KVM: Move x86's MMU notifier memslot walkers to generic code
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / tdp_mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "mmu.h"
4 #include "mmu_internal.h"
5 #include "mmutrace.h"
6 #include "tdp_iter.h"
7 #include "tdp_mmu.h"
8 #include "spte.h"
9
10 #include <asm/cmpxchg.h>
11 #include <trace/events/kvm.h>
12
13 static bool __read_mostly tdp_mmu_enabled = false;
14 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644);
15
16 /* Initializes the TDP MMU for the VM, if enabled. */
17 void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
18 {
19         if (!tdp_enabled || !READ_ONCE(tdp_mmu_enabled))
20                 return;
21
22         /* This should not be changed for the lifetime of the VM. */
23         kvm->arch.tdp_mmu_enabled = true;
24
25         INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
26         spin_lock_init(&kvm->arch.tdp_mmu_pages_lock);
27         INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages);
28 }
29
30 void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
31 {
32         if (!kvm->arch.tdp_mmu_enabled)
33                 return;
34
35         WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
36
37         /*
38          * Ensure that all the outstanding RCU callbacks to free shadow pages
39          * can run before the VM is torn down.
40          */
41         rcu_barrier();
42 }
43
44 static void tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root)
45 {
46         if (kvm_mmu_put_root(kvm, root))
47                 kvm_tdp_mmu_free_root(kvm, root);
48 }
49
50 static inline bool tdp_mmu_next_root_valid(struct kvm *kvm,
51                                            struct kvm_mmu_page *root)
52 {
53         lockdep_assert_held_write(&kvm->mmu_lock);
54
55         if (list_entry_is_head(root, &kvm->arch.tdp_mmu_roots, link))
56                 return false;
57
58         kvm_mmu_get_root(kvm, root);
59         return true;
60
61 }
62
63 static inline struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm,
64                                                      struct kvm_mmu_page *root)
65 {
66         struct kvm_mmu_page *next_root;
67
68         next_root = list_next_entry(root, link);
69         tdp_mmu_put_root(kvm, root);
70         return next_root;
71 }
72
73 /*
74  * Note: this iterator gets and puts references to the roots it iterates over.
75  * This makes it safe to release the MMU lock and yield within the loop, but
76  * if exiting the loop early, the caller must drop the reference to the most
77  * recent root. (Unless keeping a live reference is desirable.)
78  */
79 #define for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id)           \
80         for (_root = list_first_entry(&_kvm->arch.tdp_mmu_roots,        \
81                                       typeof(*_root), link);            \
82              tdp_mmu_next_root_valid(_kvm, _root);                      \
83              _root = tdp_mmu_next_root(_kvm, _root))                    \
84                 if (kvm_mmu_page_as_id(_root) != _as_id) {              \
85                 } else
86
87 #define for_each_tdp_mmu_root(_kvm, _root, _as_id)                      \
88         list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)     \
89                 if (kvm_mmu_page_as_id(_root) != _as_id) {              \
90                 } else
91
92 static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
93                           gfn_t start, gfn_t end, bool can_yield, bool flush);
94
95 void kvm_tdp_mmu_free_root(struct kvm *kvm, struct kvm_mmu_page *root)
96 {
97         gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT);
98
99         lockdep_assert_held_write(&kvm->mmu_lock);
100
101         WARN_ON(root->root_count);
102         WARN_ON(!root->tdp_mmu_page);
103
104         list_del(&root->link);
105
106         zap_gfn_range(kvm, root, 0, max_gfn, false, false);
107
108         free_page((unsigned long)root->spt);
109         kmem_cache_free(mmu_page_header_cache, root);
110 }
111
112 static union kvm_mmu_page_role page_role_for_level(struct kvm_vcpu *vcpu,
113                                                    int level)
114 {
115         union kvm_mmu_page_role role;
116
117         role = vcpu->arch.mmu->mmu_role.base;
118         role.level = level;
119         role.direct = true;
120         role.gpte_is_8_bytes = true;
121         role.access = ACC_ALL;
122
123         return role;
124 }
125
126 static struct kvm_mmu_page *alloc_tdp_mmu_page(struct kvm_vcpu *vcpu, gfn_t gfn,
127                                                int level)
128 {
129         struct kvm_mmu_page *sp;
130
131         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
132         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
133         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
134
135         sp->role.word = page_role_for_level(vcpu, level).word;
136         sp->gfn = gfn;
137         sp->tdp_mmu_page = true;
138
139         trace_kvm_mmu_get_page(sp, true);
140
141         return sp;
142 }
143
144 hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
145 {
146         union kvm_mmu_page_role role;
147         struct kvm *kvm = vcpu->kvm;
148         struct kvm_mmu_page *root;
149
150         lockdep_assert_held_write(&kvm->mmu_lock);
151
152         role = page_role_for_level(vcpu, vcpu->arch.mmu->shadow_root_level);
153
154         /* Check for an existing root before allocating a new one. */
155         for_each_tdp_mmu_root(kvm, root, kvm_mmu_role_as_id(role)) {
156                 if (root->role.word == role.word) {
157                         kvm_mmu_get_root(kvm, root);
158                         goto out;
159                 }
160         }
161
162         root = alloc_tdp_mmu_page(vcpu, 0, vcpu->arch.mmu->shadow_root_level);
163         root->root_count = 1;
164
165         list_add(&root->link, &kvm->arch.tdp_mmu_roots);
166
167 out:
168         return __pa(root->spt);
169 }
170
171 static void tdp_mmu_free_sp(struct kvm_mmu_page *sp)
172 {
173         free_page((unsigned long)sp->spt);
174         kmem_cache_free(mmu_page_header_cache, sp);
175 }
176
177 /*
178  * This is called through call_rcu in order to free TDP page table memory
179  * safely with respect to other kernel threads that may be operating on
180  * the memory.
