pinctrl: qcom: Handle broken/missing PDC dual edge IRQs on sc7180
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "x86.h"
22 #include "kvm_cache_regs.h"
23 #include "kvm_emulate.h"
24 #include "cpuid.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/moduleparam.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/sched/signal.h>
39 #include <linux/uaccess.h>
40 #include <linux/hash.h>
41 #include <linux/kern_levels.h>
42 #include <linux/kthread.h>
43
44 #include <asm/page.h>
45 #include <asm/memtype.h>
46 #include <asm/cmpxchg.h>
47 #include <asm/e820/api.h>
48 #include <asm/io.h>
49 #include <asm/vmx.h>
50 #include <asm/kvm_page_track.h>
51 #include "trace.h"
52
53 extern bool itlb_multihit_kvm_mitigation;
54
55 static int __read_mostly nx_huge_pages = -1;
56 #ifdef CONFIG_PREEMPT_RT
57 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
58 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
59 #else
60 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
61 #endif
62
63 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
64 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
65
66 static struct kernel_param_ops nx_huge_pages_ops = {
67         .set = set_nx_huge_pages,
68         .get = param_get_bool,
69 };
70
71 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
72         .set = set_nx_huge_pages_recovery_ratio,
73         .get = param_get_uint,
74 };
75
76 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
77 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
78 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
79                 &nx_huge_pages_recovery_ratio, 0644);
80 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
81
82 static bool __read_mostly force_flush_and_sync_on_reuse;
83 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
84
85 /*
86  * When setting this variable to true it enables Two-Dimensional-Paging
87  * where the hardware walks 2 page tables:
88  * 1. the guest-virtual to guest-physical
89  * 2. while doing 1. it walks guest-physical to host-physical
90  * If the hardware supports that we don't need to do shadow paging.
91  */
92 bool tdp_enabled = false;
93
94 static int max_page_level __read_mostly;
95
96 enum {
97         AUDIT_PRE_PAGE_FAULT,
98         AUDIT_POST_PAGE_FAULT,
99         AUDIT_PRE_PTE_WRITE,
100         AUDIT_POST_PTE_WRITE,
101         AUDIT_PRE_SYNC,
102         AUDIT_POST_SYNC
103 };
104
105 #undef MMU_DEBUG
106
107 #ifdef MMU_DEBUG
108 static bool dbg = 0;
109 module_param(dbg, bool, 0644);
110
111 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
112 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
113 #define MMU_WARN_ON(x) WARN_ON(x)
114 #else
115 #define pgprintk(x...) do { } while (0)
116 #define rmap_printk(x...) do { } while (0)
117 #define MMU_WARN_ON(x) do { } while (0)
118 #endif
119
120 #define PTE_PREFETCH_NUM                8
121
122 #define PT_FIRST_AVAIL_BITS_SHIFT 10
123 #define PT64_SECOND_AVAIL_BITS_SHIFT 54
124
125 /*
126  * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
127  * Access Tracking SPTEs.
128  */
129 #define SPTE_SPECIAL_MASK (3ULL << 52)
130 #define SPTE_AD_ENABLED_MASK (0ULL << 52)
131 #define SPTE_AD_DISABLED_MASK (1ULL << 52)
132 #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
133 #define SPTE_MMIO_MASK (3ULL << 52)
134
135 #define PT64_LEVEL_BITS 9
136
137 #define PT64_LEVEL_SHIFT(level) \
138                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
139
140 #define PT64_INDEX(address, level)\
141         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
142
143
144 #define PT32_LEVEL_BITS 10
145
146 #define PT32_LEVEL_SHIFT(level) \
147                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
148
149 #define PT32_LVL_OFFSET_MASK(level) \
150         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
151                                                 * PT32_LEVEL_BITS))) - 1))
152
153 #define PT32_INDEX(address, level)\
154         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
155
156
157 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
158 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
159 #else
160 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
161 #endif
162 #define PT64_LVL_ADDR_MASK(level) \
163         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
164                                                 * PT64_LEVEL_BITS))) - 1))
165 #define PT64_LVL_OFFSET_MASK(level) \
166         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
167                                                 * PT64_LEVEL_BITS))) - 1))
168
169 #define PT32_BASE_ADDR_MASK PAGE_MASK
170 #define PT32_DIR_BASE_ADDR_MASK \
171         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
172 #define PT32_LVL_ADDR_MASK(level) \
173         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
174                                             * PT32_LEVEL_BITS))) - 1))
175
176 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
177                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
178
179 #define ACC_EXEC_MASK    1
180 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
181 #define ACC_USER_MASK    PT_USER_MASK
182 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
183
184 /* The mask for the R/X bits in EPT PTEs */
185 #define PT64_EPT_READABLE_MASK                  0x1ull
186 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
187
188 #include <trace/events/kvm.h>
189
190 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
191 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
192
193 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
194
195 /* make pte_list_desc fit well in cache line */
196 #define PTE_LIST_EXT 3
197
198 /*
199  * Return values of handle_mmio_page_fault and mmu.page_fault:
200  * RET_PF_RETRY: let CPU fault again on the address.
201  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
202  *
203  * For handle_mmio_page_fault only:
204  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
205  */
206 enum {
207         RET_PF_RETRY = 0,
208         RET_PF_EMULATE = 1,
209         RET_PF_INVALID = 2,
210 };
211
212 struct pte_list_desc {
213         u64 *sptes[PTE_LIST_EXT];
214         struct pte_list_desc *more;
215 };
216
217 struct kvm_shadow_walk_iterator {
218         u64 addr;
219         hpa_t shadow_addr;
220         u64 *sptep;
221         int level;
222         unsigned index;
223 };
224
225 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
226         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
227                                          (_root), (_addr));                \
228              shadow_walk_okay(&(_walker));                                 \
229              shadow_walk_next(&(_walker)))
230
231 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
232         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
233              shadow_walk_okay(&(_walker));                      \
234              shadow_walk_next(&(_walker)))
235
236 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
237         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
238              shadow_walk_okay(&(_walker)) &&                            \
239                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
240              __shadow_walk_next(&(_walker), spte))
241
242 static struct kmem_cache *pte_list_desc_cache;
243 static struct kmem_cache *mmu_page_header_cache;
244 static struct percpu_counter kvm_total_used_mmu_pages;
245
246 static u64 __read_mostly shadow_nx_mask;
247 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
248 static u64 __read_mostly shadow_user_mask;
249 static u64 __read_mostly shadow_accessed_mask;
250 static u64 __read_mostly shadow_dirty_mask;
251 static u64 __read_mostly shadow_mmio_value;
252 static u64 __read_mostly shadow_mmio_access_mask;
253 static u64 __read_mostly shadow_present_mask;
254 static u64 __read_mostly shadow_me_mask;
255
256 /*
257  * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
258  * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
259  * pages.
260  */
261 static u64 __read_mostly shadow_acc_track_mask;
262
263 /*
264  * The mask/shift to use for saving the original R/X bits when marking the PTE
265  * as not-present for access tracking purposes. We do not save the W bit as the
266  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
267  * restored only when a write is attempted to the page.
268  */
269 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
270                                                     PT64_EPT_EXECUTABLE_MASK;
271 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
272
273 /*
274  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
275  * to guard against L1TF attacks.
276  */
277 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
278
279 /*
280  * The number of high-order 1 bits to use in the mask above.
281  */
282 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
283
284 /*
285  * In some cases, we need to preserve the GFN of a non-present or reserved
286  * SPTE when we usurp the upper five bits of the physical address space to
287  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
288  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
289  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
290  * high and low parts.  This mask covers the lower bits of the GFN.
291  */
292 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
293
294 /*
295  * The number of non-reserved physical address bits irrespective of features
296  * that repurpose legal bits, e.g. MKTME.
297  */
298 static u8 __read_mostly shadow_phys_bits;
299
300 static void mmu_spte_set(u64 *sptep, u64 spte);
301 static bool is_executable_pte(u64 spte);
302 static union kvm_mmu_page_role
303 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
304
305 #define CREATE_TRACE_POINTS
306 #include "mmutrace.h"
307
308
309 static inline bool kvm_available_flush_tlb_with_range(void)
310 {
311         return kvm_x86_ops.tlb_remote_flush_with_range;
312 }
313
314 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
315                 struct kvm_tlb_range *range)
316 {
317         int ret = -ENOTSUPP;
318
319         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
320                 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
321
322         if (ret)
323                 kvm_flush_remote_tlbs(kvm);
324 }
325
326 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
327                 u64 start_gfn, u64 pages)
328 {
329         struct kvm_tlb_range range;
330
331         range.start_gfn = start_gfn;
332         range.pages = pages;
333
334         kvm_flush_remote_tlbs_with_range(kvm, &range);
335 }
336
337 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask)
338 {
339         BUG_ON((u64)(unsigned)access_mask != access_mask);
340         WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << shadow_nonpresent_or_rsvd_mask_len));
341         WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
342         shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
343         shadow_mmio_access_mask = access_mask;
344 }
345 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
346
347 static bool is_mmio_spte(u64 spte)
348 {
349         return (spte & SPTE_SPECIAL_MASK) == SPTE_MMIO_MASK;
350 }
351
352 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
353 {
354         return sp->role.ad_disabled;
355 }
356
357 static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
358 {
359         /*
360          * When using the EPT page-modification log, the GPAs in the log
361          * would come from L2 rather than L1.  Therefore, we need to rely
362          * on write protection to record dirty pages.  This also bypasses
363          * PML, since writes now result in a vmexit.
364          */
365         return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
366 }
367
368 static inline bool spte_ad_enabled(u64 spte)
369 {
370         MMU_WARN_ON(is_mmio_spte(spte));
371         return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
372 }
373
374 static inline bool spte_ad_need_write_protect(u64 spte)
375 {
376         MMU_WARN_ON(is_mmio_spte(spte));
377         return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
378 }
379
380 static bool is_nx_huge_page_enabled(void)
381 {
382         return READ_ONCE(nx_huge_pages);
383 }
384
385 static inline u64 spte_shadow_accessed_mask(u64 spte)
386 {
387         MMU_WARN_ON(is_mmio_spte(spte));
388         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
389 }
390
391 static inline u64 spte_shadow_dirty_mask(u64 spte)
392 {
393         MMU_WARN_ON(is_mmio_spte(spte));
394         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
395 }
396
397 static inline bool is_access_track_spte(u64 spte)
398 {
399         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
400 }
401
402 /*
403  * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
404  * the memslots generation and is derived as follows:
405  *
406  * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
407  * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
408  *
409  * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
410  * the MMIO generation number, as doing so would require stealing a bit from
411  * the "real" generation number and thus effectively halve the maximum number
412  * of MMIO generations that can be handled before encountering a wrap (which
413  * requires a full MMU zap).  The flag is instead explicitly queried when
414  * checking for MMIO spte cache hits.
415  */
416 #define MMIO_SPTE_GEN_MASK              GENMASK_ULL(17, 0)
417
418 #define MMIO_SPTE_GEN_LOW_START         3
419 #define MMIO_SPTE_GEN_LOW_END           11
420 #define MMIO_SPTE_GEN_LOW_MASK          GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
421                                                     MMIO_SPTE_GEN_LOW_START)
422
423 #define MMIO_SPTE_GEN_HIGH_START        PT64_SECOND_AVAIL_BITS_SHIFT
424 #define MMIO_SPTE_GEN_HIGH_END          62
425 #define MMIO_SPTE_GEN_HIGH_MASK         GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
426                                                     MMIO_SPTE_GEN_HIGH_START)
427
428 static u64 generation_mmio_spte_mask(u64 gen)
429 {
430         u64 mask;
431
432         WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
433         BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
434
435         mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
436         mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
437         return mask;
438 }
439
440 static u64 get_mmio_spte_generation(u64 spte)
441 {
442         u64 gen;
443
444         gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
445         gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
446         return gen;
447 }
448
449 static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
450 {
451
452         u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
453         u64 mask = generation_mmio_spte_mask(gen);
454         u64 gpa = gfn << PAGE_SHIFT;
455
456         access &= shadow_mmio_access_mask;
457         mask |= shadow_mmio_value | access;
458         mask |= gpa | shadow_nonpresent_or_rsvd_mask;
459         mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
460                 << shadow_nonpresent_or_rsvd_mask_len;
461
462         return mask;
463 }
464
465 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
466                            unsigned int access)
467 {
468         u64 mask = make_mmio_spte(vcpu, gfn, access);
469         unsigned int gen = get_mmio_spte_generation(mask);
470
471         access = mask & ACC_ALL;
472
473         trace_mark_mmio_spte(sptep, gfn, access, gen);
474         mmu_spte_set(sptep, mask);
475 }
476
477 static gfn_t get_mmio_spte_gfn(u64 spte)
478 {
479         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
480
481         gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
482                & shadow_nonpresent_or_rsvd_mask;
483
484         return gpa >> PAGE_SHIFT;
485 }
486
487 static unsigned get_mmio_spte_access(u64 spte)
488 {
489         return spte & shadow_mmio_access_mask;
490 }
491
492 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
493                           kvm_pfn_t pfn, unsigned int access)
494 {
495         if (unlikely(is_noslot_pfn(pfn))) {
496                 mark_mmio_spte(vcpu, sptep, gfn, access);
497                 return true;
498         }
499
500         return false;
501 }
502
503 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
504 {
505         u64 kvm_gen, spte_gen, gen;
506
507         gen = kvm_vcpu_memslots(vcpu)->generation;
508         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
509                 return false;
510
511         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
512         spte_gen = get_mmio_spte_generation(spte);
513
514         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
515         return likely(kvm_gen == spte_gen);
516 }
517
518 /*
519  * Sets the shadow PTE masks used by the MMU.
520  *
521  * Assumptions:
522  *  - Setting either @accessed_mask or @dirty_mask requires setting both
523  *  - At least one of @accessed_mask or @acc_track_mask must be set
524  */
525 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
526                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
527                 u64 acc_track_mask, u64 me_mask)
528 {
529         BUG_ON(!dirty_mask != !accessed_mask);
530         BUG_ON(!accessed_mask && !acc_track_mask);
531         BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
532
533         shadow_user_mask = user_mask;
534         shadow_accessed_mask = accessed_mask;
535         shadow_dirty_mask = dirty_mask;
536         shadow_nx_mask = nx_mask;
537         shadow_x_mask = x_mask;
538         shadow_present_mask = p_mask;
539         shadow_acc_track_mask = acc_track_mask;
540         shadow_me_mask = me_mask;
541 }
542 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
543
544 static u8 kvm_get_shadow_phys_bits(void)
545 {
546         /*
547          * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
548          * in CPU detection code, but the processor treats those reduced bits as
549          * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
550          * the physical address bits reported by CPUID.
551          */
552         if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
553                 return cpuid_eax(0x80000008) & 0xff;
554
555         /*
556          * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
557          * custom CPUID.  Proceed with whatever the kernel found since these features
558          * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
559          */
560         return boot_cpu_data.x86_phys_bits;
561 }
562
563 static void kvm_mmu_reset_all_pte_masks(void)
564 {
565         u8 low_phys_bits;
566
567         shadow_user_mask = 0;
568         shadow_accessed_mask = 0;
569         shadow_dirty_mask = 0;
570         shadow_nx_mask = 0;
571         shadow_x_mask = 0;
572         shadow_present_mask = 0;
573         shadow_acc_track_mask = 0;
574
575         shadow_phys_bits = kvm_get_shadow_phys_bits();
576
577         /*
578          * If the CPU has 46 or less physical address bits, then set an
579          * appropriate mask to guard against L1TF attacks. Otherwise, it is
580          * assumed that the CPU is not vulnerable to L1TF.
581          *
582          * Some Intel CPUs address the L1 cache using more PA bits than are
583          * reported by CPUID. Use the PA width of the L1 cache when possible
584          * to achieve more effective mitigation, e.g. if system RAM overlaps
585          * the most significant bits of legal physical address space.
586          */
587         shadow_nonpresent_or_rsvd_mask = 0;
588         low_phys_bits = boot_cpu_data.x86_phys_bits;
589         if (boot_cpu_has_bug(X86_BUG_L1TF) &&
590             !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
591                           52 - shadow_nonpresent_or_rsvd_mask_len)) {
592                 low_phys_bits = boot_cpu_data.x86_cache_bits
593                         - shadow_nonpresent_or_rsvd_mask_len;
594                 shadow_nonpresent_or_rsvd_mask =
595                         rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
596         }
597
598         shadow_nonpresent_or_rsvd_lower_gfn_mask =
599                 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
600 }
601
602 static int is_cpuid_PSE36(void)
603 {
604         return 1;
605 }
606
607 static int is_nx(struct kvm_vcpu *vcpu)
608 {
609         return vcpu->arch.efer & EFER_NX;
610 }
611
612 static int is_shadow_present_pte(u64 pte)
613 {
614         return (pte != 0) && !is_mmio_spte(pte);
615 }
616
617 static int is_large_pte(u64 pte)
618 {
619         return pte & PT_PAGE_SIZE_MASK;
620 }
621
622 static int is_last_spte(u64 pte, int level)
623 {
624         if (level == PG_LEVEL_4K)
625                 return 1;
626         if (is_large_pte(pte))
627                 return 1;
628         return 0;
629 }
630
631 static bool is_executable_pte(u64 spte)
632 {
633         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
634 }
635
636 static kvm_pfn_t spte_to_pfn(u64 pte)
637 {
638         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
639 }
640
641 static gfn_t pse36_gfn_delta(u32 gpte)
642 {
643         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
644
645         return (gpte & PT32_DIR_PSE36_MASK) << shift;
646 }
647
648 #ifdef CONFIG_X86_64
649 static void __set_spte(u64 *sptep, u64 spte)
650 {
651         WRITE_ONCE(*sptep, spte);
652 }
653
654 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
655 {
656         WRITE_ONCE(*sptep, spte);
657 }
658
659 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
660 {
661         return xchg(sptep, spte);
662 }
663
664 static u64 __get_spte_lockless(u64 *sptep)
665 {
666         return READ_ONCE(*sptep);
667 }
668 #else
669 union split_spte {
670         struct {
671                 u32 spte_low;
672                 u32 spte_high;
673         };
674         u64 spte;
675 };
676
677 static void count_spte_clear(u64 *sptep, u64 spte)
678 {
679         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
680
681         if (is_shadow_present_pte(spte))
682                 return;
683
684         /* Ensure the spte is completely set before we increase the count */
685         smp_wmb();
686         sp->clear_spte_count++;
687 }
688
689 static void __set_spte(u64 *sptep, u64 spte)
690 {
691         union split_spte *ssptep, sspte;
692
693         ssptep = (union split_spte *)sptep;
694         sspte = (union split_spte)spte;
695
696         ssptep->spte_high = sspte.spte_high;
697
698         /*
699          * If we map the spte from nonpresent to present, We should store
700          * the high bits firstly, then set present bit, so cpu can not
701          * fetch this spte while we are setting the spte.
702          */
703         smp_wmb();
704
705         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
706 }
707
708 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
709 {
710         union split_spte *ssptep, sspte;
711
712         ssptep = (union split_spte *)sptep;
713         sspte = (union split_spte)spte;
714
715         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
716
717         /*
718          * If we map the spte from present to nonpresent, we should clear
719          * present bit firstly to avoid vcpu fetch the old high bits.
720          */
721         smp_wmb();
722
723         ssptep->spte_high = sspte.spte_high;
724         count_spte_clear(sptep, spte);
725 }
726
727 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
728 {
729         union split_spte *ssptep, sspte, orig;
730
731         ssptep = (union split_spte *)sptep;
732         sspte = (union split_spte)spte;
733
734         /* xchg acts as a barrier before the setting of the high bits */
735         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
736         orig.spte_high = ssptep->spte_high;
737         ssptep->spte_high = sspte.spte_high;
738         count_spte_clear(sptep, spte);
739
740         return orig.spte;
741 }
742
743 /*
744  * The idea using the light way get the spte on x86_32 guest is from
745  * gup_get_pte (mm/gup.c).
746  *
747  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
748  * coalesces them and we are running out of the MMU lock.  Therefore
749  * we need to protect against in-progress updates of the spte.
750  *
751  * Reading the spte while an update is in progress may get the old value
752  * for the high part of the spte.  The race is fine for a present->non-present
753  * change (because the high part of the spte is ignored for non-present spte),
754  * but for a present->present change we must reread the spte.
755  *
756  * All such changes are done in two steps (present->non-present and
757  * non-present->present), hence it is enough to count the number of
758  * present->non-present updates: if it changed while reading the spte,
759  * we might have hit the race.  This is done using clear_spte_count.
760  */
761 static u64 __get_spte_lockless(u64 *sptep)
762 {
763         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
764         union split_spte spte, *orig = (union split_spte *)sptep;
765         int count;
766
767 retry:
768         count = sp->clear_spte_count;
769         smp_rmb();
770
771         spte.spte_low = orig->spte_low;
772         smp_rmb();
773
774         spte.spte_high = orig->spte_high;
775         smp_rmb();
776
777         if (unlikely(spte.spte_low != orig->spte_low ||
778               count != sp->clear_spte_count))
779                 goto retry;
780
781         return spte.spte;
782 }
783 #endif
784
785 static bool spte_can_locklessly_be_made_writable(u64 spte)
786 {
787         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
788                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
789 }
790
791 static bool spte_has_volatile_bits(u64 spte)
792 {
793         if (!is_shadow_present_pte(spte))
794                 return false;
795
796         /*
797          * Always atomically update spte if it can be updated
798          * out of mmu-lock, it can ensure dirty bit is not lost,
799          * also, it can help us to get a stable is_writable_pte()
800          * to ensure tlb flush is not missed.
801          */
802         if (spte_can_locklessly_be_made_writable(spte) ||
803             is_access_track_spte(spte))
804                 return true;
805
806         if (spte_ad_enabled(spte)) {
807                 if ((spte & shadow_accessed_mask) == 0 ||
808                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
809                         return true;
810         }
811
812         return false;
813 }
814
815 static bool is_accessed_spte(u64 spte)
816 {
817         u64 accessed_mask = spte_shadow_accessed_mask(spte);
818
819         return accessed_mask ? spte & accessed_mask
820                              : !is_access_track_spte(spte);
821 }
822
823 static bool is_dirty_spte(u64 spte)
824 {
825         u64 dirty_mask = spte_shadow_dirty_mask(spte);
826
827         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
828 }
829
830 /* Rules for using mmu_spte_set:
831  * Set the sptep from nonpresent to present.
