svm/sev: Register SEV and SEV-ES ASIDs to the misc controller
[linux-2.6-microblaze.git] / arch / x86 / kvm / svm / sev.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9
10 #include <linux/kvm_types.h>
11 #include <linux/kvm_host.h>
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/psp-sev.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/misc_cgroup.h>
18 #include <linux/processor.h>
19 #include <linux/trace_events.h>
20 #include <asm/fpu/internal.h>
21
22 #include <asm/trapnr.h>
23
24 #include "x86.h"
25 #include "svm.h"
26 #include "svm_ops.h"
27 #include "cpuid.h"
28 #include "trace.h"
29
30 #define __ex(x) __kvm_handle_fault_on_reboot(x)
31
32 #ifndef CONFIG_KVM_AMD_SEV
33 /*
34  * When this config is not defined, SEV feature is not supported and APIs in
35  * this file are not used but this file still gets compiled into the KVM AMD
36  * module.
37  *
38  * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
39  * misc_res_type {} defined in linux/misc_cgroup.h.
40  *
41  * Below macros allow compilation to succeed.
42  */
43 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
44 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
45 #endif
46
47 static u8 sev_enc_bit;
48 static int sev_flush_asids(void);
49 static DECLARE_RWSEM(sev_deactivate_lock);
50 static DEFINE_MUTEX(sev_bitmap_lock);
51 unsigned int max_sev_asid;
52 static unsigned int min_sev_asid;
53 static unsigned long *sev_asid_bitmap;
54 static unsigned long *sev_reclaim_asid_bitmap;
55
56 struct enc_region {
57         struct list_head list;
58         unsigned long npages;
59         struct page **pages;
60         unsigned long uaddr;
61         unsigned long size;
62 };
63
64 static int sev_flush_asids(void)
65 {
66         int ret, error = 0;
67
68         /*
69          * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
70          * so it must be guarded.
71          */
72         down_write(&sev_deactivate_lock);
73
74         wbinvd_on_all_cpus();
75         ret = sev_guest_df_flush(&error);
76
77         up_write(&sev_deactivate_lock);
78
79         if (ret)
80                 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
81
82         return ret;
83 }
84
85 /* Must be called with the sev_bitmap_lock held */
86 static bool __sev_recycle_asids(int min_asid, int max_asid)
87 {
88         int pos;
89
90         /* Check if there are any ASIDs to reclaim before performing a flush */
91         pos = find_next_bit(sev_reclaim_asid_bitmap, max_sev_asid, min_asid);
92         if (pos >= max_asid)
93                 return false;
94
95         if (sev_flush_asids())
96                 return false;
97
98         /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
99         bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
100                    max_sev_asid);
101         bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid);
102
103         return true;
104 }
105
106 static int sev_asid_new(struct kvm_sev_info *sev)
107 {
108         int pos, min_asid, max_asid, ret;
109         bool retry = true;
110         enum misc_res_type type;
111
112         type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
113         WARN_ON(sev->misc_cg);
114         sev->misc_cg = get_current_misc_cg();
115         ret = misc_cg_try_charge(type, sev->misc_cg, 1);
116         if (ret) {
117                 put_misc_cg(sev->misc_cg);
118                 sev->misc_cg = NULL;
119                 return ret;
120         }
121
122         mutex_lock(&sev_bitmap_lock);
123
124         /*
125          * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
126          * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
127          */
128         min_asid = sev->es_active ? 0 : min_sev_asid - 1;
129         max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
130 again:
131         pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_asid);
132         if (pos >= max_asid) {
133                 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
134                         retry = false;
135                         goto again;
136                 }
137                 mutex_unlock(&sev_bitmap_lock);
138                 ret = -EBUSY;
139                 goto e_uncharge;
140         }
141
142         __set_bit(pos, sev_asid_bitmap);
143
144         mutex_unlock(&sev_bitmap_lock);
145
146         return pos + 1;
147 e_uncharge:
148         misc_cg_uncharge(type, sev->misc_cg, 1);
149         put_misc_cg(sev->misc_cg);
150         sev->misc_cg = NULL;
151         return ret;
152 }
153
154 static int sev_get_asid(struct kvm *kvm)
155 {
156         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
157
158         return sev->asid;
159 }
160
161 static void sev_asid_free(struct kvm_sev_info *sev)
162 {
163         struct svm_cpu_data *sd;
164         int cpu, pos;
165         enum misc_res_type type;
166
167         mutex_lock(&sev_bitmap_lock);
168
169         pos = sev->asid - 1;
170         __set_bit(pos, sev_reclaim_asid_bitmap);
171
172         for_each_possible_cpu(cpu) {
173                 sd = per_cpu(svm_data, cpu);
174                 sd->sev_vmcbs[pos] = NULL;
175         }
176
177         mutex_unlock(&sev_bitmap_lock);
178
179         type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
180         misc_cg_uncharge(type, sev->misc_cg, 1);
181         put_misc_cg(sev->misc_cg);
182         sev->misc_cg = NULL;
183 }
184
185 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
186 {
187         struct sev_data_decommission *decommission;
188         struct sev_data_deactivate *data;
189
190         if (!handle)
191                 return;
192
193         data = kzalloc(sizeof(*data), GFP_KERNEL);
194         if (!data)
195                 return;
196
197         /* deactivate handle */
198         data->handle = handle;
199
200         /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
201         down_read(&sev_deactivate_lock);
202         sev_guest_deactivate(data, NULL);
203         up_read(&sev_deactivate_lock);
204
205         kfree(data);
206
207         decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
208         if (!decommission)
209                 return;
210
211         /* decommission handle */
212         decommission->handle = handle;
213         sev_guest_decommission(decommission, NULL);
214
215         kfree(decommission);
216 }
217
218 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
219 {
220         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
221         int asid, ret;
222
223         ret = -EBUSY;
224         if (unlikely(sev->active))
225                 return ret;
226
227         asid = sev_asid_new(sev);
228         if (asid < 0)
229                 return ret;
230         sev->asid = asid;
231
232         ret = sev_platform_init(&argp->error);
233         if (ret)
234                 goto e_free;
235
236         sev->active = true;
237         INIT_LIST_HEAD(&sev->regions_list);
238
239         return 0;
240
241 e_free:
242         sev_asid_free(sev);
243         sev->asid = 0;
244         return ret;
245 }
246
247 static int sev_es_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
248 {
249         if (!sev_es)
250                 return -ENOTTY;
251
252         to_kvm_svm(kvm)->sev_info.es_active = true;
253
254         return sev_guest_init(kvm, argp);
255 }
256
257 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
258 {
259         struct sev_data_activate *data;
260         int asid = sev_get_asid(kvm);
261         int ret;
262
263         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
264         if (!data)
265                 return -ENOMEM;
266
267         /* activate ASID on the given handle */
268         data->handle = handle;
269         data->asid   = asid;
270         ret = sev_guest_activate(data, error);
271         kfree(data);
272
273         return ret;
274 }
275
276 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
277 {
278         struct fd f;
279         int ret;
280
281         f = fdget(fd);
282         if (!f.file)
283                 return -EBADF;
284
285         ret = sev_issue_cmd_external_user(f.file, id, data, error);
286
287         fdput(f);
288         return ret;
289 }
290
291 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
292 {
293         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
294
295         return __sev_issue_cmd(sev->fd, id, data, error);
296 }
297
298 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
299 {
300         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
301         struct sev_data_launch_start *start;
302         struct kvm_sev_launch_start params;
303         void *dh_blob, *session_blob;
304         int *error = &argp->error;
305         int ret;
306
307         if (!sev_guest(kvm))
308                 return -ENOTTY;
309
310         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
311                 return -EFAULT;
312
313         start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
314         if (!start)
315                 return -ENOMEM;
316
317         dh_blob = NULL;
318         if (params.dh_uaddr) {
319                 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
320                 if (IS_ERR(dh_blob)) {
321                         ret = PTR_ERR(dh_blob);
322                         goto e_free;
323                 }
324
325                 start->dh_cert_address = __sme_set(__pa(dh_blob));
326                 start->dh_cert_len = params.dh_len;
327         }
328
329         session_blob = NULL;
330         if (params.session_uaddr) {
331                 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
332                 if (IS_ERR(session_blob)) {
333                         ret = PTR_ERR(session_blob);
334                         goto e_free_dh;
335                 }
336
337                 start->session_address = __sme_set(__pa(session_blob));
338                 start->session_len = params.session_len;
339         }
340
341         start->handle = params.handle;
342         start->policy = params.policy;
343
344         /* create memory encryption context */
345         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
346         if (ret)
347                 goto e_free_session;
348
349         /* Bind ASID to this guest */
