s390: remove SCHED_CORE from defconfigs
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55
56 #include "paging.h"
57
58 extern bool itlb_multihit_kvm_mitigation;
59
60 int __read_mostly nx_huge_pages = -1;
61 #ifdef CONFIG_PREEMPT_RT
62 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
63 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
64 #else
65 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
66 #endif
67
68 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
69 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
70
71 static const struct kernel_param_ops nx_huge_pages_ops = {
72         .set = set_nx_huge_pages,
73         .get = param_get_bool,
74 };
75
76 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
77         .set = set_nx_huge_pages_recovery_ratio,
78         .get = param_get_uint,
79 };
80
81 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
83 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
84                 &nx_huge_pages_recovery_ratio, 0644);
85 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
86
87 static bool __read_mostly force_flush_and_sync_on_reuse;
88 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
89
90 /*
91  * When setting this variable to true it enables Two-Dimensional-Paging
92  * where the hardware walks 2 page tables:
93  * 1. the guest-virtual to guest-physical
94  * 2. while doing 1. it walks guest-physical to host-physical
95  * If the hardware supports that we don't need to do shadow paging.
96  */
97 bool tdp_enabled = false;
98
99 static int max_huge_page_level __read_mostly;
100 static int max_tdp_level __read_mostly;
101
102 enum {
103         AUDIT_PRE_PAGE_FAULT,
104         AUDIT_POST_PAGE_FAULT,
105         AUDIT_PRE_PTE_WRITE,
106         AUDIT_POST_PTE_WRITE,
107         AUDIT_PRE_SYNC,
108         AUDIT_POST_SYNC
109 };
110
111 #ifdef MMU_DEBUG
112 bool dbg = 0;
113 module_param(dbg, bool, 0644);
114 #endif
115
116 #define PTE_PREFETCH_NUM                8
117
118 #define PT32_LEVEL_BITS 10
119
120 #define PT32_LEVEL_SHIFT(level) \
121                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
122
123 #define PT32_LVL_OFFSET_MASK(level) \
124         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
125                                                 * PT32_LEVEL_BITS))) - 1))
126
127 #define PT32_INDEX(address, level)\
128         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
129
130
131 #define PT32_BASE_ADDR_MASK PAGE_MASK
132 #define PT32_DIR_BASE_ADDR_MASK \
133         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
134 #define PT32_LVL_ADDR_MASK(level) \
135         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
136                                             * PT32_LEVEL_BITS))) - 1))
137
138 #include <trace/events/kvm.h>
139
140 /* make pte_list_desc fit well in cache line */
141 #define PTE_LIST_EXT 3
142
143 struct pte_list_desc {
144         u64 *sptes[PTE_LIST_EXT];
145         struct pte_list_desc *more;
146 };
147
148 struct kvm_shadow_walk_iterator {
149         u64 addr;
150         hpa_t shadow_addr;
151         u64 *sptep;
152         int level;
153         unsigned index;
154 };
155
156 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
157         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
158                                          (_root), (_addr));                \
159              shadow_walk_okay(&(_walker));                                 \
160              shadow_walk_next(&(_walker)))
161
162 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
163         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
164              shadow_walk_okay(&(_walker));                      \
165              shadow_walk_next(&(_walker)))
166
167 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
168         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
169              shadow_walk_okay(&(_walker)) &&                            \
170                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
171              __shadow_walk_next(&(_walker), spte))
172
173 static struct kmem_cache *pte_list_desc_cache;
174 struct kmem_cache *mmu_page_header_cache;
175 static struct percpu_counter kvm_total_used_mmu_pages;
176
177 static void mmu_spte_set(u64 *sptep, u64 spte);
178 static union kvm_mmu_page_role
179 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
180
181 struct kvm_mmu_role_regs {
182         const unsigned long cr0;
183         const unsigned long cr4;
184         const u64 efer;
185 };
186
187 #define CREATE_TRACE_POINTS
188 #include "mmutrace.h"
189
190 /*
191  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
192  * reading from the role_regs.  Once the mmu_role is constructed, it becomes
193  * the single source of truth for the MMU's state.
194  */
195 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)                   \
196 static inline bool ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
197 {                                                                       \
198         return !!(regs->reg & flag);                                    \
199 }
200 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
201 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
202 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
203 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
204 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
205 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
208 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
209 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
210
211 /*
212  * The MMU itself (with a valid role) is the single source of truth for the
213  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
214  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
215  * and the vCPU may be incorrect/irrelevant.
216  */
217 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)         \
218 static inline bool is_##reg##_##name(struct kvm_mmu *mmu)       \
219 {                                                               \
220         return !!(mmu->mmu_role. base_or_ext . reg##_##name);   \
221 }
222 BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
223 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
224 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
225 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
226 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
227 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
228 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
229 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
230 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
231
232 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
233 {
234         struct kvm_mmu_role_regs regs = {
235                 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
236                 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
237                 .efer = vcpu->arch.efer,
238         };
239
240         return regs;
241 }
242
243 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
244 {
245         if (!____is_cr0_pg(regs))
246                 return 0;
247         else if (____is_efer_lma(regs))
248                 return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
249                                                PT64_ROOT_4LEVEL;
250         else if (____is_cr4_pae(regs))
251                 return PT32E_ROOT_LEVEL;
252         else
253                 return PT32_ROOT_LEVEL;
254 }
255
256 static inline bool kvm_available_flush_tlb_with_range(void)
257 {
258         return kvm_x86_ops.tlb_remote_flush_with_range;
259 }
260
261 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
262                 struct kvm_tlb_range *range)
263 {
264         int ret = -ENOTSUPP;
265
266         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
267                 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
268
269         if (ret)
270                 kvm_flush_remote_tlbs(kvm);
271 }
272
273 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
274                 u64 start_gfn, u64 pages)
275 {
276         struct kvm_tlb_range range;
277
278         range.start_gfn = start_gfn;
279         range.pages = pages;
280
281         kvm_flush_remote_tlbs_with_range(kvm, &range);
282 }
283
284 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
285                            unsigned int access)
286 {
287         u64 spte = make_mmio_spte(vcpu, gfn, access);
288
289         trace_mark_mmio_spte(sptep, gfn, spte);
290         mmu_spte_set(sptep, spte);
291 }
292
293 static gfn_t get_mmio_spte_gfn(u64 spte)
294 {
295         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
296
297         gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
298                & shadow_nonpresent_or_rsvd_mask;
299
300         return gpa >> PAGE_SHIFT;
301 }
302
303 static unsigned get_mmio_spte_access(u64 spte)
304 {
305         return spte & shadow_mmio_access_mask;
306 }
307
308 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
309 {
310         u64 kvm_gen, spte_gen, gen;
311
312         gen = kvm_vcpu_memslots(vcpu)->generation;
313         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
314                 return false;
315
316         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
317         spte_gen = get_mmio_spte_generation(spte);
318
319         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
320         return likely(kvm_gen == spte_gen);
321 }
322
323 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
324                                   struct x86_exception *exception)
325 {
326         /* Check if guest physical address doesn't exceed guest maximum */
327         if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
328                 exception->error_code |= PFERR_RSVD_MASK;
329                 return UNMAPPED_GVA;
330         }
331
332         return gpa;
333 }
334
335 static int is_cpuid_PSE36(void)
336 {
337         return 1;
338 }
339
340 static gfn_t pse36_gfn_delta(u32 gpte)
341 {
342         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
343
344         return (gpte & PT32_DIR_PSE36_MASK) << shift;
345 }
346
347 #ifdef CONFIG_X86_64
348 static void __set_spte(u64 *sptep, u64 spte)
349 {
350         WRITE_ONCE(*sptep, spte);
351 }
352
353 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
354 {
355         WRITE_ONCE(*sptep, spte);
356 }
357
358 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
359 {
360         return xchg(sptep, spte);
361 }
362
363 static u64 __get_spte_lockless(u64 *sptep)
364 {
365         return READ_ONCE(*sptep);
366 }
367 #else
368 union split_spte {
369         struct {
370                 u32 spte_low;
371                 u32 spte_high;
372         };
373         u64 spte;
374 };
375
376 static void count_spte_clear(u64 *sptep, u64 spte)
377 {
378         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
379
380         if (is_shadow_present_pte(spte))
381                 return;
382
383         /* Ensure the spte is completely set before we increase the count */
384         smp_wmb();
385         sp->clear_spte_count++;
386 }
387
388 static void __set_spte(u64 *sptep, u64 spte)
389 {
390         union split_spte *ssptep, sspte;
391
392         ssptep = (union split_spte *)sptep;
393         sspte = (union split_spte)spte;
394
395         ssptep->spte_high = sspte.spte_high;
396
397         /*
398          * If we map the spte from nonpresent to present, We should store
399          * the high bits firstly, then set present bit, so cpu can not
400          * fetch this spte while we are setting the spte.
401          */
402         smp_wmb();
403
404         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
405 }
406
407 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
408 {
409         union split_spte *ssptep, sspte;
410
411         ssptep = (union split_spte *)sptep;
412         sspte = (union split_spte)spte;
413
414         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
415
416         /*
417          * If we map the spte from present to nonpresent, we should clear
418          * present bit firstly to avoid vcpu fetch the old high bits.
419          */
420         smp_wmb();
421
422         ssptep->spte_high = sspte.spte_high;
423         count_spte_clear(sptep, spte);
424 }
425
426 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
427 {
428         union split_spte *ssptep, sspte, orig;
429
430         ssptep = (union split_spte *)sptep;
431         sspte = (union split_spte)spte;
432
433         /* xchg acts as a barrier before the setting of the high bits */
434         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
435         orig.spte_high = ssptep->spte_high;
436         ssptep->spte_high = sspte.spte_high;
437         count_spte_clear(sptep, spte);
438
439         return orig.spte;
440 }
441
442 /*
443  * The idea using the light way get the spte on x86_32 guest is from
444  * gup_get_pte (mm/gup.c).
445  *
446  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
447  * coalesces them and we are running out of the MMU lock.  Therefore
448  * we need to protect against in-progress updates of the spte.
449  *
450  * Reading the spte while an update is in progress may get the old value
451  * for the high part of the spte.  The race is fine for a present->non-present
452  * change (because the high part of the spte is ignored for non-present spte),
453  * but for a present->present change we must reread the spte.
454  *
455  * All such changes are done in two steps (present->non-present and
456  * non-present->present), hence it is enough to count the number of
457  * present->non-present updates: if it changed while reading the spte,
458  * we might have hit the race.  This is done using clear_spte_count.
459  */
460 static u64 __get_spte_lockless(u64 *sptep)
461 {
462         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
463         union split_spte spte, *orig = (union split_spte *)sptep;
464         int count;
465
466 retry:
467         count = sp->clear_spte_count;
468         smp_rmb();
469
470         spte.spte_low = orig->spte_low;
471         smp_rmb();
472
473         spte.spte_high = orig->spte_high;
474         smp_rmb();
475
476         if (unlikely(spte.spte_low != orig->spte_low ||
477               count != sp->clear_spte_count))
478                 goto retry;
479
480         return spte.spte;
481 }
482 #endif
483
484 static bool spte_has_volatile_bits(u64 spte)
485 {
486         if (!is_shadow_present_pte(spte))
487                 return false;
488
489         /*
490          * Always atomically update spte if it can be updated
491          * out of mmu-lock, it can ensure dirty bit is not lost,
492          * also, it can help us to get a stable is_writable_pte()
493          * to ensure tlb flush is not missed.
494          */
495         if (spte_can_locklessly_be_made_writable(spte) ||
496             is_access_track_spte(spte))
497                 return true;
498
499         if (spte_ad_enabled(spte)) {
500                 if ((spte & shadow_accessed_mask) == 0 ||
501                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
502                         return true;
503         }
504
505         return false;
506 }
507
508 /* Rules for using mmu_spte_set:
509  * Set the sptep from nonpresent to present.
510  * Note: the sptep being assigned *must* be either not present
511  * or in a state where the hardware will not attempt to update
512  * the spte.
513  */
514 static void mmu_spte_set(u64 *sptep, u64 new_spte)
515 {
516         WARN_ON(is_shadow_present_pte(*sptep));
517         __set_spte(sptep, new_spte);
518 }
519
520 /*
521  * Update the SPTE (excluding the PFN), but do not track changes in its
522  * accessed/dirty status.
523  */
524 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
525 {
526         u64 old_spte = *sptep;
527
528         WARN_ON(!is_shadow_present_pte(new_spte));
529
530         if (!is_shadow_present_pte(old_spte)) {
531                 mmu_spte_set(sptep, new_spte);
532                 return old_spte;
533         }
534
535         if (!spte_has_volatile_bits(old_spte))
536                 __update_clear_spte_fast(sptep, new_spte);
537         else
538                 old_spte = __update_clear_spte_slow(sptep, new_spte);
539
540         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
541
542         return old_spte;
543 }
544
545 /* Rules for using mmu_spte_update:
546  * Update the state bits, it means the mapped pfn is not changed.
547  *
548  * Whenever we overwrite a writable spte with a read-only one we
549  * should flush remote TLBs. Otherwise rmap_write_protect
550  * will find a read-only spte, even though the writable spte
551  * might be cached on a CPU's TLB, the return value indicates this
552  * case.
553  *
554  * Returns true if the TLB needs to be flushed
555  */
556 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
557 {
558         bool flush = false;
559         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
560
561         if (!is_shadow_present_pte(old_spte))
562                 return false;
563
564         /*
565          * For the spte updated out of mmu-lock is safe, since
566          * we always atomically update it, see the comments in
567          * spte_has_volatile_bits().
568          */
569         if (spte_can_locklessly_be_made_writable(old_spte) &&
570               !is_writable_pte(new_spte))
571                 flush = true;
572
573         /*
574          * Flush TLB when accessed/dirty states are changed in the page tables,
575          * to guarantee consistency between TLB and page tables.
576          */
577
578         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
579                 flush = true;
580                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
581         }
582
583         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
584                 flush = true;
585                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
586         }
587
588         return flush;
589 }
590
591 /*
592  * Rules for using mmu_spte_clear_track_bits:
593  * It sets the sptep from present to nonpresent, and track the
594  * state bits, it is used to clear the last level sptep.
595  * Returns non-zero if the PTE was previously valid.
596  */
597 static int mmu_spte_clear_track_bits(u64 *sptep)
598 {
599         kvm_pfn_t pfn;
600         u64 old_spte = *sptep;
601
602         if (!spte_has_volatile_bits(old_spte))
603                 __update_clear_spte_fast(sptep, 0ull);
604         else
605                 old_spte = __update_clear_spte_slow(sptep, 0ull);
606
607         if (!is_shadow_present_pte(old_spte))
608                 return 0;
609
610         pfn = spte_to_pfn(old_spte);
611
612         /*
613          * KVM does not hold the refcount of the page used by
614          * kvm mmu, before reclaiming the page, we should
615          * unmap it from mmu first.
616          */
617         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
618
619         if (is_accessed_spte(old_spte))
620                 kvm_set_pfn_accessed(pfn);
621
622         if (is_dirty_spte(old_spte))
623                 kvm_set_pfn_dirty(pfn);
624
625         return 1;
626 }
627
628 /*
629  * Rules for using mmu_spte_clear_no_track:
630  * Directly clear spte without caring the state bits of sptep,
631  * it is used to set the upper level spte.
632  */
633 static void mmu_spte_clear_no_track(u64 *sptep)
634 {
635         __update_clear_spte_fast(sptep, 0ull);
636 }
637
638 static u64 mmu_spte_get_lockless(u64 *sptep)
639 {
640         return __get_spte_lockless(sptep);
641 }
642
643 /* Restore an acc-track PTE back to a regular PTE */
644 static u64 restore_acc_track_spte(u64 spte)
645 {
646         u64 new_spte = spte;
647         u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
648                          & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
649
650         WARN_ON_ONCE(spte_ad_enabled(spte));
651         WARN_ON_ONCE(!is_access_track_spte(spte));
652
653         new_spte &= ~shadow_acc_track_mask;
654         new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
655                       SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
656         new_spte |= saved_bits;
657
658         return new_spte;
659 }
660
661 /* Returns the Accessed status of the PTE and resets it at the same time. */
662 static bool mmu_spte_age(u64 *sptep)
663 {
664         u64 spte = mmu_spte_get_lockless(sptep);
665
666         if (!is_accessed_spte(spte))
667                 return false;
668
669         if (spte_ad_enabled(spte)) {
670                 clear_bit((ffs(shadow_accessed_mask) - 1),
671                           (unsigned long *)sptep);
672         } else {
673                 /*
674                  * Capture the dirty status of the page, so that it doesn't get
675                  * lost when the SPTE is marked for access tracking.
676                  */
677                 if (is_writable_pte(spte))
678                         kvm_set_pfn_dirty(spte_to_pfn(spte));
679
680                 spte = mark_spte_for_access_track(spte);
681                 mmu_spte_update_no_track(sptep, spte);
682         }
683
684         return true;
685 }
686
687 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
688 {
689         /*
690          * Prevent page table teardown by making any free-er wait during
691          * kvm_flush_remote_tlbs() IPI to all active vcpus.
692          */
693         local_irq_disable();
694
695         /*
696          * Make sure a following spte read is not reordered ahead of the write
697          * to vcpu->mode.
698          */
699         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
700 }
701
702 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
703 {
704         /*
705          * Make sure the write to vcpu->mode is not reordered in front of
706          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
707          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
708          */
709         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
710         local_irq_enable();
711 }
712
713 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
714 {
715         int r;
716
717         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
718         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
719                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
720         if (r)
721                 return r;
722         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
723                                        PT64_ROOT_MAX_LEVEL);
724         if (r)
725                 return r;
726         if (maybe_indirect) {
727                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
728                                                PT64_ROOT_MAX_LEVEL);
729                 if (r)
730                         return r;
731         }
732         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
733                                           PT64_ROOT_MAX_LEVEL);
734 }
735
736 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
737 {
738         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
739         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
740         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
741         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
742 }
743
744 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
745 {
746         return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
747 }
748
749 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
750 {
751         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
752 }
753
754 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
755 {
756         if (!sp->role.direct)
757                 return sp->gfns[index];
758
759         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
760 }
761
762 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
763 {
764         if (!sp->role.direct) {
765                 sp->gfns[index] = gfn;
766                 return;
767         }
768
769         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
770                 pr_err_ratelimited("gfn mismatch under direct page %llx "
771                                    "(expected %llx, got %llx)\n",
772                                    sp->gfn,
773                                    kvm_mmu_page_get_gfn(sp, index), gfn);
774 }
775
776 /*
777  * Return the pointer to the large page information for a given gfn,
778  * handling slots that are not large page aligned.
779  */
780 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
781                 const struct kvm_memory_slot *slot, int level)
782 {
783         unsigned long idx;
784
785         idx = gfn_to_index(gfn, slot->base_gfn, level);
786         return &slot->arch.lpage_info[level - 2][idx];
787 }
788
789 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
790                                             gfn_t gfn, int count)
791 {
792         struct kvm_lpage_info *linfo;
793         int i;
794
795         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
796                 linfo = lpage_info_slot(gfn, slot, i);
797                 linfo->disallow_lpage += count;
798                 WARN_ON(linfo->disallow_lpage < 0);
799         }
800 }
801
802 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
803 {
804         update_gfn_disallow_lpage_count(slot, gfn, 1);
805 }
806
807 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
808 {
809         update_gfn_disallow_lpage_count(slot, gfn, -1);
810 }
811
812 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
813 {
814         struct kvm_memslots *slots;
815         struct kvm_memory_slot *slot;
816         gfn_t gfn;
817
818         kvm->arch.indirect_shadow_pages++;
819         gfn = sp->gfn;
820         slots = kvm_memslots_for_spte_role(kvm, sp->role);
821         slot = __gfn_to_memslot(slots, gfn);
822
823         /* the non-leaf shadow pages are keeping readonly. */
824         if (sp->role.level > PG_LEVEL_4K)
825                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
826                                                     KVM_PAGE_TRACK_WRITE);
827
828         kvm_mmu_gfn_disallow_lpage(slot, gfn);
829 }
830
831 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
832 {
833         if (sp->lpage_disallowed)
834                 return;
835
836         ++kvm->stat.nx_lpage_splits;
837         list_add_tail(&sp->lpage_disallowed_link,
838                       &kvm->arch.lpage_disallowed_mmu_pages);
839         sp->lpage_disallowed = true;
840 }
841
842 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
843 {
844         struct kvm_memslots *slots;
845         struct kvm_memory_slot *slot;
846         gfn_t gfn;
847
848         kvm->arch.indirect_shadow_pages--;
849         gfn = sp->gfn;
850         slots = kvm_memslots_for_spte_role(kvm, sp->role);
851         slot = __gfn_to_memslot(slots, gfn);
852         if (sp->role.level > PG_LEVEL_4K)
853                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
854                                                        KVM_PAGE_TRACK_WRITE);
855
856         kvm_mmu_gfn_allow_lpage(slot, gfn);
857 }
858
859 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
860 {
861         --kvm->stat.nx_lpage_splits;
862         sp->lpage_disallowed = false;
863         list_del(&sp->lpage_disallowed_link);
864 }
865
866 static struct kvm_memory_slot *
867 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
868                             bool no_dirty_log)
869 {
870         struct kvm_memory_slot *slot;
871
872         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
873         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
874                 return NULL;
875         if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
876                 return NULL;
877
878         return slot;
879 }
880
881 /*
882  * About rmap_head encoding:
883  *
884  * If the bit zero of rmap_head->val is clear, then it points to the only spte
885  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
886  * pte_list_desc containing more mappings.
