }
139
140         mutex_lock(&sev_bitmap_lock);
141
142         /*
143          * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
144          * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
145          */
146         min_asid = sev->es_active ? 0 : min_sev_asid - 1;
147         max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
148 again:
149         pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_asid);
150         if (pos >= max_asid) {
151                 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
152                         retry = false;
153                         goto again;
154                 }
155                 mutex_unlock(&sev_bitmap_lock);
156                 ret = -EBUSY;
157                 goto e_uncharge;
158         }
159
160         __set_bit(pos, sev_asid_bitmap);
161
162         mutex_unlock(&sev_bitmap_lock);
163
164         return pos + 1;
165 e_uncharge:
166         misc_cg_uncharge(type, sev->misc_cg, 1);
167         put_misc_cg(sev->misc_cg);
168         sev->misc_cg = NULL;
169         return ret;
170 }
171
172 static int sev_get_asid(struct kvm *kvm)
173 {
174         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
175
176         return sev->asid;
177 }
178
179 static void sev_asid_free(struct kvm_sev_info *sev)
180 {
181         struct svm_cpu_data *sd;
182         int cpu, pos;
183         enum misc_res_type type;
184
185         mutex_lock(&sev_bitmap_lock);
186
187         pos = sev->asid - 1;
188         __set_bit(pos, sev_reclaim_asid_bitmap);
189
190         for_each_possible_cpu(cpu) {
191                 sd = per_cpu(svm_data, cpu);
192                 sd->sev_vmcbs[pos] = NULL;
193         }
194
195         mutex_unlock(&sev_bitmap_lock);
196
197         type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
198         misc_cg_uncharge(type, sev->misc_cg, 1);
199         put_misc_cg(sev->misc_cg);
200         sev->misc_cg = NULL;
201 }
202
203 static void sev_decommission(unsigned int handle)
204 {
205         struct sev_data_decommission decommission;
206
207         if (!handle)
208                 return;
209
210         decommission.handle = handle;
211         sev_guest_decommission(&decommission, NULL);
212 }
213
214 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
215 {
216         struct sev_data_deactivate deactivate;
217
218         if (!handle)
219                 return;
220
221         deactivate.handle = handle;
222
223         /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
224         down_read(&sev_deactivate_lock);
225         sev_guest_deactivate(&deactivate, NULL);
226         up_read(&sev_deactivate_lock);
227
228         sev_decommission(handle);
229 }
230
231 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
232 {
233         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
234         bool es_active = argp->id == KVM_SEV_ES_INIT;
235         int asid, ret;
236
237         if (kvm->created_vcpus)
238                 return -EINVAL;
239
240         ret = -EBUSY;
241         if (unlikely(sev->active))
242                 return ret;
243
244         sev->es_active = es_active;
245         asid = sev_asid_new(sev);
246         if (asid < 0)
247                 goto e_no_asid;
248         sev->asid = asid;
249
250         ret = sev_platform_init(&argp->error);
251         if (ret)
252                 goto e_free;
253
254         sev->active = true;
255         sev->asid = asid;
256         INIT_LIST_HEAD(&sev->regions_list);
257
258         return 0;
259
260 e_free:
261         sev_asid_free(sev);
262         sev->asid = 0;
263 e_no_asid:
264         sev->es_active = false;
265         return ret;
266 }
267
268 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
269 {
270         struct sev_data_activate activate;
271         int asid = sev_get_asid(kvm);
272         int ret;
273
274         /* activate ASID on the given handle */
275         activate.handle = handle;
276         activate.asid   = asid;
277         ret = sev_guest_activate(&activate, error);
278
279         return ret;
280 }
281
282 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
283 {
284         struct fd f;
285         int ret;
286
287         f = fdget(fd);
288         if (!f.file)
289                 return -EBADF;
290
291         ret = sev_issue_cmd_external_user(f.file, id, data, error);
292
293         fdput(f);
294         return ret;
295 }
296
297 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
298 {
299         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
300
301         return __sev_issue_cmd(sev->fd, id, data, error);
302 }
303
304 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
305 {
306         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
307         struct sev_data_launch_start start;
308         struct kvm_sev_launch_start params;
309         void *dh_blob, *session_blob;
310         int *error = &argp->error;
311         int ret;
312
313         if (!sev_guest(kvm))
314                 return -ENOTTY;
315
316         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
317                 return -EFAULT;
318
319         memset(&start, 0, sizeof(start));
320
321         dh_blob = NULL;
322         if (params.dh_uaddr) {
323                 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
324                 if (IS_ERR(dh_blob))
325                         return PTR_ERR(dh_blob);
326
327                 start.dh_cert_address = __sme_set(__pa(dh_blob));
328                 start.dh_cert_len = params.dh_len;
329         }
330
331         session_blob = NULL;
332         if (params.session_uaddr) {
333                 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
334                 if (IS_ERR(session_blob)) {
335                         ret = PTR_ERR(session_blob);
336                         goto e_free_dh;
337                 }
338
339                 start.session_address = __sme_set(__pa(session_blob));
340                 start.session_len = params.session_len;
341         }
342
343         start.handle = params.handle;
344         start.policy = params.policy;
345
346         /* create memory encryption context */
347         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
348         if (ret)
349                 goto e_free_session;
350
351         /* Bind ASID to this guest */
352         ret = sev_bind_asid(kvm, start.handle, error);
353         if (ret) {
354                 sev_decommission(start.handle);
355                 goto e_free_session;
356         }
357
358         /* return handle to userspace */
359         params.handle = start.handle;
360         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
361                 sev_unbind_asid(kvm, start.handle);
362                 ret = -EFAULT;
363                 goto e_free_session;
364         }
365
366         sev->handle = start.handle;
367         sev->fd = argp->sev_fd;
368
369 e_free_session:
370         kfree(session_blob);
371 e_free_dh:
372         kfree(dh_blob);
373         return ret;
374 }
375
376 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
377                                     unsigned long ulen, unsigned long *n,
378                                     int write)
379 {
380         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
381         unsigned long npages, size;
382         int npinned;
383         unsigned long locked, lock_limit;
384         struct page **pages;
385         unsigned long first, last;
386         int ret;
387
388         lockdep_assert_held(&kvm->lock);
389
390         if (ulen == 0 || uaddr + ulen < uaddr)
391                 return ERR_PTR(-EINVAL);
392
393         /* Calculate number of pages. */
394         first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
395         last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
396         npages = (last - first + 1);
397
398         locked = sev->pages_locked + npages;
399         lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
400         if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
401                 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
402                 return ERR_PTR(-ENOMEM);
403         }
404
405         if (WARN_ON_ONCE(npages > INT_MAX))
406                 return ERR_PTR(-EINVAL);
407
408         /* Avoid using vmalloc for smaller buffers. */
409         size = npages * sizeof(struct page *);
410         if (size > PAGE_SIZE)
411                 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
412         else
413                 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
414
415         if (!pages)
416                 return ERR_PTR(-ENOMEM);
417
418         /* Pin the user virtual address. */
419         npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
420         if (npinned != npages) {
421                 pr_err("SEV: Failure locking %lu pages.\n", npages);
422                 ret = -ENOMEM;
423                 goto err;
424         }
425
426         *n = npages;
427         sev->pages_locked = locked;
428
429         return pages;
430
431 err:
432         if (npinned > 0)
433                 unpin_user_pages(pages, npinned);
434
435         kvfree(pages);
436         return ERR_PTR(ret);
437 }
438
439 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
440                              unsigned long npages)
441 {
442         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
443
444         unpin_user_pages(pages, npages);
445         kvfree(pages);
446         sev->pages_locked -= npages;
447 }
448
449 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
450 {
451         uint8_t *page_virtual;
452         unsigned long i;
453
454         if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
455             pages == NULL)
456                 return;
457
458         for (i = 0; i < npages; i++) {
459                 page_virtual = kmap_atomic(pages[i]);
460                 clflush_cache_range(page_virtual, PAGE_SIZE);
461                 kunmap_atomic(page_virtual);
462         }
463 }
464
465 static unsigned long get_num_contig_pages(unsigned long idx,
466                                 struct page **inpages, unsigned long npages)
467 {
468         unsigned long paddr, next_paddr;
469         unsigned long i = idx + 1, pages = 1;
470
471         /* find the number of contiguous pages starting from idx */
472         paddr = __sme_page_pa(inpages[idx]);
473         while (i < npages) {
474                 next_paddr = __sme_page_pa(inpages[i++]);
475                 if ((paddr + PAGE_SIZE) == next_paddr) {
476                         pages++;
477                         paddr = next_paddr;
478                         continue;
479                 }
480                 break;
481         }
482
483         return pages;
484 }
485
486 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
487 {
488         unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
489         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
490         struct kvm_sev_launch_update_data params;
491         struct sev_data_launch_update_data data;
492         struct page **inpages;
493         int ret;
494
495         if (!sev_guest(kvm))
496                 return -ENOTTY;
497
498         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
499                 return -EFAULT;
500
501         vaddr = params.uaddr;
502         size = params.len;
503         vaddr_end = vaddr + size;
504
505         /* Lock the user memory. */
506         inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
507         if (IS_ERR(inpages))
508                 return PTR_ERR(inpages);
509
510         /*
511          * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
512          * place; the cache may contain the data that was written unencrypted.