832  * Note: the sptep being assigned *must* be either not present
833  * or in a state where the hardware will not attempt to update
834  * the spte.
835  */
836 static void mmu_spte_set(u64 *sptep, u64 new_spte)
837 {
838         WARN_ON(is_shadow_present_pte(*sptep));
839         __set_spte(sptep, new_spte);
840 }
841
842 /*
843  * Update the SPTE (excluding the PFN), but do not track changes in its
844  * accessed/dirty status.
845  */
846 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
847 {
848         u64 old_spte = *sptep;
849
850         WARN_ON(!is_shadow_present_pte(new_spte));
851
852         if (!is_shadow_present_pte(old_spte)) {
853                 mmu_spte_set(sptep, new_spte);
854                 return old_spte;
855         }
856
857         if (!spte_has_volatile_bits(old_spte))
858                 __update_clear_spte_fast(sptep, new_spte);
859         else
860                 old_spte = __update_clear_spte_slow(sptep, new_spte);
861
862         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
863
864         return old_spte;
865 }
866
867 /* Rules for using mmu_spte_update:
868  * Update the state bits, it means the mapped pfn is not changed.
869  *
870  * Whenever we overwrite a writable spte with a read-only one we
871  * should flush remote TLBs. Otherwise rmap_write_protect
872  * will find a read-only spte, even though the writable spte
873  * might be cached on a CPU's TLB, the return value indicates this
874  * case.
875  *
876  * Returns true if the TLB needs to be flushed
877  */
878 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
879 {
880         bool flush = false;
881         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
882
883         if (!is_shadow_present_pte(old_spte))
884                 return false;
885
886         /*
887          * For the spte updated out of mmu-lock is safe, since
888          * we always atomically update it, see the comments in
889          * spte_has_volatile_bits().
890          */
891         if (spte_can_locklessly_be_made_writable(old_spte) &&
892               !is_writable_pte(new_spte))
893                 flush = true;
894
895         /*
896          * Flush TLB when accessed/dirty states are changed in the page tables,
897          * to guarantee consistency between TLB and page tables.
898          */
899
900         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
901                 flush = true;
902                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
903         }
904
905         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
906                 flush = true;
907                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
908         }
909
910         return flush;
911 }
912
913 /*
914  * Rules for using mmu_spte_clear_track_bits:
915  * It sets the sptep from present to nonpresent, and track the
916  * state bits, it is used to clear the last level sptep.
917  * Returns non-zero if the PTE was previously valid.
918  */
919 static int mmu_spte_clear_track_bits(u64 *sptep)
920 {
921         kvm_pfn_t pfn;
922         u64 old_spte = *sptep;
923
924         if (!spte_has_volatile_bits(old_spte))
925                 __update_clear_spte_fast(sptep, 0ull);
926         else
927                 old_spte = __update_clear_spte_slow(sptep, 0ull);
928
929         if (!is_shadow_present_pte(old_spte))
930                 return 0;
931
932         pfn = spte_to_pfn(old_spte);
933
934         /*
935          * KVM does not hold the refcount of the page used by
936          * kvm mmu, before reclaiming the page, we should
937          * unmap it from mmu first.
938          */
939         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
940
941         if (is_accessed_spte(old_spte))
942                 kvm_set_pfn_accessed(pfn);
943
944         if (is_dirty_spte(old_spte))
945                 kvm_set_pfn_dirty(pfn);
946
947         return 1;
948 }
949
950 /*
951  * Rules for using mmu_spte_clear_no_track:
952  * Directly clear spte without caring the state bits of sptep,
953  * it is used to set the upper level spte.
954  */
955 static void mmu_spte_clear_no_track(u64 *sptep)
956 {
957         __update_clear_spte_fast(sptep, 0ull);
958 }
959
960 static u64 mmu_spte_get_lockless(u64 *sptep)
961 {
962         return __get_spte_lockless(sptep);
963 }
964
965 static u64 mark_spte_for_access_track(u64 spte)
966 {
967         if (spte_ad_enabled(spte))
968                 return spte & ~shadow_accessed_mask;
969
970         if (is_access_track_spte(spte))
971                 return spte;
972
973         /*
974          * Making an Access Tracking PTE will result in removal of write access
975          * from the PTE. So, verify that we will be able to restore the write
976          * access in the fast page fault path later on.
977          */
978         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
979                   !spte_can_locklessly_be_made_writable(spte),
980                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
981
982         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
983                           shadow_acc_track_saved_bits_shift),
984                   "kvm: Access Tracking saved bit locations are not zero\n");
985
986         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
987                 shadow_acc_track_saved_bits_shift;
988         spte &= ~shadow_acc_track_mask;
989
990         return spte;
991 }
992
993 /* Restore an acc-track PTE back to a regular PTE */
994 static u64 restore_acc_track_spte(u64 spte)
995 {
996         u64 new_spte = spte;
997         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
998                          & shadow_acc_track_saved_bits_mask;
999
1000         WARN_ON_ONCE(spte_ad_enabled(spte));
1001         WARN_ON_ONCE(!is_access_track_spte(spte));
1002
1003         new_spte &= ~shadow_acc_track_mask;
1004         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1005                       shadow_acc_track_saved_bits_shift);
1006         new_spte |= saved_bits;
1007
1008         return new_spte;
1009 }
1010
1011 /* Returns the Accessed status of the PTE and resets it at the same time. */
1012 static bool mmu_spte_age(u64 *sptep)
1013 {
1014         u64 spte = mmu_spte_get_lockless(sptep);
1015
1016         if (!is_accessed_spte(spte))
1017                 return false;
1018
1019         if (spte_ad_enabled(spte)) {
1020                 clear_bit((ffs(shadow_accessed_mask) - 1),
1021                           (unsigned long *)sptep);
1022         } else {
1023                 /*
1024                  * Capture the dirty status of the page, so that it doesn't get
1025                  * lost when the SPTE is marked for access tracking.
1026                  */
1027                 if (is_writable_pte(spte))
1028                         kvm_set_pfn_dirty(spte_to_pfn(spte));
1029
1030                 spte = mark_spte_for_access_track(spte);
1031                 mmu_spte_update_no_track(sptep, spte);
1032         }
1033
1034         return true;
1035 }
1036
1037 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1038 {
1039         /*
1040          * Prevent page table teardown by making any free-er wait during
1041          * kvm_flush_remote_tlbs() IPI to all active vcpus.
1042          */
1043         local_irq_disable();
1044
1045         /*
1046          * Make sure a following spte read is not reordered ahead of the write
1047          * to vcpu->mode.
1048          */
1049         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1050 }
1051
1052 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1053 {
1054         /*
1055          * Make sure the write to vcpu->mode is not reordered in front of
1056          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
1057          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1058          */
1059         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1060         local_irq_enable();
1061 }
1062
1063 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
1064                                   struct kmem_cache *base_cache, int min)
1065 {
1066         void *obj;
1067
1068         if (cache->nobjs >= min)
1069                 return 0;
1070         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1071                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1072                 if (!obj)
1073                         return cache->nobjs >= min ? 0 : -ENOMEM;
1074                 cache->objects[cache->nobjs++] = obj;
1075         }
1076         return 0;
1077 }
1078
1079 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1080 {
1081         return cache->nobjs;
1082 }
1083
1084 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1085                                   struct kmem_cache *cache)
1086 {
1087         while (mc->nobjs)
1088                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1089 }
1090
1091 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1092                                        int min)
1093 {
1094         void *page;
1095
1096         if (cache->nobjs >= min)
1097                 return 0;
1098         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1099                 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1100                 if (!page)
1101                         return cache->nobjs >= min ? 0 : -ENOMEM;
1102                 cache->objects[cache->nobjs++] = page;
1103         }
1104         return 0;
1105 }
1106
1107 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1108 {
1109         while (mc->nobjs)
1110                 free_page((unsigned long)mc->objects[--mc->nobjs]);
1111 }
1112
1113 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1114 {
1115         int r;
1116
1117         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1118                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1119         if (r)
1120                 goto out;
1121         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1122         if (r)
1123                 goto out;
1124         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1125                                    mmu_page_header_cache, 4);
1126 out:
1127         return r;
1128 }
1129
1130 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1131 {
1132         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1133                                 pte_list_desc_cache);
1134         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1135         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1136                                 mmu_page_header_cache);
1137 }
1138
1139 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1140 {
1141         void *p;
1142
1143         BUG_ON(!mc->nobjs);
1144         p = mc->objects[--mc->nobjs];
1145         return p;
1146 }
1147
1148 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1149 {
1150         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1151 }
1152
1153 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1154 {
1155         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1156 }
1157
1158 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1159 {
1160         if (!sp->role.direct)
1161                 return sp->gfns[index];
1162
1163         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1164 }
1165
1166 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1167 {
1168         if (!sp->role.direct) {
1169                 sp->gfns[index] = gfn;
1170                 return;
1171         }
1172
1173         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1174                 pr_err_ratelimited("gfn mismatch under direct page %llx "
1175                                    "(expected %llx, got %llx)\n",
1176                                    sp->gfn,
1177                                    kvm_mmu_page_get_gfn(sp, index), gfn);
1178 }
1179
1180 /*
1181  * Return the pointer to the large page information for a given gfn,
1182  * handling slots that are not large page aligned.
1183  */
1184 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1185                                               struct kvm_memory_slot *slot,
1186                                               int level)
1187 {
1188         unsigned long idx;
1189
1190         idx = gfn_to_index(gfn, slot->base_gfn, level);
1191         return &slot->arch.lpage_info[level - 2][idx];
1192 }
1193
1194 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1195                                             gfn_t gfn, int count)
1196 {
1197         struct kvm_lpage_info *linfo;
1198         int i;
1199
1200         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1201                 linfo = lpage_info_slot(gfn, slot, i);
1202                 linfo->disallow_lpage += count;
1203                 WARN_ON(linfo->disallow_lpage < 0);
1204         }
1205 }
1206
1207 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1208 {
1209         update_gfn_disallow_lpage_count(slot, gfn, 1);
1210 }
1211
1212 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1213 {
1214         update_gfn_disallow_lpage_count(slot, gfn, -1);
1215 }
1216
1217 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1218 {
1219         struct kvm_memslots *slots;
1220         struct kvm_memory_slot *slot;
1221         gfn_t gfn;
1222
1223         kvm->arch.indirect_shadow_pages++;
1224         gfn = sp->gfn;
1225         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1226         slot = __gfn_to_memslot(slots, gfn);
1227
1228         /* the non-leaf shadow pages are keeping readonly. */
1229         if (sp->role.level > PG_LEVEL_4K)
1230                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1231                                                     KVM_PAGE_TRACK_WRITE);
1232
1233         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1234 }
1235
1236 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1237 {
1238         if (sp->lpage_disallowed)
1239                 return;
1240
1241         ++kvm->stat.nx_lpage_splits;
1242         list_add_tail(&sp->lpage_disallowed_link,
1243                       &kvm->arch.lpage_disallowed_mmu_pages);
1244         sp->lpage_disallowed = true;
1245 }
1246
1247 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1248 {
1249         struct kvm_memslots *slots;
1250         struct kvm_memory_slot *slot;
1251         gfn_t gfn;
1252
1253         kvm->arch.indirect_shadow_pages--;
1254         gfn = sp->gfn;
1255         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1256         slot = __gfn_to_memslot(slots, gfn);
1257         if (sp->role.level > PG_LEVEL_4K)
1258                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1259                                                        KVM_PAGE_TRACK_WRITE);
1260
1261         kvm_mmu_gfn_allow_lpage(slot, gfn);
1262 }
1263
1264 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1265 {
1266         --kvm->stat.nx_lpage_splits;
1267         sp->lpage_disallowed = false;
1268         list_del(&sp->lpage_disallowed_link);
1269 }
1270
1271 static struct kvm_memory_slot *
1272 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1273                             bool no_dirty_log)
1274 {
1275         struct kvm_memory_slot *slot;
1276
1277         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1278         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1279                 return NULL;
1280         if (no_dirty_log && slot->dirty_bitmap)
1281                 return NULL;
1282
1283         return slot;
1284 }
1285
1286 /*
1287  * About rmap_head encoding:
1288  *
1289  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1290  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1291  * pte_list_desc containing more mappings.
1292  */
1293
1294 /*
1295  * Returns the number of pointers in the rmap chain, not counting the new one.
1296  */
1297 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1298                         struct kvm_rmap_head *rmap_head)
1299 {
1300         struct pte_list_desc *desc;
1301         int i, count = 0;
1302
1303         if (!rmap_head->val) {
1304                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1305                 rmap_head->val = (unsigned long)spte;
1306         } else if (!(rmap_head->val & 1)) {
1307                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1308                 desc = mmu_alloc_pte_list_desc(vcpu);
1309                 desc->sptes[0] = (u64 *)rmap_head->val;
1310                 desc->sptes[1] = spte;
1311                 rmap_head->val = (unsigned long)desc | 1;
1312                 ++count;
1313         } else {
1314                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1315                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1316                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1317                         desc = desc->more;
1318                         count += PTE_LIST_EXT;
1319                 }
1320                 if (desc->sptes[PTE_LIST_EXT-1]) {
1321                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1322                         desc = desc->more;
1323                 }
1324                 for (i = 0; desc->sptes[i]; ++i)
1325                         ++count;
1326                 desc->sptes[i] = spte;
1327         }
1328         return count;
1329 }
1330
1331 static void
1332 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1333                            struct pte_list_desc *desc, int i,
1334                            struct pte_list_desc *prev_desc)
1335 {
1336         int j;
1337
1338         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1339                 ;
1340         desc->sptes[i] = desc->sptes[j];
1341         desc->sptes[j] = NULL;
1342         if (j != 0)
1343                 return;
1344         if (!prev_desc && !desc->more)
1345                 rmap_head->val = 0;
1346         else
1347                 if (prev_desc)
1348                         prev_desc->more = desc->more;
1349                 else
1350                         rmap_head->val = (unsigned long)desc->more | 1;
1351         mmu_free_pte_list_desc(desc);
1352 }
1353
1354 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1355 {
1356         struct pte_list_desc *desc;
1357         struct pte_list_desc *prev_desc;
1358         int i;
1359
1360         if (!rmap_head->val) {
1361                 pr_err("%s: %p 0->BUG\n", __func__, spte);
1362                 BUG();
1363         } else if (!(rmap_head->val & 1)) {
1364                 rmap_printk("%s:  %p 1->0\n", __func__, spte);
1365                 if ((u64 *)rmap_head->val != spte) {
1366                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
1367                         BUG();
1368                 }
1369                 rmap_head->val = 0;
1370         } else {
1371                 rmap_printk("%s:  %p many->many\n", __func__, spte);
1372                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1373                 prev_desc = NULL;
1374                 while (desc) {
1375                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1376                                 if (desc->sptes[i] == spte) {
1377                                         pte_list_desc_remove_entry(rmap_head,
1378                                                         desc, i, prev_desc);
1379                                         return;
1380                                 }
1381                         }
1382                         prev_desc = desc;
1383                         desc = desc->more;
1384                 }
1385                 pr_err("%s: %p many->many\n", __func__, spte);
1386                 BUG();
1387         }
1388 }
1389
1390 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1391 {
1392         mmu_spte_clear_track_bits(sptep);
1393         __pte_list_remove(sptep, rmap_head);
1394 }
1395
1396 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1397                                            struct kvm_memory_slot *slot)
1398 {
1399         unsigned long idx;
1400
1401         idx = gfn_to_index(gfn, slot->base_gfn, level);
1402         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1403 }
1404
1405 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1406                                          struct kvm_mmu_page *sp)
1407 {
1408         struct kvm_memslots *slots;
1409         struct kvm_memory_slot *slot;
1410
1411         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1412         slot = __gfn_to_memslot(slots, gfn);
1413         return __gfn_to_rmap(gfn, sp->role.level, slot);
1414 }
1415
1416 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1417 {
1418         struct kvm_mmu_memory_cache *cache;
1419
1420         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1421         return mmu_memory_cache_free_objects(cache);
1422 }
1423
1424 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1425 {
1426         struct kvm_mmu_page *sp;
1427         struct kvm_rmap_head *rmap_head;
1428
1429         sp = page_header(__pa(spte));
1430         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1431         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1432         return pte_list_add(vcpu, spte, rmap_head);
1433 }
1434
1435 static void rmap_remove(struct kvm *kvm, u64 *spte)
1436 {
1437         struct kvm_mmu_page *sp;
1438         gfn_t gfn;
1439         struct kvm_rmap_head *rmap_head;
1440
1441         sp = page_header(__pa(spte));
1442         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1443         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1444         __pte_list_remove(spte, rmap_head);
1445 }
1446
1447 /*
1448  * Used by the following functions to iterate through the sptes linked by a
1449  * rmap.  All fields are private and not assumed to be used outside.
1450  */
1451 struct rmap_iterator {
1452         /* private fields */
1453         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1454         int pos;                        /* index of the sptep */
1455 };
1456
1457 /*
1458  * Iteration must be started by this function.  This should also be used after
1459  * removing/dropping sptes from the rmap link because in such cases the
1460  * information in the iterator may not be valid.
1461  *
1462  * Returns sptep if found, NULL otherwise.
1463  */
1464 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1465                            struct rmap_iterator *iter)
1466 {
1467         u64 *sptep;
1468
1469         if (!rmap_head->val)
1470                 return NULL;
1471
1472         if (!(rmap_head->val & 1)) {
1473                 iter->desc = NULL;
1474                 sptep = (u64 *)rmap_head->val;
1475                 goto out;
1476         }
1477
1478         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1479         iter->pos = 0;
1480         sptep = iter->desc->sptes[iter->pos];
1481 out:
1482         BUG_ON(!is_shadow_present_pte(*sptep));
1483         return sptep;
1484 }
1485
1486 /*
1487  * Must be used with a valid iterator: e.g. after rmap_get_first().
1488  *
1489  * Returns sptep if found, NULL otherwise.
1490  */
1491 static u64 *rmap_get_next(struct rmap_iterator *iter)
1492 {
1493         u64 *sptep;
1494
1495         if (iter->desc) {
1496                 if (iter->pos < PTE_LIST_EXT - 1) {
1497                         ++iter->pos;
1498                         sptep = iter->desc->sptes[iter->pos];
1499                         if (sptep)
1500                                 goto out;
1501                 }
1502
1503                 iter->desc = iter->desc->more;
1504
1505                 if (iter->desc) {
1506                         iter->pos = 0;
1507                         /* desc->sptes[0] cannot be NULL */
1508                         sptep = iter->desc->sptes[iter->pos];
1509                         goto out;
1510                 }
1511         }
1512
1513         return NULL;
1514 out:
1515         BUG_ON(!is_shadow_present_pte(*sptep));
1516         return sptep;
1517 }
1518
1519 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1520         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1521              _spte_; _spte_ = rmap_get_next(_iter_))
1522
1523 static void drop_spte(struct kvm *kvm, u64 *sptep)
1524 {
1525         if (mmu_spte_clear_track_bits(sptep))
1526                 rmap_remove(kvm, sptep);
1527 }
1528
1529
1530 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1531 {
1532         if (is_large_pte(*sptep)) {
1533                 WARN_ON(page_header(__pa(sptep))->role.level == PG_LEVEL_4K);
1534                 drop_spte(kvm, sptep);
1535                 --kvm->stat.lpages;
1536                 return true;
1537         }
1538
1539         return false;
1540 }
1541
1542 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1543 {
1544         if (__drop_large_spte(vcpu->kvm, sptep)) {
1545                 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1546
1547                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1548                         KVM_PAGES_PER_HPAGE(sp->role.level));
1549         }
1550 }
1551
1552 /*
1553  * Write-protect on the specified @sptep, @pt_protect indicates whether
1554  * spte write-protection is caused by protecting shadow page table.
1555  *
1556  * Note: write protection is difference between dirty logging and spte
1557  * protection:
1558  * - for dirty logging, the spte can be set to writable at anytime if
1559  *   its dirty bitmap is properly set.
1560  * - for spte protection, the spte can be writable only after unsync-ing
1561  *   shadow page.
1562  *
1563  * Return true if tlb need be flushed.
1564  */
1565 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1566 {
1567         u64 spte = *sptep;
1568
1569         if (!is_writable_pte(spte) &&
1570               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1571                 return false;
1572
1573         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1574
1575         if (pt_protect)
1576                 spte &= ~SPTE_MMU_WRITEABLE;
1577         spte = spte & ~PT_WRITABLE_MASK;
1578
1579         return mmu_spte_update(sptep, spte);
1580 }
1581
1582 static bool __rmap_write_protect(struct kvm *kvm,
1583                                  struct kvm_rmap_head *rmap_head,
1584                                  bool pt_protect)
1585 {
1586         u64 *sptep;
1587         struct rmap_iterator iter;
1588         bool flush = false;
1589
1590         for_each_rmap_spte(rmap_head, &iter, sptep)
1591                 flush |= spte_write_protect(sptep, pt_protect);
1592
1593         return flush;
1594 }
1595
1596 static bool spte_clear_dirty(u64 *sptep)
1597 {
1598         u64 spte = *sptep;
1599
1600         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1601
1602         MMU_WARN_ON(!spte_ad_enabled(spte));
1603         spte &= ~shadow_dirty_mask;
1604         return mmu_spte_update(sptep, spte);
1605 }
1606
1607 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1608 {
1609         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1610                                                (unsigned long *)sptep);
1611         if (was_writable && !spte_ad_enabled(*sptep))
1612                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1613
1614         return was_writable;
1615 }
1616
1617 /*
1618  * Gets the GFN ready for another round of dirty logging by clearing the
1619  *      - D bit on ad-enabled SPTEs, and
1620  *      - W bit on ad-disabled SPTEs.
1621  * Returns true iff any D or W bits were cleared.
1622  */
1623 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1624 {
1625         u64 *sptep;
1626         struct rmap_iterator iter;
1627         bool flush = false;
1628
1629         for_each_rmap_spte(rmap_head, &iter, sptep)
1630                 if (spte_ad_need_write_protect(*sptep))
1631                         flush |= spte_wrprot_for_clear_dirty(sptep);
1632                 else
1633                         flush |= spte_clear_dirty(sptep);
1634
1635         return flush;
1636 }
1637
1638 static bool spte_set_dirty(u64 *sptep)
1639 {
1640         u64 spte = *sptep;
1641
1642         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1643
1644         /*
1645          * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1646          * do not bother adding back write access to pages marked
1647          * SPTE_AD_WRPROT_ONLY_MASK.