350         ret = sev_bind_asid(kvm, start->handle, error);
351         if (ret)
352                 goto e_free_session;
353
354         /* return handle to userspace */
355         params.handle = start->handle;
356         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
357                 sev_unbind_asid(kvm, start->handle);
358                 ret = -EFAULT;
359                 goto e_free_session;
360         }
361
362         sev->handle = start->handle;
363         sev->fd = argp->sev_fd;
364
365 e_free_session:
366         kfree(session_blob);
367 e_free_dh:
368         kfree(dh_blob);
369 e_free:
370         kfree(start);
371         return ret;
372 }
373
374 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
375                                     unsigned long ulen, unsigned long *n,
376                                     int write)
377 {
378         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
379         unsigned long npages, size;
380         int npinned;
381         unsigned long locked, lock_limit;
382         struct page **pages;
383         unsigned long first, last;
384         int ret;
385
386         lockdep_assert_held(&kvm->lock);
387
388         if (ulen == 0 || uaddr + ulen < uaddr)
389                 return ERR_PTR(-EINVAL);
390
391         /* Calculate number of pages. */
392         first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
393         last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
394         npages = (last - first + 1);
395
396         locked = sev->pages_locked + npages;
397         lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
398         if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
399                 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
400                 return ERR_PTR(-ENOMEM);
401         }
402
403         if (WARN_ON_ONCE(npages > INT_MAX))
404                 return ERR_PTR(-EINVAL);
405
406         /* Avoid using vmalloc for smaller buffers. */
407         size = npages * sizeof(struct page *);
408         if (size > PAGE_SIZE)
409                 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
410         else
411                 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
412
413         if (!pages)
414                 return ERR_PTR(-ENOMEM);
415
416         /* Pin the user virtual address. */
417         npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
418         if (npinned != npages) {
419                 pr_err("SEV: Failure locking %lu pages.\n", npages);
420                 ret = -ENOMEM;
421                 goto err;
422         }
423
424         *n = npages;
425         sev->pages_locked = locked;
426
427         return pages;
428
429 err:
430         if (npinned > 0)
431                 unpin_user_pages(pages, npinned);
432
433         kvfree(pages);
434         return ERR_PTR(ret);
435 }
436
437 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
438                              unsigned long npages)
439 {
440         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
441
442         unpin_user_pages(pages, npages);
443         kvfree(pages);
444         sev->pages_locked -= npages;
445 }
446
447 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
448 {
449         uint8_t *page_virtual;
450         unsigned long i;
451
452         if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
453             pages == NULL)
454                 return;
455
456         for (i = 0; i < npages; i++) {
457                 page_virtual = kmap_atomic(pages[i]);
458                 clflush_cache_range(page_virtual, PAGE_SIZE);
459                 kunmap_atomic(page_virtual);
460         }
461 }
462
463 static unsigned long get_num_contig_pages(unsigned long idx,
464                                 struct page **inpages, unsigned long npages)
465 {
466         unsigned long paddr, next_paddr;
467         unsigned long i = idx + 1, pages = 1;
468
469         /* find the number of contiguous pages starting from idx */
470         paddr = __sme_page_pa(inpages[idx]);
471         while (i < npages) {
472                 next_paddr = __sme_page_pa(inpages[i++]);
473                 if ((paddr + PAGE_SIZE) == next_paddr) {
474                         pages++;
475                         paddr = next_paddr;
476                         continue;
477                 }
478                 break;
479         }
480
481         return pages;
482 }
483
484 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
485 {
486         unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
487         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
488         struct kvm_sev_launch_update_data params;
489         struct sev_data_launch_update_data *data;
490         struct page **inpages;
491         int ret;
492
493         if (!sev_guest(kvm))
494                 return -ENOTTY;
495
496         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
497                 return -EFAULT;
498
499         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
500         if (!data)
501                 return -ENOMEM;
502
503         vaddr = params.uaddr;
504         size = params.len;
505         vaddr_end = vaddr + size;
506
507         /* Lock the user memory. */
508         inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
509         if (IS_ERR(inpages)) {
510                 ret = PTR_ERR(inpages);
511                 goto e_free;
512         }
513
514         /*
515          * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
516          * place; the cache may contain the data that was written unencrypted.
517          */
518         sev_clflush_pages(inpages, npages);
519
520         for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
521                 int offset, len;
522
523                 /*
524                  * If the user buffer is not page-aligned, calculate the offset
525                  * within the page.
526                  */
527                 offset = vaddr & (PAGE_SIZE - 1);
528
529                 /* Calculate the number of pages that can be encrypted in one go. */
530                 pages = get_num_contig_pages(i, inpages, npages);
531
532                 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
533
534                 data->handle = sev->handle;
535                 data->len = len;
536                 data->address = __sme_page_pa(inpages[i]) + offset;
537                 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
538                 if (ret)
539                         goto e_unpin;
540
541                 size -= len;
542                 next_vaddr = vaddr + len;
543         }
544
545 e_unpin:
546         /* content of memory is updated, mark pages dirty */
547         for (i = 0; i < npages; i++) {
548                 set_page_dirty_lock(inpages[i]);
549                 mark_page_accessed(inpages[i]);
550         }
551         /* unlock the user pages */
552         sev_unpin_memory(kvm, inpages, npages);
553 e_free:
554         kfree(data);
555         return ret;
556 }
557
558 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
559 {
560         struct vmcb_save_area *save = &svm->vmcb->save;
561
562         /* Check some debug related fields before encrypting the VMSA */
563         if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1))
564                 return -EINVAL;
565
566         /* Sync registgers */
567         save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
568         save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
569         save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
570         save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
571         save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
572         save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
573         save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
574         save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
575 #ifdef CONFIG_X86_64
576         save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
577         save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
578         save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
579         save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
580         save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
581         save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
582         save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
583         save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
584 #endif
585         save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
586
587         /* Sync some non-GPR registers before encrypting */
588         save->xcr0 = svm->vcpu.arch.xcr0;
589         save->pkru = svm->vcpu.arch.pkru;
590         save->xss  = svm->vcpu.arch.ia32_xss;
591
592         /*
593          * SEV-ES will use a VMSA that is pointed to by the VMCB, not
594          * the traditional VMSA that is part of the VMCB. Copy the
595          * traditional VMSA as it has been built so far (in prep
596          * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
597          */
598         memcpy(svm->vmsa, save, sizeof(*save));
599
600         return 0;
601 }
602
603 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
604 {
605         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
606         struct sev_data_launch_update_vmsa *vmsa;
607         int i, ret;
608
609         if (!sev_es_guest(kvm))
610                 return -ENOTTY;
611
612         vmsa = kzalloc(sizeof(*vmsa), GFP_KERNEL);
613         if (!vmsa)
614                 return -ENOMEM;
615
616         for (i = 0; i < kvm->created_vcpus; i++) {
617                 struct vcpu_svm *svm = to_svm(kvm->vcpus[i]);
618
619                 /* Perform some pre-encryption checks against the VMSA */
620                 ret = sev_es_sync_vmsa(svm);
621                 if (ret)
622                         goto e_free;
623
624                 /*
625                  * The LAUNCH_UPDATE_VMSA command will perform in-place
626                  * encryption of the VMSA memory content (i.e it will write
627                  * the same memory region with the guest's key), so invalidate
628                  * it first.