887  */
888
889 /*
890  * Returns the number of pointers in the rmap chain, not counting the new one.
891  */
892 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
893                         struct kvm_rmap_head *rmap_head)
894 {
895         struct pte_list_desc *desc;
896         int i, count = 0;
897
898         if (!rmap_head->val) {
899                 rmap_printk("%p %llx 0->1\n", spte, *spte);
900                 rmap_head->val = (unsigned long)spte;
901         } else if (!(rmap_head->val & 1)) {
902                 rmap_printk("%p %llx 1->many\n", spte, *spte);
903                 desc = mmu_alloc_pte_list_desc(vcpu);
904                 desc->sptes[0] = (u64 *)rmap_head->val;
905                 desc->sptes[1] = spte;
906                 rmap_head->val = (unsigned long)desc | 1;
907                 ++count;
908         } else {
909                 rmap_printk("%p %llx many->many\n", spte, *spte);
910                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
911                 while (desc->sptes[PTE_LIST_EXT-1]) {
912                         count += PTE_LIST_EXT;
913
914                         if (!desc->more) {
915                                 desc->more = mmu_alloc_pte_list_desc(vcpu);
916                                 desc = desc->more;
917                                 break;
918                         }
919                         desc = desc->more;
920                 }
921                 for (i = 0; desc->sptes[i]; ++i)
922                         ++count;
923                 desc->sptes[i] = spte;
924         }
925         return count;
926 }
927
928 static void
929 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
930                            struct pte_list_desc *desc, int i,
931                            struct pte_list_desc *prev_desc)
932 {
933         int j;
934
935         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
936                 ;
937         desc->sptes[i] = desc->sptes[j];
938         desc->sptes[j] = NULL;
939         if (j != 0)
940                 return;
941         if (!prev_desc && !desc->more)
942                 rmap_head->val = 0;
943         else
944                 if (prev_desc)
945                         prev_desc->more = desc->more;
946                 else
947                         rmap_head->val = (unsigned long)desc->more | 1;
948         mmu_free_pte_list_desc(desc);
949 }
950
951 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
952 {
953         struct pte_list_desc *desc;
954         struct pte_list_desc *prev_desc;
955         int i;
956
957         if (!rmap_head->val) {
958                 pr_err("%s: %p 0->BUG\n", __func__, spte);
959                 BUG();
960         } else if (!(rmap_head->val & 1)) {
961                 rmap_printk("%p 1->0\n", spte);
962                 if ((u64 *)rmap_head->val != spte) {
963                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
964                         BUG();
965                 }
966                 rmap_head->val = 0;
967         } else {
968                 rmap_printk("%p many->many\n", spte);
969                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
970                 prev_desc = NULL;
971                 while (desc) {
972                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
973                                 if (desc->sptes[i] == spte) {
974                                         pte_list_desc_remove_entry(rmap_head,
975                                                         desc, i, prev_desc);
976                                         return;
977                                 }
978                         }
979                         prev_desc = desc;
980                         desc = desc->more;
981                 }
982                 pr_err("%s: %p many->many\n", __func__, spte);
983                 BUG();
984         }
985 }
986
987 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
988 {
989         mmu_spte_clear_track_bits(sptep);
990         __pte_list_remove(sptep, rmap_head);
991 }
992
993 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
994                                            struct kvm_memory_slot *slot)
995 {
996         unsigned long idx;
997
998         idx = gfn_to_index(gfn, slot->base_gfn, level);
999         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1000 }
1001
1002 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1003                                          struct kvm_mmu_page *sp)
1004 {
1005         struct kvm_memslots *slots;
1006         struct kvm_memory_slot *slot;
1007
1008         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1009         slot = __gfn_to_memslot(slots, gfn);
1010         return __gfn_to_rmap(gfn, sp->role.level, slot);
1011 }
1012
1013 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1014 {
1015         struct kvm_mmu_memory_cache *mc;
1016
1017         mc = &vcpu->arch.mmu_pte_list_desc_cache;
1018         return kvm_mmu_memory_cache_nr_free_objects(mc);
1019 }
1020
1021 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1022 {
1023         struct kvm_mmu_page *sp;
1024         struct kvm_rmap_head *rmap_head;
1025
1026         sp = sptep_to_sp(spte);
1027         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1028         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1029         return pte_list_add(vcpu, spte, rmap_head);
1030 }
1031
1032 static void rmap_remove(struct kvm *kvm, u64 *spte)
1033 {
1034         struct kvm_mmu_page *sp;
1035         gfn_t gfn;
1036         struct kvm_rmap_head *rmap_head;
1037
1038         sp = sptep_to_sp(spte);
1039         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1040         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1041         __pte_list_remove(spte, rmap_head);
1042 }
1043
1044 /*
1045  * Used by the following functions to iterate through the sptes linked by a
1046  * rmap.  All fields are private and not assumed to be used outside.
1047  */
1048 struct rmap_iterator {
1049         /* private fields */
1050         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1051         int pos;                        /* index of the sptep */
1052 };
1053
1054 /*
1055  * Iteration must be started by this function.  This should also be used after
1056  * removing/dropping sptes from the rmap link because in such cases the
1057  * information in the iterator may not be valid.
1058  *
1059  * Returns sptep if found, NULL otherwise.
1060  */
1061 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1062                            struct rmap_iterator *iter)
1063 {
1064         u64 *sptep;
1065
1066         if (!rmap_head->val)
1067                 return NULL;
1068
1069         if (!(rmap_head->val & 1)) {
1070                 iter->desc = NULL;
1071                 sptep = (u64 *)rmap_head->val;
1072                 goto out;
1073         }
1074
1075         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1076         iter->pos = 0;
1077         sptep = iter->desc->sptes[iter->pos];
1078 out:
1079         BUG_ON(!is_shadow_present_pte(*sptep));
1080         return sptep;
1081 }
1082
1083 /*
1084  * Must be used with a valid iterator: e.g. after rmap_get_first().
1085  *
1086  * Returns sptep if found, NULL otherwise.
1087  */
1088 static u64 *rmap_get_next(struct rmap_iterator *iter)
1089 {
1090         u64 *sptep;
1091
1092         if (iter->desc) {
1093                 if (iter->pos < PTE_LIST_EXT - 1) {
1094                         ++iter->pos;
1095                         sptep = iter->desc->sptes[iter->pos];
1096                         if (sptep)
1097                                 goto out;
1098                 }
1099
1100                 iter->desc = iter->desc->more;
1101
1102                 if (iter->desc) {
1103                         iter->pos = 0;
1104                         /* desc->sptes[0] cannot be NULL */
1105                         sptep = iter->desc->sptes[iter->pos];
1106                         goto out;
1107                 }
1108         }
1109
1110         return NULL;
1111 out:
1112         BUG_ON(!is_shadow_present_pte(*sptep));
1113         return sptep;
1114 }
1115
1116 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1117         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1118              _spte_; _spte_ = rmap_get_next(_iter_))
1119
1120 static void drop_spte(struct kvm *kvm, u64 *sptep)
1121 {
1122         if (mmu_spte_clear_track_bits(sptep))
1123                 rmap_remove(kvm, sptep);
1124 }
1125
1126
1127 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1128 {
1129         if (is_large_pte(*sptep)) {
1130                 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1131                 drop_spte(kvm, sptep);
1132                 --kvm->stat.lpages;
1133                 return true;
1134         }
1135
1136         return false;
1137 }
1138
1139 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1140 {
1141         if (__drop_large_spte(vcpu->kvm, sptep)) {
1142                 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1143
1144                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1145                         KVM_PAGES_PER_HPAGE(sp->role.level));
1146         }
1147 }
1148
1149 /*
1150  * Write-protect on the specified @sptep, @pt_protect indicates whether
1151  * spte write-protection is caused by protecting shadow page table.
1152  *
1153  * Note: write protection is difference between dirty logging and spte
1154  * protection:
1155  * - for dirty logging, the spte can be set to writable at anytime if
1156  *   its dirty bitmap is properly set.
1157  * - for spte protection, the spte can be writable only after unsync-ing
1158  *   shadow page.
1159  *
1160  * Return true if tlb need be flushed.
1161  */
1162 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1163 {
1164         u64 spte = *sptep;
1165
1166         if (!is_writable_pte(spte) &&
1167               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1168                 return false;
1169
1170         rmap_printk("spte %p %llx\n", sptep, *sptep);
1171
1172         if (pt_protect)
1173                 spte &= ~shadow_mmu_writable_mask;
1174         spte = spte & ~PT_WRITABLE_MASK;
1175
1176         return mmu_spte_update(sptep, spte);
1177 }
1178
1179 static bool __rmap_write_protect(struct kvm *kvm,
1180                                  struct kvm_rmap_head *rmap_head,
1181                                  bool pt_protect)
1182 {
1183         u64 *sptep;
1184         struct rmap_iterator iter;
1185         bool flush = false;
1186
1187         for_each_rmap_spte(rmap_head, &iter, sptep)
1188                 flush |= spte_write_protect(sptep, pt_protect);
1189
1190         return flush;
1191 }
1192
1193 static bool spte_clear_dirty(u64 *sptep)
1194 {
1195         u64 spte = *sptep;
1196
1197         rmap_printk("spte %p %llx\n", sptep, *sptep);
1198
1199         MMU_WARN_ON(!spte_ad_enabled(spte));
1200         spte &= ~shadow_dirty_mask;
1201         return mmu_spte_update(sptep, spte);
1202 }
1203
1204 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1205 {
1206         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1207                                                (unsigned long *)sptep);
1208         if (was_writable && !spte_ad_enabled(*sptep))
1209                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1210
1211         return was_writable;
1212 }
1213
1214 /*
1215  * Gets the GFN ready for another round of dirty logging by clearing the
1216  *      - D bit on ad-enabled SPTEs, and
1217  *      - W bit on ad-disabled SPTEs.
1218  * Returns true iff any D or W bits were cleared.
1219  */
1220 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1221                                struct kvm_memory_slot *slot)
1222 {
1223         u64 *sptep;
1224         struct rmap_iterator iter;
1225         bool flush = false;
1226
1227         for_each_rmap_spte(rmap_head, &iter, sptep)
1228                 if (spte_ad_need_write_protect(*sptep))
1229                         flush |= spte_wrprot_for_clear_dirty(sptep);
1230                 else
1231                         flush |= spte_clear_dirty(sptep);
1232
1233         return flush;
1234 }
1235
1236 /**
1237  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1238  * @kvm: kvm instance
1239  * @slot: slot to protect
1240  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1241  * @mask: indicates which pages we should protect
1242  *
1243  * Used when we do not need to care about huge page mappings.
1244  */
1245 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1246                                      struct kvm_memory_slot *slot,
1247                                      gfn_t gfn_offset, unsigned long mask)
1248 {
1249         struct kvm_rmap_head *rmap_head;
1250
1251         if (is_tdp_mmu_enabled(kvm))
1252                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1253                                 slot->base_gfn + gfn_offset, mask, true);
1254
1255         if (!kvm_memslots_have_rmaps(kvm))
1256                 return;
1257
1258         while (mask) {
1259                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1260                                           PG_LEVEL_4K, slot);
1261                 __rmap_write_protect(kvm, rmap_head, false);
1262
1263                 /* clear the first set bit */
1264                 mask &= mask - 1;
1265         }
1266 }
1267
1268 /**
1269  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1270  * protect the page if the D-bit isn't supported.
1271  * @kvm: kvm instance
1272  * @slot: slot to clear D-bit
1273  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1274  * @mask: indicates which pages we should clear D-bit
1275  *
1276  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1277  */
1278 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1279                                          struct kvm_memory_slot *slot,
1280                                          gfn_t gfn_offset, unsigned long mask)
1281 {
1282         struct kvm_rmap_head *rmap_head;
1283
1284         if (is_tdp_mmu_enabled(kvm))
1285                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1286                                 slot->base_gfn + gfn_offset, mask, false);
1287
1288         if (!kvm_memslots_have_rmaps(kvm))
1289                 return;
1290
1291         while (mask) {
1292                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1293                                           PG_LEVEL_4K, slot);
1294                 __rmap_clear_dirty(kvm, rmap_head, slot);
1295
1296                 /* clear the first set bit */
1297                 mask &= mask - 1;
1298         }
1299 }
1300
1301 /**
1302  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1303  * PT level pages.
1304  *
1305  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1306  * enable dirty logging for them.
1307  *
1308  * We need to care about huge page mappings: e.g. during dirty logging we may
1309  * have such mappings.
1310  */
1311 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1312                                 struct kvm_memory_slot *slot,
1313                                 gfn_t gfn_offset, unsigned long mask)
1314 {
1315         /*
1316          * Huge pages are NOT write protected when we start dirty logging in
1317          * initially-all-set mode; must write protect them here so that they
1318          * are split to 4K on the first write.
1319          *
1320          * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1321          * of memslot has no such restriction, so the range can cross two large
1322          * pages.
1323          */
1324         if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1325                 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1326                 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1327
1328                 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1329
1330                 /* Cross two large pages? */
1331                 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1332                     ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1333                         kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1334                                                        PG_LEVEL_2M);
1335         }
1336
1337         /* Now handle 4K PTEs.  */
1338         if (kvm_x86_ops.cpu_dirty_log_size)
1339                 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1340         else
1341                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1342 }
1343
1344 int kvm_cpu_dirty_log_size(void)
1345 {
1346         return kvm_x86_ops.cpu_dirty_log_size;
1347 }
1348
1349 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1350                                     struct kvm_memory_slot *slot, u64 gfn,
1351                                     int min_level)
1352 {
1353         struct kvm_rmap_head *rmap_head;
1354         int i;
1355         bool write_protected = false;
1356
1357         if (kvm_memslots_have_rmaps(kvm)) {
1358                 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1359                         rmap_head = __gfn_to_rmap(gfn, i, slot);
1360                         write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1361                 }
1362         }
1363
1364         if (is_tdp_mmu_enabled(kvm))
1365                 write_protected |=
1366                         kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1367
1368         return write_protected;
1369 }
1370
1371 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1372 {
1373         struct kvm_memory_slot *slot;
1374
1375         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1376         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1377 }
1378
1379 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1380                           struct kvm_memory_slot *slot)
1381 {
1382         u64 *sptep;
1383         struct rmap_iterator iter;
1384         bool flush = false;
1385
1386         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1387                 rmap_printk("spte %p %llx.\n", sptep, *sptep);
1388
1389                 pte_list_remove(rmap_head, sptep);
1390                 flush = true;
1391         }
1392
1393         return flush;
1394 }
1395
1396 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1397                             struct kvm_memory_slot *slot, gfn_t gfn, int level,
1398                             pte_t unused)
1399 {
1400         return kvm_zap_rmapp(kvm, rmap_head, slot);
1401 }
1402
1403 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1404                               struct kvm_memory_slot *slot, gfn_t gfn, int level,
1405                               pte_t pte)
1406 {
1407         u64 *sptep;
1408         struct rmap_iterator iter;
1409         int need_flush = 0;
1410         u64 new_spte;
1411         kvm_pfn_t new_pfn;
1412
1413         WARN_ON(pte_huge(pte));
1414         new_pfn = pte_pfn(pte);
1415
1416 restart:
1417         for_each_rmap_spte(rmap_head, &iter, sptep) {
1418                 rmap_printk("spte %p %llx gfn %llx (%d)\n",
1419                             sptep, *sptep, gfn, level);
1420
1421                 need_flush = 1;
1422
1423                 if (pte_write(pte)) {
1424                         pte_list_remove(rmap_head, sptep);
1425                         goto restart;
1426                 } else {
1427                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1428                                         *sptep, new_pfn);
1429
1430                         mmu_spte_clear_track_bits(sptep);
1431                         mmu_spte_set(sptep, new_spte);
1432                 }
1433         }
1434
1435         if (need_flush && kvm_available_flush_tlb_with_range()) {
1436                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1437                 return 0;
1438         }
1439
1440         return need_flush;
1441 }
1442
1443 struct slot_rmap_walk_iterator {
1444         /* input fields. */
1445         struct kvm_memory_slot *slot;
1446         gfn_t start_gfn;
1447         gfn_t end_gfn;
1448         int start_level;
1449         int end_level;
1450
1451         /* output fields. */
1452         gfn_t gfn;
1453         struct kvm_rmap_head *rmap;
1454         int level;
1455
1456         /* private field. */
1457         struct kvm_rmap_head *end_rmap;
1458 };
1459
1460 static void
1461 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1462 {
1463         iterator->level = level;
1464         iterator->gfn = iterator->start_gfn;
1465         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1466         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1467                                            iterator->slot);
1468 }
1469
1470 static void
1471 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1472                     struct kvm_memory_slot *slot, int start_level,
1473                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1474 {
1475         iterator->slot = slot;
1476         iterator->start_level = start_level;
1477         iterator->end_level = end_level;
1478         iterator->start_gfn = start_gfn;
1479         iterator->end_gfn = end_gfn;
1480
1481         rmap_walk_init_level(iterator, iterator->start_level);
1482 }
1483
1484 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1485 {
1486         return !!iterator->rmap;
1487 }
1488
1489 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1490 {
1491         if (++iterator->rmap <= iterator->end_rmap) {
1492                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1493                 return;
1494         }
1495
1496         if (++iterator->level > iterator->end_level) {
1497                 iterator->rmap = NULL;
1498                 return;
1499         }
1500
1501         rmap_walk_init_level(iterator, iterator->level);
1502 }
1503
1504 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1505            _start_gfn, _end_gfn, _iter_)                                \
1506         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1507                                  _end_level_, _start_gfn, _end_gfn);    \
1508              slot_rmap_walk_okay(_iter_);                               \
1509              slot_rmap_walk_next(_iter_))
1510
1511 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1512                                struct kvm_memory_slot *slot, gfn_t gfn,
1513                                int level, pte_t pte);
1514
1515 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1516                                                  struct kvm_gfn_range *range,
1517                                                  rmap_handler_t handler)
1518 {
1519         struct slot_rmap_walk_iterator iterator;
1520         bool ret = false;
1521
1522         for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1523                                  range->start, range->end - 1, &iterator)
1524                 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1525                                iterator.level, range->pte);
1526
1527         return ret;
1528 }
1529
1530 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1531 {
1532         bool flush = false;
1533
1534         if (kvm_memslots_have_rmaps(kvm))
1535                 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1536
1537         if (is_tdp_mmu_enabled(kvm))
1538                 flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1539
1540         return flush;
1541 }
1542
1543 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1544 {
1545         bool flush = false;
1546
1547         if (kvm_memslots_have_rmaps(kvm))
1548                 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1549
1550         if (is_tdp_mmu_enabled(kvm))
1551                 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1552
1553         return flush;
1554 }
1555
1556 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1557                           struct kvm_memory_slot *slot, gfn_t gfn, int level,
1558                           pte_t unused)
1559 {
1560         u64 *sptep;
1561         struct rmap_iterator iter;
1562         int young = 0;
1563
1564         for_each_rmap_spte(rmap_head, &iter, sptep)
1565                 young |= mmu_spte_age(sptep);
1566
1567         return young;
1568 }
1569
1570 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1571                                struct kvm_memory_slot *slot, gfn_t gfn,
1572                                int level, pte_t unused)
1573 {
1574         u64 *sptep;
1575         struct rmap_iterator iter;
1576
1577         for_each_rmap_spte(rmap_head, &iter, sptep)
1578                 if (is_accessed_spte(*sptep))
1579                         return 1;
1580         return 0;
1581 }
1582
1583 #define RMAP_RECYCLE_THRESHOLD 1000
1584
1585 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1586 {
1587         struct kvm_rmap_head *rmap_head;
1588         struct kvm_mmu_page *sp;
1589
1590         sp = sptep_to_sp(spte);
1591
1592         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1593
1594         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1595         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1596                         KVM_PAGES_PER_HPAGE(sp->role.level));
1597 }
1598
1599 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1600 {
1601         bool young = false;
1602
1603         if (kvm_memslots_have_rmaps(kvm))
1604                 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1605
1606         if (is_tdp_mmu_enabled(kvm))
1607                 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1608
1609         return young;
1610 }
1611
1612 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1613 {
1614         bool young = false;
1615
1616         if (kvm_memslots_have_rmaps(kvm))
1617                 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1618
1619         if (is_tdp_mmu_enabled(kvm))
1620                 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1621
1622         return young;
1623 }
1624
1625 #ifdef MMU_DEBUG
1626 static int is_empty_shadow_page(u64 *spt)
1627 {
1628         u64 *pos;
1629         u64 *end;
1630
1631         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1632                 if (is_shadow_present_pte(*pos)) {
1633                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1634                                pos, *pos);
1635                         return 0;
1636                 }
1637         return 1;
1638 }
1639 #endif
1640
1641 /*
1642  * This value is the sum of all of the kvm instances's
1643  * kvm->arch.n_used_mmu_pages values.  We need a global,
1644  * aggregate version in order to make the slab shrinker
1645  * faster
1646  */
1647 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1648 {
1649         kvm->arch.n_used_mmu_pages += nr;
1650         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1651 }
1652
1653 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1654 {
1655         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1656         hlist_del(&sp->hash_link);
1657         list_del(&sp->link);
1658         free_page((unsigned long)sp->spt);
1659         if (!sp->role.direct)
1660                 free_page((unsigned long)sp->gfns);
1661         kmem_cache_free(mmu_page_header_cache, sp);
1662 }
1663
1664 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1665 {
1666         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1667 }
1668
1669 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1670                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1671 {
1672         if (!parent_pte)
1673                 return;
1674
1675         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1676 }
1677
1678 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1679                                        u64 *parent_pte)
1680 {
1681         __pte_list_remove(parent_pte, &sp->parent_ptes);
1682 }
1683
1684 static void drop_parent_pte(struct kvm_mmu_page *sp,
1685                             u64 *parent_pte)
1686 {
1687         mmu_page_remove_parent_pte(sp, parent_pte);
1688         mmu_spte_clear_no_track(parent_pte);
1689 }
1690
1691 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1692 {
1693         struct kvm_mmu_page *sp;
1694
1695         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1696         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1697         if (!direct)
1698                 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1699         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1700
1701         /*
1702          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1703          * depends on valid pages being added to the head of the list.  See
1704          * comments in kvm_zap_obsolete_pages().
