Merge tag 'linux-kselftest-kunit-5.15-rc1' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-microblaze.git] / arch / x86 / kvm / svm / avic.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM support
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *   Avi Kivity   <avi@qumranet.com>
13  */
14
15 #define pr_fmt(fmt) "SVM: " fmt
16
17 #include <linux/kvm_types.h>
18 #include <linux/hashtable.h>
19 #include <linux/amd-iommu.h>
20 #include <linux/kvm_host.h>
21
22 #include <asm/irq_remapping.h>
23
24 #include "trace.h"
25 #include "lapic.h"
26 #include "x86.h"
27 #include "irq.h"
28 #include "svm.h"
29
30 #define SVM_AVIC_DOORBELL       0xc001011b
31
32 #define AVIC_HPA_MASK   ~((0xFFFULL << 52) | 0xFFF)
33
34 /*
35  * 0xff is broadcast, so the max index allowed for physical APIC ID
36  * table is 0xfe.  APIC IDs above 0xff are reserved.
37  */
38 #define AVIC_MAX_PHYSICAL_ID_COUNT      255
39
40 #define AVIC_UNACCEL_ACCESS_WRITE_MASK          1
41 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK         0xFF0
42 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK         0xFFFFFFFF
43
44 /* AVIC GATAG is encoded using VM and VCPU IDs */
45 #define AVIC_VCPU_ID_BITS               8
46 #define AVIC_VCPU_ID_MASK               ((1 << AVIC_VCPU_ID_BITS) - 1)
47
48 #define AVIC_VM_ID_BITS                 24
49 #define AVIC_VM_ID_NR                   (1 << AVIC_VM_ID_BITS)
50 #define AVIC_VM_ID_MASK                 ((1 << AVIC_VM_ID_BITS) - 1)
51
52 #define AVIC_GATAG(x, y)                (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
53                                                 (y & AVIC_VCPU_ID_MASK))
54 #define AVIC_GATAG_TO_VMID(x)           ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
55 #define AVIC_GATAG_TO_VCPUID(x)         (x & AVIC_VCPU_ID_MASK)
56
57 /* Note:
58  * This hash table is used to map VM_ID to a struct kvm_svm,
59  * when handling AMD IOMMU GALOG notification to schedule in
60  * a particular vCPU.
61  */
62 #define SVM_VM_DATA_HASH_BITS   8
63 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
64 static u32 next_vm_id = 0;
65 static bool next_vm_id_wrapped = 0;
66 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
67
68 /*
69  * This is a wrapper of struct amd_iommu_ir_data.
70  */
71 struct amd_svm_iommu_ir {
72         struct list_head node;  /* Used by SVM for per-vcpu ir_list */
73         void *data;             /* Storing pointer to struct amd_ir_data */
74 };
75
76 enum avic_ipi_failure_cause {
77         AVIC_IPI_FAILURE_INVALID_INT_TYPE,
78         AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
79         AVIC_IPI_FAILURE_INVALID_TARGET,
80         AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
81 };
82
83 /* Note:
84  * This function is called from IOMMU driver to notify
85  * SVM to schedule in a particular vCPU of a particular VM.
86  */
87 int avic_ga_log_notifier(u32 ga_tag)
88 {
89         unsigned long flags;
90         struct kvm_svm *kvm_svm;
91         struct kvm_vcpu *vcpu = NULL;
92         u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
93         u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
94
95         pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
96         trace_kvm_avic_ga_log(vm_id, vcpu_id);
97
98         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
99         hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
100                 if (kvm_svm->avic_vm_id != vm_id)
101                         continue;
102                 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
103                 break;
104         }
105         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
106
107         /* Note:
108          * At this point, the IOMMU should have already set the pending
109          * bit in the vAPIC backing page. So, we just need to schedule
110          * in the vcpu.