629                  */
630                 clflush_cache_range(svm->vmsa, PAGE_SIZE);
631
632                 vmsa->handle = sev->handle;
633                 vmsa->address = __sme_pa(svm->vmsa);
634                 vmsa->len = PAGE_SIZE;
635                 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, vmsa,
636                                     &argp->error);
637                 if (ret)
638                         goto e_free;
639
640                 svm->vcpu.arch.guest_state_protected = true;
641         }
642
643 e_free:
644         kfree(vmsa);
645         return ret;
646 }
647
648 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
649 {
650         void __user *measure = (void __user *)(uintptr_t)argp->data;
651         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
652         struct sev_data_launch_measure *data;
653         struct kvm_sev_launch_measure params;
654         void __user *p = NULL;
655         void *blob = NULL;
656         int ret;
657
658         if (!sev_guest(kvm))
659                 return -ENOTTY;
660
661         if (copy_from_user(&params, measure, sizeof(params)))
662                 return -EFAULT;
663
664         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
665         if (!data)
666                 return -ENOMEM;
667
668         /* User wants to query the blob length */
669         if (!params.len)
670                 goto cmd;
671
672         p = (void __user *)(uintptr_t)params.uaddr;
673         if (p) {
674                 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
675                         ret = -EINVAL;
676                         goto e_free;
677                 }
678
679                 ret = -ENOMEM;
680                 blob = kmalloc(params.len, GFP_KERNEL);
681                 if (!blob)
682                         goto e_free;
683
684                 data->address = __psp_pa(blob);
685                 data->len = params.len;
686         }
687
688 cmd:
689         data->handle = sev->handle;
690         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
691
692         /*
693          * If we query the session length, FW responded with expected data.
694          */
695         if (!params.len)
696                 goto done;
697
698         if (ret)
699                 goto e_free_blob;
700
701         if (blob) {
702                 if (copy_to_user(p, blob, params.len))
703                         ret = -EFAULT;
704         }
705
706 done:
707         params.len = data->len;
708         if (copy_to_user(measure, &params, sizeof(params)))
709                 ret = -EFAULT;
710 e_free_blob:
711         kfree(blob);
712 e_free:
713         kfree(data);
714         return ret;
715 }
716
717 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
718 {
719         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
720         struct sev_data_launch_finish *data;
721         int ret;
722
723         if (!sev_guest(kvm))
724                 return -ENOTTY;
725
726         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
727         if (!data)
728                 return -ENOMEM;
729
730         data->handle = sev->handle;
731         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
732
733         kfree(data);
734         return ret;
735 }
736
737 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
738 {
739         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
740         struct kvm_sev_guest_status params;
741         struct sev_data_guest_status *data;
742         int ret;
743
744         if (!sev_guest(kvm))
745                 return -ENOTTY;
746
747         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
748         if (!data)
749                 return -ENOMEM;
750
751         data->handle = sev->handle;
752         ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
753         if (ret)
754                 goto e_free;
755
756         params.policy = data->policy;
757         params.state = data->state;
758         params.handle = data->handle;
759
760         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
761                 ret = -EFAULT;
762 e_free:
763         kfree(data);
764         return ret;
765 }
766
767 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
768                                unsigned long dst, int size,
769                                int *error, bool enc)
770 {
771         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
772         struct sev_data_dbg *data;
773         int ret;
774
775         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
776         if (!data)
777                 return -ENOMEM;
778
779         data->handle = sev->handle;
780         data->dst_addr = dst;
781         data->src_addr = src;
782         data->len = size;
783
784         ret = sev_issue_cmd(kvm,
785                             enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
786                             data, error);
787         kfree(data);
788         return ret;
789 }
790
791 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
792                              unsigned long dst_paddr, int sz, int *err)
793 {
794         int offset;
795
796         /*
797          * Its safe to read more than we are asked, caller should ensure that
798          * destination has enough space.
799          */
800         offset = src_paddr & 15;
801         src_paddr = round_down(src_paddr, 16);
802         sz = round_up(sz + offset, 16);
803
804         return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
805 }
806
807 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
808                                   unsigned long __user dst_uaddr,
809                                   unsigned long dst_paddr,
810                                   int size, int *err)
811 {
812         struct page *tpage = NULL;
813         int ret, offset;
814
815         /* if inputs are not 16-byte then use intermediate buffer */
816         if (!IS_ALIGNED(dst_paddr, 16) ||
817             !IS_ALIGNED(paddr,     16) ||
818             !IS_ALIGNED(size,      16)) {
819                 tpage = (void *)alloc_page(GFP_KERNEL);
820                 if (!tpage)
821                         return -ENOMEM;
822
823                 dst_paddr = __sme_page_pa(tpage);
824         }
825
826         ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
827         if (ret)
828                 goto e_free;
829
830         if (tpage) {
831                 offset = paddr & 15;
832                 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
833                                  page_address(tpage) + offset, size))
834                         ret = -EFAULT;
835         }
836
837 e_free:
838         if (tpage)
839                 __free_page(tpage);
840
841         return ret;
842 }
843
844 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
845                                   unsigned long __user vaddr,
846                                   unsigned long dst_paddr,
847                                   unsigned long __user dst_vaddr,
848                                   int size, int *error)
849 {
850         struct page *src_tpage = NULL;
851         struct page *dst_tpage = NULL;
852         int ret, len = size;
853
854         /* If source buffer is not aligned then use an intermediate buffer */
855         if (!IS_ALIGNED(vaddr, 16)) {
856                 src_tpage = alloc_page(GFP_KERNEL);
857                 if (!src_tpage)
858                         return -ENOMEM;
859
860                 if (copy_from_user(page_address(src_tpage),
861                                 (void __user *)(uintptr_t)vaddr, size)) {
862                         __free_page(src_tpage);
863                         return -EFAULT;
864                 }
865
866                 paddr = __sme_page_pa(src_tpage);
867         }
868
869         /*
870          *  If destination buffer or length is not aligned then do read-modify-write:
871          *   - decrypt destination in an intermediate buffer
872          *   - copy the source buffer in an intermediate buffer
873          *   - use the intermediate buffer as source buffer
874          */
875         if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
876                 int dst_offset;
877
878                 dst_tpage = alloc_page(GFP_KERNEL);
879                 if (!dst_tpage) {
880                         ret = -ENOMEM;
881                         goto e_free;
882                 }
883
884                 ret = __sev_dbg_decrypt(kvm, dst_paddr,
885                                         __sme_page_pa(dst_tpage), size, error);
886                 if (ret)
887                         goto e_free;
888
889                 /*
890                  *  If source is kernel buffer then use memcpy() otherwise
891                  *  copy_from_user().
892                  */
893                 dst_offset = dst_paddr & 15;
894
895                 if (src_tpage)
896                         memcpy(page_address(dst_tpage) + dst_offset,
897                                page_address(src_tpage), size);
898                 else {
899                         if (copy_from_user(page_address(dst_tpage) + dst_offset,
900                                            (void __user *)(uintptr_t)vaddr, size)) {
901                                 ret = -EFAULT;
902                                 goto e_free;
903                         }
904                 }
905
906                 paddr = __sme_page_pa(dst_tpage);
907                 dst_paddr = round_down(dst_paddr, 16);
908                 len = round_up(size, 16);
909         }
910
911         ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
912
913 e_free:
914         if (src_tpage)
915                 __free_page(src_tpage);
916         if (dst_tpage)
917                 __free_page(dst_tpage);
918         return ret;
919 }
920
921 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
922 {
923         unsigned long vaddr, vaddr_end, next_vaddr;
924         unsigned long dst_vaddr;
925         struct page **src_p, **dst_p;
926         struct kvm_sev_dbg debug;
927         unsigned long n;
928         unsigned int size;
929         int ret;
930
931         if (!sev_guest(kvm))
932                 return -ENOTTY;
933
934         if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
935                 return -EFAULT;
936
937         if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
938                 return -EINVAL;
939         if (!debug.dst_uaddr)
940                 return -EINVAL;
941
942         vaddr = debug.src_uaddr;
943         size = debug.len;
944         vaddr_end = vaddr + size;
945         dst_vaddr = debug.dst_uaddr;
946
947         for (; vaddr < vaddr_end; vaddr = next_vaddr) {
948                 int len, s_off, d_off;
949
950                 /* lock userspace source and destination page */
951                 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
952                 if (IS_ERR(src_p))
953                         return PTR_ERR(src_p);
954
955                 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
956                 if (IS_ERR(dst_p)) {
957                         sev_unpin_memory(kvm, src_p, n);
958                         return PTR_ERR(dst_p);
959                 }
960
961                 /*
962                  * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
963                  * the pages; flush the destination too so that future accesses do not
964                  * see stale data.