513          */
514         sev_clflush_pages(inpages, npages);
515
516         data.reserved = 0;
517         data.handle = sev->handle;
518
519         for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
520                 int offset, len;
521
522                 /*
523                  * If the user buffer is not page-aligned, calculate the offset
524                  * within the page.
525                  */
526                 offset = vaddr & (PAGE_SIZE - 1);
527
528                 /* Calculate the number of pages that can be encrypted in one go. */
529                 pages = get_num_contig_pages(i, inpages, npages);
530
531                 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
532
533                 data.len = len;
534                 data.address = __sme_page_pa(inpages[i]) + offset;
535                 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
536                 if (ret)
537                         goto e_unpin;
538
539                 size -= len;
540                 next_vaddr = vaddr + len;
541         }
542
543 e_unpin:
544         /* content of memory is updated, mark pages dirty */
545         for (i = 0; i < npages; i++) {
546                 set_page_dirty_lock(inpages[i]);
547                 mark_page_accessed(inpages[i]);
548         }
549         /* unlock the user pages */
550         sev_unpin_memory(kvm, inpages, npages);
551         return ret;
552 }
553
554 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
555 {
556         struct vmcb_save_area *save = &svm->vmcb->save;
557
558         /* Check some debug related fields before encrypting the VMSA */
559         if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1))
560                 return -EINVAL;
561
562         /* Sync registgers */
563         save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
564         save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
565         save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
566         save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
567         save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
568         save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
569         save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
570         save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
571 #ifdef CONFIG_X86_64
572         save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
573         save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
574         save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
575         save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
576         save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
577         save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
578         save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
579         save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
580 #endif
581         save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
582
583         /* Sync some non-GPR registers before encrypting */
584         save->xcr0 = svm->vcpu.arch.xcr0;
585         save->pkru = svm->vcpu.arch.pkru;
586         save->xss  = svm->vcpu.arch.ia32_xss;
587
588         /*
589          * SEV-ES will use a VMSA that is pointed to by the VMCB, not
590          * the traditional VMSA that is part of the VMCB. Copy the
591          * traditional VMSA as it has been built so far (in prep
592          * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
593          */
594         memcpy(svm->vmsa, save, sizeof(*save));
595
596         return 0;
597 }
598
599 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
600 {
601         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
602         struct sev_data_launch_update_vmsa vmsa;
603         struct kvm_vcpu *vcpu;
604         int i, ret;
605
606         if (!sev_es_guest(kvm))
607                 return -ENOTTY;
608
609         vmsa.reserved = 0;
610
611         kvm_for_each_vcpu(i, vcpu, kvm) {
612                 struct vcpu_svm *svm = to_svm(vcpu);
613
614                 /* Perform some pre-encryption checks against the VMSA */
615                 ret = sev_es_sync_vmsa(svm);
616                 if (ret)
617                         return ret;
618
619                 /*
620                  * The LAUNCH_UPDATE_VMSA command will perform in-place
621                  * encryption of the VMSA memory content (i.e it will write
622                  * the same memory region with the guest's key), so invalidate
623                  * it first.
624                  */
625                 clflush_cache_range(svm->vmsa, PAGE_SIZE);
626
627                 vmsa.handle = sev->handle;
628                 vmsa.address = __sme_pa(svm->vmsa);
629                 vmsa.len = PAGE_SIZE;
630                 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa,
631                                     &argp->error);
632                 if (ret)
633                         return ret;
634
635                 svm->vcpu.arch.guest_state_protected = true;
636         }
637
638         return 0;
639 }
640
641 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
642 {
643         void __user *measure = (void __user *)(uintptr_t)argp->data;
644         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
645         struct sev_data_launch_measure data;
646         struct kvm_sev_launch_measure params;
647         void __user *p = NULL;
648         void *blob = NULL;
649         int ret;
650
651         if (!sev_guest(kvm))
652                 return -ENOTTY;
653
654         if (copy_from_user(&params, measure, sizeof(params)))
655                 return -EFAULT;
656
657         memset(&data, 0, sizeof(data));
658
659         /* User wants to query the blob length */
660         if (!params.len)
661                 goto cmd;
662
663         p = (void __user *)(uintptr_t)params.uaddr;
664         if (p) {
665                 if (params.len > SEV_FW_BLOB_MAX_SIZE)
666                         return -EINVAL;
667
668                 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
669                 if (!blob)
670                         return -ENOMEM;
671
672                 data.address = __psp_pa(blob);
673                 data.len = params.len;
674         }
675
676 cmd:
677         data.handle = sev->handle;
678         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
679
680         /*
681          * If we query the session length, FW responded with expected data.
682          */
683         if (!params.len)
684                 goto done;
685
686         if (ret)
687                 goto e_free_blob;
688
689         if (blob) {
690                 if (copy_to_user(p, blob, params.len))
691                         ret = -EFAULT;
692         }
693
694 done:
695         params.len = data.len;
696         if (copy_to_user(measure, &params, sizeof(params)))
697                 ret = -EFAULT;
698 e_free_blob:
699         kfree(blob);
700         return ret;
701 }
702
703 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
704 {
705         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
706         struct sev_data_launch_finish data;
707
708         if (!sev_guest(kvm))
709                 return -ENOTTY;
710
711         data.handle = sev->handle;
712         return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
713 }
714
715 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
716 {
717         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
718         struct kvm_sev_guest_status params;
719         struct sev_data_guest_status data;
720         int ret;
721
722         if (!sev_guest(kvm))
723                 return -ENOTTY;
724
725         memset(&data, 0, sizeof(data));
726
727         data.handle = sev->handle;
728         ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
729         if (ret)
730                 return ret;
731
732         params.policy = data.policy;
733         params.state = data.state;
734         params.handle = data.handle;
735
736         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
737                 ret = -EFAULT;
738
739         return ret;
740 }
741
742 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
743                                unsigned long dst, int size,
744                                int *error, bool enc)
745 {
746         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
747         struct sev_data_dbg data;
748
749         data.reserved = 0;
750         data.handle = sev->handle;
751         data.dst_addr = dst;
752         data.src_addr = src;
753         data.len = size;
754
755         return sev_issue_cmd(kvm,
756                              enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
757                              &data, error);
758 }
759
760 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
761                              unsigned long dst_paddr, int sz, int *err)
762 {
763         int offset;
764
765         /*
766          * Its safe to read more than we are asked, caller should ensure that
767          * destination has enough space.
768          */
769         offset = src_paddr & 15;
770         src_paddr = round_down(src_paddr, 16);
771         sz = round_up(sz + offset, 16);
772
773         return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
774 }
775
776 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
777                                   void __user *dst_uaddr,
778                                   unsigned long dst_paddr,
779                                   int size, int *err)
780 {
781         struct page *tpage = NULL;
782         int ret, offset;
783
784         /* if inputs are not 16-byte then use intermediate buffer */
785         if (!IS_ALIGNED(dst_paddr, 16) ||
786             !IS_ALIGNED(paddr,     16) ||
787             !IS_ALIGNED(size,      16)) {
788                 tpage = (void *)alloc_page(GFP_KERNEL);
789                 if (!tpage)
790                         return -ENOMEM;
791
792                 dst_paddr = __sme_page_pa(tpage);
793         }
794
795         ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
796         if (ret)
797                 goto e_free;
798
799         if (tpage) {
800                 offset = paddr & 15;
801                 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
802                         ret = -EFAULT;
803         }
804
805 e_free:
806         if (tpage)
807                 __free_page(tpage);
808
809         return ret;
810 }
811
812 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
813                                   void __user *vaddr,
814                                   unsigned long dst_paddr,
815                                   void __user *dst_vaddr,
816                                   int size, int *error)
817 {
818         struct page *src_tpage = NULL;
819         struct page *dst_tpage = NULL;
820         int ret, len = size;
821
822         /* If source buffer is not aligned then use an intermediate buffer */
823         if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
824                 src_tpage = alloc_page(GFP_KERNEL);
825                 if (!src_tpage)
826                         return -ENOMEM;
827
828                 if (copy_from_user(page_address(src_tpage), vaddr, size)) {
829                         __free_page(src_tpage);
830                         return -EFAULT;
831                 }
832
833                 paddr = __sme_page_pa(src_tpage);
834         }
835
836         /*
837          *  If destination buffer or length is not aligned then do read-modify-write:
838          *   - decrypt destination in an intermediate buffer
839          *   - copy the source buffer in an intermediate buffer
840          *   - use the intermediate buffer as source buffer
841          */
842         if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
843                 int dst_offset;
844
845                 dst_tpage = alloc_page(GFP_KERNEL);
846                 if (!dst_tpage) {
847                         ret = -ENOMEM;
848                         goto e_free;
849                 }
850
851                 ret = __sev_dbg_decrypt(kvm, dst_paddr,
852                                         __sme_page_pa(dst_tpage), size, error);
853                 if (ret)
854                         goto e_free;
855
856                 /*
857                  *  If source is kernel buffer then use memcpy() otherwise
858                  *  copy_from_user().