111          */
112         if (vcpu)
113                 kvm_vcpu_wake_up(vcpu);
114
115         return 0;
116 }
117
118 void avic_vm_destroy(struct kvm *kvm)
119 {
120         unsigned long flags;
121         struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
122
123         if (!enable_apicv)
124                 return;
125
126         if (kvm_svm->avic_logical_id_table_page)
127                 __free_page(kvm_svm->avic_logical_id_table_page);
128         if (kvm_svm->avic_physical_id_table_page)
129                 __free_page(kvm_svm->avic_physical_id_table_page);
130
131         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
132         hash_del(&kvm_svm->hnode);
133         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
134 }
135
136 int avic_vm_init(struct kvm *kvm)
137 {
138         unsigned long flags;
139         int err = -ENOMEM;
140         struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
141         struct kvm_svm *k2;
142         struct page *p_page;
143         struct page *l_page;
144         u32 vm_id;
145
146         if (!enable_apicv)
147                 return 0;
148
149         /* Allocating physical APIC ID table (4KB) */
150         p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
151         if (!p_page)
152                 goto free_avic;
153
154         kvm_svm->avic_physical_id_table_page = p_page;
155
156         /* Allocating logical APIC ID table (4KB) */
157         l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
158         if (!l_page)
159                 goto free_avic;
160
161         kvm_svm->avic_logical_id_table_page = l_page;
162
163         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
164  again:
165         vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
166         if (vm_id == 0) { /* id is 1-based, zero is not okay */
167                 next_vm_id_wrapped = 1;
168                 goto again;
169         }
170         /* Is it still in use? Only possible if wrapped at least once */
171         if (next_vm_id_wrapped) {
172                 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
173                         if (k2->avic_vm_id == vm_id)
174                                 goto again;
175                 }
176         }
177         kvm_svm->avic_vm_id = vm_id;
178         hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
179         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
180
181         return 0;
182
183 free_avic:
184         avic_vm_destroy(kvm);
185         return err;
186 }
187
188 void avic_init_vmcb(struct vcpu_svm *svm)
189 {
190         struct vmcb *vmcb = svm->vmcb;
191         struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
192         phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
193         phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
194         phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
195
196         vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
197         vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
198         vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
199         vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
200         if (kvm_apicv_activated(svm->vcpu.kvm))
201                 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
202         else
203                 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
204 }
205
206 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
207                                        unsigned int index)
208 {
209         u64 *avic_physical_id_table;
210         struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
211
212         if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
213                 return NULL;
214
215         avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
216
217         return &avic_physical_id_table[index];
218 }
219
220 /*
221  * Note:
222  * AVIC hardware walks the nested page table to check permissions,
223  * but does not use the SPA address specified in the leaf page
224  * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
225  * field of the VMCB. Therefore, we set up the
226  * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
227  */
228 static int avic_update_access_page(struct kvm *kvm, bool activate)
229 {
230         void __user *ret;
231         int r = 0;
232
233         mutex_lock(&kvm->slots_lock);
234         /*
235          * During kvm_destroy_vm(), kvm_pit_set_reinject() could trigger
236          * APICv mode change, which update APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
237          * memory region. So, we need to ensure that kvm->mm == current->mm.
238          */
239         if ((kvm->arch.apic_access_memslot_enabled == activate) ||
240             (kvm->mm != current->mm))
241                 goto out;
242
243         ret = __x86_set_memory_region(kvm,
244                                       APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
245                                       APIC_DEFAULT_PHYS_BASE,
246                                       activate ? PAGE_SIZE : 0);
247         if (IS_ERR(ret)) {
248                 r = PTR_ERR(ret);
249                 goto out;
250         }
251
252         kvm->arch.apic_access_memslot_enabled = activate;
253 out:
254         mutex_unlock(&kvm->slots_lock);
255         return r;
256 }
257
258 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
259 {
260         u64 *entry, new_entry;
261         int id = vcpu->vcpu_id;
262         struct vcpu_svm *svm = to_svm(vcpu);
263
264         if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
265                 return -EINVAL;
266
267         if (!vcpu->arch.apic->regs)
268                 return -EINVAL;
269
270         if (kvm_apicv_activated(vcpu->kvm)) {
271                 int ret;
272
273                 ret = avic_update_access_page(vcpu->kvm, true);
274                 if (ret)
275                         return ret;
276         }
277
278         svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs);
279
280         /* Setting AVIC backing page address in the phy APIC ID table */
281         entry = avic_get_physical_id_entry(vcpu, id);
282         if (!entry)
283                 return -EINVAL;
284
285         new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
286                               AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
287                               AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
