Merge branch 'misc.namei' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / arch / x86 / kvm / svm / avic.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM support
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *   Avi Kivity   <avi@qumranet.com>
13  */
14
15 #define pr_fmt(fmt) "SVM: " fmt
16
17 #include <linux/kvm_types.h>
18 #include <linux/hashtable.h>
19 #include <linux/amd-iommu.h>
20 #include <linux/kvm_host.h>
21
22 #include <asm/irq_remapping.h>
23
24 #include "trace.h"
25 #include "lapic.h"
26 #include "x86.h"
27 #include "irq.h"
28 #include "svm.h"
29
30 #define SVM_AVIC_DOORBELL       0xc001011b
31
32 #define AVIC_HPA_MASK   ~((0xFFFULL << 52) | 0xFFF)
33
34 /*
35  * 0xff is broadcast, so the max index allowed for physical APIC ID
36  * table is 0xfe.  APIC IDs above 0xff are reserved.
37  */
38 #define AVIC_MAX_PHYSICAL_ID_COUNT      255
39
40 #define AVIC_UNACCEL_ACCESS_WRITE_MASK          1
41 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK         0xFF0
42 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK         0xFFFFFFFF
43
44 /* AVIC GATAG is encoded using VM and VCPU IDs */
45 #define AVIC_VCPU_ID_BITS               8
46 #define AVIC_VCPU_ID_MASK               ((1 << AVIC_VCPU_ID_BITS) - 1)
47
48 #define AVIC_VM_ID_BITS                 24
49 #define AVIC_VM_ID_NR                   (1 << AVIC_VM_ID_BITS)
50 #define AVIC_VM_ID_MASK                 ((1 << AVIC_VM_ID_BITS) - 1)
51
52 #define AVIC_GATAG(x, y)                (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
53                                                 (y & AVIC_VCPU_ID_MASK))
54 #define AVIC_GATAG_TO_VMID(x)           ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
55 #define AVIC_GATAG_TO_VCPUID(x)         (x & AVIC_VCPU_ID_MASK)
56
57 /* Note:
58  * This hash table is used to map VM_ID to a struct kvm_svm,
59  * when handling AMD IOMMU GALOG notification to schedule in
60  * a particular vCPU.
61  */
62 #define SVM_VM_DATA_HASH_BITS   8
63 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
64 static u32 next_vm_id = 0;
65 static bool next_vm_id_wrapped = 0;
66 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
67
68 /*
69  * This is a wrapper of struct amd_iommu_ir_data.
70  */
71 struct amd_svm_iommu_ir {
72         struct list_head node;  /* Used by SVM for per-vcpu ir_list */
73         void *data;             /* Storing pointer to struct amd_ir_data */
74 };
75
76 enum avic_ipi_failure_cause {
77         AVIC_IPI_FAILURE_INVALID_INT_TYPE,
78         AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
79         AVIC_IPI_FAILURE_INVALID_TARGET,
80         AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
81 };
82
83 /* Note:
84  * This function is called from IOMMU driver to notify
85  * SVM to schedule in a particular vCPU of a particular VM.
86  */
87 int avic_ga_log_notifier(u32 ga_tag)
88 {
89         unsigned long flags;
90         struct kvm_svm *kvm_svm;
91         struct kvm_vcpu *vcpu = NULL;
92         u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
93         u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
94
95         pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
96         trace_kvm_avic_ga_log(vm_id, vcpu_id);
97
98         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
99         hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
100                 if (kvm_svm->avic_vm_id != vm_id)
101                         continue;
102                 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
103                 break;
104         }
105         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
106
107         /* Note:
108          * At this point, the IOMMU should have already set the pending
109          * bit in the vAPIC backing page. So, we just need to schedule
110          * in the vcpu.
