Merge tag 'iommu-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/vmx.h>
52 #include <asm/kvm_page_track.h>
53 #include "trace.h"
54
55 extern bool itlb_multihit_kvm_mitigation;
56
57 static int __read_mostly nx_huge_pages = -1;
58 #ifdef CONFIG_PREEMPT_RT
59 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
60 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61 #else
62 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63 #endif
64
65 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
67
68 static const struct kernel_param_ops nx_huge_pages_ops = {
69         .set = set_nx_huge_pages,
70         .get = param_get_bool,
71 };
72
73 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74         .set = set_nx_huge_pages_recovery_ratio,
75         .get = param_get_uint,
76 };
77
78 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
80 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81                 &nx_huge_pages_recovery_ratio, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
83
84 static bool __read_mostly force_flush_and_sync_on_reuse;
85 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86
87 /*
88  * When setting this variable to true it enables Two-Dimensional-Paging
89  * where the hardware walks 2 page tables:
90  * 1. the guest-virtual to guest-physical
91  * 2. while doing 1. it walks guest-physical to host-physical
92  * If the hardware supports that we don't need to do shadow paging.
93  */
94 bool tdp_enabled = false;
95
96 static int max_huge_page_level __read_mostly;
97 static int max_tdp_level __read_mostly;
98
99 enum {
100         AUDIT_PRE_PAGE_FAULT,
101         AUDIT_POST_PAGE_FAULT,
102         AUDIT_PRE_PTE_WRITE,
103         AUDIT_POST_PTE_WRITE,
104         AUDIT_PRE_SYNC,
105         AUDIT_POST_SYNC
106 };
107
108 #ifdef MMU_DEBUG
109 bool dbg = 0;
110 module_param(dbg, bool, 0644);
111 #endif
112
113 #define PTE_PREFETCH_NUM                8
114
115 #define PT32_LEVEL_BITS 10
116
117 #define PT32_LEVEL_SHIFT(level) \
118                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
119
120 #define PT32_LVL_OFFSET_MASK(level) \
121         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122                                                 * PT32_LEVEL_BITS))) - 1))
123
124 #define PT32_INDEX(address, level)\
125         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #include <trace/events/kvm.h>
136
137 /* make pte_list_desc fit well in cache line */
138 #define PTE_LIST_EXT 3
139
140 struct pte_list_desc {
141         u64 *sptes[PTE_LIST_EXT];
142         struct pte_list_desc *more;
143 };
144
145 struct kvm_shadow_walk_iterator {
146         u64 addr;
147         hpa_t shadow_addr;
148         u64 *sptep;
149         int level;
150         unsigned index;
151 };
152
153 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
154         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
155                                          (_root), (_addr));                \
156              shadow_walk_okay(&(_walker));                                 \
157              shadow_walk_next(&(_walker)))
158
159 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
160         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
161              shadow_walk_okay(&(_walker));                      \
162              shadow_walk_next(&(_walker)))
163
164 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
165         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
166              shadow_walk_okay(&(_walker)) &&                            \
167                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
168              __shadow_walk_next(&(_walker), spte))
169
170 static struct kmem_cache *pte_list_desc_cache;
171 struct kmem_cache *mmu_page_header_cache;
172 static struct percpu_counter kvm_total_used_mmu_pages;
173
174 static void mmu_spte_set(u64 *sptep, u64 spte);
175 static union kvm_mmu_page_role
176 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
177
178 #define CREATE_TRACE_POINTS
179 #include "mmutrace.h"
180
181
182 static inline bool kvm_available_flush_tlb_with_range(void)
183 {
184         return kvm_x86_ops.tlb_remote_flush_with_range;
185 }
186
187 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188                 struct kvm_tlb_range *range)
189 {
190         int ret = -ENOTSUPP;
191
192         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193                 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
194
195         if (ret)
196                 kvm_flush_remote_tlbs(kvm);
197 }
198
199 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
200                 u64 start_gfn, u64 pages)
201 {
202         struct kvm_tlb_range range;
203
204         range.start_gfn = start_gfn;
205         range.pages = pages;
206
207         kvm_flush_remote_tlbs_with_range(kvm, &range);
208 }
209
210 bool is_nx_huge_page_enabled(void)
211 {
212         return READ_ONCE(nx_huge_pages);
213 }
214
215 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216                            unsigned int access)
217 {
218         u64 mask = make_mmio_spte(vcpu, gfn, access);
219
220         trace_mark_mmio_spte(sptep, gfn, mask);
221         mmu_spte_set(sptep, mask);
222 }
223
224 static gfn_t get_mmio_spte_gfn(u64 spte)
225 {
226         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
227
228         gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
229                & shadow_nonpresent_or_rsvd_mask;
230
231         return gpa >> PAGE_SHIFT;
232 }
233
234 static unsigned get_mmio_spte_access(u64 spte)
235 {
236         return spte & shadow_mmio_access_mask;
237 }
238
239 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
240                           kvm_pfn_t pfn, unsigned int access)
241 {
242         if (unlikely(is_noslot_pfn(pfn))) {
243                 mark_mmio_spte(vcpu, sptep, gfn, access);
244                 return true;
245         }
246
247         return false;
248 }
249
250 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
251 {
252         u64 kvm_gen, spte_gen, gen;
253
254         gen = kvm_vcpu_memslots(vcpu)->generation;
255         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256                 return false;
257
258         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
259         spte_gen = get_mmio_spte_generation(spte);
260
261         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262         return likely(kvm_gen == spte_gen);
263 }
264
265 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266                                   struct x86_exception *exception)
267 {
268         /* Check if guest physical address doesn't exceed guest maximum */
269         if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
270                 exception->error_code |= PFERR_RSVD_MASK;
271                 return UNMAPPED_GVA;
272         }
273
274         return gpa;
275 }
276
277 static int is_cpuid_PSE36(void)
278 {
279         return 1;
280 }
281
282 static int is_nx(struct kvm_vcpu *vcpu)
283 {
284         return vcpu->arch.efer & EFER_NX;
285 }
286
287 static gfn_t pse36_gfn_delta(u32 gpte)
288 {
289         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
290
291         return (gpte & PT32_DIR_PSE36_MASK) << shift;
292 }
293
294 #ifdef CONFIG_X86_64
295 static void __set_spte(u64 *sptep, u64 spte)
296 {
297         WRITE_ONCE(*sptep, spte);
298 }
299
300 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
301 {
302         WRITE_ONCE(*sptep, spte);
303 }
304
305 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
306 {
307         return xchg(sptep, spte);
308 }
309
310 static u64 __get_spte_lockless(u64 *sptep)
311 {
312         return READ_ONCE(*sptep);
313 }
314 #else
315 union split_spte {
316         struct {
317                 u32 spte_low;
318                 u32 spte_high;
319         };
320         u64 spte;
321 };
322
323 static void count_spte_clear(u64 *sptep, u64 spte)
324 {
325         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
326
327         if (is_shadow_present_pte(spte))
328                 return;
329
330         /* Ensure the spte is completely set before we increase the count */
331         smp_wmb();
332         sp->clear_spte_count++;
333 }
334
335 static void __set_spte(u64 *sptep, u64 spte)
336 {
337         union split_spte *ssptep, sspte;
338
339         ssptep = (union split_spte *)sptep;
340         sspte = (union split_spte)spte;
341
342         ssptep->spte_high = sspte.spte_high;
343
344         /*
345          * If we map the spte from nonpresent to present, We should store
346          * the high bits firstly, then set present bit, so cpu can not
347          * fetch this spte while we are setting the spte.
348          */
349         smp_wmb();
350
351         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352 }
353
354 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
355 {
356         union split_spte *ssptep, sspte;
357
358         ssptep = (union split_spte *)sptep;
359         sspte = (union split_spte)spte;
360
361         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
362
363         /*
364          * If we map the spte from present to nonpresent, we should clear
365          * present bit firstly to avoid vcpu fetch the old high bits.
366          */
367         smp_wmb();
368
369         ssptep->spte_high = sspte.spte_high;
370         count_spte_clear(sptep, spte);
371 }
372
373 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374 {
375         union split_spte *ssptep, sspte, orig;
376
377         ssptep = (union split_spte *)sptep;
378         sspte = (union split_spte)spte;
379
380         /* xchg acts as a barrier before the setting of the high bits */
381         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
382         orig.spte_high = ssptep->spte_high;
383         ssptep->spte_high = sspte.spte_high;
384         count_spte_clear(sptep, spte);
385
386         return orig.spte;
387 }
388
389 /*
390  * The idea using the light way get the spte on x86_32 guest is from
391  * gup_get_pte (mm/gup.c).
392  *
393  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394  * coalesces them and we are running out of the MMU lock.  Therefore
395  * we need to protect against in-progress updates of the spte.
396  *
397  * Reading the spte while an update is in progress may get the old value
398  * for the high part of the spte.  The race is fine for a present->non-present
399  * change (because the high part of the spte is ignored for non-present spte),
400  * but for a present->present change we must reread the spte.
401  *
402  * All such changes are done in two steps (present->non-present and
403  * non-present->present), hence it is enough to count the number of
404  * present->non-present updates: if it changed while reading the spte,
405  * we might have hit the race.  This is done using clear_spte_count.
406  */
407 static u64 __get_spte_lockless(u64 *sptep)
408 {
409         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
410         union split_spte spte, *orig = (union split_spte *)sptep;
411         int count;
412
413 retry:
414         count = sp->clear_spte_count;
415         smp_rmb();
416
417         spte.spte_low = orig->spte_low;
418         smp_rmb();
419
420         spte.spte_high = orig->spte_high;
421         smp_rmb();
422
423         if (unlikely(spte.spte_low != orig->spte_low ||
424               count != sp->clear_spte_count))
425                 goto retry;
426
427         return spte.spte;
428 }
429 #endif
430
431 static bool spte_has_volatile_bits(u64 spte)
432 {
433         if (!is_shadow_present_pte(spte))
434                 return false;
435
436         /*
437          * Always atomically update spte if it can be updated
438          * out of mmu-lock, it can ensure dirty bit is not lost,
439          * also, it can help us to get a stable is_writable_pte()
440          * to ensure tlb flush is not missed.
441          */
442         if (spte_can_locklessly_be_made_writable(spte) ||
443             is_access_track_spte(spte))
444                 return true;
445
446         if (spte_ad_enabled(spte)) {
447                 if ((spte & shadow_accessed_mask) == 0 ||
448                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449                         return true;
450         }
451
452         return false;
453 }
454
455 /* Rules for using mmu_spte_set:
456  * Set the sptep from nonpresent to present.
457  * Note: the sptep being assigned *must* be either not present
458  * or in a state where the hardware will not attempt to update
459  * the spte.
460  */
461 static void mmu_spte_set(u64 *sptep, u64 new_spte)
462 {
463         WARN_ON(is_shadow_present_pte(*sptep));
464         __set_spte(sptep, new_spte);
465 }
466
467 /*
468  * Update the SPTE (excluding the PFN), but do not track changes in its
469  * accessed/dirty status.
470  */
471 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
472 {
473         u64 old_spte = *sptep;
474
475         WARN_ON(!is_shadow_present_pte(new_spte));
476
477         if (!is_shadow_present_pte(old_spte)) {
478                 mmu_spte_set(sptep, new_spte);
479                 return old_spte;
480         }
481
482         if (!spte_has_volatile_bits(old_spte))
483                 __update_clear_spte_fast(sptep, new_spte);
484         else
485                 old_spte = __update_clear_spte_slow(sptep, new_spte);
486
487         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
488
489         return old_spte;
490 }
491
492 /* Rules for using mmu_spte_update:
493  * Update the state bits, it means the mapped pfn is not changed.
494  *
495  * Whenever we overwrite a writable spte with a read-only one we
496  * should flush remote TLBs. Otherwise rmap_write_protect
497  * will find a read-only spte, even though the writable spte
498  * might be cached on a CPU's TLB, the return value indicates this
499  * case.
500  *
501  * Returns true if the TLB needs to be flushed
502  */
503 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
504 {
505         bool flush = false;
506         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
507
508         if (!is_shadow_present_pte(old_spte))
509                 return false;
510
511         /*
512          * For the spte updated out of mmu-lock is safe, since
513          * we always atomically update it, see the comments in
514          * spte_has_volatile_bits().
515          */
516         if (spte_can_locklessly_be_made_writable(old_spte) &&
517               !is_writable_pte(new_spte))
518                 flush = true;
519
520         /*
521          * Flush TLB when accessed/dirty states are changed in the page tables,
522          * to guarantee consistency between TLB and page tables.
523          */
524
525         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526                 flush = true;
527                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
528         }
529
530         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531                 flush = true;
532                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
533         }
534
535         return flush;
536 }
537
538 /*
539  * Rules for using mmu_spte_clear_track_bits:
540  * It sets the sptep from present to nonpresent, and track the
541  * state bits, it is used to clear the last level sptep.
542  * Returns non-zero if the PTE was previously valid.
543  */
544 static int mmu_spte_clear_track_bits(u64 *sptep)
545 {
546         kvm_pfn_t pfn;
547         u64 old_spte = *sptep;
548
549         if (!spte_has_volatile_bits(old_spte))
550                 __update_clear_spte_fast(sptep, 0ull);
551         else
552                 old_spte = __update_clear_spte_slow(sptep, 0ull);
553
554         if (!is_shadow_present_pte(old_spte))
555                 return 0;
556
557         pfn = spte_to_pfn(old_spte);
558
559         /*
560          * KVM does not hold the refcount of the page used by
561          * kvm mmu, before reclaiming the page, we should
562          * unmap it from mmu first.
563          */
564         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
565
566         if (is_accessed_spte(old_spte))
567                 kvm_set_pfn_accessed(pfn);
568
569         if (is_dirty_spte(old_spte))
570                 kvm_set_pfn_dirty(pfn);
571
572         return 1;
573 }
574
575 /*
576  * Rules for using mmu_spte_clear_no_track:
577  * Directly clear spte without caring the state bits of sptep,
578  * it is used to set the upper level spte.
579  */
580 static void mmu_spte_clear_no_track(u64 *sptep)
581 {
582         __update_clear_spte_fast(sptep, 0ull);
583 }
584
585 static u64 mmu_spte_get_lockless(u64 *sptep)
586 {
587         return __get_spte_lockless(sptep);
588 }
589
590 /* Restore an acc-track PTE back to a regular PTE */
591 static u64 restore_acc_track_spte(u64 spte)
592 {
593         u64 new_spte = spte;
594         u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
595                          & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
596
597         WARN_ON_ONCE(spte_ad_enabled(spte));
598         WARN_ON_ONCE(!is_access_track_spte(spte));
599
600         new_spte &= ~shadow_acc_track_mask;
601         new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
602                       SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
603         new_spte |= saved_bits;
604
605         return new_spte;
606 }
607
608 /* Returns the Accessed status of the PTE and resets it at the same time. */
609 static bool mmu_spte_age(u64 *sptep)
610 {
611         u64 spte = mmu_spte_get_lockless(sptep);
612
613         if (!is_accessed_spte(spte))
614                 return false;
615
616         if (spte_ad_enabled(spte)) {
617                 clear_bit((ffs(shadow_accessed_mask) - 1),
618                           (unsigned long *)sptep);
619         } else {
620                 /*
621                  * Capture the dirty status of the page, so that it doesn't get
622                  * lost when the SPTE is marked for access tracking.
623                  */
624                 if (is_writable_pte(spte))
625                         kvm_set_pfn_dirty(spte_to_pfn(spte));
626
627                 spte = mark_spte_for_access_track(spte);
628                 mmu_spte_update_no_track(sptep, spte);
629         }
630
631         return true;
632 }
633
634 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635 {
636         /*
637          * Prevent page table teardown by making any free-er wait during
638          * kvm_flush_remote_tlbs() IPI to all active vcpus.
639          */
640         local_irq_disable();
641
642         /*
643          * Make sure a following spte read is not reordered ahead of the write
644          * to vcpu->mode.
645          */
646         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
647 }
648
649 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650 {
651         /*
652          * Make sure the write to vcpu->mode is not reordered in front of
653          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
654          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655          */
656         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
657         local_irq_enable();
658 }
659
660 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
661 {
662         int r;
663
664         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
665         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
667         if (r)
668                 return r;
669         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670                                        PT64_ROOT_MAX_LEVEL);
671         if (r)
672                 return r;
673         if (maybe_indirect) {
674                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675                                                PT64_ROOT_MAX_LEVEL);
676                 if (r)
677                         return r;
678         }
679         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680                                           PT64_ROOT_MAX_LEVEL);
681 }
682
683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684 {
685         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
689 }
690
691 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
692 {
693         return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
694 }
695
696 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
697 {
698         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
699 }
700
701 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
702 {
703         if (!sp->role.direct)
704                 return sp->gfns[index];
705
706         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
707 }
708
709 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
710 {
711         if (!sp->role.direct) {
712                 sp->gfns[index] = gfn;
713                 return;
714         }
715
716         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717                 pr_err_ratelimited("gfn mismatch under direct page %llx "
718                                    "(expected %llx, got %llx)\n",
719                                    sp->gfn,
720                                    kvm_mmu_page_get_gfn(sp, index), gfn);
721 }
722
723 /*
724  * Return the pointer to the large page information for a given gfn,
725  * handling slots that are not large page aligned.
726  */
727 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728                                               struct kvm_memory_slot *slot,
729                                               int level)
730 {
731         unsigned long idx;
732
733         idx = gfn_to_index(gfn, slot->base_gfn, level);
734         return &slot->arch.lpage_info[level - 2][idx];
735 }
736
737 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738                                             gfn_t gfn, int count)
739 {
740         struct kvm_lpage_info *linfo;
741         int i;
742
743         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
744                 linfo = lpage_info_slot(gfn, slot, i);
745                 linfo->disallow_lpage += count;
746                 WARN_ON(linfo->disallow_lpage < 0);
747         }
748 }
749
750 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
751 {
752         update_gfn_disallow_lpage_count(slot, gfn, 1);
753 }
754
755 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
756 {
757         update_gfn_disallow_lpage_count(slot, gfn, -1);
758 }
759
760 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
761 {
762         struct kvm_memslots *slots;
763         struct kvm_memory_slot *slot;
764         gfn_t gfn;
765
766         kvm->arch.indirect_shadow_pages++;
767         gfn = sp->gfn;
768         slots = kvm_memslots_for_spte_role(kvm, sp->role);
769         slot = __gfn_to_memslot(slots, gfn);
770
771         /* the non-leaf shadow pages are keeping readonly. */
772         if (sp->role.level > PG_LEVEL_4K)
773                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
774                                                     KVM_PAGE_TRACK_WRITE);
775
776         kvm_mmu_gfn_disallow_lpage(slot, gfn);
777 }
778
779 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
780 {
781         if (sp->lpage_disallowed)
782                 return;
783
784         ++kvm->stat.nx_lpage_splits;
785         list_add_tail(&sp->lpage_disallowed_link,
786                       &kvm->arch.lpage_disallowed_mmu_pages);
787         sp->lpage_disallowed = true;
788 }
789
790 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
791 {
792         struct kvm_memslots *slots;
793         struct kvm_memory_slot *slot;
794         gfn_t gfn;
795
796         kvm->arch.indirect_shadow_pages--;
797         gfn = sp->gfn;
798         slots = kvm_memslots_for_spte_role(kvm, sp->role);
799         slot = __gfn_to_memslot(slots, gfn);
800         if (sp->role.level > PG_LEVEL_4K)
801                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802                                                        KVM_PAGE_TRACK_WRITE);
803
804         kvm_mmu_gfn_allow_lpage(slot, gfn);
805 }
806
807 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
808 {
809         --kvm->stat.nx_lpage_splits;
810         sp->lpage_disallowed = false;
811         list_del(&sp->lpage_disallowed_link);
812 }
813
814 static struct kvm_memory_slot *
815 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816                             bool no_dirty_log)
817 {
818         struct kvm_memory_slot *slot;
819
820         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
821         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822                 return NULL;
823         if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
824                 return NULL;
825
826         return slot;
827 }
828
829 /*
830  * About rmap_head encoding:
831  *
832  * If the bit zero of rmap_head->val is clear, then it points to the only spte
833  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
834  * pte_list_desc containing more mappings.
835  */
836
837 /*
838  * Returns the number of pointers in the rmap chain, not counting the new one.