859                  */
860                 dst_offset = dst_paddr & 15;
861
862                 if (src_tpage)
863                         memcpy(page_address(dst_tpage) + dst_offset,
864                                page_address(src_tpage), size);
865                 else {
866                         if (copy_from_user(page_address(dst_tpage) + dst_offset,
867                                            vaddr, size)) {
868                                 ret = -EFAULT;
869                                 goto e_free;
870                         }
871                 }
872
873                 paddr = __sme_page_pa(dst_tpage);
874                 dst_paddr = round_down(dst_paddr, 16);
875                 len = round_up(size, 16);
876         }
877
878         ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
879
880 e_free:
881         if (src_tpage)
882                 __free_page(src_tpage);
883         if (dst_tpage)
884                 __free_page(dst_tpage);
885         return ret;
886 }
887
888 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
889 {
890         unsigned long vaddr, vaddr_end, next_vaddr;
891         unsigned long dst_vaddr;
892         struct page **src_p, **dst_p;
893         struct kvm_sev_dbg debug;
894         unsigned long n;
895         unsigned int size;
896         int ret;
897
898         if (!sev_guest(kvm))
899                 return -ENOTTY;
900
901         if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
902                 return -EFAULT;
903
904         if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
905                 return -EINVAL;
906         if (!debug.dst_uaddr)
907                 return -EINVAL;
908
909         vaddr = debug.src_uaddr;
910         size = debug.len;
911         vaddr_end = vaddr + size;
912         dst_vaddr = debug.dst_uaddr;
913
914         for (; vaddr < vaddr_end; vaddr = next_vaddr) {
915                 int len, s_off, d_off;
916
917                 /* lock userspace source and destination page */
918                 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
919                 if (IS_ERR(src_p))
920                         return PTR_ERR(src_p);
921
922                 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
923                 if (IS_ERR(dst_p)) {
924                         sev_unpin_memory(kvm, src_p, n);
925                         return PTR_ERR(dst_p);
926                 }
927
928                 /*
929                  * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
930                  * the pages; flush the destination too so that future accesses do not
931                  * see stale data.
932                  */
933                 sev_clflush_pages(src_p, 1);
934                 sev_clflush_pages(dst_p, 1);
935
936                 /*
937                  * Since user buffer may not be page aligned, calculate the
938                  * offset within the page.
939                  */
940                 s_off = vaddr & ~PAGE_MASK;
941                 d_off = dst_vaddr & ~PAGE_MASK;
942                 len = min_t(size_t, (PAGE_SIZE - s_off), size);
943
944                 if (dec)
945                         ret = __sev_dbg_decrypt_user(kvm,
946                                                      __sme_page_pa(src_p[0]) + s_off,
947                                                      (void __user *)dst_vaddr,
948                                                      __sme_page_pa(dst_p[0]) + d_off,
949                                                      len, &argp->error);
950                 else
951                         ret = __sev_dbg_encrypt_user(kvm,
952                                                      __sme_page_pa(src_p[0]) + s_off,
953                                                      (void __user *)vaddr,
954                                                      __sme_page_pa(dst_p[0]) + d_off,
955                                                      (void __user *)dst_vaddr,
956                                                      len, &argp->error);
957
958                 sev_unpin_memory(kvm, src_p, n);
959                 sev_unpin_memory(kvm, dst_p, n);
960
961                 if (ret)
962                         goto err;
963
964                 next_vaddr = vaddr + len;
965                 dst_vaddr = dst_vaddr + len;
966                 size -= len;
967         }
968 err:
969         return ret;
970 }
971
972 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
973 {
974         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
975         struct sev_data_launch_secret data;
976         struct kvm_sev_launch_secret params;
977         struct page **pages;
978         void *blob, *hdr;
979         unsigned long n, i;
980         int ret, offset;
981
982         if (!sev_guest(kvm))
983                 return -ENOTTY;
984
985         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
986                 return -EFAULT;
987
988         pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
989         if (IS_ERR(pages))
990                 return PTR_ERR(pages);
991
992         /*
993          * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
994          * place; the cache may contain the data that was written unencrypted.
995          */
996         sev_clflush_pages(pages, n);
997
998         /*
999          * The secret must be copied into contiguous memory region, lets verify
1000          * that userspace memory pages are contiguous before we issue command.
1001          */
1002         if (get_num_contig_pages(0, pages, n) != n) {
1003                 ret = -EINVAL;
1004                 goto e_unpin_memory;
1005         }
1006
1007         memset(&data, 0, sizeof(data));
1008
1009         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1010         data.guest_address = __sme_page_pa(pages[0]) + offset;
1011         data.guest_len = params.guest_len;
1012
1013         blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1014         if (IS_ERR(blob)) {
1015                 ret = PTR_ERR(blob);
1016                 goto e_unpin_memory;
1017         }
1018
1019         data.trans_address = __psp_pa(blob);
1020         data.trans_len = params.trans_len;
1021
1022         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1023         if (IS_ERR(hdr)) {
1024                 ret = PTR_ERR(hdr);
1025                 goto e_free_blob;
1026         }
1027         data.hdr_address = __psp_pa(hdr);
1028         data.hdr_len = params.hdr_len;
1029
1030         data.handle = sev->handle;
1031         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1032
1033         kfree(hdr);
1034
1035 e_free_blob:
1036         kfree(blob);
1037 e_unpin_memory:
1038         /* content of memory is updated, mark pages dirty */
1039         for (i = 0; i < n; i++) {
1040                 set_page_dirty_lock(pages[i]);
1041                 mark_page_accessed(pages[i]);
1042         }
1043         sev_unpin_memory(kvm, pages, n);
1044         return ret;
1045 }
1046
1047 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1048 {
1049         void __user *report = (void __user *)(uintptr_t)argp->data;
1050         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1051         struct sev_data_attestation_report data;
1052         struct kvm_sev_attestation_report params;
1053         void __user *p;
1054         void *blob = NULL;
1055         int ret;
1056
1057         if (!sev_guest(kvm))
1058                 return -ENOTTY;
1059
1060         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1061                 return -EFAULT;
1062
1063         memset(&data, 0, sizeof(data));
1064
1065         /* User wants to query the blob length */
1066         if (!params.len)
1067                 goto cmd;
1068
1069         p = (void __user *)(uintptr_t)params.uaddr;
1070         if (p) {
1071                 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1072                         return -EINVAL;
1073
1074                 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
1075                 if (!blob)
1076                         return -ENOMEM;
1077
1078                 data.address = __psp_pa(blob);
1079                 data.len = params.len;
1080                 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1081         }
1082 cmd:
1083         data.handle = sev->handle;
1084         ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1085         /*
1086          * If we query the session length, FW responded with expected data.
1087          */
1088         if (!params.len)
1089                 goto done;
1090
1091         if (ret)
1092                 goto e_free_blob;
1093
1094         if (blob) {
1095                 if (copy_to_user(p, blob, params.len))
1096                         ret = -EFAULT;
1097         }
1098
1099 done:
1100         params.len = data.len;
1101         if (copy_to_user(report, &params, sizeof(params)))
1102                 ret = -EFAULT;
1103 e_free_blob:
1104         kfree(blob);
1105         return ret;
1106 }
1107
1108 /* Userspace wants to query session length. */
1109 static int
1110 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1111                                       struct kvm_sev_send_start *params)
1112 {
1113         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1114         struct sev_data_send_start data;
1115         int ret;
1116
1117         memset(&data, 0, sizeof(data));
1118         data.handle = sev->handle;
1119         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1120
1121         params->session_len = data.session_len;
1122         if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1123                                 sizeof(struct kvm_sev_send_start)))
1124                 ret = -EFAULT;
1125
1126         return ret;
1127 }
1128
1129 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1130 {
1131         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1132         struct sev_data_send_start data;
1133         struct kvm_sev_send_start params;
1134         void *amd_certs, *session_data;
1135         void *pdh_cert, *plat_certs;
1136         int ret;
1137
1138         if (!sev_guest(kvm))
1139                 return -ENOTTY;
1140
1141         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1142                                 sizeof(struct kvm_sev_send_start)))
1143                 return -EFAULT;
1144
1145         /* if session_len is zero, userspace wants to query the session length */
1146         if (!params.session_len)
1147                 return __sev_send_start_query_session_length(kvm, argp,
1148                                 &params);
1149
1150         /* some sanity checks */
1151         if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1152             !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1153                 return -EINVAL;
1154
1155         /* allocate the memory to hold the session data blob */
1156         session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1157         if (!session_data)
1158                 return -ENOMEM;
1159
1160         /* copy the certificate blobs from userspace */
1161         pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1162                                 params.pdh_cert_len);