111          */
112         if (vcpu)
113                 kvm_vcpu_wake_up(vcpu);
114
115         return 0;
116 }
117
118 void avic_vm_destroy(struct kvm *kvm)
119 {
120         unsigned long flags;
121         struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
122
123         if (!enable_apicv)
124                 return;
125
126         if (kvm_svm->avic_logical_id_table_page)
127                 __free_page(kvm_svm->avic_logical_id_table_page);
128         if (kvm_svm->avic_physical_id_table_page)
129                 __free_page(kvm_svm->avic_physical_id_table_page);
130
131         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
132         hash_del(&kvm_svm->hnode);
133         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
134 }
135
136 int avic_vm_init(struct kvm *kvm)
137 {
138         unsigned long flags;
139         int err = -ENOMEM;
140         struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
141         struct kvm_svm *k2;
142         struct page *p_page;
143         struct page *l_page;
144         u32 vm_id;
145
146         if (!enable_apicv)
147                 return 0;
148
149         /* Allocating physical APIC ID table (4KB) */
150         p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
151         if (!p_page)
152                 goto free_avic;
153
154         kvm_svm->avic_physical_id_table_page = p_page;
155
156         /* Allocating logical APIC ID table (4KB) */
157         l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
158         if (!l_page)
159                 goto free_avic;
160
161         kvm_svm->avic_logical_id_table_page = l_page;
162
163         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
164  again:
165         vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
166         if (vm_id == 0) { /* id is 1-based, zero is not okay */
167                 next_vm_id_wrapped = 1;
168                 goto again;
169         }
170         /* Is it still in use? Only possible if wrapped at least once */
171         if (next_vm_id_wrapped) {
172                 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
173                         if (k2->avic_vm_id == vm_id)
174                                 goto again;
175                 }
176         }
177         kvm_svm->avic_vm_id = vm_id;
178         hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
179         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
180
181         return 0;
182
183 free_avic:
184         avic_vm_destroy(kvm);
185         return err;
186 }
187
188 void avic_init_vmcb(struct vcpu_svm *svm)
189 {
190         struct vmcb *vmcb = svm->vmcb;
191         struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
192         phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
193         phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
194         phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
195
196         vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
197         vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
198         vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
199         vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
200         vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE & VMCB_AVIC_APIC_BAR_MASK;
201
202         if (kvm_apicv_activated(svm->vcpu.kvm))
203                 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
204         else
205                 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
206 }
207
208 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
209                                        unsigned int index)
210 {
211         u64 *avic_physical_id_table;
212         struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
213
214         if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
215                 return NULL;
216
217         avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
218
219         return &avic_physical_id_table[index];
220 }
221
222 /*
223  * Note:
224  * AVIC hardware walks the nested page table to check permissions,
225  * but does not use the SPA address specified in the leaf page
226  * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
227  * field of the VMCB. Therefore, we set up the
228  * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
229  */
230 static int avic_alloc_access_page(struct kvm *kvm)
231 {
232         void __user *ret;
233         int r = 0;
234
235         mutex_lock(&kvm->slots_lock);
236
237         if (kvm->arch.apic_access_memslot_enabled)
238                 goto out;
239
240         ret = __x86_set_memory_region(kvm,
241                                       APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
242                                       APIC_DEFAULT_PHYS_BASE,
243                                       PAGE_SIZE);
244         if (IS_ERR(ret)) {
245                 r = PTR_ERR(ret);
246                 goto out;
247         }
248
249         kvm->arch.apic_access_memslot_enabled = true;
250 out:
251         mutex_unlock(&kvm->slots_lock);
252         return r;
253 }
254
255 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
256 {
257         u64 *entry, new_entry;
258         int id = vcpu->vcpu_id;
259         struct vcpu_svm *svm = to_svm(vcpu);
260
261         if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
262                 return -EINVAL;
263
264         if (!vcpu->arch.apic->regs)
265                 return -EINVAL;
266
267         if (kvm_apicv_activated(vcpu->kvm)) {
268                 int ret;
269
270                 ret = avic_alloc_access_page(vcpu->kvm);
271                 if (ret)
272                         return ret;
273         }
274
275         svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs);
276
277         /* Setting AVIC backing page address in the phy APIC ID table */
278         entry = avic_get_physical_id_entry(vcpu, id);
279         if (!entry)
280                 return -EINVAL;
281
282         new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
283                               AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
284                               AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
285         WRITE_ONCE(*entry, new_entry);
286
287         svm->avic_physical_id_cache = entry;
288