1705          */
1706         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1707         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1708         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1709         return sp;
1710 }
1711
1712 static void mark_unsync(u64 *spte);
1713 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1714 {
1715         u64 *sptep;
1716         struct rmap_iterator iter;
1717
1718         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1719                 mark_unsync(sptep);
1720         }
1721 }
1722
1723 static void mark_unsync(u64 *spte)
1724 {
1725         struct kvm_mmu_page *sp;
1726         unsigned int index;
1727
1728         sp = sptep_to_sp(spte);
1729         index = spte - sp->spt;
1730         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1731                 return;
1732         if (sp->unsync_children++)
1733                 return;
1734         kvm_mmu_mark_parents_unsync(sp);
1735 }
1736
1737 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1738                                struct kvm_mmu_page *sp)
1739 {
1740         return 0;
1741 }
1742
1743 #define KVM_PAGE_ARRAY_NR 16
1744
1745 struct kvm_mmu_pages {
1746         struct mmu_page_and_offset {
1747                 struct kvm_mmu_page *sp;
1748                 unsigned int idx;
1749         } page[KVM_PAGE_ARRAY_NR];
1750         unsigned int nr;
1751 };
1752
1753 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1754                          int idx)
1755 {
1756         int i;
1757
1758         if (sp->unsync)
1759                 for (i=0; i < pvec->nr; i++)
1760                         if (pvec->page[i].sp == sp)
1761                                 return 0;
1762
1763         pvec->page[pvec->nr].sp = sp;
1764         pvec->page[pvec->nr].idx = idx;
1765         pvec->nr++;
1766         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1767 }
1768
1769 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1770 {
1771         --sp->unsync_children;
1772         WARN_ON((int)sp->unsync_children < 0);
1773         __clear_bit(idx, sp->unsync_child_bitmap);
1774 }
1775
1776 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1777                            struct kvm_mmu_pages *pvec)
1778 {
1779         int i, ret, nr_unsync_leaf = 0;
1780
1781         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1782                 struct kvm_mmu_page *child;
1783                 u64 ent = sp->spt[i];
1784
1785                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1786                         clear_unsync_child_bit(sp, i);
1787                         continue;
1788                 }
1789
1790                 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1791
1792                 if (child->unsync_children) {
1793                         if (mmu_pages_add(pvec, child, i))
1794                                 return -ENOSPC;
1795
1796                         ret = __mmu_unsync_walk(child, pvec);
1797                         if (!ret) {
1798                                 clear_unsync_child_bit(sp, i);
1799                                 continue;
1800                         } else if (ret > 0) {
1801                                 nr_unsync_leaf += ret;
1802                         } else
1803                                 return ret;
1804                 } else if (child->unsync) {
1805                         nr_unsync_leaf++;
1806                         if (mmu_pages_add(pvec, child, i))
1807                                 return -ENOSPC;
1808                 } else
1809                         clear_unsync_child_bit(sp, i);
1810         }
1811
1812         return nr_unsync_leaf;
1813 }
1814
1815 #define INVALID_INDEX (-1)
1816
1817 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1818                            struct kvm_mmu_pages *pvec)
1819 {
1820         pvec->nr = 0;
1821         if (!sp->unsync_children)
1822                 return 0;
1823
1824         mmu_pages_add(pvec, sp, INVALID_INDEX);
1825         return __mmu_unsync_walk(sp, pvec);
1826 }
1827
1828 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1829 {
1830         WARN_ON(!sp->unsync);
1831         trace_kvm_mmu_sync_page(sp);
1832         sp->unsync = 0;
1833         --kvm->stat.mmu_unsync;
1834 }
1835
1836 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1837                                      struct list_head *invalid_list);
1838 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1839                                     struct list_head *invalid_list);
1840
1841 #define for_each_valid_sp(_kvm, _sp, _list)                             \
1842         hlist_for_each_entry(_sp, _list, hash_link)                     \
1843                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
1844                 } else
1845
1846 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1847         for_each_valid_sp(_kvm, _sp,                                    \
1848           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
1849                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1850
1851 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1852                          struct list_head *invalid_list)
1853 {
1854         if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1855                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1856                 return false;
1857         }
1858
1859         return true;
1860 }
1861
1862 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1863                                         struct list_head *invalid_list,
1864                                         bool remote_flush)
1865 {
1866         if (!remote_flush && list_empty(invalid_list))
1867                 return false;
1868
1869         if (!list_empty(invalid_list))
1870                 kvm_mmu_commit_zap_page(kvm, invalid_list);
1871         else
1872                 kvm_flush_remote_tlbs(kvm);
1873         return true;
1874 }
1875
1876 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1877                                  struct list_head *invalid_list,
1878                                  bool remote_flush, bool local_flush)
1879 {
1880         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1881                 return;
1882
1883         if (local_flush)
1884                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1885 }
1886
1887 #ifdef CONFIG_KVM_MMU_AUDIT
1888 #include "mmu_audit.c"
1889 #else
1890 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1891 static void mmu_audit_disable(void) { }
1892 #endif
1893
1894 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1895 {
1896         return sp->role.invalid ||
1897                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1898 }
1899
1900 struct mmu_page_path {
1901         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1902         unsigned int idx[PT64_ROOT_MAX_LEVEL];
1903 };
1904
1905 #define for_each_sp(pvec, sp, parents, i)                       \
1906                 for (i = mmu_pages_first(&pvec, &parents);      \
1907                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1908                         i = mmu_pages_next(&pvec, &parents, i))
1909
1910 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1911                           struct mmu_page_path *parents,
1912                           int i)
1913 {
1914         int n;
1915
1916         for (n = i+1; n < pvec->nr; n++) {
1917                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1918                 unsigned idx = pvec->page[n].idx;
1919                 int level = sp->role.level;
1920
1921                 parents->idx[level-1] = idx;
1922                 if (level == PG_LEVEL_4K)
1923                         break;
1924
1925                 parents->parent[level-2] = sp;
1926         }
1927
1928         return n;
1929 }
1930
1931 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1932                            struct mmu_page_path *parents)
1933 {
1934         struct kvm_mmu_page *sp;
1935         int level;
1936
1937         if (pvec->nr == 0)
1938                 return 0;
1939
1940         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1941
1942         sp = pvec->page[0].sp;
1943         level = sp->role.level;
1944         WARN_ON(level == PG_LEVEL_4K);
1945
1946         parents->parent[level-2] = sp;
1947
1948         /* Also set up a sentinel.  Further entries in pvec are all
1949          * children of sp, so this element is never overwritten.
1950          */
1951         parents->parent[level-1] = NULL;
1952         return mmu_pages_next(pvec, parents, 0);
1953 }
1954
1955 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1956 {
1957         struct kvm_mmu_page *sp;
1958         unsigned int level = 0;
1959
1960         do {
1961                 unsigned int idx = parents->idx[level];
1962                 sp = parents->parent[level];
1963                 if (!sp)
1964                         return;
1965
1966                 WARN_ON(idx == INVALID_INDEX);
1967                 clear_unsync_child_bit(sp, idx);
1968                 level++;
1969         } while (!sp->unsync_children);
1970 }
1971
1972 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1973                               struct kvm_mmu_page *parent)
1974 {
1975         int i;
1976         struct kvm_mmu_page *sp;
1977         struct mmu_page_path parents;
1978         struct kvm_mmu_pages pages;
1979         LIST_HEAD(invalid_list);
1980         bool flush = false;
1981
1982         while (mmu_unsync_walk(parent, &pages)) {
1983                 bool protected = false;
1984
1985                 for_each_sp(pages, sp, parents, i)
1986                         protected |= rmap_write_protect(vcpu, sp->gfn);
1987
1988                 if (protected) {
1989                         kvm_flush_remote_tlbs(vcpu->kvm);
1990                         flush = false;
1991                 }
1992
1993                 for_each_sp(pages, sp, parents, i) {
1994                         kvm_unlink_unsync_page(vcpu->kvm, sp);
1995                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1996                         mmu_pages_clear_parents(&parents);
1997                 }
1998                 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1999                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2000                         cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2001                         flush = false;
2002                 }
2003         }
2004
2005         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2006 }
2007
2008 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2009 {
2010         atomic_set(&sp->write_flooding_count,  0);
2011 }
2012
2013 static void clear_sp_write_flooding_count(u64 *spte)
2014 {
2015         __clear_sp_write_flooding_count(sptep_to_sp(spte));
2016 }
2017
2018 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2019                                              gfn_t gfn,
2020                                              gva_t gaddr,
2021                                              unsigned level,
2022                                              int direct,
2023                                              unsigned int access)
2024 {
2025         bool direct_mmu = vcpu->arch.mmu->direct_map;
2026         union kvm_mmu_page_role role;
2027         struct hlist_head *sp_list;
2028         unsigned quadrant;
2029         struct kvm_mmu_page *sp;
2030         int collisions = 0;
2031         LIST_HEAD(invalid_list);
2032
2033         role = vcpu->arch.mmu->mmu_role.base;
2034         role.level = level;
2035         role.direct = direct;
2036         if (role.direct)
2037                 role.gpte_is_8_bytes = true;
2038         role.access = access;
2039         if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2040                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2041                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2042                 role.quadrant = quadrant;
2043         }
2044
2045         sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2046         for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2047                 if (sp->gfn != gfn) {
2048                         collisions++;
2049                         continue;
2050                 }
2051
2052                 if (sp->role.word != role.word) {
2053                         /*
2054                          * If the guest is creating an upper-level page, zap
2055                          * unsync pages for the same gfn.  While it's possible
2056                          * the guest is using recursive page tables, in all
2057                          * likelihood the guest has stopped using the unsync
2058                          * page and is installing a completely unrelated page.
2059                          * Unsync pages must not be left as is, because the new
2060                          * upper-level page will be write-protected.
2061                          */
2062                         if (level > PG_LEVEL_4K && sp->unsync)
2063                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2064                                                          &invalid_list);
2065                         continue;
2066                 }
2067
2068                 if (direct_mmu)
2069                         goto trace_get_page;
2070
2071                 if (sp->unsync) {
2072                         /*
2073                          * The page is good, but is stale.  kvm_sync_page does
2074                          * get the latest guest state, but (unlike mmu_unsync_children)
2075                          * it doesn't write-protect the page or mark it synchronized!
2076                          * This way the validity of the mapping is ensured, but the
2077                          * overhead of write protection is not incurred until the
2078                          * guest invalidates the TLB mapping.  This allows multiple
2079                          * SPs for a single gfn to be unsync.
2080                          *
2081                          * If the sync fails, the page is zapped.  If so, break
2082                          * in order to rebuild it.
2083                          */
2084                         if (!kvm_sync_page(vcpu, sp, &invalid_list))
2085                                 break;
2086
2087                         WARN_ON(!list_empty(&invalid_list));
2088                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2089                 }
2090
2091                 if (sp->unsync_children)
2092                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2093
2094                 __clear_sp_write_flooding_count(sp);
2095
2096 trace_get_page:
2097                 trace_kvm_mmu_get_page(sp, false);
2098                 goto out;
2099         }
2100
2101         ++vcpu->kvm->stat.mmu_cache_miss;
2102
2103         sp = kvm_mmu_alloc_page(vcpu, direct);
2104
2105         sp->gfn = gfn;
2106         sp->role = role;
2107         hlist_add_head(&sp->hash_link, sp_list);
2108         if (!direct) {
2109                 account_shadowed(vcpu->kvm, sp);
2110                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2111                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2112         }
2113         trace_kvm_mmu_get_page(sp, true);
2114 out:
2115         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2116
2117         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2118                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2119         return sp;
2120 }
2121
2122 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2123                                         struct kvm_vcpu *vcpu, hpa_t root,
2124                                         u64 addr)
2125 {
2126         iterator->addr = addr;
2127         iterator->shadow_addr = root;
2128         iterator->level = vcpu->arch.mmu->shadow_root_level;
2129
2130         if (iterator->level == PT64_ROOT_4LEVEL &&
2131             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2132             !vcpu->arch.mmu->direct_map)
2133                 --iterator->level;
2134
2135         if (iterator->level == PT32E_ROOT_LEVEL) {
2136                 /*
2137                  * prev_root is currently only used for 64-bit hosts. So only
2138                  * the active root_hpa is valid here.
2139                  */
2140                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2141
2142                 iterator->shadow_addr
2143                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2144                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2145                 --iterator->level;
2146                 if (!iterator->shadow_addr)
2147                         iterator->level = 0;
2148         }
2149 }
2150
2151 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2152                              struct kvm_vcpu *vcpu, u64 addr)
2153 {
2154         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2155                                     addr);
2156 }
2157
2158 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2159 {
2160         if (iterator->level < PG_LEVEL_4K)
2161                 return false;
2162
2163         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2164         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2165         return true;
2166 }
2167
2168 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2169                                u64 spte)
2170 {
2171         if (is_last_spte(spte, iterator->level)) {
2172                 iterator->level = 0;
2173                 return;
2174         }
2175
2176         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2177         --iterator->level;
2178 }
2179
2180 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2181 {
2182         __shadow_walk_next(iterator, *iterator->sptep);
2183 }
2184
2185 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2186                              struct kvm_mmu_page *sp)
2187 {
2188         u64 spte;
2189
2190         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2191
2192         spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2193
2194         mmu_spte_set(sptep, spte);
2195
2196         mmu_page_add_parent_pte(vcpu, sp, sptep);
2197
2198         if (sp->unsync_children || sp->unsync)
2199                 mark_unsync(sptep);
2200 }
2201
2202 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2203                                    unsigned direct_access)
2204 {
2205         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2206                 struct kvm_mmu_page *child;
2207
2208                 /*
2209                  * For the direct sp, if the guest pte's dirty bit
2210                  * changed form clean to dirty, it will corrupt the
2211                  * sp's access: allow writable in the read-only sp,
2212                  * so we should update the spte at this point to get
2213                  * a new sp with the correct access.
2214                  */
2215                 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2216                 if (child->role.access == direct_access)
2217                         return;
2218
2219                 drop_parent_pte(child, sptep);
2220                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2221         }
2222 }
2223
2224 /* Returns the number of zapped non-leaf child shadow pages. */
2225 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2226                             u64 *spte, struct list_head *invalid_list)
2227 {
2228         u64 pte;
2229         struct kvm_mmu_page *child;
2230
2231         pte = *spte;
2232         if (is_shadow_present_pte(pte)) {
2233                 if (is_last_spte(pte, sp->role.level)) {
2234                         drop_spte(kvm, spte);
2235                         if (is_large_pte(pte))
2236                                 --kvm->stat.lpages;
2237                 } else {
2238                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2239                         drop_parent_pte(child, spte);
2240
2241                         /*
2242                          * Recursively zap nested TDP SPs, parentless SPs are
2243                          * unlikely to be used again in the near future.  This
2244                          * avoids retaining a large number of stale nested SPs.
2245                          */
2246                         if (tdp_enabled && invalid_list &&
2247                             child->role.guest_mode && !child->parent_ptes.val)
2248                                 return kvm_mmu_prepare_zap_page(kvm, child,
2249                                                                 invalid_list);
2250                 }
2251         } else if (is_mmio_spte(pte)) {
2252                 mmu_spte_clear_no_track(spte);
2253         }
2254         return 0;
2255 }
2256
2257 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2258                                         struct kvm_mmu_page *sp,
2259                                         struct list_head *invalid_list)
2260 {
2261         int zapped = 0;
2262         unsigned i;
2263
2264         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2265                 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2266
2267         return zapped;
2268 }
2269
2270 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2271 {
2272         u64 *sptep;
2273         struct rmap_iterator iter;
2274
2275         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2276                 drop_parent_pte(sp, sptep);
2277 }
2278
2279 static int mmu_zap_unsync_children(struct kvm *kvm,
2280                                    struct kvm_mmu_page *parent,
2281                                    struct list_head *invalid_list)
2282 {
2283         int i, zapped = 0;
2284         struct mmu_page_path parents;
2285         struct kvm_mmu_pages pages;
2286
2287         if (parent->role.level == PG_LEVEL_4K)
2288                 return 0;
2289
2290         while (mmu_unsync_walk(parent, &pages)) {
2291                 struct kvm_mmu_page *sp;
2292
2293                 for_each_sp(pages, sp, parents, i) {
2294                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2295                         mmu_pages_clear_parents(&parents);
2296                         zapped++;
2297                 }
2298         }
2299
2300         return zapped;
2301 }
2302
2303 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2304                                        struct kvm_mmu_page *sp,
2305                                        struct list_head *invalid_list,
2306                                        int *nr_zapped)
2307 {
2308         bool list_unstable;
2309
2310         trace_kvm_mmu_prepare_zap_page(sp);
2311         ++kvm->stat.mmu_shadow_zapped;
2312         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2313         *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2314         kvm_mmu_unlink_parents(kvm, sp);
2315
2316         /* Zapping children means active_mmu_pages has become unstable. */
2317         list_unstable = *nr_zapped;
2318
2319         if (!sp->role.invalid && !sp->role.direct)
2320                 unaccount_shadowed(kvm, sp);
2321
2322         if (sp->unsync)
2323                 kvm_unlink_unsync_page(kvm, sp);
2324         if (!sp->root_count) {
2325                 /* Count self */
2326                 (*nr_zapped)++;
2327
2328                 /*
2329                  * Already invalid pages (previously active roots) are not on
2330                  * the active page list.  See list_del() in the "else" case of
2331                  * !sp->root_count.
2332                  */
2333                 if (sp->role.invalid)
2334                         list_add(&sp->link, invalid_list);
2335                 else
2336                         list_move(&sp->link, invalid_list);
2337                 kvm_mod_used_mmu_pages(kvm, -1);
2338         } else {
2339                 /*
2340                  * Remove the active root from the active page list, the root
2341                  * will be explicitly freed when the root_count hits zero.
2342                  */
2343                 list_del(&sp->link);
2344
2345                 /*
2346                  * Obsolete pages cannot be used on any vCPUs, see the comment
2347                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2348                  * treats invalid shadow pages as being obsolete.