1163         if (IS_ERR(pdh_cert)) {
1164                 ret = PTR_ERR(pdh_cert);
1165                 goto e_free_session;
1166         }
1167
1168         plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1169                                 params.plat_certs_len);
1170         if (IS_ERR(plat_certs)) {
1171                 ret = PTR_ERR(plat_certs);
1172                 goto e_free_pdh;
1173         }
1174
1175         amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1176                                 params.amd_certs_len);
1177         if (IS_ERR(amd_certs)) {
1178                 ret = PTR_ERR(amd_certs);
1179                 goto e_free_plat_cert;
1180         }
1181
1182         /* populate the FW SEND_START field with system physical address */
1183         memset(&data, 0, sizeof(data));
1184         data.pdh_cert_address = __psp_pa(pdh_cert);
1185         data.pdh_cert_len = params.pdh_cert_len;
1186         data.plat_certs_address = __psp_pa(plat_certs);
1187         data.plat_certs_len = params.plat_certs_len;
1188         data.amd_certs_address = __psp_pa(amd_certs);
1189         data.amd_certs_len = params.amd_certs_len;
1190         data.session_address = __psp_pa(session_data);
1191         data.session_len = params.session_len;
1192         data.handle = sev->handle;
1193
1194         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1195
1196         if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1197                         session_data, params.session_len)) {
1198                 ret = -EFAULT;
1199                 goto e_free_amd_cert;
1200         }
1201
1202         params.policy = data.policy;
1203         params.session_len = data.session_len;
1204         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1205                                 sizeof(struct kvm_sev_send_start)))
1206                 ret = -EFAULT;
1207
1208 e_free_amd_cert:
1209         kfree(amd_certs);
1210 e_free_plat_cert:
1211         kfree(plat_certs);
1212 e_free_pdh:
1213         kfree(pdh_cert);
1214 e_free_session:
1215         kfree(session_data);
1216         return ret;
1217 }
1218
1219 /* Userspace wants to query either header or trans length. */
1220 static int
1221 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1222                                      struct kvm_sev_send_update_data *params)
1223 {
1224         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1225         struct sev_data_send_update_data data;
1226         int ret;
1227
1228         memset(&data, 0, sizeof(data));
1229         data.handle = sev->handle;
1230         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1231
1232         params->hdr_len = data.hdr_len;
1233         params->trans_len = data.trans_len;
1234
1235         if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1236                          sizeof(struct kvm_sev_send_update_data)))
1237                 ret = -EFAULT;
1238
1239         return ret;
1240 }
1241
1242 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1243 {
1244         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1245         struct sev_data_send_update_data data;
1246         struct kvm_sev_send_update_data params;
1247         void *hdr, *trans_data;
1248         struct page **guest_page;
1249         unsigned long n;
1250         int ret, offset;
1251
1252         if (!sev_guest(kvm))
1253                 return -ENOTTY;
1254
1255         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1256                         sizeof(struct kvm_sev_send_update_data)))
1257                 return -EFAULT;
1258
1259         /* userspace wants to query either header or trans length */
1260         if (!params.trans_len || !params.hdr_len)
1261                 return __sev_send_update_data_query_lengths(kvm, argp, &params);
1262
1263         if (!params.trans_uaddr || !params.guest_uaddr ||
1264             !params.guest_len || !params.hdr_uaddr)
1265                 return -EINVAL;
1266
1267         /* Check if we are crossing the page boundary */
1268         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1269         if ((params.guest_len + offset > PAGE_SIZE))
1270                 return -EINVAL;
1271
1272         /* Pin guest memory */
1273         guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1274                                     PAGE_SIZE, &n, 0);
1275         if (IS_ERR(guest_page))
1276                 return PTR_ERR(guest_page);
1277
1278         /* allocate memory for header and transport buffer */
1279         ret = -ENOMEM;
1280         hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1281         if (!hdr)
1282                 goto e_unpin;
1283
1284         trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1285         if (!trans_data)
1286                 goto e_free_hdr;
1287
1288         memset(&data, 0, sizeof(data));
1289         data.hdr_address = __psp_pa(hdr);
1290         data.hdr_len = params.hdr_len;
1291         data.trans_address = __psp_pa(trans_data);
1292         data.trans_len = params.trans_len;
1293
1294         /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1295         data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1296         data.guest_address |= sev_me_mask;
1297         data.guest_len = params.guest_len;
1298         data.handle = sev->handle;
1299
1300         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1301
1302         if (ret)
1303                 goto e_free_trans_data;
1304
1305         /* copy transport buffer to user space */
1306         if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1307                          trans_data, params.trans_len)) {
1308                 ret = -EFAULT;
1309                 goto e_free_trans_data;
1310         }
1311
1312         /* Copy packet header to userspace. */
1313         if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1314                          params.hdr_len))
1315                 ret = -EFAULT;
1316
1317 e_free_trans_data:
1318         kfree(trans_data);
1319 e_free_hdr:
1320         kfree(hdr);
1321 e_unpin:
1322         sev_unpin_memory(kvm, guest_page, n);
1323
1324         return ret;
1325 }
1326
1327 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1328 {
1329         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1330         struct sev_data_send_finish data;
1331
1332         if (!sev_guest(kvm))
1333                 return -ENOTTY;
1334
1335         data.handle = sev->handle;
1336         return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1337 }
1338
1339 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1340 {
1341         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1342         struct sev_data_send_cancel data;
1343
1344         if (!sev_guest(kvm))
1345                 return -ENOTTY;
1346
1347         data.handle = sev->handle;
1348         return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1349 }
1350
1351 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1352 {
1353         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1354         struct sev_data_receive_start start;
1355         struct kvm_sev_receive_start params;
1356         int *error = &argp->error;
1357         void *session_data;
1358         void *pdh_data;
1359         int ret;
1360
1361         if (!sev_guest(kvm))
1362                 return -ENOTTY;
1363
1364         /* Get parameter from the userspace */
1365         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1366                         sizeof(struct kvm_sev_receive_start)))
1367                 return -EFAULT;
1368
1369         /* some sanity checks */
1370         if (!params.pdh_uaddr || !params.pdh_len ||
1371             !params.session_uaddr || !params.session_len)
1372                 return -EINVAL;
1373
1374         pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1375         if (IS_ERR(pdh_data))
1376                 return PTR_ERR(pdh_data);
1377
1378         session_data = psp_copy_user_blob(params.session_uaddr,
1379                         params.session_len);
1380         if (IS_ERR(session_data)) {
1381                 ret = PTR_ERR(session_data);
1382                 goto e_free_pdh;
1383         }
1384
1385         memset(&start, 0, sizeof(start));
1386         start.handle = params.handle;
1387         start.policy = params.policy;
1388         start.pdh_cert_address = __psp_pa(pdh_data);
1389         start.pdh_cert_len = params.pdh_len;
1390         start.session_address = __psp_pa(session_data);
1391         start.session_len = params.session_len;
1392
1393         /* create memory encryption context */
1394         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1395                                 error);
1396         if (ret)
1397                 goto e_free_session;
1398
1399         /* Bind ASID to this guest */
1400         ret = sev_bind_asid(kvm, start.handle, error);
1401         if (ret)
1402                 goto e_free_session;
1403
1404         params.handle = start.handle;
1405         if (copy_to_user((void __user *)(uintptr_t)argp->data,
1406                          &params, sizeof(struct kvm_sev_receive_start))) {
1407                 ret = -EFAULT;
1408                 sev_unbind_asid(kvm, start.handle);
1409                 goto e_free_session;
1410         }
1411
1412         sev->handle = start.handle;
1413         sev->fd = argp->sev_fd;
1414
1415 e_free_session:
1416         kfree(session_data);
1417 e_free_pdh:
1418         kfree(pdh_data);
1419
1420         return ret;
1421 }
1422
1423 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1424 {
1425         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1426         struct kvm_sev_receive_update_data params;
1427         struct sev_data_receive_update_data data;
1428         void *hdr = NULL, *trans = NULL;
1429         struct page **guest_page;
1430         unsigned long n;
1431         int ret, offset;
1432
1433         if (!sev_guest(kvm))
1434                 return -EINVAL;
1435
1436         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1437                         sizeof(struct kvm_sev_receive_update_data)))
1438                 return -EFAULT;
1439
1440         if (!params.hdr_uaddr || !params.hdr_len ||
1441             !params.guest_uaddr || !params.guest_len ||
1442             !params.trans_uaddr || !params.trans_len)
1443                 return -EINVAL;
1444
1445         /* Check if we are crossing the page boundary */
1446         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1447         if ((params.guest_len + offset > PAGE_SIZE))
1448                 return -EINVAL;
1449
1450         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1451         if (IS_ERR(hdr))
1452                 return PTR_ERR(hdr);
1453
1454         trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1455         if (IS_ERR(trans)) {
1456                 ret = PTR_ERR(trans);
1457                 goto e_free_hdr;
1458         }
1459
1460         memset(&data, 0, sizeof(data));
1461         data.hdr_address = __psp_pa(hdr);
1462         data.hdr_len = params.hdr_len;
1463         data.trans_address = __psp_pa(trans);
1464         data.trans_len = params.trans_len;
1465
1466         /* Pin guest memory */