181  * By only accessing TDP MMU page table memory in an RCU read critical
182  * section, and freeing it after a grace period, lockless access to that
183  * memory won't use it after it is freed.
184  */
185 static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head)
186 {
187         struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page,
188                                                rcu_head);
189
190         tdp_mmu_free_sp(sp);
191 }
192
193 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
194                                 u64 old_spte, u64 new_spte, int level,
195                                 bool shared);
196
197 static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level)
198 {
199         if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level))
200                 return;
201
202         if (is_accessed_spte(old_spte) &&
203             (!is_shadow_present_pte(new_spte) || !is_accessed_spte(new_spte) ||
204              spte_to_pfn(old_spte) != spte_to_pfn(new_spte)))
205                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
206 }
207
208 static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn,
209                                           u64 old_spte, u64 new_spte, int level)
210 {
211         bool pfn_changed;
212         struct kvm_memory_slot *slot;
213
214         if (level > PG_LEVEL_4K)
215                 return;
216
217         pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
218
219         if ((!is_writable_pte(old_spte) || pfn_changed) &&
220             is_writable_pte(new_spte)) {
221                 slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn);
222                 mark_page_dirty_in_slot(kvm, slot, gfn);
223         }
224 }
225
226 /**
227  * tdp_mmu_link_page - Add a new page to the list of pages used by the TDP MMU
228  *
229  * @kvm: kvm instance
230  * @sp: the new page
231  * @shared: This operation may not be running under the exclusive use of
232  *          the MMU lock and the operation must synchronize with other
233  *          threads that might be adding or removing pages.
234  * @account_nx: This page replaces a NX large page and should be marked for
235  *              eventual reclaim.
236  */
237 static void tdp_mmu_link_page(struct kvm *kvm, struct kvm_mmu_page *sp,
238                               bool shared, bool account_nx)
239 {
240         if (shared)
241                 spin_lock(&kvm->arch.tdp_mmu_pages_lock);
242         else
243                 lockdep_assert_held_write(&kvm->mmu_lock);
244
245         list_add(&sp->link, &kvm->arch.tdp_mmu_pages);
246         if (account_nx)
247                 account_huge_nx_page(kvm, sp);
248
249         if (shared)
250                 spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
251 }
252
253 /**
254  * tdp_mmu_unlink_page - Remove page from the list of pages used by the TDP MMU
255  *
256  * @kvm: kvm instance
257  * @sp: the page to be removed
258  * @shared: This operation may not be running under the exclusive use of
259  *          the MMU lock and the operation must synchronize with other
260  *          threads that might be adding or removing pages.
261  */
262 static void tdp_mmu_unlink_page(struct kvm *kvm, struct kvm_mmu_page *sp,
263                                 bool shared)
264 {
265         if (shared)
266                 spin_lock(&kvm->arch.tdp_mmu_pages_lock);
267         else
268                 lockdep_assert_held_write(&kvm->mmu_lock);
269
270         list_del(&sp->link);
271         if (sp->lpage_disallowed)
272                 unaccount_huge_nx_page(kvm, sp);
273
274         if (shared)
275                 spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
276 }
277
278 /**
279  * handle_removed_tdp_mmu_page - handle a pt removed from the TDP structure
280  *
281  * @kvm: kvm instance
282  * @pt: the page removed from the paging structure
283  * @shared: This operation may not be running under the exclusive use
284  *          of the MMU lock and the operation must synchronize with other
285  *          threads that might be modifying SPTEs.
286  *
287  * Given a page table that has been removed from the TDP paging structure,
288  * iterates through the page table to clear SPTEs and free child page tables.
289  *
290  * Note that pt is passed in as a tdp_ptep_t, but it does not need RCU
291  * protection. Since this thread removed it from the paging structure,
292  * this thread will be responsible for ensuring the page is freed. Hence the
293  * early rcu_dereferences in the function.
294  */
295 static void handle_removed_tdp_mmu_page(struct kvm *kvm, tdp_ptep_t pt,
296                                         bool shared)
297 {
298         struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(pt));
299         int level = sp->role.level;
300         gfn_t base_gfn = sp->gfn;
301         u64 old_child_spte;
302         u64 *sptep;
303         gfn_t gfn;
304         int i;
305
306         trace_kvm_mmu_prepare_zap_page(sp);
307
308         tdp_mmu_unlink_page(kvm, sp, shared);
309
310         for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
311                 sptep = rcu_dereference(pt) + i;
312                 gfn = base_gfn + (i * KVM_PAGES_PER_HPAGE(level - 1));
313
314                 if (shared) {
315                         /*
316                          * Set the SPTE to a nonpresent value that other
317                          * threads will not overwrite. If the SPTE was
318                          * already marked as removed then another thread
319                          * handling a page fault could overwrite it, so
320                          * set the SPTE until it is set from some other
321                          * value to the removed SPTE value.
322                          */
323                         for (;;) {
324                                 old_child_spte = xchg(sptep, REMOVED_SPTE);
325                                 if (!is_removed_spte(old_child_spte))
326                                         break;
327                                 cpu_relax();
328                         }
329                 } else {
330                         /*
331                          * If the SPTE is not MMU-present, there is no backing
332                          * page associated with the SPTE and so no side effects
333                          * that need to be recorded, and exclusive ownership of
334                          * mmu_lock ensures the SPTE can't be made present.