1648          */
1649         spte |= shadow_dirty_mask;
1650
1651         return mmu_spte_update(sptep, spte);
1652 }
1653
1654 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1655 {
1656         u64 *sptep;
1657         struct rmap_iterator iter;
1658         bool flush = false;
1659
1660         for_each_rmap_spte(rmap_head, &iter, sptep)
1661                 if (spte_ad_enabled(*sptep))
1662                         flush |= spte_set_dirty(sptep);
1663
1664         return flush;
1665 }
1666
1667 /**
1668  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1669  * @kvm: kvm instance
1670  * @slot: slot to protect
1671  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1672  * @mask: indicates which pages we should protect
1673  *
1674  * Used when we do not need to care about huge page mappings: e.g. during dirty
1675  * logging we do not have any such mappings.
1676  */
1677 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1678                                      struct kvm_memory_slot *slot,
1679                                      gfn_t gfn_offset, unsigned long mask)
1680 {
1681         struct kvm_rmap_head *rmap_head;
1682
1683         while (mask) {
1684                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1685                                           PG_LEVEL_4K, slot);
1686                 __rmap_write_protect(kvm, rmap_head, false);
1687
1688                 /* clear the first set bit */
1689                 mask &= mask - 1;
1690         }
1691 }
1692
1693 /**
1694  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1695  * protect the page if the D-bit isn't supported.
1696  * @kvm: kvm instance
1697  * @slot: slot to clear D-bit
1698  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1699  * @mask: indicates which pages we should clear D-bit
1700  *
1701  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1702  */
1703 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1704                                      struct kvm_memory_slot *slot,
1705                                      gfn_t gfn_offset, unsigned long mask)
1706 {
1707         struct kvm_rmap_head *rmap_head;
1708
1709         while (mask) {
1710                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1711                                           PG_LEVEL_4K, slot);
1712                 __rmap_clear_dirty(kvm, rmap_head);
1713
1714                 /* clear the first set bit */
1715                 mask &= mask - 1;
1716         }
1717 }
1718 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1719
1720 /**
1721  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1722  * PT level pages.
1723  *
1724  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1725  * enable dirty logging for them.
1726  *
1727  * Used when we do not need to care about huge page mappings: e.g. during dirty
1728  * logging we do not have any such mappings.
1729  */
1730 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1731                                 struct kvm_memory_slot *slot,
1732                                 gfn_t gfn_offset, unsigned long mask)
1733 {
1734         if (kvm_x86_ops.enable_log_dirty_pt_masked)
1735                 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1736                                 mask);
1737         else
1738                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1739 }
1740
1741 /**
1742  * kvm_arch_write_log_dirty - emulate dirty page logging
1743  * @vcpu: Guest mode vcpu
1744  *
1745  * Emulate arch specific page modification logging for the
1746  * nested hypervisor
1747  */
1748 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1749 {
1750         if (kvm_x86_ops.write_log_dirty)
1751                 return kvm_x86_ops.write_log_dirty(vcpu);
1752
1753         return 0;
1754 }
1755
1756 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1757                                     struct kvm_memory_slot *slot, u64 gfn)
1758 {
1759         struct kvm_rmap_head *rmap_head;
1760         int i;
1761         bool write_protected = false;
1762
1763         for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1764                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1765                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1766         }
1767
1768         return write_protected;
1769 }
1770
1771 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1772 {
1773         struct kvm_memory_slot *slot;
1774
1775         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1776         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1777 }
1778
1779 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1780 {
1781         u64 *sptep;
1782         struct rmap_iterator iter;
1783         bool flush = false;
1784
1785         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1786                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1787
1788                 pte_list_remove(rmap_head, sptep);
1789                 flush = true;
1790         }
1791
1792         return flush;
1793 }
1794
1795 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1796                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1797                            unsigned long data)
1798 {
1799         return kvm_zap_rmapp(kvm, rmap_head);
1800 }
1801
1802 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1803                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1804                              unsigned long data)
1805 {
1806         u64 *sptep;
1807         struct rmap_iterator iter;
1808         int need_flush = 0;
1809         u64 new_spte;
1810         pte_t *ptep = (pte_t *)data;
1811         kvm_pfn_t new_pfn;
1812
1813         WARN_ON(pte_huge(*ptep));
1814         new_pfn = pte_pfn(*ptep);
1815
1816 restart:
1817         for_each_rmap_spte(rmap_head, &iter, sptep) {
1818                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1819                             sptep, *sptep, gfn, level);
1820
1821                 need_flush = 1;
1822
1823                 if (pte_write(*ptep)) {
1824                         pte_list_remove(rmap_head, sptep);
1825                         goto restart;
1826                 } else {
1827                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1828                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1829
1830                         new_spte &= ~PT_WRITABLE_MASK;
1831                         new_spte &= ~SPTE_HOST_WRITEABLE;
1832
1833                         new_spte = mark_spte_for_access_track(new_spte);
1834
1835                         mmu_spte_clear_track_bits(sptep);
1836                         mmu_spte_set(sptep, new_spte);
1837                 }
1838         }
1839
1840         if (need_flush && kvm_available_flush_tlb_with_range()) {
1841                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1842                 return 0;
1843         }
1844
1845         return need_flush;
1846 }
1847
1848 struct slot_rmap_walk_iterator {
1849         /* input fields. */
1850         struct kvm_memory_slot *slot;
1851         gfn_t start_gfn;
1852         gfn_t end_gfn;
1853         int start_level;
1854         int end_level;
1855
1856         /* output fields. */
1857         gfn_t gfn;
1858         struct kvm_rmap_head *rmap;
1859         int level;
1860
1861         /* private field. */
1862         struct kvm_rmap_head *end_rmap;
1863 };
1864
1865 static void
1866 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1867 {
1868         iterator->level = level;
1869         iterator->gfn = iterator->start_gfn;
1870         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1871         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1872                                            iterator->slot);
1873 }
1874
1875 static void
1876 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1877                     struct kvm_memory_slot *slot, int start_level,
1878                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1879 {
1880         iterator->slot = slot;
1881         iterator->start_level = start_level;
1882         iterator->end_level = end_level;
1883         iterator->start_gfn = start_gfn;
1884         iterator->end_gfn = end_gfn;
1885
1886         rmap_walk_init_level(iterator, iterator->start_level);
1887 }
1888
1889 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1890 {
1891         return !!iterator->rmap;
1892 }
1893
1894 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1895 {
1896         if (++iterator->rmap <= iterator->end_rmap) {
1897                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1898                 return;
1899         }
1900
1901         if (++iterator->level > iterator->end_level) {
1902                 iterator->rmap = NULL;
1903                 return;
1904         }
1905
1906         rmap_walk_init_level(iterator, iterator->level);
1907 }
1908
1909 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1910            _start_gfn, _end_gfn, _iter_)                                \
1911         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1912                                  _end_level_, _start_gfn, _end_gfn);    \
1913              slot_rmap_walk_okay(_iter_);                               \
1914              slot_rmap_walk_next(_iter_))
1915
1916 static int kvm_handle_hva_range(struct kvm *kvm,
1917                                 unsigned long start,
1918                                 unsigned long end,
1919                                 unsigned long data,
1920                                 int (*handler)(struct kvm *kvm,
1921                                                struct kvm_rmap_head *rmap_head,
1922                                                struct kvm_memory_slot *slot,
1923                                                gfn_t gfn,
1924                                                int level,
1925                                                unsigned long data))
1926 {
1927         struct kvm_memslots *slots;
1928         struct kvm_memory_slot *memslot;
1929         struct slot_rmap_walk_iterator iterator;
1930         int ret = 0;
1931         int i;
1932
1933         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1934                 slots = __kvm_memslots(kvm, i);
1935                 kvm_for_each_memslot(memslot, slots) {
1936                         unsigned long hva_start, hva_end;
1937                         gfn_t gfn_start, gfn_end;
1938
1939                         hva_start = max(start, memslot->userspace_addr);
1940                         hva_end = min(end, memslot->userspace_addr +
1941                                       (memslot->npages << PAGE_SHIFT));
1942                         if (hva_start >= hva_end)
1943                                 continue;
1944                         /*
1945                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1946                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1947                          */
1948                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1949                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1950
1951                         for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1952                                                  KVM_MAX_HUGEPAGE_LEVEL,
1953                                                  gfn_start, gfn_end - 1,
1954                                                  &iterator)
1955                                 ret |= handler(kvm, iterator.rmap, memslot,
1956                                                iterator.gfn, iterator.level, data);
1957                 }
1958         }
1959
1960         return ret;
1961 }
1962
1963 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1964                           unsigned long data,
1965                           int (*handler)(struct kvm *kvm,
1966                                          struct kvm_rmap_head *rmap_head,
1967                                          struct kvm_memory_slot *slot,
1968                                          gfn_t gfn, int level,
1969                                          unsigned long data))
1970 {
1971         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1972 }
1973
1974 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1975 {
1976         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1977 }
1978
1979 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1980 {
1981         return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1982 }
1983
1984 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1985                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1986                          unsigned long data)
1987 {
1988         u64 *sptep;
1989         struct rmap_iterator uninitialized_var(iter);
1990         int young = 0;
1991
1992         for_each_rmap_spte(rmap_head, &iter, sptep)
1993                 young |= mmu_spte_age(sptep);
1994
1995         trace_kvm_age_page(gfn, level, slot, young);
1996         return young;
1997 }
1998
1999 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2000                               struct kvm_memory_slot *slot, gfn_t gfn,
2001                               int level, unsigned long data)
2002 {
2003         u64 *sptep;
2004         struct rmap_iterator iter;
2005
2006         for_each_rmap_spte(rmap_head, &iter, sptep)
2007                 if (is_accessed_spte(*sptep))
2008                         return 1;
2009         return 0;
2010 }
2011
2012 #define RMAP_RECYCLE_THRESHOLD 1000
2013
2014 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2015 {
2016         struct kvm_rmap_head *rmap_head;
2017         struct kvm_mmu_page *sp;
2018
2019         sp = page_header(__pa(spte));
2020
2021         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2022
2023         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2024         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2025                         KVM_PAGES_PER_HPAGE(sp->role.level));
2026 }
2027
2028 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2029 {
2030         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2031 }
2032
2033 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2034 {
2035         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2036 }
2037
2038 #ifdef MMU_DEBUG
2039 static int is_empty_shadow_page(u64 *spt)
2040 {
2041         u64 *pos;
2042         u64 *end;
2043
2044         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2045                 if (is_shadow_present_pte(*pos)) {
2046                         printk(KERN_ERR "%s: %p %llx\n", __func__,
2047                                pos, *pos);
2048                         return 0;
2049                 }
2050         return 1;
2051 }
2052 #endif
2053
2054 /*
2055  * This value is the sum of all of the kvm instances's
2056  * kvm->arch.n_used_mmu_pages values.  We need a global,
2057  * aggregate version in order to make the slab shrinker
2058  * faster
2059  */
2060 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2061 {
2062         kvm->arch.n_used_mmu_pages += nr;
2063         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2064 }
2065
2066 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2067 {
2068         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2069         hlist_del(&sp->hash_link);
2070         list_del(&sp->link);
2071         free_page((unsigned long)sp->spt);
2072         if (!sp->role.direct)
2073                 free_page((unsigned long)sp->gfns);
2074         kmem_cache_free(mmu_page_header_cache, sp);
2075 }
2076
2077 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2078 {
2079         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2080 }
2081
2082 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2083                                     struct kvm_mmu_page *sp, u64 *parent_pte)
2084 {
2085         if (!parent_pte)
2086                 return;
2087
2088         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2089 }
2090
2091 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2092                                        u64 *parent_pte)
2093 {
2094         __pte_list_remove(parent_pte, &sp->parent_ptes);
2095 }
2096
2097 static void drop_parent_pte(struct kvm_mmu_page *sp,
2098                             u64 *parent_pte)
2099 {
2100         mmu_page_remove_parent_pte(sp, parent_pte);
2101         mmu_spte_clear_no_track(parent_pte);
2102 }
2103
2104 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2105 {
2106         struct kvm_mmu_page *sp;
2107
2108         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2109         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2110         if (!direct)
2111                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2112         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2113
2114         /*
2115          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2116          * depends on valid pages being added to the head of the list.  See
2117          * comments in kvm_zap_obsolete_pages().
2118          */
2119         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2120         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2121         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2122         return sp;
2123 }
2124
2125 static void mark_unsync(u64 *spte);
2126 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2127 {
2128         u64 *sptep;
2129         struct rmap_iterator iter;
2130
2131         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2132                 mark_unsync(sptep);
2133         }
2134 }
2135
2136 static void mark_unsync(u64 *spte)
2137 {
2138         struct kvm_mmu_page *sp;
2139         unsigned int index;
2140
2141         sp = page_header(__pa(spte));
2142         index = spte - sp->spt;
2143         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2144                 return;
2145         if (sp->unsync_children++)
2146                 return;
2147         kvm_mmu_mark_parents_unsync(sp);
2148 }
2149
2150 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2151                                struct kvm_mmu_page *sp)
2152 {
2153         return 0;
2154 }
2155
2156 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2157                                  struct kvm_mmu_page *sp, u64 *spte,
2158                                  const void *pte)
2159 {
2160         WARN_ON(1);
2161 }
2162
2163 #define KVM_PAGE_ARRAY_NR 16
2164
2165 struct kvm_mmu_pages {
2166         struct mmu_page_and_offset {
2167                 struct kvm_mmu_page *sp;
2168                 unsigned int idx;
2169         } page[KVM_PAGE_ARRAY_NR];
2170         unsigned int nr;
2171 };
2172
2173 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2174                          int idx)
2175 {
2176         int i;
2177
2178         if (sp->unsync)
2179                 for (i=0; i < pvec->nr; i++)
2180                         if (pvec->page[i].sp == sp)
2181                                 return 0;
2182
2183         pvec->page[pvec->nr].sp = sp;
2184         pvec->page[pvec->nr].idx = idx;
2185         pvec->nr++;
2186         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2187 }
2188
2189 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2190 {
2191         --sp->unsync_children;
2192         WARN_ON((int)sp->unsync_children < 0);
2193         __clear_bit(idx, sp->unsync_child_bitmap);
2194 }
2195
2196 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2197                            struct kvm_mmu_pages *pvec)
2198 {
2199         int i, ret, nr_unsync_leaf = 0;
2200
2201         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2202                 struct kvm_mmu_page *child;
2203                 u64 ent = sp->spt[i];
2204
2205                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2206                         clear_unsync_child_bit(sp, i);
2207                         continue;
2208                 }
2209
2210                 child = page_header(ent & PT64_BASE_ADDR_MASK);
2211
2212                 if (child->unsync_children) {
2213                         if (mmu_pages_add(pvec, child, i))
2214                                 return -ENOSPC;
2215
2216                         ret = __mmu_unsync_walk(child, pvec);
2217                         if (!ret) {
2218                                 clear_unsync_child_bit(sp, i);
2219                                 continue;
2220                         } else if (ret > 0) {
2221                                 nr_unsync_leaf += ret;
2222                         } else
2223                                 return ret;
2224                 } else if (child->unsync) {
2225                         nr_unsync_leaf++;
2226                         if (mmu_pages_add(pvec, child, i))
2227                                 return -ENOSPC;
2228                 } else
2229                         clear_unsync_child_bit(sp, i);
2230         }
2231
2232         return nr_unsync_leaf;
2233 }
2234
2235 #define INVALID_INDEX (-1)
2236
2237 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2238                            struct kvm_mmu_pages *pvec)
2239 {
2240         pvec->nr = 0;
2241         if (!sp->unsync_children)
2242                 return 0;
2243
2244         mmu_pages_add(pvec, sp, INVALID_INDEX);
2245         return __mmu_unsync_walk(sp, pvec);
2246 }
2247
2248 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2249 {
2250         WARN_ON(!sp->unsync);
2251         trace_kvm_mmu_sync_page(sp);
2252         sp->unsync = 0;
2253         --kvm->stat.mmu_unsync;
2254 }
2255
2256 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2257                                      struct list_head *invalid_list);
2258 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2259                                     struct list_head *invalid_list);
2260
2261
2262 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2263         hlist_for_each_entry(_sp,                                       \
2264           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2265                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
2266                 } else
2267
2268 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2269         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2270                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2271
2272 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2273 {
2274         return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2275 }
2276
2277 /* @sp->gfn should be write-protected at the call site */
2278 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2279                             struct list_head *invalid_list)
2280 {
2281         if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2282             vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2283                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2284                 return false;
2285         }
2286
2287         return true;
2288 }
2289
2290 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2291                                         struct list_head *invalid_list,
2292                                         bool remote_flush)
2293 {
2294         if (!remote_flush && list_empty(invalid_list))
2295                 return false;
2296
2297         if (!list_empty(invalid_list))
2298                 kvm_mmu_commit_zap_page(kvm, invalid_list);
2299         else
2300                 kvm_flush_remote_tlbs(kvm);
2301         return true;
2302 }
2303
2304 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2305                                  struct list_head *invalid_list,
2306                                  bool remote_flush, bool local_flush)
2307 {
2308         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2309                 return;
2310
2311         if (local_flush)
2312                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2313 }
2314
2315 #ifdef CONFIG_KVM_MMU_AUDIT
2316 #include "mmu_audit.c"
2317 #else
2318 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2319 static void mmu_audit_disable(void) { }
2320 #endif
2321
2322 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2323 {
2324         return sp->role.invalid ||
2325                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2326 }
2327
2328 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2329                          struct list_head *invalid_list)
2330 {
2331         kvm_unlink_unsync_page(vcpu->kvm, sp);
2332         return __kvm_sync_page(vcpu, sp, invalid_list);
2333 }
2334
2335 /* @gfn should be write-protected at the call site */
2336 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2337                            struct list_head *invalid_list)
2338 {
2339         struct kvm_mmu_page *s;
2340         bool ret = false;
2341
2342         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2343                 if (!s->unsync)
2344                         continue;
2345
2346                 WARN_ON(s->role.level != PG_LEVEL_4K);
2347                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2348         }
2349
2350         return ret;
2351 }
2352
2353 struct mmu_page_path {
2354         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2355         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2356 };
2357
2358 #define for_each_sp(pvec, sp, parents, i)                       \
2359                 for (i = mmu_pages_first(&pvec, &parents);      \
2360                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2361                         i = mmu_pages_next(&pvec, &parents, i))
2362
2363 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2364                           struct mmu_page_path *parents,
2365                           int i)
2366 {
2367         int n;
2368
2369         for (n = i+1; n < pvec->nr; n++) {
2370                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2371                 unsigned idx = pvec->page[n].idx;
2372                 int level = sp->role.level;
2373
2374                 parents->idx[level-1] = idx;
2375                 if (level == PG_LEVEL_4K)
2376                         break;
2377
2378                 parents->parent[level-2] = sp;
2379         }
2380
2381         return n;
2382 }
2383
2384 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2385                            struct mmu_page_path *parents)
2386 {
2387         struct kvm_mmu_page *sp;
2388         int level;
2389
2390         if (pvec->nr == 0)
2391                 return 0;
2392
2393         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2394
2395         sp = pvec->page[0].sp;
2396         level = sp->role.level;
2397         WARN_ON(level == PG_LEVEL_4K);
2398
2399         parents->parent[level-2] = sp;
2400
2401         /* Also set up a sentinel.  Further entries in pvec are all
2402          * children of sp, so this element is never overwritten.
2403          */
2404         parents->parent[level-1] = NULL;
2405         return mmu_pages_next(pvec, parents, 0);
2406 }
2407
2408 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2409 {
2410         struct kvm_mmu_page *sp;
2411         unsigned int level = 0;
2412
2413         do {
2414                 unsigned int idx = parents->idx[level];
2415                 sp = parents->parent[level];
2416                 if (!sp)
2417                         return;
2418
2419                 WARN_ON(idx == INVALID_INDEX);
2420                 clear_unsync_child_bit(sp, idx);
2421                 level++;
2422         } while (!sp->unsync_children);
2423 }
2424
2425 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2426                               struct kvm_mmu_page *parent)
2427 {
2428         int i;
2429         struct kvm_mmu_page *sp;
2430         struct mmu_page_path parents;
2431         struct kvm_mmu_pages pages;
2432         LIST_HEAD(invalid_list);
2433         bool flush = false;
2434
2435         while (mmu_unsync_walk(parent, &pages)) {
2436                 bool protected = false;
2437
2438                 for_each_sp(pages, sp, parents, i)
2439                         protected |= rmap_write_protect(vcpu, sp->gfn);
2440
2441                 if (protected) {
2442                         kvm_flush_remote_tlbs(vcpu->kvm);
2443                         flush = false;
2444                 }
2445
2446                 for_each_sp(pages, sp, parents, i) {
2447                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2448                         mmu_pages_clear_parents(&parents);
2449                 }
2450                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2451                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2452                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2453                         flush = false;
2454                 }
2455         }
2456
2457         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2458 }
2459
2460 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2461 {
2462         atomic_set(&sp->write_flooding_count,  0);
2463 }
2464
2465 static void clear_sp_write_flooding_count(u64 *spte)
2466 {
2467         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2468
2469         __clear_sp_write_flooding_count(sp);
2470 }
2471
2472 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2473                                              gfn_t gfn,
2474                                              gva_t gaddr,
2475                                              unsigned level,
2476                                              int direct,
2477                                              unsigned int access)
2478 {
2479         union kvm_mmu_page_role role;
2480         unsigned quadrant;
2481         struct kvm_mmu_page *sp;
2482         bool need_sync = false;
2483         bool flush = false;
2484         int collisions = 0;
2485         LIST_HEAD(invalid_list);
2486
2487         role = vcpu->arch.mmu->mmu_role.base;
2488         role.level = level;
2489         role.direct = direct;
2490         if (role.direct)
2491                 role.gpte_is_8_bytes = true;
2492         role.access = access;
2493         if (!vcpu->arch.mmu->direct_map
2494             && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2495                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2496                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2497                 role.quadrant = quadrant;
2498         }
2499         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2500                 if (sp->gfn != gfn) {
2501                         collisions++;
2502                         continue;
2503                 }
2504
2505                 if (!need_sync && sp->unsync)
2506                         need_sync = true;
2507
2508                 if (sp->role.word != role.word)
2509                         continue;
2510
2511                 if (sp->unsync) {
2512                         /* The page is good, but __kvm_sync_page might still end
2513                          * up zapping it.  If so, break in order to rebuild it.