289         return 0;
290 }
291
292 static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source,
293                                    u32 icrl, u32 icrh)
294 {
295         struct kvm_vcpu *vcpu;
296         int i;
297
298         kvm_for_each_vcpu(i, vcpu, kvm) {
299                 bool m = kvm_apic_match_dest(vcpu, source,
300                                              icrl & APIC_SHORT_MASK,
301                                              GET_APIC_DEST_FIELD(icrh),
302                                              icrl & APIC_DEST_MASK);
303
304                 if (m && !avic_vcpu_is_running(vcpu))
305                         kvm_vcpu_wake_up(vcpu);
306         }
307 }
308
309 int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu)
310 {
311         struct vcpu_svm *svm = to_svm(vcpu);
312         u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
313         u32 icrl = svm->vmcb->control.exit_info_1;
314         u32 id = svm->vmcb->control.exit_info_2 >> 32;
315         u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
316         struct kvm_lapic *apic = vcpu->arch.apic;
317
318         trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index);
319
320         switch (id) {
321         case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
322                 /*
323                  * AVIC hardware handles the generation of
324                  * IPIs when the specified Message Type is Fixed
325                  * (also known as fixed delivery mode) and
326                  * the Trigger Mode is edge-triggered. The hardware
327                  * also supports self and broadcast delivery modes
328                  * specified via the Destination Shorthand(DSH)
329                  * field of the ICRL. Logical and physical APIC ID
330                  * formats are supported. All other IPI types cause
331                  * a #VMEXIT, which needs to emulated.
332                  */
333                 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
334                 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
335                 break;
336         case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING:
337                 /*
338                  * At this point, we expect that the AVIC HW has already
339                  * set the appropriate IRR bits on the valid target
340                  * vcpus. So, we just need to kick the appropriate vcpu.
341                  */
342                 avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh);
343                 break;
344         case AVIC_IPI_FAILURE_INVALID_TARGET:
345                 WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
346                           index, vcpu->vcpu_id, icrh, icrl);
347                 break;
348         case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
349                 WARN_ONCE(1, "Invalid backing page\n");
350                 break;
351         default:
352                 pr_err("Unknown IPI interception\n");
353         }
354
355         return 1;
356 }
357
358 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
359 {
360         struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
361         int index;
362         u32 *logical_apic_id_table;
363         int dlid = GET_APIC_LOGICAL_ID(ldr);
364
365         if (!dlid)
366                 return NULL;
367
368         if (flat) { /* flat */
369                 index = ffs(dlid) - 1;
370                 if (index > 7)
371                         return NULL;
372         } else { /* cluster */
373                 int cluster = (dlid & 0xf0) >> 4;
374                 int apic = ffs(dlid & 0x0f) - 1;
375
376                 if ((apic < 0) || (apic > 7) ||
377                     (cluster >= 0xf))
378                         return NULL;
379                 index = (cluster << 2) + apic;
380         }
381
382         logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
383
384         return &logical_apic_id_table[index];
385 }
386
387 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
388 {
389         bool flat;
390         u32 *entry, new_entry;
391
392         flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
393         entry = avic_get_logical_id_entry(vcpu, ldr, flat);
394         if (!entry)
395                 return -EINVAL;
396
397         new_entry = READ_ONCE(*entry);
398         new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
399         new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
400         new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
401         WRITE_ONCE(*entry, new_entry);
402
403         return 0;
404 }
405
406 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
407 {
408         struct vcpu_svm *svm = to_svm(vcpu);
409         bool flat = svm->dfr_reg == APIC_DFR_FLAT;
410         u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
411
412         if (entry)
413                 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
414 }
415
416 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
417 {
418         int ret = 0;
419         struct vcpu_svm *svm = to_svm(vcpu);
420         u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
421         u32 id = kvm_xapic_id(vcpu->arch.apic);
422
423         if (ldr == svm->ldr_reg)
424                 return 0;
425
426         avic_invalidate_logical_id_entry(vcpu);
427
428         if (ldr)
429                 ret = avic_ldr_write(vcpu, id, ldr);
430
431         if (!ret)
432                 svm->ldr_reg = ldr;
433
434         return ret;
435 }
436
437 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
438 {
439         u64 *old, *new;
440         struct vcpu_svm *svm = to_svm(vcpu);
441         u32 id = kvm_xapic_id(vcpu->arch.apic);
442
443         if (vcpu->vcpu_id == id)
444                 return 0;
445
446         old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
447         new = avic_get_physical_id_entry(vcpu, id);
448         if (!new || !old)
449                 return 1;
450
451         /* We need to move physical_id_entry to new offset */
452         *new = *old;
453         *old = 0ULL;
454         to_svm(vcpu)->avic_physical_id_cache = new;
455
456         /*
457          * Also update the guest physical APIC ID in the logical
458          * APIC ID table entry if already setup the LDR.