335                          * Note, zapping MMIO SPTEs is also unnecessary as they
336                          * are guarded by the memslots generation, not by being
337                          * unreachable.
338                          */
339                         old_child_spte = READ_ONCE(*sptep);
340                         if (!is_shadow_present_pte(old_child_spte))
341                                 continue;
342
343                         /*
344                          * Marking the SPTE as a removed SPTE is not
345                          * strictly necessary here as the MMU lock will
346                          * stop other threads from concurrently modifying
347                          * this SPTE. Using the removed SPTE value keeps
348                          * the two branches consistent and simplifies
349                          * the function.
350                          */
351                         WRITE_ONCE(*sptep, REMOVED_SPTE);
352                 }
353                 handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn,
354                                     old_child_spte, REMOVED_SPTE, level - 1,
355                                     shared);
356         }
357
358         kvm_flush_remote_tlbs_with_address(kvm, gfn,
359                                            KVM_PAGES_PER_HPAGE(level));
360
361         call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback);
362 }
363
364 /**
365  * handle_changed_spte - handle bookkeeping associated with an SPTE change
366  * @kvm: kvm instance
367  * @as_id: the address space of the paging structure the SPTE was a part of
368  * @gfn: the base GFN that was mapped by the SPTE
369  * @old_spte: The value of the SPTE before the change
370  * @new_spte: The value of the SPTE after the change
371  * @level: the level of the PT the SPTE is part of in the paging structure
372  * @shared: This operation may not be running under the exclusive use of
373  *          the MMU lock and the operation must synchronize with other
374  *          threads that might be modifying SPTEs.
375  *
376  * Handle bookkeeping that might result from the modification of a SPTE.
377  * This function must be called for all TDP SPTE modifications.
378  */
379 static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
380                                   u64 old_spte, u64 new_spte, int level,
381                                   bool shared)
382 {
383         bool was_present = is_shadow_present_pte(old_spte);
384         bool is_present = is_shadow_present_pte(new_spte);
385         bool was_leaf = was_present && is_last_spte(old_spte, level);
386         bool is_leaf = is_present && is_last_spte(new_spte, level);
387         bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
388
389         WARN_ON(level > PT64_ROOT_MAX_LEVEL);
390         WARN_ON(level < PG_LEVEL_4K);
391         WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
392
393         /*
394          * If this warning were to trigger it would indicate that there was a
395          * missing MMU notifier or a race with some notifier handler.
396          * A present, leaf SPTE should never be directly replaced with another
397          * present leaf SPTE pointing to a differnt PFN. A notifier handler
398          * should be zapping the SPTE before the main MM's page table is
399          * changed, or the SPTE should be zeroed, and the TLBs flushed by the
400          * thread before replacement.
401          */
402         if (was_leaf && is_leaf && pfn_changed) {
403                 pr_err("Invalid SPTE change: cannot replace a present leaf\n"
404                        "SPTE with another present leaf SPTE mapping a\n"
405                        "different PFN!\n"
406                        "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
407                        as_id, gfn, old_spte, new_spte, level);
408
409                 /*
410                  * Crash the host to prevent error propagation and guest data
411                  * courruption.
412                  */
413                 BUG();
414         }
415
416         if (old_spte == new_spte)
417                 return;
418
419         trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte);
420
421         /*
422          * The only times a SPTE should be changed from a non-present to
423          * non-present state is when an MMIO entry is installed/modified/
424          * removed. In that case, there is nothing to do here.
425          */
426         if (!was_present && !is_present) {
427                 /*
428                  * If this change does not involve a MMIO SPTE or removed SPTE,
429                  * it is unexpected. Log the change, though it should not
430                  * impact the guest since both the former and current SPTEs
431                  * are nonpresent.
432                  */
433                 if (WARN_ON(!is_mmio_spte(old_spte) &&
434                             !is_mmio_spte(new_spte) &&
435                             !is_removed_spte(new_spte)))
436                         pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
437                                "should not be replaced with another,\n"
438                                "different nonpresent SPTE, unless one or both\n"
439                                "are MMIO SPTEs, or the new SPTE is\n"
440                                "a temporary removed SPTE.\n"
441                                "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
442                                as_id, gfn, old_spte, new_spte, level);
443                 return;
444         }
445
446
447         if (was_leaf && is_dirty_spte(old_spte) &&
448             (!is_present || !is_dirty_spte(new_spte) || pfn_changed))
449                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
450
451         /*
452          * Recursively handle child PTs if the change removed a subtree from
453          * the paging structure.
454          */
455         if (was_present && !was_leaf && (pfn_changed || !is_present))
456                 handle_removed_tdp_mmu_page(kvm,
457                                 spte_to_child_pt(old_spte, level), shared);
458 }
459
460 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
461                                 u64 old_spte, u64 new_spte, int level,
462                                 bool shared)
463 {
464         __handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level,
465                               shared);
466         handle_changed_spte_acc_track(old_spte, new_spte, level);
467         handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
468                                       new_spte, level);
469 }
470
471 /*
472  * tdp_mmu_set_spte_atomic - Set a TDP MMU SPTE atomically and handle the
473  * associated bookkeeping
474  *
475  * @kvm: kvm instance
476  * @iter: a tdp_iter instance currently on the SPTE that should be set
477  * @new_spte: The value the SPTE should be set to
478  * Returns: true if the SPTE was set, false if it was not. If false is returned,
479  *          this function will have no side-effects.