965                  */
966                 sev_clflush_pages(src_p, 1);
967                 sev_clflush_pages(dst_p, 1);
968
969                 /*
970                  * Since user buffer may not be page aligned, calculate the
971                  * offset within the page.
972                  */
973                 s_off = vaddr & ~PAGE_MASK;
974                 d_off = dst_vaddr & ~PAGE_MASK;
975                 len = min_t(size_t, (PAGE_SIZE - s_off), size);
976
977                 if (dec)
978                         ret = __sev_dbg_decrypt_user(kvm,
979                                                      __sme_page_pa(src_p[0]) + s_off,
980                                                      dst_vaddr,
981                                                      __sme_page_pa(dst_p[0]) + d_off,
982                                                      len, &argp->error);
983                 else
984                         ret = __sev_dbg_encrypt_user(kvm,
985                                                      __sme_page_pa(src_p[0]) + s_off,
986                                                      vaddr,
987                                                      __sme_page_pa(dst_p[0]) + d_off,
988                                                      dst_vaddr,
989                                                      len, &argp->error);
990
991                 sev_unpin_memory(kvm, src_p, n);
992                 sev_unpin_memory(kvm, dst_p, n);
993
994                 if (ret)
995                         goto err;
996
997                 next_vaddr = vaddr + len;
998                 dst_vaddr = dst_vaddr + len;
999                 size -= len;
1000         }
1001 err:
1002         return ret;
1003 }
1004
1005 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1006 {
1007         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1008         struct sev_data_launch_secret *data;
1009         struct kvm_sev_launch_secret params;
1010         struct page **pages;
1011         void *blob, *hdr;
1012         unsigned long n, i;
1013         int ret, offset;
1014
1015         if (!sev_guest(kvm))
1016                 return -ENOTTY;
1017
1018         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1019                 return -EFAULT;
1020
1021         pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1022         if (IS_ERR(pages))
1023                 return PTR_ERR(pages);
1024
1025         /*
1026          * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1027          * place; the cache may contain the data that was written unencrypted.
1028          */
1029         sev_clflush_pages(pages, n);
1030
1031         /*
1032          * The secret must be copied into contiguous memory region, lets verify
1033          * that userspace memory pages are contiguous before we issue command.
1034          */
1035         if (get_num_contig_pages(0, pages, n) != n) {
1036                 ret = -EINVAL;
1037                 goto e_unpin_memory;
1038         }
1039
1040         ret = -ENOMEM;
1041         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
1042         if (!data)
1043                 goto e_unpin_memory;
1044
1045         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1046         data->guest_address = __sme_page_pa(pages[0]) + offset;
1047         data->guest_len = params.guest_len;
1048
1049         blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1050         if (IS_ERR(blob)) {
1051                 ret = PTR_ERR(blob);
1052                 goto e_free;
1053         }
1054
1055         data->trans_address = __psp_pa(blob);
1056         data->trans_len = params.trans_len;
1057
1058         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1059         if (IS_ERR(hdr)) {
1060                 ret = PTR_ERR(hdr);
1061                 goto e_free_blob;
1062         }
1063         data->hdr_address = __psp_pa(hdr);
1064         data->hdr_len = params.hdr_len;
1065
1066         data->handle = sev->handle;
1067         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
1068
1069         kfree(hdr);
1070
1071 e_free_blob:
1072         kfree(blob);
1073 e_free:
1074         kfree(data);
1075 e_unpin_memory:
1076         /* content of memory is updated, mark pages dirty */
1077         for (i = 0; i < n; i++) {
1078                 set_page_dirty_lock(pages[i]);
1079                 mark_page_accessed(pages[i]);
1080         }
1081         sev_unpin_memory(kvm, pages, n);
1082         return ret;
1083 }
1084
1085 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1086 {
1087         void __user *report = (void __user *)(uintptr_t)argp->data;
1088         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1089         struct sev_data_attestation_report *data;
1090         struct kvm_sev_attestation_report params;
1091         void __user *p;
1092         void *blob = NULL;
1093         int ret;
1094
1095         if (!sev_guest(kvm))
1096                 return -ENOTTY;
1097
1098         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1099                 return -EFAULT;
1100
1101         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
1102         if (!data)
1103                 return -ENOMEM;
1104
1105         /* User wants to query the blob length */
1106         if (!params.len)
1107                 goto cmd;
1108
1109         p = (void __user *)(uintptr_t)params.uaddr;
1110         if (p) {
1111                 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
1112                         ret = -EINVAL;
1113                         goto e_free;
1114                 }
1115
1116                 ret = -ENOMEM;
1117                 blob = kmalloc(params.len, GFP_KERNEL);
1118                 if (!blob)
1119                         goto e_free;
1120
1121                 data->address = __psp_pa(blob);
1122                 data->len = params.len;
1123                 memcpy(data->mnonce, params.mnonce, sizeof(params.mnonce));
1124         }
1125 cmd:
1126         data->handle = sev->handle;
1127         ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, data, &argp->error);
1128         /*
1129          * If we query the session length, FW responded with expected data.
1130          */
1131         if (!params.len)
1132                 goto done;
1133
1134         if (ret)
1135                 goto e_free_blob;
1136
1137         if (blob) {
1138                 if (copy_to_user(p, blob, params.len))
1139                         ret = -EFAULT;
1140         }
1141
1142 done:
1143         params.len = data->len;
1144         if (copy_to_user(report, &params, sizeof(params)))
1145                 ret = -EFAULT;
1146 e_free_blob:
1147         kfree(blob);
1148 e_free:
1149         kfree(data);
1150         return ret;
1151 }
1152
1153 int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
1154 {
1155         struct kvm_sev_cmd sev_cmd;
1156         int r;
1157
1158         if (!svm_sev_enabled() || !sev)
1159                 return -ENOTTY;
1160
1161         if (!argp)
1162                 return 0;
1163
1164         if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1165                 return -EFAULT;
1166
1167         mutex_lock(&kvm->lock);
1168
1169         switch (sev_cmd.id) {
1170         case KVM_SEV_INIT:
1171                 r = sev_guest_init(kvm, &sev_cmd);
1172                 break;
1173         case KVM_SEV_ES_INIT:
1174                 r = sev_es_guest_init(kvm, &sev_cmd);
1175                 break;
1176         case KVM_SEV_LAUNCH_START:
1177                 r = sev_launch_start(kvm, &sev_cmd);
1178                 break;
1179         case KVM_SEV_LAUNCH_UPDATE_DATA:
1180                 r = sev_launch_update_data(kvm, &sev_cmd);
1181                 break;
1182         case KVM_SEV_LAUNCH_UPDATE_VMSA:
1183                 r = sev_launch_update_vmsa(kvm, &sev_cmd);
1184                 break;
1185         case KVM_SEV_LAUNCH_MEASURE:
1186                 r = sev_launch_measure(kvm, &sev_cmd);
1187                 break;
1188         case KVM_SEV_LAUNCH_FINISH:
1189                 r = sev_launch_finish(kvm, &sev_cmd);
1190                 break;
1191         case KVM_SEV_GUEST_STATUS:
1192                 r = sev_guest_status(kvm, &sev_cmd);
1193                 break;
1194         case KVM_SEV_DBG_DECRYPT:
1195                 r = sev_dbg_crypt(kvm, &sev_cmd, true);
1196                 break;
1197         case KVM_SEV_DBG_ENCRYPT:
1198                 r = sev_dbg_crypt(kvm, &sev_cmd, false);
1199                 break;
1200         case KVM_SEV_LAUNCH_SECRET:
1201                 r = sev_launch_secret(kvm, &sev_cmd);
1202                 break;
1203         case KVM_SEV_GET_ATTESTATION_REPORT:
1204                 r = sev_get_attestation_report(kvm, &sev_cmd);
1205                 break;
1206         default:
1207                 r = -EINVAL;
1208                 goto out;
1209         }
1210
1211         if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1212                 r = -EFAULT;
1213
1214 out:
1215         mutex_unlock(&kvm->lock);
1216         return r;
1217 }
1218
1219 int svm_register_enc_region(struct kvm *kvm,
1220                             struct kvm_enc_region *range)
1221 {
1222         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1223         struct enc_region *region;
1224         int ret = 0;
1225
1226         if (!sev_guest(kvm))
1227                 return -ENOTTY;
1228
1229         if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1230                 return -EINVAL;
1231
1232         region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1233         if (!region)
1234                 return -ENOMEM;
1235
1236         mutex_lock(&kvm->lock);
1237         region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1238         if (IS_ERR(region->pages)) {
1239                 ret = PTR_ERR(region->pages);
1240                 mutex_unlock(&kvm->lock);
1241                 goto e_free;
1242         }
1243
1244         region->uaddr = range->addr;
1245         region->size = range->size;
1246
1247         list_add_tail(&region->list, &sev->regions_list);
1248         mutex_unlock(&kvm->lock);
1249
1250         /*
1251          * The guest may change the memory encryption attribute from C=0 -> C=1
1252          * or vice versa for this memory range. Lets make sure caches are
1253          * flushed to ensure that guest data gets written into memory with
1254          * correct C-bit.