459          */
460         if (svm->ldr_reg)
461                 avic_handle_ldr_update(vcpu);
462
463         return 0;
464 }
465
466 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
467 {
468         struct vcpu_svm *svm = to_svm(vcpu);
469         u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
470
471         if (svm->dfr_reg == dfr)
472                 return;
473
474         avic_invalidate_logical_id_entry(vcpu);
475         svm->dfr_reg = dfr;
476 }
477
478 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
479 {
480         struct kvm_lapic *apic = svm->vcpu.arch.apic;
481         u32 offset = svm->vmcb->control.exit_info_1 &
482                                 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
483
484         switch (offset) {
485         case APIC_ID:
486                 if (avic_handle_apic_id_update(&svm->vcpu))
487                         return 0;
488                 break;
489         case APIC_LDR:
490                 if (avic_handle_ldr_update(&svm->vcpu))
491                         return 0;
492                 break;
493         case APIC_DFR:
494                 avic_handle_dfr_update(&svm->vcpu);
495                 break;
496         default:
497                 break;
498         }
499
500         kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
501
502         return 1;
503 }
504
505 static bool is_avic_unaccelerated_access_trap(u32 offset)
506 {
507         bool ret = false;
508
509         switch (offset) {
510         case APIC_ID:
511         case APIC_EOI:
512         case APIC_RRR:
513         case APIC_LDR:
514         case APIC_DFR:
515         case APIC_SPIV:
516         case APIC_ESR:
517         case APIC_ICR:
518         case APIC_LVTT:
519         case APIC_LVTTHMR:
520         case APIC_LVTPC:
521         case APIC_LVT0:
522         case APIC_LVT1:
523         case APIC_LVTERR:
524         case APIC_TMICT:
525         case APIC_TDCR:
526                 ret = true;
527                 break;
528         default:
529                 break;
530         }
531         return ret;
532 }
533
534 int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu)
535 {
536         struct vcpu_svm *svm = to_svm(vcpu);
537         int ret = 0;
538         u32 offset = svm->vmcb->control.exit_info_1 &
539                      AVIC_UNACCEL_ACCESS_OFFSET_MASK;
540         u32 vector = svm->vmcb->control.exit_info_2 &
541                      AVIC_UNACCEL_ACCESS_VECTOR_MASK;
542         bool write = (svm->vmcb->control.exit_info_1 >> 32) &
543                      AVIC_UNACCEL_ACCESS_WRITE_MASK;
544         bool trap = is_avic_unaccelerated_access_trap(offset);
545
546         trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset,
547                                             trap, write, vector);
548         if (trap) {
549                 /* Handling Trap */
550                 WARN_ONCE(!write, "svm: Handling trap read.\n");
551                 ret = avic_unaccel_trap_write(svm);
552         } else {
553                 /* Handling Fault */
554                 ret = kvm_emulate_instruction(vcpu, 0);
555         }
556
557         return ret;
558 }
559
560 int avic_init_vcpu(struct vcpu_svm *svm)
561 {
562         int ret;
563         struct kvm_vcpu *vcpu = &svm->vcpu;
564
565         if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm))
566                 return 0;
567
568         ret = avic_init_backing_page(vcpu);
569         if (ret)
570                 return ret;
571
572         INIT_LIST_HEAD(&svm->ir_list);
573         spin_lock_init(&svm->ir_list_lock);
574         svm->dfr_reg = APIC_DFR_FLAT;
575
576         return ret;
577 }
578
579 void avic_post_state_restore(struct kvm_vcpu *vcpu)
580 {
581         if (avic_handle_apic_id_update(vcpu) != 0)
582                 return;
583         avic_handle_dfr_update(vcpu);
584         avic_handle_ldr_update(vcpu);
585 }
586
587 void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
588 {
589         return;
590 }
591
592 void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
593 {
594 }
595
596 void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
597 {
598 }
599
600 static int svm_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
601 {
602         int ret = 0;
603         unsigned long flags;
604         struct amd_svm_iommu_ir *ir;
605         struct vcpu_svm *svm = to_svm(vcpu);
606
607         if (!kvm_arch_has_assigned_device(vcpu->kvm))
608                 return 0;
609
610         /*
611          * Here, we go through the per-vcpu ir_list to update all existing
612          * interrupt remapping table entry targeting this vcpu.