1467         guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1468                                     PAGE_SIZE, &n, 0);
1469         if (IS_ERR(guest_page)) {
1470                 ret = PTR_ERR(guest_page);
1471                 goto e_free_trans;
1472         }
1473
1474         /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1475         data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1476         data.guest_address |= sev_me_mask;
1477         data.guest_len = params.guest_len;
1478         data.handle = sev->handle;
1479
1480         ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1481                                 &argp->error);
1482
1483         sev_unpin_memory(kvm, guest_page, n);
1484
1485 e_free_trans:
1486         kfree(trans);
1487 e_free_hdr:
1488         kfree(hdr);
1489
1490         return ret;
1491 }
1492
1493 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1494 {
1495         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1496         struct sev_data_receive_finish data;
1497
1498         if (!sev_guest(kvm))
1499                 return -ENOTTY;
1500
1501         data.handle = sev->handle;
1502         return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1503 }
1504
1505 int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
1506 {
1507         struct kvm_sev_cmd sev_cmd;
1508         int r;
1509
1510         if (!sev_enabled)
1511                 return -ENOTTY;
1512
1513         if (!argp)
1514                 return 0;
1515
1516         if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1517                 return -EFAULT;
1518
1519         mutex_lock(&kvm->lock);
1520
1521         /* enc_context_owner handles all memory enc operations */
1522         if (is_mirroring_enc_context(kvm)) {
1523                 r = -EINVAL;
1524                 goto out;
1525         }
1526
1527         switch (sev_cmd.id) {
1528         case KVM_SEV_ES_INIT:
1529                 if (!sev_es_enabled) {
1530                         r = -ENOTTY;
1531                         goto out;
1532                 }
1533                 fallthrough;
1534         case KVM_SEV_INIT:
1535                 r = sev_guest_init(kvm, &sev_cmd);
1536                 break;
1537         case KVM_SEV_LAUNCH_START:
1538                 r = sev_launch_start(kvm, &sev_cmd);
1539                 break;
1540         case KVM_SEV_LAUNCH_UPDATE_DATA:
1541                 r = sev_launch_update_data(kvm, &sev_cmd);
1542                 break;
1543         case KVM_SEV_LAUNCH_UPDATE_VMSA:
1544                 r = sev_launch_update_vmsa(kvm, &sev_cmd);
1545                 break;
1546         case KVM_SEV_LAUNCH_MEASURE:
1547                 r = sev_launch_measure(kvm, &sev_cmd);
1548                 break;
1549         case KVM_SEV_LAUNCH_FINISH:
1550                 r = sev_launch_finish(kvm, &sev_cmd);
1551                 break;
1552         case KVM_SEV_GUEST_STATUS:
1553                 r = sev_guest_status(kvm, &sev_cmd);
1554                 break;
1555         case KVM_SEV_DBG_DECRYPT:
1556                 r = sev_dbg_crypt(kvm, &sev_cmd, true);
1557                 break;
1558         case KVM_SEV_DBG_ENCRYPT:
1559                 r = sev_dbg_crypt(kvm, &sev_cmd, false);
1560                 break;
1561         case KVM_SEV_LAUNCH_SECRET:
1562                 r = sev_launch_secret(kvm, &sev_cmd);
1563                 break;
1564         case KVM_SEV_GET_ATTESTATION_REPORT:
1565                 r = sev_get_attestation_report(kvm, &sev_cmd);
1566                 break;
1567         case KVM_SEV_SEND_START:
1568                 r = sev_send_start(kvm, &sev_cmd);
1569                 break;
1570         case KVM_SEV_SEND_UPDATE_DATA:
1571                 r = sev_send_update_data(kvm, &sev_cmd);
1572                 break;
1573         case KVM_SEV_SEND_FINISH:
1574                 r = sev_send_finish(kvm, &sev_cmd);
1575                 break;
1576         case KVM_SEV_SEND_CANCEL:
1577                 r = sev_send_cancel(kvm, &sev_cmd);
1578                 break;
1579         case KVM_SEV_RECEIVE_START:
1580                 r = sev_receive_start(kvm, &sev_cmd);
1581                 break;
1582         case KVM_SEV_RECEIVE_UPDATE_DATA:
1583                 r = sev_receive_update_data(kvm, &sev_cmd);
1584                 break;
1585         case KVM_SEV_RECEIVE_FINISH:
1586                 r = sev_receive_finish(kvm, &sev_cmd);
1587                 break;
1588         default:
1589                 r = -EINVAL;
1590                 goto out;
1591         }
1592
1593         if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1594                 r = -EFAULT;
1595
1596 out:
1597         mutex_unlock(&kvm->lock);
1598         return r;
1599 }
1600
1601 int svm_register_enc_region(struct kvm *kvm,
1602                             struct kvm_enc_region *range)
1603 {
1604         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1605         struct enc_region *region;
1606         int ret = 0;
1607
1608         if (!sev_guest(kvm))
1609                 return -ENOTTY;
1610
1611         /* If kvm is mirroring encryption context it isn't responsible for it */
1612         if (is_mirroring_enc_context(kvm))
1613                 return -EINVAL;
1614
1615         if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1616                 return -EINVAL;
1617
1618         region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1619         if (!region)
1620                 return -ENOMEM;
1621
1622         mutex_lock(&kvm->lock);
1623         region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1624         if (IS_ERR(region->pages)) {
1625                 ret = PTR_ERR(region->pages);
1626                 mutex_unlock(&kvm->lock);
1627                 goto e_free;
1628         }
1629
1630         region->uaddr = range->addr;
1631         region->size = range->size;
1632
1633         list_add_tail(&region->list, &sev->regions_list);
1634         mutex_unlock(&kvm->lock);
1635
1636         /*
1637          * The guest may change the memory encryption attribute from C=0 -> C=1
1638          * or vice versa for this memory range. Lets make sure caches are
1639          * flushed to ensure that guest data gets written into memory with
1640          * correct C-bit.
1641          */
1642         sev_clflush_pages(region->pages, region->npages);
1643
1644         return ret;
1645
1646 e_free:
1647         kfree(region);
1648         return ret;
1649 }
1650
1651 static struct enc_region *
1652 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1653 {
1654         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1655         struct list_head *head = &sev->regions_list;
1656         struct enc_region *i;
1657
1658         list_for_each_entry(i, head, list) {
1659                 if (i->uaddr == range->addr &&
1660                     i->size == range->size)
1661                         return i;
1662         }
1663
1664         return NULL;
1665 }
1666
1667 static void __unregister_enc_region_locked(struct kvm *kvm,
1668                                            struct enc_region *region)
1669 {
1670         sev_unpin_memory(kvm, region->pages, region->npages);
1671         list_del(&region->list);
1672         kfree(region);
1673 }
1674
1675 int svm_unregister_enc_region(struct kvm *kvm,
1676                               struct kvm_enc_region *range)
1677 {
1678         struct enc_region *region;
1679         int ret;
1680
1681         /* If kvm is mirroring encryption context it isn't responsible for it */
1682         if (is_mirroring_enc_context(kvm))
1683                 return -EINVAL;
1684
1685         mutex_lock(&kvm->lock);
1686
1687         if (!sev_guest(kvm)) {
1688                 ret = -ENOTTY;
1689                 goto failed;
1690         }
1691
1692         region = find_enc_region(kvm, range);
1693         if (!region) {
1694                 ret = -EINVAL;
1695                 goto failed;
1696         }
1697
1698         /*
1699          * Ensure that all guest tagged cache entries are flushed before
1700          * releasing the pages back to the system for use. CLFLUSH will
1701          * not do this, so issue a WBINVD.
1702          */
1703         wbinvd_on_all_cpus();
1704
1705         __unregister_enc_region_locked(kvm, region);
1706
1707         mutex_unlock(&kvm->lock);
1708         return 0;
1709
1710 failed:
1711         mutex_unlock(&kvm->lock);
1712         return ret;
1713 }
1714
1715 int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd)
1716 {
1717         struct file *source_kvm_file;
1718         struct kvm *source_kvm;
1719         struct kvm_sev_info *mirror_sev;
1720         unsigned int asid;
1721         int ret;
1722
1723         source_kvm_file = fget(source_fd);
1724         if (!file_is_kvm(source_kvm_file)) {
1725                 ret = -EBADF;
1726                 goto e_source_put;
1727         }
1728
1729         source_kvm = source_kvm_file->private_data;
1730         mutex_lock(&source_kvm->lock);
1731
1732         if (!sev_guest(source_kvm)) {
1733                 ret = -EINVAL;
1734                 goto e_source_unlock;
1735         }
1736
1737         /* Mirrors of mirrors should work, but let's not get silly */
1738         if (is_mirroring_enc_context(source_kvm) || source_kvm == kvm) {
1739                 ret = -EINVAL;
1740                 goto e_source_unlock;
1741         }
1742
1743         asid = to_kvm_svm(source_kvm)->sev_info.asid;
1744
1745         /*
1746          * The mirror kvm holds an enc_context_owner ref so its asid can't
1747          * disappear until we're done with it
1748          */
1749         kvm_get_kvm(source_kvm);
1750
1751         fput(source_kvm_file);
1752         mutex_unlock(&source_kvm->lock);
1753         mutex_lock(&kvm->lock);
1754
1755         if (sev_guest(kvm)) {
1756                 ret = -EINVAL;
1757                 goto e_mirror_unlock;
1758         }
1759
1760         /* Set enc_context_owner and copy its encryption context over */
1761         mirror_sev = &to_kvm_svm(kvm)->sev_info;
1762         mirror_sev->enc_context_owner = source_kvm;
1763         mirror_sev->asid = asid;
1764         mirror_sev->active = true;
1765
1766         mutex_unlock(&kvm->lock);
1767         return 0;
1768
1769 e_mirror_unlock:
1770         mutex_unlock(&kvm->lock);
1771         kvm_put_kvm(source_kvm);
1772         return ret;
1773 e_source_unlock:
1774         mutex_unlock(&source_kvm->lock);
1775 e_source_put:
1776         if (source_kvm_file)
1777                 fput(source_kvm_file);
1778         return ret;
1779 }
1780
1781 void sev_vm_destroy(struct kvm *kvm)
1782 {
1783         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1784         struct list_head *head = &sev->regions_list;
1785         struct list_head *pos, *q;
1786
1787         if (!sev_guest(kvm))
1788                 return;
1789
1790         /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
1791         if (is_mirroring_enc_context(kvm)) {
1792                 kvm_put_kvm(sev->enc_context_owner);
1793                 return;
1794         }
1795
1796         mutex_lock(&kvm->lock);
1797
1798         /*
1799          * Ensure that all guest tagged cache entries are flushed before
1800          * releasing the pages back to the system for use. CLFLUSH will
1801          * not do this, so issue a WBINVD.