1255          */
1256         sev_clflush_pages(region->pages, region->npages);
1257
1258         return ret;
1259
1260 e_free:
1261         kfree(region);
1262         return ret;
1263 }
1264
1265 static struct enc_region *
1266 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1267 {
1268         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1269         struct list_head *head = &sev->regions_list;
1270         struct enc_region *i;
1271
1272         list_for_each_entry(i, head, list) {
1273                 if (i->uaddr == range->addr &&
1274                     i->size == range->size)
1275                         return i;
1276         }
1277
1278         return NULL;
1279 }
1280
1281 static void __unregister_enc_region_locked(struct kvm *kvm,
1282                                            struct enc_region *region)
1283 {
1284         sev_unpin_memory(kvm, region->pages, region->npages);
1285         list_del(&region->list);
1286         kfree(region);
1287 }
1288
1289 int svm_unregister_enc_region(struct kvm *kvm,
1290                               struct kvm_enc_region *range)
1291 {
1292         struct enc_region *region;
1293         int ret;
1294
1295         mutex_lock(&kvm->lock);
1296
1297         if (!sev_guest(kvm)) {
1298                 ret = -ENOTTY;
1299                 goto failed;
1300         }
1301
1302         region = find_enc_region(kvm, range);
1303         if (!region) {
1304                 ret = -EINVAL;
1305                 goto failed;
1306         }
1307
1308         /*
1309          * Ensure that all guest tagged cache entries are flushed before
1310          * releasing the pages back to the system for use. CLFLUSH will
1311          * not do this, so issue a WBINVD.
1312          */
1313         wbinvd_on_all_cpus();
1314
1315         __unregister_enc_region_locked(kvm, region);
1316
1317         mutex_unlock(&kvm->lock);
1318         return 0;
1319
1320 failed:
1321         mutex_unlock(&kvm->lock);
1322         return ret;
1323 }
1324
1325 void sev_vm_destroy(struct kvm *kvm)
1326 {
1327         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1328         struct list_head *head = &sev->regions_list;
1329         struct list_head *pos, *q;
1330
1331         if (!sev_guest(kvm))
1332                 return;
1333
1334         mutex_lock(&kvm->lock);
1335
1336         /*
1337          * Ensure that all guest tagged cache entries are flushed before
1338          * releasing the pages back to the system for use. CLFLUSH will
1339          * not do this, so issue a WBINVD.
1340          */
1341         wbinvd_on_all_cpus();
1342
1343         /*
1344          * if userspace was terminated before unregistering the memory regions
1345          * then lets unpin all the registered memory.
1346          */
1347         if (!list_empty(head)) {
1348                 list_for_each_safe(pos, q, head) {
1349                         __unregister_enc_region_locked(kvm,
1350                                 list_entry(pos, struct enc_region, list));
1351                         cond_resched();
1352                 }
1353         }
1354
1355         mutex_unlock(&kvm->lock);
1356
1357         sev_unbind_asid(kvm, sev->handle);
1358         sev_asid_free(sev);
1359 }
1360
1361 void __init sev_hardware_setup(void)
1362 {
1363         unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
1364         bool sev_es_supported = false;
1365         bool sev_supported = false;
1366
1367         /* Does the CPU support SEV? */
1368         if (!boot_cpu_has(X86_FEATURE_SEV))
1369                 goto out;
1370
1371         /* Retrieve SEV CPUID information */
1372         cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
1373
1374         /* Set encryption bit location for SEV-ES guests */
1375         sev_enc_bit = ebx & 0x3f;
1376
1377         /* Maximum number of encrypted guests supported simultaneously */
1378         max_sev_asid = ecx;
1379
1380         if (!svm_sev_enabled())
1381                 goto out;
1382
1383         /* Minimum ASID value that should be used for SEV guest */
1384         min_sev_asid = edx;
1385
1386         /* Initialize SEV ASID bitmaps */
1387         sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1388         if (!sev_asid_bitmap)
1389                 goto out;
1390
1391         sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1392         if (!sev_reclaim_asid_bitmap)
1393                 goto out;
1394
1395         sev_asid_count = max_sev_asid - min_sev_asid + 1;
1396         if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count))
1397                 goto out;
1398
1399         pr_info("SEV supported: %u ASIDs\n", sev_asid_count);
1400         sev_supported = true;
1401
1402         /* SEV-ES support requested? */
1403         if (!sev_es)
1404                 goto out;
1405
1406         /* Does the CPU support SEV-ES? */
1407         if (!boot_cpu_has(X86_FEATURE_SEV_ES))
1408                 goto out;
1409
1410         /* Has the system been allocated ASIDs for SEV-ES? */
1411         if (min_sev_asid == 1)
1412                 goto out;
1413
1414         sev_es_asid_count = min_sev_asid - 1;
1415         if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count))
1416                 goto out;
1417
1418         pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count);
1419         sev_es_supported = true;
1420
1421 out:
1422         sev = sev_supported;
1423         sev_es = sev_es_supported;
1424 }
1425
1426 void sev_hardware_teardown(void)
1427 {
1428         if (!svm_sev_enabled())
1429                 return;
1430
1431         bitmap_free(sev_asid_bitmap);
1432         bitmap_free(sev_reclaim_asid_bitmap);
1433         misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
1434         misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
1435
1436         sev_flush_asids();
1437 }
1438
1439 /*
1440  * Pages used by hardware to hold guest encrypted state must be flushed before
1441  * returning them to the system.
1442  */
1443 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va,
1444                                    unsigned long len)
1445 {
1446         /*
1447          * If hardware enforced cache coherency for encrypted mappings of the
1448          * same physical page is supported, nothing to do.
1449          */
1450         if (boot_cpu_has(X86_FEATURE_SME_COHERENT))
1451                 return;
1452
1453         /*
1454          * If the VM Page Flush MSR is supported, use it to flush the page
1455          * (using the page virtual address and the guest ASID).