288         WRITE_ONCE(*entry, new_entry);
289
290         svm->avic_physical_id_cache = entry;
291
292         return 0;
293 }
294
295 static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source,
296                                    u32 icrl, u32 icrh)
297 {
298         struct kvm_vcpu *vcpu;
299         int i;
300
301         kvm_for_each_vcpu(i, vcpu, kvm) {
302                 bool m = kvm_apic_match_dest(vcpu, source,
303                                              icrl & APIC_SHORT_MASK,
304                                              GET_APIC_DEST_FIELD(icrh),
305                                              icrl & APIC_DEST_MASK);
306
307                 if (m && !avic_vcpu_is_running(vcpu))
308                         kvm_vcpu_wake_up(vcpu);
309         }
310 }
311
312 int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu)
313 {
314         struct vcpu_svm *svm = to_svm(vcpu);
315         u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
316         u32 icrl = svm->vmcb->control.exit_info_1;
317         u32 id = svm->vmcb->control.exit_info_2 >> 32;
318         u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
319         struct kvm_lapic *apic = vcpu->arch.apic;
320
321         trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index);
322
323         switch (id) {
324         case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
325                 /*
326                  * AVIC hardware handles the generation of
327                  * IPIs when the specified Message Type is Fixed
328                  * (also known as fixed delivery mode) and
329                  * the Trigger Mode is edge-triggered. The hardware
330                  * also supports self and broadcast delivery modes
331                  * specified via the Destination Shorthand(DSH)
332                  * field of the ICRL. Logical and physical APIC ID
333                  * formats are supported. All other IPI types cause
334                  * a #VMEXIT, which needs to emulated.
335                  */
336                 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
337                 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
338                 break;
339         case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING:
340                 /*
341                  * At this point, we expect that the AVIC HW has already
342                  * set the appropriate IRR bits on the valid target
343                  * vcpus. So, we just need to kick the appropriate vcpu.
344                  */
345                 avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh);
346                 break;
347         case AVIC_IPI_FAILURE_INVALID_TARGET:
348                 WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
349                           index, vcpu->vcpu_id, icrh, icrl);
350                 break;
351         case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
352                 WARN_ONCE(1, "Invalid backing page\n");
353                 break;
354         default:
355                 pr_err("Unknown IPI interception\n");
356         }
357
358         return 1;
359 }
360
361 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
362 {
363         struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
364         int index;
365         u32 *logical_apic_id_table;
366         int dlid = GET_APIC_LOGICAL_ID(ldr);
367
368         if (!dlid)
369                 return NULL;
370
371         if (flat) { /* flat */
372                 index = ffs(dlid) - 1;
373                 if (index > 7)
374                         return NULL;
375         } else { /* cluster */
376                 int cluster = (dlid & 0xf0) >> 4;
377                 int apic = ffs(dlid & 0x0f) - 1;
378
379                 if ((apic < 0) || (apic > 7) ||
380                     (cluster >= 0xf))
381                         return NULL;
382                 index = (cluster << 2) + apic;
383         }
384
385         logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
386
387         return &logical_apic_id_table[index];
388 }
389
390 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
391 {
392         bool flat;
393         u32 *entry, new_entry;
394
395         flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
396         entry = avic_get_logical_id_entry(vcpu, ldr, flat);
397         if (!entry)
398                 return -EINVAL;
399
400         new_entry = READ_ONCE(*entry);
401         new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
402         new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
403         new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
404         WRITE_ONCE(*entry, new_entry);
405
406         return 0;
407 }
408
409 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
410 {
411         struct vcpu_svm *svm = to_svm(vcpu);
412         bool flat = svm->dfr_reg == APIC_DFR_FLAT;
413         u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
414
415         if (entry)
416                 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
417 }
418
419 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
420 {
421         int ret = 0;
422         struct vcpu_svm *svm = to_svm(vcpu);
423         u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
424         u32 id = kvm_xapic_id(vcpu->arch.apic);
425
426         if (ldr == svm->ldr_reg)
427                 return 0;
428
429         avic_invalidate_logical_id_entry(vcpu);
430
431         if (ldr)
432                 ret = avic_ldr_write(vcpu, id, ldr);
433
434         if (!ret)
435                 svm->ldr_reg = ldr;
436
437         return ret;
438 }
439
440 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
441 {
442         u64 *old, *new;
443         struct vcpu_svm *svm = to_svm(vcpu);
444         u32 id = kvm_xapic_id(vcpu->arch.apic);
445
446         if (vcpu->vcpu_id == id)
447                 return 0;
448
449         old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
450         new = avic_get_physical_id_entry(vcpu, id);
451         if (!new || !old)
452                 return 1;
453
454         /* We need to move physical_id_entry to new offset */
455         *new = *old;
456         *old = 0ULL;
457         to_svm(vcpu)->avic_physical_id_cache = new;
458
459         /*
460          * Also update the guest physical APIC ID in the logical
461          * APIC ID table entry if already setup the LDR.