1802          */
1803         wbinvd_on_all_cpus();
1804
1805         /*
1806          * if userspace was terminated before unregistering the memory regions
1807          * then lets unpin all the registered memory.
1808          */
1809         if (!list_empty(head)) {
1810                 list_for_each_safe(pos, q, head) {
1811                         __unregister_enc_region_locked(kvm,
1812                                 list_entry(pos, struct enc_region, list));
1813                         cond_resched();
1814                 }
1815         }
1816
1817         mutex_unlock(&kvm->lock);
1818
1819         sev_unbind_asid(kvm, sev->handle);
1820         sev_asid_free(sev);
1821 }
1822
1823 void __init sev_set_cpu_caps(void)
1824 {
1825         if (!sev_enabled)
1826                 kvm_cpu_cap_clear(X86_FEATURE_SEV);
1827         if (!sev_es_enabled)
1828                 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
1829 }
1830
1831 void __init sev_hardware_setup(void)
1832 {
1833 #ifdef CONFIG_KVM_AMD_SEV
1834         unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
1835         bool sev_es_supported = false;
1836         bool sev_supported = false;
1837
1838         if (!sev_enabled || !npt_enabled)
1839                 goto out;
1840
1841         /* Does the CPU support SEV? */
1842         if (!boot_cpu_has(X86_FEATURE_SEV))
1843                 goto out;
1844
1845         /* Retrieve SEV CPUID information */
1846         cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
1847
1848         /* Set encryption bit location for SEV-ES guests */
1849         sev_enc_bit = ebx & 0x3f;
1850
1851         /* Maximum number of encrypted guests supported simultaneously */
1852         max_sev_asid = ecx;
1853         if (!max_sev_asid)
1854                 goto out;
1855
1856         /* Minimum ASID value that should be used for SEV guest */
1857         min_sev_asid = edx;
1858         sev_me_mask = 1UL << (ebx & 0x3f);
1859
1860         /* Initialize SEV ASID bitmaps */
1861         sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1862         if (!sev_asid_bitmap)
1863                 goto out;
1864
1865         sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1866         if (!sev_reclaim_asid_bitmap) {
1867                 bitmap_free(sev_asid_bitmap);
1868                 sev_asid_bitmap = NULL;
1869                 goto out;
1870         }
1871
1872         sev_asid_count = max_sev_asid - min_sev_asid + 1;
1873         if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count))
1874                 goto out;
1875
1876         pr_info("SEV supported: %u ASIDs\n", sev_asid_count);
1877         sev_supported = true;
1878
1879         /* SEV-ES support requested? */
1880         if (!sev_es_enabled)
1881                 goto out;
1882
1883         /* Does the CPU support SEV-ES? */
1884         if (!boot_cpu_has(X86_FEATURE_SEV_ES))
1885                 goto out;
1886
1887         /* Has the system been allocated ASIDs for SEV-ES? */
1888         if (min_sev_asid == 1)
1889                 goto out;
1890
1891         sev_es_asid_count = min_sev_asid - 1;
1892         if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count))
1893                 goto out;
1894
1895         pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count);
1896         sev_es_supported = true;
1897
1898 out:
1899         sev_enabled = sev_supported;
1900         sev_es_enabled = sev_es_supported;
1901 #endif
1902 }
1903
1904 void sev_hardware_teardown(void)
1905 {
1906         if (!sev_enabled)
1907                 return;
1908
1909         /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
1910         sev_flush_asids(0, max_sev_asid);
1911
1912         bitmap_free(sev_asid_bitmap);
1913         bitmap_free(sev_reclaim_asid_bitmap);
1914
1915         misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
1916         misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
1917 }
1918
1919 int sev_cpu_init(struct svm_cpu_data *sd)
1920 {
1921         if (!sev_enabled)
1922                 return 0;
1923
1924         sd->sev_vmcbs = kcalloc(max_sev_asid + 1, sizeof(void *), GFP_KERNEL);
1925         if (!sd->sev_vmcbs)
1926                 return -ENOMEM;
1927
1928         return 0;
1929 }
1930
1931 /*
1932  * Pages used by hardware to hold guest encrypted state must be flushed before
1933  * returning them to the system.
1934  */
1935 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va,
1936                                    unsigned long len)
1937 {
1938         /*
1939          * If hardware enforced cache coherency for encrypted mappings of the
1940          * same physical page is supported, nothing to do.
1941          */
1942         if (boot_cpu_has(X86_FEATURE_SME_COHERENT))
1943                 return;
1944
1945         /*
1946          * If the VM Page Flush MSR is supported, use it to flush the page
1947          * (using the page virtual address and the guest ASID).
1948          */
1949         if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) {
1950                 struct kvm_sev_info *sev;
1951                 unsigned long va_start;
1952                 u64 start, stop;
1953
1954                 /* Align start and stop to page boundaries. */
1955                 va_start = (unsigned long)va;
1956                 start = (u64)va_start & PAGE_MASK;
1957                 stop = PAGE_ALIGN((u64)va_start + len);
1958
1959                 if (start < stop) {
1960                         sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
1961
1962                         while (start < stop) {
1963                                 wrmsrl(MSR_AMD64_VM_PAGE_FLUSH,
1964                                        start | sev->asid);
1965
1966                                 start += PAGE_SIZE;
1967                         }
1968
1969                         return;
1970                 }
1971
1972                 WARN(1, "Address overflow, using WBINVD\n");
1973         }
1974
1975         /*
1976          * Hardware should always have one of the above features,
1977          * but if not, use WBINVD and issue a warning.
1978          */
1979         WARN_ONCE(1, "Using WBINVD to flush guest memory\n");
1980         wbinvd_on_all_cpus();
1981 }
1982
1983 void sev_free_vcpu(struct kvm_vcpu *vcpu)
1984 {
1985         struct vcpu_svm *svm;
1986
1987         if (!sev_es_guest(vcpu->kvm))
1988                 return;
1989
1990         svm = to_svm(vcpu);
1991
1992         if (vcpu->arch.guest_state_protected)
1993                 sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE);
1994         __free_page(virt_to_page(svm->vmsa));
1995
1996         if (svm->ghcb_sa_free)
1997                 kfree(svm->ghcb_sa);
1998 }
1999
2000 static void dump_ghcb(struct vcpu_svm *svm)
2001 {
2002         struct ghcb *ghcb = svm->ghcb;
2003         unsigned int nbits;
2004
2005         /* Re-use the dump_invalid_vmcb module parameter */
2006         if (!dump_invalid_vmcb) {
2007                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2008                 return;
2009         }
2010
2011         nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2012
2013         pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2014         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2015                ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2016         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2017                ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2018         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2019                ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2020         pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2021                ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2022         pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2023 }
2024
2025 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2026 {
2027         struct kvm_vcpu *vcpu = &svm->vcpu;
2028         struct ghcb *ghcb = svm->ghcb;
2029
2030         /*
2031          * The GHCB protocol so far allows for the following data
2032          * to be returned:
2033          *   GPRs RAX, RBX, RCX, RDX
2034          *
2035          * Copy their values, even if they may not have been written during the
2036          * VM-Exit.  It's the guest's responsibility to not consume random data.
2037          */
2038         ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2039         ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2040         ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2041         ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2042 }
2043
2044 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2045 {
2046         struct vmcb_control_area *control = &svm->vmcb->control;
2047         struct kvm_vcpu *vcpu = &svm->vcpu;
2048         struct ghcb *ghcb = svm->ghcb;
2049         u64 exit_code;
2050
2051         /*
2052          * The GHCB protocol so far allows for the following data
2053          * to be supplied:
2054          *   GPRs RAX, RBX, RCX, RDX
2055          *   XCR0
2056          *   CPL
2057          *
2058          * VMMCALL allows the guest to provide extra registers. KVM also
2059          * expects RSI for hypercalls, so include that, too.
2060          *
2061          * Copy their values to the appropriate location if supplied.
2062          */
2063         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2064
2065         vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
2066         vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
2067         vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
2068         vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
2069         vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
2070
2071         svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
2072
2073         if (ghcb_xcr0_is_valid(ghcb)) {
2074                 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2075                 kvm_update_cpuid_runtime(vcpu);
2076         }
2077
2078         /* Copy the GHCB exit information into the VMCB fields */
2079         exit_code = ghcb_get_sw_exit_code(ghcb);
2080         control->exit_code = lower_32_bits(exit_code);
2081         control->exit_code_hi = upper_32_bits(exit_code);
2082         control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2083         control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2084
2085         /* Clear the valid entries fields */
2086         memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2087 }
2088
2089 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2090 {
2091         struct kvm_vcpu *vcpu;
2092         struct ghcb *ghcb;
2093         u64 exit_code = 0;
2094
2095         ghcb = svm->ghcb;
2096
2097         /* Only GHCB Usage code 0 is supported */
2098         if (ghcb->ghcb_usage)
2099                 goto vmgexit_err;
2100
2101         /*
2102          * Retrieve the exit code now even though is may not be marked valid
2103          * as it could help with debugging.