480  */
481 static inline bool tdp_mmu_set_spte_atomic(struct kvm *kvm,
482                                            struct tdp_iter *iter,
483                                            u64 new_spte)
484 {
485         lockdep_assert_held_read(&kvm->mmu_lock);
486
487         /*
488          * Do not change removed SPTEs. Only the thread that froze the SPTE
489          * may modify it.
490          */
491         if (is_removed_spte(iter->old_spte))
492                 return false;
493
494         if (cmpxchg64(rcu_dereference(iter->sptep), iter->old_spte,
495                       new_spte) != iter->old_spte)
496                 return false;
497
498         handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte,
499                             new_spte, iter->level, true);
500
501         return true;
502 }
503
504 static inline bool tdp_mmu_zap_spte_atomic(struct kvm *kvm,
505                                            struct tdp_iter *iter)
506 {
507         /*
508          * Freeze the SPTE by setting it to a special,
509          * non-present value. This will stop other threads from
510          * immediately installing a present entry in its place
511          * before the TLBs are flushed.
512          */
513         if (!tdp_mmu_set_spte_atomic(kvm, iter, REMOVED_SPTE))
514                 return false;
515
516         kvm_flush_remote_tlbs_with_address(kvm, iter->gfn,
517                                            KVM_PAGES_PER_HPAGE(iter->level));
518
519         /*
520          * No other thread can overwrite the removed SPTE as they
521          * must either wait on the MMU lock or use
522          * tdp_mmu_set_spte_atomic which will not overrite the
523          * special removed SPTE value. No bookkeeping is needed
524          * here since the SPTE is going from non-present
525          * to non-present.
526          */
527         WRITE_ONCE(*rcu_dereference(iter->sptep), 0);
528
529         return true;
530 }
531
532
533 /*
534  * __tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping
535  * @kvm: kvm instance
536  * @iter: a tdp_iter instance currently on the SPTE that should be set
537  * @new_spte: The value the SPTE should be set to
538  * @record_acc_track: Notify the MM subsystem of changes to the accessed state
539  *                    of the page. Should be set unless handling an MMU
540  *                    notifier for access tracking. Leaving record_acc_track
541  *                    unset in that case prevents page accesses from being
542  *                    double counted.
543  * @record_dirty_log: Record the page as dirty in the dirty bitmap if
544  *                    appropriate for the change being made. Should be set
545  *                    unless performing certain dirty logging operations.
546  *                    Leaving record_dirty_log unset in that case prevents page
547  *                    writes from being double counted.
548  */
549 static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
550                                       u64 new_spte, bool record_acc_track,
551                                       bool record_dirty_log)
552 {
553         lockdep_assert_held_write(&kvm->mmu_lock);
554
555         /*
556          * No thread should be using this function to set SPTEs to the
557          * temporary removed SPTE value.
558          * If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic
559          * should be used. If operating under the MMU lock in write mode, the
560          * use of the removed SPTE should not be necessary.
561          */
562         WARN_ON(is_removed_spte(iter->old_spte));
563
564         WRITE_ONCE(*rcu_dereference(iter->sptep), new_spte);
565
566         __handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte,
567                               new_spte, iter->level, false);
568         if (record_acc_track)
569                 handle_changed_spte_acc_track(iter->old_spte, new_spte,
570                                               iter->level);
571         if (record_dirty_log)
572                 handle_changed_spte_dirty_log(kvm, iter->as_id, iter->gfn,
573                                               iter->old_spte, new_spte,
574                                               iter->level);
575 }
576
577 static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
578                                     u64 new_spte)
579 {
580         __tdp_mmu_set_spte(kvm, iter, new_spte, true, true);
581 }
582
583 static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm,
584                                                  struct tdp_iter *iter,
585                                                  u64 new_spte)
586 {
587         __tdp_mmu_set_spte(kvm, iter, new_spte, false, true);
588 }
589
590 static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm,
591                                                  struct tdp_iter *iter,
592                                                  u64 new_spte)
593 {
594         __tdp_mmu_set_spte(kvm, iter, new_spte, true, false);
595 }
596
597 #define tdp_root_for_each_pte(_iter, _root, _start, _end) \
598         for_each_tdp_pte(_iter, _root->spt, _root->role.level, _start, _end)
599
600 #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end)  \
601         tdp_root_for_each_pte(_iter, _root, _start, _end)               \
602                 if (!is_shadow_present_pte(_iter.old_spte) ||           \
603                     !is_last_spte(_iter.old_spte, _iter.level))         \
604                         continue;                                       \
605                 else
606
607 #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end)         \
608         for_each_tdp_pte(_iter, __va(_mmu->root_hpa),           \
609                          _mmu->shadow_root_level, _start, _end)
610
611 /*
612  * Yield if the MMU lock is contended or this thread needs to return control
613  * to the scheduler.
614  *
615  * If this function should yield and flush is set, it will perform a remote
616  * TLB flush before yielding.
617  *
618  * If this function yields, it will also reset the tdp_iter's walk over the
619  * paging structure and the calling function should skip to the next
620  * iteration to allow the iterator to continue its traversal from the
621  * paging structure root.
622  *
623  * Return true if this function yielded and the iterator's traversal was reset.
624  * Return false if a yield was not needed.