462          */
463         if (svm->ldr_reg)
464                 avic_handle_ldr_update(vcpu);
465
466         return 0;
467 }
468
469 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
470 {
471         struct vcpu_svm *svm = to_svm(vcpu);
472         u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
473
474         if (svm->dfr_reg == dfr)
475                 return;
476
477         avic_invalidate_logical_id_entry(vcpu);
478         svm->dfr_reg = dfr;
479 }
480
481 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
482 {
483         struct kvm_lapic *apic = svm->vcpu.arch.apic;
484         u32 offset = svm->vmcb->control.exit_info_1 &
485                                 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
486
487         switch (offset) {
488         case APIC_ID:
489                 if (avic_handle_apic_id_update(&svm->vcpu))
490                         return 0;
491                 break;
492         case APIC_LDR:
493                 if (avic_handle_ldr_update(&svm->vcpu))
494                         return 0;
495                 break;
496         case APIC_DFR:
497                 avic_handle_dfr_update(&svm->vcpu);
498                 break;
499         default:
500                 break;
501         }
502
503         kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
504
505         return 1;
506 }
507
508 static bool is_avic_unaccelerated_access_trap(u32 offset)
509 {
510         bool ret = false;
511
512         switch (offset) {
513         case APIC_ID:
514         case APIC_EOI:
515         case APIC_RRR:
516         case APIC_LDR:
517         case APIC_DFR:
518         case APIC_SPIV:
519         case APIC_ESR:
520         case APIC_ICR:
521         case APIC_LVTT:
522         case APIC_LVTTHMR:
523         case APIC_LVTPC:
524         case APIC_LVT0:
525         case APIC_LVT1:
526         case APIC_LVTERR:
527         case APIC_TMICT:
528         case APIC_TDCR:
529                 ret = true;
530                 break;
531         default:
532                 break;
533         }
534         return ret;
535 }
536
537 int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu)
538 {
539         struct vcpu_svm *svm = to_svm(vcpu);
540         int ret = 0;
541         u32 offset = svm->vmcb->control.exit_info_1 &
542                      AVIC_UNACCEL_ACCESS_OFFSET_MASK;
543         u32 vector = svm->vmcb->control.exit_info_2 &
544                      AVIC_UNACCEL_ACCESS_VECTOR_MASK;
545         bool write = (svm->vmcb->control.exit_info_1 >> 32) &
546                      AVIC_UNACCEL_ACCESS_WRITE_MASK;
547         bool trap = is_avic_unaccelerated_access_trap(offset);
548
549         trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset,
550                                             trap, write, vector);
551         if (trap) {
552                 /* Handling Trap */
553                 WARN_ONCE(!write, "svm: Handling trap read.\n");
554                 ret = avic_unaccel_trap_write(svm);
555         } else {
556                 /* Handling Fault */
557                 ret = kvm_emulate_instruction(vcpu, 0);
558         }
559
560         return ret;
561 }
562
563 int avic_init_vcpu(struct vcpu_svm *svm)
564 {
565         int ret;
566         struct kvm_vcpu *vcpu = &svm->vcpu;
567
568         if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm))
569                 return 0;
570
571         ret = avic_init_backing_page(vcpu);
572         if (ret)
573                 return ret;
574
575         INIT_LIST_HEAD(&svm->ir_list);
576         spin_lock_init(&svm->ir_list_lock);
577         svm->dfr_reg = APIC_DFR_FLAT;
578
579         return ret;
580 }
581
582 void avic_post_state_restore(struct kvm_vcpu *vcpu)
583 {
584         if (avic_handle_apic_id_update(vcpu) != 0)
585                 return;
586         avic_handle_dfr_update(vcpu);
587         avic_handle_ldr_update(vcpu);
588 }
589
590 void svm_toggle_avic_for_irq_window(struct kvm_vcpu *vcpu, bool activate)
591 {
592         if (!enable_apicv || !lapic_in_kernel(vcpu))
593                 return;
594
595         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
596         kvm_request_apicv_update(vcpu->kvm, activate,
597                                  APICV_INHIBIT_REASON_IRQWIN);
598         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
599 }
600
601 void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
602 {
603         return;
604 }
605
606 void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
607 {
608 }
609
610 void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
611 {
612 }
613
614 static int svm_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
615 {
616         int ret = 0;
617         unsigned long flags;
618         struct amd_svm_iommu_ir *ir;
619         struct vcpu_svm *svm = to_svm(vcpu);
620
621         if (!kvm_arch_has_assigned_device(vcpu->kvm))
622                 return 0;
623
624         /*
625          * Here, we go through the per-vcpu ir_list to update all existing
626          * interrupt remapping table entry targeting this vcpu.