2104          */
2105         exit_code = ghcb_get_sw_exit_code(ghcb);
2106
2107         if (!ghcb_sw_exit_code_is_valid(ghcb) ||
2108             !ghcb_sw_exit_info_1_is_valid(ghcb) ||
2109             !ghcb_sw_exit_info_2_is_valid(ghcb))
2110                 goto vmgexit_err;
2111
2112         switch (ghcb_get_sw_exit_code(ghcb)) {
2113         case SVM_EXIT_READ_DR7:
2114                 break;
2115         case SVM_EXIT_WRITE_DR7:
2116                 if (!ghcb_rax_is_valid(ghcb))
2117                         goto vmgexit_err;
2118                 break;
2119         case SVM_EXIT_RDTSC:
2120                 break;
2121         case SVM_EXIT_RDPMC:
2122                 if (!ghcb_rcx_is_valid(ghcb))
2123                         goto vmgexit_err;
2124                 break;
2125         case SVM_EXIT_CPUID:
2126                 if (!ghcb_rax_is_valid(ghcb) ||
2127                     !ghcb_rcx_is_valid(ghcb))
2128                         goto vmgexit_err;
2129                 if (ghcb_get_rax(ghcb) == 0xd)
2130                         if (!ghcb_xcr0_is_valid(ghcb))
2131                                 goto vmgexit_err;
2132                 break;
2133         case SVM_EXIT_INVD:
2134                 break;
2135         case SVM_EXIT_IOIO:
2136                 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
2137                         if (!ghcb_sw_scratch_is_valid(ghcb))
2138                                 goto vmgexit_err;
2139                 } else {
2140                         if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
2141                                 if (!ghcb_rax_is_valid(ghcb))
2142                                         goto vmgexit_err;
2143                 }
2144                 break;
2145         case SVM_EXIT_MSR:
2146                 if (!ghcb_rcx_is_valid(ghcb))
2147                         goto vmgexit_err;
2148                 if (ghcb_get_sw_exit_info_1(ghcb)) {
2149                         if (!ghcb_rax_is_valid(ghcb) ||
2150                             !ghcb_rdx_is_valid(ghcb))
2151                                 goto vmgexit_err;
2152                 }
2153                 break;
2154         case SVM_EXIT_VMMCALL:
2155                 if (!ghcb_rax_is_valid(ghcb) ||
2156                     !ghcb_cpl_is_valid(ghcb))
2157                         goto vmgexit_err;
2158                 break;
2159         case SVM_EXIT_RDTSCP:
2160                 break;
2161         case SVM_EXIT_WBINVD:
2162                 break;
2163         case SVM_EXIT_MONITOR:
2164                 if (!ghcb_rax_is_valid(ghcb) ||
2165                     !ghcb_rcx_is_valid(ghcb) ||
2166                     !ghcb_rdx_is_valid(ghcb))
2167                         goto vmgexit_err;
2168                 break;
2169         case SVM_EXIT_MWAIT:
2170                 if (!ghcb_rax_is_valid(ghcb) ||
2171                     !ghcb_rcx_is_valid(ghcb))
2172                         goto vmgexit_err;
2173                 break;
2174         case SVM_VMGEXIT_MMIO_READ:
2175         case SVM_VMGEXIT_MMIO_WRITE:
2176                 if (!ghcb_sw_scratch_is_valid(ghcb))
2177                         goto vmgexit_err;
2178                 break;
2179         case SVM_VMGEXIT_NMI_COMPLETE:
2180         case SVM_VMGEXIT_AP_HLT_LOOP:
2181         case SVM_VMGEXIT_AP_JUMP_TABLE:
2182         case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2183                 break;
2184         default:
2185                 goto vmgexit_err;
2186         }
2187
2188         return 0;
2189
2190 vmgexit_err:
2191         vcpu = &svm->vcpu;
2192
2193         if (ghcb->ghcb_usage) {
2194                 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2195                             ghcb->ghcb_usage);
2196         } else {
2197                 vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n",
2198                             exit_code);
2199                 dump_ghcb(svm);
2200         }
2201
2202         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2203         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
2204         vcpu->run->internal.ndata = 2;
2205         vcpu->run->internal.data[0] = exit_code;
2206         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
2207
2208         return -EINVAL;
2209 }
2210
2211 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2212 {
2213         if (!svm->ghcb)
2214                 return;
2215
2216         if (svm->ghcb_sa_free) {
2217                 /*
2218                  * The scratch area lives outside the GHCB, so there is a
2219                  * buffer that, depending on the operation performed, may
2220                  * need to be synced, then freed.
2221                  */
2222                 if (svm->ghcb_sa_sync) {
2223                         kvm_write_guest(svm->vcpu.kvm,
2224                                         ghcb_get_sw_scratch(svm->ghcb),
2225                                         svm->ghcb_sa, svm->ghcb_sa_len);
2226                         svm->ghcb_sa_sync = false;
2227                 }
2228
2229                 kfree(svm->ghcb_sa);
2230                 svm->ghcb_sa = NULL;
2231                 svm->ghcb_sa_free = false;
2232         }
2233
2234         trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb);
2235
2236         sev_es_sync_to_ghcb(svm);
2237
2238         kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true);
2239         svm->ghcb = NULL;
2240 }
2241
2242 void pre_sev_run(struct vcpu_svm *svm, int cpu)
2243 {
2244         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2245         int asid = sev_get_asid(svm->vcpu.kvm);
2246
2247         /* Assign the asid allocated with this SEV guest */
2248         svm->asid = asid;
2249
2250         /*
2251          * Flush guest TLB:
2252          *
2253          * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2254          * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2255          */
2256         if (sd->sev_vmcbs[asid] == svm->vmcb &&
2257             svm->vcpu.arch.last_vmentry_cpu == cpu)
2258                 return;
2259
2260         sd->sev_vmcbs[asid] = svm->vmcb;
2261         svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2262         vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2263 }
2264
2265 #define GHCB_SCRATCH_AREA_LIMIT         (16ULL * PAGE_SIZE)
2266 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2267 {
2268         struct vmcb_control_area *control = &svm->vmcb->control;
2269         struct ghcb *ghcb = svm->ghcb;
2270         u64 ghcb_scratch_beg, ghcb_scratch_end;
2271         u64 scratch_gpa_beg, scratch_gpa_end;
2272         void *scratch_va;
2273
2274         scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
2275         if (!scratch_gpa_beg) {
2276                 pr_err("vmgexit: scratch gpa not provided\n");
2277                 return false;
2278         }
2279
2280         scratch_gpa_end = scratch_gpa_beg + len;
2281         if (scratch_gpa_end < scratch_gpa_beg) {
2282                 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2283                        len, scratch_gpa_beg);
2284                 return false;
2285         }
2286
2287         if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2288                 /* Scratch area begins within GHCB */
2289                 ghcb_scratch_beg = control->ghcb_gpa +
2290                                    offsetof(struct ghcb, shared_buffer);
2291                 ghcb_scratch_end = control->ghcb_gpa +
2292                                    offsetof(struct ghcb, reserved_1);
2293
2294                 /*
2295                  * If the scratch area begins within the GHCB, it must be
2296                  * completely contained in the GHCB shared buffer area.
2297                  */
2298                 if (scratch_gpa_beg < ghcb_scratch_beg ||
2299                     scratch_gpa_end > ghcb_scratch_end) {
2300                         pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2301                                scratch_gpa_beg, scratch_gpa_end);
2302                         return false;
2303                 }
2304
2305                 scratch_va = (void *)svm->ghcb;
2306                 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2307         } else {
2308                 /*
2309                  * The guest memory must be read into a kernel buffer, so
2310                  * limit the size
2311                  */
2312                 if (len > GHCB_SCRATCH_AREA_LIMIT) {
2313                         pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2314                                len, GHCB_SCRATCH_AREA_LIMIT);
2315                         return false;
2316                 }
2317                 scratch_va = kzalloc(len, GFP_KERNEL_ACCOUNT);
2318                 if (!scratch_va)
2319                         return false;
2320
2321                 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2322                         /* Unable to copy scratch area from guest */
2323                         pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2324
2325                         kfree(scratch_va);
2326                         return false;
2327                 }
2328
2329                 /*
2330                  * The scratch area is outside the GHCB. The operation will
2331                  * dictate whether the buffer needs to be synced before running
2332                  * the vCPU next time (i.e. a read was requested so the data
2333                  * must be written back to the guest memory).