2349                  */
2350                 if (!is_obsolete_sp(kvm, sp))
2351                         kvm_reload_remote_mmus(kvm);
2352         }
2353
2354         if (sp->lpage_disallowed)
2355                 unaccount_huge_nx_page(kvm, sp);
2356
2357         sp->role.invalid = 1;
2358         return list_unstable;
2359 }
2360
2361 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2362                                      struct list_head *invalid_list)
2363 {
2364         int nr_zapped;
2365
2366         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2367         return nr_zapped;
2368 }
2369
2370 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2371                                     struct list_head *invalid_list)
2372 {
2373         struct kvm_mmu_page *sp, *nsp;
2374
2375         if (list_empty(invalid_list))
2376                 return;
2377
2378         /*
2379          * We need to make sure everyone sees our modifications to
2380          * the page tables and see changes to vcpu->mode here. The barrier
2381          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2382          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2383          *
2384          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2385          * guest mode and/or lockless shadow page table walks.
2386          */
2387         kvm_flush_remote_tlbs(kvm);
2388
2389         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2390                 WARN_ON(!sp->role.invalid || sp->root_count);
2391                 kvm_mmu_free_page(sp);
2392         }
2393 }
2394
2395 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2396                                                   unsigned long nr_to_zap)
2397 {
2398         unsigned long total_zapped = 0;
2399         struct kvm_mmu_page *sp, *tmp;
2400         LIST_HEAD(invalid_list);
2401         bool unstable;
2402         int nr_zapped;
2403
2404         if (list_empty(&kvm->arch.active_mmu_pages))
2405                 return 0;
2406
2407 restart:
2408         list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2409                 /*
2410                  * Don't zap active root pages, the page itself can't be freed
2411                  * and zapping it will just force vCPUs to realloc and reload.
2412                  */
2413                 if (sp->root_count)
2414                         continue;
2415
2416                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2417                                                       &nr_zapped);
2418                 total_zapped += nr_zapped;
2419                 if (total_zapped >= nr_to_zap)
2420                         break;
2421
2422                 if (unstable)
2423                         goto restart;
2424         }
2425
2426         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2427
2428         kvm->stat.mmu_recycled += total_zapped;
2429         return total_zapped;
2430 }
2431
2432 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2433 {
2434         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2435                 return kvm->arch.n_max_mmu_pages -
2436                         kvm->arch.n_used_mmu_pages;
2437
2438         return 0;
2439 }
2440
2441 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2442 {
2443         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2444
2445         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2446                 return 0;
2447
2448         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2449
2450         /*
2451          * Note, this check is intentionally soft, it only guarantees that one
2452          * page is available, while the caller may end up allocating as many as
2453          * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2454          * exceeding the (arbitrary by default) limit will not harm the host,
2455          * being too aggressive may unnecessarily kill the guest, and getting an
2456          * exact count is far more trouble than it's worth, especially in the
2457          * page fault paths.
2458          */
2459         if (!kvm_mmu_available_pages(vcpu->kvm))
2460                 return -ENOSPC;
2461         return 0;
2462 }
2463
2464 /*
2465  * Changing the number of mmu pages allocated to the vm
2466  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2467  */
2468 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2469 {
2470         write_lock(&kvm->mmu_lock);
2471
2472         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2473                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2474                                                   goal_nr_mmu_pages);
2475
2476                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2477         }
2478
2479         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2480
2481         write_unlock(&kvm->mmu_lock);
2482 }
2483
2484 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2485 {
2486         struct kvm_mmu_page *sp;
2487         LIST_HEAD(invalid_list);
2488         int r;
2489
2490         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2491         r = 0;
2492         write_lock(&kvm->mmu_lock);
2493         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2494                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2495                          sp->role.word);
2496                 r = 1;
2497                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2498         }
2499         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2500         write_unlock(&kvm->mmu_lock);
2501
2502         return r;
2503 }
2504
2505 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2506 {
2507         gpa_t gpa;
2508         int r;
2509
2510         if (vcpu->arch.mmu->direct_map)
2511                 return 0;
2512
2513         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2514
2515         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2516
2517         return r;
2518 }
2519
2520 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2521 {
2522         trace_kvm_mmu_unsync_page(sp);
2523         ++vcpu->kvm->stat.mmu_unsync;
2524         sp->unsync = 1;
2525
2526         kvm_mmu_mark_parents_unsync(sp);
2527 }
2528
2529 /*
2530  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2531  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2532  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2533  * be write-protected.
2534  */
2535 int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync)
2536 {
2537         struct kvm_mmu_page *sp;
2538
2539         /*
2540          * Force write-protection if the page is being tracked.  Note, the page
2541          * track machinery is used to write-protect upper-level shadow pages,
2542          * i.e. this guards the role.level == 4K assertion below!
2543          */
2544         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2545                 return -EPERM;
2546
2547         /*
2548          * The page is not write-tracked, mark existing shadow pages unsync
2549          * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2550          * that case, KVM must complete emulation of the guest TLB flush before
2551          * allowing shadow pages to become unsync (writable by the guest).
2552          */
2553         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2554                 if (!can_unsync)
2555                         return -EPERM;
2556
2557                 if (sp->unsync)
2558                         continue;
2559
2560                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2561                 kvm_unsync_page(vcpu, sp);
2562         }
2563
2564         /*
2565          * We need to ensure that the marking of unsync pages is visible
2566          * before the SPTE is updated to allow writes because
2567          * kvm_mmu_sync_roots() checks the unsync flags without holding
2568          * the MMU lock and so can race with this. If the SPTE was updated
2569          * before the page had been marked as unsync-ed, something like the
2570          * following could happen:
2571          *
2572          * CPU 1                    CPU 2
2573          * ---------------------------------------------------------------------
2574          * 1.2 Host updates SPTE
2575          *     to be writable
2576          *                      2.1 Guest writes a GPTE for GVA X.
2577          *                          (GPTE being in the guest page table shadowed
2578          *                           by the SP from CPU 1.)
2579          *                          This reads SPTE during the page table walk.
2580          *                          Since SPTE.W is read as 1, there is no
2581          *                          fault.
2582          *
2583          *                      2.2 Guest issues TLB flush.
2584          *                          That causes a VM Exit.
2585          *
2586          *                      2.3 Walking of unsync pages sees sp->unsync is
2587          *                          false and skips the page.
2588          *
2589          *                      2.4 Guest accesses GVA X.
2590          *                          Since the mapping in the SP was not updated,
2591          *                          so the old mapping for GVA X incorrectly
2592          *                          gets used.
2593          * 1.1 Host marks SP
2594          *     as unsync
2595          *     (sp->unsync = true)
2596          *
2597          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2598          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2599          * pairs with this write barrier.
2600          */
2601         smp_wmb();
2602
2603         return 0;
2604 }
2605
2606 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2607                     unsigned int pte_access, int level,
2608                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2609                     bool can_unsync, bool host_writable)
2610 {
2611         u64 spte;
2612         struct kvm_mmu_page *sp;
2613         int ret;
2614
2615         sp = sptep_to_sp(sptep);
2616
2617         ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2618                         can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2619
2620         if (spte & PT_WRITABLE_MASK)
2621                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2622
2623         if (*sptep == spte)
2624                 ret |= SET_SPTE_SPURIOUS;
2625         else if (mmu_spte_update(sptep, spte))
2626                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2627         return ret;
2628 }
2629
2630 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2631                         unsigned int pte_access, bool write_fault, int level,
2632                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2633                         bool host_writable)
2634 {
2635         int was_rmapped = 0;
2636         int rmap_count;
2637         int set_spte_ret;
2638         int ret = RET_PF_FIXED;
2639         bool flush = false;
2640
2641         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2642                  *sptep, write_fault, gfn);
2643
2644         if (unlikely(is_noslot_pfn(pfn))) {
2645                 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2646                 return RET_PF_EMULATE;
2647         }
2648
2649         if (is_shadow_present_pte(*sptep)) {
2650                 /*
2651                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2652                  * the parent of the now unreachable PTE.
2653                  */
2654                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2655                         struct kvm_mmu_page *child;
2656                         u64 pte = *sptep;
2657
2658                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2659                         drop_parent_pte(child, sptep);
2660                         flush = true;
2661                 } else if (pfn != spte_to_pfn(*sptep)) {
2662                         pgprintk("hfn old %llx new %llx\n",
2663                                  spte_to_pfn(*sptep), pfn);
2664                         drop_spte(vcpu->kvm, sptep);
2665                         flush = true;
2666                 } else
2667                         was_rmapped = 1;
2668         }
2669
2670         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2671                                 speculative, true, host_writable);
2672         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2673                 if (write_fault)
2674                         ret = RET_PF_EMULATE;
2675                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2676         }
2677
2678         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2679                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2680                                 KVM_PAGES_PER_HPAGE(level));
2681
2682         /*
2683          * The fault is fully spurious if and only if the new SPTE and old SPTE
2684          * are identical, and emulation is not required.
2685          */
2686         if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2687                 WARN_ON_ONCE(!was_rmapped);
2688                 return RET_PF_SPURIOUS;
2689         }
2690
2691         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2692         trace_kvm_mmu_set_spte(level, gfn, sptep);
2693         if (!was_rmapped && is_large_pte(*sptep))
2694                 ++vcpu->kvm->stat.lpages;
2695
2696         if (is_shadow_present_pte(*sptep)) {
2697                 if (!was_rmapped) {
2698                         rmap_count = rmap_add(vcpu, sptep, gfn);
2699                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2700                                 rmap_recycle(vcpu, sptep, gfn);
2701                 }
2702         }
2703
2704         return ret;
2705 }
2706
2707 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2708                                      bool no_dirty_log)
2709 {
2710         struct kvm_memory_slot *slot;
2711
2712         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2713         if (!slot)
2714                 return KVM_PFN_ERR_FAULT;
2715
2716         return gfn_to_pfn_memslot_atomic(slot, gfn);
2717 }
2718
2719 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2720                                     struct kvm_mmu_page *sp,
2721                                     u64 *start, u64 *end)
2722 {
2723         struct page *pages[PTE_PREFETCH_NUM];
2724         struct kvm_memory_slot *slot;
2725         unsigned int access = sp->role.access;
2726         int i, ret;
2727         gfn_t gfn;
2728
2729         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2730         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2731         if (!slot)
2732                 return -1;
2733
2734         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2735         if (ret <= 0)
2736                 return -1;
2737
2738         for (i = 0; i < ret; i++, gfn++, start++) {
2739                 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2740                              page_to_pfn(pages[i]), true, true);
2741                 put_page(pages[i]);
2742         }
2743
2744         return 0;
2745 }
2746
2747 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2748                                   struct kvm_mmu_page *sp, u64 *sptep)
2749 {
2750         u64 *spte, *start = NULL;
2751         int i;
2752
2753         WARN_ON(!sp->role.direct);
2754
2755         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2756         spte = sp->spt + i;
2757
2758         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2759                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2760                         if (!start)
2761                                 continue;
2762                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2763                                 break;
2764                         start = NULL;
2765                 } else if (!start)
2766                         start = spte;
2767         }
2768 }
2769
2770 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2771 {
2772         struct kvm_mmu_page *sp;
2773
2774         sp = sptep_to_sp(sptep);
2775
2776         /*
2777          * Without accessed bits, there's no way to distinguish between
2778          * actually accessed translations and prefetched, so disable pte
2779          * prefetch if accessed bits aren't available.
2780          */
2781         if (sp_ad_disabled(sp))
2782                 return;
2783
2784         if (sp->role.level > PG_LEVEL_4K)
2785                 return;
2786
2787         /*
2788          * If addresses are being invalidated, skip prefetching to avoid
2789          * accidentally prefetching those addresses.
2790          */
2791         if (unlikely(vcpu->kvm->mmu_notifier_count))
2792                 return;
2793
2794         __direct_pte_prefetch(vcpu, sp, sptep);
2795 }
2796
2797 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2798                                   const struct kvm_memory_slot *slot)
2799 {
2800         unsigned long hva;
2801         pte_t *pte;
2802         int level;
2803
2804         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2805                 return PG_LEVEL_4K;
2806
2807         /*
2808          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2809          * is not solely for performance, it's also necessary to avoid the
2810          * "writable" check in __gfn_to_hva_many(), which will always fail on
2811          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2812          * page fault steps have already verified the guest isn't writing a
2813          * read-only memslot.
2814          */
2815         hva = __gfn_to_hva_memslot(slot, gfn);
2816
2817         pte = lookup_address_in_mm(kvm->mm, hva, &level);
2818         if (unlikely(!pte))
2819                 return PG_LEVEL_4K;
2820
2821         return level;
2822 }
2823
2824 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2825                               const struct kvm_memory_slot *slot, gfn_t gfn,
2826                               kvm_pfn_t pfn, int max_level)
2827 {
2828         struct kvm_lpage_info *linfo;
2829
2830         max_level = min(max_level, max_huge_page_level);
2831         for ( ; max_level > PG_LEVEL_4K; max_level--) {
2832                 linfo = lpage_info_slot(gfn, slot, max_level);
2833                 if (!linfo->disallow_lpage)
2834                         break;
2835         }
2836
2837         if (max_level == PG_LEVEL_4K)
2838                 return PG_LEVEL_4K;
2839
2840         return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2841 }
2842
2843 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2844                             int max_level, kvm_pfn_t *pfnp,
2845                             bool huge_page_disallowed, int *req_level)
2846 {
2847         struct kvm_memory_slot *slot;
2848         kvm_pfn_t pfn = *pfnp;
2849         kvm_pfn_t mask;
2850         int level;
2851
2852         *req_level = PG_LEVEL_4K;
2853
2854         if (unlikely(max_level == PG_LEVEL_4K))
2855                 return PG_LEVEL_4K;
2856
2857         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2858                 return PG_LEVEL_4K;
2859
2860         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2861         if (!slot)
2862                 return PG_LEVEL_4K;
2863
2864         level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2865         if (level == PG_LEVEL_4K)
2866                 return level;
2867
2868         *req_level = level = min(level, max_level);
2869
2870         /*
2871          * Enforce the iTLB multihit workaround after capturing the requested
2872          * level, which will be used to do precise, accurate accounting.
2873          */
2874         if (huge_page_disallowed)
2875                 return PG_LEVEL_4K;
2876
2877         /*
2878          * mmu_notifier_retry() was successful and mmu_lock is held, so
2879          * the pmd can't be split from under us.
2880          */
2881         mask = KVM_PAGES_PER_HPAGE(level) - 1;
2882         VM_BUG_ON((gfn & mask) != (pfn & mask));
2883         *pfnp = pfn & ~mask;
2884
2885         return level;
2886 }
2887
2888 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2889                                 kvm_pfn_t *pfnp, int *goal_levelp)
2890 {
2891         int level = *goal_levelp;
2892
2893         if (cur_level == level && level > PG_LEVEL_4K &&
2894             is_shadow_present_pte(spte) &&
2895             !is_large_pte(spte)) {
2896                 /*
2897                  * A small SPTE exists for this pfn, but FNAME(fetch)
2898                  * and __direct_map would like to create a large PTE
2899                  * instead: just force them to go down another level,
2900                  * patching back for them into pfn the next 9 bits of
2901                  * the address.
2902                  */
2903                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2904                                 KVM_PAGES_PER_HPAGE(level - 1);
2905                 *pfnp |= gfn & page_mask;
2906                 (*goal_levelp)--;
2907         }
2908 }
2909
2910 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2911                         int map_writable, int max_level, kvm_pfn_t pfn,
2912                         bool prefault, bool is_tdp)
2913 {
2914         bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2915         bool write = error_code & PFERR_WRITE_MASK;
2916         bool exec = error_code & PFERR_FETCH_MASK;
2917         bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2918         struct kvm_shadow_walk_iterator it;
2919         struct kvm_mmu_page *sp;
2920         int level, req_level, ret;
2921         gfn_t gfn = gpa >> PAGE_SHIFT;
2922         gfn_t base_gfn = gfn;
2923
2924         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2925                                         huge_page_disallowed, &req_level);
2926
2927         trace_kvm_mmu_spte_requested(gpa, level, pfn);
2928         for_each_shadow_entry(vcpu, gpa, it) {
2929                 /*
2930                  * We cannot overwrite existing page tables with an NX
2931                  * large page, as the leaf could be executable.
2932                  */
2933                 if (nx_huge_page_workaround_enabled)
2934                         disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2935                                                    &pfn, &level);
2936
2937                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2938                 if (it.level == level)
2939                         break;
2940
2941                 drop_large_spte(vcpu, it.sptep);
2942                 if (!is_shadow_present_pte(*it.sptep)) {
2943                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2944                                               it.level - 1, true, ACC_ALL);
2945
2946                         link_shadow_page(vcpu, it.sptep, sp);
2947                         if (is_tdp && huge_page_disallowed &&
2948                             req_level >= it.level)
2949                                 account_huge_nx_page(vcpu->kvm, sp);
2950                 }
2951         }
2952
2953         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2954                            write, level, base_gfn, pfn, prefault,
2955                            map_writable);
2956         if (ret == RET_PF_SPURIOUS)
2957                 return ret;
2958
2959         direct_pte_prefetch(vcpu, it.sptep);
2960         ++vcpu->stat.pf_fixed;
2961         return ret;
2962 }
2963
2964 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2965 {
2966         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2967 }
2968
2969 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2970 {
2971         /*
2972          * Do not cache the mmio info caused by writing the readonly gfn
2973          * into the spte otherwise read access on readonly gfn also can
2974          * caused mmio page fault and treat it as mmio access.
2975          */
2976         if (pfn == KVM_PFN_ERR_RO_FAULT)
2977                 return RET_PF_EMULATE;
2978
2979         if (pfn == KVM_PFN_ERR_HWPOISON) {
2980                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2981                 return RET_PF_RETRY;
2982         }
2983
2984         return -EFAULT;
2985 }
2986
2987 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2988                                 kvm_pfn_t pfn, unsigned int access,
2989                                 int *ret_val)
2990 {
2991         /* The pfn is invalid, report the error! */
2992         if (unlikely(is_error_pfn(pfn))) {
2993                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2994                 return true;
2995         }
2996
2997         if (unlikely(is_noslot_pfn(pfn))) {
2998                 vcpu_cache_mmio_info(vcpu, gva, gfn,
2999                                      access & shadow_mmio_access_mask);
3000                 /*
3001                  * If MMIO caching is disabled, emulate immediately without
3002                  * touching the shadow page tables as attempting to install an
3003                  * MMIO SPTE will just be an expensive nop.
3004                  */
3005                 if (unlikely(!shadow_mmio_value)) {
3006                         *ret_val = RET_PF_EMULATE;
3007                         return true;
3008                 }
3009         }
3010
3011         return false;
3012 }
3013
3014 static bool page_fault_can_be_fast(u32 error_code)
3015 {
3016         /*
3017          * Do not fix the mmio spte with invalid generation number which
3018          * need to be updated by slow page fault path.
3019          */
3020         if (unlikely(error_code & PFERR_RSVD_MASK))
3021                 return false;
3022
3023         /* See if the page fault is due to an NX violation */
3024         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3025                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3026                 return false;
3027
3028         /*
3029          * #PF can be fast if:
3030          * 1. The shadow page table entry is not present, which could mean that
3031          *    the fault is potentially caused by access tracking (if enabled).
3032          * 2. The shadow page table entry is present and the fault
3033          *    is caused by write-protect, that means we just need change the W
3034          *    bit of the spte which can be done out of mmu-lock.
3035          *
3036          * However, if access tracking is disabled we know that a non-present
3037          * page must be a genuine page fault where we have to create a new SPTE.
3038          * So, if access tracking is disabled, we return true only for write
3039          * accesses to a present page.
3040          */
3041
3042         return shadow_acc_track_mask != 0 ||
3043                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3044                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3045 }
3046
3047 /*
3048  * Returns true if the SPTE was fixed successfully. Otherwise,
3049  * someone else modified the SPTE from its original value.
3050  */
3051 static bool
3052 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3053                         u64 *sptep, u64 old_spte, u64 new_spte)
3054 {
3055         gfn_t gfn;
3056
3057         WARN_ON(!sp->role.direct);
3058
3059         /*
3060          * Theoretically we could also set dirty bit (and flush TLB) here in
3061          * order to eliminate unnecessary PML logging. See comments in
3062          * set_spte. But fast_page_fault is very unlikely to happen with PML
3063          * enabled, so we do not do this. This might result in the same GPA
3064          * to be logged in PML buffer again when the write really happens, and
3065          * eventually to be called by mark_page_dirty twice. But it's also no
3066          * harm. This also avoids the TLB flush needed after setting dirty bit
3067          * so non-PML cases won't be impacted.