2514                          */
2515                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2516                                 break;
2517
2518                         WARN_ON(!list_empty(&invalid_list));
2519                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2520                 }
2521
2522                 if (sp->unsync_children)
2523                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2524
2525                 __clear_sp_write_flooding_count(sp);
2526                 trace_kvm_mmu_get_page(sp, false);
2527                 goto out;
2528         }
2529
2530         ++vcpu->kvm->stat.mmu_cache_miss;
2531
2532         sp = kvm_mmu_alloc_page(vcpu, direct);
2533
2534         sp->gfn = gfn;
2535         sp->role = role;
2536         hlist_add_head(&sp->hash_link,
2537                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2538         if (!direct) {
2539                 /*
2540                  * we should do write protection before syncing pages
2541                  * otherwise the content of the synced shadow page may
2542                  * be inconsistent with guest page table.
2543                  */
2544                 account_shadowed(vcpu->kvm, sp);
2545                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2546                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2547
2548                 if (level > PG_LEVEL_4K && need_sync)
2549                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2550         }
2551         clear_page(sp->spt);
2552         trace_kvm_mmu_get_page(sp, true);
2553
2554         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2555 out:
2556         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2557                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2558         return sp;
2559 }
2560
2561 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2562                                         struct kvm_vcpu *vcpu, hpa_t root,
2563                                         u64 addr)
2564 {
2565         iterator->addr = addr;
2566         iterator->shadow_addr = root;
2567         iterator->level = vcpu->arch.mmu->shadow_root_level;
2568
2569         if (iterator->level == PT64_ROOT_4LEVEL &&
2570             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2571             !vcpu->arch.mmu->direct_map)
2572                 --iterator->level;
2573
2574         if (iterator->level == PT32E_ROOT_LEVEL) {
2575                 /*
2576                  * prev_root is currently only used for 64-bit hosts. So only
2577                  * the active root_hpa is valid here.
2578                  */
2579                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2580
2581                 iterator->shadow_addr
2582                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2583                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2584                 --iterator->level;
2585                 if (!iterator->shadow_addr)
2586                         iterator->level = 0;
2587         }
2588 }
2589
2590 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2591                              struct kvm_vcpu *vcpu, u64 addr)
2592 {
2593         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2594                                     addr);
2595 }
2596
2597 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2598 {
2599         if (iterator->level < PG_LEVEL_4K)
2600                 return false;
2601
2602         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2603         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2604         return true;
2605 }
2606
2607 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2608                                u64 spte)
2609 {
2610         if (is_last_spte(spte, iterator->level)) {
2611                 iterator->level = 0;
2612                 return;
2613         }
2614
2615         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2616         --iterator->level;
2617 }
2618
2619 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2620 {
2621         __shadow_walk_next(iterator, *iterator->sptep);
2622 }
2623
2624 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2625                              struct kvm_mmu_page *sp)
2626 {
2627         u64 spte;
2628
2629         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2630
2631         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2632                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2633
2634         if (sp_ad_disabled(sp))
2635                 spte |= SPTE_AD_DISABLED_MASK;
2636         else
2637                 spte |= shadow_accessed_mask;
2638
2639         mmu_spte_set(sptep, spte);
2640
2641         mmu_page_add_parent_pte(vcpu, sp, sptep);
2642
2643         if (sp->unsync_children || sp->unsync)
2644                 mark_unsync(sptep);
2645 }
2646
2647 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2648                                    unsigned direct_access)
2649 {
2650         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2651                 struct kvm_mmu_page *child;
2652
2653                 /*
2654                  * For the direct sp, if the guest pte's dirty bit
2655                  * changed form clean to dirty, it will corrupt the
2656                  * sp's access: allow writable in the read-only sp,
2657                  * so we should update the spte at this point to get
2658                  * a new sp with the correct access.
2659                  */
2660                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2661                 if (child->role.access == direct_access)
2662                         return;
2663
2664                 drop_parent_pte(child, sptep);
2665                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2666         }
2667 }
2668
2669 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2670                              u64 *spte)
2671 {
2672         u64 pte;
2673         struct kvm_mmu_page *child;
2674
2675         pte = *spte;
2676         if (is_shadow_present_pte(pte)) {
2677                 if (is_last_spte(pte, sp->role.level)) {
2678                         drop_spte(kvm, spte);
2679                         if (is_large_pte(pte))
2680                                 --kvm->stat.lpages;
2681                 } else {
2682                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2683                         drop_parent_pte(child, spte);
2684                 }
2685                 return true;
2686         }
2687
2688         if (is_mmio_spte(pte))
2689                 mmu_spte_clear_no_track(spte);
2690
2691         return false;
2692 }
2693
2694 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2695                                          struct kvm_mmu_page *sp)
2696 {
2697         unsigned i;
2698
2699         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2700                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2701 }
2702
2703 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2704 {
2705         u64 *sptep;
2706         struct rmap_iterator iter;
2707
2708         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2709                 drop_parent_pte(sp, sptep);
2710 }
2711
2712 static int mmu_zap_unsync_children(struct kvm *kvm,
2713                                    struct kvm_mmu_page *parent,
2714                                    struct list_head *invalid_list)
2715 {
2716         int i, zapped = 0;
2717         struct mmu_page_path parents;
2718         struct kvm_mmu_pages pages;
2719
2720         if (parent->role.level == PG_LEVEL_4K)
2721                 return 0;
2722
2723         while (mmu_unsync_walk(parent, &pages)) {
2724                 struct kvm_mmu_page *sp;
2725
2726                 for_each_sp(pages, sp, parents, i) {
2727                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2728                         mmu_pages_clear_parents(&parents);
2729                         zapped++;
2730                 }
2731         }
2732
2733         return zapped;
2734 }
2735
2736 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2737                                        struct kvm_mmu_page *sp,
2738                                        struct list_head *invalid_list,
2739                                        int *nr_zapped)
2740 {
2741         bool list_unstable;
2742
2743         trace_kvm_mmu_prepare_zap_page(sp);
2744         ++kvm->stat.mmu_shadow_zapped;
2745         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2746         kvm_mmu_page_unlink_children(kvm, sp);
2747         kvm_mmu_unlink_parents(kvm, sp);
2748
2749         /* Zapping children means active_mmu_pages has become unstable. */
2750         list_unstable = *nr_zapped;
2751
2752         if (!sp->role.invalid && !sp->role.direct)
2753                 unaccount_shadowed(kvm, sp);
2754
2755         if (sp->unsync)
2756                 kvm_unlink_unsync_page(kvm, sp);
2757         if (!sp->root_count) {
2758                 /* Count self */
2759                 (*nr_zapped)++;
2760                 list_move(&sp->link, invalid_list);
2761                 kvm_mod_used_mmu_pages(kvm, -1);
2762         } else {
2763                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2764
2765                 /*
2766                  * Obsolete pages cannot be used on any vCPUs, see the comment
2767                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2768                  * treats invalid shadow pages as being obsolete.
2769                  */
2770                 if (!is_obsolete_sp(kvm, sp))
2771                         kvm_reload_remote_mmus(kvm);
2772         }
2773
2774         if (sp->lpage_disallowed)
2775                 unaccount_huge_nx_page(kvm, sp);
2776
2777         sp->role.invalid = 1;
2778         return list_unstable;
2779 }
2780
2781 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2782                                      struct list_head *invalid_list)
2783 {
2784         int nr_zapped;
2785
2786         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2787         return nr_zapped;
2788 }
2789
2790 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2791                                     struct list_head *invalid_list)
2792 {
2793         struct kvm_mmu_page *sp, *nsp;
2794
2795         if (list_empty(invalid_list))
2796                 return;
2797
2798         /*
2799          * We need to make sure everyone sees our modifications to
2800          * the page tables and see changes to vcpu->mode here. The barrier
2801          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2802          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2803          *
2804          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2805          * guest mode and/or lockless shadow page table walks.
2806          */
2807         kvm_flush_remote_tlbs(kvm);
2808
2809         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2810                 WARN_ON(!sp->role.invalid || sp->root_count);
2811                 kvm_mmu_free_page(sp);
2812         }
2813 }
2814
2815 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2816                                         struct list_head *invalid_list)
2817 {
2818         struct kvm_mmu_page *sp;
2819
2820         if (list_empty(&kvm->arch.active_mmu_pages))
2821                 return false;
2822
2823         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2824                              struct kvm_mmu_page, link);
2825         return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2826 }
2827
2828 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2829 {
2830         LIST_HEAD(invalid_list);
2831
2832         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
2833                 return 0;
2834
2835         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
2836                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
2837                         break;
2838
2839                 ++vcpu->kvm->stat.mmu_recycled;
2840         }
2841         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2842
2843         if (!kvm_mmu_available_pages(vcpu->kvm))
2844                 return -ENOSPC;
2845         return 0;
2846 }
2847
2848 /*
2849  * Changing the number of mmu pages allocated to the vm
2850  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2851  */
2852 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2853 {
2854         LIST_HEAD(invalid_list);
2855
2856         spin_lock(&kvm->mmu_lock);
2857
2858         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2859                 /* Need to free some mmu pages to achieve the goal. */
2860                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2861                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2862                                 break;
2863
2864                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2865                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2866         }
2867
2868         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2869
2870         spin_unlock(&kvm->mmu_lock);
2871 }
2872
2873 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2874 {
2875         struct kvm_mmu_page *sp;
2876         LIST_HEAD(invalid_list);
2877         int r;
2878
2879         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2880         r = 0;
2881         spin_lock(&kvm->mmu_lock);
2882         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2883                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2884                          sp->role.word);
2885                 r = 1;
2886                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2887         }
2888         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2889         spin_unlock(&kvm->mmu_lock);
2890
2891         return r;
2892 }
2893 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2894
2895 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2896 {
2897         trace_kvm_mmu_unsync_page(sp);
2898         ++vcpu->kvm->stat.mmu_unsync;
2899         sp->unsync = 1;
2900
2901         kvm_mmu_mark_parents_unsync(sp);
2902 }
2903
2904 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2905                                    bool can_unsync)
2906 {
2907         struct kvm_mmu_page *sp;
2908
2909         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2910                 return true;
2911
2912         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2913                 if (!can_unsync)
2914                         return true;
2915
2916                 if (sp->unsync)
2917                         continue;
2918
2919                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2920                 kvm_unsync_page(vcpu, sp);
2921         }
2922
2923         /*
2924          * We need to ensure that the marking of unsync pages is visible
2925          * before the SPTE is updated to allow writes because
2926          * kvm_mmu_sync_roots() checks the unsync flags without holding
2927          * the MMU lock and so can race with this. If the SPTE was updated
2928          * before the page had been marked as unsync-ed, something like the
2929          * following could happen:
2930          *
2931          * CPU 1                    CPU 2
2932          * ---------------------------------------------------------------------
2933          * 1.2 Host updates SPTE
2934          *     to be writable
2935          *                      2.1 Guest writes a GPTE for GVA X.
2936          *                          (GPTE being in the guest page table shadowed
2937          *                           by the SP from CPU 1.)
2938          *                          This reads SPTE during the page table walk.
2939          *                          Since SPTE.W is read as 1, there is no
2940          *                          fault.
2941          *
2942          *                      2.2 Guest issues TLB flush.
2943          *                          That causes a VM Exit.
2944          *
2945          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2946          *                          Since it is false, so it just returns.
2947          *
2948          *                      2.4 Guest accesses GVA X.
2949          *                          Since the mapping in the SP was not updated,
2950          *                          so the old mapping for GVA X incorrectly
2951          *                          gets used.
2952          * 1.1 Host marks SP
2953          *     as unsync
2954          *     (sp->unsync = true)
2955          *
2956          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2957          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2958          * pairs with this write barrier.
2959          */
2960         smp_wmb();
2961
2962         return false;
2963 }
2964
2965 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2966 {
2967         if (pfn_valid(pfn))
2968                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2969                         /*
2970                          * Some reserved pages, such as those from NVDIMM
2971                          * DAX devices, are not for MMIO, and can be mapped
2972                          * with cached memory type for better performance.
2973                          * However, the above check misconceives those pages
2974                          * as MMIO, and results in KVM mapping them with UC
2975                          * memory type, which would hurt the performance.
2976                          * Therefore, we check the host memory type in addition
2977                          * and only treat UC/UC-/WC pages as MMIO.
2978                          */
2979                         (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2980
2981         return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2982                                      pfn_to_hpa(pfn + 1) - 1,
2983                                      E820_TYPE_RAM);
2984 }
2985
2986 /* Bits which may be returned by set_spte() */
2987 #define SET_SPTE_WRITE_PROTECTED_PT     BIT(0)
2988 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH  BIT(1)
2989
2990 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2991                     unsigned int pte_access, int level,
2992                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2993                     bool can_unsync, bool host_writable)
2994 {
2995         u64 spte = 0;
2996         int ret = 0;
2997         struct kvm_mmu_page *sp;
2998
2999         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3000                 return 0;
3001
3002         sp = page_header(__pa(sptep));
3003         if (sp_ad_disabled(sp))
3004                 spte |= SPTE_AD_DISABLED_MASK;
3005         else if (kvm_vcpu_ad_need_write_protect(vcpu))
3006                 spte |= SPTE_AD_WRPROT_ONLY_MASK;
3007
3008         /*
3009          * For the EPT case, shadow_present_mask is 0 if hardware
3010          * supports exec-only page table entries.  In that case,
3011          * ACC_USER_MASK and shadow_user_mask are used to represent
3012          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
3013          */
3014         spte |= shadow_present_mask;
3015         if (!speculative)
3016                 spte |= spte_shadow_accessed_mask(spte);
3017
3018         if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
3019             is_nx_huge_page_enabled()) {
3020                 pte_access &= ~ACC_EXEC_MASK;
3021         }
3022
3023         if (pte_access & ACC_EXEC_MASK)
3024                 spte |= shadow_x_mask;
3025         else
3026                 spte |= shadow_nx_mask;
3027
3028         if (pte_access & ACC_USER_MASK)
3029                 spte |= shadow_user_mask;
3030
3031         if (level > PG_LEVEL_4K)
3032                 spte |= PT_PAGE_SIZE_MASK;
3033         if (tdp_enabled)
3034                 spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
3035                         kvm_is_mmio_pfn(pfn));
3036
3037         if (host_writable)
3038                 spte |= SPTE_HOST_WRITEABLE;
3039         else
3040                 pte_access &= ~ACC_WRITE_MASK;
3041
3042         if (!kvm_is_mmio_pfn(pfn))
3043                 spte |= shadow_me_mask;
3044
3045         spte |= (u64)pfn << PAGE_SHIFT;
3046
3047         if (pte_access & ACC_WRITE_MASK) {
3048                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3049
3050                 /*
3051                  * Optimization: for pte sync, if spte was writable the hash
3052                  * lookup is unnecessary (and expensive). Write protection
3053                  * is responsibility of mmu_get_page / kvm_sync_page.
3054                  * Same reasoning can be applied to dirty page accounting.
3055                  */
3056                 if (!can_unsync && is_writable_pte(*sptep))
3057                         goto set_pte;
3058
3059                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3060                         pgprintk("%s: found shadow page for %llx, marking ro\n",
3061                                  __func__, gfn);
3062                         ret |= SET_SPTE_WRITE_PROTECTED_PT;
3063                         pte_access &= ~ACC_WRITE_MASK;
3064                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3065                 }
3066         }
3067
3068         if (pte_access & ACC_WRITE_MASK) {
3069                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3070                 spte |= spte_shadow_dirty_mask(spte);
3071         }
3072
3073         if (speculative)
3074                 spte = mark_spte_for_access_track(spte);
3075
3076 set_pte:
3077         if (mmu_spte_update(sptep, spte))
3078                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3079         return ret;
3080 }
3081
3082 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3083                         unsigned int pte_access, int write_fault, int level,
3084                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3085                         bool host_writable)
3086 {
3087         int was_rmapped = 0;
3088         int rmap_count;
3089         int set_spte_ret;
3090         int ret = RET_PF_RETRY;
3091         bool flush = false;
3092
3093         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3094                  *sptep, write_fault, gfn);
3095
3096         if (is_shadow_present_pte(*sptep)) {
3097                 /*
3098                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3099                  * the parent of the now unreachable PTE.
3100                  */
3101                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
3102                         struct kvm_mmu_page *child;
3103                         u64 pte = *sptep;
3104
3105                         child = page_header(pte & PT64_BASE_ADDR_MASK);
3106                         drop_parent_pte(child, sptep);
3107                         flush = true;
3108                 } else if (pfn != spte_to_pfn(*sptep)) {
3109                         pgprintk("hfn old %llx new %llx\n",
3110                                  spte_to_pfn(*sptep), pfn);
3111                         drop_spte(vcpu->kvm, sptep);
3112                         flush = true;
3113                 } else
3114                         was_rmapped = 1;
3115         }
3116
3117         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3118                                 speculative, true, host_writable);
3119         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3120                 if (write_fault)
3121                         ret = RET_PF_EMULATE;
3122                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3123         }
3124
3125         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3126                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3127                                 KVM_PAGES_PER_HPAGE(level));
3128
3129         if (unlikely(is_mmio_spte(*sptep)))
3130                 ret = RET_PF_EMULATE;
3131
3132         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3133         trace_kvm_mmu_set_spte(level, gfn, sptep);
3134         if (!was_rmapped && is_large_pte(*sptep))
3135                 ++vcpu->kvm->stat.lpages;
3136
3137         if (is_shadow_present_pte(*sptep)) {
3138                 if (!was_rmapped) {
3139                         rmap_count = rmap_add(vcpu, sptep, gfn);
3140                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3141                                 rmap_recycle(vcpu, sptep, gfn);
3142                 }
3143         }
3144
3145         return ret;
3146 }
3147
3148 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3149                                      bool no_dirty_log)
3150 {
3151         struct kvm_memory_slot *slot;
3152
3153         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3154         if (!slot)
3155                 return KVM_PFN_ERR_FAULT;
3156
3157         return gfn_to_pfn_memslot_atomic(slot, gfn);
3158 }
3159
3160 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3161                                     struct kvm_mmu_page *sp,
3162                                     u64 *start, u64 *end)
3163 {
3164         struct page *pages[PTE_PREFETCH_NUM];
3165         struct kvm_memory_slot *slot;
3166         unsigned int access = sp->role.access;
3167         int i, ret;
3168         gfn_t gfn;
3169
3170         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3171         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3172         if (!slot)
3173                 return -1;
3174
3175         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3176         if (ret <= 0)
3177                 return -1;
3178
3179         for (i = 0; i < ret; i++, gfn++, start++) {
3180                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3181                              page_to_pfn(pages[i]), true, true);
3182                 put_page(pages[i]);
3183         }
3184
3185         return 0;
3186 }
3187
3188 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3189                                   struct kvm_mmu_page *sp, u64 *sptep)
3190 {
3191         u64 *spte, *start = NULL;
3192         int i;
3193
3194         WARN_ON(!sp->role.direct);
3195
3196         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3197         spte = sp->spt + i;
3198
3199         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3200                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3201                         if (!start)
3202                                 continue;
3203                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3204                                 break;
3205                         start = NULL;
3206                 } else if (!start)
3207                         start = spte;
3208         }
3209 }
3210
3211 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3212 {
3213         struct kvm_mmu_page *sp;
3214
3215         sp = page_header(__pa(sptep));
3216
3217         /*
3218          * Without accessed bits, there's no way to distinguish between
3219          * actually accessed translations and prefetched, so disable pte
3220          * prefetch if accessed bits aren't available.
3221          */
3222         if (sp_ad_disabled(sp))
3223                 return;
3224
3225         if (sp->role.level > PG_LEVEL_4K)
3226                 return;
3227
3228         __direct_pte_prefetch(vcpu, sp, sptep);
3229 }
3230
3231 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
3232                                   kvm_pfn_t pfn, struct kvm_memory_slot *slot)
3233 {
3234         unsigned long hva;
3235         pte_t *pte;
3236         int level;
3237
3238         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3239                 return PG_LEVEL_4K;
3240
3241         /*
3242          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3243          * is not solely for performance, it's also necessary to avoid the
3244          * "writable" check in __gfn_to_hva_many(), which will always fail on
3245          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
3246          * page fault steps have already verified the guest isn't writing a
3247          * read-only memslot.
3248          */
3249         hva = __gfn_to_hva_memslot(slot, gfn);
3250
3251         pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
3252         if (unlikely(!pte))
3253                 return PG_LEVEL_4K;
3254
3255         return level;
3256 }
3257
3258 static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
3259                                    int max_level, kvm_pfn_t *pfnp)
3260 {
3261         struct kvm_memory_slot *slot;
3262         struct kvm_lpage_info *linfo;
3263         kvm_pfn_t pfn = *pfnp;
3264         kvm_pfn_t mask;
3265         int level;
3266
3267         if (unlikely(max_level == PG_LEVEL_4K))
3268                 return PG_LEVEL_4K;
3269
3270         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3271                 return PG_LEVEL_4K;
3272
3273         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
3274         if (!slot)
3275                 return PG_LEVEL_4K;
3276
3277         max_level = min(max_level, max_page_level);
3278         for ( ; max_level > PG_LEVEL_4K; max_level--) {
3279                 linfo = lpage_info_slot(gfn, slot, max_level);
3280                 if (!linfo->disallow_lpage)
3281                         break;
3282         }
3283
3284         if (max_level == PG_LEVEL_4K)
3285                 return PG_LEVEL_4K;
3286
3287         level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3288         if (level == PG_LEVEL_4K)
3289                 return level;
3290
3291         level = min(level, max_level);
3292
3293         /*
3294          * mmu_notifier_retry() was successful and mmu_lock is held, so
3295          * the pmd can't be split from under us.