839  */
840 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
841                         struct kvm_rmap_head *rmap_head)
842 {
843         struct pte_list_desc *desc;
844         int i, count = 0;
845
846         if (!rmap_head->val) {
847                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
848                 rmap_head->val = (unsigned long)spte;
849         } else if (!(rmap_head->val & 1)) {
850                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
851                 desc = mmu_alloc_pte_list_desc(vcpu);
852                 desc->sptes[0] = (u64 *)rmap_head->val;
853                 desc->sptes[1] = spte;
854                 rmap_head->val = (unsigned long)desc | 1;
855                 ++count;
856         } else {
857                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
858                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
859                 while (desc->sptes[PTE_LIST_EXT-1]) {
860                         count += PTE_LIST_EXT;
861
862                         if (!desc->more) {
863                                 desc->more = mmu_alloc_pte_list_desc(vcpu);
864                                 desc = desc->more;
865                                 break;
866                         }
867                         desc = desc->more;
868                 }
869                 for (i = 0; desc->sptes[i]; ++i)
870                         ++count;
871                 desc->sptes[i] = spte;
872         }
873         return count;
874 }
875
876 static void
877 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
878                            struct pte_list_desc *desc, int i,
879                            struct pte_list_desc *prev_desc)
880 {
881         int j;
882
883         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
884                 ;
885         desc->sptes[i] = desc->sptes[j];
886         desc->sptes[j] = NULL;
887         if (j != 0)
888                 return;
889         if (!prev_desc && !desc->more)
890                 rmap_head->val = 0;
891         else
892                 if (prev_desc)
893                         prev_desc->more = desc->more;
894                 else
895                         rmap_head->val = (unsigned long)desc->more | 1;
896         mmu_free_pte_list_desc(desc);
897 }
898
899 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
900 {
901         struct pte_list_desc *desc;
902         struct pte_list_desc *prev_desc;
903         int i;
904
905         if (!rmap_head->val) {
906                 pr_err("%s: %p 0->BUG\n", __func__, spte);
907                 BUG();
908         } else if (!(rmap_head->val & 1)) {
909                 rmap_printk("%s:  %p 1->0\n", __func__, spte);
910                 if ((u64 *)rmap_head->val != spte) {
911                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
912                         BUG();
913                 }
914                 rmap_head->val = 0;
915         } else {
916                 rmap_printk("%s:  %p many->many\n", __func__, spte);
917                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
918                 prev_desc = NULL;
919                 while (desc) {
920                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
921                                 if (desc->sptes[i] == spte) {
922                                         pte_list_desc_remove_entry(rmap_head,
923                                                         desc, i, prev_desc);
924                                         return;
925                                 }
926                         }
927                         prev_desc = desc;
928                         desc = desc->more;
929                 }
930                 pr_err("%s: %p many->many\n", __func__, spte);
931                 BUG();
932         }
933 }
934
935 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
936 {
937         mmu_spte_clear_track_bits(sptep);
938         __pte_list_remove(sptep, rmap_head);
939 }
940
941 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
942                                            struct kvm_memory_slot *slot)
943 {
944         unsigned long idx;
945
946         idx = gfn_to_index(gfn, slot->base_gfn, level);
947         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
948 }
949
950 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
951                                          struct kvm_mmu_page *sp)
952 {
953         struct kvm_memslots *slots;
954         struct kvm_memory_slot *slot;
955
956         slots = kvm_memslots_for_spte_role(kvm, sp->role);
957         slot = __gfn_to_memslot(slots, gfn);
958         return __gfn_to_rmap(gfn, sp->role.level, slot);
959 }
960
961 static bool rmap_can_add(struct kvm_vcpu *vcpu)
962 {
963         struct kvm_mmu_memory_cache *mc;
964
965         mc = &vcpu->arch.mmu_pte_list_desc_cache;
966         return kvm_mmu_memory_cache_nr_free_objects(mc);
967 }
968
969 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
970 {
971         struct kvm_mmu_page *sp;
972         struct kvm_rmap_head *rmap_head;
973
974         sp = sptep_to_sp(spte);
975         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
976         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
977         return pte_list_add(vcpu, spte, rmap_head);
978 }
979
980 static void rmap_remove(struct kvm *kvm, u64 *spte)
981 {
982         struct kvm_mmu_page *sp;
983         gfn_t gfn;
984         struct kvm_rmap_head *rmap_head;
985
986         sp = sptep_to_sp(spte);
987         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
988         rmap_head = gfn_to_rmap(kvm, gfn, sp);
989         __pte_list_remove(spte, rmap_head);
990 }
991
992 /*
993  * Used by the following functions to iterate through the sptes linked by a
994  * rmap.  All fields are private and not assumed to be used outside.
995  */
996 struct rmap_iterator {
997         /* private fields */
998         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
999         int pos;                        /* index of the sptep */
1000 };
1001
1002 /*
1003  * Iteration must be started by this function.  This should also be used after
1004  * removing/dropping sptes from the rmap link because in such cases the
1005  * information in the iterator may not be valid.
1006  *
1007  * Returns sptep if found, NULL otherwise.
1008  */
1009 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1010                            struct rmap_iterator *iter)
1011 {
1012         u64 *sptep;
1013
1014         if (!rmap_head->val)
1015                 return NULL;
1016
1017         if (!(rmap_head->val & 1)) {
1018                 iter->desc = NULL;
1019                 sptep = (u64 *)rmap_head->val;
1020                 goto out;
1021         }
1022
1023         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024         iter->pos = 0;
1025         sptep = iter->desc->sptes[iter->pos];
1026 out:
1027         BUG_ON(!is_shadow_present_pte(*sptep));
1028         return sptep;
1029 }
1030
1031 /*
1032  * Must be used with a valid iterator: e.g. after rmap_get_first().
1033  *
1034  * Returns sptep if found, NULL otherwise.
1035  */
1036 static u64 *rmap_get_next(struct rmap_iterator *iter)
1037 {
1038         u64 *sptep;
1039
1040         if (iter->desc) {
1041                 if (iter->pos < PTE_LIST_EXT - 1) {
1042                         ++iter->pos;
1043                         sptep = iter->desc->sptes[iter->pos];
1044                         if (sptep)
1045                                 goto out;
1046                 }
1047
1048                 iter->desc = iter->desc->more;
1049
1050                 if (iter->desc) {
1051                         iter->pos = 0;
1052                         /* desc->sptes[0] cannot be NULL */
1053                         sptep = iter->desc->sptes[iter->pos];
1054                         goto out;
1055                 }
1056         }
1057
1058         return NULL;
1059 out:
1060         BUG_ON(!is_shadow_present_pte(*sptep));
1061         return sptep;
1062 }
1063
1064 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1065         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1066              _spte_; _spte_ = rmap_get_next(_iter_))
1067
1068 static void drop_spte(struct kvm *kvm, u64 *sptep)
1069 {
1070         if (mmu_spte_clear_track_bits(sptep))
1071                 rmap_remove(kvm, sptep);
1072 }
1073
1074
1075 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1076 {
1077         if (is_large_pte(*sptep)) {
1078                 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1079                 drop_spte(kvm, sptep);
1080                 --kvm->stat.lpages;
1081                 return true;
1082         }
1083
1084         return false;
1085 }
1086
1087 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1088 {
1089         if (__drop_large_spte(vcpu->kvm, sptep)) {
1090                 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1091
1092                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1093                         KVM_PAGES_PER_HPAGE(sp->role.level));
1094         }
1095 }
1096
1097 /*
1098  * Write-protect on the specified @sptep, @pt_protect indicates whether
1099  * spte write-protection is caused by protecting shadow page table.
1100  *
1101  * Note: write protection is difference between dirty logging and spte
1102  * protection:
1103  * - for dirty logging, the spte can be set to writable at anytime if
1104  *   its dirty bitmap is properly set.
1105  * - for spte protection, the spte can be writable only after unsync-ing
1106  *   shadow page.
1107  *
1108  * Return true if tlb need be flushed.
1109  */
1110 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1111 {
1112         u64 spte = *sptep;
1113
1114         if (!is_writable_pte(spte) &&
1115               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1116                 return false;
1117
1118         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1119
1120         if (pt_protect)
1121                 spte &= ~SPTE_MMU_WRITEABLE;
1122         spte = spte & ~PT_WRITABLE_MASK;
1123
1124         return mmu_spte_update(sptep, spte);
1125 }
1126
1127 static bool __rmap_write_protect(struct kvm *kvm,
1128                                  struct kvm_rmap_head *rmap_head,
1129                                  bool pt_protect)
1130 {
1131         u64 *sptep;
1132         struct rmap_iterator iter;
1133         bool flush = false;
1134
1135         for_each_rmap_spte(rmap_head, &iter, sptep)
1136                 flush |= spte_write_protect(sptep, pt_protect);
1137
1138         return flush;
1139 }
1140
1141 static bool spte_clear_dirty(u64 *sptep)
1142 {
1143         u64 spte = *sptep;
1144
1145         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1146
1147         MMU_WARN_ON(!spte_ad_enabled(spte));
1148         spte &= ~shadow_dirty_mask;
1149         return mmu_spte_update(sptep, spte);
1150 }
1151
1152 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1153 {
1154         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1155                                                (unsigned long *)sptep);
1156         if (was_writable && !spte_ad_enabled(*sptep))
1157                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1158
1159         return was_writable;
1160 }
1161
1162 /*
1163  * Gets the GFN ready for another round of dirty logging by clearing the
1164  *      - D bit on ad-enabled SPTEs, and
1165  *      - W bit on ad-disabled SPTEs.
1166  * Returns true iff any D or W bits were cleared.
1167  */
1168 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1169 {
1170         u64 *sptep;
1171         struct rmap_iterator iter;
1172         bool flush = false;
1173
1174         for_each_rmap_spte(rmap_head, &iter, sptep)
1175                 if (spte_ad_need_write_protect(*sptep))
1176                         flush |= spte_wrprot_for_clear_dirty(sptep);
1177                 else
1178                         flush |= spte_clear_dirty(sptep);
1179
1180         return flush;
1181 }
1182
1183 static bool spte_set_dirty(u64 *sptep)
1184 {
1185         u64 spte = *sptep;
1186
1187         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1188
1189         /*
1190          * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1191          * do not bother adding back write access to pages marked
1192          * SPTE_AD_WRPROT_ONLY_MASK.
1193          */
1194         spte |= shadow_dirty_mask;
1195
1196         return mmu_spte_update(sptep, spte);
1197 }
1198
1199 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1200 {
1201         u64 *sptep;
1202         struct rmap_iterator iter;
1203         bool flush = false;
1204
1205         for_each_rmap_spte(rmap_head, &iter, sptep)
1206                 if (spte_ad_enabled(*sptep))
1207                         flush |= spte_set_dirty(sptep);
1208
1209         return flush;
1210 }
1211
1212 /**
1213  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1214  * @kvm: kvm instance
1215  * @slot: slot to protect
1216  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1217  * @mask: indicates which pages we should protect
1218  *
1219  * Used when we do not need to care about huge page mappings: e.g. during dirty
1220  * logging we do not have any such mappings.
1221  */
1222 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1223                                      struct kvm_memory_slot *slot,
1224                                      gfn_t gfn_offset, unsigned long mask)
1225 {
1226         struct kvm_rmap_head *rmap_head;
1227
1228         if (kvm->arch.tdp_mmu_enabled)
1229                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1230                                 slot->base_gfn + gfn_offset, mask, true);
1231         while (mask) {
1232                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1233                                           PG_LEVEL_4K, slot);
1234                 __rmap_write_protect(kvm, rmap_head, false);
1235
1236                 /* clear the first set bit */
1237                 mask &= mask - 1;
1238         }
1239 }
1240
1241 /**
1242  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1243  * protect the page if the D-bit isn't supported.
1244  * @kvm: kvm instance
1245  * @slot: slot to clear D-bit
1246  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1247  * @mask: indicates which pages we should clear D-bit
1248  *
1249  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1250  */
1251 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1252                                      struct kvm_memory_slot *slot,
1253                                      gfn_t gfn_offset, unsigned long mask)
1254 {
1255         struct kvm_rmap_head *rmap_head;
1256
1257         if (kvm->arch.tdp_mmu_enabled)
1258                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1259                                 slot->base_gfn + gfn_offset, mask, false);
1260         while (mask) {
1261                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1262                                           PG_LEVEL_4K, slot);
1263                 __rmap_clear_dirty(kvm, rmap_head);
1264
1265                 /* clear the first set bit */
1266                 mask &= mask - 1;
1267         }
1268 }
1269 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1270
1271 /**
1272  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1273  * PT level pages.
1274  *
1275  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1276  * enable dirty logging for them.
1277  *
1278  * Used when we do not need to care about huge page mappings: e.g. during dirty
1279  * logging we do not have any such mappings.
1280  */
1281 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1282                                 struct kvm_memory_slot *slot,
1283                                 gfn_t gfn_offset, unsigned long mask)
1284 {
1285         if (kvm_x86_ops.enable_log_dirty_pt_masked)
1286                 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1287                                 mask);
1288         else
1289                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1290 }
1291
1292 int kvm_cpu_dirty_log_size(void)
1293 {
1294         if (kvm_x86_ops.cpu_dirty_log_size)
1295                 return kvm_x86_ops.cpu_dirty_log_size();
1296
1297         return 0;
1298 }
1299
1300 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1301                                     struct kvm_memory_slot *slot, u64 gfn)
1302 {
1303         struct kvm_rmap_head *rmap_head;
1304         int i;
1305         bool write_protected = false;
1306
1307         for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1308                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1309                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1310         }
1311
1312         if (kvm->arch.tdp_mmu_enabled)
1313                 write_protected |=
1314                         kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1315
1316         return write_protected;
1317 }
1318
1319 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1320 {
1321         struct kvm_memory_slot *slot;
1322
1323         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1324         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1325 }
1326
1327 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1328 {
1329         u64 *sptep;
1330         struct rmap_iterator iter;
1331         bool flush = false;
1332
1333         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1334                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1335
1336                 pte_list_remove(rmap_head, sptep);
1337                 flush = true;
1338         }
1339
1340         return flush;
1341 }
1342
1343 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1344                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1345                            unsigned long data)
1346 {
1347         return kvm_zap_rmapp(kvm, rmap_head);
1348 }
1349
1350 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1351                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1352                              unsigned long data)
1353 {
1354         u64 *sptep;
1355         struct rmap_iterator iter;
1356         int need_flush = 0;
1357         u64 new_spte;
1358         pte_t *ptep = (pte_t *)data;
1359         kvm_pfn_t new_pfn;
1360
1361         WARN_ON(pte_huge(*ptep));
1362         new_pfn = pte_pfn(*ptep);
1363
1364 restart:
1365         for_each_rmap_spte(rmap_head, &iter, sptep) {
1366                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1367                             sptep, *sptep, gfn, level);
1368
1369                 need_flush = 1;
1370
1371                 if (pte_write(*ptep)) {
1372                         pte_list_remove(rmap_head, sptep);
1373                         goto restart;
1374                 } else {
1375                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1376                                         *sptep, new_pfn);
1377
1378                         mmu_spte_clear_track_bits(sptep);
1379                         mmu_spte_set(sptep, new_spte);
1380                 }
1381         }
1382
1383         if (need_flush && kvm_available_flush_tlb_with_range()) {
1384                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1385                 return 0;
1386         }
1387
1388         return need_flush;
1389 }
1390
1391 struct slot_rmap_walk_iterator {
1392         /* input fields. */
1393         struct kvm_memory_slot *slot;
1394         gfn_t start_gfn;
1395         gfn_t end_gfn;
1396         int start_level;
1397         int end_level;
1398
1399         /* output fields. */
1400         gfn_t gfn;
1401         struct kvm_rmap_head *rmap;
1402         int level;
1403
1404         /* private field. */
1405         struct kvm_rmap_head *end_rmap;
1406 };
1407
1408 static void
1409 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1410 {
1411         iterator->level = level;
1412         iterator->gfn = iterator->start_gfn;
1413         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1414         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1415                                            iterator->slot);
1416 }
1417
1418 static void
1419 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1420                     struct kvm_memory_slot *slot, int start_level,
1421                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1422 {
1423         iterator->slot = slot;
1424         iterator->start_level = start_level;
1425         iterator->end_level = end_level;
1426         iterator->start_gfn = start_gfn;
1427         iterator->end_gfn = end_gfn;
1428
1429         rmap_walk_init_level(iterator, iterator->start_level);
1430 }
1431
1432 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1433 {
1434         return !!iterator->rmap;
1435 }
1436
1437 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1438 {
1439         if (++iterator->rmap <= iterator->end_rmap) {
1440                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1441                 return;
1442         }
1443
1444         if (++iterator->level > iterator->end_level) {
1445                 iterator->rmap = NULL;
1446                 return;
1447         }
1448
1449         rmap_walk_init_level(iterator, iterator->level);
1450 }
1451
1452 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1453            _start_gfn, _end_gfn, _iter_)                                \
1454         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1455                                  _end_level_, _start_gfn, _end_gfn);    \
1456              slot_rmap_walk_okay(_iter_);                               \
1457              slot_rmap_walk_next(_iter_))
1458
1459 static int kvm_handle_hva_range(struct kvm *kvm,
1460                                 unsigned long start,
1461                                 unsigned long end,
1462                                 unsigned long data,
1463                                 int (*handler)(struct kvm *kvm,
1464                                                struct kvm_rmap_head *rmap_head,
1465                                                struct kvm_memory_slot *slot,
1466                                                gfn_t gfn,
1467                                                int level,
1468                                                unsigned long data))
1469 {
1470         struct kvm_memslots *slots;
1471         struct kvm_memory_slot *memslot;
1472         struct slot_rmap_walk_iterator iterator;
1473         int ret = 0;
1474         int i;
1475
1476         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1477                 slots = __kvm_memslots(kvm, i);
1478                 kvm_for_each_memslot(memslot, slots) {
1479                         unsigned long hva_start, hva_end;
1480                         gfn_t gfn_start, gfn_end;
1481
1482                         hva_start = max(start, memslot->userspace_addr);
1483                         hva_end = min(end, memslot->userspace_addr +
1484                                       (memslot->npages << PAGE_SHIFT));
1485                         if (hva_start >= hva_end)
1486                                 continue;
1487                         /*
1488                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1489                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1490                          */
1491                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1492                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1493
1494                         for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1495                                                  KVM_MAX_HUGEPAGE_LEVEL,
1496                                                  gfn_start, gfn_end - 1,
1497                                                  &iterator)
1498                                 ret |= handler(kvm, iterator.rmap, memslot,
1499                                                iterator.gfn, iterator.level, data);
1500                 }
1501         }
1502
1503         return ret;
1504 }
1505
1506 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1507                           unsigned long data,
1508                           int (*handler)(struct kvm *kvm,
1509                                          struct kvm_rmap_head *rmap_head,
1510                                          struct kvm_memory_slot *slot,
1511                                          gfn_t gfn, int level,
1512                                          unsigned long data))
1513 {
1514         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1515 }
1516
1517 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1518                         unsigned flags)
1519 {
1520         int r;
1521
1522         r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1523
1524         if (kvm->arch.tdp_mmu_enabled)
1525                 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1526
1527         return r;
1528 }
1529
1530 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1531 {
1532         int r;
1533
1534         r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1535
1536         if (kvm->arch.tdp_mmu_enabled)
1537                 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1538
1539         return r;
1540 }
1541
1542 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1543                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1544                          unsigned long data)
1545 {
1546         u64 *sptep;
1547         struct rmap_iterator iter;
1548         int young = 0;
1549
1550         for_each_rmap_spte(rmap_head, &iter, sptep)
1551                 young |= mmu_spte_age(sptep);
1552
1553         trace_kvm_age_page(gfn, level, slot, young);
1554         return young;
1555 }
1556
1557 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1558                               struct kvm_memory_slot *slot, gfn_t gfn,
1559                               int level, unsigned long data)
1560 {
1561         u64 *sptep;
1562         struct rmap_iterator iter;
1563
1564         for_each_rmap_spte(rmap_head, &iter, sptep)
1565                 if (is_accessed_spte(*sptep))
1566                         return 1;
1567         return 0;
1568 }
1569
1570 #define RMAP_RECYCLE_THRESHOLD 1000
1571
1572 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1573 {
1574         struct kvm_rmap_head *rmap_head;
1575         struct kvm_mmu_page *sp;
1576
1577         sp = sptep_to_sp(spte);
1578
1579         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1580
1581         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1582         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1583                         KVM_PAGES_PER_HPAGE(sp->role.level));
1584 }
1585
1586 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1587 {
1588         int young = false;
1589
1590         young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1591         if (kvm->arch.tdp_mmu_enabled)
1592                 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1593
1594         return young;
1595 }
1596
1597 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1598 {
1599         int young = false;
1600
1601         young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1602         if (kvm->arch.tdp_mmu_enabled)
1603                 young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1604
1605         return young;
1606 }
1607
1608 #ifdef MMU_DEBUG
1609 static int is_empty_shadow_page(u64 *spt)
1610 {
1611         u64 *pos;
1612         u64 *end;
1613
1614         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1615                 if (is_shadow_present_pte(*pos)) {
1616                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1617                                pos, *pos);
1618                         return 0;
1619                 }
1620         return 1;
1621 }
1622 #endif
1623
1624 /*
1625  * This value is the sum of all of the kvm instances's
1626  * kvm->arch.n_used_mmu_pages values.  We need a global,
1627  * aggregate version in order to make the slab shrinker
1628  * faster
1629  */
1630 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1631 {
1632         kvm->arch.n_used_mmu_pages += nr;
1633         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1634 }
1635
1636 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1637 {
1638         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1639         hlist_del(&sp->hash_link);
1640         list_del(&sp->link);
1641         free_page((unsigned long)sp->spt);
1642         if (!sp->role.direct)
1643                 free_page((unsigned long)sp->gfns);
1644         kmem_cache_free(mmu_page_header_cache, sp);
1645 }
1646
1647 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1648 {
1649         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1650 }
1651
1652 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1653                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1654 {
1655         if (!parent_pte)
1656                 return;
1657
1658         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1659 }
1660
1661 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1662                                        u64 *parent_pte)
1663 {
1664         __pte_list_remove(parent_pte, &sp->parent_ptes);
1665 }
1666
1667 static void drop_parent_pte(struct kvm_mmu_page *sp,
1668                             u64 *parent_pte)
1669 {
1670         mmu_page_remove_parent_pte(sp, parent_pte);
1671         mmu_spte_clear_no_track(parent_pte);
1672 }
1673
1674 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1675 {
1676         struct kvm_mmu_page *sp;
1677
1678         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1679         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1680         if (!direct)
1681                 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1682         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1683
1684         /*
1685          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1686          * depends on valid pages being added to the head of the list.  See
1687          * comments in kvm_zap_obsolete_pages().