625  */
626 static inline bool tdp_mmu_iter_cond_resched(struct kvm *kvm,
627                                              struct tdp_iter *iter, bool flush)
628 {
629         /* Ensure forward progress has been made before yielding. */
630         if (iter->next_last_level_gfn == iter->yielded_gfn)
631                 return false;
632
633         if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
634                 rcu_read_unlock();
635
636                 if (flush)
637                         kvm_flush_remote_tlbs(kvm);
638
639                 cond_resched_rwlock_write(&kvm->mmu_lock);
640                 rcu_read_lock();
641
642                 WARN_ON(iter->gfn > iter->next_last_level_gfn);
643
644                 tdp_iter_restart(iter);
645
646                 return true;
647         }
648
649         return false;
650 }
651
652 /*
653  * Tears down the mappings for the range of gfns, [start, end), and frees the
654  * non-root pages mapping GFNs strictly within that range. Returns true if
655  * SPTEs have been cleared and a TLB flush is needed before releasing the
656  * MMU lock.
657  * If can_yield is true, will release the MMU lock and reschedule if the
658  * scheduler needs the CPU or there is contention on the MMU lock. If this
659  * function cannot yield, it will not release the MMU lock or reschedule and
660  * the caller must ensure it does not supply too large a GFN range, or the
661  * operation can cause a soft lockup.  Note, in some use cases a flush may be
662  * required by prior actions.  Ensure the pending flush is performed prior to
663  * yielding.
664  */
665 static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
666                           gfn_t start, gfn_t end, bool can_yield, bool flush)
667 {
668         struct tdp_iter iter;
669
670         rcu_read_lock();
671
672         tdp_root_for_each_pte(iter, root, start, end) {
673                 if (can_yield &&
674                     tdp_mmu_iter_cond_resched(kvm, &iter, flush)) {
675                         flush = false;
676                         continue;
677                 }
678
679                 if (!is_shadow_present_pte(iter.old_spte))
680                         continue;
681
682                 /*
683                  * If this is a non-last-level SPTE that covers a larger range
684                  * than should be zapped, continue, and zap the mappings at a
685                  * lower level.
686                  */
687                 if ((iter.gfn < start ||
688                      iter.gfn + KVM_PAGES_PER_HPAGE(iter.level) > end) &&
689                     !is_last_spte(iter.old_spte, iter.level))
690                         continue;
691
692                 tdp_mmu_set_spte(kvm, &iter, 0);
693                 flush = true;
694         }
695
696         rcu_read_unlock();
697         return flush;
698 }
699
700 /*
701  * Tears down the mappings for the range of gfns, [start, end), and frees the
702  * non-root pages mapping GFNs strictly within that range. Returns true if
703  * SPTEs have been cleared and a TLB flush is needed before releasing the
704  * MMU lock.
705  */
706 bool __kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, int as_id, gfn_t start,
707                                  gfn_t end, bool can_yield, bool flush)
708 {
709         struct kvm_mmu_page *root;
710
711         for_each_tdp_mmu_root_yield_safe(kvm, root, as_id)
712                 flush = zap_gfn_range(kvm, root, start, end, can_yield, flush);
713
714         return flush;
715 }
716
717 void kvm_tdp_mmu_zap_all(struct kvm *kvm)
718 {
719         gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT);
720         bool flush = false;
721         int i;
722
723         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
724                 flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, 0, max_gfn, flush);
725
726         if (flush)
727                 kvm_flush_remote_tlbs(kvm);
728 }
729
730 /*
731  * Installs a last-level SPTE to handle a TDP page fault.
732  * (NPT/EPT violation/misconfiguration)
733  */
734 static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, int write,
735                                           int map_writable,
736                                           struct tdp_iter *iter,
737                                           kvm_pfn_t pfn, bool prefault)
738 {
739         u64 new_spte;
740         int ret = 0;
741         int make_spte_ret = 0;
742
743         if (unlikely(is_noslot_pfn(pfn)))
744                 new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
745         else
746                 make_spte_ret = make_spte(vcpu, ACC_ALL, iter->level, iter->gfn,
747                                          pfn, iter->old_spte, prefault, true,
748                                          map_writable, !shadow_accessed_mask,
749                                          &new_spte);
750
751         if (new_spte == iter->old_spte)
752                 ret = RET_PF_SPURIOUS;
753         else if (!tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte))
754                 return RET_PF_RETRY;
755
756         /*
757          * If the page fault was caused by a write but the page is write
758          * protected, emulation is needed. If the emulation was skipped,
759          * the vCPU would have the same fault again.
760          */
761         if (make_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
762                 if (write)
763                         ret = RET_PF_EMULATE;
764                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
765         }
766
767         /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
768         if (unlikely(is_mmio_spte(new_spte))) {
769                 trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn,
770                                      new_spte);
771                 ret = RET_PF_EMULATE;
772         } else {
773                 trace_kvm_mmu_set_spte(iter->level, iter->gfn,
774                                        rcu_dereference(iter->sptep));
775         }
776
777         if (!prefault)
778                 vcpu->stat.pf_fixed++;
779
780         return ret;
781 }
782
783 /*
784  * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
785  * page tables and SPTEs to translate the faulting guest physical address.