3296          */
3297         mask = KVM_PAGES_PER_HPAGE(level) - 1;
3298         VM_BUG_ON((gfn & mask) != (pfn & mask));
3299         *pfnp = pfn & ~mask;
3300
3301         return level;
3302 }
3303
3304 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3305                                        gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3306 {
3307         int level = *levelp;
3308         u64 spte = *it.sptep;
3309
3310         if (it.level == level && level > PG_LEVEL_4K &&
3311             is_nx_huge_page_enabled() &&
3312             is_shadow_present_pte(spte) &&
3313             !is_large_pte(spte)) {
3314                 /*
3315                  * A small SPTE exists for this pfn, but FNAME(fetch)
3316                  * and __direct_map would like to create a large PTE
3317                  * instead: just force them to go down another level,
3318                  * patching back for them into pfn the next 9 bits of
3319                  * the address.
3320                  */
3321                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3322                 *pfnp |= gfn & page_mask;
3323                 (*levelp)--;
3324         }
3325 }
3326
3327 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3328                         int map_writable, int max_level, kvm_pfn_t pfn,
3329                         bool prefault, bool account_disallowed_nx_lpage)
3330 {
3331         struct kvm_shadow_walk_iterator it;
3332         struct kvm_mmu_page *sp;
3333         int level, ret;
3334         gfn_t gfn = gpa >> PAGE_SHIFT;
3335         gfn_t base_gfn = gfn;
3336
3337         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3338                 return RET_PF_RETRY;
3339
3340         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
3341
3342         trace_kvm_mmu_spte_requested(gpa, level, pfn);
3343         for_each_shadow_entry(vcpu, gpa, it) {
3344                 /*
3345                  * We cannot overwrite existing page tables with an NX
3346                  * large page, as the leaf could be executable.
3347                  */
3348                 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3349
3350                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3351                 if (it.level == level)
3352                         break;
3353
3354                 drop_large_spte(vcpu, it.sptep);
3355                 if (!is_shadow_present_pte(*it.sptep)) {
3356                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3357                                               it.level - 1, true, ACC_ALL);
3358
3359                         link_shadow_page(vcpu, it.sptep, sp);
3360                         if (account_disallowed_nx_lpage)
3361                                 account_huge_nx_page(vcpu->kvm, sp);
3362                 }
3363         }
3364
3365         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3366                            write, level, base_gfn, pfn, prefault,
3367                            map_writable);
3368         direct_pte_prefetch(vcpu, it.sptep);
3369         ++vcpu->stat.pf_fixed;
3370         return ret;
3371 }
3372
3373 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3374 {
3375         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3376 }
3377
3378 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3379 {
3380         /*
3381          * Do not cache the mmio info caused by writing the readonly gfn
3382          * into the spte otherwise read access on readonly gfn also can
3383          * caused mmio page fault and treat it as mmio access.
3384          */
3385         if (pfn == KVM_PFN_ERR_RO_FAULT)
3386                 return RET_PF_EMULATE;
3387
3388         if (pfn == KVM_PFN_ERR_HWPOISON) {
3389                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3390                 return RET_PF_RETRY;
3391         }
3392
3393         return -EFAULT;
3394 }
3395
3396 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3397                                 kvm_pfn_t pfn, unsigned int access,
3398                                 int *ret_val)
3399 {
3400         /* The pfn is invalid, report the error! */
3401         if (unlikely(is_error_pfn(pfn))) {
3402                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3403                 return true;
3404         }
3405
3406         if (unlikely(is_noslot_pfn(pfn)))
3407                 vcpu_cache_mmio_info(vcpu, gva, gfn,
3408                                      access & shadow_mmio_access_mask);
3409
3410         return false;
3411 }
3412
3413 static bool page_fault_can_be_fast(u32 error_code)
3414 {
3415         /*
3416          * Do not fix the mmio spte with invalid generation number which
3417          * need to be updated by slow page fault path.
3418          */
3419         if (unlikely(error_code & PFERR_RSVD_MASK))
3420                 return false;
3421
3422         /* See if the page fault is due to an NX violation */
3423         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3424                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3425                 return false;
3426
3427         /*
3428          * #PF can be fast if:
3429          * 1. The shadow page table entry is not present, which could mean that
3430          *    the fault is potentially caused by access tracking (if enabled).
3431          * 2. The shadow page table entry is present and the fault
3432          *    is caused by write-protect, that means we just need change the W
3433          *    bit of the spte which can be done out of mmu-lock.
3434          *
3435          * However, if access tracking is disabled we know that a non-present
3436          * page must be a genuine page fault where we have to create a new SPTE.
3437          * So, if access tracking is disabled, we return true only for write
3438          * accesses to a present page.
3439          */
3440
3441         return shadow_acc_track_mask != 0 ||
3442                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3443                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3444 }
3445
3446 /*
3447  * Returns true if the SPTE was fixed successfully. Otherwise,
3448  * someone else modified the SPTE from its original value.
3449  */
3450 static bool
3451 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3452                         u64 *sptep, u64 old_spte, u64 new_spte)
3453 {
3454         gfn_t gfn;
3455
3456         WARN_ON(!sp->role.direct);
3457
3458         /*
3459          * Theoretically we could also set dirty bit (and flush TLB) here in
3460          * order to eliminate unnecessary PML logging. See comments in
3461          * set_spte. But fast_page_fault is very unlikely to happen with PML
3462          * enabled, so we do not do this. This might result in the same GPA
3463          * to be logged in PML buffer again when the write really happens, and
3464          * eventually to be called by mark_page_dirty twice. But it's also no
3465          * harm. This also avoids the TLB flush needed after setting dirty bit
3466          * so non-PML cases won't be impacted.
3467          *
3468          * Compare with set_spte where instead shadow_dirty_mask is set.
3469          */
3470         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3471                 return false;
3472
3473         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3474                 /*
3475                  * The gfn of direct spte is stable since it is
3476                  * calculated by sp->gfn.
3477                  */
3478                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3479                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3480         }
3481
3482         return true;
3483 }
3484
3485 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3486 {
3487         if (fault_err_code & PFERR_FETCH_MASK)
3488                 return is_executable_pte(spte);
3489
3490         if (fault_err_code & PFERR_WRITE_MASK)
3491                 return is_writable_pte(spte);
3492
3493         /* Fault was on Read access */
3494         return spte & PT_PRESENT_MASK;
3495 }
3496
3497 /*
3498  * Return value:
3499  * - true: let the vcpu to access on the same address again.
3500  * - false: let the real page fault path to fix it.
3501  */
3502 static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3503                             u32 error_code)
3504 {
3505         struct kvm_shadow_walk_iterator iterator;
3506         struct kvm_mmu_page *sp;
3507         bool fault_handled = false;
3508         u64 spte = 0ull;
3509         uint retry_count = 0;
3510
3511         if (!page_fault_can_be_fast(error_code))
3512                 return false;
3513
3514         walk_shadow_page_lockless_begin(vcpu);
3515
3516         do {
3517                 u64 new_spte;
3518
3519                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3520                         if (!is_shadow_present_pte(spte))
3521                                 break;
3522
3523                 sp = page_header(__pa(iterator.sptep));
3524                 if (!is_last_spte(spte, sp->role.level))
3525                         break;
3526
3527                 /*
3528                  * Check whether the memory access that caused the fault would
3529                  * still cause it if it were to be performed right now. If not,
3530                  * then this is a spurious fault caused by TLB lazily flushed,
3531                  * or some other CPU has already fixed the PTE after the
3532                  * current CPU took the fault.
3533                  *
3534                  * Need not check the access of upper level table entries since
3535                  * they are always ACC_ALL.
3536                  */
3537                 if (is_access_allowed(error_code, spte)) {
3538                         fault_handled = true;
3539                         break;
3540                 }
3541
3542                 new_spte = spte;
3543
3544                 if (is_access_track_spte(spte))
3545                         new_spte = restore_acc_track_spte(new_spte);
3546
3547                 /*
3548                  * Currently, to simplify the code, write-protection can
3549                  * be removed in the fast path only if the SPTE was
3550                  * write-protected for dirty-logging or access tracking.
3551                  */
3552                 if ((error_code & PFERR_WRITE_MASK) &&
3553                     spte_can_locklessly_be_made_writable(spte)) {
3554                         new_spte |= PT_WRITABLE_MASK;
3555
3556                         /*
3557                          * Do not fix write-permission on the large spte.  Since
3558                          * we only dirty the first page into the dirty-bitmap in
3559                          * fast_pf_fix_direct_spte(), other pages are missed
3560                          * if its slot has dirty logging enabled.
3561                          *
3562                          * Instead, we let the slow page fault path create a
3563                          * normal spte to fix the access.
3564                          *
3565                          * See the comments in kvm_arch_commit_memory_region().
3566                          */
3567                         if (sp->role.level > PG_LEVEL_4K)
3568                                 break;
3569                 }
3570
3571                 /* Verify that the fault can be handled in the fast path */
3572                 if (new_spte == spte ||
3573                     !is_access_allowed(error_code, new_spte))
3574                         break;
3575
3576                 /*
3577                  * Currently, fast page fault only works for direct mapping
3578                  * since the gfn is not stable for indirect shadow page. See
3579                  * Documentation/virt/kvm/locking.rst to get more detail.
3580                  */
3581                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3582                                                         iterator.sptep, spte,
3583                                                         new_spte);
3584                 if (fault_handled)
3585                         break;
3586
3587                 if (++retry_count > 4) {
3588                         printk_once(KERN_WARNING
3589                                 "kvm: Fast #PF retrying more than 4 times.\n");
3590                         break;
3591                 }
3592
3593         } while (true);
3594
3595         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3596                               spte, fault_handled);
3597         walk_shadow_page_lockless_end(vcpu);
3598
3599         return fault_handled;
3600 }
3601
3602 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3603                                struct list_head *invalid_list)
3604 {
3605         struct kvm_mmu_page *sp;
3606
3607         if (!VALID_PAGE(*root_hpa))
3608                 return;
3609
3610         sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3611         --sp->root_count;
3612         if (!sp->root_count && sp->role.invalid)
3613                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3614
3615         *root_hpa = INVALID_PAGE;
3616 }
3617
3618 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3619 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3620                         ulong roots_to_free)
3621 {
3622         int i;
3623         LIST_HEAD(invalid_list);
3624         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3625
3626         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3627
3628         /* Before acquiring the MMU lock, see if we need to do any real work. */
3629         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3630                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3631                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3632                             VALID_PAGE(mmu->prev_roots[i].hpa))
3633                                 break;
3634
3635                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3636                         return;
3637         }
3638
3639         spin_lock(&vcpu->kvm->mmu_lock);
3640
3641         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3642                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3643                         mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3644                                            &invalid_list);
3645
3646         if (free_active_root) {
3647                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3648                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3649                         mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3650                                            &invalid_list);
3651                 } else {
3652                         for (i = 0; i < 4; ++i)
3653                                 if (mmu->pae_root[i] != 0)
3654                                         mmu_free_root_page(vcpu->kvm,
3655                                                            &mmu->pae_root[i],
3656                                                            &invalid_list);
3657                         mmu->root_hpa = INVALID_PAGE;
3658                 }
3659                 mmu->root_pgd = 0;
3660         }
3661
3662         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3663         spin_unlock(&vcpu->kvm->mmu_lock);
3664 }
3665 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3666
3667 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3668 {
3669         int ret = 0;
3670
3671         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3672                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3673                 ret = 1;
3674         }
3675
3676         return ret;
3677 }
3678
3679 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3680                             u8 level, bool direct)
3681 {
3682         struct kvm_mmu_page *sp;
3683
3684         spin_lock(&vcpu->kvm->mmu_lock);
3685
3686         if (make_mmu_pages_available(vcpu)) {
3687                 spin_unlock(&vcpu->kvm->mmu_lock);
3688                 return INVALID_PAGE;
3689         }
3690         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3691         ++sp->root_count;
3692
3693         spin_unlock(&vcpu->kvm->mmu_lock);
3694         return __pa(sp->spt);
3695 }
3696
3697 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3698 {
3699         u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3700         hpa_t root;
3701         unsigned i;
3702
3703         if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3704                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3705                 if (!VALID_PAGE(root))
3706                         return -ENOSPC;
3707                 vcpu->arch.mmu->root_hpa = root;
3708         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3709                 for (i = 0; i < 4; ++i) {
3710                         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3711
3712                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3713                                               i << 30, PT32_ROOT_LEVEL, true);
3714                         if (!VALID_PAGE(root))
3715                                 return -ENOSPC;
3716                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3717                 }
3718                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3719         } else
3720                 BUG();
3721
3722         /* root_pgd is ignored for direct MMUs. */
3723         vcpu->arch.mmu->root_pgd = 0;
3724
3725         return 0;
3726 }
3727
3728 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3729 {
3730         u64 pdptr, pm_mask;
3731         gfn_t root_gfn, root_pgd;
3732         hpa_t root;
3733         int i;
3734
3735         root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3736         root_gfn = root_pgd >> PAGE_SHIFT;
3737
3738         if (mmu_check_root(vcpu, root_gfn))
3739                 return 1;
3740
3741         /*
3742          * Do we shadow a long mode page table? If so we need to
3743          * write-protect the guests page table root.
3744          */
3745         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3746                 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3747
3748                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3749                                       vcpu->arch.mmu->shadow_root_level, false);
3750                 if (!VALID_PAGE(root))
3751                         return -ENOSPC;
3752                 vcpu->arch.mmu->root_hpa = root;
3753                 goto set_root_pgd;
3754         }
3755
3756         /*
3757          * We shadow a 32 bit page table. This may be a legacy 2-level
3758          * or a PAE 3-level page table. In either case we need to be aware that
3759          * the shadow page table may be a PAE or a long mode page table.
3760          */
3761         pm_mask = PT_PRESENT_MASK;
3762         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3763                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3764
3765         for (i = 0; i < 4; ++i) {
3766                 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3767                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3768                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3769                         if (!(pdptr & PT_PRESENT_MASK)) {
3770                                 vcpu->arch.mmu->pae_root[i] = 0;
3771                                 continue;
3772                         }
3773                         root_gfn = pdptr >> PAGE_SHIFT;
3774                         if (mmu_check_root(vcpu, root_gfn))
3775                                 return 1;
3776                 }
3777
3778                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3779                                       PT32_ROOT_LEVEL, false);
3780                 if (!VALID_PAGE(root))
3781                         return -ENOSPC;
3782                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3783         }
3784         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3785
3786         /*
3787          * If we shadow a 32 bit page table with a long mode page
3788          * table we enter this path.
3789          */
3790         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3791                 if (vcpu->arch.mmu->lm_root == NULL) {
3792                         /*
3793                          * The additional page necessary for this is only
3794                          * allocated on demand.
3795                          */
3796
3797                         u64 *lm_root;
3798
3799                         lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3800                         if (lm_root == NULL)
3801                                 return 1;
3802
3803                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3804
3805                         vcpu->arch.mmu->lm_root = lm_root;
3806                 }
3807
3808                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3809         }
3810
3811 set_root_pgd:
3812         vcpu->arch.mmu->root_pgd = root_pgd;
3813
3814         return 0;
3815 }
3816
3817 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3818 {
3819         if (vcpu->arch.mmu->direct_map)
3820                 return mmu_alloc_direct_roots(vcpu);
3821         else
3822                 return mmu_alloc_shadow_roots(vcpu);
3823 }
3824
3825 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3826 {
3827         int i;
3828         struct kvm_mmu_page *sp;
3829
3830         if (vcpu->arch.mmu->direct_map)
3831                 return;
3832
3833         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3834                 return;
3835
3836         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3837
3838         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3839                 hpa_t root = vcpu->arch.mmu->root_hpa;
3840                 sp = page_header(root);
3841
3842                 /*
3843                  * Even if another CPU was marking the SP as unsync-ed
3844                  * simultaneously, any guest page table changes are not
3845                  * guaranteed to be visible anyway until this VCPU issues a TLB
3846                  * flush strictly after those changes are made. We only need to
3847                  * ensure that the other CPU sets these flags before any actual
3848                  * changes to the page tables are made. The comments in
3849                  * mmu_need_write_protect() describe what could go wrong if this
3850                  * requirement isn't satisfied.
3851                  */
3852                 if (!smp_load_acquire(&sp->unsync) &&
3853                     !smp_load_acquire(&sp->unsync_children))
3854                         return;
3855
3856                 spin_lock(&vcpu->kvm->mmu_lock);
3857                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3858
3859                 mmu_sync_children(vcpu, sp);
3860
3861                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3862                 spin_unlock(&vcpu->kvm->mmu_lock);
3863                 return;
3864         }
3865
3866         spin_lock(&vcpu->kvm->mmu_lock);
3867         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3868
3869         for (i = 0; i < 4; ++i) {
3870                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3871
3872                 if (root && VALID_PAGE(root)) {
3873                         root &= PT64_BASE_ADDR_MASK;
3874                         sp = page_header(root);
3875                         mmu_sync_children(vcpu, sp);
3876                 }
3877         }
3878
3879         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3880         spin_unlock(&vcpu->kvm->mmu_lock);
3881 }
3882 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3883
3884 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3885                                   u32 access, struct x86_exception *exception)
3886 {
3887         if (exception)
3888                 exception->error_code = 0;
3889         return vaddr;
3890 }
3891
3892 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3893                                          u32 access,
3894                                          struct x86_exception *exception)
3895 {
3896         if (exception)
3897                 exception->error_code = 0;
3898         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3899 }
3900
3901 static bool
3902 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3903 {
3904         int bit7 = (pte >> 7) & 1;
3905
3906         return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3907 }
3908
3909 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3910 {
3911         return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3912 }
3913
3914 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3915 {
3916         /*
3917          * A nested guest cannot use the MMIO cache if it is using nested
3918          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3919          */
3920         if (mmu_is_nested(vcpu))
3921                 return false;
3922
3923         if (direct)
3924                 return vcpu_match_mmio_gpa(vcpu, addr);
3925
3926         return vcpu_match_mmio_gva(vcpu, addr);
3927 }
3928
3929 /* return true if reserved bit is detected on spte. */
3930 static bool
3931 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3932 {
3933         struct kvm_shadow_walk_iterator iterator;
3934         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3935         struct rsvd_bits_validate *rsvd_check;
3936         int root, leaf;
3937         bool reserved = false;
3938
3939         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3940
3941         walk_shadow_page_lockless_begin(vcpu);
3942
3943         for (shadow_walk_init(&iterator, vcpu, addr),
3944                  leaf = root = iterator.level;
3945              shadow_walk_okay(&iterator);
3946              __shadow_walk_next(&iterator, spte)) {
3947                 spte = mmu_spte_get_lockless(iterator.sptep);
3948
3949                 sptes[leaf - 1] = spte;
3950                 leaf--;
3951
3952                 if (!is_shadow_present_pte(spte))
3953                         break;
3954
3955                 /*
3956                  * Use a bitwise-OR instead of a logical-OR to aggregate the
3957                  * reserved bit and EPT's invalid memtype/XWR checks to avoid
3958                  * adding a Jcc in the loop.
3959                  */
3960                 reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3961                             __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
3962         }
3963
3964         walk_shadow_page_lockless_end(vcpu);
3965
3966         if (reserved) {
3967                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3968                        __func__, addr);
3969                 while (root > leaf) {
3970                         pr_err("------ spte 0x%llx level %d.\n",
3971                                sptes[root - 1], root);
3972                         root--;
3973                 }
3974         }
3975
3976         *sptep = spte;
3977         return reserved;
3978 }
3979
3980 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3981 {
3982         u64 spte;
3983         bool reserved;
3984
3985         if (mmio_info_in_cache(vcpu, addr, direct))
3986                 return RET_PF_EMULATE;
3987
3988         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3989         if (WARN_ON(reserved))
3990                 return -EINVAL;
3991
3992         if (is_mmio_spte(spte)) {
3993                 gfn_t gfn = get_mmio_spte_gfn(spte);
3994                 unsigned int access = get_mmio_spte_access(spte);
3995
3996                 if (!check_mmio_spte(vcpu, spte))
3997                         return RET_PF_INVALID;
3998
3999                 if (direct)
4000                         addr = 0;
4001
4002                 trace_handle_mmio_page_fault(addr, gfn, access);
4003                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4004                 return RET_PF_EMULATE;
4005         }
4006
4007         /*
4008          * If the page table is zapped by other cpus, let CPU fault again on
4009          * the address.
4010          */
4011         return RET_PF_RETRY;
4012 }
4013
4014 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4015                                          u32 error_code, gfn_t gfn)
4016 {
4017         if (unlikely(error_code & PFERR_RSVD_MASK))
4018                 return false;
4019
4020         if (!(error_code & PFERR_PRESENT_MASK) ||
4021               !(error_code & PFERR_WRITE_MASK))
4022                 return false;
4023
4024         /*
4025          * guest is writing the page which is write tracked which can
4026          * not be fixed by page fault handler.