1688          */
1689         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1690         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1691         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1692         return sp;
1693 }
1694
1695 static void mark_unsync(u64 *spte);
1696 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1697 {
1698         u64 *sptep;
1699         struct rmap_iterator iter;
1700
1701         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1702                 mark_unsync(sptep);
1703         }
1704 }
1705
1706 static void mark_unsync(u64 *spte)
1707 {
1708         struct kvm_mmu_page *sp;
1709         unsigned int index;
1710
1711         sp = sptep_to_sp(spte);
1712         index = spte - sp->spt;
1713         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1714                 return;
1715         if (sp->unsync_children++)
1716                 return;
1717         kvm_mmu_mark_parents_unsync(sp);
1718 }
1719
1720 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1721                                struct kvm_mmu_page *sp)
1722 {
1723         return 0;
1724 }
1725
1726 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1727                                  struct kvm_mmu_page *sp, u64 *spte,
1728                                  const void *pte)
1729 {
1730         WARN_ON(1);
1731 }
1732
1733 #define KVM_PAGE_ARRAY_NR 16
1734
1735 struct kvm_mmu_pages {
1736         struct mmu_page_and_offset {
1737                 struct kvm_mmu_page *sp;
1738                 unsigned int idx;
1739         } page[KVM_PAGE_ARRAY_NR];
1740         unsigned int nr;
1741 };
1742
1743 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1744                          int idx)
1745 {
1746         int i;
1747
1748         if (sp->unsync)
1749                 for (i=0; i < pvec->nr; i++)
1750                         if (pvec->page[i].sp == sp)
1751                                 return 0;
1752
1753         pvec->page[pvec->nr].sp = sp;
1754         pvec->page[pvec->nr].idx = idx;
1755         pvec->nr++;
1756         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1757 }
1758
1759 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1760 {
1761         --sp->unsync_children;
1762         WARN_ON((int)sp->unsync_children < 0);
1763         __clear_bit(idx, sp->unsync_child_bitmap);
1764 }
1765
1766 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1767                            struct kvm_mmu_pages *pvec)
1768 {
1769         int i, ret, nr_unsync_leaf = 0;
1770
1771         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1772                 struct kvm_mmu_page *child;
1773                 u64 ent = sp->spt[i];
1774
1775                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1776                         clear_unsync_child_bit(sp, i);
1777                         continue;
1778                 }
1779
1780                 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1781
1782                 if (child->unsync_children) {
1783                         if (mmu_pages_add(pvec, child, i))
1784                                 return -ENOSPC;
1785
1786                         ret = __mmu_unsync_walk(child, pvec);
1787                         if (!ret) {
1788                                 clear_unsync_child_bit(sp, i);
1789                                 continue;
1790                         } else if (ret > 0) {
1791                                 nr_unsync_leaf += ret;
1792                         } else
1793                                 return ret;
1794                 } else if (child->unsync) {
1795                         nr_unsync_leaf++;
1796                         if (mmu_pages_add(pvec, child, i))
1797                                 return -ENOSPC;
1798                 } else
1799                         clear_unsync_child_bit(sp, i);
1800         }
1801
1802         return nr_unsync_leaf;
1803 }
1804
1805 #define INVALID_INDEX (-1)
1806
1807 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1808                            struct kvm_mmu_pages *pvec)
1809 {
1810         pvec->nr = 0;
1811         if (!sp->unsync_children)
1812                 return 0;
1813
1814         mmu_pages_add(pvec, sp, INVALID_INDEX);
1815         return __mmu_unsync_walk(sp, pvec);
1816 }
1817
1818 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1819 {
1820         WARN_ON(!sp->unsync);
1821         trace_kvm_mmu_sync_page(sp);
1822         sp->unsync = 0;
1823         --kvm->stat.mmu_unsync;
1824 }
1825
1826 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1827                                      struct list_head *invalid_list);
1828 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1829                                     struct list_head *invalid_list);
1830
1831 #define for_each_valid_sp(_kvm, _sp, _list)                             \
1832         hlist_for_each_entry(_sp, _list, hash_link)                     \
1833                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
1834                 } else
1835
1836 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1837         for_each_valid_sp(_kvm, _sp,                                    \
1838           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
1839                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1840
1841 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1842 {
1843         return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1844 }
1845
1846 /* @sp->gfn should be write-protected at the call site */
1847 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1848                             struct list_head *invalid_list)
1849 {
1850         if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1851             vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1852                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1853                 return false;
1854         }
1855
1856         return true;
1857 }
1858
1859 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1860                                         struct list_head *invalid_list,
1861                                         bool remote_flush)
1862 {
1863         if (!remote_flush && list_empty(invalid_list))
1864                 return false;
1865
1866         if (!list_empty(invalid_list))
1867                 kvm_mmu_commit_zap_page(kvm, invalid_list);
1868         else
1869                 kvm_flush_remote_tlbs(kvm);
1870         return true;
1871 }
1872
1873 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1874                                  struct list_head *invalid_list,
1875                                  bool remote_flush, bool local_flush)
1876 {
1877         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1878                 return;
1879
1880         if (local_flush)
1881                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1882 }
1883
1884 #ifdef CONFIG_KVM_MMU_AUDIT
1885 #include "mmu_audit.c"
1886 #else
1887 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1888 static void mmu_audit_disable(void) { }
1889 #endif
1890
1891 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1892 {
1893         return sp->role.invalid ||
1894                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1895 }
1896
1897 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1898                          struct list_head *invalid_list)
1899 {
1900         kvm_unlink_unsync_page(vcpu->kvm, sp);
1901         return __kvm_sync_page(vcpu, sp, invalid_list);
1902 }
1903
1904 /* @gfn should be write-protected at the call site */
1905 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1906                            struct list_head *invalid_list)
1907 {
1908         struct kvm_mmu_page *s;
1909         bool ret = false;
1910
1911         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1912                 if (!s->unsync)
1913                         continue;
1914
1915                 WARN_ON(s->role.level != PG_LEVEL_4K);
1916                 ret |= kvm_sync_page(vcpu, s, invalid_list);
1917         }
1918
1919         return ret;
1920 }
1921
1922 struct mmu_page_path {
1923         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1924         unsigned int idx[PT64_ROOT_MAX_LEVEL];
1925 };
1926
1927 #define for_each_sp(pvec, sp, parents, i)                       \
1928                 for (i = mmu_pages_first(&pvec, &parents);      \
1929                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1930                         i = mmu_pages_next(&pvec, &parents, i))
1931
1932 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1933                           struct mmu_page_path *parents,
1934                           int i)
1935 {
1936         int n;
1937
1938         for (n = i+1; n < pvec->nr; n++) {
1939                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1940                 unsigned idx = pvec->page[n].idx;
1941                 int level = sp->role.level;
1942
1943                 parents->idx[level-1] = idx;
1944                 if (level == PG_LEVEL_4K)
1945                         break;
1946
1947                 parents->parent[level-2] = sp;
1948         }
1949
1950         return n;
1951 }
1952
1953 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1954                            struct mmu_page_path *parents)
1955 {
1956         struct kvm_mmu_page *sp;
1957         int level;
1958
1959         if (pvec->nr == 0)
1960                 return 0;
1961
1962         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1963
1964         sp = pvec->page[0].sp;
1965         level = sp->role.level;
1966         WARN_ON(level == PG_LEVEL_4K);
1967
1968         parents->parent[level-2] = sp;
1969
1970         /* Also set up a sentinel.  Further entries in pvec are all
1971          * children of sp, so this element is never overwritten.
1972          */
1973         parents->parent[level-1] = NULL;
1974         return mmu_pages_next(pvec, parents, 0);
1975 }
1976
1977 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1978 {
1979         struct kvm_mmu_page *sp;
1980         unsigned int level = 0;
1981
1982         do {
1983                 unsigned int idx = parents->idx[level];
1984                 sp = parents->parent[level];
1985                 if (!sp)
1986                         return;
1987
1988                 WARN_ON(idx == INVALID_INDEX);
1989                 clear_unsync_child_bit(sp, idx);
1990                 level++;
1991         } while (!sp->unsync_children);
1992 }
1993
1994 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1995                               struct kvm_mmu_page *parent)
1996 {
1997         int i;
1998         struct kvm_mmu_page *sp;
1999         struct mmu_page_path parents;
2000         struct kvm_mmu_pages pages;
2001         LIST_HEAD(invalid_list);
2002         bool flush = false;
2003
2004         while (mmu_unsync_walk(parent, &pages)) {
2005                 bool protected = false;
2006
2007                 for_each_sp(pages, sp, parents, i)
2008                         protected |= rmap_write_protect(vcpu, sp->gfn);
2009
2010                 if (protected) {
2011                         kvm_flush_remote_tlbs(vcpu->kvm);
2012                         flush = false;
2013                 }
2014
2015                 for_each_sp(pages, sp, parents, i) {
2016                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2017                         mmu_pages_clear_parents(&parents);
2018                 }
2019                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2020                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2021                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2022                         flush = false;
2023                 }
2024         }
2025
2026         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2027 }
2028
2029 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2030 {
2031         atomic_set(&sp->write_flooding_count,  0);
2032 }
2033
2034 static void clear_sp_write_flooding_count(u64 *spte)
2035 {
2036         __clear_sp_write_flooding_count(sptep_to_sp(spte));
2037 }
2038
2039 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2040                                              gfn_t gfn,
2041                                              gva_t gaddr,
2042                                              unsigned level,
2043                                              int direct,
2044                                              unsigned int access)
2045 {
2046         bool direct_mmu = vcpu->arch.mmu->direct_map;
2047         union kvm_mmu_page_role role;
2048         struct hlist_head *sp_list;
2049         unsigned quadrant;
2050         struct kvm_mmu_page *sp;
2051         bool need_sync = false;
2052         bool flush = false;
2053         int collisions = 0;
2054         LIST_HEAD(invalid_list);
2055
2056         role = vcpu->arch.mmu->mmu_role.base;
2057         role.level = level;
2058         role.direct = direct;
2059         if (role.direct)
2060                 role.gpte_is_8_bytes = true;
2061         role.access = access;
2062         if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2063                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2064                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2065                 role.quadrant = quadrant;
2066         }
2067
2068         sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2069         for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2070                 if (sp->gfn != gfn) {
2071                         collisions++;
2072                         continue;
2073                 }
2074
2075                 if (!need_sync && sp->unsync)
2076                         need_sync = true;
2077
2078                 if (sp->role.word != role.word)
2079                         continue;
2080
2081                 if (direct_mmu)
2082                         goto trace_get_page;
2083
2084                 if (sp->unsync) {
2085                         /* The page is good, but __kvm_sync_page might still end
2086                          * up zapping it.  If so, break in order to rebuild it.
2087                          */
2088                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2089                                 break;
2090
2091                         WARN_ON(!list_empty(&invalid_list));
2092                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2093                 }
2094
2095                 if (sp->unsync_children)
2096                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2097
2098                 __clear_sp_write_flooding_count(sp);
2099
2100 trace_get_page:
2101                 trace_kvm_mmu_get_page(sp, false);
2102                 goto out;
2103         }
2104
2105         ++vcpu->kvm->stat.mmu_cache_miss;
2106
2107         sp = kvm_mmu_alloc_page(vcpu, direct);
2108
2109         sp->gfn = gfn;
2110         sp->role = role;
2111         hlist_add_head(&sp->hash_link, sp_list);
2112         if (!direct) {
2113                 /*
2114                  * we should do write protection before syncing pages
2115                  * otherwise the content of the synced shadow page may
2116                  * be inconsistent with guest page table.
2117                  */
2118                 account_shadowed(vcpu->kvm, sp);
2119                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2120                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2121
2122                 if (level > PG_LEVEL_4K && need_sync)
2123                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2124         }
2125         trace_kvm_mmu_get_page(sp, true);
2126
2127         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2128 out:
2129         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2130                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2131         return sp;
2132 }
2133
2134 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2135                                         struct kvm_vcpu *vcpu, hpa_t root,
2136                                         u64 addr)
2137 {
2138         iterator->addr = addr;
2139         iterator->shadow_addr = root;
2140         iterator->level = vcpu->arch.mmu->shadow_root_level;
2141
2142         if (iterator->level == PT64_ROOT_4LEVEL &&
2143             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2144             !vcpu->arch.mmu->direct_map)
2145                 --iterator->level;
2146
2147         if (iterator->level == PT32E_ROOT_LEVEL) {
2148                 /*
2149                  * prev_root is currently only used for 64-bit hosts. So only
2150                  * the active root_hpa is valid here.
2151                  */
2152                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2153
2154                 iterator->shadow_addr
2155                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2156                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2157                 --iterator->level;
2158                 if (!iterator->shadow_addr)
2159                         iterator->level = 0;
2160         }
2161 }
2162
2163 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2164                              struct kvm_vcpu *vcpu, u64 addr)
2165 {
2166         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2167                                     addr);
2168 }
2169
2170 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2171 {
2172         if (iterator->level < PG_LEVEL_4K)
2173                 return false;
2174
2175         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2176         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2177         return true;
2178 }
2179
2180 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2181                                u64 spte)
2182 {
2183         if (is_last_spte(spte, iterator->level)) {
2184                 iterator->level = 0;
2185                 return;
2186         }
2187
2188         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2189         --iterator->level;
2190 }
2191
2192 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2193 {
2194         __shadow_walk_next(iterator, *iterator->sptep);
2195 }
2196
2197 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2198                              struct kvm_mmu_page *sp)
2199 {
2200         u64 spte;
2201
2202         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2203
2204         spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2205
2206         mmu_spte_set(sptep, spte);
2207
2208         mmu_page_add_parent_pte(vcpu, sp, sptep);
2209
2210         if (sp->unsync_children || sp->unsync)
2211                 mark_unsync(sptep);
2212 }
2213
2214 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2215                                    unsigned direct_access)
2216 {
2217         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2218                 struct kvm_mmu_page *child;
2219
2220                 /*
2221                  * For the direct sp, if the guest pte's dirty bit
2222                  * changed form clean to dirty, it will corrupt the
2223                  * sp's access: allow writable in the read-only sp,
2224                  * so we should update the spte at this point to get
2225                  * a new sp with the correct access.
2226                  */
2227                 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2228                 if (child->role.access == direct_access)
2229                         return;
2230
2231                 drop_parent_pte(child, sptep);
2232                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2233         }
2234 }
2235
2236 /* Returns the number of zapped non-leaf child shadow pages. */
2237 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2238                             u64 *spte, struct list_head *invalid_list)
2239 {
2240         u64 pte;
2241         struct kvm_mmu_page *child;
2242
2243         pte = *spte;
2244         if (is_shadow_present_pte(pte)) {
2245                 if (is_last_spte(pte, sp->role.level)) {
2246                         drop_spte(kvm, spte);
2247                         if (is_large_pte(pte))
2248                                 --kvm->stat.lpages;
2249                 } else {
2250                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2251                         drop_parent_pte(child, spte);
2252
2253                         /*
2254                          * Recursively zap nested TDP SPs, parentless SPs are
2255                          * unlikely to be used again in the near future.  This
2256                          * avoids retaining a large number of stale nested SPs.
2257                          */
2258                         if (tdp_enabled && invalid_list &&
2259                             child->role.guest_mode && !child->parent_ptes.val)
2260                                 return kvm_mmu_prepare_zap_page(kvm, child,
2261                                                                 invalid_list);
2262                 }
2263         } else if (is_mmio_spte(pte)) {
2264                 mmu_spte_clear_no_track(spte);
2265         }
2266         return 0;
2267 }
2268
2269 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2270                                         struct kvm_mmu_page *sp,
2271                                         struct list_head *invalid_list)
2272 {
2273         int zapped = 0;
2274         unsigned i;
2275
2276         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2277                 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2278
2279         return zapped;
2280 }
2281
2282 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2283 {
2284         u64 *sptep;
2285         struct rmap_iterator iter;
2286
2287         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2288                 drop_parent_pte(sp, sptep);
2289 }
2290
2291 static int mmu_zap_unsync_children(struct kvm *kvm,
2292                                    struct kvm_mmu_page *parent,
2293                                    struct list_head *invalid_list)
2294 {
2295         int i, zapped = 0;
2296         struct mmu_page_path parents;
2297         struct kvm_mmu_pages pages;
2298
2299         if (parent->role.level == PG_LEVEL_4K)
2300                 return 0;
2301
2302         while (mmu_unsync_walk(parent, &pages)) {
2303                 struct kvm_mmu_page *sp;
2304
2305                 for_each_sp(pages, sp, parents, i) {
2306                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2307                         mmu_pages_clear_parents(&parents);
2308                         zapped++;
2309                 }
2310         }
2311
2312         return zapped;
2313 }
2314
2315 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2316                                        struct kvm_mmu_page *sp,
2317                                        struct list_head *invalid_list,
2318                                        int *nr_zapped)
2319 {
2320         bool list_unstable;
2321
2322         trace_kvm_mmu_prepare_zap_page(sp);
2323         ++kvm->stat.mmu_shadow_zapped;
2324         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2325         *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2326         kvm_mmu_unlink_parents(kvm, sp);
2327
2328         /* Zapping children means active_mmu_pages has become unstable. */
2329         list_unstable = *nr_zapped;
2330
2331         if (!sp->role.invalid && !sp->role.direct)
2332                 unaccount_shadowed(kvm, sp);
2333
2334         if (sp->unsync)
2335                 kvm_unlink_unsync_page(kvm, sp);
2336         if (!sp->root_count) {
2337                 /* Count self */
2338                 (*nr_zapped)++;
2339
2340                 /*
2341                  * Already invalid pages (previously active roots) are not on
2342                  * the active page list.  See list_del() in the "else" case of
2343                  * !sp->root_count.
2344                  */
2345                 if (sp->role.invalid)
2346                         list_add(&sp->link, invalid_list);
2347                 else
2348                         list_move(&sp->link, invalid_list);
2349                 kvm_mod_used_mmu_pages(kvm, -1);
2350         } else {
2351                 /*
2352                  * Remove the active root from the active page list, the root
2353                  * will be explicitly freed when the root_count hits zero.
2354                  */
2355                 list_del(&sp->link);
2356
2357                 /*
2358                  * Obsolete pages cannot be used on any vCPUs, see the comment
2359                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2360                  * treats invalid shadow pages as being obsolete.
2361                  */
2362                 if (!is_obsolete_sp(kvm, sp))
2363                         kvm_reload_remote_mmus(kvm);
2364         }
2365
2366         if (sp->lpage_disallowed)
2367                 unaccount_huge_nx_page(kvm, sp);
2368
2369         sp->role.invalid = 1;
2370         return list_unstable;
2371 }
2372
2373 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2374                                      struct list_head *invalid_list)
2375 {
2376         int nr_zapped;
2377
2378         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2379         return nr_zapped;
2380 }
2381
2382 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2383                                     struct list_head *invalid_list)
2384 {
2385         struct kvm_mmu_page *sp, *nsp;
2386
2387         if (list_empty(invalid_list))
2388                 return;
2389
2390         /*
2391          * We need to make sure everyone sees our modifications to
2392          * the page tables and see changes to vcpu->mode here. The barrier
2393          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2394          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2395          *
2396          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2397          * guest mode and/or lockless shadow page table walks.