786  */
787 int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
788                     int map_writable, int max_level, kvm_pfn_t pfn,
789                     bool prefault)
790 {
791         bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
792         bool write = error_code & PFERR_WRITE_MASK;
793         bool exec = error_code & PFERR_FETCH_MASK;
794         bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
795         struct kvm_mmu *mmu = vcpu->arch.mmu;
796         struct tdp_iter iter;
797         struct kvm_mmu_page *sp;
798         u64 *child_pt;
799         u64 new_spte;
800         int ret;
801         gfn_t gfn = gpa >> PAGE_SHIFT;
802         int level;
803         int req_level;
804
805         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
806                 return RET_PF_RETRY;
807         if (WARN_ON(!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)))
808                 return RET_PF_RETRY;
809
810         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
811                                         huge_page_disallowed, &req_level);
812
813         trace_kvm_mmu_spte_requested(gpa, level, pfn);
814
815         rcu_read_lock();
816
817         tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
818                 if (nx_huge_page_workaround_enabled)
819                         disallowed_hugepage_adjust(iter.old_spte, gfn,
820                                                    iter.level, &pfn, &level);
821
822                 if (iter.level == level)
823                         break;
824
825                 /*
826                  * If there is an SPTE mapping a large page at a higher level
827                  * than the target, that SPTE must be cleared and replaced
828                  * with a non-leaf SPTE.
829                  */
830                 if (is_shadow_present_pte(iter.old_spte) &&
831                     is_large_pte(iter.old_spte)) {
832                         if (!tdp_mmu_zap_spte_atomic(vcpu->kvm, &iter))
833                                 break;
834
835                         /*
836                          * The iter must explicitly re-read the spte here
837                          * because the new value informs the !present
838                          * path below.
839                          */
840                         iter.old_spte = READ_ONCE(*rcu_dereference(iter.sptep));
841                 }
842
843                 if (!is_shadow_present_pte(iter.old_spte)) {
844                         sp = alloc_tdp_mmu_page(vcpu, iter.gfn, iter.level);
845                         child_pt = sp->spt;
846
847                         new_spte = make_nonleaf_spte(child_pt,
848                                                      !shadow_accessed_mask);
849
850                         if (tdp_mmu_set_spte_atomic(vcpu->kvm, &iter,
851                                                     new_spte)) {
852                                 tdp_mmu_link_page(vcpu->kvm, sp, true,
853                                                   huge_page_disallowed &&
854                                                   req_level >= iter.level);
855
856                                 trace_kvm_mmu_get_page(sp, true);
857                         } else {
858                                 tdp_mmu_free_sp(sp);
859                                 break;
860                         }
861                 }
862         }
863
864         if (iter.level != level) {
865                 rcu_read_unlock();
866                 return RET_PF_RETRY;
867         }
868
869         ret = tdp_mmu_map_handle_target_level(vcpu, write, map_writable, &iter,
870                                               pfn, prefault);
871         rcu_read_unlock();
872
873         return ret;
874 }
875
876 bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range,
877                                  bool flush)
878 {
879         struct kvm_mmu_page *root;
880
881         for_each_tdp_mmu_root(kvm, root, range->slot->as_id)
882                 flush |= zap_gfn_range(kvm, root, range->start, range->end,
883                                        false, flush);
884
885         return flush;
886 }
887
888 typedef bool (*tdp_handler_t)(struct kvm *kvm, struct tdp_iter *iter,
889                               struct kvm_gfn_range *range);
890
891 static __always_inline bool kvm_tdp_mmu_handle_gfn(struct kvm *kvm,
892                                                    struct kvm_gfn_range *range,
893                                                    tdp_handler_t handler)
894 {
895         struct kvm_mmu_page *root;
896         struct tdp_iter iter;
897         bool ret = false;
898
899         rcu_read_lock();
900
901         for_each_tdp_mmu_root(kvm, root, range->slot->as_id) {
902                 tdp_root_for_each_leaf_pte(iter, root, range->start, range->end)
903                         ret |= handler(kvm, &iter, range);
904         }
905
906         rcu_read_unlock();
907
908         return ret;
909 }
910
911 /*
912  * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
913  * if any of the GFNs in the range have been accessed.
914  */
915 static bool age_gfn_range(struct kvm *kvm, struct tdp_iter *iter,
916                           struct kvm_gfn_range *range)
917 {
918         u64 new_spte = 0;
919
920         /* If we have a non-accessed entry we don't need to change the pte. */
921         if (!is_accessed_spte(iter->old_spte))
922                 return false;
923
924         new_spte = iter->old_spte;
925
926         if (spte_ad_enabled(new_spte)) {
927                 new_spte &= ~shadow_accessed_mask;
928         } else {
929                 /*
930                  * Capture the dirty status of the page, so that it doesn't get
931                  * lost when the SPTE is marked for access tracking.
932                  */
933                 if (is_writable_pte(new_spte))
934                         kvm_set_pfn_dirty(spte_to_pfn(new_spte));
935
936                 new_spte = mark_spte_for_access_track(new_spte);
937         }
938
939         tdp_mmu_set_spte_no_acc_track(kvm, iter, new_spte);
940
941         return true;
942 }
943
944 bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
945 {
946         return kvm_tdp_mmu_handle_gfn(kvm, range, age_gfn_range);
947 }
948
949 static bool test_age_gfn(struct kvm *kvm, struct tdp_iter *iter,
950                          struct kvm_gfn_range *range)
951 {
952         return is_accessed_spte(iter->old_spte);
953 }
954
955 bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
956 {
957         return kvm_tdp_mmu_handle_gfn(kvm, range, test_age_gfn);
958 }
959
960 static bool set_spte_gfn(struct kvm *kvm, struct tdp_iter *iter,
961                          struct kvm_gfn_range *range)
962 {
963         u64 new_spte;
964
965         /* Huge pages aren't expected to be modified without first being zapped. */
966         WARN_ON(pte_huge(range->pte) || range->start + 1 != range->end);
967
968         if (iter->level != PG_LEVEL_4K ||
969             !is_shadow_present_pte(iter->old_spte))
970                 return false;
971
972         /*
973          * Note, when changing a read-only SPTE, it's not strictly necessary to
974          * zero the SPTE before setting the new PFN, but doing so preserves the
975          * invariant that the PFN of a present * leaf SPTE can never change.