3068          *
3069          * Compare with set_spte where instead shadow_dirty_mask is set.
3070          */
3071         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3072                 return false;
3073
3074         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3075                 /*
3076                  * The gfn of direct spte is stable since it is
3077                  * calculated by sp->gfn.
3078                  */
3079                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3080                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3081         }
3082
3083         return true;
3084 }
3085
3086 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3087 {
3088         if (fault_err_code & PFERR_FETCH_MASK)
3089                 return is_executable_pte(spte);
3090
3091         if (fault_err_code & PFERR_WRITE_MASK)
3092                 return is_writable_pte(spte);
3093
3094         /* Fault was on Read access */
3095         return spte & PT_PRESENT_MASK;
3096 }
3097
3098 /*
3099  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3100  */
3101 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3102                            u32 error_code)
3103 {
3104         struct kvm_shadow_walk_iterator iterator;
3105         struct kvm_mmu_page *sp;
3106         int ret = RET_PF_INVALID;
3107         u64 spte = 0ull;
3108         uint retry_count = 0;
3109
3110         if (!page_fault_can_be_fast(error_code))
3111                 return ret;
3112
3113         walk_shadow_page_lockless_begin(vcpu);
3114
3115         do {
3116                 u64 new_spte;
3117
3118                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3119                         if (!is_shadow_present_pte(spte))
3120                                 break;
3121
3122                 if (!is_shadow_present_pte(spte))
3123                         break;
3124
3125                 sp = sptep_to_sp(iterator.sptep);
3126                 if (!is_last_spte(spte, sp->role.level))
3127                         break;
3128
3129                 /*
3130                  * Check whether the memory access that caused the fault would
3131                  * still cause it if it were to be performed right now. If not,
3132                  * then this is a spurious fault caused by TLB lazily flushed,
3133                  * or some other CPU has already fixed the PTE after the
3134                  * current CPU took the fault.
3135                  *
3136                  * Need not check the access of upper level table entries since
3137                  * they are always ACC_ALL.
3138                  */
3139                 if (is_access_allowed(error_code, spte)) {
3140                         ret = RET_PF_SPURIOUS;
3141                         break;
3142                 }
3143
3144                 new_spte = spte;
3145
3146                 if (is_access_track_spte(spte))
3147                         new_spte = restore_acc_track_spte(new_spte);
3148
3149                 /*
3150                  * Currently, to simplify the code, write-protection can
3151                  * be removed in the fast path only if the SPTE was
3152                  * write-protected for dirty-logging or access tracking.
3153                  */
3154                 if ((error_code & PFERR_WRITE_MASK) &&
3155                     spte_can_locklessly_be_made_writable(spte)) {
3156                         new_spte |= PT_WRITABLE_MASK;
3157
3158                         /*
3159                          * Do not fix write-permission on the large spte.  Since
3160                          * we only dirty the first page into the dirty-bitmap in
3161                          * fast_pf_fix_direct_spte(), other pages are missed
3162                          * if its slot has dirty logging enabled.
3163                          *
3164                          * Instead, we let the slow page fault path create a
3165                          * normal spte to fix the access.
3166                          *
3167                          * See the comments in kvm_arch_commit_memory_region().
3168                          */
3169                         if (sp->role.level > PG_LEVEL_4K)
3170                                 break;
3171                 }
3172
3173                 /* Verify that the fault can be handled in the fast path */
3174                 if (new_spte == spte ||
3175                     !is_access_allowed(error_code, new_spte))
3176                         break;
3177
3178                 /*
3179                  * Currently, fast page fault only works for direct mapping
3180                  * since the gfn is not stable for indirect shadow page. See
3181                  * Documentation/virt/kvm/locking.rst to get more detail.
3182                  */
3183                 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3184                                             new_spte)) {
3185                         ret = RET_PF_FIXED;
3186                         break;
3187                 }
3188
3189                 if (++retry_count > 4) {
3190                         printk_once(KERN_WARNING
3191                                 "kvm: Fast #PF retrying more than 4 times.\n");
3192                         break;
3193                 }
3194
3195         } while (true);
3196
3197         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3198                               spte, ret);
3199         walk_shadow_page_lockless_end(vcpu);
3200
3201         return ret;
3202 }
3203
3204 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3205                                struct list_head *invalid_list)
3206 {
3207         struct kvm_mmu_page *sp;
3208
3209         if (!VALID_PAGE(*root_hpa))
3210                 return;
3211
3212         sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3213
3214         if (is_tdp_mmu_page(sp))
3215                 kvm_tdp_mmu_put_root(kvm, sp, false);
3216         else if (!--sp->root_count && sp->role.invalid)
3217                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3218
3219         *root_hpa = INVALID_PAGE;
3220 }
3221
3222 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3223 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3224                         ulong roots_to_free)
3225 {
3226         struct kvm *kvm = vcpu->kvm;
3227         int i;
3228         LIST_HEAD(invalid_list);
3229         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3230
3231         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3232
3233         /* Before acquiring the MMU lock, see if we need to do any real work. */
3234         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3235                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3236                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3237                             VALID_PAGE(mmu->prev_roots[i].hpa))
3238                                 break;
3239
3240                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3241                         return;
3242         }
3243
3244         write_lock(&kvm->mmu_lock);
3245
3246         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3247                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3248                         mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3249                                            &invalid_list);
3250
3251         if (free_active_root) {
3252                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3253                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3254                         mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3255                 } else if (mmu->pae_root) {
3256                         for (i = 0; i < 4; ++i) {
3257                                 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3258                                         continue;
3259
3260                                 mmu_free_root_page(kvm, &mmu->pae_root[i],
3261                                                    &invalid_list);
3262                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3263                         }
3264                 }
3265                 mmu->root_hpa = INVALID_PAGE;
3266                 mmu->root_pgd = 0;
3267         }
3268
3269         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3270         write_unlock(&kvm->mmu_lock);
3271 }
3272 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3273
3274 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3275 {
3276         unsigned long roots_to_free = 0;
3277         hpa_t root_hpa;
3278         int i;
3279
3280         /*
3281          * This should not be called while L2 is active, L2 can't invalidate
3282          * _only_ its own roots, e.g. INVVPID unconditionally exits.
3283          */
3284         WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3285
3286         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3287                 root_hpa = mmu->prev_roots[i].hpa;
3288                 if (!VALID_PAGE(root_hpa))
3289                         continue;
3290
3291                 if (!to_shadow_page(root_hpa) ||
3292                         to_shadow_page(root_hpa)->role.guest_mode)
3293                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3294         }
3295
3296         kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
3297 }
3298 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3299
3300
3301 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3302 {
3303         int ret = 0;
3304
3305         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3306                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3307                 ret = 1;
3308         }
3309
3310         return ret;
3311 }
3312
3313 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3314                             u8 level, bool direct)
3315 {
3316         struct kvm_mmu_page *sp;
3317
3318         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3319         ++sp->root_count;
3320
3321         return __pa(sp->spt);
3322 }
3323
3324 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3325 {
3326         struct kvm_mmu *mmu = vcpu->arch.mmu;
3327         u8 shadow_root_level = mmu->shadow_root_level;
3328         hpa_t root;
3329         unsigned i;
3330         int r;
3331
3332         write_lock(&vcpu->kvm->mmu_lock);
3333         r = make_mmu_pages_available(vcpu);
3334         if (r < 0)
3335                 goto out_unlock;
3336
3337         if (is_tdp_mmu_enabled(vcpu->kvm)) {
3338                 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3339                 mmu->root_hpa = root;
3340         } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3341                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3342                 mmu->root_hpa = root;
3343         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3344                 if (WARN_ON_ONCE(!mmu->pae_root)) {
3345                         r = -EIO;
3346                         goto out_unlock;
3347                 }
3348
3349                 for (i = 0; i < 4; ++i) {
3350                         WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3351
3352                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3353                                               i << 30, PT32_ROOT_LEVEL, true);
3354                         mmu->pae_root[i] = root | PT_PRESENT_MASK |
3355                                            shadow_me_mask;
3356                 }
3357                 mmu->root_hpa = __pa(mmu->pae_root);
3358         } else {
3359                 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3360                 r = -EIO;
3361                 goto out_unlock;
3362         }
3363
3364         /* root_pgd is ignored for direct MMUs. */
3365         mmu->root_pgd = 0;
3366 out_unlock:
3367         write_unlock(&vcpu->kvm->mmu_lock);
3368         return r;
3369 }
3370
3371 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3372 {
3373         struct kvm_mmu *mmu = vcpu->arch.mmu;
3374         u64 pdptrs[4], pm_mask;
3375         gfn_t root_gfn, root_pgd;
3376         hpa_t root;
3377         unsigned i;
3378         int r;
3379
3380         root_pgd = mmu->get_guest_pgd(vcpu);
3381         root_gfn = root_pgd >> PAGE_SHIFT;
3382
3383         if (mmu_check_root(vcpu, root_gfn))
3384                 return 1;
3385
3386         /*
3387          * On SVM, reading PDPTRs might access guest memory, which might fault
3388          * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3389          */
3390         if (mmu->root_level == PT32E_ROOT_LEVEL) {
3391                 for (i = 0; i < 4; ++i) {
3392                         pdptrs[i] = mmu->get_pdptr(vcpu, i);
3393                         if (!(pdptrs[i] & PT_PRESENT_MASK))
3394                                 continue;
3395
3396                         if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3397                                 return 1;
3398                 }
3399         }
3400
3401         r = alloc_all_memslots_rmaps(vcpu->kvm);
3402         if (r)
3403                 return r;
3404
3405         write_lock(&vcpu->kvm->mmu_lock);
3406         r = make_mmu_pages_available(vcpu);
3407         if (r < 0)
3408                 goto out_unlock;
3409
3410         /*
3411          * Do we shadow a long mode page table? If so we need to
3412          * write-protect the guests page table root.
3413          */
3414         if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3415                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3416                                       mmu->shadow_root_level, false);
3417                 mmu->root_hpa = root;
3418                 goto set_root_pgd;
3419         }
3420
3421         if (WARN_ON_ONCE(!mmu->pae_root)) {
3422                 r = -EIO;
3423                 goto out_unlock;
3424         }
3425
3426         /*
3427          * We shadow a 32 bit page table. This may be a legacy 2-level
3428          * or a PAE 3-level page table. In either case we need to be aware that
3429          * the shadow page table may be a PAE or a long mode page table.
3430          */
3431         pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3432         if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3433                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3434
3435                 if (WARN_ON_ONCE(!mmu->pml4_root)) {
3436                         r = -EIO;
3437                         goto out_unlock;
3438                 }
3439
3440                 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3441         }
3442
3443         for (i = 0; i < 4; ++i) {
3444                 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3445
3446                 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3447                         if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3448                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3449                                 continue;
3450                         }
3451                         root_gfn = pdptrs[i] >> PAGE_SHIFT;
3452                 }
3453
3454                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3455                                       PT32_ROOT_LEVEL, false);
3456                 mmu->pae_root[i] = root | pm_mask;
3457         }
3458
3459         if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3460                 mmu->root_hpa = __pa(mmu->pml4_root);
3461         else
3462                 mmu->root_hpa = __pa(mmu->pae_root);
3463
3464 set_root_pgd:
3465         mmu->root_pgd = root_pgd;
3466 out_unlock:
3467         write_unlock(&vcpu->kvm->mmu_lock);
3468
3469         return 0;
3470 }
3471
3472 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3473 {
3474         struct kvm_mmu *mmu = vcpu->arch.mmu;
3475         u64 *pml4_root, *pae_root;
3476
3477         /*
3478          * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3479          * tables are allocated and initialized at root creation as there is no
3480          * equivalent level in the guest's NPT to shadow.  Allocate the tables
3481          * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3482          */
3483         if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3484             mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3485                 return 0;
3486
3487         /*
3488          * This mess only works with 4-level paging and needs to be updated to
3489          * work with 5-level paging.
3490          */
3491         if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
3492                 return -EIO;
3493
3494         if (mmu->pae_root && mmu->pml4_root)
3495                 return 0;
3496
3497         /*
3498          * The special roots should always be allocated in concert.  Yell and
3499          * bail if KVM ends up in a state where only one of the roots is valid.
3500          */
3501         if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root))
3502                 return -EIO;
3503
3504         /*
3505          * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3506          * doesn't need to be decrypted.
3507          */
3508         pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3509         if (!pae_root)
3510                 return -ENOMEM;
3511
3512         pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3513         if (!pml4_root) {
3514                 free_page((unsigned long)pae_root);
3515                 return -ENOMEM;
3516         }
3517
3518         mmu->pae_root = pae_root;
3519         mmu->pml4_root = pml4_root;
3520
3521         return 0;
3522 }
3523
3524 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3525 {
3526         int i;
3527         struct kvm_mmu_page *sp;
3528
3529         if (vcpu->arch.mmu->direct_map)
3530                 return;
3531
3532         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3533                 return;
3534
3535         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3536
3537         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3538                 hpa_t root = vcpu->arch.mmu->root_hpa;
3539                 sp = to_shadow_page(root);
3540
3541                 /*
3542                  * Even if another CPU was marking the SP as unsync-ed
3543                  * simultaneously, any guest page table changes are not
3544                  * guaranteed to be visible anyway until this VCPU issues a TLB
3545                  * flush strictly after those changes are made. We only need to
3546                  * ensure that the other CPU sets these flags before any actual
3547                  * changes to the page tables are made. The comments in
3548                  * mmu_try_to_unsync_pages() describe what could go wrong if
3549                  * this requirement isn't satisfied.
3550                  */
3551                 if (!smp_load_acquire(&sp->unsync) &&
3552                     !smp_load_acquire(&sp->unsync_children))
3553                         return;
3554
3555                 write_lock(&vcpu->kvm->mmu_lock);
3556                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3557
3558                 mmu_sync_children(vcpu, sp);
3559
3560                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3561                 write_unlock(&vcpu->kvm->mmu_lock);
3562                 return;
3563         }
3564
3565         write_lock(&vcpu->kvm->mmu_lock);
3566         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3567
3568         for (i = 0; i < 4; ++i) {
3569                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3570
3571                 if (IS_VALID_PAE_ROOT(root)) {
3572                         root &= PT64_BASE_ADDR_MASK;
3573                         sp = to_shadow_page(root);
3574                         mmu_sync_children(vcpu, sp);
3575                 }
3576         }
3577
3578         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3579         write_unlock(&vcpu->kvm->mmu_lock);
3580 }
3581
3582 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3583                                   u32 access, struct x86_exception *exception)
3584 {
3585         if (exception)
3586                 exception->error_code = 0;
3587         return vaddr;
3588 }
3589
3590 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3591                                          u32 access,
3592                                          struct x86_exception *exception)
3593 {
3594         if (exception)
3595                 exception->error_code = 0;
3596         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3597 }
3598
3599 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3600 {
3601         /*
3602          * A nested guest cannot use the MMIO cache if it is using nested
3603          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3604          */
3605         if (mmu_is_nested(vcpu))
3606                 return false;
3607
3608         if (direct)
3609                 return vcpu_match_mmio_gpa(vcpu, addr);
3610
3611         return vcpu_match_mmio_gva(vcpu, addr);
3612 }
3613
3614 /*
3615  * Return the level of the lowest level SPTE added to sptes.
3616  * That SPTE may be non-present.
3617  */
3618 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3619 {
3620         struct kvm_shadow_walk_iterator iterator;
3621         int leaf = -1;
3622         u64 spte;
3623
3624         walk_shadow_page_lockless_begin(vcpu);
3625
3626         for (shadow_walk_init(&iterator, vcpu, addr),
3627              *root_level = iterator.level;
3628              shadow_walk_okay(&iterator);
3629              __shadow_walk_next(&iterator, spte)) {
3630                 leaf = iterator.level;
3631                 spte = mmu_spte_get_lockless(iterator.sptep);
3632
3633                 sptes[leaf] = spte;
3634
3635                 if (!is_shadow_present_pte(spte))
3636                         break;
3637         }
3638
3639         walk_shadow_page_lockless_end(vcpu);
3640
3641         return leaf;
3642 }
3643
3644 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3645 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3646 {
3647         u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3648         struct rsvd_bits_validate *rsvd_check;
3649         int root, leaf, level;
3650         bool reserved = false;
3651
3652         if (is_tdp_mmu(vcpu->arch.mmu))
3653                 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3654         else
3655                 leaf = get_walk(vcpu, addr, sptes, &root);
3656
3657         if (unlikely(leaf < 0)) {
3658                 *sptep = 0ull;
3659                 return reserved;
3660         }
3661
3662         *sptep = sptes[leaf];
3663
3664         /*
3665          * Skip reserved bits checks on the terminal leaf if it's not a valid
3666          * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3667          * design, always have reserved bits set.  The purpose of the checks is
3668          * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3669          */
3670         if (!is_shadow_present_pte(sptes[leaf]))
3671                 leaf++;
3672
3673         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3674
3675         for (level = root; level >= leaf; level--)
3676                 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3677
3678         if (reserved) {
3679                 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3680                        __func__, addr);
3681                 for (level = root; level >= leaf; level--)
3682                         pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3683                                sptes[level], level,
3684                                get_rsvd_bits(rsvd_check, sptes[level], level));
3685         }
3686
3687         return reserved;
3688 }
3689
3690 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3691 {
3692         u64 spte;
3693         bool reserved;
3694
3695         if (mmio_info_in_cache(vcpu, addr, direct))
3696                 return RET_PF_EMULATE;
3697
3698         reserved = get_mmio_spte(vcpu, addr, &spte);
3699         if (WARN_ON(reserved))
3700                 return -EINVAL;
3701
3702         if (is_mmio_spte(spte)) {
3703                 gfn_t gfn = get_mmio_spte_gfn(spte);
3704                 unsigned int access = get_mmio_spte_access(spte);
3705
3706                 if (!check_mmio_spte(vcpu, spte))
3707                         return RET_PF_INVALID;
3708
3709                 if (direct)
3710                         addr = 0;
3711
3712                 trace_handle_mmio_page_fault(addr, gfn, access);
3713                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3714                 return RET_PF_EMULATE;
3715         }
3716
3717         /*
3718          * If the page table is zapped by other cpus, let CPU fault again on
3719          * the address.
3720          */
3721         return RET_PF_RETRY;
3722 }
3723
3724 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3725                                          u32 error_code, gfn_t gfn)
3726 {
3727         if (unlikely(error_code & PFERR_RSVD_MASK))
3728                 return false;
3729
3730         if (!(error_code & PFERR_PRESENT_MASK) ||
3731               !(error_code & PFERR_WRITE_MASK))
3732                 return false;
3733
3734         /*
3735          * guest is writing the page which is write tracked which can
3736          * not be fixed by page fault handler.