613          */
614         spin_lock_irqsave(&svm->ir_list_lock, flags);
615
616         if (list_empty(&svm->ir_list))
617                 goto out;
618
619         list_for_each_entry(ir, &svm->ir_list, node) {
620                 if (activate)
621                         ret = amd_iommu_activate_guest_mode(ir->data);
622                 else
623                         ret = amd_iommu_deactivate_guest_mode(ir->data);
624                 if (ret)
625                         break;
626         }
627 out:
628         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
629         return ret;
630 }
631
632 void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
633 {
634         struct vcpu_svm *svm = to_svm(vcpu);
635         struct vmcb *vmcb = svm->vmcb01.ptr;
636         bool activated = kvm_vcpu_apicv_active(vcpu);
637
638         if (!enable_apicv)
639                 return;
640
641         if (activated) {
642                 /**
643                  * During AVIC temporary deactivation, guest could update
644                  * APIC ID, DFR and LDR registers, which would not be trapped
645                  * by avic_unaccelerated_access_interception(). In this case,
646                  * we need to check and update the AVIC logical APIC ID table
647                  * accordingly before re-activating.
648                  */
649                 avic_post_state_restore(vcpu);
650                 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
651         } else {
652                 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
653         }
654         vmcb_mark_dirty(vmcb, VMCB_AVIC);
655
656         if (activated)
657                 avic_vcpu_load(vcpu, vcpu->cpu);
658         else
659                 avic_vcpu_put(vcpu);
660
661         svm_set_pi_irte_mode(vcpu, activated);
662 }
663
664 void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
665 {
666         return;
667 }
668
669 int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
670 {
671         if (!vcpu->arch.apicv_active)
672                 return -1;
673
674         kvm_lapic_set_irr(vec, vcpu->arch.apic);
675         smp_mb__after_atomic();
676
677         if (avic_vcpu_is_running(vcpu)) {
678                 int cpuid = vcpu->cpu;
679
680                 if (cpuid != get_cpu())
681                         wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
682                 put_cpu();
683         } else
684                 kvm_vcpu_wake_up(vcpu);
685
686         return 0;
687 }
688
689 bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
690 {
691         return false;
692 }
693
694 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
695 {
696         unsigned long flags;
697         struct amd_svm_iommu_ir *cur;
698
699         spin_lock_irqsave(&svm->ir_list_lock, flags);
700         list_for_each_entry(cur, &svm->ir_list, node) {
701                 if (cur->data != pi->ir_data)
702                         continue;
703                 list_del(&cur->node);
704                 kfree(cur);
705                 break;
706         }
707         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
708 }
709
710 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
711 {
712         int ret = 0;
713         unsigned long flags;
714         struct amd_svm_iommu_ir *ir;
715
716         /**
717          * In some cases, the existing irte is updated and re-set,
718          * so we need to check here if it's already been * added
719          * to the ir_list.
720          */
721         if (pi->ir_data && (pi->prev_ga_tag != 0)) {
722                 struct kvm *kvm = svm->vcpu.kvm;
723                 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
724                 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
725                 struct vcpu_svm *prev_svm;
726
727                 if (!prev_vcpu) {
728                         ret = -EINVAL;
729                         goto out;
730                 }
731
732                 prev_svm = to_svm(prev_vcpu);
733                 svm_ir_list_del(prev_svm, pi);
734         }
735
736         /**
737          * Allocating new amd_iommu_pi_data, which will get
738          * add to the per-vcpu ir_list.