1456          */
1457         if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) {
1458                 struct kvm_sev_info *sev;
1459                 unsigned long va_start;
1460                 u64 start, stop;
1461
1462                 /* Align start and stop to page boundaries. */
1463                 va_start = (unsigned long)va;
1464                 start = (u64)va_start & PAGE_MASK;
1465                 stop = PAGE_ALIGN((u64)va_start + len);
1466
1467                 if (start < stop) {
1468                         sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
1469
1470                         while (start < stop) {
1471                                 wrmsrl(MSR_AMD64_VM_PAGE_FLUSH,
1472                                        start | sev->asid);
1473
1474                                 start += PAGE_SIZE;
1475                         }
1476
1477                         return;
1478                 }
1479
1480                 WARN(1, "Address overflow, using WBINVD\n");
1481         }
1482
1483         /*
1484          * Hardware should always have one of the above features,
1485          * but if not, use WBINVD and issue a warning.
1486          */
1487         WARN_ONCE(1, "Using WBINVD to flush guest memory\n");
1488         wbinvd_on_all_cpus();
1489 }
1490
1491 void sev_free_vcpu(struct kvm_vcpu *vcpu)
1492 {
1493         struct vcpu_svm *svm;
1494
1495         if (!sev_es_guest(vcpu->kvm))
1496                 return;
1497
1498         svm = to_svm(vcpu);
1499
1500         if (vcpu->arch.guest_state_protected)
1501                 sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE);
1502         __free_page(virt_to_page(svm->vmsa));
1503
1504         if (svm->ghcb_sa_free)
1505                 kfree(svm->ghcb_sa);
1506 }
1507
1508 static void dump_ghcb(struct vcpu_svm *svm)
1509 {
1510         struct ghcb *ghcb = svm->ghcb;
1511         unsigned int nbits;
1512
1513         /* Re-use the dump_invalid_vmcb module parameter */
1514         if (!dump_invalid_vmcb) {
1515                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
1516                 return;
1517         }
1518
1519         nbits = sizeof(ghcb->save.valid_bitmap) * 8;
1520
1521         pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
1522         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
1523                ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
1524         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
1525                ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
1526         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
1527                ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
1528         pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
1529                ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
1530         pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
1531 }
1532
1533 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
1534 {
1535         struct kvm_vcpu *vcpu = &svm->vcpu;
1536         struct ghcb *ghcb = svm->ghcb;
1537
1538         /*
1539          * The GHCB protocol so far allows for the following data
1540          * to be returned:
1541          *   GPRs RAX, RBX, RCX, RDX
1542          *
1543          * Copy their values, even if they may not have been written during the
1544          * VM-Exit.  It's the guest's responsibility to not consume random data.
1545          */
1546         ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
1547         ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
1548         ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
1549         ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
1550 }
1551
1552 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
1553 {
1554         struct vmcb_control_area *control = &svm->vmcb->control;
1555         struct kvm_vcpu *vcpu = &svm->vcpu;
1556         struct ghcb *ghcb = svm->ghcb;
1557         u64 exit_code;
1558
1559         /*
1560          * The GHCB protocol so far allows for the following data
1561          * to be supplied:
1562          *   GPRs RAX, RBX, RCX, RDX
1563          *   XCR0
1564          *   CPL
1565          *
1566          * VMMCALL allows the guest to provide extra registers. KVM also
1567          * expects RSI for hypercalls, so include that, too.
1568          *
1569          * Copy their values to the appropriate location if supplied.
1570          */
1571         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
1572
1573         vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
1574         vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
1575         vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
1576         vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
1577         vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
1578
1579         svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
1580
1581         if (ghcb_xcr0_is_valid(ghcb)) {
1582                 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
1583                 kvm_update_cpuid_runtime(vcpu);
1584         }
1585
1586         /* Copy the GHCB exit information into the VMCB fields */
1587         exit_code = ghcb_get_sw_exit_code(ghcb);
1588         control->exit_code = lower_32_bits(exit_code);
1589         control->exit_code_hi = upper_32_bits(exit_code);
1590         control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
1591         control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
1592
1593         /* Clear the valid entries fields */
1594         memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
1595 }
1596
1597 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
1598 {
1599         struct kvm_vcpu *vcpu;
1600         struct ghcb *ghcb;
1601         u64 exit_code = 0;
1602
1603         ghcb = svm->ghcb;
1604
1605         /* Only GHCB Usage code 0 is supported */
1606         if (ghcb->ghcb_usage)
1607                 goto vmgexit_err;
1608
1609         /*
1610          * Retrieve the exit code now even though is may not be marked valid
1611          * as it could help with debugging.
1612          */
1613         exit_code = ghcb_get_sw_exit_code(ghcb);
1614
1615         if (!ghcb_sw_exit_code_is_valid(ghcb) ||
1616             !ghcb_sw_exit_info_1_is_valid(ghcb) ||
1617             !ghcb_sw_exit_info_2_is_valid(ghcb))
1618                 goto vmgexit_err;
1619
1620         switch (ghcb_get_sw_exit_code(ghcb)) {
1621         case SVM_EXIT_READ_DR7:
1622                 break;
1623         case SVM_EXIT_WRITE_DR7:
1624                 if (!ghcb_rax_is_valid(ghcb))
1625                         goto vmgexit_err;
1626                 break;
1627         case SVM_EXIT_RDTSC:
1628                 break;
1629         case SVM_EXIT_RDPMC:
1630                 if (!ghcb_rcx_is_valid(ghcb))
1631                         goto vmgexit_err;
1632                 break;
1633         case SVM_EXIT_CPUID:
1634                 if (!ghcb_rax_is_valid(ghcb) ||
1635                     !ghcb_rcx_is_valid(ghcb))
1636                         goto vmgexit_err;
1637                 if (ghcb_get_rax(ghcb) == 0xd)
1638                         if (!ghcb_xcr0_is_valid(ghcb))
1639                                 goto vmgexit_err;
1640                 break;
1641         case SVM_EXIT_INVD:
1642                 break;
1643         case SVM_EXIT_IOIO:
1644                 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
1645                         if (!ghcb_sw_scratch_is_valid(ghcb))
1646                                 goto vmgexit_err;
1647                 } else {
1648                         if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
1649                                 if (!ghcb_rax_is_valid(ghcb))
1650                                         goto vmgexit_err;
1651                 }
1652                 break;
1653         case SVM_EXIT_MSR:
1654                 if (!ghcb_rcx_is_valid(ghcb))
1655                         goto vmgexit_err;
1656                 if (ghcb_get_sw_exit_info_1(ghcb)) {
1657                         if (!ghcb_rax_is_valid(ghcb) ||
1658                             !ghcb_rdx_is_valid(ghcb))
1659                                 goto vmgexit_err;
1660                 }
1661                 break;
1662         case SVM_EXIT_VMMCALL:
1663                 if (!ghcb_rax_is_valid(ghcb) ||
1664                     !ghcb_cpl_is_valid(ghcb))
1665                         goto vmgexit_err;
1666                 break;
1667         case SVM_EXIT_RDTSCP:
1668                 break;
1669         case SVM_EXIT_WBINVD:
1670                 break;
1671         case SVM_EXIT_MONITOR:
1672                 if (!ghcb_rax_is_valid(ghcb) ||
1673                     !ghcb_rcx_is_valid(ghcb) ||
1674                     !ghcb_rdx_is_valid(ghcb))
1675                         goto vmgexit_err;
1676                 break;
1677         case SVM_EXIT_MWAIT:
1678                 if (!ghcb_rax_is_valid(ghcb) ||
1679                     !ghcb_rcx_is_valid(ghcb))
1680                         goto vmgexit_err;
1681                 break;
1682         case SVM_VMGEXIT_MMIO_READ:
1683         case SVM_VMGEXIT_MMIO_WRITE:
1684                 if (!ghcb_sw_scratch_is_valid(ghcb))
1685                         goto vmgexit_err;
1686                 break;
1687         case SVM_VMGEXIT_NMI_COMPLETE:
1688         case SVM_VMGEXIT_AP_HLT_LOOP:
1689         case SVM_VMGEXIT_AP_JUMP_TABLE:
1690         case SVM_VMGEXIT_UNSUPPORTED_EVENT:
1691                 break;
1692         default:
1693                 goto vmgexit_err;
1694         }
1695
1696         return 0;
1697
1698 vmgexit_err:
1699         vcpu = &svm->vcpu;
1700
1701         if (ghcb->ghcb_usage) {
1702                 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
1703                             ghcb->ghcb_usage);
1704         } else {
1705                 vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n",
1706                             exit_code);
1707                 dump_ghcb(svm);
1708         }
1709
1710         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1711         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
1712         vcpu->run->internal.ndata = 2;
1713         vcpu->run->internal.data[0] = exit_code;
1714         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
1715
1716         return -EINVAL;
1717 }
1718
1719 static void pre_sev_es_run(struct vcpu_svm *svm)
1720 {
1721         if (!svm->ghcb)
1722                 return;
1723
1724         if (svm->ghcb_sa_free) {
1725                 /*
1726                  * The scratch area lives outside the GHCB, so there is a
1727                  * buffer that, depending on the operation performed, may
1728                  * need to be synced, then freed.