4027          */
4028         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4029                 return true;
4030
4031         return false;
4032 }
4033
4034 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4035 {
4036         struct kvm_shadow_walk_iterator iterator;
4037         u64 spte;
4038
4039         walk_shadow_page_lockless_begin(vcpu);
4040         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4041                 clear_sp_write_flooding_count(iterator.sptep);
4042                 if (!is_shadow_present_pte(spte))
4043                         break;
4044         }
4045         walk_shadow_page_lockless_end(vcpu);
4046 }
4047
4048 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4049                                    gfn_t gfn)
4050 {
4051         struct kvm_arch_async_pf arch;
4052
4053         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4054         arch.gfn = gfn;
4055         arch.direct_map = vcpu->arch.mmu->direct_map;
4056         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
4057
4058         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4059                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4060 }
4061
4062 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4063                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4064                          bool *writable)
4065 {
4066         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4067         bool async;
4068
4069         /* Don't expose private memslots to L2. */
4070         if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
4071                 *pfn = KVM_PFN_NOSLOT;
4072                 *writable = false;
4073                 return false;
4074         }
4075
4076         async = false;
4077         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4078         if (!async)
4079                 return false; /* *pfn has correct page already */
4080
4081         if (!prefault && kvm_can_do_async_pf(vcpu)) {
4082                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4083                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4084                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4085                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4086                         return true;
4087                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4088                         return true;
4089         }
4090
4091         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4092         return false;
4093 }
4094
4095 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4096                              bool prefault, int max_level, bool is_tdp)
4097 {
4098         bool write = error_code & PFERR_WRITE_MASK;
4099         bool exec = error_code & PFERR_FETCH_MASK;
4100         bool lpage_disallowed = exec && is_nx_huge_page_enabled();
4101         bool map_writable;
4102
4103         gfn_t gfn = gpa >> PAGE_SHIFT;
4104         unsigned long mmu_seq;
4105         kvm_pfn_t pfn;
4106         int r;
4107
4108         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4109                 return RET_PF_EMULATE;
4110
4111         r = mmu_topup_memory_caches(vcpu);
4112         if (r)
4113                 return r;
4114
4115         if (lpage_disallowed)
4116                 max_level = PG_LEVEL_4K;
4117
4118         if (fast_page_fault(vcpu, gpa, error_code))
4119                 return RET_PF_RETRY;
4120
4121         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4122         smp_rmb();
4123
4124         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4125                 return RET_PF_RETRY;
4126
4127         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4128                 return r;
4129
4130         r = RET_PF_RETRY;
4131         spin_lock(&vcpu->kvm->mmu_lock);
4132         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4133                 goto out_unlock;
4134         if (make_mmu_pages_available(vcpu) < 0)
4135                 goto out_unlock;
4136         r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4137                          prefault, is_tdp && lpage_disallowed);
4138
4139 out_unlock:
4140         spin_unlock(&vcpu->kvm->mmu_lock);
4141         kvm_release_pfn_clean(pfn);
4142         return r;
4143 }
4144
4145 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4146                                 u32 error_code, bool prefault)
4147 {
4148         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4149
4150         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4151         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4152                                  PG_LEVEL_2M, false);
4153 }
4154
4155 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4156                                 u64 fault_address, char *insn, int insn_len)
4157 {
4158         int r = 1;
4159
4160 #ifndef CONFIG_X86_64
4161         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4162         if (WARN_ON_ONCE(fault_address >> 32))
4163                 return -EFAULT;
4164 #endif
4165
4166         vcpu->arch.l1tf_flush_l1d = true;
4167         switch (vcpu->arch.apf.host_apf_flags) {
4168         default:
4169                 trace_kvm_page_fault(fault_address, error_code);
4170
4171                 if (kvm_event_needs_reinjection(vcpu))
4172                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4173                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4174                                 insn_len);
4175                 break;
4176         case KVM_PV_REASON_PAGE_NOT_PRESENT:
4177                 vcpu->arch.apf.host_apf_flags = 0;
4178                 local_irq_disable();
4179                 kvm_async_pf_task_wait_schedule(fault_address);
4180                 local_irq_enable();
4181                 break;
4182         case KVM_PV_REASON_PAGE_READY:
4183                 vcpu->arch.apf.host_apf_flags = 0;
4184                 local_irq_disable();
4185                 kvm_async_pf_task_wake(fault_address);
4186                 local_irq_enable();
4187                 break;
4188         }
4189         return r;
4190 }
4191 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4192
4193 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4194                        bool prefault)
4195 {
4196         int max_level;
4197
4198         for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
4199              max_level > PG_LEVEL_4K;
4200              max_level--) {
4201                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
4202                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4203
4204                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4205                         break;
4206         }
4207
4208         return direct_page_fault(vcpu, gpa, error_code, prefault,
4209                                  max_level, true);
4210 }
4211
4212 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4213                                    struct kvm_mmu *context)
4214 {
4215         context->page_fault = nonpaging_page_fault;
4216         context->gva_to_gpa = nonpaging_gva_to_gpa;
4217         context->sync_page = nonpaging_sync_page;
4218         context->invlpg = NULL;
4219         context->update_pte = nonpaging_update_pte;
4220         context->root_level = 0;
4221         context->shadow_root_level = PT32E_ROOT_LEVEL;
4222         context->direct_map = true;
4223         context->nx = false;
4224 }
4225
4226 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4227                                   union kvm_mmu_page_role role)
4228 {
4229         return (role.direct || pgd == root->pgd) &&
4230                VALID_PAGE(root->hpa) && page_header(root->hpa) &&
4231                role.word == page_header(root->hpa)->role.word;
4232 }
4233
4234 /*
4235  * Find out if a previously cached root matching the new pgd/role is available.
4236  * The current root is also inserted into the cache.
4237  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4238  * returned.
4239  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4240  * false is returned. This root should now be freed by the caller.
4241  */
4242 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4243                                   union kvm_mmu_page_role new_role)
4244 {
4245         uint i;
4246         struct kvm_mmu_root_info root;
4247         struct kvm_mmu *mmu = vcpu->arch.mmu;
4248
4249         root.pgd = mmu->root_pgd;
4250         root.hpa = mmu->root_hpa;
4251
4252         if (is_root_usable(&root, new_pgd, new_role))
4253                 return true;
4254
4255         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4256                 swap(root, mmu->prev_roots[i]);
4257
4258                 if (is_root_usable(&root, new_pgd, new_role))
4259                         break;
4260         }
4261
4262         mmu->root_hpa = root.hpa;
4263         mmu->root_pgd = root.pgd;
4264
4265         return i < KVM_MMU_NUM_PREV_ROOTS;
4266 }
4267
4268 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4269                             union kvm_mmu_page_role new_role)
4270 {
4271         struct kvm_mmu *mmu = vcpu->arch.mmu;
4272
4273         /*
4274          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4275          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4276          * later if necessary.
4277          */
4278         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4279             mmu->root_level >= PT64_ROOT_4LEVEL)
4280                 return !mmu_check_root(vcpu, new_pgd >> PAGE_SHIFT) &&
4281                        cached_root_available(vcpu, new_pgd, new_role);
4282
4283         return false;
4284 }
4285
4286 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4287                               union kvm_mmu_page_role new_role,
4288                               bool skip_tlb_flush, bool skip_mmu_sync)
4289 {
4290         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4291                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4292                 return;
4293         }
4294
4295         /*
4296          * It's possible that the cached previous root page is obsolete because
4297          * of a change in the MMU generation number. However, changing the
4298          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4299          * free the root set here and allocate a new one.
4300          */
4301         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4302
4303         if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
4304                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4305         if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
4306                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4307
4308         /*
4309          * The last MMIO access's GVA and GPA are cached in the VCPU. When
4310          * switching to a new CR3, that GVA->GPA mapping may no longer be
4311          * valid. So clear any cached MMIO info even when we don't need to sync
4312          * the shadow page tables.
4313          */
4314         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4315
4316         __clear_sp_write_flooding_count(page_header(vcpu->arch.mmu->root_hpa));
4317 }
4318
4319 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4320                      bool skip_mmu_sync)
4321 {
4322         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4323                           skip_tlb_flush, skip_mmu_sync);
4324 }
4325 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4326
4327 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4328 {
4329         return kvm_read_cr3(vcpu);
4330 }
4331
4332 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4333                            unsigned int access, int *nr_present)
4334 {
4335         if (unlikely(is_mmio_spte(*sptep))) {
4336                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4337                         mmu_spte_clear_no_track(sptep);
4338                         return true;
4339                 }
4340
4341                 (*nr_present)++;
4342                 mark_mmio_spte(vcpu, sptep, gfn, access);
4343                 return true;
4344         }
4345
4346         return false;
4347 }
4348
4349 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4350                                 unsigned level, unsigned gpte)
4351 {
4352         /*
4353          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4354          * If it is clear, there are no large pages at this level, so clear
4355          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4356          */
4357         gpte &= level - mmu->last_nonleaf_level;
4358
4359         /*
4360          * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
4361          * iff level <= PG_LEVEL_4K, which for our purpose means
4362          * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
4363          */
4364         gpte |= level - PG_LEVEL_4K - 1;
4365
4366         return gpte & PT_PAGE_SIZE_MASK;
4367 }
4368
4369 #define PTTYPE_EPT 18 /* arbitrary */
4370 #define PTTYPE PTTYPE_EPT
4371 #include "paging_tmpl.h"
4372 #undef PTTYPE
4373
4374 #define PTTYPE 64
4375 #include "paging_tmpl.h"
4376 #undef PTTYPE
4377
4378 #define PTTYPE 32
4379 #include "paging_tmpl.h"
4380 #undef PTTYPE
4381
4382 static void
4383 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4384                         struct rsvd_bits_validate *rsvd_check,
4385                         int maxphyaddr, int level, bool nx, bool gbpages,
4386                         bool pse, bool amd)
4387 {
4388         u64 exb_bit_rsvd = 0;
4389         u64 gbpages_bit_rsvd = 0;
4390         u64 nonleaf_bit8_rsvd = 0;
4391
4392         rsvd_check->bad_mt_xwr = 0;
4393
4394         if (!nx)
4395                 exb_bit_rsvd = rsvd_bits(63, 63);
4396         if (!gbpages)
4397                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4398
4399         /*
4400          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4401          * leaf entries) on AMD CPUs only.
4402          */
4403         if (amd)
4404                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4405
4406         switch (level) {
4407         case PT32_ROOT_LEVEL:
4408                 /* no rsvd bits for 2 level 4K page table entries */
4409                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4410                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4411                 rsvd_check->rsvd_bits_mask[1][0] =
4412                         rsvd_check->rsvd_bits_mask[0][0];
4413
4414                 if (!pse) {
4415                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4416                         break;
4417                 }
4418
4419                 if (is_cpuid_PSE36())
4420                         /* 36bits PSE 4MB page */
4421                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4422                 else
4423                         /* 32 bits PSE 4MB page */
4424                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4425                 break;
4426         case PT32E_ROOT_LEVEL:
4427                 rsvd_check->rsvd_bits_mask[0][2] =
4428                         rsvd_bits(maxphyaddr, 63) |
4429                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4430                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4431                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4432                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4433                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4434                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4435                         rsvd_bits(maxphyaddr, 62) |
4436                         rsvd_bits(13, 20);              /* large page */
4437                 rsvd_check->rsvd_bits_mask[1][0] =
4438                         rsvd_check->rsvd_bits_mask[0][0];
4439                 break;
4440         case PT64_ROOT_5LEVEL:
4441                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4442                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4443                         rsvd_bits(maxphyaddr, 51);
4444                 rsvd_check->rsvd_bits_mask[1][4] =
4445                         rsvd_check->rsvd_bits_mask[0][4];
4446                 /* fall through */
4447         case PT64_ROOT_4LEVEL:
4448                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4449                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4450                         rsvd_bits(maxphyaddr, 51);
4451                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4452                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4453                         rsvd_bits(maxphyaddr, 51);
4454                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4455                         rsvd_bits(maxphyaddr, 51);
4456                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4457                         rsvd_bits(maxphyaddr, 51);
4458                 rsvd_check->rsvd_bits_mask[1][3] =
4459                         rsvd_check->rsvd_bits_mask[0][3];
4460                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4461                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4462                         rsvd_bits(13, 29);
4463                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4464                         rsvd_bits(maxphyaddr, 51) |
4465                         rsvd_bits(13, 20);              /* large page */
4466                 rsvd_check->rsvd_bits_mask[1][0] =
4467                         rsvd_check->rsvd_bits_mask[0][0];
4468                 break;
4469         }
4470 }
4471
4472 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4473                                   struct kvm_mmu *context)
4474 {
4475         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4476                                 cpuid_maxphyaddr(vcpu), context->root_level,
4477                                 context->nx,
4478                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4479                                 is_pse(vcpu),
4480                                 guest_cpuid_is_amd_or_hygon(vcpu));
4481 }
4482
4483 static void
4484 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4485                             int maxphyaddr, bool execonly)
4486 {
4487         u64 bad_mt_xwr;
4488
4489         rsvd_check->rsvd_bits_mask[0][4] =
4490                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4491         rsvd_check->rsvd_bits_mask[0][3] =
4492                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4493         rsvd_check->rsvd_bits_mask[0][2] =
4494                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4495         rsvd_check->rsvd_bits_mask[0][1] =
4496                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4497         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4498
4499         /* large page */
4500         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4501         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4502         rsvd_check->rsvd_bits_mask[1][2] =
4503                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4504         rsvd_check->rsvd_bits_mask[1][1] =
4505                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4506         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4507
4508         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4509         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4510         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4511         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4512         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4513         if (!execonly) {
4514                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4515                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4516         }
4517         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4518 }
4519
4520 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4521                 struct kvm_mmu *context, bool execonly)
4522 {
4523         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4524                                     cpuid_maxphyaddr(vcpu), execonly);
4525 }
4526
4527 /*
4528  * the page table on host is the shadow page table for the page
4529  * table in guest or amd nested guest, its mmu features completely
4530  * follow the features in guest.
4531  */
4532 void
4533 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4534 {
4535         bool uses_nx = context->nx ||
4536                 context->mmu_role.base.smep_andnot_wp;
4537         struct rsvd_bits_validate *shadow_zero_check;
4538         int i;
4539
4540         /*
4541          * Passing "true" to the last argument is okay; it adds a check
4542          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4543          */
4544         shadow_zero_check = &context->shadow_zero_check;
4545         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4546                                 shadow_phys_bits,
4547                                 context->shadow_root_level, uses_nx,
4548                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4549                                 is_pse(vcpu), true);
4550
4551         if (!shadow_me_mask)
4552                 return;
4553
4554         for (i = context->shadow_root_level; --i >= 0;) {
4555                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4556                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4557         }
4558
4559 }
4560 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4561
4562 static inline bool boot_cpu_is_amd(void)
4563 {
4564         WARN_ON_ONCE(!tdp_enabled);
4565         return shadow_x_mask == 0;
4566 }
4567
4568 /*
4569  * the direct page table on host, use as much mmu features as
4570  * possible, however, kvm currently does not do execution-protection.
4571  */
4572 static void
4573 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4574                                 struct kvm_mmu *context)
4575 {
4576         struct rsvd_bits_validate *shadow_zero_check;
4577         int i;
4578
4579         shadow_zero_check = &context->shadow_zero_check;
4580
4581         if (boot_cpu_is_amd())
4582                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4583                                         shadow_phys_bits,
4584                                         context->shadow_root_level, false,
4585                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4586                                         true, true);
4587         else
4588                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4589                                             shadow_phys_bits,
4590                                             false);
4591
4592         if (!shadow_me_mask)
4593                 return;
4594
4595         for (i = context->shadow_root_level; --i >= 0;) {
4596                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4597                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4598         }
4599 }
4600
4601 /*
4602  * as the comments in reset_shadow_zero_bits_mask() except it
4603  * is the shadow page table for intel nested guest.
4604  */
4605 static void
4606 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4607                                 struct kvm_mmu *context, bool execonly)
4608 {
4609         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4610                                     shadow_phys_bits, execonly);
4611 }
4612
4613 #define BYTE_MASK(access) \
4614         ((1 & (access) ? 2 : 0) | \
4615          (2 & (access) ? 4 : 0) | \
4616          (3 & (access) ? 8 : 0) | \
4617          (4 & (access) ? 16 : 0) | \
4618          (5 & (access) ? 32 : 0) | \
4619          (6 & (access) ? 64 : 0) | \
4620          (7 & (access) ? 128 : 0))
4621
4622
4623 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4624                                       struct kvm_mmu *mmu, bool ept)
4625 {
4626         unsigned byte;
4627
4628         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4629         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4630         const u8 u = BYTE_MASK(ACC_USER_MASK);
4631
4632         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4633         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4634         bool cr0_wp = is_write_protection(vcpu);
4635
4636         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4637                 unsigned pfec = byte << 1;
4638
4639                 /*
4640                  * Each "*f" variable has a 1 bit for each UWX value
4641                  * that causes a fault with the given PFEC.
4642                  */
4643
4644                 /* Faults from writes to non-writable pages */
4645                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4646                 /* Faults from user mode accesses to supervisor pages */
4647                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4648                 /* Faults from fetches of non-executable pages*/
4649                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4650                 /* Faults from kernel mode fetches of user pages */
4651                 u8 smepf = 0;
4652                 /* Faults from kernel mode accesses of user pages */
4653                 u8 smapf = 0;
4654
4655                 if (!ept) {
4656                         /* Faults from kernel mode accesses to user pages */
4657                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4658
4659                         /* Not really needed: !nx will cause pte.nx to fault */
4660                         if (!mmu->nx)
4661                                 ff = 0;
4662
4663                         /* Allow supervisor writes if !cr0.wp */
4664                         if (!cr0_wp)
4665                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4666
4667                         /* Disallow supervisor fetches of user code if cr4.smep */
4668                         if (cr4_smep)
4669                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4670
4671                         /*
4672                          * SMAP:kernel-mode data accesses from user-mode
4673                          * mappings should fault. A fault is considered
4674                          * as a SMAP violation if all of the following
4675                          * conditions are true:
4676                          *   - X86_CR4_SMAP is set in CR4
4677                          *   - A user page is accessed
4678                          *   - The access is not a fetch
4679                          *   - Page fault in kernel mode
4680                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4681                          *
4682                          * Here, we cover the first three conditions.
4683                          * The fourth is computed dynamically in permission_fault();
4684                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4685                          * *not* subject to SMAP restrictions.
4686                          */
4687                         if (cr4_smap)
4688                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4689                 }
4690
4691                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4692         }
4693 }
4694
4695 /*
4696 * PKU is an additional mechanism by which the paging controls access to
4697 * user-mode addresses based on the value in the PKRU register.  Protection
4698 * key violations are reported through a bit in the page fault error code.
4699 * Unlike other bits of the error code, the PK bit is not known at the
4700 * call site of e.g. gva_to_gpa; it must be computed directly in
4701 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4702 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4703 *
4704 * In particular the following conditions come from the error code, the
4705 * page tables and the machine state:
4706 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4707 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4708 * - PK is always zero if U=0 in the page tables
4709 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4710 *
4711 * The PKRU bitmask caches the result of these four conditions.  The error
4712 * code (minus the P bit) and the page table's U bit form an index into the
4713 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4714 * with the two bits of the PKRU register corresponding to the protection key.
4715 * For the first three conditions above the bits will be 00, thus masking
4716 * away both AD and WD.  For all reads or if the last condition holds, WD
4717 * only will be masked away.
4718 */
4719 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4720                                 bool ept)
4721 {
4722         unsigned bit;
4723         bool wp;
4724
4725         if (ept) {
4726                 mmu->pkru_mask = 0;
4727                 return;
4728         }
4729
4730         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4731         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4732                 mmu->pkru_mask = 0;
4733                 return;
4734         }
4735
4736         wp = is_write_protection(vcpu);
4737
4738         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4739                 unsigned pfec, pkey_bits;
4740                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4741
4742                 pfec = bit << 1;
4743                 ff = pfec & PFERR_FETCH_MASK;
4744                 uf = pfec & PFERR_USER_MASK;
4745                 wf = pfec & PFERR_WRITE_MASK;
4746
4747                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4748                 pte_user = pfec & PFERR_RSVD_MASK;
4749
4750                 /*
4751                  * Only need to check the access which is not an
4752                  * instruction fetch and is to a user page.
4753                  */
4754                 check_pkey = (!ff && pte_user);
4755                 /*
4756                  * write access is controlled by PKRU if it is a
4757                  * user access or CR0.WP = 1.
4758                  */
4759                 check_write = check_pkey && wf && (uf || wp);
4760
4761                 /* PKRU.AD stops both read and write access. */
4762                 pkey_bits = !!check_pkey;
4763                 /* PKRU.WD stops write access. */
4764                 pkey_bits |= (!!check_write) << 1;
4765
4766                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4767         }
4768 }
4769
4770 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4771 {
4772         unsigned root_level = mmu->root_level;
4773
4774         mmu->last_nonleaf_level = root_level;
4775         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4776                 mmu->last_nonleaf_level++;
4777 }
4778
4779 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4780                                          struct kvm_mmu *context,
4781                                          int level)
4782 {
4783         context->nx = is_nx(vcpu);
4784         context->root_level = level;
4785
4786         reset_rsvds_bits_mask(vcpu, context);
4787         update_permission_bitmask(vcpu, context, false);
4788         update_pkru_bitmask(vcpu, context, false);
4789         update_last_nonleaf_level(vcpu, context);
4790
4791         MMU_WARN_ON(!is_pae(vcpu));
4792         context->page_fault = paging64_page_fault;
4793         context->gva_to_gpa = paging64_gva_to_gpa;
4794         context->sync_page = paging64_sync_page;
4795         context->invlpg = paging64_invlpg;
4796         context->update_pte = paging64_update_pte;
4797         context->shadow_root_level = level;
4798         context->direct_map = false;
4799 }
4800
4801 static void paging64_init_context(struct kvm_vcpu *vcpu,
4802                                   struct kvm_mmu *context)
4803 {
4804         int root_level = is_la57_mode(vcpu) ?
4805                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4806
4807         paging64_init_context_common(vcpu, context, root_level);
4808 }
4809
4810 static void paging32_init_context(struct kvm_vcpu *vcpu,
4811                                   struct kvm_mmu *context)
4812 {
4813         context->nx = false;
4814         context->root_level = PT32_ROOT_LEVEL;
4815
4816         reset_rsvds_bits_mask(vcpu, context);
4817         update_permission_bitmask(vcpu, context, false);
4818         update_pkru_bitmask(vcpu, context, false);
4819         update_last_nonleaf_level(vcpu, context);
4820
4821         context->page_fault = paging32_page_fault;
4822         context->gva_to_gpa = paging32_gva_to_gpa;
4823         context->sync_page = paging32_sync_page;
4824         context->invlpg = paging32_invlpg;
4825         context->update_pte = paging32_update_pte;
4826         context->shadow_root_level = PT32E_ROOT_LEVEL;
4827         context->direct_map = false;
4828 }
4829
4830 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4831                                    struct kvm_mmu *context)
4832 {
4833         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4834 }
4835
4836 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4837 {
4838         union kvm_mmu_extended_role ext = {0};
4839
4840         ext.cr0_pg = !!is_paging(vcpu);
4841         ext.cr4_pae = !!is_pae(vcpu);
4842         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4843         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4844         ext.cr4_pse = !!is_pse(vcpu);
4845         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4846         ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4847
4848         ext.valid = 1;
4849
4850         return ext;
4851 }
4852
4853 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4854                                                    bool base_only)
4855 {
4856         union kvm_mmu_role role = {0};
4857
4858         role.base.access = ACC_ALL;
4859         role.base.nxe = !!is_nx(vcpu);
4860         role.base.cr0_wp = is_write_protection(vcpu);
4861         role.base.smm = is_smm(vcpu);
4862         role.base.guest_mode = is_guest_mode(vcpu);
4863
4864         if (base_only)
4865                 return role;
4866
4867         role.ext = kvm_calc_mmu_role_ext(vcpu);
4868
4869         return role;
4870 }
4871
4872 static union kvm_mmu_role
4873 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4874 {
4875         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4876
4877         role.base.ad_disabled = (shadow_accessed_mask == 0);
4878         role.base.level = vcpu->arch.tdp_level;
4879         role.base.direct = true;
4880         role.base.gpte_is_8_bytes = true;
4881
4882         return role;
4883 }
4884
4885 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4886 {
4887         struct kvm_mmu *context = vcpu->arch.mmu;
4888         union kvm_mmu_role new_role =
4889                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4890
4891         if (new_role.as_u64 == context->mmu_role.as_u64)
4892                 return;
4893
4894         context->mmu_role.as_u64 = new_role.as_u64;
4895         context->page_fault = kvm_tdp_page_fault;
4896         context->sync_page = nonpaging_sync_page;
4897         context->invlpg = NULL;
4898         context->update_pte = nonpaging_update_pte;
4899         context->shadow_root_level = vcpu->arch.tdp_level;
4900         context->direct_map = true;
4901         context->get_guest_pgd = get_cr3;
4902         context->get_pdptr = kvm_pdptr_read;
4903         context->inject_page_fault = kvm_inject_page_fault;
4904
4905         if (!is_paging(vcpu)) {
4906                 context->nx = false;
4907                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4908                 context->root_level = 0;
4909         } else if (is_long_mode(vcpu)) {
4910                 context->nx = is_nx(vcpu);
4911                 context->root_level = is_la57_mode(vcpu) ?