739          */
740         ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
741         if (!ir) {
742                 ret = -ENOMEM;
743                 goto out;
744         }
745         ir->data = pi->ir_data;
746
747         spin_lock_irqsave(&svm->ir_list_lock, flags);
748         list_add(&ir->node, &svm->ir_list);
749         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
750 out:
751         return ret;
752 }
753
754 /*
755  * Note:
756  * The HW cannot support posting multicast/broadcast
757  * interrupts to a vCPU. So, we still use legacy interrupt
758  * remapping for these kind of interrupts.
759  *
760  * For lowest-priority interrupts, we only support
761  * those with single CPU as the destination, e.g. user
762  * configures the interrupts via /proc/irq or uses
763  * irqbalance to make the interrupts single-CPU.
764  */
765 static int
766 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
767                  struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
768 {
769         struct kvm_lapic_irq irq;
770         struct kvm_vcpu *vcpu = NULL;
771
772         kvm_set_msi_irq(kvm, e, &irq);
773
774         if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
775             !kvm_irq_is_postable(&irq)) {
776                 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
777                          __func__, irq.vector);
778                 return -1;
779         }
780
781         pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
782                  irq.vector);
783         *svm = to_svm(vcpu);
784         vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
785         vcpu_info->vector = irq.vector;
786
787         return 0;
788 }
789
790 /*
791  * svm_update_pi_irte - set IRTE for Posted-Interrupts
792  *
793  * @kvm: kvm
794  * @host_irq: host irq of the interrupt
795  * @guest_irq: gsi of the interrupt
796  * @set: set or unset PI
797  * returns 0 on success, < 0 on failure
798  */
799 int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
800                        uint32_t guest_irq, bool set)
801 {
802         struct kvm_kernel_irq_routing_entry *e;
803         struct kvm_irq_routing_table *irq_rt;
804         int idx, ret = -EINVAL;
805
806         if (!kvm_arch_has_assigned_device(kvm) ||
807             !irq_remapping_cap(IRQ_POSTING_CAP))
808                 return 0;
809
810         pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
811                  __func__, host_irq, guest_irq, set);
812
813         idx = srcu_read_lock(&kvm->irq_srcu);
814         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
815         WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
816
817         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
818                 struct vcpu_data vcpu_info;
819                 struct vcpu_svm *svm = NULL;
820
821                 if (e->type != KVM_IRQ_ROUTING_MSI)
822                         continue;
823
824                 /**
825                  * Here, we setup with legacy mode in the following cases:
826                  * 1. When cannot target interrupt to a specific vcpu.
827                  * 2. Unsetting posted interrupt.
828                  * 3. APIC virtualization is disabled for the vcpu.
829                  * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
830                  */
831                 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
832                     kvm_vcpu_apicv_active(&svm->vcpu)) {
833                         struct amd_iommu_pi_data pi;
834
835                         /* Try to enable guest_mode in IRTE */
836                         pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
837                                             AVIC_HPA_MASK);
838                         pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
839                                                      svm->vcpu.vcpu_id);
840                         pi.is_guest_mode = true;
841                         pi.vcpu_data = &vcpu_info;
842                         ret = irq_set_vcpu_affinity(host_irq, &pi);
843
844                         /**
845                          * Here, we successfully setting up vcpu affinity in
846                          * IOMMU guest mode. Now, we need to store the posted
847                          * interrupt information in a per-vcpu ir_list so that
848                          * we can reference to them directly when we update vcpu
849                          * scheduling information in IOMMU irte.
850                          */
851                         if (!ret && pi.is_guest_mode)
852                                 svm_ir_list_add(svm, &pi);
853                 } else {
854                         /* Use legacy mode in IRTE */
855                         struct amd_iommu_pi_data pi;
856
857                         /**
858                          * Here, pi is used to:
859                          * - Tell IOMMU to use legacy mode for this interrupt.
860                          * - Retrieve ga_tag of prior interrupt remapping data.