2398          */
2399         kvm_flush_remote_tlbs(kvm);
2400
2401         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2402                 WARN_ON(!sp->role.invalid || sp->root_count);
2403                 kvm_mmu_free_page(sp);
2404         }
2405 }
2406
2407 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2408                                                   unsigned long nr_to_zap)
2409 {
2410         unsigned long total_zapped = 0;
2411         struct kvm_mmu_page *sp, *tmp;
2412         LIST_HEAD(invalid_list);
2413         bool unstable;
2414         int nr_zapped;
2415
2416         if (list_empty(&kvm->arch.active_mmu_pages))
2417                 return 0;
2418
2419 restart:
2420         list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2421                 /*
2422                  * Don't zap active root pages, the page itself can't be freed
2423                  * and zapping it will just force vCPUs to realloc and reload.
2424                  */
2425                 if (sp->root_count)
2426                         continue;
2427
2428                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2429                                                       &nr_zapped);
2430                 total_zapped += nr_zapped;
2431                 if (total_zapped >= nr_to_zap)
2432                         break;
2433
2434                 if (unstable)
2435                         goto restart;
2436         }
2437
2438         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2439
2440         kvm->stat.mmu_recycled += total_zapped;
2441         return total_zapped;
2442 }
2443
2444 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2445 {
2446         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2447                 return kvm->arch.n_max_mmu_pages -
2448                         kvm->arch.n_used_mmu_pages;
2449
2450         return 0;
2451 }
2452
2453 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2454 {
2455         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2456
2457         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2458                 return 0;
2459
2460         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2461
2462         if (!kvm_mmu_available_pages(vcpu->kvm))
2463                 return -ENOSPC;
2464         return 0;
2465 }
2466
2467 /*
2468  * Changing the number of mmu pages allocated to the vm
2469  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2470  */
2471 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2472 {
2473         spin_lock(&kvm->mmu_lock);
2474
2475         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2476                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2477                                                   goal_nr_mmu_pages);
2478
2479                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2480         }
2481
2482         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2483
2484         spin_unlock(&kvm->mmu_lock);
2485 }
2486
2487 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2488 {
2489         struct kvm_mmu_page *sp;
2490         LIST_HEAD(invalid_list);
2491         int r;
2492
2493         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2494         r = 0;
2495         spin_lock(&kvm->mmu_lock);
2496         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2497                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2498                          sp->role.word);
2499                 r = 1;
2500                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2501         }
2502         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2503         spin_unlock(&kvm->mmu_lock);
2504
2505         return r;
2506 }
2507 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2508
2509 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2510 {
2511         trace_kvm_mmu_unsync_page(sp);
2512         ++vcpu->kvm->stat.mmu_unsync;
2513         sp->unsync = 1;
2514
2515         kvm_mmu_mark_parents_unsync(sp);
2516 }
2517
2518 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2519                             bool can_unsync)
2520 {
2521         struct kvm_mmu_page *sp;
2522
2523         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2524                 return true;
2525
2526         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2527                 if (!can_unsync)
2528                         return true;
2529
2530                 if (sp->unsync)
2531                         continue;
2532
2533                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2534                 kvm_unsync_page(vcpu, sp);
2535         }
2536
2537         /*
2538          * We need to ensure that the marking of unsync pages is visible
2539          * before the SPTE is updated to allow writes because
2540          * kvm_mmu_sync_roots() checks the unsync flags without holding
2541          * the MMU lock and so can race with this. If the SPTE was updated
2542          * before the page had been marked as unsync-ed, something like the
2543          * following could happen:
2544          *
2545          * CPU 1                    CPU 2
2546          * ---------------------------------------------------------------------
2547          * 1.2 Host updates SPTE
2548          *     to be writable
2549          *                      2.1 Guest writes a GPTE for GVA X.
2550          *                          (GPTE being in the guest page table shadowed
2551          *                           by the SP from CPU 1.)
2552          *                          This reads SPTE during the page table walk.
2553          *                          Since SPTE.W is read as 1, there is no
2554          *                          fault.
2555          *
2556          *                      2.2 Guest issues TLB flush.
2557          *                          That causes a VM Exit.
2558          *
2559          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2560          *                          Since it is false, so it just returns.
2561          *
2562          *                      2.4 Guest accesses GVA X.
2563          *                          Since the mapping in the SP was not updated,
2564          *                          so the old mapping for GVA X incorrectly
2565          *                          gets used.
2566          * 1.1 Host marks SP
2567          *     as unsync
2568          *     (sp->unsync = true)
2569          *
2570          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2571          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2572          * pairs with this write barrier.
2573          */
2574         smp_wmb();
2575
2576         return false;
2577 }
2578
2579 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2580                     unsigned int pte_access, int level,
2581                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2582                     bool can_unsync, bool host_writable)
2583 {
2584         u64 spte;
2585         struct kvm_mmu_page *sp;
2586         int ret;
2587
2588         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2589                 return 0;
2590
2591         sp = sptep_to_sp(sptep);
2592
2593         ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2594                         can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2595
2596         if (spte & PT_WRITABLE_MASK)
2597                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2598
2599         if (*sptep == spte)
2600                 ret |= SET_SPTE_SPURIOUS;
2601         else if (mmu_spte_update(sptep, spte))
2602                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2603         return ret;
2604 }
2605
2606 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2607                         unsigned int pte_access, bool write_fault, int level,
2608                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2609                         bool host_writable)
2610 {
2611         int was_rmapped = 0;
2612         int rmap_count;
2613         int set_spte_ret;
2614         int ret = RET_PF_FIXED;
2615         bool flush = false;
2616
2617         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2618                  *sptep, write_fault, gfn);
2619
2620         if (is_shadow_present_pte(*sptep)) {
2621                 /*
2622                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2623                  * the parent of the now unreachable PTE.
2624                  */
2625                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2626                         struct kvm_mmu_page *child;
2627                         u64 pte = *sptep;
2628
2629                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2630                         drop_parent_pte(child, sptep);
2631                         flush = true;
2632                 } else if (pfn != spte_to_pfn(*sptep)) {
2633                         pgprintk("hfn old %llx new %llx\n",
2634                                  spte_to_pfn(*sptep), pfn);
2635                         drop_spte(vcpu->kvm, sptep);
2636                         flush = true;
2637                 } else
2638                         was_rmapped = 1;
2639         }
2640
2641         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2642                                 speculative, true, host_writable);
2643         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2644                 if (write_fault)
2645                         ret = RET_PF_EMULATE;
2646                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2647         }
2648
2649         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2650                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2651                                 KVM_PAGES_PER_HPAGE(level));
2652
2653         if (unlikely(is_mmio_spte(*sptep)))
2654                 ret = RET_PF_EMULATE;
2655
2656         /*
2657          * The fault is fully spurious if and only if the new SPTE and old SPTE
2658          * are identical, and emulation is not required.
2659          */
2660         if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2661                 WARN_ON_ONCE(!was_rmapped);
2662                 return RET_PF_SPURIOUS;
2663         }
2664
2665         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2666         trace_kvm_mmu_set_spte(level, gfn, sptep);
2667         if (!was_rmapped && is_large_pte(*sptep))
2668                 ++vcpu->kvm->stat.lpages;
2669
2670         if (is_shadow_present_pte(*sptep)) {
2671                 if (!was_rmapped) {
2672                         rmap_count = rmap_add(vcpu, sptep, gfn);
2673                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2674                                 rmap_recycle(vcpu, sptep, gfn);
2675                 }
2676         }
2677
2678         return ret;
2679 }
2680
2681 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2682                                      bool no_dirty_log)
2683 {
2684         struct kvm_memory_slot *slot;
2685
2686         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2687         if (!slot)
2688                 return KVM_PFN_ERR_FAULT;
2689
2690         return gfn_to_pfn_memslot_atomic(slot, gfn);
2691 }
2692
2693 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2694                                     struct kvm_mmu_page *sp,
2695                                     u64 *start, u64 *end)
2696 {
2697         struct page *pages[PTE_PREFETCH_NUM];
2698         struct kvm_memory_slot *slot;
2699         unsigned int access = sp->role.access;
2700         int i, ret;
2701         gfn_t gfn;
2702
2703         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2704         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2705         if (!slot)
2706                 return -1;
2707
2708         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2709         if (ret <= 0)
2710                 return -1;
2711
2712         for (i = 0; i < ret; i++, gfn++, start++) {
2713                 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2714                              page_to_pfn(pages[i]), true, true);
2715                 put_page(pages[i]);
2716         }
2717
2718         return 0;
2719 }
2720
2721 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2722                                   struct kvm_mmu_page *sp, u64 *sptep)
2723 {
2724         u64 *spte, *start = NULL;
2725         int i;
2726
2727         WARN_ON(!sp->role.direct);
2728
2729         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2730         spte = sp->spt + i;
2731
2732         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2733                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2734                         if (!start)
2735                                 continue;
2736                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2737                                 break;
2738                         start = NULL;
2739                 } else if (!start)
2740                         start = spte;
2741         }
2742 }
2743
2744 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2745 {
2746         struct kvm_mmu_page *sp;
2747
2748         sp = sptep_to_sp(sptep);
2749
2750         /*
2751          * Without accessed bits, there's no way to distinguish between
2752          * actually accessed translations and prefetched, so disable pte
2753          * prefetch if accessed bits aren't available.
2754          */
2755         if (sp_ad_disabled(sp))
2756                 return;
2757
2758         if (sp->role.level > PG_LEVEL_4K)
2759                 return;
2760
2761         __direct_pte_prefetch(vcpu, sp, sptep);
2762 }
2763
2764 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
2765                                   kvm_pfn_t pfn, struct kvm_memory_slot *slot)
2766 {
2767         unsigned long hva;
2768         pte_t *pte;
2769         int level;
2770
2771         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2772                 return PG_LEVEL_4K;
2773
2774         /*
2775          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2776          * is not solely for performance, it's also necessary to avoid the
2777          * "writable" check in __gfn_to_hva_many(), which will always fail on
2778          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2779          * page fault steps have already verified the guest isn't writing a
2780          * read-only memslot.
2781          */
2782         hva = __gfn_to_hva_memslot(slot, gfn);
2783
2784         pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2785         if (unlikely(!pte))
2786                 return PG_LEVEL_4K;
2787
2788         return level;
2789 }
2790
2791 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2792                             int max_level, kvm_pfn_t *pfnp,
2793                             bool huge_page_disallowed, int *req_level)
2794 {
2795         struct kvm_memory_slot *slot;
2796         struct kvm_lpage_info *linfo;
2797         kvm_pfn_t pfn = *pfnp;
2798         kvm_pfn_t mask;
2799         int level;
2800
2801         *req_level = PG_LEVEL_4K;
2802
2803         if (unlikely(max_level == PG_LEVEL_4K))
2804                 return PG_LEVEL_4K;
2805
2806         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2807                 return PG_LEVEL_4K;
2808
2809         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2810         if (!slot)
2811                 return PG_LEVEL_4K;
2812
2813         max_level = min(max_level, max_huge_page_level);
2814         for ( ; max_level > PG_LEVEL_4K; max_level--) {
2815                 linfo = lpage_info_slot(gfn, slot, max_level);
2816                 if (!linfo->disallow_lpage)
2817                         break;
2818         }
2819
2820         if (max_level == PG_LEVEL_4K)
2821                 return PG_LEVEL_4K;
2822
2823         level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
2824         if (level == PG_LEVEL_4K)
2825                 return level;
2826
2827         *req_level = level = min(level, max_level);
2828
2829         /*
2830          * Enforce the iTLB multihit workaround after capturing the requested
2831          * level, which will be used to do precise, accurate accounting.
2832          */
2833         if (huge_page_disallowed)
2834                 return PG_LEVEL_4K;
2835
2836         /*
2837          * mmu_notifier_retry() was successful and mmu_lock is held, so
2838          * the pmd can't be split from under us.
2839          */
2840         mask = KVM_PAGES_PER_HPAGE(level) - 1;
2841         VM_BUG_ON((gfn & mask) != (pfn & mask));
2842         *pfnp = pfn & ~mask;
2843
2844         return level;
2845 }
2846
2847 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2848                                 kvm_pfn_t *pfnp, int *goal_levelp)
2849 {
2850         int level = *goal_levelp;
2851
2852         if (cur_level == level && level > PG_LEVEL_4K &&
2853             is_shadow_present_pte(spte) &&
2854             !is_large_pte(spte)) {
2855                 /*
2856                  * A small SPTE exists for this pfn, but FNAME(fetch)
2857                  * and __direct_map would like to create a large PTE
2858                  * instead: just force them to go down another level,
2859                  * patching back for them into pfn the next 9 bits of
2860                  * the address.
2861                  */
2862                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2863                                 KVM_PAGES_PER_HPAGE(level - 1);
2864                 *pfnp |= gfn & page_mask;
2865                 (*goal_levelp)--;
2866         }
2867 }
2868
2869 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2870                         int map_writable, int max_level, kvm_pfn_t pfn,
2871                         bool prefault, bool is_tdp)
2872 {
2873         bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2874         bool write = error_code & PFERR_WRITE_MASK;
2875         bool exec = error_code & PFERR_FETCH_MASK;
2876         bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2877         struct kvm_shadow_walk_iterator it;
2878         struct kvm_mmu_page *sp;
2879         int level, req_level, ret;
2880         gfn_t gfn = gpa >> PAGE_SHIFT;
2881         gfn_t base_gfn = gfn;
2882
2883         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2884                 return RET_PF_RETRY;
2885
2886         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2887                                         huge_page_disallowed, &req_level);
2888
2889         trace_kvm_mmu_spte_requested(gpa, level, pfn);
2890         for_each_shadow_entry(vcpu, gpa, it) {
2891                 /*
2892                  * We cannot overwrite existing page tables with an NX
2893                  * large page, as the leaf could be executable.
2894                  */
2895                 if (nx_huge_page_workaround_enabled)
2896                         disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2897                                                    &pfn, &level);
2898
2899                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2900                 if (it.level == level)
2901                         break;
2902
2903                 drop_large_spte(vcpu, it.sptep);
2904                 if (!is_shadow_present_pte(*it.sptep)) {
2905                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2906                                               it.level - 1, true, ACC_ALL);
2907
2908                         link_shadow_page(vcpu, it.sptep, sp);
2909                         if (is_tdp && huge_page_disallowed &&
2910                             req_level >= it.level)
2911                                 account_huge_nx_page(vcpu->kvm, sp);
2912                 }
2913         }
2914
2915         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2916                            write, level, base_gfn, pfn, prefault,
2917                            map_writable);
2918         if (ret == RET_PF_SPURIOUS)
2919                 return ret;
2920
2921         direct_pte_prefetch(vcpu, it.sptep);
2922         ++vcpu->stat.pf_fixed;
2923         return ret;
2924 }
2925
2926 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2927 {
2928         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2929 }
2930
2931 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2932 {
2933         /*
2934          * Do not cache the mmio info caused by writing the readonly gfn
2935          * into the spte otherwise read access on readonly gfn also can
2936          * caused mmio page fault and treat it as mmio access.
2937          */
2938         if (pfn == KVM_PFN_ERR_RO_FAULT)
2939                 return RET_PF_EMULATE;
2940
2941         if (pfn == KVM_PFN_ERR_HWPOISON) {
2942                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2943                 return RET_PF_RETRY;
2944         }
2945
2946         return -EFAULT;
2947 }
2948
2949 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2950                                 kvm_pfn_t pfn, unsigned int access,
2951                                 int *ret_val)
2952 {
2953         /* The pfn is invalid, report the error! */
2954         if (unlikely(is_error_pfn(pfn))) {
2955                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2956                 return true;
2957         }
2958
2959         if (unlikely(is_noslot_pfn(pfn)))
2960                 vcpu_cache_mmio_info(vcpu, gva, gfn,
2961                                      access & shadow_mmio_access_mask);
2962
2963         return false;
2964 }
2965
2966 static bool page_fault_can_be_fast(u32 error_code)
2967 {
2968         /*
2969          * Do not fix the mmio spte with invalid generation number which
2970          * need to be updated by slow page fault path.
2971          */
2972         if (unlikely(error_code & PFERR_RSVD_MASK))
2973                 return false;
2974
2975         /* See if the page fault is due to an NX violation */
2976         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2977                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2978                 return false;
2979
2980         /*
2981          * #PF can be fast if:
2982          * 1. The shadow page table entry is not present, which could mean that
2983          *    the fault is potentially caused by access tracking (if enabled).
2984          * 2. The shadow page table entry is present and the fault
2985          *    is caused by write-protect, that means we just need change the W
2986          *    bit of the spte which can be done out of mmu-lock.
2987          *
2988          * However, if access tracking is disabled we know that a non-present
2989          * page must be a genuine page fault where we have to create a new SPTE.
2990          * So, if access tracking is disabled, we return true only for write
2991          * accesses to a present page.
2992          */
2993
2994         return shadow_acc_track_mask != 0 ||
2995                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2996                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2997 }
2998
2999 /*
3000  * Returns true if the SPTE was fixed successfully. Otherwise,
3001  * someone else modified the SPTE from its original value.
3002  */
3003 static bool
3004 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3005                         u64 *sptep, u64 old_spte, u64 new_spte)
3006 {
3007         gfn_t gfn;
3008
3009         WARN_ON(!sp->role.direct);
3010
3011         /*
3012          * Theoretically we could also set dirty bit (and flush TLB) here in
3013          * order to eliminate unnecessary PML logging. See comments in
3014          * set_spte. But fast_page_fault is very unlikely to happen with PML
3015          * enabled, so we do not do this. This might result in the same GPA
3016          * to be logged in PML buffer again when the write really happens, and
3017          * eventually to be called by mark_page_dirty twice. But it's also no
3018          * harm. This also avoids the TLB flush needed after setting dirty bit
3019          * so non-PML cases won't be impacted.
3020          *
3021          * Compare with set_spte where instead shadow_dirty_mask is set.
3022          */
3023         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3024                 return false;
3025
3026         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3027                 /*
3028                  * The gfn of direct spte is stable since it is
3029                  * calculated by sp->gfn.
3030                  */
3031                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3032                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3033         }
3034
3035         return true;
3036 }
3037
3038 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3039 {
3040         if (fault_err_code & PFERR_FETCH_MASK)
3041                 return is_executable_pte(spte);
3042
3043         if (fault_err_code & PFERR_WRITE_MASK)
3044                 return is_writable_pte(spte);
3045
3046         /* Fault was on Read access */
3047         return spte & PT_PRESENT_MASK;
3048 }
3049
3050 /*
3051  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3052  */
3053 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3054                            u32 error_code)
3055 {
3056         struct kvm_shadow_walk_iterator iterator;
3057         struct kvm_mmu_page *sp;
3058         int ret = RET_PF_INVALID;
3059         u64 spte = 0ull;
3060         uint retry_count = 0;
3061
3062         if (!page_fault_can_be_fast(error_code))
3063                 return ret;
3064
3065         walk_shadow_page_lockless_begin(vcpu);
3066
3067         do {
3068                 u64 new_spte;
3069
3070                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3071                         if (!is_shadow_present_pte(spte))
3072                                 break;
3073
3074                 sp = sptep_to_sp(iterator.sptep);
3075                 if (!is_last_spte(spte, sp->role.level))
3076                         break;
3077
3078                 /*
3079                  * Check whether the memory access that caused the fault would
3080                  * still cause it if it were to be performed right now. If not,
3081                  * then this is a spurious fault caused by TLB lazily flushed,
3082                  * or some other CPU has already fixed the PTE after the
3083                  * current CPU took the fault.
3084                  *
3085                  * Need not check the access of upper level table entries since
3086                  * they are always ACC_ALL.
3087                  */
3088                 if (is_access_allowed(error_code, spte)) {
3089                         ret = RET_PF_SPURIOUS;
3090                         break;
3091                 }
3092
3093                 new_spte = spte;
3094
3095                 if (is_access_track_spte(spte))
3096                         new_spte = restore_acc_track_spte(new_spte);
3097
3098                 /*
3099                  * Currently, to simplify the code, write-protection can
3100                  * be removed in the fast path only if the SPTE was
3101                  * write-protected for dirty-logging or access tracking.
3102                  */
3103                 if ((error_code & PFERR_WRITE_MASK) &&
3104                     spte_can_locklessly_be_made_writable(spte)) {
3105                         new_spte |= PT_WRITABLE_MASK;
3106
3107                         /*
3108                          * Do not fix write-permission on the large spte.  Since
3109                          * we only dirty the first page into the dirty-bitmap in
3110                          * fast_pf_fix_direct_spte(), other pages are missed
3111                          * if its slot has dirty logging enabled.