4912                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4913                 reset_rsvds_bits_mask(vcpu, context);
4914                 context->gva_to_gpa = paging64_gva_to_gpa;
4915         } else if (is_pae(vcpu)) {
4916                 context->nx = is_nx(vcpu);
4917                 context->root_level = PT32E_ROOT_LEVEL;
4918                 reset_rsvds_bits_mask(vcpu, context);
4919                 context->gva_to_gpa = paging64_gva_to_gpa;
4920         } else {
4921                 context->nx = false;
4922                 context->root_level = PT32_ROOT_LEVEL;
4923                 reset_rsvds_bits_mask(vcpu, context);
4924                 context->gva_to_gpa = paging32_gva_to_gpa;
4925         }
4926
4927         update_permission_bitmask(vcpu, context, false);
4928         update_pkru_bitmask(vcpu, context, false);
4929         update_last_nonleaf_level(vcpu, context);
4930         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4931 }
4932
4933 static union kvm_mmu_role
4934 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4935 {
4936         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4937
4938         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4939                 !is_write_protection(vcpu);
4940         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4941                 !is_write_protection(vcpu);
4942         role.base.direct = !is_paging(vcpu);
4943         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4944
4945         if (!is_long_mode(vcpu))
4946                 role.base.level = PT32E_ROOT_LEVEL;
4947         else if (is_la57_mode(vcpu))
4948                 role.base.level = PT64_ROOT_5LEVEL;
4949         else
4950                 role.base.level = PT64_ROOT_4LEVEL;
4951
4952         return role;
4953 }
4954
4955 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4956 {
4957         struct kvm_mmu *context = vcpu->arch.mmu;
4958         union kvm_mmu_role new_role =
4959                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4960
4961         if (new_role.as_u64 == context->mmu_role.as_u64)
4962                 return;
4963
4964         if (!(cr0 & X86_CR0_PG))
4965                 nonpaging_init_context(vcpu, context);
4966         else if (efer & EFER_LMA)
4967                 paging64_init_context(vcpu, context);
4968         else if (cr4 & X86_CR4_PAE)
4969                 paging32E_init_context(vcpu, context);
4970         else
4971                 paging32_init_context(vcpu, context);
4972
4973         context->mmu_role.as_u64 = new_role.as_u64;
4974         reset_shadow_zero_bits_mask(vcpu, context);
4975 }
4976 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4977
4978 static union kvm_mmu_role
4979 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4980                                    bool execonly, u8 level)
4981 {
4982         union kvm_mmu_role role = {0};
4983
4984         /* SMM flag is inherited from root_mmu */
4985         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4986
4987         role.base.level = level;
4988         role.base.gpte_is_8_bytes = true;
4989         role.base.direct = false;
4990         role.base.ad_disabled = !accessed_dirty;
4991         role.base.guest_mode = true;
4992         role.base.access = ACC_ALL;
4993
4994         /*
4995          * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4996          * SMAP variation to denote shadow EPT entries.
4997          */
4998         role.base.cr0_wp = true;
4999         role.base.smap_andnot_wp = true;
5000
5001         role.ext = kvm_calc_mmu_role_ext(vcpu);
5002         role.ext.execonly = execonly;
5003
5004         return role;
5005 }
5006
5007 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5008                              bool accessed_dirty, gpa_t new_eptp)
5009 {
5010         struct kvm_mmu *context = vcpu->arch.mmu;
5011         u8 level = vmx_eptp_page_walk_level(new_eptp);
5012         union kvm_mmu_role new_role =
5013                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5014                                                    execonly, level);
5015
5016         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
5017
5018         if (new_role.as_u64 == context->mmu_role.as_u64)
5019                 return;
5020
5021         context->shadow_root_level = level;
5022
5023         context->nx = true;
5024         context->ept_ad = accessed_dirty;
5025         context->page_fault = ept_page_fault;
5026         context->gva_to_gpa = ept_gva_to_gpa;
5027         context->sync_page = ept_sync_page;
5028         context->invlpg = ept_invlpg;
5029         context->update_pte = ept_update_pte;
5030         context->root_level = level;
5031         context->direct_map = false;
5032         context->mmu_role.as_u64 = new_role.as_u64;
5033
5034         update_permission_bitmask(vcpu, context, true);
5035         update_pkru_bitmask(vcpu, context, true);
5036         update_last_nonleaf_level(vcpu, context);
5037         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5038         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
5039 }
5040 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5041
5042 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5043 {
5044         struct kvm_mmu *context = vcpu->arch.mmu;
5045
5046         kvm_init_shadow_mmu(vcpu,
5047                             kvm_read_cr0_bits(vcpu, X86_CR0_PG),
5048                             kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
5049                             vcpu->arch.efer);
5050
5051         context->get_guest_pgd     = get_cr3;
5052         context->get_pdptr         = kvm_pdptr_read;
5053         context->inject_page_fault = kvm_inject_page_fault;
5054 }
5055
5056 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5057 {
5058         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5059         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5060
5061         if (new_role.as_u64 == g_context->mmu_role.as_u64)
5062                 return;
5063
5064         g_context->mmu_role.as_u64 = new_role.as_u64;
5065         g_context->get_guest_pgd     = get_cr3;
5066         g_context->get_pdptr         = kvm_pdptr_read;
5067         g_context->inject_page_fault = kvm_inject_page_fault;
5068
5069         /*
5070          * L2 page tables are never shadowed, so there is no need to sync
5071          * SPTEs.
5072          */
5073         g_context->invlpg            = NULL;
5074
5075         /*
5076          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5077          * L1's nested page tables (e.g. EPT12). The nested translation
5078          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5079          * L2's page tables as the first level of translation and L1's
5080          * nested page tables as the second level of translation. Basically
5081          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5082          */
5083         if (!is_paging(vcpu)) {
5084                 g_context->nx = false;
5085                 g_context->root_level = 0;
5086                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5087         } else if (is_long_mode(vcpu)) {
5088                 g_context->nx = is_nx(vcpu);
5089                 g_context->root_level = is_la57_mode(vcpu) ?
5090                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5091                 reset_rsvds_bits_mask(vcpu, g_context);
5092                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5093         } else if (is_pae(vcpu)) {
5094                 g_context->nx = is_nx(vcpu);
5095                 g_context->root_level = PT32E_ROOT_LEVEL;
5096                 reset_rsvds_bits_mask(vcpu, g_context);
5097                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5098         } else {
5099                 g_context->nx = false;
5100                 g_context->root_level = PT32_ROOT_LEVEL;
5101                 reset_rsvds_bits_mask(vcpu, g_context);
5102                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5103         }
5104
5105         update_permission_bitmask(vcpu, g_context, false);
5106         update_pkru_bitmask(vcpu, g_context, false);
5107         update_last_nonleaf_level(vcpu, g_context);
5108 }
5109
5110 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5111 {
5112         if (reset_roots) {
5113                 uint i;
5114
5115                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5116
5117                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5118                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5119         }
5120
5121         if (mmu_is_nested(vcpu))
5122                 init_kvm_nested_mmu(vcpu);
5123         else if (tdp_enabled)
5124                 init_kvm_tdp_mmu(vcpu);
5125         else
5126                 init_kvm_softmmu(vcpu);
5127 }
5128 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5129
5130 static union kvm_mmu_page_role
5131 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5132 {
5133         union kvm_mmu_role role;
5134
5135         if (tdp_enabled)
5136                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5137         else
5138                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5139
5140         return role.base;
5141 }
5142
5143 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5144 {
5145         kvm_mmu_unload(vcpu);
5146         kvm_init_mmu(vcpu, true);
5147 }
5148 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5149
5150 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5151 {
5152         int r;
5153
5154         r = mmu_topup_memory_caches(vcpu);
5155         if (r)
5156                 goto out;
5157         r = mmu_alloc_roots(vcpu);
5158         kvm_mmu_sync_roots(vcpu);
5159         if (r)
5160                 goto out;
5161         kvm_mmu_load_pgd(vcpu);
5162         kvm_x86_ops.tlb_flush_current(vcpu);
5163 out:
5164         return r;
5165 }
5166 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5167
5168 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5169 {
5170         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5171         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5172         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5173         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5174 }
5175 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5176
5177 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5178                                   struct kvm_mmu_page *sp, u64 *spte,
5179                                   const void *new)
5180 {
5181         if (sp->role.level != PG_LEVEL_4K) {
5182                 ++vcpu->kvm->stat.mmu_pde_zapped;
5183                 return;
5184         }
5185
5186         ++vcpu->kvm->stat.mmu_pte_updated;
5187         vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5188 }
5189
5190 static bool need_remote_flush(u64 old, u64 new)
5191 {
5192         if (!is_shadow_present_pte(old))
5193                 return false;
5194         if (!is_shadow_present_pte(new))
5195                 return true;
5196         if ((old ^ new) & PT64_BASE_ADDR_MASK)
5197                 return true;
5198         old ^= shadow_nx_mask;
5199         new ^= shadow_nx_mask;
5200         return (old & ~new & PT64_PERM_MASK) != 0;
5201 }
5202
5203 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5204                                     int *bytes)
5205 {
5206         u64 gentry = 0;
5207         int r;
5208
5209         /*
5210          * Assume that the pte write on a page table of the same type
5211          * as the current vcpu paging mode since we update the sptes only
5212          * when they have the same mode.
5213          */
5214         if (is_pae(vcpu) && *bytes == 4) {
5215                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5216                 *gpa &= ~(gpa_t)7;
5217                 *bytes = 8;
5218         }
5219
5220         if (*bytes == 4 || *bytes == 8) {
5221                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5222                 if (r)
5223                         gentry = 0;
5224         }
5225
5226         return gentry;
5227 }
5228
5229 /*
5230  * If we're seeing too many writes to a page, it may no longer be a page table,
5231  * or we may be forking, in which case it is better to unmap the page.
5232  */
5233 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5234 {
5235         /*
5236          * Skip write-flooding detected for the sp whose level is 1, because
5237          * it can become unsync, then the guest page is not write-protected.
5238          */
5239         if (sp->role.level == PG_LEVEL_4K)
5240                 return false;
5241
5242         atomic_inc(&sp->write_flooding_count);
5243         return atomic_read(&sp->write_flooding_count) >= 3;
5244 }
5245
5246 /*
5247  * Misaligned accesses are too much trouble to fix up; also, they usually
5248  * indicate a page is not used as a page table.
5249  */
5250 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5251                                     int bytes)
5252 {
5253         unsigned offset, pte_size, misaligned;
5254
5255         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5256                  gpa, bytes, sp->role.word);
5257
5258         offset = offset_in_page(gpa);
5259         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5260
5261         /*
5262          * Sometimes, the OS only writes the last one bytes to update status
5263          * bits, for example, in linux, andb instruction is used in clear_bit().
5264          */
5265         if (!(offset & (pte_size - 1)) && bytes == 1)
5266                 return false;
5267
5268         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5269         misaligned |= bytes < 4;
5270
5271         return misaligned;
5272 }
5273
5274 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5275 {
5276         unsigned page_offset, quadrant;
5277         u64 *spte;
5278         int level;
5279
5280         page_offset = offset_in_page(gpa);
5281         level = sp->role.level;
5282         *nspte = 1;
5283         if (!sp->role.gpte_is_8_bytes) {
5284                 page_offset <<= 1;      /* 32->64 */
5285                 /*
5286                  * A 32-bit pde maps 4MB while the shadow pdes map
5287                  * only 2MB.  So we need to double the offset again
5288                  * and zap two pdes instead of one.
5289                  */
5290                 if (level == PT32_ROOT_LEVEL) {
5291                         page_offset &= ~7; /* kill rounding error */
5292                         page_offset <<= 1;
5293                         *nspte = 2;
5294                 }
5295                 quadrant = page_offset >> PAGE_SHIFT;
5296                 page_offset &= ~PAGE_MASK;
5297                 if (quadrant != sp->role.quadrant)
5298                         return NULL;
5299         }
5300
5301         spte = &sp->spt[page_offset / sizeof(*spte)];
5302         return spte;
5303 }
5304
5305 /*
5306  * Ignore various flags when determining if a SPTE can be immediately
5307  * overwritten for the current MMU.
5308  *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
5309  *    match the current MMU role, as MMU's level tracks the root level.
5310  *  - access: updated based on the new guest PTE
5311  *  - quadrant: handled by get_written_sptes()
5312  *  - invalid: always false (loop only walks valid shadow pages)
5313  */
5314 static const union kvm_mmu_page_role role_ign = {
5315         .level = 0xf,
5316         .access = 0x7,
5317         .quadrant = 0x3,
5318         .invalid = 0x1,
5319 };
5320
5321 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5322                               const u8 *new, int bytes,
5323                               struct kvm_page_track_notifier_node *node)
5324 {
5325         gfn_t gfn = gpa >> PAGE_SHIFT;
5326         struct kvm_mmu_page *sp;
5327         LIST_HEAD(invalid_list);
5328         u64 entry, gentry, *spte;
5329         int npte;
5330         bool remote_flush, local_flush;
5331
5332         /*
5333          * If we don't have indirect shadow pages, it means no page is
5334          * write-protected, so we can exit simply.
5335          */
5336         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5337                 return;
5338
5339         remote_flush = local_flush = false;
5340
5341         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5342
5343         /*
5344          * No need to care whether allocation memory is successful
5345          * or not since pte prefetch is skiped if it does not have
5346          * enough objects in the cache.
5347          */
5348         mmu_topup_memory_caches(vcpu);
5349
5350         spin_lock(&vcpu->kvm->mmu_lock);
5351
5352         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5353
5354         ++vcpu->kvm->stat.mmu_pte_write;
5355         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5356
5357         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5358                 if (detect_write_misaligned(sp, gpa, bytes) ||
5359                       detect_write_flooding(sp)) {
5360                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5361                         ++vcpu->kvm->stat.mmu_flooded;
5362                         continue;
5363                 }
5364
5365                 spte = get_written_sptes(sp, gpa, &npte);
5366                 if (!spte)
5367                         continue;
5368
5369                 local_flush = true;
5370                 while (npte--) {
5371                         u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5372
5373                         entry = *spte;
5374                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
5375                         if (gentry &&
5376                             !((sp->role.word ^ base_role) & ~role_ign.word) &&
5377                             rmap_can_add(vcpu))
5378                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5379                         if (need_remote_flush(entry, *spte))
5380                                 remote_flush = true;
5381                         ++spte;
5382                 }
5383         }
5384         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5385         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5386         spin_unlock(&vcpu->kvm->mmu_lock);
5387 }
5388
5389 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5390 {
5391         gpa_t gpa;
5392         int r;
5393
5394         if (vcpu->arch.mmu->direct_map)
5395                 return 0;
5396
5397         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5398
5399         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5400
5401         return r;
5402 }
5403 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5404
5405 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5406                        void *insn, int insn_len)
5407 {
5408         int r, emulation_type = EMULTYPE_PF;
5409         bool direct = vcpu->arch.mmu->direct_map;
5410
5411         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5412                 return RET_PF_RETRY;
5413
5414         r = RET_PF_INVALID;
5415         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5416                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5417                 if (r == RET_PF_EMULATE)
5418                         goto emulate;
5419         }
5420
5421         if (r == RET_PF_INVALID) {
5422                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5423                                           lower_32_bits(error_code), false);
5424                 WARN_ON(r == RET_PF_INVALID);
5425         }
5426
5427         if (r == RET_PF_RETRY)
5428                 return 1;
5429         if (r < 0)
5430                 return r;
5431
5432         /*
5433          * Before emulating the instruction, check if the error code
5434          * was due to a RO violation while translating the guest page.
5435          * This can occur when using nested virtualization with nested
5436          * paging in both guests. If true, we simply unprotect the page
5437          * and resume the guest.
5438          */
5439         if (vcpu->arch.mmu->direct_map &&
5440             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5441                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5442                 return 1;
5443         }
5444
5445         /*
5446          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5447          * optimistically try to just unprotect the page and let the processor
5448          * re-execute the instruction that caused the page fault.  Do not allow
5449          * retrying MMIO emulation, as it's not only pointless but could also
5450          * cause us to enter an infinite loop because the processor will keep
5451          * faulting on the non-existent MMIO address.  Retrying an instruction
5452          * from a nested guest is also pointless and dangerous as we are only
5453          * explicitly shadowing L1's page tables, i.e. unprotecting something
5454          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5455          */
5456         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5457                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5458 emulate:
5459         /*
5460          * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5461          * This can happen if a guest gets a page-fault on data access but the HW
5462          * table walker is not able to read the instruction page (e.g instruction
5463          * page is not present in memory). In those cases we simply restart the
5464          * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5465          */
5466         if (unlikely(insn && !insn_len)) {
5467                 if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu))
5468                         return 1;
5469         }
5470
5471         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5472                                        insn_len);
5473 }
5474 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5475
5476 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5477                             gva_t gva, hpa_t root_hpa)
5478 {
5479         int i;
5480
5481         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5482         if (mmu != &vcpu->arch.guest_mmu) {
5483                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5484                 if (is_noncanonical_address(gva, vcpu))
5485                         return;
5486
5487                 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5488         }
5489
5490         if (!mmu->invlpg)
5491                 return;
5492
5493         if (root_hpa == INVALID_PAGE) {
5494                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5495
5496                 /*
5497                  * INVLPG is required to invalidate any global mappings for the VA,
5498                  * irrespective of PCID. Since it would take us roughly similar amount
5499                  * of work to determine whether any of the prev_root mappings of the VA
5500                  * is marked global, or to just sync it blindly, so we might as well
5501                  * just always sync it.
5502                  *
5503                  * Mappings not reachable via the current cr3 or the prev_roots will be
5504                  * synced when switching to that cr3, so nothing needs to be done here
5505                  * for them.
5506                  */
5507                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5508                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5509                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5510         } else {
5511                 mmu->invlpg(vcpu, gva, root_hpa);
5512         }
5513 }
5514 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5515
5516 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5517 {
5518         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5519         ++vcpu->stat.invlpg;
5520 }
5521 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5522
5523
5524 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5525 {
5526         struct kvm_mmu *mmu = vcpu->arch.mmu;
5527         bool tlb_flush = false;
5528         uint i;
5529
5530         if (pcid == kvm_get_active_pcid(vcpu)) {
5531                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5532                 tlb_flush = true;
5533         }
5534
5535         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5536                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5537                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5538                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5539                         tlb_flush = true;
5540                 }
5541         }
5542
5543         if (tlb_flush)
5544                 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5545
5546         ++vcpu->stat.invlpg;
5547
5548         /*
5549          * Mappings not reachable via the current cr3 or the prev_roots will be
5550          * synced when switching to that cr3, so nothing needs to be done here
5551          * for them.
5552          */
5553 }
5554 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5555
5556 void kvm_configure_mmu(bool enable_tdp, int tdp_page_level)
5557 {
5558         tdp_enabled = enable_tdp;
5559
5560         /*
5561          * max_page_level reflects the capabilities of KVM's MMU irrespective
5562          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5563          * the kernel is not.  But, KVM never creates a page size greater than
5564          * what is used by the kernel for any given HVA, i.e. the kernel's
5565          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5566          */
5567         if (tdp_enabled)
5568                 max_page_level = tdp_page_level;
5569         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5570                 max_page_level = PG_LEVEL_1G;
5571         else
5572                 max_page_level = PG_LEVEL_2M;
5573 }
5574 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5575
5576 /* The return value indicates if tlb flush on all vcpus is needed. */
5577 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5578
5579 /* The caller should hold mmu-lock before calling this function. */
5580 static __always_inline bool
5581 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5582                         slot_level_handler fn, int start_level, int end_level,
5583                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5584 {
5585         struct slot_rmap_walk_iterator iterator;
5586         bool flush = false;
5587
5588         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5589                         end_gfn, &iterator) {
5590                 if (iterator.rmap)
5591                         flush |= fn(kvm, iterator.rmap);
5592
5593                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5594                         if (flush && lock_flush_tlb) {
5595                                 kvm_flush_remote_tlbs_with_address(kvm,
5596                                                 start_gfn,
5597                                                 iterator.gfn - start_gfn + 1);
5598                                 flush = false;
5599                         }
5600                         cond_resched_lock(&kvm->mmu_lock);
5601                 }
5602         }
5603
5604         if (flush && lock_flush_tlb) {
5605                 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5606                                                    end_gfn - start_gfn + 1);
5607                 flush = false;
5608         }
5609
5610         return flush;
5611 }
5612
5613 static __always_inline bool
5614 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5615                   slot_level_handler fn, int start_level, int end_level,
5616                   bool lock_flush_tlb)
5617 {
5618         return slot_handle_level_range(kvm, memslot, fn, start_level,
5619                         end_level, memslot->base_gfn,
5620                         memslot->base_gfn + memslot->npages - 1,
5621                         lock_flush_tlb);
5622 }
5623
5624 static __always_inline bool
5625 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5626                       slot_level_handler fn, bool lock_flush_tlb)
5627 {
5628         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5629                                  KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5630 }
5631
5632 static __always_inline bool
5633 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5634                         slot_level_handler fn, bool lock_flush_tlb)
5635 {
5636         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5637                                  KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5638 }
5639
5640 static __always_inline bool
5641 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5642                  slot_level_handler fn, bool lock_flush_tlb)
5643 {
5644         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5645                                  PG_LEVEL_4K, lock_flush_tlb);
5646 }
5647
5648 static void free_mmu_pages(struct kvm_mmu *mmu)
5649 {
5650         free_page((unsigned long)mmu->pae_root);
5651         free_page((unsigned long)mmu->lm_root);
5652 }
5653
5654 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5655 {
5656         struct page *page;
5657         int i;
5658
5659         /*
5660          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5661          * while the PDP table is a per-vCPU construct that's allocated at MMU
5662          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5663          * x86_64.  Therefore we need to allocate the PDP table in the first
5664          * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5665          * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5666          * skip allocating the PDP table.