1729                  */
1730                 if (svm->ghcb_sa_sync) {
1731                         kvm_write_guest(svm->vcpu.kvm,
1732                                         ghcb_get_sw_scratch(svm->ghcb),
1733                                         svm->ghcb_sa, svm->ghcb_sa_len);
1734                         svm->ghcb_sa_sync = false;
1735                 }
1736
1737                 kfree(svm->ghcb_sa);
1738                 svm->ghcb_sa = NULL;
1739                 svm->ghcb_sa_free = false;
1740         }
1741
1742         trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb);
1743
1744         sev_es_sync_to_ghcb(svm);
1745
1746         kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true);
1747         svm->ghcb = NULL;
1748 }
1749
1750 void pre_sev_run(struct vcpu_svm *svm, int cpu)
1751 {
1752         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1753         int asid = sev_get_asid(svm->vcpu.kvm);
1754
1755         /* Perform any SEV-ES pre-run actions */
1756         pre_sev_es_run(svm);
1757
1758         /* Assign the asid allocated with this SEV guest */
1759         svm->asid = asid;
1760
1761         /*
1762          * Flush guest TLB:
1763          *
1764          * 1) when different VMCB for the same ASID is to be run on the same host CPU.
1765          * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
1766          */
1767         if (sd->sev_vmcbs[asid] == svm->vmcb &&
1768             svm->vcpu.arch.last_vmentry_cpu == cpu)
1769                 return;
1770
1771         sd->sev_vmcbs[asid] = svm->vmcb;
1772         svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
1773         vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1774 }
1775
1776 #define GHCB_SCRATCH_AREA_LIMIT         (16ULL * PAGE_SIZE)
1777 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
1778 {
1779         struct vmcb_control_area *control = &svm->vmcb->control;
1780         struct ghcb *ghcb = svm->ghcb;
1781         u64 ghcb_scratch_beg, ghcb_scratch_end;
1782         u64 scratch_gpa_beg, scratch_gpa_end;
1783         void *scratch_va;
1784
1785         scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
1786         if (!scratch_gpa_beg) {
1787                 pr_err("vmgexit: scratch gpa not provided\n");
1788                 return false;
1789         }
1790
1791         scratch_gpa_end = scratch_gpa_beg + len;
1792         if (scratch_gpa_end < scratch_gpa_beg) {
1793                 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
1794                        len, scratch_gpa_beg);
1795                 return false;
1796         }
1797
1798         if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
1799                 /* Scratch area begins within GHCB */
1800                 ghcb_scratch_beg = control->ghcb_gpa +
1801                                    offsetof(struct ghcb, shared_buffer);
1802                 ghcb_scratch_end = control->ghcb_gpa +
1803                                    offsetof(struct ghcb, reserved_1);
1804
1805                 /*
1806                  * If the scratch area begins within the GHCB, it must be
1807                  * completely contained in the GHCB shared buffer area.
1808                  */
1809                 if (scratch_gpa_beg < ghcb_scratch_beg ||
1810                     scratch_gpa_end > ghcb_scratch_end) {
1811                         pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
1812                                scratch_gpa_beg, scratch_gpa_end);
1813                         return false;
1814                 }
1815
1816                 scratch_va = (void *)svm->ghcb;
1817                 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
1818         } else {
1819                 /*
1820                  * The guest memory must be read into a kernel buffer, so
1821                  * limit the size
1822                  */
1823                 if (len > GHCB_SCRATCH_AREA_LIMIT) {
1824                         pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
1825                                len, GHCB_SCRATCH_AREA_LIMIT);
1826                         return false;
1827                 }
1828                 scratch_va = kzalloc(len, GFP_KERNEL);
1829                 if (!scratch_va)
1830                         return false;
1831
1832                 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
1833                         /* Unable to copy scratch area from guest */
1834                         pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
1835
1836                         kfree(scratch_va);
1837                         return false;
1838                 }
1839
1840                 /*
1841                  * The scratch area is outside the GHCB. The operation will
1842                  * dictate whether the buffer needs to be synced before running
1843                  * the vCPU next time (i.e. a read was requested so the data
1844                  * must be written back to the guest memory).
1845                  */
1846                 svm->ghcb_sa_sync = sync;
1847                 svm->ghcb_sa_free = true;
1848         }
1849
1850         svm->ghcb_sa = scratch_va;
1851         svm->ghcb_sa_len = len;
1852
1853         return true;
1854 }
1855
1856 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
1857                               unsigned int pos)
1858 {
1859         svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
1860         svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
1861 }
1862
1863 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
1864 {
1865         return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
1866 }
1867
1868 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
1869 {
1870         svm->vmcb->control.ghcb_gpa = value;
1871 }
1872
1873 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
1874 {
1875         struct vmcb_control_area *control = &svm->vmcb->control;
1876         struct kvm_vcpu *vcpu = &svm->vcpu;
1877         u64 ghcb_info;
1878         int ret = 1;
1879
1880         ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
1881
1882         trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
1883                                              control->ghcb_gpa);
1884
1885         switch (ghcb_info) {
1886         case GHCB_MSR_SEV_INFO_REQ:
1887                 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
1888                                                     GHCB_VERSION_MIN,
1889                                                     sev_enc_bit));
1890                 break;
1891         case GHCB_MSR_CPUID_REQ: {
1892                 u64 cpuid_fn, cpuid_reg, cpuid_value;
1893
1894                 cpuid_fn = get_ghcb_msr_bits(svm,
1895                                              GHCB_MSR_CPUID_FUNC_MASK,
1896                                              GHCB_MSR_CPUID_FUNC_POS);
1897
1898                 /* Initialize the registers needed by the CPUID intercept */
1899                 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
1900                 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
1901
1902                 ret = svm_invoke_exit_handler(svm, SVM_EXIT_CPUID);
1903                 if (!ret) {
1904                         ret = -EINVAL;
1905                         break;
1906                 }
1907
1908                 cpuid_reg = get_ghcb_msr_bits(svm,
1909                                               GHCB_MSR_CPUID_REG_MASK,
1910                                               GHCB_MSR_CPUID_REG_POS);
1911                 if (cpuid_reg == 0)
1912                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
1913                 else if (cpuid_reg == 1)
1914                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
1915                 else if (cpuid_reg == 2)
1916                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
1917                 else
1918                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
1919
1920                 set_ghcb_msr_bits(svm, cpuid_value,
1921                                   GHCB_MSR_CPUID_VALUE_MASK,
1922                                   GHCB_MSR_CPUID_VALUE_POS);
1923
1924                 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
1925                                   GHCB_MSR_INFO_MASK,
1926                                   GHCB_MSR_INFO_POS);
1927                 break;
1928         }
1929         case GHCB_MSR_TERM_REQ: {
1930                 u64 reason_set, reason_code;
1931
1932                 reason_set = get_ghcb_msr_bits(svm,
1933                                                GHCB_MSR_TERM_REASON_SET_MASK,
1934                                                GHCB_MSR_TERM_REASON_SET_POS);
1935                 reason_code = get_ghcb_msr_bits(svm,
1936                                                 GHCB_MSR_TERM_REASON_MASK,
1937                                                 GHCB_MSR_TERM_REASON_POS);
1938                 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
1939                         reason_set, reason_code);