3112                          *
3113                          * Instead, we let the slow page fault path create a
3114                          * normal spte to fix the access.
3115                          *
3116                          * See the comments in kvm_arch_commit_memory_region().
3117                          */
3118                         if (sp->role.level > PG_LEVEL_4K)
3119                                 break;
3120                 }
3121
3122                 /* Verify that the fault can be handled in the fast path */
3123                 if (new_spte == spte ||
3124                     !is_access_allowed(error_code, new_spte))
3125                         break;
3126
3127                 /*
3128                  * Currently, fast page fault only works for direct mapping
3129                  * since the gfn is not stable for indirect shadow page. See
3130                  * Documentation/virt/kvm/locking.rst to get more detail.
3131                  */
3132                 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3133                                             new_spte)) {
3134                         ret = RET_PF_FIXED;
3135                         break;
3136                 }
3137
3138                 if (++retry_count > 4) {
3139                         printk_once(KERN_WARNING
3140                                 "kvm: Fast #PF retrying more than 4 times.\n");
3141                         break;
3142                 }
3143
3144         } while (true);
3145
3146         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3147                               spte, ret);
3148         walk_shadow_page_lockless_end(vcpu);
3149
3150         return ret;
3151 }
3152
3153 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3154                                struct list_head *invalid_list)
3155 {
3156         struct kvm_mmu_page *sp;
3157
3158         if (!VALID_PAGE(*root_hpa))
3159                 return;
3160
3161         sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3162
3163         if (kvm_mmu_put_root(kvm, sp)) {
3164                 if (sp->tdp_mmu_page)
3165                         kvm_tdp_mmu_free_root(kvm, sp);
3166                 else if (sp->role.invalid)
3167                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3168         }
3169
3170         *root_hpa = INVALID_PAGE;
3171 }
3172
3173 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3174 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3175                         ulong roots_to_free)
3176 {
3177         struct kvm *kvm = vcpu->kvm;
3178         int i;
3179         LIST_HEAD(invalid_list);
3180         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3181
3182         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3183
3184         /* Before acquiring the MMU lock, see if we need to do any real work. */
3185         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3186                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3187                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3188                             VALID_PAGE(mmu->prev_roots[i].hpa))
3189                                 break;
3190
3191                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3192                         return;
3193         }
3194
3195         spin_lock(&kvm->mmu_lock);
3196
3197         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3198                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3199                         mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3200                                            &invalid_list);
3201
3202         if (free_active_root) {
3203                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3204                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3205                         mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3206                 } else {
3207                         for (i = 0; i < 4; ++i)
3208                                 if (mmu->pae_root[i] != 0)
3209                                         mmu_free_root_page(kvm,
3210                                                            &mmu->pae_root[i],
3211                                                            &invalid_list);
3212                         mmu->root_hpa = INVALID_PAGE;
3213                 }
3214                 mmu->root_pgd = 0;
3215         }
3216
3217         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3218         spin_unlock(&kvm->mmu_lock);
3219 }
3220 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3221
3222 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3223 {
3224         int ret = 0;
3225
3226         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3227                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3228                 ret = 1;
3229         }
3230
3231         return ret;
3232 }
3233
3234 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3235                             u8 level, bool direct)
3236 {
3237         struct kvm_mmu_page *sp;
3238
3239         spin_lock(&vcpu->kvm->mmu_lock);
3240
3241         if (make_mmu_pages_available(vcpu)) {
3242                 spin_unlock(&vcpu->kvm->mmu_lock);
3243                 return INVALID_PAGE;
3244         }
3245         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3246         ++sp->root_count;
3247
3248         spin_unlock(&vcpu->kvm->mmu_lock);
3249         return __pa(sp->spt);
3250 }
3251
3252 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3253 {
3254         u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3255         hpa_t root;
3256         unsigned i;
3257
3258         if (vcpu->kvm->arch.tdp_mmu_enabled) {
3259                 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3260
3261                 if (!VALID_PAGE(root))
3262                         return -ENOSPC;
3263                 vcpu->arch.mmu->root_hpa = root;
3264         } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3265                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3266                                       true);
3267
3268                 if (!VALID_PAGE(root))
3269                         return -ENOSPC;
3270                 vcpu->arch.mmu->root_hpa = root;
3271         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3272                 for (i = 0; i < 4; ++i) {
3273                         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3274
3275                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3276                                               i << 30, PT32_ROOT_LEVEL, true);
3277                         if (!VALID_PAGE(root))
3278                                 return -ENOSPC;
3279                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3280                 }
3281                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3282         } else
3283                 BUG();
3284
3285         /* root_pgd is ignored for direct MMUs. */
3286         vcpu->arch.mmu->root_pgd = 0;
3287
3288         return 0;
3289 }
3290
3291 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3292 {
3293         u64 pdptr, pm_mask;
3294         gfn_t root_gfn, root_pgd;
3295         hpa_t root;
3296         int i;
3297
3298         root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3299         root_gfn = root_pgd >> PAGE_SHIFT;
3300
3301         if (mmu_check_root(vcpu, root_gfn))
3302                 return 1;
3303
3304         /*
3305          * Do we shadow a long mode page table? If so we need to
3306          * write-protect the guests page table root.
3307          */
3308         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3309                 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3310
3311                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3312                                       vcpu->arch.mmu->shadow_root_level, false);
3313                 if (!VALID_PAGE(root))
3314                         return -ENOSPC;
3315                 vcpu->arch.mmu->root_hpa = root;
3316                 goto set_root_pgd;
3317         }
3318
3319         /*
3320          * We shadow a 32 bit page table. This may be a legacy 2-level
3321          * or a PAE 3-level page table. In either case we need to be aware that
3322          * the shadow page table may be a PAE or a long mode page table.
3323          */
3324         pm_mask = PT_PRESENT_MASK;
3325         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3326                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3327
3328         for (i = 0; i < 4; ++i) {
3329                 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3330                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3331                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3332                         if (!(pdptr & PT_PRESENT_MASK)) {
3333                                 vcpu->arch.mmu->pae_root[i] = 0;
3334                                 continue;
3335                         }
3336                         root_gfn = pdptr >> PAGE_SHIFT;
3337                         if (mmu_check_root(vcpu, root_gfn))
3338                                 return 1;
3339                 }
3340
3341                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3342                                       PT32_ROOT_LEVEL, false);
3343                 if (!VALID_PAGE(root))
3344                         return -ENOSPC;
3345                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3346         }
3347         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3348
3349         /*
3350          * If we shadow a 32 bit page table with a long mode page
3351          * table we enter this path.
3352          */
3353         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3354                 if (vcpu->arch.mmu->lm_root == NULL) {
3355                         /*
3356                          * The additional page necessary for this is only
3357                          * allocated on demand.
3358                          */
3359
3360                         u64 *lm_root;
3361
3362                         lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3363                         if (lm_root == NULL)
3364                                 return 1;
3365
3366                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3367
3368                         vcpu->arch.mmu->lm_root = lm_root;
3369                 }
3370
3371                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3372         }
3373
3374 set_root_pgd:
3375         vcpu->arch.mmu->root_pgd = root_pgd;
3376
3377         return 0;
3378 }
3379
3380 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3381 {
3382         if (vcpu->arch.mmu->direct_map)
3383                 return mmu_alloc_direct_roots(vcpu);
3384         else
3385                 return mmu_alloc_shadow_roots(vcpu);
3386 }
3387
3388 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3389 {
3390         int i;
3391         struct kvm_mmu_page *sp;
3392
3393         if (vcpu->arch.mmu->direct_map)
3394                 return;
3395
3396         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3397                 return;
3398
3399         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3400
3401         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3402                 hpa_t root = vcpu->arch.mmu->root_hpa;
3403                 sp = to_shadow_page(root);
3404
3405                 /*
3406                  * Even if another CPU was marking the SP as unsync-ed
3407                  * simultaneously, any guest page table changes are not
3408                  * guaranteed to be visible anyway until this VCPU issues a TLB
3409                  * flush strictly after those changes are made. We only need to
3410                  * ensure that the other CPU sets these flags before any actual
3411                  * changes to the page tables are made. The comments in
3412                  * mmu_need_write_protect() describe what could go wrong if this
3413                  * requirement isn't satisfied.
3414                  */
3415                 if (!smp_load_acquire(&sp->unsync) &&
3416                     !smp_load_acquire(&sp->unsync_children))
3417                         return;
3418
3419                 spin_lock(&vcpu->kvm->mmu_lock);
3420                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3421
3422                 mmu_sync_children(vcpu, sp);
3423
3424                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3425                 spin_unlock(&vcpu->kvm->mmu_lock);
3426                 return;
3427         }
3428
3429         spin_lock(&vcpu->kvm->mmu_lock);
3430         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3431
3432         for (i = 0; i < 4; ++i) {
3433                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3434
3435                 if (root && VALID_PAGE(root)) {
3436                         root &= PT64_BASE_ADDR_MASK;
3437                         sp = to_shadow_page(root);
3438                         mmu_sync_children(vcpu, sp);
3439                 }
3440         }
3441
3442         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3443         spin_unlock(&vcpu->kvm->mmu_lock);
3444 }
3445 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3446
3447 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3448                                   u32 access, struct x86_exception *exception)
3449 {
3450         if (exception)
3451                 exception->error_code = 0;
3452         return vaddr;
3453 }
3454
3455 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3456                                          u32 access,
3457                                          struct x86_exception *exception)
3458 {
3459         if (exception)
3460                 exception->error_code = 0;
3461         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3462 }
3463
3464 static bool
3465 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3466 {
3467         int bit7 = (pte >> 7) & 1;
3468
3469         return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3470 }
3471
3472 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3473 {
3474         return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3475 }
3476
3477 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3478 {
3479         /*
3480          * A nested guest cannot use the MMIO cache if it is using nested
3481          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3482          */
3483         if (mmu_is_nested(vcpu))
3484                 return false;
3485
3486         if (direct)
3487                 return vcpu_match_mmio_gpa(vcpu, addr);
3488
3489         return vcpu_match_mmio_gva(vcpu, addr);
3490 }
3491
3492 /*
3493  * Return the level of the lowest level SPTE added to sptes.
3494  * That SPTE may be non-present.
3495  */
3496 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes)
3497 {
3498         struct kvm_shadow_walk_iterator iterator;
3499         int leaf = vcpu->arch.mmu->root_level;
3500         u64 spte;
3501
3502
3503         walk_shadow_page_lockless_begin(vcpu);
3504
3505         for (shadow_walk_init(&iterator, vcpu, addr);
3506              shadow_walk_okay(&iterator);
3507              __shadow_walk_next(&iterator, spte)) {
3508                 leaf = iterator.level;
3509                 spte = mmu_spte_get_lockless(iterator.sptep);
3510
3511                 sptes[leaf - 1] = spte;
3512
3513                 if (!is_shadow_present_pte(spte))
3514                         break;
3515
3516         }
3517
3518         walk_shadow_page_lockless_end(vcpu);
3519
3520         return leaf;
3521 }
3522
3523 /* return true if reserved bit is detected on spte. */
3524 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3525 {
3526         u64 sptes[PT64_ROOT_MAX_LEVEL];
3527         struct rsvd_bits_validate *rsvd_check;
3528         int root = vcpu->arch.mmu->shadow_root_level;
3529         int leaf;
3530         int level;
3531         bool reserved = false;
3532
3533         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3534                 *sptep = 0ull;
3535                 return reserved;
3536         }
3537
3538         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3539                 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes);
3540         else
3541                 leaf = get_walk(vcpu, addr, sptes);
3542
3543         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3544
3545         for (level = root; level >= leaf; level--) {
3546                 if (!is_shadow_present_pte(sptes[level - 1]))
3547                         break;
3548                 /*
3549                  * Use a bitwise-OR instead of a logical-OR to aggregate the
3550                  * reserved bit and EPT's invalid memtype/XWR checks to avoid
3551                  * adding a Jcc in the loop.
3552                  */
3553                 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level - 1]) |
3554                             __is_rsvd_bits_set(rsvd_check, sptes[level - 1],
3555                                                level);
3556         }
3557
3558         if (reserved) {
3559                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3560                        __func__, addr);
3561                 for (level = root; level >= leaf; level--)
3562                         pr_err("------ spte 0x%llx level %d.\n",
3563                                sptes[level - 1], level);
3564         }
3565
3566         *sptep = sptes[leaf - 1];
3567
3568         return reserved;
3569 }
3570
3571 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3572 {
3573         u64 spte;
3574         bool reserved;
3575
3576         if (mmio_info_in_cache(vcpu, addr, direct))
3577                 return RET_PF_EMULATE;
3578
3579         reserved = get_mmio_spte(vcpu, addr, &spte);
3580         if (WARN_ON(reserved))
3581                 return -EINVAL;
3582
3583         if (is_mmio_spte(spte)) {
3584                 gfn_t gfn = get_mmio_spte_gfn(spte);
3585                 unsigned int access = get_mmio_spte_access(spte);
3586
3587                 if (!check_mmio_spte(vcpu, spte))
3588                         return RET_PF_INVALID;
3589
3590                 if (direct)
3591                         addr = 0;
3592
3593                 trace_handle_mmio_page_fault(addr, gfn, access);
3594                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3595                 return RET_PF_EMULATE;
3596         }
3597
3598         /*
3599          * If the page table is zapped by other cpus, let CPU fault again on
3600          * the address.
3601          */
3602         return RET_PF_RETRY;
3603 }
3604
3605 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3606                                          u32 error_code, gfn_t gfn)
3607 {
3608         if (unlikely(error_code & PFERR_RSVD_MASK))
3609                 return false;
3610
3611         if (!(error_code & PFERR_PRESENT_MASK) ||
3612               !(error_code & PFERR_WRITE_MASK))
3613                 return false;
3614
3615         /*
3616          * guest is writing the page which is write tracked which can
3617          * not be fixed by page fault handler.
3618          */
3619         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3620                 return true;
3621
3622         return false;
3623 }
3624
3625 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3626 {
3627         struct kvm_shadow_walk_iterator iterator;
3628         u64 spte;
3629
3630         walk_shadow_page_lockless_begin(vcpu);
3631         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3632                 clear_sp_write_flooding_count(iterator.sptep);
3633                 if (!is_shadow_present_pte(spte))
3634                         break;
3635         }
3636         walk_shadow_page_lockless_end(vcpu);
3637 }
3638
3639 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3640                                     gfn_t gfn)
3641 {
3642         struct kvm_arch_async_pf arch;
3643
3644         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3645         arch.gfn = gfn;
3646         arch.direct_map = vcpu->arch.mmu->direct_map;
3647         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3648
3649         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3650                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3651 }
3652
3653 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3654                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3655                          bool *writable)
3656 {
3657         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3658         bool async;
3659
3660         /* Don't expose private memslots to L2. */
3661         if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3662                 *pfn = KVM_PFN_NOSLOT;
3663                 *writable = false;
3664                 return false;
3665         }
3666
3667         async = false;
3668         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3669         if (!async)
3670                 return false; /* *pfn has correct page already */
3671
3672         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3673                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3674                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3675                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3676                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3677                         return true;
3678                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3679                         return true;
3680         }
3681
3682         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3683         return false;
3684 }
3685
3686 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3687                              bool prefault, int max_level, bool is_tdp)
3688 {
3689         bool write = error_code & PFERR_WRITE_MASK;
3690         bool map_writable;
3691
3692         gfn_t gfn = gpa >> PAGE_SHIFT;
3693         unsigned long mmu_seq;
3694         kvm_pfn_t pfn;
3695         int r;
3696
3697         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3698                 return RET_PF_EMULATE;
3699
3700         if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3701                 r = fast_page_fault(vcpu, gpa, error_code);
3702                 if (r != RET_PF_INVALID)
3703                         return r;
3704         }
3705
3706         r = mmu_topup_memory_caches(vcpu, false);
3707         if (r)
3708                 return r;
3709
3710         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3711         smp_rmb();
3712
3713         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3714                 return RET_PF_RETRY;
3715
3716         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3717                 return r;
3718
3719         r = RET_PF_RETRY;
3720         spin_lock(&vcpu->kvm->mmu_lock);
3721         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3722                 goto out_unlock;
3723         r = make_mmu_pages_available(vcpu);
3724         if (r)
3725                 goto out_unlock;
3726
3727         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3728                 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3729                                     pfn, prefault);
3730         else
3731                 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3732                                  prefault, is_tdp);
3733
3734 out_unlock:
3735         spin_unlock(&vcpu->kvm->mmu_lock);
3736         kvm_release_pfn_clean(pfn);
3737         return r;
3738 }
3739
3740 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3741                                 u32 error_code, bool prefault)
3742 {
3743         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3744
3745         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3746         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3747                                  PG_LEVEL_2M, false);
3748 }
3749
3750 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3751                                 u64 fault_address, char *insn, int insn_len)
3752 {
3753         int r = 1;
3754         u32 flags = vcpu->arch.apf.host_apf_flags;
3755
3756 #ifndef CONFIG_X86_64
3757         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3758         if (WARN_ON_ONCE(fault_address >> 32))
3759                 return -EFAULT;
3760 #endif
3761
3762         vcpu->arch.l1tf_flush_l1d = true;
3763         if (!flags) {
3764                 trace_kvm_page_fault(fault_address, error_code);
3765
3766                 if (kvm_event_needs_reinjection(vcpu))
3767                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3768                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3769                                 insn_len);
3770         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3771                 vcpu->arch.apf.host_apf_flags = 0;
3772                 local_irq_disable();
3773                 kvm_async_pf_task_wait_schedule(fault_address);
3774                 local_irq_enable();
3775         } else {
3776                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3777         }
3778
3779         return r;
3780 }
3781 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3782
3783 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3784                        bool prefault)
3785 {
3786         int max_level;
3787
3788         for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3789              max_level > PG_LEVEL_4K;
3790              max_level--) {
3791                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3792                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3793
3794                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3795                         break;
3796         }
3797
3798         return direct_page_fault(vcpu, gpa, error_code, prefault,
3799                                  max_level, true);
3800 }
3801
3802 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3803                                    struct kvm_mmu *context)
3804 {
3805         context->page_fault = nonpaging_page_fault;
3806         context->gva_to_gpa = nonpaging_gva_to_gpa;
3807         context->sync_page = nonpaging_sync_page;
3808         context->invlpg = NULL;
3809         context->update_pte = nonpaging_update_pte;
3810         context->root_level = 0;
3811         context->shadow_root_level = PT32E_ROOT_LEVEL;
3812         context->direct_map = true;
3813         context->nx = false;
3814 }
3815
3816 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3817                                   union kvm_mmu_page_role role)
3818 {
3819         return (role.direct || pgd == root->pgd) &&
3820                VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3821                role.word == to_shadow_page(root->hpa)->role.word;
3822 }
3823
3824 /*
3825  * Find out if a previously cached root matching the new pgd/role is available.
3826  * The current root is also inserted into the cache.
3827  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3828  * returned.
3829  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3830  * false is returned. This root should now be freed by the caller.
3831  */
3832 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3833                                   union kvm_mmu_page_role new_role)
3834 {
3835         uint i;
3836         struct kvm_mmu_root_info root;
3837         struct kvm_mmu *mmu = vcpu->arch.mmu;
3838
3839         root.pgd = mmu->root_pgd;
3840         root.hpa = mmu->root_hpa;
3841
3842         if (is_root_usable(&root, new_pgd, new_role))
3843                 return true;
3844
3845         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3846                 swap(root, mmu->prev_roots[i]);
3847
3848                 if (is_root_usable(&root, new_pgd, new_role))
3849                         break;
3850         }
3851
3852         mmu->root_hpa = root.hpa;
3853         mmu->root_pgd = root.pgd;
3854
3855         return i < KVM_MMU_NUM_PREV_ROOTS;
3856 }
3857
3858 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3859                             union kvm_mmu_page_role new_role)
3860 {
3861         struct kvm_mmu *mmu = vcpu->arch.mmu;
3862
3863         /*
3864          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3865          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3866          * later if necessary.
3867          */
3868         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3869             mmu->root_level >= PT64_ROOT_4LEVEL)
3870                 return cached_root_available(vcpu, new_pgd, new_role);
3871
3872         return false;
3873 }
3874
3875 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3876                               union kvm_mmu_page_role new_role,
3877                               bool skip_tlb_flush, bool skip_mmu_sync)
3878 {
3879         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3880                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3881                 return;
3882         }
3883
3884         /*
3885          * It's possible that the cached previous root page is obsolete because
3886          * of a change in the MMU generation number. However, changing the
3887          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3888          * free the root set here and allocate a new one.