627          */
628         spin_lock_irqsave(&svm->ir_list_lock, flags);
629
630         if (list_empty(&svm->ir_list))
631                 goto out;
632
633         list_for_each_entry(ir, &svm->ir_list, node) {
634                 if (activate)
635                         ret = amd_iommu_activate_guest_mode(ir->data);
636                 else
637                         ret = amd_iommu_deactivate_guest_mode(ir->data);
638                 if (ret)
639                         break;
640         }
641 out:
642         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
643         return ret;
644 }
645
646 void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
647 {
648         struct vcpu_svm *svm = to_svm(vcpu);
649         struct vmcb *vmcb = svm->vmcb01.ptr;
650         bool activated = kvm_vcpu_apicv_active(vcpu);
651
652         if (!enable_apicv)
653                 return;
654
655         if (activated) {
656                 /**
657                  * During AVIC temporary deactivation, guest could update
658                  * APIC ID, DFR and LDR registers, which would not be trapped
659                  * by avic_unaccelerated_access_interception(). In this case,
660                  * we need to check and update the AVIC logical APIC ID table
661                  * accordingly before re-activating.
662                  */
663                 avic_post_state_restore(vcpu);
664                 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
665         } else {
666                 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
667         }
668         vmcb_mark_dirty(vmcb, VMCB_AVIC);
669
670         svm_set_pi_irte_mode(vcpu, activated);
671 }
672
673 void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
674 {
675         return;
676 }
677
678 int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
679 {
680         if (!vcpu->arch.apicv_active)
681                 return -1;
682
683         kvm_lapic_set_irr(vec, vcpu->arch.apic);
684         smp_mb__after_atomic();
685
686         if (avic_vcpu_is_running(vcpu)) {
687                 int cpuid = vcpu->cpu;
688
689                 if (cpuid != get_cpu())
690                         wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
691                 put_cpu();
692         } else
693                 kvm_vcpu_wake_up(vcpu);
694
695         return 0;
696 }
697
698 bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
699 {
700         return false;
701 }
702
703 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
704 {
705         unsigned long flags;
706         struct amd_svm_iommu_ir *cur;
707
708         spin_lock_irqsave(&svm->ir_list_lock, flags);
709         list_for_each_entry(cur, &svm->ir_list, node) {
710                 if (cur->data != pi->ir_data)
711                         continue;
712                 list_del(&cur->node);
713                 kfree(cur);
714                 break;
715         }
716         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
717 }
718
719 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
720 {
721         int ret = 0;
722         unsigned long flags;
723         struct amd_svm_iommu_ir *ir;
724
725         /**
726          * In some cases, the existing irte is updated and re-set,
727          * so we need to check here if it's already been * added
728          * to the ir_list.
729          */
730         if (pi->ir_data && (pi->prev_ga_tag != 0)) {
731                 struct kvm *kvm = svm->vcpu.kvm;
732                 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
733                 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
734                 struct vcpu_svm *prev_svm;
735
736                 if (!prev_vcpu) {
737                         ret = -EINVAL;
738                         goto out;
739                 }
740
741                 prev_svm = to_svm(prev_vcpu);
742                 svm_ir_list_del(prev_svm, pi);
743         }
744
745         /**
746          * Allocating new amd_iommu_pi_data, which will get
747          * add to the per-vcpu ir_list.