976          * See __handle_changed_spte().
977          */
978         tdp_mmu_set_spte(kvm, iter, 0);
979
980         if (!pte_write(range->pte)) {
981                 new_spte = kvm_mmu_changed_pte_notifier_make_spte(iter->old_spte,
982                                                                   pte_pfn(range->pte));
983
984                 tdp_mmu_set_spte(kvm, iter, new_spte);
985         }
986
987         return true;
988 }
989
990 /*
991  * Handle the changed_pte MMU notifier for the TDP MMU.
992  * data is a pointer to the new pte_t mapping the HVA specified by the MMU
993  * notifier.
994  * Returns non-zero if a flush is needed before releasing the MMU lock.
995  */
996 bool kvm_tdp_mmu_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
997 {
998         bool flush = kvm_tdp_mmu_handle_gfn(kvm, range, set_spte_gfn);
999
1000         /* FIXME: return 'flush' instead of flushing here. */
1001         if (flush)
1002                 kvm_flush_remote_tlbs_with_address(kvm, range->start, 1);
1003
1004         return false;
1005 }
1006
1007 /*
1008  * Remove write access from all the SPTEs mapping GFNs [start, end). If
1009  * skip_4k is set, SPTEs that map 4k pages, will not be write-protected.
1010  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1011  */
1012 static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1013                              gfn_t start, gfn_t end, int min_level)
1014 {
1015         struct tdp_iter iter;
1016         u64 new_spte;
1017         bool spte_set = false;
1018
1019         rcu_read_lock();
1020
1021         BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
1022
1023         for_each_tdp_pte_min_level(iter, root->spt, root->role.level,
1024                                    min_level, start, end) {
1025                 if (tdp_mmu_iter_cond_resched(kvm, &iter, false))
1026                         continue;
1027
1028                 if (!is_shadow_present_pte(iter.old_spte) ||
1029                     !is_last_spte(iter.old_spte, iter.level) ||
1030                     !(iter.old_spte & PT_WRITABLE_MASK))
1031                         continue;
1032
1033                 new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
1034
1035                 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
1036                 spte_set = true;
1037         }
1038
1039         rcu_read_unlock();
1040         return spte_set;
1041 }
1042
1043 /*
1044  * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
1045  * only affect leaf SPTEs down to min_level.
1046  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1047  */
1048 bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot,
1049                              int min_level)
1050 {
1051         struct kvm_mmu_page *root;
1052         bool spte_set = false;
1053
1054         for_each_tdp_mmu_root_yield_safe(kvm, root, slot->as_id)
1055                 spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
1056                              slot->base_gfn + slot->npages, min_level);
1057
1058         return spte_set;
1059 }
1060
1061 /*
1062  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
1063  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
1064  * If AD bits are not enabled, this will require clearing the writable bit on
1065  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
1066  * be flushed.
1067  */
1068 static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1069                            gfn_t start, gfn_t end)
1070 {
1071         struct tdp_iter iter;
1072         u64 new_spte;
1073         bool spte_set = false;
1074
1075         rcu_read_lock();
1076
1077         tdp_root_for_each_leaf_pte(iter, root, start, end) {
1078                 if (tdp_mmu_iter_cond_resched(kvm, &iter, false))
1079                         continue;
1080
1081                 if (spte_ad_need_write_protect(iter.old_spte)) {
1082                         if (is_writable_pte(iter.old_spte))
1083                                 new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
1084                         else
1085                                 continue;
1086                 } else {
1087                         if (iter.old_spte & shadow_dirty_mask)
1088                                 new_spte = iter.old_spte & ~shadow_dirty_mask;
1089                         else
1090                                 continue;
1091                 }
1092
1093                 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
1094                 spte_set = true;
1095         }
1096
1097         rcu_read_unlock();
1098         return spte_set;
1099 }
1100
1101 /*
1102  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
1103  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
1104  * If AD bits are not enabled, this will require clearing the writable bit on
1105  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
1106  * be flushed.