2334                  */
2335                 svm->ghcb_sa_sync = sync;
2336                 svm->ghcb_sa_free = true;
2337         }
2338
2339         svm->ghcb_sa = scratch_va;
2340         svm->ghcb_sa_len = len;
2341
2342         return true;
2343 }
2344
2345 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2346                               unsigned int pos)
2347 {
2348         svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2349         svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2350 }
2351
2352 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2353 {
2354         return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2355 }
2356
2357 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2358 {
2359         svm->vmcb->control.ghcb_gpa = value;
2360 }
2361
2362 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2363 {
2364         struct vmcb_control_area *control = &svm->vmcb->control;
2365         struct kvm_vcpu *vcpu = &svm->vcpu;
2366         u64 ghcb_info;
2367         int ret = 1;
2368
2369         ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2370
2371         trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2372                                              control->ghcb_gpa);
2373
2374         switch (ghcb_info) {
2375         case GHCB_MSR_SEV_INFO_REQ:
2376                 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2377                                                     GHCB_VERSION_MIN,
2378                                                     sev_enc_bit));
2379                 break;
2380         case GHCB_MSR_CPUID_REQ: {
2381                 u64 cpuid_fn, cpuid_reg, cpuid_value;
2382
2383                 cpuid_fn = get_ghcb_msr_bits(svm,
2384                                              GHCB_MSR_CPUID_FUNC_MASK,
2385                                              GHCB_MSR_CPUID_FUNC_POS);
2386
2387                 /* Initialize the registers needed by the CPUID intercept */
2388                 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2389                 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2390
2391                 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2392                 if (!ret) {
2393                         ret = -EINVAL;
2394                         break;
2395                 }
2396
2397                 cpuid_reg = get_ghcb_msr_bits(svm,
2398                                               GHCB_MSR_CPUID_REG_MASK,
2399                                               GHCB_MSR_CPUID_REG_POS);
2400                 if (cpuid_reg == 0)
2401                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2402                 else if (cpuid_reg == 1)
2403                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2404                 else if (cpuid_reg == 2)
2405                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2406                 else
2407                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2408
2409                 set_ghcb_msr_bits(svm, cpuid_value,
2410                                   GHCB_MSR_CPUID_VALUE_MASK,
2411                                   GHCB_MSR_CPUID_VALUE_POS);
2412
2413                 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2414                                   GHCB_MSR_INFO_MASK,
2415                                   GHCB_MSR_INFO_POS);
2416                 break;
2417         }
2418         case GHCB_MSR_TERM_REQ: {
2419                 u64 reason_set, reason_code;
2420
2421                 reason_set = get_ghcb_msr_bits(svm,
2422                                                GHCB_MSR_TERM_REASON_SET_MASK,
2423                                                GHCB_MSR_TERM_REASON_SET_POS);
2424                 reason_code = get_ghcb_msr_bits(svm,
2425                                                 GHCB_MSR_TERM_REASON_MASK,
2426                                                 GHCB_MSR_TERM_REASON_POS);
2427                 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2428                         reason_set, reason_code);
2429                 fallthrough;
2430         }
2431         default:
2432                 ret = -EINVAL;
2433         }
2434
2435         trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2436                                             control->ghcb_gpa, ret);
2437
2438         return ret;
2439 }
2440
2441 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2442 {
2443         struct vcpu_svm *svm = to_svm(vcpu);
2444         struct vmcb_control_area *control = &svm->vmcb->control;
2445         u64 ghcb_gpa, exit_code;
2446         struct ghcb *ghcb;
2447         int ret;
2448
2449         /* Validate the GHCB */
2450         ghcb_gpa = control->ghcb_gpa;
2451         if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2452                 return sev_handle_vmgexit_msr_protocol(svm);
2453
2454         if (!ghcb_gpa) {
2455                 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2456                 return -EINVAL;
2457         }
2458
2459         if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) {
2460                 /* Unable to map GHCB from guest */
2461                 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2462                             ghcb_gpa);
2463                 return -EINVAL;
2464         }
2465
2466         svm->ghcb = svm->ghcb_map.hva;
2467         ghcb = svm->ghcb_map.hva;
2468
2469         trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb);
2470
2471         exit_code = ghcb_get_sw_exit_code(ghcb);
2472
2473         ret = sev_es_validate_vmgexit(svm);
2474         if (ret)
2475                 return ret;
2476
2477         sev_es_sync_from_ghcb(svm);
2478         ghcb_set_sw_exit_info_1(ghcb, 0);
2479         ghcb_set_sw_exit_info_2(ghcb, 0);
2480
2481         ret = -EINVAL;
2482         switch (exit_code) {
2483         case SVM_VMGEXIT_MMIO_READ:
2484                 if (!setup_vmgexit_scratch(svm, true, control->exit_info_2))
2485                         break;
2486
2487                 ret = kvm_sev_es_mmio_read(vcpu,
2488                                            control->exit_info_1,
2489                                            control->exit_info_2,
2490                                            svm->ghcb_sa);
2491                 break;
2492         case SVM_VMGEXIT_MMIO_WRITE:
2493                 if (!setup_vmgexit_scratch(svm, false, control->exit_info_2))
2494                         break;
2495
2496                 ret = kvm_sev_es_mmio_write(vcpu,
2497                                             control->exit_info_1,
2498                                             control->exit_info_2,
2499                                             svm->ghcb_sa);
2500                 break;
2501         case SVM_VMGEXIT_NMI_COMPLETE:
2502                 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
2503                 break;
2504         case SVM_VMGEXIT_AP_HLT_LOOP:
2505                 ret = kvm_emulate_ap_reset_hold(vcpu);
2506                 break;
2507         case SVM_VMGEXIT_AP_JUMP_TABLE: {
2508                 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2509
2510                 switch (control->exit_info_1) {
2511                 case 0:
2512                         /* Set AP jump table address */
2513                         sev->ap_jump_table = control->exit_info_2;
2514                         break;
2515                 case 1:
2516                         /* Get AP jump table address */
2517                         ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
2518                         break;
2519                 default:
2520                         pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2521                                control->exit_info_1);
2522                         ghcb_set_sw_exit_info_1(ghcb, 1);
2523                         ghcb_set_sw_exit_info_2(ghcb,
2524                                                 X86_TRAP_UD |
2525                                                 SVM_EVTINJ_TYPE_EXEPT |
2526                                                 SVM_EVTINJ_VALID);
2527                 }
2528
2529                 ret = 1;
2530                 break;
2531         }
2532         case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2533                 vcpu_unimpl(vcpu,
2534                             "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2535                             control->exit_info_1, control->exit_info_2);
2536                 break;
2537         default:
2538                 ret = svm_invoke_exit_handler(vcpu, exit_code);
2539         }
2540
2541         return ret;
2542 }
2543
2544 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2545 {
2546         if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2))
2547                 return -EINVAL;
2548
2549         return kvm_sev_es_string_io(&svm->vcpu, size, port,
2550                                     svm->ghcb_sa, svm->ghcb_sa_len, in);
2551 }
2552
2553 void sev_es_init_vmcb(struct vcpu_svm *svm)
2554 {
2555         struct kvm_vcpu *vcpu = &svm->vcpu;
2556
2557         svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2558         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2559
2560         /*
2561          * An SEV-ES guest requires a VMSA area that is a separate from the
2562          * VMCB page. Do not include the encryption mask on the VMSA physical
2563          * address since hardware will access it using the guest key.
2564          */
2565         svm->vmcb->control.vmsa_pa = __pa(svm->vmsa);
2566
2567         /* Can't intercept CR register access, HV can't modify CR registers */
2568         svm_clr_intercept(svm, INTERCEPT_CR0_READ);
2569         svm_clr_intercept(svm, INTERCEPT_CR4_READ);
2570         svm_clr_intercept(svm, INTERCEPT_CR8_READ);
2571         svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
2572         svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
2573         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
2574
2575         svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
2576
2577         /* Track EFER/CR register changes */
2578         svm_set_intercept(svm, TRAP_EFER_WRITE);
2579         svm_set_intercept(svm, TRAP_CR0_WRITE);
2580         svm_set_intercept(svm, TRAP_CR4_WRITE);
2581         svm_set_intercept(svm, TRAP_CR8_WRITE);
2582
2583         /* No support for enable_vmware_backdoor */
2584         clr_exception_intercept(svm, GP_VECTOR);
2585
2586         /* Can't intercept XSETBV, HV can't modify XCR0 directly */
2587         svm_clr_intercept(svm, INTERCEPT_XSETBV);
2588
2589         /* Clear intercepts on selected MSRs */
2590         set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
2591         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
2592         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
2593         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
2594         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
2595         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
2596 }
2597
2598 void sev_es_create_vcpu(struct vcpu_svm *svm)
2599 {
2600         /*
2601          * Set the GHCB MSR value as per the GHCB specification when creating
2602          * a vCPU for an SEV-ES guest.
2603          */
2604         set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2605                                             GHCB_VERSION_MIN,
2606                                             sev_enc_bit));
2607 }
2608
2609 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu)
2610 {
2611         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2612         struct vmcb_save_area *hostsa;
2613
2614         /*
2615          * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
2616          * of which one step is to perform a VMLOAD. Since hardware does not
2617          * perform a VMSAVE on VMRUN, the host savearea must be updated.
2618          */
2619         vmsave(__sme_page_pa(sd->save_area));
2620
2621         /* XCR0 is restored on VMEXIT, save the current host value */
2622         hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400);
2623         hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
2624
2625         /* PKRU is restored on VMEXIT, save the current host value */
2626         hostsa->pkru = read_pkru();
2627
2628         /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
2629         hostsa->xss = host_xss;
2630 }
2631
2632 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
2633 {
2634         struct vcpu_svm *svm = to_svm(vcpu);
2635
2636         /* First SIPI: Use the values as initially set by the VMM */
2637         if (!svm->received_first_sipi) {
2638                 svm->received_first_sipi = true;
2639                 return;
2640         }
2641
2642         /*
2643          * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
2644          * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
2645          * non-zero value.
2646          */
2647         if (!svm->ghcb)
2648                 return;
2649
2650         ghcb_set_sw_exit_info_2(svm->ghcb, 1);
2651 }