3889          */
3890         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3891
3892         if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3893                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3894         if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3895                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3896
3897         /*
3898          * The last MMIO access's GVA and GPA are cached in the VCPU. When
3899          * switching to a new CR3, that GVA->GPA mapping may no longer be
3900          * valid. So clear any cached MMIO info even when we don't need to sync
3901          * the shadow page tables.
3902          */
3903         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3904
3905         /*
3906          * If this is a direct root page, it doesn't have a write flooding
3907          * count. Otherwise, clear the write flooding count.
3908          */
3909         if (!new_role.direct)
3910                 __clear_sp_write_flooding_count(
3911                                 to_shadow_page(vcpu->arch.mmu->root_hpa));
3912 }
3913
3914 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3915                      bool skip_mmu_sync)
3916 {
3917         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3918                           skip_tlb_flush, skip_mmu_sync);
3919 }
3920 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3921
3922 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3923 {
3924         return kvm_read_cr3(vcpu);
3925 }
3926
3927 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3928                            unsigned int access, int *nr_present)
3929 {
3930         if (unlikely(is_mmio_spte(*sptep))) {
3931                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3932                         mmu_spte_clear_no_track(sptep);
3933                         return true;
3934                 }
3935
3936                 (*nr_present)++;
3937                 mark_mmio_spte(vcpu, sptep, gfn, access);
3938                 return true;
3939         }
3940
3941         return false;
3942 }
3943
3944 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3945                                 unsigned level, unsigned gpte)
3946 {
3947         /*
3948          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3949          * If it is clear, there are no large pages at this level, so clear
3950          * PT_PAGE_SIZE_MASK in gpte if that is the case.
3951          */
3952         gpte &= level - mmu->last_nonleaf_level;
3953
3954         /*
3955          * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
3956          * iff level <= PG_LEVEL_4K, which for our purpose means
3957          * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3958          */
3959         gpte |= level - PG_LEVEL_4K - 1;
3960
3961         return gpte & PT_PAGE_SIZE_MASK;
3962 }
3963
3964 #define PTTYPE_EPT 18 /* arbitrary */
3965 #define PTTYPE PTTYPE_EPT
3966 #include "paging_tmpl.h"
3967 #undef PTTYPE
3968
3969 #define PTTYPE 64
3970 #include "paging_tmpl.h"
3971 #undef PTTYPE
3972
3973 #define PTTYPE 32
3974 #include "paging_tmpl.h"
3975 #undef PTTYPE
3976
3977 static void
3978 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3979                         struct rsvd_bits_validate *rsvd_check,
3980                         int maxphyaddr, int level, bool nx, bool gbpages,
3981                         bool pse, bool amd)
3982 {
3983         u64 exb_bit_rsvd = 0;
3984         u64 gbpages_bit_rsvd = 0;
3985         u64 nonleaf_bit8_rsvd = 0;
3986
3987         rsvd_check->bad_mt_xwr = 0;
3988
3989         if (!nx)
3990                 exb_bit_rsvd = rsvd_bits(63, 63);
3991         if (!gbpages)
3992                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3993
3994         /*
3995          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3996          * leaf entries) on AMD CPUs only.
3997          */
3998         if (amd)
3999                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4000
4001         switch (level) {
4002         case PT32_ROOT_LEVEL:
4003                 /* no rsvd bits for 2 level 4K page table entries */
4004                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4005                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4006                 rsvd_check->rsvd_bits_mask[1][0] =
4007                         rsvd_check->rsvd_bits_mask[0][0];
4008
4009                 if (!pse) {
4010                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4011                         break;
4012                 }
4013
4014                 if (is_cpuid_PSE36())
4015                         /* 36bits PSE 4MB page */
4016                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4017                 else
4018                         /* 32 bits PSE 4MB page */
4019                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4020                 break;
4021         case PT32E_ROOT_LEVEL:
4022                 rsvd_check->rsvd_bits_mask[0][2] =
4023                         rsvd_bits(maxphyaddr, 63) |
4024                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4025                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4026                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4027                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4028                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4029                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4030                         rsvd_bits(maxphyaddr, 62) |
4031                         rsvd_bits(13, 20);              /* large page */
4032                 rsvd_check->rsvd_bits_mask[1][0] =
4033                         rsvd_check->rsvd_bits_mask[0][0];
4034                 break;
4035         case PT64_ROOT_5LEVEL:
4036                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4037                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4038                         rsvd_bits(maxphyaddr, 51);
4039                 rsvd_check->rsvd_bits_mask[1][4] =
4040                         rsvd_check->rsvd_bits_mask[0][4];
4041                 fallthrough;
4042         case PT64_ROOT_4LEVEL:
4043                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4044                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4045                         rsvd_bits(maxphyaddr, 51);
4046                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4047                         gbpages_bit_rsvd |
4048                         rsvd_bits(maxphyaddr, 51);
4049                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4050                         rsvd_bits(maxphyaddr, 51);
4051                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4052                         rsvd_bits(maxphyaddr, 51);
4053                 rsvd_check->rsvd_bits_mask[1][3] =
4054                         rsvd_check->rsvd_bits_mask[0][3];
4055                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4056                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4057                         rsvd_bits(13, 29);
4058                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4059                         rsvd_bits(maxphyaddr, 51) |
4060                         rsvd_bits(13, 20);              /* large page */
4061                 rsvd_check->rsvd_bits_mask[1][0] =
4062                         rsvd_check->rsvd_bits_mask[0][0];
4063                 break;
4064         }
4065 }
4066
4067 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4068                                   struct kvm_mmu *context)
4069 {
4070         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4071                                 cpuid_maxphyaddr(vcpu), context->root_level,
4072                                 context->nx,
4073                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4074                                 is_pse(vcpu),
4075                                 guest_cpuid_is_amd_or_hygon(vcpu));
4076 }
4077
4078 static void
4079 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4080                             int maxphyaddr, bool execonly)
4081 {
4082         u64 bad_mt_xwr;
4083
4084         rsvd_check->rsvd_bits_mask[0][4] =
4085                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4086         rsvd_check->rsvd_bits_mask[0][3] =
4087                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4088         rsvd_check->rsvd_bits_mask[0][2] =
4089                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4090         rsvd_check->rsvd_bits_mask[0][1] =
4091                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4092         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4093
4094         /* large page */
4095         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4096         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4097         rsvd_check->rsvd_bits_mask[1][2] =
4098                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4099         rsvd_check->rsvd_bits_mask[1][1] =
4100                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4101         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4102
4103         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4104         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4105         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4106         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4107         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4108         if (!execonly) {
4109                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4110                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4111         }
4112         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4113 }
4114
4115 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4116                 struct kvm_mmu *context, bool execonly)
4117 {
4118         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4119                                     cpuid_maxphyaddr(vcpu), execonly);
4120 }
4121
4122 /*
4123  * the page table on host is the shadow page table for the page
4124  * table in guest or amd nested guest, its mmu features completely
4125  * follow the features in guest.
4126  */
4127 void
4128 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4129 {
4130         bool uses_nx = context->nx ||
4131                 context->mmu_role.base.smep_andnot_wp;
4132         struct rsvd_bits_validate *shadow_zero_check;
4133         int i;
4134
4135         /*
4136          * Passing "true" to the last argument is okay; it adds a check
4137          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4138          */
4139         shadow_zero_check = &context->shadow_zero_check;
4140         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4141                                 shadow_phys_bits,
4142                                 context->shadow_root_level, uses_nx,
4143                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4144                                 is_pse(vcpu), true);
4145
4146         if (!shadow_me_mask)
4147                 return;
4148
4149         for (i = context->shadow_root_level; --i >= 0;) {
4150                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4151                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4152         }
4153
4154 }
4155 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4156
4157 static inline bool boot_cpu_is_amd(void)
4158 {
4159         WARN_ON_ONCE(!tdp_enabled);
4160         return shadow_x_mask == 0;
4161 }
4162
4163 /*
4164  * the direct page table on host, use as much mmu features as
4165  * possible, however, kvm currently does not do execution-protection.
4166  */
4167 static void
4168 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4169                                 struct kvm_mmu *context)
4170 {
4171         struct rsvd_bits_validate *shadow_zero_check;
4172         int i;
4173
4174         shadow_zero_check = &context->shadow_zero_check;
4175
4176         if (boot_cpu_is_amd())
4177                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4178                                         shadow_phys_bits,
4179                                         context->shadow_root_level, false,
4180                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4181                                         true, true);
4182         else
4183                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4184                                             shadow_phys_bits,
4185                                             false);
4186
4187         if (!shadow_me_mask)
4188                 return;
4189
4190         for (i = context->shadow_root_level; --i >= 0;) {
4191                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4192                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4193         }
4194 }
4195
4196 /*
4197  * as the comments in reset_shadow_zero_bits_mask() except it
4198  * is the shadow page table for intel nested guest.
4199  */
4200 static void
4201 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4202                                 struct kvm_mmu *context, bool execonly)
4203 {
4204         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4205                                     shadow_phys_bits, execonly);
4206 }
4207
4208 #define BYTE_MASK(access) \
4209         ((1 & (access) ? 2 : 0) | \
4210          (2 & (access) ? 4 : 0) | \
4211          (3 & (access) ? 8 : 0) | \
4212          (4 & (access) ? 16 : 0) | \
4213          (5 & (access) ? 32 : 0) | \
4214          (6 & (access) ? 64 : 0) | \
4215          (7 & (access) ? 128 : 0))
4216
4217
4218 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4219                                       struct kvm_mmu *mmu, bool ept)
4220 {
4221         unsigned byte;
4222
4223         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4224         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4225         const u8 u = BYTE_MASK(ACC_USER_MASK);
4226
4227         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4228         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4229         bool cr0_wp = is_write_protection(vcpu);
4230
4231         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4232                 unsigned pfec = byte << 1;
4233
4234                 /*
4235                  * Each "*f" variable has a 1 bit for each UWX value
4236                  * that causes a fault with the given PFEC.
4237                  */
4238
4239                 /* Faults from writes to non-writable pages */
4240                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4241                 /* Faults from user mode accesses to supervisor pages */
4242                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4243                 /* Faults from fetches of non-executable pages*/
4244                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4245                 /* Faults from kernel mode fetches of user pages */
4246                 u8 smepf = 0;
4247                 /* Faults from kernel mode accesses of user pages */
4248                 u8 smapf = 0;
4249
4250                 if (!ept) {
4251                         /* Faults from kernel mode accesses to user pages */
4252                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4253
4254                         /* Not really needed: !nx will cause pte.nx to fault */
4255                         if (!mmu->nx)
4256                                 ff = 0;
4257
4258                         /* Allow supervisor writes if !cr0.wp */
4259                         if (!cr0_wp)
4260                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4261
4262                         /* Disallow supervisor fetches of user code if cr4.smep */
4263                         if (cr4_smep)
4264                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4265
4266                         /*
4267                          * SMAP:kernel-mode data accesses from user-mode
4268                          * mappings should fault. A fault is considered
4269                          * as a SMAP violation if all of the following
4270                          * conditions are true:
4271                          *   - X86_CR4_SMAP is set in CR4
4272                          *   - A user page is accessed
4273                          *   - The access is not a fetch
4274                          *   - Page fault in kernel mode
4275                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4276                          *
4277                          * Here, we cover the first three conditions.
4278                          * The fourth is computed dynamically in permission_fault();
4279                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4280                          * *not* subject to SMAP restrictions.
4281                          */
4282                         if (cr4_smap)
4283                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4284                 }
4285
4286                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4287         }
4288 }
4289
4290 /*
4291 * PKU is an additional mechanism by which the paging controls access to
4292 * user-mode addresses based on the value in the PKRU register.  Protection
4293 * key violations are reported through a bit in the page fault error code.
4294 * Unlike other bits of the error code, the PK bit is not known at the
4295 * call site of e.g. gva_to_gpa; it must be computed directly in
4296 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4297 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4298 *
4299 * In particular the following conditions come from the error code, the
4300 * page tables and the machine state:
4301 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4302 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4303 * - PK is always zero if U=0 in the page tables
4304 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4305 *
4306 * The PKRU bitmask caches the result of these four conditions.  The error
4307 * code (minus the P bit) and the page table's U bit form an index into the
4308 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4309 * with the two bits of the PKRU register corresponding to the protection key.
4310 * For the first three conditions above the bits will be 00, thus masking
4311 * away both AD and WD.  For all reads or if the last condition holds, WD
4312 * only will be masked away.
4313 */
4314 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4315                                 bool ept)
4316 {
4317         unsigned bit;
4318         bool wp;
4319
4320         if (ept) {
4321                 mmu->pkru_mask = 0;
4322                 return;
4323         }
4324
4325         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4326         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4327                 mmu->pkru_mask = 0;
4328                 return;
4329         }
4330
4331         wp = is_write_protection(vcpu);
4332
4333         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4334                 unsigned pfec, pkey_bits;
4335                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4336
4337                 pfec = bit << 1;
4338                 ff = pfec & PFERR_FETCH_MASK;
4339                 uf = pfec & PFERR_USER_MASK;
4340                 wf = pfec & PFERR_WRITE_MASK;
4341
4342                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4343                 pte_user = pfec & PFERR_RSVD_MASK;
4344
4345                 /*
4346                  * Only need to check the access which is not an
4347                  * instruction fetch and is to a user page.
4348                  */
4349                 check_pkey = (!ff && pte_user);
4350                 /*
4351                  * write access is controlled by PKRU if it is a
4352                  * user access or CR0.WP = 1.
4353                  */
4354                 check_write = check_pkey && wf && (uf || wp);
4355
4356                 /* PKRU.AD stops both read and write access. */
4357                 pkey_bits = !!check_pkey;
4358                 /* PKRU.WD stops write access. */
4359                 pkey_bits |= (!!check_write) << 1;
4360
4361                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4362         }
4363 }
4364
4365 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4366 {
4367         unsigned root_level = mmu->root_level;
4368
4369         mmu->last_nonleaf_level = root_level;
4370         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4371                 mmu->last_nonleaf_level++;
4372 }
4373
4374 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4375                                          struct kvm_mmu *context,
4376                                          int level)
4377 {
4378         context->nx = is_nx(vcpu);
4379         context->root_level = level;
4380
4381         reset_rsvds_bits_mask(vcpu, context);
4382         update_permission_bitmask(vcpu, context, false);
4383         update_pkru_bitmask(vcpu, context, false);
4384         update_last_nonleaf_level(vcpu, context);
4385
4386         MMU_WARN_ON(!is_pae(vcpu));
4387         context->page_fault = paging64_page_fault;
4388         context->gva_to_gpa = paging64_gva_to_gpa;
4389         context->sync_page = paging64_sync_page;
4390         context->invlpg = paging64_invlpg;
4391         context->update_pte = paging64_update_pte;
4392         context->shadow_root_level = level;
4393         context->direct_map = false;
4394 }
4395
4396 static void paging64_init_context(struct kvm_vcpu *vcpu,
4397                                   struct kvm_mmu *context)
4398 {
4399         int root_level = is_la57_mode(vcpu) ?
4400                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4401
4402         paging64_init_context_common(vcpu, context, root_level);
4403 }
4404
4405 static void paging32_init_context(struct kvm_vcpu *vcpu,
4406                                   struct kvm_mmu *context)
4407 {
4408         context->nx = false;
4409         context->root_level = PT32_ROOT_LEVEL;
4410
4411         reset_rsvds_bits_mask(vcpu, context);
4412         update_permission_bitmask(vcpu, context, false);
4413         update_pkru_bitmask(vcpu, context, false);
4414         update_last_nonleaf_level(vcpu, context);
4415
4416         context->page_fault = paging32_page_fault;
4417         context->gva_to_gpa = paging32_gva_to_gpa;
4418         context->sync_page = paging32_sync_page;
4419         context->invlpg = paging32_invlpg;
4420         context->update_pte = paging32_update_pte;
4421         context->shadow_root_level = PT32E_ROOT_LEVEL;
4422         context->direct_map = false;
4423 }
4424
4425 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4426                                    struct kvm_mmu *context)
4427 {
4428         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4429 }
4430
4431 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4432 {
4433         union kvm_mmu_extended_role ext = {0};
4434
4435         ext.cr0_pg = !!is_paging(vcpu);
4436         ext.cr4_pae = !!is_pae(vcpu);
4437         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4438         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4439         ext.cr4_pse = !!is_pse(vcpu);
4440         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4441         ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4442
4443         ext.valid = 1;
4444
4445         return ext;
4446 }
4447
4448 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4449                                                    bool base_only)
4450 {
4451         union kvm_mmu_role role = {0};
4452
4453         role.base.access = ACC_ALL;
4454         role.base.nxe = !!is_nx(vcpu);
4455         role.base.cr0_wp = is_write_protection(vcpu);
4456         role.base.smm = is_smm(vcpu);
4457         role.base.guest_mode = is_guest_mode(vcpu);
4458
4459         if (base_only)
4460                 return role;
4461
4462         role.ext = kvm_calc_mmu_role_ext(vcpu);
4463
4464         return role;
4465 }
4466
4467 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4468 {
4469         /* Use 5-level TDP if and only if it's useful/necessary. */
4470         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4471                 return 4;
4472
4473         return max_tdp_level;
4474 }
4475
4476 static union kvm_mmu_role
4477 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4478 {
4479         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4480
4481         role.base.ad_disabled = (shadow_accessed_mask == 0);
4482         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4483         role.base.direct = true;
4484         role.base.gpte_is_8_bytes = true;
4485
4486         return role;
4487 }
4488
4489 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4490 {
4491         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4492         union kvm_mmu_role new_role =
4493                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4494
4495         if (new_role.as_u64 == context->mmu_role.as_u64)
4496                 return;
4497
4498         context->mmu_role.as_u64 = new_role.as_u64;
4499         context->page_fault = kvm_tdp_page_fault;
4500         context->sync_page = nonpaging_sync_page;
4501         context->invlpg = NULL;
4502         context->update_pte = nonpaging_update_pte;
4503         context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4504         context->direct_map = true;
4505         context->get_guest_pgd = get_cr3;
4506         context->get_pdptr = kvm_pdptr_read;
4507         context->inject_page_fault = kvm_inject_page_fault;
4508
4509         if (!is_paging(vcpu)) {
4510                 context->nx = false;
4511                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4512                 context->root_level = 0;
4513         } else if (is_long_mode(vcpu)) {
4514                 context->nx = is_nx(vcpu);
4515                 context->root_level = is_la57_mode(vcpu) ?
4516                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4517                 reset_rsvds_bits_mask(vcpu, context);
4518                 context->gva_to_gpa = paging64_gva_to_gpa;
4519         } else if (is_pae(vcpu)) {
4520                 context->nx = is_nx(vcpu);
4521                 context->root_level = PT32E_ROOT_LEVEL;
4522                 reset_rsvds_bits_mask(vcpu, context);
4523                 context->gva_to_gpa = paging64_gva_to_gpa;
4524         } else {
4525                 context->nx = false;
4526                 context->root_level = PT32_ROOT_LEVEL;
4527                 reset_rsvds_bits_mask(vcpu, context);
4528                 context->gva_to_gpa = paging32_gva_to_gpa;
4529         }
4530
4531         update_permission_bitmask(vcpu, context, false);
4532         update_pkru_bitmask(vcpu, context, false);
4533         update_last_nonleaf_level(vcpu, context);
4534         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4535 }
4536
4537 static union kvm_mmu_role
4538 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4539 {
4540         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4541
4542         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4543                 !is_write_protection(vcpu);
4544         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4545                 !is_write_protection(vcpu);
4546         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4547
4548         return role;
4549 }
4550
4551 static union kvm_mmu_role
4552 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4553 {
4554         union kvm_mmu_role role =
4555                 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4556
4557         role.base.direct = !is_paging(vcpu);
4558
4559         if (!is_long_mode(vcpu))
4560                 role.base.level = PT32E_ROOT_LEVEL;
4561         else if (is_la57_mode(vcpu))
4562                 role.base.level = PT64_ROOT_5LEVEL;
4563         else
4564                 role.base.level = PT64_ROOT_4LEVEL;
4565
4566         return role;
4567 }
4568
4569 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4570                                     u32 cr0, u32 cr4, u32 efer,
4571                                     union kvm_mmu_role new_role)
4572 {
4573         if (!(cr0 & X86_CR0_PG))
4574                 nonpaging_init_context(vcpu, context);
4575         else if (efer & EFER_LMA)
4576                 paging64_init_context(vcpu, context);
4577         else if (cr4 & X86_CR4_PAE)
4578                 paging32E_init_context(vcpu, context);
4579         else
4580                 paging32_init_context(vcpu, context);
4581
4582         context->mmu_role.as_u64 = new_role.as_u64;
4583         reset_shadow_zero_bits_mask(vcpu, context);
4584 }
4585
4586 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4587 {
4588         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4589         union kvm_mmu_role new_role =
4590                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4591
4592         if (new_role.as_u64 != context->mmu_role.as_u64)
4593                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4594 }
4595
4596 static union kvm_mmu_role
4597 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4598 {
4599         union kvm_mmu_role role =
4600                 kvm_calc_shadow_root_page_role_common(vcpu, false);
4601
4602         role.base.direct = false;
4603         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4604
4605         return role;
4606 }
4607
4608 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4609                              gpa_t nested_cr3)
4610 {
4611         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4612         union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4613
4614         context->shadow_root_level = new_role.base.level;
4615
4616         __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4617
4618         if (new_role.as_u64 != context->mmu_role.as_u64)
4619                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4620 }
4621 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4622
4623 static union kvm_mmu_role
4624 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4625                                    bool execonly, u8 level)
4626 {
4627         union kvm_mmu_role role = {0};
4628
4629         /* SMM flag is inherited from root_mmu */
4630         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4631
4632         role.base.level = level;
4633         role.base.gpte_is_8_bytes = true;
4634         role.base.direct = false;
4635         role.base.ad_disabled = !accessed_dirty;
4636         role.base.guest_mode = true;
4637         role.base.access = ACC_ALL;
4638
4639         /*
4640          * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4641          * SMAP variation to denote shadow EPT entries.