5667          */
5668         if (tdp_enabled && vcpu->arch.tdp_level > PT32E_ROOT_LEVEL)
5669                 return 0;
5670
5671         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5672         if (!page)
5673                 return -ENOMEM;
5674
5675         mmu->pae_root = page_address(page);
5676         for (i = 0; i < 4; ++i)
5677                 mmu->pae_root[i] = INVALID_PAGE;
5678
5679         return 0;
5680 }
5681
5682 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5683 {
5684         uint i;
5685         int ret;
5686
5687         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5688         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5689
5690         vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5691         vcpu->arch.root_mmu.root_pgd = 0;
5692         vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5693         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5694                 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5695
5696         vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5697         vcpu->arch.guest_mmu.root_pgd = 0;
5698         vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5699         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5700                 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5701
5702         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5703
5704         ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5705         if (ret)
5706                 return ret;
5707
5708         ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5709         if (ret)
5710                 goto fail_allocate_root;
5711
5712         return ret;
5713  fail_allocate_root:
5714         free_mmu_pages(&vcpu->arch.guest_mmu);
5715         return ret;
5716 }
5717
5718 #define BATCH_ZAP_PAGES 10
5719 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5720 {
5721         struct kvm_mmu_page *sp, *node;
5722         int nr_zapped, batch = 0;
5723
5724 restart:
5725         list_for_each_entry_safe_reverse(sp, node,
5726               &kvm->arch.active_mmu_pages, link) {
5727                 /*
5728                  * No obsolete valid page exists before a newly created page
5729                  * since active_mmu_pages is a FIFO list.
5730                  */
5731                 if (!is_obsolete_sp(kvm, sp))
5732                         break;
5733
5734                 /*
5735                  * Skip invalid pages with a non-zero root count, zapping pages
5736                  * with a non-zero root count will never succeed, i.e. the page
5737                  * will get thrown back on active_mmu_pages and we'll get stuck
5738                  * in an infinite loop.
5739                  */
5740                 if (sp->role.invalid && sp->root_count)
5741                         continue;
5742
5743                 /*
5744                  * No need to flush the TLB since we're only zapping shadow
5745                  * pages with an obsolete generation number and all vCPUS have
5746                  * loaded a new root, i.e. the shadow pages being zapped cannot
5747                  * be in active use by the guest.
5748                  */
5749                 if (batch >= BATCH_ZAP_PAGES &&
5750                     cond_resched_lock(&kvm->mmu_lock)) {
5751                         batch = 0;
5752                         goto restart;
5753                 }
5754
5755                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5756                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5757                         batch += nr_zapped;
5758                         goto restart;
5759                 }
5760         }
5761
5762         /*
5763          * Trigger a remote TLB flush before freeing the page tables to ensure
5764          * KVM is not in the middle of a lockless shadow page table walk, which
5765          * may reference the pages.
5766          */
5767         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5768 }
5769
5770 /*
5771  * Fast invalidate all shadow pages and use lock-break technique
5772  * to zap obsolete pages.
5773  *
5774  * It's required when memslot is being deleted or VM is being
5775  * destroyed, in these cases, we should ensure that KVM MMU does
5776  * not use any resource of the being-deleted slot or all slots
5777  * after calling the function.
5778  */
5779 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5780 {
5781         lockdep_assert_held(&kvm->slots_lock);
5782
5783         spin_lock(&kvm->mmu_lock);
5784         trace_kvm_mmu_zap_all_fast(kvm);
5785
5786         /*
5787          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5788          * held for the entire duration of zapping obsolete pages, it's
5789          * impossible for there to be multiple invalid generations associated
5790          * with *valid* shadow pages at any given time, i.e. there is exactly
5791          * one valid generation and (at most) one invalid generation.
5792          */
5793         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5794
5795         /*
5796          * Notify all vcpus to reload its shadow page table and flush TLB.
5797          * Then all vcpus will switch to new shadow page table with the new
5798          * mmu_valid_gen.
5799          *
5800          * Note: we need to do this under the protection of mmu_lock,
5801          * otherwise, vcpu would purge shadow page but miss tlb flush.
5802          */
5803         kvm_reload_remote_mmus(kvm);
5804
5805         kvm_zap_obsolete_pages(kvm);
5806         spin_unlock(&kvm->mmu_lock);
5807 }
5808
5809 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5810 {
5811         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5812 }
5813
5814 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5815                         struct kvm_memory_slot *slot,
5816                         struct kvm_page_track_notifier_node *node)
5817 {
5818         kvm_mmu_zap_all_fast(kvm);
5819 }
5820
5821 void kvm_mmu_init_vm(struct kvm *kvm)
5822 {
5823         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5824
5825         node->track_write = kvm_mmu_pte_write;
5826         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5827         kvm_page_track_register_notifier(kvm, node);
5828 }
5829
5830 void kvm_mmu_uninit_vm(struct kvm *kvm)
5831 {
5832         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5833
5834         kvm_page_track_unregister_notifier(kvm, node);
5835 }
5836
5837 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5838 {
5839         struct kvm_memslots *slots;
5840         struct kvm_memory_slot *memslot;
5841         int i;
5842
5843         spin_lock(&kvm->mmu_lock);
5844         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5845                 slots = __kvm_memslots(kvm, i);
5846                 kvm_for_each_memslot(memslot, slots) {
5847                         gfn_t start, end;
5848
5849                         start = max(gfn_start, memslot->base_gfn);
5850                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5851                         if (start >= end)
5852                                 continue;
5853
5854                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5855                                                 PG_LEVEL_4K,
5856                                                 KVM_MAX_HUGEPAGE_LEVEL,
5857                                                 start, end - 1, true);
5858                 }
5859         }
5860
5861         spin_unlock(&kvm->mmu_lock);
5862 }
5863
5864 static bool slot_rmap_write_protect(struct kvm *kvm,
5865                                     struct kvm_rmap_head *rmap_head)
5866 {
5867         return __rmap_write_protect(kvm, rmap_head, false);
5868 }
5869
5870 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5871                                       struct kvm_memory_slot *memslot,
5872                                       int start_level)
5873 {
5874         bool flush;
5875
5876         spin_lock(&kvm->mmu_lock);
5877         flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5878                                 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5879         spin_unlock(&kvm->mmu_lock);
5880
5881         /*
5882          * We can flush all the TLBs out of the mmu lock without TLB
5883          * corruption since we just change the spte from writable to
5884          * readonly so that we only need to care the case of changing
5885          * spte from present to present (changing the spte from present
5886          * to nonpresent will flush all the TLBs immediately), in other
5887          * words, the only case we care is mmu_spte_update() where we
5888          * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5889          * instead of PT_WRITABLE_MASK, that means it does not depend
5890          * on PT_WRITABLE_MASK anymore.
5891          */
5892         if (flush)
5893                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5894 }
5895
5896 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5897                                          struct kvm_rmap_head *rmap_head)
5898 {
5899         u64 *sptep;
5900         struct rmap_iterator iter;
5901         int need_tlb_flush = 0;
5902         kvm_pfn_t pfn;
5903         struct kvm_mmu_page *sp;
5904
5905 restart:
5906         for_each_rmap_spte(rmap_head, &iter, sptep) {
5907                 sp = page_header(__pa(sptep));
5908                 pfn = spte_to_pfn(*sptep);
5909
5910                 /*
5911                  * We cannot do huge page mapping for indirect shadow pages,
5912                  * which are found on the last rmap (level = 1) when not using
5913                  * tdp; such shadow pages are synced with the page table in
5914                  * the guest, and the guest page table is using 4K page size
5915                  * mapping if the indirect sp has level = 1.
5916                  */
5917                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5918                     (kvm_is_zone_device_pfn(pfn) ||
5919                      PageCompound(pfn_to_page(pfn)))) {
5920                         pte_list_remove(rmap_head, sptep);
5921
5922                         if (kvm_available_flush_tlb_with_range())
5923                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5924                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5925                         else
5926                                 need_tlb_flush = 1;
5927
5928                         goto restart;
5929                 }
5930         }
5931
5932         return need_tlb_flush;
5933 }
5934
5935 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5936                                    const struct kvm_memory_slot *memslot)
5937 {
5938         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5939         spin_lock(&kvm->mmu_lock);
5940         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5941                          kvm_mmu_zap_collapsible_spte, true);
5942         spin_unlock(&kvm->mmu_lock);
5943 }
5944
5945 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5946                                         struct kvm_memory_slot *memslot)
5947 {
5948         /*
5949          * All current use cases for flushing the TLBs for a specific memslot
5950          * are related to dirty logging, and do the TLB flush out of mmu_lock.
5951          * The interaction between the various operations on memslot must be
5952          * serialized by slots_locks to ensure the TLB flush from one operation
5953          * is observed by any other operation on the same memslot.
5954          */
5955         lockdep_assert_held(&kvm->slots_lock);
5956         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5957                                            memslot->npages);
5958 }
5959
5960 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5961                                    struct kvm_memory_slot *memslot)
5962 {
5963         bool flush;
5964
5965         spin_lock(&kvm->mmu_lock);
5966         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5967         spin_unlock(&kvm->mmu_lock);
5968
5969         /*
5970          * It's also safe to flush TLBs out of mmu lock here as currently this
5971          * function is only used for dirty logging, in which case flushing TLB
5972          * out of mmu lock also guarantees no dirty pages will be lost in
5973          * dirty_bitmap.
5974          */
5975         if (flush)
5976                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5977 }
5978 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5979
5980 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5981                                         struct kvm_memory_slot *memslot)
5982 {
5983         bool flush;
5984
5985         spin_lock(&kvm->mmu_lock);
5986         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5987                                         false);
5988         spin_unlock(&kvm->mmu_lock);
5989
5990         if (flush)
5991                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5992 }
5993 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5994
5995 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5996                             struct kvm_memory_slot *memslot)
5997 {
5998         bool flush;
5999
6000         spin_lock(&kvm->mmu_lock);
6001         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6002         spin_unlock(&kvm->mmu_lock);
6003
6004         if (flush)
6005                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6006 }
6007 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6008
6009 void kvm_mmu_zap_all(struct kvm *kvm)
6010 {
6011         struct kvm_mmu_page *sp, *node;
6012         LIST_HEAD(invalid_list);
6013         int ign;
6014
6015         spin_lock(&kvm->mmu_lock);
6016 restart:
6017         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6018                 if (sp->role.invalid && sp->root_count)
6019                         continue;
6020                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6021                         goto restart;
6022                 if (cond_resched_lock(&kvm->mmu_lock))
6023                         goto restart;
6024         }
6025
6026         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6027         spin_unlock(&kvm->mmu_lock);
6028 }
6029
6030 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6031 {
6032         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6033
6034         gen &= MMIO_SPTE_GEN_MASK;
6035
6036         /*
6037          * Generation numbers are incremented in multiples of the number of
6038          * address spaces in order to provide unique generations across all
6039          * address spaces.  Strip what is effectively the address space
6040          * modifier prior to checking for a wrap of the MMIO generation so
6041          * that a wrap in any address space is detected.
6042          */
6043         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6044
6045         /*
6046          * The very rare case: if the MMIO generation number has wrapped,
6047          * zap all shadow pages.
6048          */
6049         if (unlikely(gen == 0)) {
6050                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6051                 kvm_mmu_zap_all_fast(kvm);
6052         }
6053 }
6054
6055 static unsigned long
6056 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6057 {
6058         struct kvm *kvm;
6059         int nr_to_scan = sc->nr_to_scan;
6060         unsigned long freed = 0;
6061
6062         mutex_lock(&kvm_lock);
6063
6064         list_for_each_entry(kvm, &vm_list, vm_list) {
6065                 int idx;
6066                 LIST_HEAD(invalid_list);
6067
6068                 /*
6069                  * Never scan more than sc->nr_to_scan VM instances.
6070                  * Will not hit this condition practically since we do not try
6071                  * to shrink more than one VM and it is very unlikely to see
6072                  * !n_used_mmu_pages so many times.
6073                  */
6074                 if (!nr_to_scan--)
6075                         break;
6076                 /*
6077                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6078                  * here. We may skip a VM instance errorneosly, but we do not
6079                  * want to shrink a VM that only started to populate its MMU
6080                  * anyway.
6081                  */
6082                 if (!kvm->arch.n_used_mmu_pages &&
6083                     !kvm_has_zapped_obsolete_pages(kvm))
6084                         continue;
6085
6086                 idx = srcu_read_lock(&kvm->srcu);
6087                 spin_lock(&kvm->mmu_lock);
6088
6089                 if (kvm_has_zapped_obsolete_pages(kvm)) {
6090                         kvm_mmu_commit_zap_page(kvm,
6091                               &kvm->arch.zapped_obsolete_pages);
6092                         goto unlock;
6093                 }
6094
6095                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
6096                         freed++;
6097                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6098
6099 unlock:
6100                 spin_unlock(&kvm->mmu_lock);
6101                 srcu_read_unlock(&kvm->srcu, idx);
6102
6103                 /*
6104                  * unfair on small ones
6105                  * per-vm shrinkers cry out
6106                  * sadness comes quickly
6107                  */
6108                 list_move_tail(&kvm->vm_list, &vm_list);
6109                 break;
6110         }
6111
6112         mutex_unlock(&kvm_lock);
6113         return freed;
6114 }
6115
6116 static unsigned long
6117 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6118 {
6119         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6120 }
6121
6122 static struct shrinker mmu_shrinker = {
6123         .count_objects = mmu_shrink_count,
6124         .scan_objects = mmu_shrink_scan,
6125         .seeks = DEFAULT_SEEKS * 10,
6126 };
6127
6128 static void mmu_destroy_caches(void)
6129 {
6130         kmem_cache_destroy(pte_list_desc_cache);
6131         kmem_cache_destroy(mmu_page_header_cache);
6132 }
6133
6134 static void kvm_set_mmio_spte_mask(void)
6135 {
6136         u64 mask;
6137
6138         /*
6139          * Set a reserved PA bit in MMIO SPTEs to generate page faults with
6140          * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
6141          * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
6142          * 52-bit physical addresses then there are no reserved PA bits in the
6143          * PTEs and so the reserved PA approach must be disabled.
6144          */
6145         if (shadow_phys_bits < 52)
6146                 mask = BIT_ULL(51) | PT_PRESENT_MASK;
6147         else
6148                 mask = 0;
6149
6150         kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
6151 }
6152
6153 static bool get_nx_auto_mode(void)
6154 {
6155         /* Return true when CPU has the bug, and mitigations are ON */
6156         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6157 }
6158
6159 static void __set_nx_huge_pages(bool val)
6160 {
6161         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6162 }
6163
6164 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6165 {
6166         bool old_val = nx_huge_pages;
6167         bool new_val;
6168
6169         /* In "auto" mode deploy workaround only if CPU has the bug. */
6170         if (sysfs_streq(val, "off"))
6171                 new_val = 0;
6172         else if (sysfs_streq(val, "force"))
6173                 new_val = 1;
6174         else if (sysfs_streq(val, "auto"))
6175                 new_val = get_nx_auto_mode();
6176         else if (strtobool(val, &new_val) < 0)
6177                 return -EINVAL;
6178
6179         __set_nx_huge_pages(new_val);
6180
6181         if (new_val != old_val) {
6182                 struct kvm *kvm;
6183
6184                 mutex_lock(&kvm_lock);
6185
6186                 list_for_each_entry(kvm, &vm_list, vm_list) {
6187                         mutex_lock(&kvm->slots_lock);
6188                         kvm_mmu_zap_all_fast(kvm);
6189                         mutex_unlock(&kvm->slots_lock);
6190
6191                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6192                 }
6193                 mutex_unlock(&kvm_lock);
6194         }
6195
6196         return 0;
6197 }
6198
6199 int kvm_mmu_module_init(void)
6200 {
6201         int ret = -ENOMEM;
6202
6203         if (nx_huge_pages == -1)
6204                 __set_nx_huge_pages(get_nx_auto_mode());
6205
6206         /*
6207          * MMU roles use union aliasing which is, generally speaking, an
6208          * undefined behavior. However, we supposedly know how compilers behave
6209          * and the current status quo is unlikely to change. Guardians below are
6210          * supposed to let us know if the assumption becomes false.
6211          */
6212         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6213         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6214         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6215
6216         kvm_mmu_reset_all_pte_masks();
6217
6218         kvm_set_mmio_spte_mask();
6219
6220         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6221                                             sizeof(struct pte_list_desc),
6222                                             0, SLAB_ACCOUNT, NULL);
6223         if (!pte_list_desc_cache)
6224                 goto out;
6225
6226         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6227                                                   sizeof(struct kvm_mmu_page),
6228                                                   0, SLAB_ACCOUNT, NULL);
6229         if (!mmu_page_header_cache)
6230                 goto out;
6231
6232         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6233                 goto out;
6234
6235         ret = register_shrinker(&mmu_shrinker);
6236         if (ret)
6237                 goto out;
6238
6239         return 0;
6240
6241 out:
6242         mmu_destroy_caches();
6243         return ret;
6244 }
6245
6246 /*
6247  * Calculate mmu pages needed for kvm.
6248  */
6249 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6250 {
6251         unsigned long nr_mmu_pages;
6252         unsigned long nr_pages = 0;
6253         struct kvm_memslots *slots;
6254         struct kvm_memory_slot *memslot;
6255         int i;
6256
6257         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6258                 slots = __kvm_memslots(kvm, i);
6259
6260                 kvm_for_each_memslot(memslot, slots)
6261                         nr_pages += memslot->npages;
6262         }
6263
6264         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6265         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6266
6267         return nr_mmu_pages;
6268 }
6269
6270 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6271 {
6272         kvm_mmu_unload(vcpu);
6273         free_mmu_pages(&vcpu->arch.root_mmu);
6274         free_mmu_pages(&vcpu->arch.guest_mmu);
6275         mmu_free_memory_caches(vcpu);
6276 }
6277
6278 void kvm_mmu_module_exit(void)
6279 {
6280         mmu_destroy_caches();
6281         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6282         unregister_shrinker(&mmu_shrinker);
6283         mmu_audit_disable();
6284 }
6285
6286 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6287 {
6288         unsigned int old_val;
6289         int err;
6290
6291         old_val = nx_huge_pages_recovery_ratio;
6292         err = param_set_uint(val, kp);
6293         if (err)
6294                 return err;
6295
6296         if (READ_ONCE(nx_huge_pages) &&
6297             !old_val && nx_huge_pages_recovery_ratio) {
6298                 struct kvm *kvm;
6299
6300                 mutex_lock(&kvm_lock);
6301
6302                 list_for_each_entry(kvm, &vm_list, vm_list)
6303                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6304
6305                 mutex_unlock(&kvm_lock);
6306         }
6307
6308         return err;
6309 }
6310
6311 static void kvm_recover_nx_lpages(struct kvm *kvm)
6312 {
6313         int rcu_idx;
6314         struct kvm_mmu_page *sp;
6315         unsigned int ratio;
6316         LIST_HEAD(invalid_list);
6317         ulong to_zap;
6318
6319         rcu_idx = srcu_read_lock(&kvm->srcu);
6320         spin_lock(&kvm->mmu_lock);
6321
6322         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6323         to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6324         while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6325                 /*
6326                  * We use a separate list instead of just using active_mmu_pages
6327                  * because the number of lpage_disallowed pages is expected to
6328                  * be relatively small compared to the total.
6329                  */
6330                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6331                                       struct kvm_mmu_page,
6332                                       lpage_disallowed_link);
6333                 WARN_ON_ONCE(!sp->lpage_disallowed);
6334                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6335                 WARN_ON_ONCE(sp->lpage_disallowed);
6336
6337                 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6338                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6339                         if (to_zap)
6340                                 cond_resched_lock(&kvm->mmu_lock);
6341                 }
6342         }
6343
6344         spin_unlock(&kvm->mmu_lock);
6345         srcu_read_unlock(&kvm->srcu, rcu_idx);
6346 }
6347
6348 static long get_nx_lpage_recovery_timeout(u64 start_time)
6349 {
6350         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6351                 ? start_time + 60 * HZ - get_jiffies_64()
6352                 : MAX_SCHEDULE_TIMEOUT;
6353 }
6354
6355 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6356 {
6357         u64 start_time;
6358         long remaining_time;
6359
6360         while (true) {
6361                 start_time = get_jiffies_64();
6362                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6363
6364                 set_current_state(TASK_INTERRUPTIBLE);
6365                 while (!kthread_should_stop() && remaining_time > 0) {
6366                         schedule_timeout(remaining_time);
6367                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6368                         set_current_state(TASK_INTERRUPTIBLE);
6369                 }
6370
6371                 set_current_state(TASK_RUNNING);
6372
6373                 if (kthread_should_stop())
6374                         return 0;
6375
6376                 kvm_recover_nx_lpages(kvm);
6377         }
6378 }
6379
6380 int kvm_mmu_post_init_vm(struct kvm *kvm)
6381 {
6382         int err;
6383
6384         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6385                                           "kvm-nx-lpage-recovery",
6386                                           &kvm->arch.nx_lpage_recovery_thread);
6387         if (!err)
6388                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6389
6390         return err;
6391 }
6392
6393 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6394 {
6395         if (kvm->arch.nx_lpage_recovery_thread)
6396                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6397 }