748          */
749         ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
750         if (!ir) {
751                 ret = -ENOMEM;
752                 goto out;
753         }
754         ir->data = pi->ir_data;
755
756         spin_lock_irqsave(&svm->ir_list_lock, flags);
757         list_add(&ir->node, &svm->ir_list);
758         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
759 out:
760         return ret;
761 }
762
763 /*
764  * Note:
765  * The HW cannot support posting multicast/broadcast
766  * interrupts to a vCPU. So, we still use legacy interrupt
767  * remapping for these kind of interrupts.
768  *
769  * For lowest-priority interrupts, we only support
770  * those with single CPU as the destination, e.g. user
771  * configures the interrupts via /proc/irq or uses
772  * irqbalance to make the interrupts single-CPU.
773  */
774 static int
775 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
776                  struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
777 {
778         struct kvm_lapic_irq irq;
779         struct kvm_vcpu *vcpu = NULL;
780
781         kvm_set_msi_irq(kvm, e, &irq);
782
783         if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
784             !kvm_irq_is_postable(&irq)) {
785                 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
786                          __func__, irq.vector);
787                 return -1;
788         }
789
790         pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
791                  irq.vector);
792         *svm = to_svm(vcpu);
793         vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
794         vcpu_info->vector = irq.vector;
795
796         return 0;
797 }
798
799 /*
800  * svm_update_pi_irte - set IRTE for Posted-Interrupts
801  *
802  * @kvm: kvm
803  * @host_irq: host irq of the interrupt
804  * @guest_irq: gsi of the interrupt
805  * @set: set or unset PI
806  * returns 0 on success, < 0 on failure
807  */
808 int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
809                        uint32_t guest_irq, bool set)
810 {
811         struct kvm_kernel_irq_routing_entry *e;
812         struct kvm_irq_routing_table *irq_rt;
813         int idx, ret = -EINVAL;
814
815         if (!kvm_arch_has_assigned_device(kvm) ||
816             !irq_remapping_cap(IRQ_POSTING_CAP))
817                 return 0;
818
819         pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
820                  __func__, host_irq, guest_irq, set);
821
822         idx = srcu_read_lock(&kvm->irq_srcu);
823         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
824         WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
825
826         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
827                 struct vcpu_data vcpu_info;
828                 struct vcpu_svm *svm = NULL;
829
830                 if (e->type != KVM_IRQ_ROUTING_MSI)
831                         continue;
832
833                 /**
834                  * Here, we setup with legacy mode in the following cases:
835                  * 1. When cannot target interrupt to a specific vcpu.
836                  * 2. Unsetting posted interrupt.
837                  * 3. APIC virtualization is disabled for the vcpu.
838                  * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
839                  */
840                 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
841                     kvm_vcpu_apicv_active(&svm->vcpu)) {
842                         struct amd_iommu_pi_data pi;
843
844                         /* Try to enable guest_mode in IRTE */
845                         pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
846                                             AVIC_HPA_MASK);
847                         pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
848                                                      svm->vcpu.vcpu_id);
849                         pi.is_guest_mode = true;
850                         pi.vcpu_data = &vcpu_info;
851                         ret = irq_set_vcpu_affinity(host_irq, &pi);
852
853                         /**
854                          * Here, we successfully setting up vcpu affinity in
855                          * IOMMU guest mode. Now, we need to store the posted
856                          * interrupt information in a per-vcpu ir_list so that
857                          * we can reference to them directly when we update vcpu
858                          * scheduling information in IOMMU irte.
859                          */
860                         if (!ret && pi.is_guest_mode)
861                                 svm_ir_list_add(svm, &pi);
862                 } else {
863                         /* Use legacy mode in IRTE */
864                         struct amd_iommu_pi_data pi;
865
866                         /**
867                          * Here, pi is used to:
868                          * - Tell IOMMU to use legacy mode for this interrupt.
869                          * - Retrieve ga_tag of prior interrupt remapping data.
870                          */
871                         pi.prev_ga_tag = 0;
872                         pi.is_guest_mode = false;
873                         ret = irq_set_vcpu_affinity(host_irq, &pi);
874
875                         /**
876                          * Check if the posted interrupt was previously
877                          * setup with the guest_mode by checking if the ga_tag
878                          * was cached. If so, we need to clean up the per-vcpu
879                          * ir_list.