4642          */
4643         role.base.cr0_wp = true;
4644         role.base.smap_andnot_wp = true;
4645
4646         role.ext = kvm_calc_mmu_role_ext(vcpu);
4647         role.ext.execonly = execonly;
4648
4649         return role;
4650 }
4651
4652 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4653                              bool accessed_dirty, gpa_t new_eptp)
4654 {
4655         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4656         u8 level = vmx_eptp_page_walk_level(new_eptp);
4657         union kvm_mmu_role new_role =
4658                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4659                                                    execonly, level);
4660
4661         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4662
4663         if (new_role.as_u64 == context->mmu_role.as_u64)
4664                 return;
4665
4666         context->shadow_root_level = level;
4667
4668         context->nx = true;
4669         context->ept_ad = accessed_dirty;
4670         context->page_fault = ept_page_fault;
4671         context->gva_to_gpa = ept_gva_to_gpa;
4672         context->sync_page = ept_sync_page;
4673         context->invlpg = ept_invlpg;
4674         context->update_pte = ept_update_pte;
4675         context->root_level = level;
4676         context->direct_map = false;
4677         context->mmu_role.as_u64 = new_role.as_u64;
4678
4679         update_permission_bitmask(vcpu, context, true);
4680         update_pkru_bitmask(vcpu, context, true);
4681         update_last_nonleaf_level(vcpu, context);
4682         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4683         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4684 }
4685 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4686
4687 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4688 {
4689         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4690
4691         kvm_init_shadow_mmu(vcpu,
4692                             kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4693                             kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4694                             vcpu->arch.efer);
4695
4696         context->get_guest_pgd     = get_cr3;
4697         context->get_pdptr         = kvm_pdptr_read;
4698         context->inject_page_fault = kvm_inject_page_fault;
4699 }
4700
4701 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4702 {
4703         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4704         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4705
4706         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4707                 return;
4708
4709         g_context->mmu_role.as_u64 = new_role.as_u64;
4710         g_context->get_guest_pgd     = get_cr3;
4711         g_context->get_pdptr         = kvm_pdptr_read;
4712         g_context->inject_page_fault = kvm_inject_page_fault;
4713
4714         /*
4715          * L2 page tables are never shadowed, so there is no need to sync
4716          * SPTEs.
4717          */
4718         g_context->invlpg            = NULL;
4719
4720         /*
4721          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4722          * L1's nested page tables (e.g. EPT12). The nested translation
4723          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4724          * L2's page tables as the first level of translation and L1's
4725          * nested page tables as the second level of translation. Basically
4726          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4727          */
4728         if (!is_paging(vcpu)) {
4729                 g_context->nx = false;
4730                 g_context->root_level = 0;
4731                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4732         } else if (is_long_mode(vcpu)) {
4733                 g_context->nx = is_nx(vcpu);
4734                 g_context->root_level = is_la57_mode(vcpu) ?
4735                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4736                 reset_rsvds_bits_mask(vcpu, g_context);
4737                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4738         } else if (is_pae(vcpu)) {
4739                 g_context->nx = is_nx(vcpu);
4740                 g_context->root_level = PT32E_ROOT_LEVEL;
4741                 reset_rsvds_bits_mask(vcpu, g_context);
4742                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4743         } else {
4744                 g_context->nx = false;
4745                 g_context->root_level = PT32_ROOT_LEVEL;
4746                 reset_rsvds_bits_mask(vcpu, g_context);
4747                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4748         }
4749
4750         update_permission_bitmask(vcpu, g_context, false);
4751         update_pkru_bitmask(vcpu, g_context, false);
4752         update_last_nonleaf_level(vcpu, g_context);
4753 }
4754
4755 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4756 {
4757         if (reset_roots) {
4758                 uint i;
4759
4760                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4761
4762                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4763                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4764         }
4765
4766         if (mmu_is_nested(vcpu))
4767                 init_kvm_nested_mmu(vcpu);
4768         else if (tdp_enabled)
4769                 init_kvm_tdp_mmu(vcpu);
4770         else
4771                 init_kvm_softmmu(vcpu);
4772 }
4773 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4774
4775 static union kvm_mmu_page_role
4776 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4777 {
4778         union kvm_mmu_role role;
4779
4780         if (tdp_enabled)
4781                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4782         else
4783                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4784
4785         return role.base;
4786 }
4787
4788 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4789 {
4790         kvm_mmu_unload(vcpu);
4791         kvm_init_mmu(vcpu, true);
4792 }
4793 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4794
4795 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4796 {
4797         int r;
4798
4799         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4800         if (r)
4801                 goto out;
4802         r = mmu_alloc_roots(vcpu);
4803         kvm_mmu_sync_roots(vcpu);
4804         if (r)
4805                 goto out;
4806         kvm_mmu_load_pgd(vcpu);
4807         kvm_x86_ops.tlb_flush_current(vcpu);
4808 out:
4809         return r;
4810 }
4811 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4812
4813 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4814 {
4815         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4816         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4817         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4818         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4819 }
4820 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4821
4822 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4823                                   struct kvm_mmu_page *sp, u64 *spte,
4824                                   const void *new)
4825 {
4826         if (sp->role.level != PG_LEVEL_4K) {
4827                 ++vcpu->kvm->stat.mmu_pde_zapped;
4828                 return;
4829         }
4830
4831         ++vcpu->kvm->stat.mmu_pte_updated;
4832         vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
4833 }
4834
4835 static bool need_remote_flush(u64 old, u64 new)
4836 {
4837         if (!is_shadow_present_pte(old))
4838                 return false;
4839         if (!is_shadow_present_pte(new))
4840                 return true;
4841         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4842                 return true;
4843         old ^= shadow_nx_mask;
4844         new ^= shadow_nx_mask;
4845         return (old & ~new & PT64_PERM_MASK) != 0;
4846 }
4847
4848 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4849                                     int *bytes)
4850 {
4851         u64 gentry = 0;
4852         int r;
4853
4854         /*
4855          * Assume that the pte write on a page table of the same type
4856          * as the current vcpu paging mode since we update the sptes only
4857          * when they have the same mode.
4858          */
4859         if (is_pae(vcpu) && *bytes == 4) {
4860                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4861                 *gpa &= ~(gpa_t)7;
4862                 *bytes = 8;
4863         }
4864
4865         if (*bytes == 4 || *bytes == 8) {
4866                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4867                 if (r)
4868                         gentry = 0;
4869         }
4870
4871         return gentry;
4872 }
4873
4874 /*
4875  * If we're seeing too many writes to a page, it may no longer be a page table,
4876  * or we may be forking, in which case it is better to unmap the page.
4877  */
4878 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4879 {
4880         /*
4881          * Skip write-flooding detected for the sp whose level is 1, because
4882          * it can become unsync, then the guest page is not write-protected.
4883          */
4884         if (sp->role.level == PG_LEVEL_4K)
4885                 return false;
4886
4887         atomic_inc(&sp->write_flooding_count);
4888         return atomic_read(&sp->write_flooding_count) >= 3;
4889 }
4890
4891 /*
4892  * Misaligned accesses are too much trouble to fix up; also, they usually
4893  * indicate a page is not used as a page table.
4894  */
4895 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4896                                     int bytes)
4897 {
4898         unsigned offset, pte_size, misaligned;
4899
4900         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4901                  gpa, bytes, sp->role.word);
4902
4903         offset = offset_in_page(gpa);
4904         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4905
4906         /*
4907          * Sometimes, the OS only writes the last one bytes to update status
4908          * bits, for example, in linux, andb instruction is used in clear_bit().
4909          */
4910         if (!(offset & (pte_size - 1)) && bytes == 1)
4911                 return false;
4912
4913         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4914         misaligned |= bytes < 4;
4915
4916         return misaligned;
4917 }
4918
4919 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4920 {
4921         unsigned page_offset, quadrant;
4922         u64 *spte;
4923         int level;
4924
4925         page_offset = offset_in_page(gpa);
4926         level = sp->role.level;
4927         *nspte = 1;
4928         if (!sp->role.gpte_is_8_bytes) {
4929                 page_offset <<= 1;      /* 32->64 */
4930                 /*
4931                  * A 32-bit pde maps 4MB while the shadow pdes map
4932                  * only 2MB.  So we need to double the offset again
4933                  * and zap two pdes instead of one.
4934                  */
4935                 if (level == PT32_ROOT_LEVEL) {
4936                         page_offset &= ~7; /* kill rounding error */
4937                         page_offset <<= 1;
4938                         *nspte = 2;
4939                 }
4940                 quadrant = page_offset >> PAGE_SHIFT;
4941                 page_offset &= ~PAGE_MASK;
4942                 if (quadrant != sp->role.quadrant)
4943                         return NULL;
4944         }
4945
4946         spte = &sp->spt[page_offset / sizeof(*spte)];
4947         return spte;
4948 }
4949
4950 /*
4951  * Ignore various flags when determining if a SPTE can be immediately
4952  * overwritten for the current MMU.
4953  *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
4954  *    match the current MMU role, as MMU's level tracks the root level.
4955  *  - access: updated based on the new guest PTE
4956  *  - quadrant: handled by get_written_sptes()
4957  *  - invalid: always false (loop only walks valid shadow pages)
4958  */
4959 static const union kvm_mmu_page_role role_ign = {
4960         .level = 0xf,
4961         .access = 0x7,
4962         .quadrant = 0x3,
4963         .invalid = 0x1,
4964 };
4965
4966 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4967                               const u8 *new, int bytes,
4968                               struct kvm_page_track_notifier_node *node)
4969 {
4970         gfn_t gfn = gpa >> PAGE_SHIFT;
4971         struct kvm_mmu_page *sp;
4972         LIST_HEAD(invalid_list);
4973         u64 entry, gentry, *spte;
4974         int npte;
4975         bool remote_flush, local_flush;
4976
4977         /*
4978          * If we don't have indirect shadow pages, it means no page is
4979          * write-protected, so we can exit simply.
4980          */
4981         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4982                 return;
4983
4984         remote_flush = local_flush = false;
4985
4986         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4987
4988         /*
4989          * No need to care whether allocation memory is successful
4990          * or not since pte prefetch is skiped if it does not have
4991          * enough objects in the cache.
4992          */
4993         mmu_topup_memory_caches(vcpu, true);
4994
4995         spin_lock(&vcpu->kvm->mmu_lock);
4996
4997         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4998
4999         ++vcpu->kvm->stat.mmu_pte_write;
5000         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5001
5002         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5003                 if (detect_write_misaligned(sp, gpa, bytes) ||
5004                       detect_write_flooding(sp)) {
5005                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5006                         ++vcpu->kvm->stat.mmu_flooded;
5007                         continue;
5008                 }
5009
5010                 spte = get_written_sptes(sp, gpa, &npte);
5011                 if (!spte)
5012                         continue;
5013
5014                 local_flush = true;
5015                 while (npte--) {
5016                         u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5017
5018                         entry = *spte;
5019                         mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5020                         if (gentry &&
5021                             !((sp->role.word ^ base_role) & ~role_ign.word) &&
5022                             rmap_can_add(vcpu))
5023                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5024                         if (need_remote_flush(entry, *spte))
5025                                 remote_flush = true;
5026                         ++spte;
5027                 }
5028         }
5029         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5030         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5031         spin_unlock(&vcpu->kvm->mmu_lock);
5032 }
5033
5034 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5035 {
5036         gpa_t gpa;
5037         int r;
5038
5039         if (vcpu->arch.mmu->direct_map)
5040                 return 0;
5041
5042         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5043
5044         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5045
5046         return r;
5047 }
5048 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5049
5050 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5051                        void *insn, int insn_len)
5052 {
5053         int r, emulation_type = EMULTYPE_PF;
5054         bool direct = vcpu->arch.mmu->direct_map;
5055
5056         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5057                 return RET_PF_RETRY;
5058
5059         r = RET_PF_INVALID;
5060         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5061                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5062                 if (r == RET_PF_EMULATE)
5063                         goto emulate;
5064         }
5065
5066         if (r == RET_PF_INVALID) {
5067                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5068                                           lower_32_bits(error_code), false);
5069                 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5070                         return -EIO;
5071         }
5072
5073         if (r < 0)
5074                 return r;
5075         if (r != RET_PF_EMULATE)
5076                 return 1;
5077
5078         /*
5079          * Before emulating the instruction, check if the error code
5080          * was due to a RO violation while translating the guest page.
5081          * This can occur when using nested virtualization with nested
5082          * paging in both guests. If true, we simply unprotect the page
5083          * and resume the guest.
5084          */
5085         if (vcpu->arch.mmu->direct_map &&
5086             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5087                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5088                 return 1;
5089         }
5090
5091         /*
5092          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5093          * optimistically try to just unprotect the page and let the processor
5094          * re-execute the instruction that caused the page fault.  Do not allow
5095          * retrying MMIO emulation, as it's not only pointless but could also
5096          * cause us to enter an infinite loop because the processor will keep
5097          * faulting on the non-existent MMIO address.  Retrying an instruction
5098          * from a nested guest is also pointless and dangerous as we are only
5099          * explicitly shadowing L1's page tables, i.e. unprotecting something
5100          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5101          */
5102         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5103                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5104 emulate:
5105         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5106                                        insn_len);
5107 }
5108 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5109
5110 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5111                             gva_t gva, hpa_t root_hpa)
5112 {
5113         int i;
5114
5115         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5116         if (mmu != &vcpu->arch.guest_mmu) {
5117                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5118                 if (is_noncanonical_address(gva, vcpu))
5119                         return;
5120
5121                 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5122         }
5123
5124         if (!mmu->invlpg)
5125                 return;
5126
5127         if (root_hpa == INVALID_PAGE) {
5128                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5129
5130                 /*
5131                  * INVLPG is required to invalidate any global mappings for the VA,
5132                  * irrespective of PCID. Since it would take us roughly similar amount
5133                  * of work to determine whether any of the prev_root mappings of the VA
5134                  * is marked global, or to just sync it blindly, so we might as well
5135                  * just always sync it.
5136                  *
5137                  * Mappings not reachable via the current cr3 or the prev_roots will be
5138                  * synced when switching to that cr3, so nothing needs to be done here
5139                  * for them.
5140                  */
5141                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5142                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5143                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5144         } else {
5145                 mmu->invlpg(vcpu, gva, root_hpa);
5146         }
5147 }
5148 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5149
5150 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5151 {
5152         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5153         ++vcpu->stat.invlpg;
5154 }
5155 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5156
5157
5158 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5159 {
5160         struct kvm_mmu *mmu = vcpu->arch.mmu;
5161         bool tlb_flush = false;
5162         uint i;
5163
5164         if (pcid == kvm_get_active_pcid(vcpu)) {
5165                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5166                 tlb_flush = true;
5167         }
5168
5169         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5170                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5171                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5172                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5173                         tlb_flush = true;
5174                 }
5175         }
5176
5177         if (tlb_flush)
5178                 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5179
5180         ++vcpu->stat.invlpg;
5181
5182         /*
5183          * Mappings not reachable via the current cr3 or the prev_roots will be
5184          * synced when switching to that cr3, so nothing needs to be done here
5185          * for them.
5186          */
5187 }
5188 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5189
5190 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5191                        int tdp_huge_page_level)
5192 {
5193         tdp_enabled = enable_tdp;
5194         max_tdp_level = tdp_max_root_level;
5195
5196         /*
5197          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5198          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5199          * the kernel is not.  But, KVM never creates a page size greater than
5200          * what is used by the kernel for any given HVA, i.e. the kernel's
5201          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5202          */
5203         if (tdp_enabled)
5204                 max_huge_page_level = tdp_huge_page_level;
5205         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5206                 max_huge_page_level = PG_LEVEL_1G;
5207         else
5208                 max_huge_page_level = PG_LEVEL_2M;
5209 }
5210 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5211
5212 /* The return value indicates if tlb flush on all vcpus is needed. */
5213 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5214
5215 /* The caller should hold mmu-lock before calling this function. */
5216 static __always_inline bool
5217 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5218                         slot_level_handler fn, int start_level, int end_level,
5219                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5220 {
5221         struct slot_rmap_walk_iterator iterator;
5222         bool flush = false;
5223
5224         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5225                         end_gfn, &iterator) {
5226                 if (iterator.rmap)
5227                         flush |= fn(kvm, iterator.rmap);
5228
5229                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5230                         if (flush && lock_flush_tlb) {
5231                                 kvm_flush_remote_tlbs_with_address(kvm,
5232                                                 start_gfn,
5233                                                 iterator.gfn - start_gfn + 1);
5234                                 flush = false;
5235                         }
5236                         cond_resched_lock(&kvm->mmu_lock);
5237                 }
5238         }
5239
5240         if (flush && lock_flush_tlb) {
5241                 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5242                                                    end_gfn - start_gfn + 1);
5243                 flush = false;
5244         }
5245
5246         return flush;
5247 }
5248
5249 static __always_inline bool
5250 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5251                   slot_level_handler fn, int start_level, int end_level,
5252                   bool lock_flush_tlb)
5253 {
5254         return slot_handle_level_range(kvm, memslot, fn, start_level,
5255                         end_level, memslot->base_gfn,
5256                         memslot->base_gfn + memslot->npages - 1,
5257                         lock_flush_tlb);
5258 }
5259
5260 static __always_inline bool
5261 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5262                       slot_level_handler fn, bool lock_flush_tlb)
5263 {
5264         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5265                                  KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5266 }
5267
5268 static __always_inline bool
5269 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5270                         slot_level_handler fn, bool lock_flush_tlb)
5271 {
5272         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5273                                  KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5274 }
5275
5276 static __always_inline bool
5277 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5278                  slot_level_handler fn, bool lock_flush_tlb)
5279 {
5280         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5281                                  PG_LEVEL_4K, lock_flush_tlb);
5282 }
5283
5284 static void free_mmu_pages(struct kvm_mmu *mmu)
5285 {
5286         free_page((unsigned long)mmu->pae_root);
5287         free_page((unsigned long)mmu->lm_root);
5288 }
5289
5290 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5291 {
5292         struct page *page;
5293         int i;
5294
5295         mmu->root_hpa = INVALID_PAGE;
5296         mmu->root_pgd = 0;
5297         mmu->translate_gpa = translate_gpa;
5298         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5299                 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5300
5301         /*
5302          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5303          * while the PDP table is a per-vCPU construct that's allocated at MMU
5304          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5305          * x86_64.  Therefore we need to allocate the PDP table in the first
5306          * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5307          * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5308          * skip allocating the PDP table.
5309          */
5310         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5311                 return 0;
5312
5313         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5314         if (!page)
5315                 return -ENOMEM;
5316
5317         mmu->pae_root = page_address(page);
5318         for (i = 0; i < 4; ++i)
5319                 mmu->pae_root[i] = INVALID_PAGE;
5320
5321         return 0;
5322 }
5323
5324 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5325 {
5326         int ret;
5327
5328         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5329         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5330
5331         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5332         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5333
5334         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5335
5336         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5337         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5338
5339         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5340
5341         ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5342         if (ret)
5343                 return ret;
5344
5345         ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5346         if (ret)
5347                 goto fail_allocate_root;
5348
5349         return ret;
5350  fail_allocate_root:
5351         free_mmu_pages(&vcpu->arch.guest_mmu);
5352         return ret;
5353 }
5354
5355 #define BATCH_ZAP_PAGES 10
5356 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5357 {
5358         struct kvm_mmu_page *sp, *node;
5359         int nr_zapped, batch = 0;
5360
5361 restart:
5362         list_for_each_entry_safe_reverse(sp, node,
5363               &kvm->arch.active_mmu_pages, link) {
5364                 /*
5365                  * No obsolete valid page exists before a newly created page
5366                  * since active_mmu_pages is a FIFO list.