3737          */
3738         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3739                 return true;
3740
3741         return false;
3742 }
3743
3744 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3745 {
3746         struct kvm_shadow_walk_iterator iterator;
3747         u64 spte;
3748
3749         walk_shadow_page_lockless_begin(vcpu);
3750         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3751                 clear_sp_write_flooding_count(iterator.sptep);
3752                 if (!is_shadow_present_pte(spte))
3753                         break;
3754         }
3755         walk_shadow_page_lockless_end(vcpu);
3756 }
3757
3758 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3759                                     gfn_t gfn)
3760 {
3761         struct kvm_arch_async_pf arch;
3762
3763         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3764         arch.gfn = gfn;
3765         arch.direct_map = vcpu->arch.mmu->direct_map;
3766         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3767
3768         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3769                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3770 }
3771
3772 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3773                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3774                          bool write, bool *writable)
3775 {
3776         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3777         bool async;
3778
3779         /*
3780          * Retry the page fault if the gfn hit a memslot that is being deleted
3781          * or moved.  This ensures any existing SPTEs for the old memslot will
3782          * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3783          */
3784         if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3785                 return true;
3786
3787         /* Don't expose private memslots to L2. */
3788         if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3789                 *pfn = KVM_PFN_NOSLOT;
3790                 *writable = false;
3791                 return false;
3792         }
3793
3794         async = false;
3795         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3796                                     write, writable, hva);
3797         if (!async)
3798                 return false; /* *pfn has correct page already */
3799
3800         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3801                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3802                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3803                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3804                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3805                         return true;
3806                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3807                         return true;
3808         }
3809
3810         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3811                                     write, writable, hva);
3812         return false;
3813 }
3814
3815 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3816                              bool prefault, int max_level, bool is_tdp)
3817 {
3818         bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3819         bool write = error_code & PFERR_WRITE_MASK;
3820         bool map_writable;
3821
3822         gfn_t gfn = gpa >> PAGE_SHIFT;
3823         unsigned long mmu_seq;
3824         kvm_pfn_t pfn;
3825         hva_t hva;
3826         int r;
3827
3828         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3829                 return RET_PF_EMULATE;
3830
3831         if (!is_tdp_mmu_fault) {
3832                 r = fast_page_fault(vcpu, gpa, error_code);
3833                 if (r != RET_PF_INVALID)
3834                         return r;
3835         }
3836
3837         r = mmu_topup_memory_caches(vcpu, false);
3838         if (r)
3839                 return r;
3840
3841         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3842         smp_rmb();
3843
3844         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
3845                          write, &map_writable))
3846                 return RET_PF_RETRY;
3847
3848         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3849                 return r;
3850
3851         r = RET_PF_RETRY;
3852
3853         if (is_tdp_mmu_fault)
3854                 read_lock(&vcpu->kvm->mmu_lock);
3855         else
3856                 write_lock(&vcpu->kvm->mmu_lock);
3857
3858         if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3859                 goto out_unlock;
3860         r = make_mmu_pages_available(vcpu);
3861         if (r)
3862                 goto out_unlock;
3863
3864         if (is_tdp_mmu_fault)
3865                 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3866                                     pfn, prefault);
3867         else
3868                 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3869                                  prefault, is_tdp);
3870
3871 out_unlock:
3872         if (is_tdp_mmu_fault)
3873                 read_unlock(&vcpu->kvm->mmu_lock);
3874         else
3875                 write_unlock(&vcpu->kvm->mmu_lock);
3876         kvm_release_pfn_clean(pfn);
3877         return r;
3878 }
3879
3880 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3881                                 u32 error_code, bool prefault)
3882 {
3883         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3884
3885         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3886         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3887                                  PG_LEVEL_2M, false);
3888 }
3889
3890 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3891                                 u64 fault_address, char *insn, int insn_len)
3892 {
3893         int r = 1;
3894         u32 flags = vcpu->arch.apf.host_apf_flags;
3895
3896 #ifndef CONFIG_X86_64
3897         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3898         if (WARN_ON_ONCE(fault_address >> 32))
3899                 return -EFAULT;
3900 #endif
3901
3902         vcpu->arch.l1tf_flush_l1d = true;
3903         if (!flags) {
3904                 trace_kvm_page_fault(fault_address, error_code);
3905
3906                 if (kvm_event_needs_reinjection(vcpu))
3907                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3908                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3909                                 insn_len);
3910         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3911                 vcpu->arch.apf.host_apf_flags = 0;
3912                 local_irq_disable();
3913                 kvm_async_pf_task_wait_schedule(fault_address);
3914                 local_irq_enable();
3915         } else {
3916                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3917         }
3918
3919         return r;
3920 }
3921 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3922
3923 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3924                        bool prefault)
3925 {
3926         int max_level;
3927
3928         for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3929              max_level > PG_LEVEL_4K;
3930              max_level--) {
3931                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3932                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3933
3934                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3935                         break;
3936         }
3937
3938         return direct_page_fault(vcpu, gpa, error_code, prefault,
3939                                  max_level, true);
3940 }
3941
3942 static void nonpaging_init_context(struct kvm_mmu *context)
3943 {
3944         context->page_fault = nonpaging_page_fault;
3945         context->gva_to_gpa = nonpaging_gva_to_gpa;
3946         context->sync_page = nonpaging_sync_page;
3947         context->invlpg = NULL;
3948         context->direct_map = true;
3949 }
3950
3951 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3952                                   union kvm_mmu_page_role role)
3953 {
3954         return (role.direct || pgd == root->pgd) &&
3955                VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3956                role.word == to_shadow_page(root->hpa)->role.word;
3957 }
3958
3959 /*
3960  * Find out if a previously cached root matching the new pgd/role is available.
3961  * The current root is also inserted into the cache.
3962  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3963  * returned.
3964  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3965  * false is returned. This root should now be freed by the caller.
3966  */
3967 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3968                                   union kvm_mmu_page_role new_role)
3969 {
3970         uint i;
3971         struct kvm_mmu_root_info root;
3972         struct kvm_mmu *mmu = vcpu->arch.mmu;
3973
3974         root.pgd = mmu->root_pgd;
3975         root.hpa = mmu->root_hpa;
3976
3977         if (is_root_usable(&root, new_pgd, new_role))
3978                 return true;
3979
3980         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3981                 swap(root, mmu->prev_roots[i]);
3982
3983                 if (is_root_usable(&root, new_pgd, new_role))
3984                         break;
3985         }
3986
3987         mmu->root_hpa = root.hpa;
3988         mmu->root_pgd = root.pgd;
3989
3990         return i < KVM_MMU_NUM_PREV_ROOTS;
3991 }
3992
3993 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3994                             union kvm_mmu_page_role new_role)
3995 {
3996         struct kvm_mmu *mmu = vcpu->arch.mmu;
3997
3998         /*
3999          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4000          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4001          * later if necessary.
4002          */
4003         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4004             mmu->root_level >= PT64_ROOT_4LEVEL)
4005                 return cached_root_available(vcpu, new_pgd, new_role);
4006
4007         return false;
4008 }
4009
4010 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4011                               union kvm_mmu_page_role new_role)
4012 {
4013         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4014                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4015                 return;
4016         }
4017
4018         /*
4019          * It's possible that the cached previous root page is obsolete because
4020          * of a change in the MMU generation number. However, changing the
4021          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4022          * free the root set here and allocate a new one.
4023          */
4024         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4025
4026         if (force_flush_and_sync_on_reuse) {
4027                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4028                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4029         }
4030
4031         /*
4032          * The last MMIO access's GVA and GPA are cached in the VCPU. When
4033          * switching to a new CR3, that GVA->GPA mapping may no longer be
4034          * valid. So clear any cached MMIO info even when we don't need to sync
4035          * the shadow page tables.
4036          */
4037         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4038
4039         /*
4040          * If this is a direct root page, it doesn't have a write flooding
4041          * count. Otherwise, clear the write flooding count.
4042          */
4043         if (!new_role.direct)
4044                 __clear_sp_write_flooding_count(
4045                                 to_shadow_page(vcpu->arch.mmu->root_hpa));
4046 }
4047
4048 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4049 {
4050         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4051 }
4052 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4053
4054 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4055 {
4056         return kvm_read_cr3(vcpu);
4057 }
4058
4059 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4060                            unsigned int access, int *nr_present)
4061 {
4062         if (unlikely(is_mmio_spte(*sptep))) {
4063                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4064                         mmu_spte_clear_no_track(sptep);
4065                         return true;
4066                 }
4067
4068                 (*nr_present)++;
4069                 mark_mmio_spte(vcpu, sptep, gfn, access);
4070                 return true;
4071         }
4072
4073         return false;
4074 }
4075
4076 #define PTTYPE_EPT 18 /* arbitrary */
4077 #define PTTYPE PTTYPE_EPT
4078 #include "paging_tmpl.h"
4079 #undef PTTYPE
4080
4081 #define PTTYPE 64
4082 #include "paging_tmpl.h"
4083 #undef PTTYPE
4084
4085 #define PTTYPE 32
4086 #include "paging_tmpl.h"
4087 #undef PTTYPE
4088
4089 static void
4090 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4091                         u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4092                         bool pse, bool amd)
4093 {
4094         u64 gbpages_bit_rsvd = 0;
4095         u64 nonleaf_bit8_rsvd = 0;
4096         u64 high_bits_rsvd;
4097
4098         rsvd_check->bad_mt_xwr = 0;
4099
4100         if (!gbpages)
4101                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4102
4103         if (level == PT32E_ROOT_LEVEL)
4104                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4105         else
4106                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4107
4108         /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4109         if (!nx)
4110                 high_bits_rsvd |= rsvd_bits(63, 63);
4111
4112         /*
4113          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4114          * leaf entries) on AMD CPUs only.
4115          */
4116         if (amd)
4117                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4118
4119         switch (level) {
4120         case PT32_ROOT_LEVEL:
4121                 /* no rsvd bits for 2 level 4K page table entries */
4122                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4123                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4124                 rsvd_check->rsvd_bits_mask[1][0] =
4125                         rsvd_check->rsvd_bits_mask[0][0];
4126
4127                 if (!pse) {
4128                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4129                         break;
4130                 }
4131
4132                 if (is_cpuid_PSE36())
4133                         /* 36bits PSE 4MB page */
4134                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4135                 else
4136                         /* 32 bits PSE 4MB page */
4137                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4138                 break;
4139         case PT32E_ROOT_LEVEL:
4140                 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4141                                                    high_bits_rsvd |
4142                                                    rsvd_bits(5, 8) |
4143                                                    rsvd_bits(1, 2);     /* PDPTE */
4144                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;      /* PDE */
4145                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;      /* PTE */
4146                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4147                                                    rsvd_bits(13, 20);   /* large page */
4148                 rsvd_check->rsvd_bits_mask[1][0] =
4149                         rsvd_check->rsvd_bits_mask[0][0];
4150                 break;
4151         case PT64_ROOT_5LEVEL:
4152                 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4153                                                    nonleaf_bit8_rsvd |
4154                                                    rsvd_bits(7, 7);
4155                 rsvd_check->rsvd_bits_mask[1][4] =
4156                         rsvd_check->rsvd_bits_mask[0][4];
4157                 fallthrough;
4158         case PT64_ROOT_4LEVEL:
4159                 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4160                                                    nonleaf_bit8_rsvd |
4161                                                    rsvd_bits(7, 7);
4162                 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4163                                                    gbpages_bit_rsvd;
4164                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4165                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4166                 rsvd_check->rsvd_bits_mask[1][3] =
4167                         rsvd_check->rsvd_bits_mask[0][3];
4168                 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4169                                                    gbpages_bit_rsvd |
4170                                                    rsvd_bits(13, 29);
4171                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4172                                                    rsvd_bits(13, 20); /* large page */
4173                 rsvd_check->rsvd_bits_mask[1][0] =
4174                         rsvd_check->rsvd_bits_mask[0][0];
4175                 break;
4176         }
4177 }
4178
4179 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
4180 {
4181         /*
4182          * If TDP is enabled, let the guest use GBPAGES if they're supported in
4183          * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
4184          * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
4185          * walk for performance and complexity reasons.  Not to mention KVM
4186          * _can't_ solve the problem because GVA->GPA walks aren't visible to
4187          * KVM once a TDP translation is installed.  Mimic hardware behavior so
4188          * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
4189          */
4190         return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
4191                              guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
4192 }
4193
4194 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4195                                   struct kvm_mmu *context)
4196 {
4197         __reset_rsvds_bits_mask(&context->guest_rsvd_check,
4198                                 vcpu->arch.reserved_gpa_bits,
4199                                 context->root_level, is_efer_nx(context),
4200                                 guest_can_use_gbpages(vcpu),
4201                                 is_cr4_pse(context),
4202                                 guest_cpuid_is_amd_or_hygon(vcpu));
4203 }
4204
4205 static void
4206 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4207                             u64 pa_bits_rsvd, bool execonly)
4208 {
4209         u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4210         u64 bad_mt_xwr;
4211
4212         rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4213         rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4214         rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4215         rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4216         rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4217
4218         /* large page */
4219         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4220         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4221         rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4222         rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4223         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4224
4225         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4226         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4227         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4228         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4229         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4230         if (!execonly) {
4231                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4232                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4233         }
4234         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4235 }
4236
4237 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4238                 struct kvm_mmu *context, bool execonly)
4239 {
4240         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4241                                     vcpu->arch.reserved_gpa_bits, execonly);
4242 }
4243
4244 static inline u64 reserved_hpa_bits(void)
4245 {
4246         return rsvd_bits(shadow_phys_bits, 63);
4247 }
4248
4249 /*
4250  * the page table on host is the shadow page table for the page
4251  * table in guest or amd nested guest, its mmu features completely
4252  * follow the features in guest.
4253  */
4254 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4255                                         struct kvm_mmu *context)
4256 {
4257         /*
4258          * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4259          * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4260          * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4261          * The iTLB multi-hit workaround can be toggled at any time, so assume
4262          * NX can be used by any non-nested shadow MMU to avoid having to reset
4263          * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
4264          */
4265         bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4266
4267         /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4268         bool is_amd = true;
4269         /* KVM doesn't use 2-level page tables for the shadow MMU. */
4270         bool is_pse = false;
4271         struct rsvd_bits_validate *shadow_zero_check;
4272         int i;
4273
4274         WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);
4275
4276         shadow_zero_check = &context->shadow_zero_check;
4277         __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4278                                 context->shadow_root_level, uses_nx,
4279                                 guest_can_use_gbpages(vcpu), is_pse, is_amd);
4280
4281         if (!shadow_me_mask)
4282                 return;
4283
4284         for (i = context->shadow_root_level; --i >= 0;) {
4285                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4286                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4287         }
4288
4289 }
4290
4291 static inline bool boot_cpu_is_amd(void)
4292 {
4293         WARN_ON_ONCE(!tdp_enabled);
4294         return shadow_x_mask == 0;
4295 }
4296
4297 /*
4298  * the direct page table on host, use as much mmu features as
4299  * possible, however, kvm currently does not do execution-protection.
4300  */
4301 static void
4302 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4303                                 struct kvm_mmu *context)
4304 {
4305         struct rsvd_bits_validate *shadow_zero_check;
4306         int i;
4307
4308         shadow_zero_check = &context->shadow_zero_check;
4309
4310         if (boot_cpu_is_amd())
4311                 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4312                                         context->shadow_root_level, false,
4313                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4314                                         false, true);
4315         else
4316                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4317                                             reserved_hpa_bits(), false);
4318
4319         if (!shadow_me_mask)
4320                 return;
4321
4322         for (i = context->shadow_root_level; --i >= 0;) {
4323                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4324                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4325         }
4326 }
4327
4328 /*
4329  * as the comments in reset_shadow_zero_bits_mask() except it
4330  * is the shadow page table for intel nested guest.
4331  */
4332 static void
4333 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4334                                 struct kvm_mmu *context, bool execonly)
4335 {
4336         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4337                                     reserved_hpa_bits(), execonly);
4338 }
4339
4340 #define BYTE_MASK(access) \
4341         ((1 & (access) ? 2 : 0) | \
4342          (2 & (access) ? 4 : 0) | \
4343          (3 & (access) ? 8 : 0) | \
4344          (4 & (access) ? 16 : 0) | \
4345          (5 & (access) ? 32 : 0) | \
4346          (6 & (access) ? 64 : 0) | \
4347          (7 & (access) ? 128 : 0))
4348
4349
4350 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4351 {
4352         unsigned byte;
4353
4354         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4355         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4356         const u8 u = BYTE_MASK(ACC_USER_MASK);
4357
4358         bool cr4_smep = is_cr4_smep(mmu);
4359         bool cr4_smap = is_cr4_smap(mmu);
4360         bool cr0_wp = is_cr0_wp(mmu);
4361         bool efer_nx = is_efer_nx(mmu);
4362
4363         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4364                 unsigned pfec = byte << 1;
4365
4366                 /*
4367                  * Each "*f" variable has a 1 bit for each UWX value
4368                  * that causes a fault with the given PFEC.
4369                  */
4370
4371                 /* Faults from writes to non-writable pages */
4372                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4373                 /* Faults from user mode accesses to supervisor pages */
4374                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4375                 /* Faults from fetches of non-executable pages*/
4376                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4377                 /* Faults from kernel mode fetches of user pages */
4378                 u8 smepf = 0;
4379                 /* Faults from kernel mode accesses of user pages */
4380                 u8 smapf = 0;
4381
4382                 if (!ept) {
4383                         /* Faults from kernel mode accesses to user pages */
4384                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4385
4386                         /* Not really needed: !nx will cause pte.nx to fault */
4387                         if (!efer_nx)
4388                                 ff = 0;
4389
4390                         /* Allow supervisor writes if !cr0.wp */
4391                         if (!cr0_wp)
4392                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4393
4394                         /* Disallow supervisor fetches of user code if cr4.smep */
4395                         if (cr4_smep)
4396                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4397
4398                         /*
4399                          * SMAP:kernel-mode data accesses from user-mode
4400                          * mappings should fault. A fault is considered
4401                          * as a SMAP violation if all of the following
4402                          * conditions are true:
4403                          *   - X86_CR4_SMAP is set in CR4
4404                          *   - A user page is accessed
4405                          *   - The access is not a fetch
4406                          *   - Page fault in kernel mode
4407                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4408                          *
4409                          * Here, we cover the first three conditions.
4410                          * The fourth is computed dynamically in permission_fault();
4411                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4412                          * *not* subject to SMAP restrictions.
4413                          */
4414                         if (cr4_smap)
4415                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4416                 }
4417
4418                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4419         }
4420 }
4421
4422 /*
4423 * PKU is an additional mechanism by which the paging controls access to
4424 * user-mode addresses based on the value in the PKRU register.  Protection
4425 * key violations are reported through a bit in the page fault error code.
4426 * Unlike other bits of the error code, the PK bit is not known at the
4427 * call site of e.g. gva_to_gpa; it must be computed directly in
4428 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4429 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4430 *
4431 * In particular the following conditions come from the error code, the
4432 * page tables and the machine state:
4433 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4434 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4435 * - PK is always zero if U=0 in the page tables
4436 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4437 *
4438 * The PKRU bitmask caches the result of these four conditions.  The error
4439 * code (minus the P bit) and the page table's U bit form an index into the
4440 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4441 * with the two bits of the PKRU register corresponding to the protection key.
4442 * For the first three conditions above the bits will be 00, thus masking
4443 * away both AD and WD.  For all reads or if the last condition holds, WD
4444 * only will be masked away.
4445 */
4446 static void update_pkru_bitmask(struct kvm_mmu *mmu)
4447 {
4448         unsigned bit;
4449         bool wp;
4450
4451         if (!is_cr4_pke(mmu)) {
4452                 mmu->pkru_mask = 0;
4453                 return;
4454         }
4455
4456         wp = is_cr0_wp(mmu);
4457
4458         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4459                 unsigned pfec, pkey_bits;
4460                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4461
4462                 pfec = bit << 1;
4463                 ff = pfec & PFERR_FETCH_MASK;
4464                 uf = pfec & PFERR_USER_MASK;
4465                 wf = pfec & PFERR_WRITE_MASK;
4466
4467                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4468                 pte_user = pfec & PFERR_RSVD_MASK;
4469
4470                 /*
4471                  * Only need to check the access which is not an
4472                  * instruction fetch and is to a user page.
4473                  */
4474                 check_pkey = (!ff && pte_user);
4475                 /*
4476                  * write access is controlled by PKRU if it is a
4477                  * user access or CR0.WP = 1.