880                          */
881                         if (!ret && pi.prev_ga_tag) {
882                                 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
883                                 struct kvm_vcpu *vcpu;
884
885                                 vcpu = kvm_get_vcpu_by_id(kvm, id);
886                                 if (vcpu)
887                                         svm_ir_list_del(to_svm(vcpu), &pi);
888                         }
889                 }
890
891                 if (!ret && svm) {
892                         trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
893                                                  e->gsi, vcpu_info.vector,
894                                                  vcpu_info.pi_desc_addr, set);
895                 }
896
897                 if (ret < 0) {
898                         pr_err("%s: failed to update PI IRTE\n", __func__);
899                         goto out;
900                 }
901         }
902
903         ret = 0;
904 out:
905         srcu_read_unlock(&kvm->irq_srcu, idx);
906         return ret;
907 }
908
909 bool svm_check_apicv_inhibit_reasons(ulong bit)
910 {
911         ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
912                           BIT(APICV_INHIBIT_REASON_HYPERV) |
913                           BIT(APICV_INHIBIT_REASON_NESTED) |
914                           BIT(APICV_INHIBIT_REASON_IRQWIN) |
915                           BIT(APICV_INHIBIT_REASON_PIT_REINJ) |
916                           BIT(APICV_INHIBIT_REASON_X2APIC);
917
918         return supported & BIT(bit);
919 }
920
921 void svm_pre_update_apicv_exec_ctrl(struct kvm *kvm, bool activate)
922 {
923         avic_update_access_page(kvm, activate);
924 }
925
926 static inline int
927 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
928 {
929         int ret = 0;
930         unsigned long flags;
931         struct amd_svm_iommu_ir *ir;
932         struct vcpu_svm *svm = to_svm(vcpu);
933
934         if (!kvm_arch_has_assigned_device(vcpu->kvm))
935                 return 0;
936
937         /*
938          * Here, we go through the per-vcpu ir_list to update all existing
939          * interrupt remapping table entry targeting this vcpu.
940          */
941         spin_lock_irqsave(&svm->ir_list_lock, flags);
942
943         if (list_empty(&svm->ir_list))
944                 goto out;
945
946         list_for_each_entry(ir, &svm->ir_list, node) {
947                 ret = amd_iommu_update_ga(cpu, r, ir->data);
948                 if (ret)
949                         break;
950         }
951 out:
952         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
953         return ret;
954 }
955
956 void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
957 {
958         u64 entry;
959         /* ID = 0xff (broadcast), ID > 0xff (reserved) */
960         int h_physical_id = kvm_cpu_get_apicid(cpu);
961         struct vcpu_svm *svm = to_svm(vcpu);
962
963         if (!kvm_vcpu_apicv_active(vcpu))
964                 return;
965
966         /*
967          * Since the host physical APIC id is 8 bits,
968          * we can support host APIC ID upto 255.
969          */
970         if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
971                 return;
972
973         entry = READ_ONCE(*(svm->avic_physical_id_cache));
974         WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
975
976         entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
977         entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
978
979         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
980         if (svm->avic_is_running)
981                 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
982
983         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
984         avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
985                                         svm->avic_is_running);
986 }
987
988 void avic_vcpu_put(struct kvm_vcpu *vcpu)
989 {
990         u64 entry;
991         struct vcpu_svm *svm = to_svm(vcpu);
992
993         if (!kvm_vcpu_apicv_active(vcpu))
994                 return;
995
996         entry = READ_ONCE(*(svm->avic_physical_id_cache));
997         if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
998                 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
999
1000         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1001         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1002 }
1003
1004 /*
1005  * This function is called during VCPU halt/unhalt.
1006  */
1007 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1008 {
1009         struct vcpu_svm *svm = to_svm(vcpu);
1010
1011         svm->avic_is_running = is_run;
1012         if (is_run)
1013                 avic_vcpu_load(vcpu, vcpu->cpu);
1014         else
1015                 avic_vcpu_put(vcpu);
1016 }
1017
1018 void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1019 {
1020         avic_set_running(vcpu, false);
1021 }
1022
1023 void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1024 {
1025         if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
1026                 kvm_vcpu_update_apicv(vcpu);
1027         avic_set_running(vcpu, true);
1028 }