1107  */
1108 bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, struct kvm_memory_slot *slot)
1109 {
1110         struct kvm_mmu_page *root;
1111         bool spte_set = false;
1112
1113         for_each_tdp_mmu_root_yield_safe(kvm, root, slot->as_id)
1114                 spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
1115                                 slot->base_gfn + slot->npages);
1116
1117         return spte_set;
1118 }
1119
1120 /*
1121  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
1122  * set in mask, starting at gfn. The given memslot is expected to contain all
1123  * the GFNs represented by set bits in the mask. If AD bits are enabled,
1124  * clearing the dirty status will involve clearing the dirty bit on each SPTE
1125  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
1126  */
1127 static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
1128                                   gfn_t gfn, unsigned long mask, bool wrprot)
1129 {
1130         struct tdp_iter iter;
1131         u64 new_spte;
1132
1133         rcu_read_lock();
1134
1135         tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
1136                                     gfn + BITS_PER_LONG) {
1137                 if (!mask)
1138                         break;
1139
1140                 if (iter.level > PG_LEVEL_4K ||
1141                     !(mask & (1UL << (iter.gfn - gfn))))
1142                         continue;
1143
1144                 mask &= ~(1UL << (iter.gfn - gfn));
1145
1146                 if (wrprot || spte_ad_need_write_protect(iter.old_spte)) {
1147                         if (is_writable_pte(iter.old_spte))
1148                                 new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
1149                         else
1150                                 continue;
1151                 } else {
1152                         if (iter.old_spte & shadow_dirty_mask)
1153                                 new_spte = iter.old_spte & ~shadow_dirty_mask;
1154                         else
1155                                 continue;
1156                 }
1157
1158                 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
1159         }
1160
1161         rcu_read_unlock();
1162 }
1163
1164 /*
1165  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
1166  * set in mask, starting at gfn. The given memslot is expected to contain all
1167  * the GFNs represented by set bits in the mask. If AD bits are enabled,
1168  * clearing the dirty status will involve clearing the dirty bit on each SPTE
1169  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
1170  */
1171 void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1172                                        struct kvm_memory_slot *slot,
1173                                        gfn_t gfn, unsigned long mask,
1174                                        bool wrprot)
1175 {
1176         struct kvm_mmu_page *root;
1177
1178         lockdep_assert_held_write(&kvm->mmu_lock);
1179         for_each_tdp_mmu_root(kvm, root, slot->as_id)
1180                 clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
1181 }
1182
1183 /*
1184  * Clear leaf entries which could be replaced by large mappings, for
1185  * GFNs within the slot.
1186  */
1187 static bool zap_collapsible_spte_range(struct kvm *kvm,
1188                                        struct kvm_mmu_page *root,
1189                                        struct kvm_memory_slot *slot,
1190                                        bool flush)
1191 {
1192         gfn_t start = slot->base_gfn;
1193         gfn_t end = start + slot->npages;
1194         struct tdp_iter iter;
1195         kvm_pfn_t pfn;
1196
1197         rcu_read_lock();
1198
1199         tdp_root_for_each_pte(iter, root, start, end) {
1200                 if (tdp_mmu_iter_cond_resched(kvm, &iter, flush)) {
1201                         flush = false;
1202                         continue;
1203                 }
1204
1205                 if (!is_shadow_present_pte(iter.old_spte) ||
1206                     !is_last_spte(iter.old_spte, iter.level))
1207                         continue;
1208
1209                 pfn = spte_to_pfn(iter.old_spte);
1210                 if (kvm_is_reserved_pfn(pfn) ||
1211                     iter.level >= kvm_mmu_max_mapping_level(kvm, slot, iter.gfn,
1212                                                             pfn, PG_LEVEL_NUM))
1213                         continue;
1214
1215                 tdp_mmu_set_spte(kvm, &iter, 0);
1216
1217                 flush = true;
1218         }
1219
1220         rcu_read_unlock();
1221
1222         return flush;
1223 }
1224
1225 /*
1226  * Clear non-leaf entries (and free associated page tables) which could
1227  * be replaced by large mappings, for GFNs within the slot.
1228  */
1229 bool kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
1230                                        struct kvm_memory_slot *slot, bool flush)
1231 {
1232         struct kvm_mmu_page *root;
1233
1234         for_each_tdp_mmu_root_yield_safe(kvm, root, slot->as_id)
1235                 flush = zap_collapsible_spte_range(kvm, root, slot, flush);
1236
1237         return flush;
1238 }
1239
1240 /*
1241  * Removes write access on the last level SPTE mapping this GFN and unsets the
1242  * MMU-writable bit to ensure future writes continue to be intercepted.
1243  * Returns true if an SPTE was set and a TLB flush is needed.
1244  */
1245 static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
1246                               gfn_t gfn)
1247 {
1248         struct tdp_iter iter;
1249         u64 new_spte;
1250         bool spte_set = false;
1251
1252         rcu_read_lock();
1253
1254         tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1) {
1255                 if (!is_writable_pte(iter.old_spte))
1256                         break;
1257
1258                 new_spte = iter.old_spte &
1259                         ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
1260
1261                 tdp_mmu_set_spte(kvm, &iter, new_spte);
1262                 spte_set = true;
1263         }
1264
1265         rcu_read_unlock();
1266
1267         return spte_set;
1268 }
1269
1270 /*
1271  * Removes write access on the last level SPTE mapping this GFN and unsets the
1272  * MMU-writable bit to ensure future writes continue to be intercepted.
1273  * Returns true if an SPTE was set and a TLB flush is needed.
1274  */
1275 bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
1276                                    struct kvm_memory_slot *slot, gfn_t gfn)
1277 {
1278         struct kvm_mmu_page *root;
1279         bool spte_set = false;
1280
1281         lockdep_assert_held_write(&kvm->mmu_lock);
1282         for_each_tdp_mmu_root(kvm, root, slot->as_id)
1283                 spte_set |= write_protect_gfn(kvm, root, gfn);
1284
1285         return spte_set;
1286 }
1287
1288 /*
1289  * Return the level of the lowest level SPTE added to sptes.
1290  * That SPTE may be non-present.
1291  */
1292 int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
1293                          int *root_level)
1294 {
1295         struct tdp_iter iter;
1296         struct kvm_mmu *mmu = vcpu->arch.mmu;
1297         gfn_t gfn = addr >> PAGE_SHIFT;
1298         int leaf = -1;
1299
1300         *root_level = vcpu->arch.mmu->shadow_root_level;
1301
1302         rcu_read_lock();
1303
1304         tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1305                 leaf = iter.level;
1306                 sptes[leaf] = iter.old_spte;
1307         }
1308
1309         rcu_read_unlock();
1310
1311         return leaf;
1312 }