4478                  */
4479                 check_write = check_pkey && wf && (uf || wp);
4480
4481                 /* PKRU.AD stops both read and write access. */
4482                 pkey_bits = !!check_pkey;
4483                 /* PKRU.WD stops write access. */
4484                 pkey_bits |= (!!check_write) << 1;
4485
4486                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4487         }
4488 }
4489
4490 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
4491                                         struct kvm_mmu *mmu)
4492 {
4493         if (!is_cr0_pg(mmu))
4494                 return;
4495
4496         reset_rsvds_bits_mask(vcpu, mmu);
4497         update_permission_bitmask(mmu, false);
4498         update_pkru_bitmask(mmu);
4499 }
4500
4501 static void paging64_init_context(struct kvm_mmu *context)
4502 {
4503         context->page_fault = paging64_page_fault;
4504         context->gva_to_gpa = paging64_gva_to_gpa;
4505         context->sync_page = paging64_sync_page;
4506         context->invlpg = paging64_invlpg;
4507         context->direct_map = false;
4508 }
4509
4510 static void paging32_init_context(struct kvm_mmu *context)
4511 {
4512         context->page_fault = paging32_page_fault;
4513         context->gva_to_gpa = paging32_gva_to_gpa;
4514         context->sync_page = paging32_sync_page;
4515         context->invlpg = paging32_invlpg;
4516         context->direct_map = false;
4517 }
4518
4519 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
4520                                                          struct kvm_mmu_role_regs *regs)
4521 {
4522         union kvm_mmu_extended_role ext = {0};
4523
4524         if (____is_cr0_pg(regs)) {
4525                 ext.cr0_pg = 1;
4526                 ext.cr4_pae = ____is_cr4_pae(regs);
4527                 ext.cr4_smep = ____is_cr4_smep(regs);
4528                 ext.cr4_smap = ____is_cr4_smap(regs);
4529                 ext.cr4_pse = ____is_cr4_pse(regs);
4530
4531                 /* PKEY and LA57 are active iff long mode is active. */
4532                 ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
4533                 ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4534         }
4535
4536         ext.valid = 1;
4537
4538         return ext;
4539 }
4540
4541 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4542                                                    struct kvm_mmu_role_regs *regs,
4543                                                    bool base_only)
4544 {
4545         union kvm_mmu_role role = {0};
4546
4547         role.base.access = ACC_ALL;
4548         if (____is_cr0_pg(regs)) {
4549                 role.base.efer_nx = ____is_efer_nx(regs);
4550                 role.base.cr0_wp = ____is_cr0_wp(regs);
4551         }
4552         role.base.smm = is_smm(vcpu);
4553         role.base.guest_mode = is_guest_mode(vcpu);
4554
4555         if (base_only)
4556                 return role;
4557
4558         role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4559
4560         return role;
4561 }
4562
4563 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4564 {
4565         /* Use 5-level TDP if and only if it's useful/necessary. */
4566         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4567                 return 4;
4568
4569         return max_tdp_level;
4570 }
4571
4572 static union kvm_mmu_role
4573 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4574                                 struct kvm_mmu_role_regs *regs, bool base_only)
4575 {
4576         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4577
4578         role.base.ad_disabled = (shadow_accessed_mask == 0);
4579         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4580         role.base.direct = true;
4581         role.base.gpte_is_8_bytes = true;
4582
4583         return role;
4584 }
4585
4586 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4587 {
4588         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4589         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4590         union kvm_mmu_role new_role =
4591                 kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4592
4593         if (new_role.as_u64 == context->mmu_role.as_u64)
4594                 return;
4595
4596         context->mmu_role.as_u64 = new_role.as_u64;
4597         context->page_fault = kvm_tdp_page_fault;
4598         context->sync_page = nonpaging_sync_page;
4599         context->invlpg = NULL;
4600         context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4601         context->direct_map = true;
4602         context->get_guest_pgd = get_cr3;
4603         context->get_pdptr = kvm_pdptr_read;
4604         context->inject_page_fault = kvm_inject_page_fault;
4605         context->root_level = role_regs_to_root_level(&regs);
4606
4607         if (!is_cr0_pg(context))
4608                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4609         else if (is_cr4_pae(context))
4610                 context->gva_to_gpa = paging64_gva_to_gpa;
4611         else
4612                 context->gva_to_gpa = paging32_gva_to_gpa;
4613
4614         reset_guest_paging_metadata(vcpu, context);
4615         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4616 }
4617
4618 static union kvm_mmu_role
4619 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
4620                                       struct kvm_mmu_role_regs *regs, bool base_only)
4621 {
4622         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4623
4624         role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
4625         role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4626         role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4627
4628         return role;
4629 }
4630
4631 static union kvm_mmu_role
4632 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
4633                                    struct kvm_mmu_role_regs *regs, bool base_only)
4634 {
4635         union kvm_mmu_role role =
4636                 kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4637
4638         role.base.direct = !____is_cr0_pg(regs);
4639
4640         if (!____is_efer_lma(regs))
4641                 role.base.level = PT32E_ROOT_LEVEL;
4642         else if (____is_cr4_la57(regs))
4643                 role.base.level = PT64_ROOT_5LEVEL;
4644         else
4645                 role.base.level = PT64_ROOT_4LEVEL;
4646
4647         return role;
4648 }
4649
4650 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4651                                     struct kvm_mmu_role_regs *regs,
4652                                     union kvm_mmu_role new_role)
4653 {
4654         if (new_role.as_u64 == context->mmu_role.as_u64)
4655                 return;
4656
4657         context->mmu_role.as_u64 = new_role.as_u64;
4658
4659         if (!is_cr0_pg(context))
4660                 nonpaging_init_context(context);
4661         else if (is_cr4_pae(context))
4662                 paging64_init_context(context);
4663         else
4664                 paging32_init_context(context);
4665         context->root_level = role_regs_to_root_level(regs);
4666
4667         reset_guest_paging_metadata(vcpu, context);
4668         context->shadow_root_level = new_role.base.level;
4669
4670         reset_shadow_zero_bits_mask(vcpu, context);
4671 }
4672
4673 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4674                                 struct kvm_mmu_role_regs *regs)
4675 {
4676         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4677         union kvm_mmu_role new_role =
4678                 kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4679
4680         shadow_mmu_init_context(vcpu, context, regs, new_role);
4681 }
4682
4683 static union kvm_mmu_role
4684 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
4685                                    struct kvm_mmu_role_regs *regs)
4686 {
4687         union kvm_mmu_role role =
4688                 kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4689
4690         role.base.direct = false;
4691         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4692
4693         return role;
4694 }
4695
4696 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
4697                              unsigned long cr4, u64 efer, gpa_t nested_cr3)
4698 {
4699         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4700         struct kvm_mmu_role_regs regs = {
4701                 .cr0 = cr0,
4702                 .cr4 = cr4,
4703                 .efer = efer,
4704         };
4705         union kvm_mmu_role new_role;
4706
4707         new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4708
4709         __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4710
4711         shadow_mmu_init_context(vcpu, context, &regs, new_role);
4712 }
4713 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4714
4715 static union kvm_mmu_role
4716 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4717                                    bool execonly, u8 level)
4718 {
4719         union kvm_mmu_role role = {0};
4720
4721         /* SMM flag is inherited from root_mmu */
4722         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4723
4724         role.base.level = level;
4725         role.base.gpte_is_8_bytes = true;
4726         role.base.direct = false;
4727         role.base.ad_disabled = !accessed_dirty;
4728         role.base.guest_mode = true;
4729         role.base.access = ACC_ALL;
4730
4731         /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
4732         role.ext.word = 0;
4733         role.ext.execonly = execonly;
4734         role.ext.valid = 1;
4735
4736         return role;
4737 }
4738
4739 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4740                              bool accessed_dirty, gpa_t new_eptp)
4741 {
4742         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4743         u8 level = vmx_eptp_page_walk_level(new_eptp);
4744         union kvm_mmu_role new_role =
4745                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4746                                                    execonly, level);
4747
4748         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4749
4750         if (new_role.as_u64 == context->mmu_role.as_u64)
4751                 return;
4752
4753         context->mmu_role.as_u64 = new_role.as_u64;
4754
4755         context->shadow_root_level = level;
4756
4757         context->ept_ad = accessed_dirty;
4758         context->page_fault = ept_page_fault;
4759         context->gva_to_gpa = ept_gva_to_gpa;
4760         context->sync_page = ept_sync_page;
4761         context->invlpg = ept_invlpg;
4762         context->root_level = level;
4763         context->direct_map = false;
4764
4765         update_permission_bitmask(context, true);
4766         update_pkru_bitmask(context);
4767         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4768         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4769 }
4770 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4771
4772 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4773 {
4774         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4775         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4776
4777         kvm_init_shadow_mmu(vcpu, &regs);
4778
4779         context->get_guest_pgd     = get_cr3;
4780         context->get_pdptr         = kvm_pdptr_read;
4781         context->inject_page_fault = kvm_inject_page_fault;
4782 }
4783
4784 static union kvm_mmu_role
4785 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4786 {
4787         union kvm_mmu_role role;
4788
4789         role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4790
4791         /*
4792          * Nested MMUs are used only for walking L2's gva->gpa, they never have
4793          * shadow pages of their own and so "direct" has no meaning.   Set it
4794          * to "true" to try to detect bogus usage of the nested MMU.
4795          */
4796         role.base.direct = true;
4797         role.base.level = role_regs_to_root_level(regs);
4798         return role;
4799 }
4800
4801 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4802 {
4803         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4804         union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4805         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4806
4807         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4808                 return;
4809
4810         g_context->mmu_role.as_u64 = new_role.as_u64;
4811         g_context->get_guest_pgd     = get_cr3;
4812         g_context->get_pdptr         = kvm_pdptr_read;
4813         g_context->inject_page_fault = kvm_inject_page_fault;
4814         g_context->root_level        = new_role.base.level;
4815
4816         /*
4817          * L2 page tables are never shadowed, so there is no need to sync
4818          * SPTEs.
4819          */
4820         g_context->invlpg            = NULL;
4821
4822         /*
4823          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4824          * L1's nested page tables (e.g. EPT12). The nested translation
4825          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4826          * L2's page tables as the first level of translation and L1's
4827          * nested page tables as the second level of translation. Basically
4828          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4829          */
4830         if (!is_paging(vcpu))
4831                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4832         else if (is_long_mode(vcpu))
4833                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4834         else if (is_pae(vcpu))
4835                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4836         else
4837                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4838
4839         reset_guest_paging_metadata(vcpu, g_context);
4840 }
4841
4842 void kvm_init_mmu(struct kvm_vcpu *vcpu)
4843 {
4844         if (mmu_is_nested(vcpu))
4845                 init_kvm_nested_mmu(vcpu);
4846         else if (tdp_enabled)
4847                 init_kvm_tdp_mmu(vcpu);
4848         else
4849                 init_kvm_softmmu(vcpu);
4850 }
4851 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4852
4853 static union kvm_mmu_page_role
4854 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4855 {
4856         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4857         union kvm_mmu_role role;
4858
4859         if (tdp_enabled)
4860                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
4861         else
4862                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
4863
4864         return role.base;
4865 }
4866
4867 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
4868 {
4869         /*
4870          * Invalidate all MMU roles to force them to reinitialize as CPUID
4871          * information is factored into reserved bit calculations.
4872          */
4873         vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
4874         vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
4875         vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
4876         kvm_mmu_reset_context(vcpu);
4877
4878         /*
4879          * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
4880          * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
4881          * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
4882          * faults due to reusing SPs/SPTEs.  Alert userspace, but otherwise
4883          * sweep the problem under the rug.
4884          *
4885          * KVM's horrific CPUID ABI makes the problem all but impossible to
4886          * solve, as correctly handling multiple vCPU models (with respect to
4887          * paging and physical address properties) in a single VM would require
4888          * tracking all relevant CPUID information in kvm_mmu_page_role.  That
4889          * is very undesirable as it would double the memory requirements for
4890          * gfn_track (see struct kvm_mmu_page_role comments), and in practice
4891          * no sane VMM mucks with the core vCPU model on the fly.
4892          */
4893         if (vcpu->arch.last_vmentry_cpu != -1) {
4894                 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
4895                 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
4896         }
4897 }
4898
4899 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4900 {
4901         kvm_mmu_unload(vcpu);
4902         kvm_init_mmu(vcpu);
4903 }
4904 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4905
4906 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4907 {
4908         int r;
4909
4910         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4911         if (r)
4912                 goto out;
4913         r = mmu_alloc_special_roots(vcpu);
4914         if (r)
4915                 goto out;
4916         if (vcpu->arch.mmu->direct_map)
4917                 r = mmu_alloc_direct_roots(vcpu);
4918         else
4919                 r = mmu_alloc_shadow_roots(vcpu);
4920         if (r)
4921                 goto out;
4922
4923         kvm_mmu_sync_roots(vcpu);
4924
4925         kvm_mmu_load_pgd(vcpu);
4926         static_call(kvm_x86_tlb_flush_current)(vcpu);
4927 out:
4928         return r;
4929 }
4930
4931 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4932 {
4933         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4934         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4935         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4936         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4937 }
4938
4939 static bool need_remote_flush(u64 old, u64 new)
4940 {
4941         if (!is_shadow_present_pte(old))
4942                 return false;
4943         if (!is_shadow_present_pte(new))
4944                 return true;
4945         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4946                 return true;
4947         old ^= shadow_nx_mask;
4948         new ^= shadow_nx_mask;
4949         return (old & ~new & PT64_PERM_MASK) != 0;
4950 }
4951
4952 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4953                                     int *bytes)
4954 {
4955         u64 gentry = 0;
4956         int r;
4957
4958         /*
4959          * Assume that the pte write on a page table of the same type
4960          * as the current vcpu paging mode since we update the sptes only
4961          * when they have the same mode.
4962          */
4963         if (is_pae(vcpu) && *bytes == 4) {
4964                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4965                 *gpa &= ~(gpa_t)7;
4966                 *bytes = 8;
4967         }
4968
4969         if (*bytes == 4 || *bytes == 8) {
4970                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4971                 if (r)
4972                         gentry = 0;
4973         }
4974
4975         return gentry;
4976 }
4977
4978 /*
4979  * If we're seeing too many writes to a page, it may no longer be a page table,
4980  * or we may be forking, in which case it is better to unmap the page.
4981  */
4982 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4983 {
4984         /*
4985          * Skip write-flooding detected for the sp whose level is 1, because
4986          * it can become unsync, then the guest page is not write-protected.
4987          */
4988         if (sp->role.level == PG_LEVEL_4K)
4989                 return false;
4990
4991         atomic_inc(&sp->write_flooding_count);
4992         return atomic_read(&sp->write_flooding_count) >= 3;
4993 }
4994
4995 /*
4996  * Misaligned accesses are too much trouble to fix up; also, they usually
4997  * indicate a page is not used as a page table.
4998  */
4999 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5000                                     int bytes)
5001 {
5002         unsigned offset, pte_size, misaligned;
5003
5004         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5005                  gpa, bytes, sp->role.word);
5006
5007         offset = offset_in_page(gpa);
5008         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5009
5010         /*
5011          * Sometimes, the OS only writes the last one bytes to update status
5012          * bits, for example, in linux, andb instruction is used in clear_bit().
5013          */
5014         if (!(offset & (pte_size - 1)) && bytes == 1)
5015                 return false;
5016
5017         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5018         misaligned |= bytes < 4;
5019
5020         return misaligned;
5021 }
5022
5023 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5024 {
5025         unsigned page_offset, quadrant;
5026         u64 *spte;
5027         int level;
5028
5029         page_offset = offset_in_page(gpa);
5030         level = sp->role.level;
5031         *nspte = 1;
5032         if (!sp->role.gpte_is_8_bytes) {
5033                 page_offset <<= 1;      /* 32->64 */
5034                 /*
5035                  * A 32-bit pde maps 4MB while the shadow pdes map
5036                  * only 2MB.  So we need to double the offset again
5037                  * and zap two pdes instead of one.
5038                  */
5039                 if (level == PT32_ROOT_LEVEL) {
5040                         page_offset &= ~7; /* kill rounding error */
5041                         page_offset <<= 1;
5042                         *nspte = 2;
5043                 }
5044                 quadrant = page_offset >> PAGE_SHIFT;
5045                 page_offset &= ~PAGE_MASK;
5046                 if (quadrant != sp->role.quadrant)
5047                         return NULL;
5048         }
5049
5050         spte = &sp->spt[page_offset / sizeof(*spte)];
5051         return spte;
5052 }
5053
5054 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5055                               const u8 *new, int bytes,
5056                               struct kvm_page_track_notifier_node *node)
5057 {
5058         gfn_t gfn = gpa >> PAGE_SHIFT;
5059         struct kvm_mmu_page *sp;
5060         LIST_HEAD(invalid_list);
5061         u64 entry, gentry, *spte;
5062         int npte;
5063         bool remote_flush, local_flush;
5064
5065         /*
5066          * If we don't have indirect shadow pages, it means no page is
5067          * write-protected, so we can exit simply.
5068          */
5069         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5070                 return;
5071
5072         remote_flush = local_flush = false;
5073
5074         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5075
5076         /*
5077          * No need to care whether allocation memory is successful
5078          * or not since pte prefetch is skipped if it does not have
5079          * enough objects in the cache.
5080          */
5081         mmu_topup_memory_caches(vcpu, true);
5082
5083         write_lock(&vcpu->kvm->mmu_lock);
5084
5085         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5086
5087         ++vcpu->kvm->stat.mmu_pte_write;
5088         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5089
5090         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5091                 if (detect_write_misaligned(sp, gpa, bytes) ||
5092                       detect_write_flooding(sp)) {
5093                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5094                         ++vcpu->kvm->stat.mmu_flooded;
5095                         continue;
5096                 }
5097
5098                 spte = get_written_sptes(sp, gpa, &npte);
5099                 if (!spte)
5100                         continue;
5101
5102                 local_flush = true;
5103                 while (npte--) {
5104                         entry = *spte;
5105                         mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5106                         if (gentry && sp->role.level != PG_LEVEL_4K)
5107                                 ++vcpu->kvm->stat.mmu_pde_zapped;
5108                         if (need_remote_flush(entry, *spte))
5109                                 remote_flush = true;
5110                         ++spte;
5111                 }
5112         }
5113         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5114         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5115         write_unlock(&vcpu->kvm->mmu_lock);
5116 }
5117
5118 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5119                        void *insn, int insn_len)
5120 {
5121         int r, emulation_type = EMULTYPE_PF;
5122         bool direct = vcpu->arch.mmu->direct_map;
5123
5124         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5125                 return RET_PF_RETRY;
5126
5127         r = RET_PF_INVALID;
5128         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5129                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5130                 if (r == RET_PF_EMULATE)
5131                         goto emulate;
5132         }
5133
5134         if (r == RET_PF_INVALID) {
5135                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5136                                           lower_32_bits(error_code), false);
5137                 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5138                         return -EIO;
5139         }
5140
5141         if (r < 0)
5142                 return r;
5143         if (r != RET_PF_EMULATE)
5144                 return 1;
5145
5146         /*
5147          * Before emulating the instruction, check if the error code
5148          * was due to a RO violation while translating the guest page.
5149          * This can occur when using nested virtualization with nested
5150          * paging in both guests. If true, we simply unprotect the page
5151          * and resume the guest.
5152          */
5153         if (vcpu->arch.mmu->direct_map &&
5154             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5155                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5156                 return 1;
5157         }
5158
5159         /*
5160          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5161          * optimistically try to just unprotect the page and let the processor
5162          * re-execute the instruction that caused the page fault.  Do not allow
5163          * retrying MMIO emulation, as it's not only pointless but could also
5164          * cause us to enter an infinite loop because the processor will keep
5165          * faulting on the non-existent MMIO address.  Retrying an instruction
5166          * from a nested guest is also pointless and dangerous as we are only
5167          * explicitly shadowing L1's page tables, i.e. unprotecting something
5168          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5169          */
5170         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5171                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5172 emulate:
5173         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5174                                        insn_len);
5175 }
5176 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5177
5178 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5179                             gva_t gva, hpa_t root_hpa)
5180 {
5181         int i;
5182
5183         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5184         if (mmu != &vcpu->arch.guest_mmu) {
5185                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5186                 if (is_noncanonical_address(gva, vcpu))
5187                         return;
5188
5189                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5190         }
5191
5192         if (!mmu->invlpg)
5193                 return;
5194
5195         if (root_hpa == INVALID_PAGE) {
5196                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5197
5198                 /*
5199                  * INVLPG is required to invalidate any global mappings for the VA,
5200                  * irrespective of PCID. Since it would take us roughly similar amount
5201                  * of work to determine whether any of the prev_root mappings of the VA
5202                  * is marked global, or to just sync it blindly, so we might as well
5203                  * just always sync it.
5204                  *
5205                  * Mappings not reachable via the current cr3 or the prev_roots will be
5206                  * synced when switching to that cr3, so nothing needs to be done here
5207                  * for them.
5208                  */
5209                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5210                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5211                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5212         } else {
5213                 mmu->invlpg(vcpu, gva, root_hpa);
5214         }
5215 }
5216
5217 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5218 {
5219         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5220         ++vcpu->stat.invlpg;
5221 }
5222 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5223
5224
5225 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5226 {
5227         struct kvm_mmu *mmu = vcpu->arch.mmu;
5228         bool tlb_flush = false;
5229         uint i;
5230
5231         if (pcid == kvm_get_active_pcid(vcpu)) {
5232                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5233                 tlb_flush = true;
5234         }
5235
5236         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5237                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5238                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5239                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5240                         tlb_flush = true;
5241                 }
5242         }
5243
5244         if (tlb_flush)
5245                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5246
5247         ++vcpu->stat.invlpg;
5248
5249         /*
5250          * Mappings not reachable via the current cr3 or the prev_roots will be
5251          * synced when switching to that cr3, so nothing needs to be done here
5252          * for them.