861                          */
862                         pi.prev_ga_tag = 0;
863                         pi.is_guest_mode = false;
864                         ret = irq_set_vcpu_affinity(host_irq, &pi);
865
866                         /**
867                          * Check if the posted interrupt was previously
868                          * setup with the guest_mode by checking if the ga_tag
869                          * was cached. If so, we need to clean up the per-vcpu
870                          * ir_list.
871                          */
872                         if (!ret && pi.prev_ga_tag) {
873                                 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
874                                 struct kvm_vcpu *vcpu;
875
876                                 vcpu = kvm_get_vcpu_by_id(kvm, id);
877                                 if (vcpu)
878                                         svm_ir_list_del(to_svm(vcpu), &pi);
879                         }
880                 }
881
882                 if (!ret && svm) {
883                         trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
884                                                  e->gsi, vcpu_info.vector,
885                                                  vcpu_info.pi_desc_addr, set);
886                 }
887
888                 if (ret < 0) {
889                         pr_err("%s: failed to update PI IRTE\n", __func__);
890                         goto out;
891                 }
892         }
893
894         ret = 0;
895 out:
896         srcu_read_unlock(&kvm->irq_srcu, idx);
897         return ret;
898 }
899
900 bool svm_check_apicv_inhibit_reasons(ulong bit)
901 {
902         ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
903                           BIT(APICV_INHIBIT_REASON_HYPERV) |
904                           BIT(APICV_INHIBIT_REASON_NESTED) |
905                           BIT(APICV_INHIBIT_REASON_IRQWIN) |
906                           BIT(APICV_INHIBIT_REASON_PIT_REINJ) |
907                           BIT(APICV_INHIBIT_REASON_X2APIC);
908
909         return supported & BIT(bit);
910 }
911
912
913 static inline int
914 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
915 {
916         int ret = 0;
917         unsigned long flags;
918         struct amd_svm_iommu_ir *ir;
919         struct vcpu_svm *svm = to_svm(vcpu);
920
921         if (!kvm_arch_has_assigned_device(vcpu->kvm))
922                 return 0;
923
924         /*
925          * Here, we go through the per-vcpu ir_list to update all existing
926          * interrupt remapping table entry targeting this vcpu.
927          */
928         spin_lock_irqsave(&svm->ir_list_lock, flags);
929
930         if (list_empty(&svm->ir_list))
931                 goto out;
932
933         list_for_each_entry(ir, &svm->ir_list, node) {
934                 ret = amd_iommu_update_ga(cpu, r, ir->data);
935                 if (ret)
936                         break;
937         }
938 out:
939         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
940         return ret;
941 }
942
943 void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
944 {
945         u64 entry;
946         /* ID = 0xff (broadcast), ID > 0xff (reserved) */
947         int h_physical_id = kvm_cpu_get_apicid(cpu);
948         struct vcpu_svm *svm = to_svm(vcpu);
949
950         /*
951          * Since the host physical APIC id is 8 bits,
952          * we can support host APIC ID upto 255.
953          */
954         if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
955                 return;
956
957         entry = READ_ONCE(*(svm->avic_physical_id_cache));
958         WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
959
960         entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
961         entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
962
963         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
964         if (svm->avic_is_running)
965                 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
966
967         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
968         avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
969                                         svm->avic_is_running);
970 }
971
972 void avic_vcpu_put(struct kvm_vcpu *vcpu)
973 {
974         u64 entry;
975         struct vcpu_svm *svm = to_svm(vcpu);
976
977         entry = READ_ONCE(*(svm->avic_physical_id_cache));
978         if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
979                 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
980
981         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
982         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
983 }
984
985 /*
986  * This function is called during VCPU halt/unhalt.
987  */
988 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
989 {
990         struct vcpu_svm *svm = to_svm(vcpu);
991
992         svm->avic_is_running = is_run;
993
994         if (!kvm_vcpu_apicv_active(vcpu))
995                 return;
996
997         if (is_run)
998                 avic_vcpu_load(vcpu, vcpu->cpu);
999         else
1000                 avic_vcpu_put(vcpu);
1001 }
1002
1003 void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1004 {
1005         avic_set_running(vcpu, false);
1006 }
1007
1008 void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1009 {
1010         if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
1011                 kvm_vcpu_update_apicv(vcpu);
1012         avic_set_running(vcpu, true);
1013 }