1940                 fallthrough;
1941         }
1942         default:
1943                 ret = -EINVAL;
1944         }
1945
1946         trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
1947                                             control->ghcb_gpa, ret);
1948
1949         return ret;
1950 }
1951
1952 int sev_handle_vmgexit(struct vcpu_svm *svm)
1953 {
1954         struct vmcb_control_area *control = &svm->vmcb->control;
1955         u64 ghcb_gpa, exit_code;
1956         struct ghcb *ghcb;
1957         int ret;
1958
1959         /* Validate the GHCB */
1960         ghcb_gpa = control->ghcb_gpa;
1961         if (ghcb_gpa & GHCB_MSR_INFO_MASK)
1962                 return sev_handle_vmgexit_msr_protocol(svm);
1963
1964         if (!ghcb_gpa) {
1965                 vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB gpa is not set\n");
1966                 return -EINVAL;
1967         }
1968
1969         if (kvm_vcpu_map(&svm->vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) {
1970                 /* Unable to map GHCB from guest */
1971                 vcpu_unimpl(&svm->vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
1972                             ghcb_gpa);
1973                 return -EINVAL;
1974         }
1975
1976         svm->ghcb = svm->ghcb_map.hva;
1977         ghcb = svm->ghcb_map.hva;
1978
1979         trace_kvm_vmgexit_enter(svm->vcpu.vcpu_id, ghcb);
1980
1981         exit_code = ghcb_get_sw_exit_code(ghcb);
1982
1983         ret = sev_es_validate_vmgexit(svm);
1984         if (ret)
1985                 return ret;
1986
1987         sev_es_sync_from_ghcb(svm);
1988         ghcb_set_sw_exit_info_1(ghcb, 0);
1989         ghcb_set_sw_exit_info_2(ghcb, 0);
1990
1991         ret = -EINVAL;
1992         switch (exit_code) {
1993         case SVM_VMGEXIT_MMIO_READ:
1994                 if (!setup_vmgexit_scratch(svm, true, control->exit_info_2))
1995                         break;
1996
1997                 ret = kvm_sev_es_mmio_read(&svm->vcpu,
1998                                            control->exit_info_1,
1999                                            control->exit_info_2,
2000                                            svm->ghcb_sa);
2001                 break;
2002         case SVM_VMGEXIT_MMIO_WRITE:
2003                 if (!setup_vmgexit_scratch(svm, false, control->exit_info_2))
2004                         break;
2005
2006                 ret = kvm_sev_es_mmio_write(&svm->vcpu,
2007                                             control->exit_info_1,
2008                                             control->exit_info_2,
2009                                             svm->ghcb_sa);
2010                 break;
2011         case SVM_VMGEXIT_NMI_COMPLETE:
2012                 ret = svm_invoke_exit_handler(svm, SVM_EXIT_IRET);
2013                 break;
2014         case SVM_VMGEXIT_AP_HLT_LOOP:
2015                 ret = kvm_emulate_ap_reset_hold(&svm->vcpu);
2016                 break;
2017         case SVM_VMGEXIT_AP_JUMP_TABLE: {
2018                 struct kvm_sev_info *sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
2019
2020                 switch (control->exit_info_1) {
2021                 case 0:
2022                         /* Set AP jump table address */
2023                         sev->ap_jump_table = control->exit_info_2;
2024                         break;
2025                 case 1:
2026                         /* Get AP jump table address */
2027                         ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
2028                         break;
2029                 default:
2030                         pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2031                                control->exit_info_1);
2032                         ghcb_set_sw_exit_info_1(ghcb, 1);
2033                         ghcb_set_sw_exit_info_2(ghcb,
2034                                                 X86_TRAP_UD |
2035                                                 SVM_EVTINJ_TYPE_EXEPT |
2036                                                 SVM_EVTINJ_VALID);
2037                 }
2038
2039                 ret = 1;
2040                 break;
2041         }
2042         case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2043                 vcpu_unimpl(&svm->vcpu,
2044                             "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2045                             control->exit_info_1, control->exit_info_2);
2046                 break;
2047         default:
2048                 ret = svm_invoke_exit_handler(svm, exit_code);
2049         }
2050
2051         return ret;
2052 }
2053
2054 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2055 {
2056         if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2))
2057                 return -EINVAL;
2058
2059         return kvm_sev_es_string_io(&svm->vcpu, size, port,
2060                                     svm->ghcb_sa, svm->ghcb_sa_len, in);
2061 }
2062
2063 void sev_es_init_vmcb(struct vcpu_svm *svm)
2064 {
2065         struct kvm_vcpu *vcpu = &svm->vcpu;
2066
2067         svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2068         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2069
2070         /*
2071          * An SEV-ES guest requires a VMSA area that is a separate from the
2072          * VMCB page. Do not include the encryption mask on the VMSA physical
2073          * address since hardware will access it using the guest key.
2074          */
2075         svm->vmcb->control.vmsa_pa = __pa(svm->vmsa);
2076
2077         /* Can't intercept CR register access, HV can't modify CR registers */
2078         svm_clr_intercept(svm, INTERCEPT_CR0_READ);
2079         svm_clr_intercept(svm, INTERCEPT_CR4_READ);
2080         svm_clr_intercept(svm, INTERCEPT_CR8_READ);
2081         svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
2082         svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
2083         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
2084
2085         svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
2086
2087         /* Track EFER/CR register changes */
2088         svm_set_intercept(svm, TRAP_EFER_WRITE);
2089         svm_set_intercept(svm, TRAP_CR0_WRITE);
2090         svm_set_intercept(svm, TRAP_CR4_WRITE);
2091         svm_set_intercept(svm, TRAP_CR8_WRITE);
2092
2093         /* No support for enable_vmware_backdoor */
2094         clr_exception_intercept(svm, GP_VECTOR);
2095
2096         /* Can't intercept XSETBV, HV can't modify XCR0 directly */
2097         svm_clr_intercept(svm, INTERCEPT_XSETBV);
2098
2099         /* Clear intercepts on selected MSRs */
2100         set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
2101         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
2102         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
2103         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
2104         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
2105         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
2106 }
2107
2108 void sev_es_create_vcpu(struct vcpu_svm *svm)
2109 {
2110         /*
2111          * Set the GHCB MSR value as per the GHCB specification when creating
2112          * a vCPU for an SEV-ES guest.
2113          */
2114         set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2115                                             GHCB_VERSION_MIN,
2116                                             sev_enc_bit));
2117 }
2118
2119 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu)
2120 {
2121         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2122         struct vmcb_save_area *hostsa;
2123
2124         /*
2125          * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
2126          * of which one step is to perform a VMLOAD. Since hardware does not
2127          * perform a VMSAVE on VMRUN, the host savearea must be updated.
2128          */
2129         vmsave(__sme_page_pa(sd->save_area));
2130
2131         /* XCR0 is restored on VMEXIT, save the current host value */
2132         hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400);
2133         hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
2134
2135         /* PKRU is restored on VMEXIT, save the curent host value */
2136         hostsa->pkru = read_pkru();
2137
2138         /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
2139         hostsa->xss = host_xss;
2140 }
2141
2142 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
2143 {
2144         struct vcpu_svm *svm = to_svm(vcpu);
2145
2146         /* First SIPI: Use the values as initially set by the VMM */
2147         if (!svm->received_first_sipi) {
2148                 svm->received_first_sipi = true;
2149                 return;
2150         }
2151
2152         /*
2153          * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
2154          * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
2155          * non-zero value.
2156          */
2157         ghcb_set_sw_exit_info_2(svm->ghcb, 1);
2158 }