5367                  */
5368                 if (!is_obsolete_sp(kvm, sp))
5369                         break;
5370
5371                 /*
5372                  * Invalid pages should never land back on the list of active
5373                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
5374                  * infinite loop if the page gets put back on the list (again).
5375                  */
5376                 if (WARN_ON(sp->role.invalid))
5377                         continue;
5378
5379                 /*
5380                  * No need to flush the TLB since we're only zapping shadow
5381                  * pages with an obsolete generation number and all vCPUS have
5382                  * loaded a new root, i.e. the shadow pages being zapped cannot
5383                  * be in active use by the guest.
5384                  */
5385                 if (batch >= BATCH_ZAP_PAGES &&
5386                     cond_resched_lock(&kvm->mmu_lock)) {
5387                         batch = 0;
5388                         goto restart;
5389                 }
5390
5391                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5392                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5393                         batch += nr_zapped;
5394                         goto restart;
5395                 }
5396         }
5397
5398         /*
5399          * Trigger a remote TLB flush before freeing the page tables to ensure
5400          * KVM is not in the middle of a lockless shadow page table walk, which
5401          * may reference the pages.
5402          */
5403         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5404 }
5405
5406 /*
5407  * Fast invalidate all shadow pages and use lock-break technique
5408  * to zap obsolete pages.
5409  *
5410  * It's required when memslot is being deleted or VM is being
5411  * destroyed, in these cases, we should ensure that KVM MMU does
5412  * not use any resource of the being-deleted slot or all slots
5413  * after calling the function.
5414  */
5415 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5416 {
5417         lockdep_assert_held(&kvm->slots_lock);
5418
5419         spin_lock(&kvm->mmu_lock);
5420         trace_kvm_mmu_zap_all_fast(kvm);
5421
5422         /*
5423          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5424          * held for the entire duration of zapping obsolete pages, it's
5425          * impossible for there to be multiple invalid generations associated
5426          * with *valid* shadow pages at any given time, i.e. there is exactly
5427          * one valid generation and (at most) one invalid generation.
5428          */
5429         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5430
5431         /*
5432          * Notify all vcpus to reload its shadow page table and flush TLB.
5433          * Then all vcpus will switch to new shadow page table with the new
5434          * mmu_valid_gen.
5435          *
5436          * Note: we need to do this under the protection of mmu_lock,
5437          * otherwise, vcpu would purge shadow page but miss tlb flush.
5438          */
5439         kvm_reload_remote_mmus(kvm);
5440
5441         kvm_zap_obsolete_pages(kvm);
5442
5443         if (kvm->arch.tdp_mmu_enabled)
5444                 kvm_tdp_mmu_zap_all(kvm);
5445
5446         spin_unlock(&kvm->mmu_lock);
5447 }
5448
5449 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5450 {
5451         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5452 }
5453
5454 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5455                         struct kvm_memory_slot *slot,
5456                         struct kvm_page_track_notifier_node *node)
5457 {
5458         kvm_mmu_zap_all_fast(kvm);
5459 }
5460
5461 void kvm_mmu_init_vm(struct kvm *kvm)
5462 {
5463         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5464
5465         kvm_mmu_init_tdp_mmu(kvm);
5466
5467         node->track_write = kvm_mmu_pte_write;
5468         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5469         kvm_page_track_register_notifier(kvm, node);
5470 }
5471
5472 void kvm_mmu_uninit_vm(struct kvm *kvm)
5473 {
5474         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5475
5476         kvm_page_track_unregister_notifier(kvm, node);
5477
5478         kvm_mmu_uninit_tdp_mmu(kvm);
5479 }
5480
5481 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5482 {
5483         struct kvm_memslots *slots;
5484         struct kvm_memory_slot *memslot;
5485         int i;
5486         bool flush;
5487
5488         spin_lock(&kvm->mmu_lock);
5489         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5490                 slots = __kvm_memslots(kvm, i);
5491                 kvm_for_each_memslot(memslot, slots) {
5492                         gfn_t start, end;
5493
5494                         start = max(gfn_start, memslot->base_gfn);
5495                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5496                         if (start >= end)
5497                                 continue;
5498
5499                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5500                                                 PG_LEVEL_4K,
5501                                                 KVM_MAX_HUGEPAGE_LEVEL,
5502                                                 start, end - 1, true);
5503                 }
5504         }
5505
5506         if (kvm->arch.tdp_mmu_enabled) {
5507                 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5508                 if (flush)
5509                         kvm_flush_remote_tlbs(kvm);
5510         }
5511
5512         spin_unlock(&kvm->mmu_lock);
5513 }
5514
5515 static bool slot_rmap_write_protect(struct kvm *kvm,
5516                                     struct kvm_rmap_head *rmap_head)
5517 {
5518         return __rmap_write_protect(kvm, rmap_head, false);
5519 }
5520
5521 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5522                                       struct kvm_memory_slot *memslot,
5523                                       int start_level)
5524 {
5525         bool flush;
5526
5527         spin_lock(&kvm->mmu_lock);
5528         flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5529                                 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5530         if (kvm->arch.tdp_mmu_enabled)
5531                 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5532         spin_unlock(&kvm->mmu_lock);
5533
5534         /*
5535          * We can flush all the TLBs out of the mmu lock without TLB
5536          * corruption since we just change the spte from writable to
5537          * readonly so that we only need to care the case of changing
5538          * spte from present to present (changing the spte from present
5539          * to nonpresent will flush all the TLBs immediately), in other
5540          * words, the only case we care is mmu_spte_update() where we
5541          * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5542          * instead of PT_WRITABLE_MASK, that means it does not depend
5543          * on PT_WRITABLE_MASK anymore.
5544          */
5545         if (flush)
5546                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5547 }
5548
5549 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5550                                          struct kvm_rmap_head *rmap_head)
5551 {
5552         u64 *sptep;
5553         struct rmap_iterator iter;
5554         int need_tlb_flush = 0;
5555         kvm_pfn_t pfn;
5556         struct kvm_mmu_page *sp;
5557
5558 restart:
5559         for_each_rmap_spte(rmap_head, &iter, sptep) {
5560                 sp = sptep_to_sp(sptep);
5561                 pfn = spte_to_pfn(*sptep);
5562
5563                 /*
5564                  * We cannot do huge page mapping for indirect shadow pages,
5565                  * which are found on the last rmap (level = 1) when not using
5566                  * tdp; such shadow pages are synced with the page table in
5567                  * the guest, and the guest page table is using 4K page size
5568                  * mapping if the indirect sp has level = 1.
5569                  */
5570                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5571                     (kvm_is_zone_device_pfn(pfn) ||
5572                      PageCompound(pfn_to_page(pfn)))) {
5573                         pte_list_remove(rmap_head, sptep);
5574
5575                         if (kvm_available_flush_tlb_with_range())
5576                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5577                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5578                         else
5579                                 need_tlb_flush = 1;
5580
5581                         goto restart;
5582                 }
5583         }
5584
5585         return need_tlb_flush;
5586 }
5587
5588 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5589                                    const struct kvm_memory_slot *memslot)
5590 {
5591         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5592         spin_lock(&kvm->mmu_lock);
5593         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5594                          kvm_mmu_zap_collapsible_spte, true);
5595
5596         if (kvm->arch.tdp_mmu_enabled)
5597                 kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot);
5598         spin_unlock(&kvm->mmu_lock);
5599 }
5600
5601 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5602                                         struct kvm_memory_slot *memslot)
5603 {
5604         /*
5605          * All current use cases for flushing the TLBs for a specific memslot
5606          * are related to dirty logging, and do the TLB flush out of mmu_lock.
5607          * The interaction between the various operations on memslot must be
5608          * serialized by slots_locks to ensure the TLB flush from one operation
5609          * is observed by any other operation on the same memslot.
5610          */
5611         lockdep_assert_held(&kvm->slots_lock);
5612         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5613                                            memslot->npages);
5614 }
5615
5616 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5617                                    struct kvm_memory_slot *memslot)
5618 {
5619         bool flush;
5620
5621         spin_lock(&kvm->mmu_lock);
5622         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5623         if (kvm->arch.tdp_mmu_enabled)
5624                 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5625         spin_unlock(&kvm->mmu_lock);
5626
5627         /*
5628          * It's also safe to flush TLBs out of mmu lock here as currently this
5629          * function is only used for dirty logging, in which case flushing TLB
5630          * out of mmu lock also guarantees no dirty pages will be lost in
5631          * dirty_bitmap.
5632          */
5633         if (flush)
5634                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5635 }
5636 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5637
5638 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5639                                         struct kvm_memory_slot *memslot)
5640 {
5641         bool flush;
5642
5643         spin_lock(&kvm->mmu_lock);
5644         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5645                                         false);
5646         if (kvm->arch.tdp_mmu_enabled)
5647                 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
5648         spin_unlock(&kvm->mmu_lock);
5649
5650         if (flush)
5651                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5652 }
5653 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5654
5655 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5656                             struct kvm_memory_slot *memslot)
5657 {
5658         bool flush;
5659
5660         spin_lock(&kvm->mmu_lock);
5661         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5662         if (kvm->arch.tdp_mmu_enabled)
5663                 flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
5664         spin_unlock(&kvm->mmu_lock);
5665
5666         if (flush)
5667                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5668 }
5669 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5670
5671 void kvm_mmu_zap_all(struct kvm *kvm)
5672 {
5673         struct kvm_mmu_page *sp, *node;
5674         LIST_HEAD(invalid_list);
5675         int ign;
5676
5677         spin_lock(&kvm->mmu_lock);
5678 restart:
5679         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5680                 if (WARN_ON(sp->role.invalid))
5681                         continue;
5682                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5683                         goto restart;
5684                 if (cond_resched_lock(&kvm->mmu_lock))
5685                         goto restart;
5686         }
5687
5688         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5689
5690         if (kvm->arch.tdp_mmu_enabled)
5691                 kvm_tdp_mmu_zap_all(kvm);
5692
5693         spin_unlock(&kvm->mmu_lock);
5694 }
5695
5696 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5697 {
5698         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5699
5700         gen &= MMIO_SPTE_GEN_MASK;
5701
5702         /*
5703          * Generation numbers are incremented in multiples of the number of
5704          * address spaces in order to provide unique generations across all
5705          * address spaces.  Strip what is effectively the address space
5706          * modifier prior to checking for a wrap of the MMIO generation so
5707          * that a wrap in any address space is detected.
5708          */
5709         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5710
5711         /*
5712          * The very rare case: if the MMIO generation number has wrapped,
5713          * zap all shadow pages.
5714          */
5715         if (unlikely(gen == 0)) {
5716                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5717                 kvm_mmu_zap_all_fast(kvm);
5718         }
5719 }
5720
5721 static unsigned long
5722 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5723 {
5724         struct kvm *kvm;
5725         int nr_to_scan = sc->nr_to_scan;
5726         unsigned long freed = 0;
5727
5728         mutex_lock(&kvm_lock);
5729
5730         list_for_each_entry(kvm, &vm_list, vm_list) {
5731                 int idx;
5732                 LIST_HEAD(invalid_list);
5733
5734                 /*
5735                  * Never scan more than sc->nr_to_scan VM instances.
5736                  * Will not hit this condition practically since we do not try
5737                  * to shrink more than one VM and it is very unlikely to see
5738                  * !n_used_mmu_pages so many times.
5739                  */
5740                 if (!nr_to_scan--)
5741                         break;
5742                 /*
5743                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5744                  * here. We may skip a VM instance errorneosly, but we do not
5745                  * want to shrink a VM that only started to populate its MMU
5746                  * anyway.
5747                  */
5748                 if (!kvm->arch.n_used_mmu_pages &&
5749                     !kvm_has_zapped_obsolete_pages(kvm))
5750                         continue;
5751
5752                 idx = srcu_read_lock(&kvm->srcu);
5753                 spin_lock(&kvm->mmu_lock);
5754
5755                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5756                         kvm_mmu_commit_zap_page(kvm,
5757                               &kvm->arch.zapped_obsolete_pages);
5758                         goto unlock;
5759                 }
5760
5761                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5762
5763 unlock:
5764                 spin_unlock(&kvm->mmu_lock);
5765                 srcu_read_unlock(&kvm->srcu, idx);
5766
5767                 /*
5768                  * unfair on small ones
5769                  * per-vm shrinkers cry out
5770                  * sadness comes quickly
5771                  */
5772                 list_move_tail(&kvm->vm_list, &vm_list);
5773                 break;
5774         }
5775
5776         mutex_unlock(&kvm_lock);
5777         return freed;
5778 }
5779
5780 static unsigned long
5781 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5782 {
5783         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5784 }
5785
5786 static struct shrinker mmu_shrinker = {
5787         .count_objects = mmu_shrink_count,
5788         .scan_objects = mmu_shrink_scan,
5789         .seeks = DEFAULT_SEEKS * 10,
5790 };
5791
5792 static void mmu_destroy_caches(void)
5793 {
5794         kmem_cache_destroy(pte_list_desc_cache);
5795         kmem_cache_destroy(mmu_page_header_cache);
5796 }
5797
5798 static void kvm_set_mmio_spte_mask(void)
5799 {
5800         u64 mask;
5801
5802         /*
5803          * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5804          * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
5805          * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5806          * 52-bit physical addresses then there are no reserved PA bits in the
5807          * PTEs and so the reserved PA approach must be disabled.
5808          */
5809         if (shadow_phys_bits < 52)
5810                 mask = BIT_ULL(51) | PT_PRESENT_MASK;
5811         else
5812                 mask = 0;
5813
5814         kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5815 }
5816
5817 static bool get_nx_auto_mode(void)
5818 {
5819         /* Return true when CPU has the bug, and mitigations are ON */
5820         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5821 }
5822
5823 static void __set_nx_huge_pages(bool val)
5824 {
5825         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5826 }
5827
5828 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5829 {
5830         bool old_val = nx_huge_pages;
5831         bool new_val;
5832
5833         /* In "auto" mode deploy workaround only if CPU has the bug. */
5834         if (sysfs_streq(val, "off"))
5835                 new_val = 0;
5836         else if (sysfs_streq(val, "force"))
5837                 new_val = 1;
5838         else if (sysfs_streq(val, "auto"))
5839                 new_val = get_nx_auto_mode();
5840         else if (strtobool(val, &new_val) < 0)
5841                 return -EINVAL;
5842
5843         __set_nx_huge_pages(new_val);
5844
5845         if (new_val != old_val) {
5846                 struct kvm *kvm;
5847
5848                 mutex_lock(&kvm_lock);
5849
5850                 list_for_each_entry(kvm, &vm_list, vm_list) {
5851                         mutex_lock(&kvm->slots_lock);
5852                         kvm_mmu_zap_all_fast(kvm);
5853                         mutex_unlock(&kvm->slots_lock);
5854
5855                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5856                 }
5857                 mutex_unlock(&kvm_lock);
5858         }
5859
5860         return 0;
5861 }
5862
5863 int kvm_mmu_module_init(void)
5864 {
5865         int ret = -ENOMEM;
5866
5867         if (nx_huge_pages == -1)
5868                 __set_nx_huge_pages(get_nx_auto_mode());
5869
5870         /*
5871          * MMU roles use union aliasing which is, generally speaking, an
5872          * undefined behavior. However, we supposedly know how compilers behave
5873          * and the current status quo is unlikely to change. Guardians below are
5874          * supposed to let us know if the assumption becomes false.
5875          */
5876         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5877         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5878         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5879
5880         kvm_mmu_reset_all_pte_masks();
5881
5882         kvm_set_mmio_spte_mask();
5883
5884         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5885                                             sizeof(struct pte_list_desc),
5886                                             0, SLAB_ACCOUNT, NULL);
5887         if (!pte_list_desc_cache)
5888                 goto out;
5889
5890         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5891                                                   sizeof(struct kvm_mmu_page),
5892                                                   0, SLAB_ACCOUNT, NULL);
5893         if (!mmu_page_header_cache)
5894                 goto out;
5895
5896         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5897                 goto out;
5898
5899         ret = register_shrinker(&mmu_shrinker);
5900         if (ret)
5901                 goto out;
5902
5903         return 0;
5904
5905 out:
5906         mmu_destroy_caches();
5907         return ret;
5908 }
5909
5910 /*
5911  * Calculate mmu pages needed for kvm.
5912  */
5913 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5914 {
5915         unsigned long nr_mmu_pages;
5916         unsigned long nr_pages = 0;
5917         struct kvm_memslots *slots;
5918         struct kvm_memory_slot *memslot;
5919         int i;
5920
5921         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5922                 slots = __kvm_memslots(kvm, i);
5923
5924                 kvm_for_each_memslot(memslot, slots)
5925                         nr_pages += memslot->npages;
5926         }
5927
5928         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5929         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5930
5931         return nr_mmu_pages;
5932 }
5933
5934 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5935 {
5936         kvm_mmu_unload(vcpu);
5937         free_mmu_pages(&vcpu->arch.root_mmu);
5938         free_mmu_pages(&vcpu->arch.guest_mmu);
5939         mmu_free_memory_caches(vcpu);
5940 }
5941
5942 void kvm_mmu_module_exit(void)
5943 {
5944         mmu_destroy_caches();
5945         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5946         unregister_shrinker(&mmu_shrinker);
5947         mmu_audit_disable();
5948 }
5949
5950 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5951 {
5952         unsigned int old_val;
5953         int err;
5954
5955         old_val = nx_huge_pages_recovery_ratio;
5956         err = param_set_uint(val, kp);
5957         if (err)
5958                 return err;
5959
5960         if (READ_ONCE(nx_huge_pages) &&
5961             !old_val && nx_huge_pages_recovery_ratio) {
5962                 struct kvm *kvm;
5963
5964                 mutex_lock(&kvm_lock);
5965
5966                 list_for_each_entry(kvm, &vm_list, vm_list)
5967                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5968
5969                 mutex_unlock(&kvm_lock);
5970         }
5971
5972         return err;
5973 }
5974
5975 static void kvm_recover_nx_lpages(struct kvm *kvm)
5976 {
5977         int rcu_idx;
5978         struct kvm_mmu_page *sp;
5979         unsigned int ratio;
5980         LIST_HEAD(invalid_list);
5981         ulong to_zap;
5982
5983         rcu_idx = srcu_read_lock(&kvm->srcu);
5984         spin_lock(&kvm->mmu_lock);
5985
5986         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5987         to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5988         for ( ; to_zap; --to_zap) {
5989                 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5990                         break;
5991
5992                 /*
5993                  * We use a separate list instead of just using active_mmu_pages
5994                  * because the number of lpage_disallowed pages is expected to
5995                  * be relatively small compared to the total.
5996                  */
5997                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5998                                       struct kvm_mmu_page,
5999                                       lpage_disallowed_link);
6000                 WARN_ON_ONCE(!sp->lpage_disallowed);
6001                 if (sp->tdp_mmu_page)
6002                         kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
6003                                 sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
6004                 else {
6005                         kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6006                         WARN_ON_ONCE(sp->lpage_disallowed);
6007                 }
6008
6009                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6010                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6011                         cond_resched_lock(&kvm->mmu_lock);
6012                 }
6013         }
6014         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6015
6016         spin_unlock(&kvm->mmu_lock);
6017         srcu_read_unlock(&kvm->srcu, rcu_idx);
6018 }
6019
6020 static long get_nx_lpage_recovery_timeout(u64 start_time)
6021 {
6022         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6023                 ? start_time + 60 * HZ - get_jiffies_64()
6024                 : MAX_SCHEDULE_TIMEOUT;
6025 }
6026
6027 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6028 {
6029         u64 start_time;
6030         long remaining_time;
6031
6032         while (true) {
6033                 start_time = get_jiffies_64();
6034                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6035
6036                 set_current_state(TASK_INTERRUPTIBLE);
6037                 while (!kthread_should_stop() && remaining_time > 0) {
6038                         schedule_timeout(remaining_time);
6039                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6040                         set_current_state(TASK_INTERRUPTIBLE);
6041                 }
6042
6043                 set_current_state(TASK_RUNNING);
6044
6045                 if (kthread_should_stop())
6046                         return 0;
6047
6048                 kvm_recover_nx_lpages(kvm);
6049         }
6050 }
6051
6052 int kvm_mmu_post_init_vm(struct kvm *kvm)
6053 {
6054         int err;
6055
6056         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6057                                           "kvm-nx-lpage-recovery",
6058                                           &kvm->arch.nx_lpage_recovery_thread);
6059         if (!err)
6060                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6061
6062         return err;
6063 }
6064
6065 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6066 {
6067         if (kvm->arch.nx_lpage_recovery_thread)
6068                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6069 }