5253          */
5254 }
5255
5256 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5257                        int tdp_huge_page_level)
5258 {
5259         tdp_enabled = enable_tdp;
5260         max_tdp_level = tdp_max_root_level;
5261
5262         /*
5263          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5264          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5265          * the kernel is not.  But, KVM never creates a page size greater than
5266          * what is used by the kernel for any given HVA, i.e. the kernel's
5267          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5268          */
5269         if (tdp_enabled)
5270                 max_huge_page_level = tdp_huge_page_level;
5271         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5272                 max_huge_page_level = PG_LEVEL_1G;
5273         else
5274                 max_huge_page_level = PG_LEVEL_2M;
5275 }
5276 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5277
5278 /* The return value indicates if tlb flush on all vcpus is needed. */
5279 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5280                                     struct kvm_memory_slot *slot);
5281
5282 /* The caller should hold mmu-lock before calling this function. */
5283 static __always_inline bool
5284 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5285                         slot_level_handler fn, int start_level, int end_level,
5286                         gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5287                         bool flush)
5288 {
5289         struct slot_rmap_walk_iterator iterator;
5290
5291         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5292                         end_gfn, &iterator) {
5293                 if (iterator.rmap)
5294                         flush |= fn(kvm, iterator.rmap, memslot);
5295
5296                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5297                         if (flush && flush_on_yield) {
5298                                 kvm_flush_remote_tlbs_with_address(kvm,
5299                                                 start_gfn,
5300                                                 iterator.gfn - start_gfn + 1);
5301                                 flush = false;
5302                         }
5303                         cond_resched_rwlock_write(&kvm->mmu_lock);
5304                 }
5305         }
5306
5307         return flush;
5308 }
5309
5310 static __always_inline bool
5311 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5312                   slot_level_handler fn, int start_level, int end_level,
5313                   bool flush_on_yield)
5314 {
5315         return slot_handle_level_range(kvm, memslot, fn, start_level,
5316                         end_level, memslot->base_gfn,
5317                         memslot->base_gfn + memslot->npages - 1,
5318                         flush_on_yield, false);
5319 }
5320
5321 static __always_inline bool
5322 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5323                  slot_level_handler fn, bool flush_on_yield)
5324 {
5325         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5326                                  PG_LEVEL_4K, flush_on_yield);
5327 }
5328
5329 static void free_mmu_pages(struct kvm_mmu *mmu)
5330 {
5331         if (!tdp_enabled && mmu->pae_root)
5332                 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5333         free_page((unsigned long)mmu->pae_root);
5334         free_page((unsigned long)mmu->pml4_root);
5335 }
5336
5337 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5338 {
5339         struct page *page;
5340         int i;
5341
5342         mmu->root_hpa = INVALID_PAGE;
5343         mmu->root_pgd = 0;
5344         mmu->translate_gpa = translate_gpa;
5345         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5346                 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5347
5348         /*
5349          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5350          * while the PDP table is a per-vCPU construct that's allocated at MMU
5351          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5352          * x86_64.  Therefore we need to allocate the PDP table in the first
5353          * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5354          * generally doesn't use PAE paging and can skip allocating the PDP
5355          * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5356          * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5357          * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5358          */
5359         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5360                 return 0;
5361
5362         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5363         if (!page)
5364                 return -ENOMEM;
5365
5366         mmu->pae_root = page_address(page);
5367
5368         /*
5369          * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5370          * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5371          * that KVM's writes and the CPU's reads get along.  Note, this is
5372          * only necessary when using shadow paging, as 64-bit NPT can get at
5373          * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5374          * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5375          */
5376         if (!tdp_enabled)
5377                 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5378         else
5379                 WARN_ON_ONCE(shadow_me_mask);
5380
5381         for (i = 0; i < 4; ++i)
5382                 mmu->pae_root[i] = INVALID_PAE_ROOT;
5383
5384         return 0;
5385 }
5386
5387 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5388 {
5389         int ret;
5390
5391         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5392         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5393
5394         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5395         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5396
5397         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5398
5399         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5400         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5401
5402         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5403
5404         ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5405         if (ret)
5406                 return ret;
5407
5408         ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5409         if (ret)
5410                 goto fail_allocate_root;
5411
5412         return ret;
5413  fail_allocate_root:
5414         free_mmu_pages(&vcpu->arch.guest_mmu);
5415         return ret;
5416 }
5417
5418 #define BATCH_ZAP_PAGES 10
5419 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5420 {
5421         struct kvm_mmu_page *sp, *node;
5422         int nr_zapped, batch = 0;
5423
5424 restart:
5425         list_for_each_entry_safe_reverse(sp, node,
5426               &kvm->arch.active_mmu_pages, link) {
5427                 /*
5428                  * No obsolete valid page exists before a newly created page
5429                  * since active_mmu_pages is a FIFO list.
5430                  */
5431                 if (!is_obsolete_sp(kvm, sp))
5432                         break;
5433
5434                 /*
5435                  * Invalid pages should never land back on the list of active
5436                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
5437                  * infinite loop if the page gets put back on the list (again).
5438                  */
5439                 if (WARN_ON(sp->role.invalid))
5440                         continue;
5441
5442                 /*
5443                  * No need to flush the TLB since we're only zapping shadow
5444                  * pages with an obsolete generation number and all vCPUS have
5445                  * loaded a new root, i.e. the shadow pages being zapped cannot
5446                  * be in active use by the guest.
5447                  */
5448                 if (batch >= BATCH_ZAP_PAGES &&
5449                     cond_resched_rwlock_write(&kvm->mmu_lock)) {
5450                         batch = 0;
5451                         goto restart;
5452                 }
5453
5454                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5455                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5456                         batch += nr_zapped;
5457                         goto restart;
5458                 }
5459         }
5460
5461         /*
5462          * Trigger a remote TLB flush before freeing the page tables to ensure
5463          * KVM is not in the middle of a lockless shadow page table walk, which
5464          * may reference the pages.
5465          */
5466         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5467 }
5468
5469 /*
5470  * Fast invalidate all shadow pages and use lock-break technique
5471  * to zap obsolete pages.
5472  *
5473  * It's required when memslot is being deleted or VM is being
5474  * destroyed, in these cases, we should ensure that KVM MMU does
5475  * not use any resource of the being-deleted slot or all slots
5476  * after calling the function.
5477  */
5478 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5479 {
5480         lockdep_assert_held(&kvm->slots_lock);
5481
5482         write_lock(&kvm->mmu_lock);
5483         trace_kvm_mmu_zap_all_fast(kvm);
5484
5485         /*
5486          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5487          * held for the entire duration of zapping obsolete pages, it's
5488          * impossible for there to be multiple invalid generations associated
5489          * with *valid* shadow pages at any given time, i.e. there is exactly
5490          * one valid generation and (at most) one invalid generation.
5491          */
5492         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5493
5494         /* In order to ensure all threads see this change when
5495          * handling the MMU reload signal, this must happen in the
5496          * same critical section as kvm_reload_remote_mmus, and
5497          * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5498          * could drop the MMU lock and yield.
5499          */
5500         if (is_tdp_mmu_enabled(kvm))
5501                 kvm_tdp_mmu_invalidate_all_roots(kvm);
5502
5503         /*
5504          * Notify all vcpus to reload its shadow page table and flush TLB.
5505          * Then all vcpus will switch to new shadow page table with the new
5506          * mmu_valid_gen.
5507          *
5508          * Note: we need to do this under the protection of mmu_lock,
5509          * otherwise, vcpu would purge shadow page but miss tlb flush.
5510          */
5511         kvm_reload_remote_mmus(kvm);
5512
5513         kvm_zap_obsolete_pages(kvm);
5514
5515         write_unlock(&kvm->mmu_lock);
5516
5517         if (is_tdp_mmu_enabled(kvm)) {
5518                 read_lock(&kvm->mmu_lock);
5519                 kvm_tdp_mmu_zap_invalidated_roots(kvm);
5520                 read_unlock(&kvm->mmu_lock);
5521         }
5522 }
5523
5524 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5525 {
5526         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5527 }
5528
5529 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5530                         struct kvm_memory_slot *slot,
5531                         struct kvm_page_track_notifier_node *node)
5532 {
5533         kvm_mmu_zap_all_fast(kvm);
5534 }
5535
5536 void kvm_mmu_init_vm(struct kvm *kvm)
5537 {
5538         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5539
5540         if (!kvm_mmu_init_tdp_mmu(kvm))
5541                 /*
5542                  * No smp_load/store wrappers needed here as we are in
5543                  * VM init and there cannot be any memslots / other threads
5544                  * accessing this struct kvm yet.
5545                  */
5546                 kvm->arch.memslots_have_rmaps = true;
5547
5548         node->track_write = kvm_mmu_pte_write;
5549         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5550         kvm_page_track_register_notifier(kvm, node);
5551 }
5552
5553 void kvm_mmu_uninit_vm(struct kvm *kvm)
5554 {
5555         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5556
5557         kvm_page_track_unregister_notifier(kvm, node);
5558
5559         kvm_mmu_uninit_tdp_mmu(kvm);
5560 }
5561
5562 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5563 {
5564         struct kvm_memslots *slots;
5565         struct kvm_memory_slot *memslot;
5566         int i;
5567         bool flush = false;
5568
5569         if (kvm_memslots_have_rmaps(kvm)) {
5570                 write_lock(&kvm->mmu_lock);
5571                 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5572                         slots = __kvm_memslots(kvm, i);
5573                         kvm_for_each_memslot(memslot, slots) {
5574                                 gfn_t start, end;
5575
5576                                 start = max(gfn_start, memslot->base_gfn);
5577                                 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5578                                 if (start >= end)
5579                                         continue;
5580
5581                                 flush = slot_handle_level_range(kvm, memslot,
5582                                                 kvm_zap_rmapp, PG_LEVEL_4K,
5583                                                 KVM_MAX_HUGEPAGE_LEVEL, start,
5584                                                 end - 1, true, flush);
5585                         }
5586                 }
5587                 if (flush)
5588                         kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
5589                 write_unlock(&kvm->mmu_lock);
5590         }
5591
5592         if (is_tdp_mmu_enabled(kvm)) {
5593                 flush = false;
5594
5595                 read_lock(&kvm->mmu_lock);
5596                 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5597                         flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5598                                                           gfn_end, flush, true);
5599                 if (flush)
5600                         kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5601                                                            gfn_end);
5602
5603                 read_unlock(&kvm->mmu_lock);
5604         }
5605 }
5606
5607 static bool slot_rmap_write_protect(struct kvm *kvm,
5608                                     struct kvm_rmap_head *rmap_head,
5609                                     struct kvm_memory_slot *slot)
5610 {
5611         return __rmap_write_protect(kvm, rmap_head, false);
5612 }
5613
5614 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5615                                       struct kvm_memory_slot *memslot,
5616                                       int start_level)
5617 {
5618         bool flush = false;
5619
5620         if (kvm_memslots_have_rmaps(kvm)) {
5621                 write_lock(&kvm->mmu_lock);
5622                 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5623                                           start_level, KVM_MAX_HUGEPAGE_LEVEL,
5624                                           false);
5625                 write_unlock(&kvm->mmu_lock);
5626         }
5627
5628         if (is_tdp_mmu_enabled(kvm)) {
5629                 read_lock(&kvm->mmu_lock);
5630                 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5631                 read_unlock(&kvm->mmu_lock);
5632         }
5633
5634         /*
5635          * We can flush all the TLBs out of the mmu lock without TLB
5636          * corruption since we just change the spte from writable to
5637          * readonly so that we only need to care the case of changing
5638          * spte from present to present (changing the spte from present
5639          * to nonpresent will flush all the TLBs immediately), in other
5640          * words, the only case we care is mmu_spte_update() where we
5641          * have checked Host-writable | MMU-writable instead of
5642          * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5643          * anymore.
5644          */
5645         if (flush)
5646                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5647 }
5648
5649 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5650                                          struct kvm_rmap_head *rmap_head,
5651                                          struct kvm_memory_slot *slot)
5652 {
5653         u64 *sptep;
5654         struct rmap_iterator iter;
5655         int need_tlb_flush = 0;
5656         kvm_pfn_t pfn;
5657         struct kvm_mmu_page *sp;
5658
5659 restart:
5660         for_each_rmap_spte(rmap_head, &iter, sptep) {
5661                 sp = sptep_to_sp(sptep);
5662                 pfn = spte_to_pfn(*sptep);
5663
5664                 /*
5665                  * We cannot do huge page mapping for indirect shadow pages,
5666                  * which are found on the last rmap (level = 1) when not using
5667                  * tdp; such shadow pages are synced with the page table in
5668                  * the guest, and the guest page table is using 4K page size
5669                  * mapping if the indirect sp has level = 1.
5670                  */
5671                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5672                     sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5673                                                                pfn, PG_LEVEL_NUM)) {
5674                         pte_list_remove(rmap_head, sptep);
5675
5676                         if (kvm_available_flush_tlb_with_range())
5677                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5678                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5679                         else
5680                                 need_tlb_flush = 1;
5681
5682                         goto restart;
5683                 }
5684         }
5685
5686         return need_tlb_flush;
5687 }
5688
5689 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5690                                    const struct kvm_memory_slot *memslot)
5691 {
5692         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5693         struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5694         bool flush = false;
5695
5696         if (kvm_memslots_have_rmaps(kvm)) {
5697                 write_lock(&kvm->mmu_lock);
5698                 flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5699                 if (flush)
5700                         kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5701                 write_unlock(&kvm->mmu_lock);
5702         }
5703
5704         if (is_tdp_mmu_enabled(kvm)) {
5705                 read_lock(&kvm->mmu_lock);
5706                 flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
5707                 if (flush)
5708                         kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5709                 read_unlock(&kvm->mmu_lock);
5710         }
5711 }
5712
5713 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5714                                         const struct kvm_memory_slot *memslot)
5715 {
5716         /*
5717          * All current use cases for flushing the TLBs for a specific memslot
5718          * related to dirty logging, and many do the TLB flush out of mmu_lock.
5719          * The interaction between the various operations on memslot must be
5720          * serialized by slots_locks to ensure the TLB flush from one operation
5721          * is observed by any other operation on the same memslot.
5722          */
5723         lockdep_assert_held(&kvm->slots_lock);
5724         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5725                                            memslot->npages);
5726 }
5727
5728 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5729                                    struct kvm_memory_slot *memslot)
5730 {
5731         bool flush = false;
5732
5733         if (kvm_memslots_have_rmaps(kvm)) {
5734                 write_lock(&kvm->mmu_lock);
5735                 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty,
5736                                          false);
5737                 write_unlock(&kvm->mmu_lock);
5738         }
5739
5740         if (is_tdp_mmu_enabled(kvm)) {
5741                 read_lock(&kvm->mmu_lock);
5742                 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5743                 read_unlock(&kvm->mmu_lock);
5744         }
5745
5746         /*
5747          * It's also safe to flush TLBs out of mmu lock here as currently this
5748          * function is only used for dirty logging, in which case flushing TLB
5749          * out of mmu lock also guarantees no dirty pages will be lost in
5750          * dirty_bitmap.
5751          */
5752         if (flush)
5753                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5754 }
5755
5756 void kvm_mmu_zap_all(struct kvm *kvm)
5757 {
5758         struct kvm_mmu_page *sp, *node;
5759         LIST_HEAD(invalid_list);
5760         int ign;
5761
5762         write_lock(&kvm->mmu_lock);
5763 restart:
5764         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5765                 if (WARN_ON(sp->role.invalid))
5766                         continue;
5767                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5768                         goto restart;
5769                 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5770                         goto restart;
5771         }
5772
5773         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5774
5775         if (is_tdp_mmu_enabled(kvm))
5776                 kvm_tdp_mmu_zap_all(kvm);
5777
5778         write_unlock(&kvm->mmu_lock);
5779 }
5780
5781 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5782 {
5783         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5784
5785         gen &= MMIO_SPTE_GEN_MASK;
5786
5787         /*
5788          * Generation numbers are incremented in multiples of the number of
5789          * address spaces in order to provide unique generations across all
5790          * address spaces.  Strip what is effectively the address space
5791          * modifier prior to checking for a wrap of the MMIO generation so
5792          * that a wrap in any address space is detected.
5793          */
5794         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5795
5796         /*
5797          * The very rare case: if the MMIO generation number has wrapped,
5798          * zap all shadow pages.
5799          */
5800         if (unlikely(gen == 0)) {
5801                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5802                 kvm_mmu_zap_all_fast(kvm);
5803         }
5804 }
5805
5806 static unsigned long
5807 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5808 {
5809         struct kvm *kvm;
5810         int nr_to_scan = sc->nr_to_scan;
5811         unsigned long freed = 0;
5812
5813         mutex_lock(&kvm_lock);
5814
5815         list_for_each_entry(kvm, &vm_list, vm_list) {
5816                 int idx;
5817                 LIST_HEAD(invalid_list);
5818
5819                 /*
5820                  * Never scan more than sc->nr_to_scan VM instances.
5821                  * Will not hit this condition practically since we do not try
5822                  * to shrink more than one VM and it is very unlikely to see
5823                  * !n_used_mmu_pages so many times.
5824                  */
5825                 if (!nr_to_scan--)
5826                         break;
5827                 /*
5828                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5829                  * here. We may skip a VM instance errorneosly, but we do not
5830                  * want to shrink a VM that only started to populate its MMU
5831                  * anyway.
5832                  */
5833                 if (!kvm->arch.n_used_mmu_pages &&
5834                     !kvm_has_zapped_obsolete_pages(kvm))
5835                         continue;
5836
5837                 idx = srcu_read_lock(&kvm->srcu);
5838                 write_lock(&kvm->mmu_lock);
5839
5840                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5841                         kvm_mmu_commit_zap_page(kvm,
5842                               &kvm->arch.zapped_obsolete_pages);
5843                         goto unlock;
5844                 }
5845
5846                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5847
5848 unlock:
5849                 write_unlock(&kvm->mmu_lock);
5850                 srcu_read_unlock(&kvm->srcu, idx);
5851
5852                 /*
5853                  * unfair on small ones
5854                  * per-vm shrinkers cry out
5855                  * sadness comes quickly
5856                  */
5857                 list_move_tail(&kvm->vm_list, &vm_list);
5858                 break;
5859         }
5860
5861         mutex_unlock(&kvm_lock);
5862         return freed;
5863 }
5864
5865 static unsigned long
5866 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5867 {
5868         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5869 }
5870
5871 static struct shrinker mmu_shrinker = {
5872         .count_objects = mmu_shrink_count,
5873         .scan_objects = mmu_shrink_scan,
5874         .seeks = DEFAULT_SEEKS * 10,
5875 };
5876
5877 static void mmu_destroy_caches(void)
5878 {
5879         kmem_cache_destroy(pte_list_desc_cache);
5880         kmem_cache_destroy(mmu_page_header_cache);
5881 }
5882
5883 static bool get_nx_auto_mode(void)
5884 {
5885         /* Return true when CPU has the bug, and mitigations are ON */
5886         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5887 }
5888
5889 static void __set_nx_huge_pages(bool val)
5890 {
5891         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5892 }
5893
5894 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5895 {
5896         bool old_val = nx_huge_pages;
5897         bool new_val;
5898
5899         /* In "auto" mode deploy workaround only if CPU has the bug. */
5900         if (sysfs_streq(val, "off"))
5901                 new_val = 0;
5902         else if (sysfs_streq(val, "force"))
5903                 new_val = 1;
5904         else if (sysfs_streq(val, "auto"))
5905                 new_val = get_nx_auto_mode();
5906         else if (strtobool(val, &new_val) < 0)
5907                 return -EINVAL;
5908
5909         __set_nx_huge_pages(new_val);
5910
5911         if (new_val != old_val) {
5912                 struct kvm *kvm;
5913
5914                 mutex_lock(&kvm_lock);
5915
5916                 list_for_each_entry(kvm, &vm_list, vm_list) {
5917                         mutex_lock(&kvm->slots_lock);
5918                         kvm_mmu_zap_all_fast(kvm);
5919                         mutex_unlock(&kvm->slots_lock);
5920
5921                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5922                 }
5923                 mutex_unlock(&kvm_lock);
5924         }
5925
5926         return 0;
5927 }
5928
5929 int kvm_mmu_module_init(void)
5930 {
5931         int ret = -ENOMEM;
5932
5933         if (nx_huge_pages == -1)
5934                 __set_nx_huge_pages(get_nx_auto_mode());
5935
5936         /*
5937          * MMU roles use union aliasing which is, generally speaking, an
5938          * undefined behavior. However, we supposedly know how compilers behave
5939          * and the current status quo is unlikely to change. Guardians below are
5940          * supposed to let us know if the assumption becomes false.
5941          */
5942         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5943         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5944         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5945
5946         kvm_mmu_reset_all_pte_masks();
5947
5948         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5949                                             sizeof(struct pte_list_desc),
5950                                             0, SLAB_ACCOUNT, NULL);
5951         if (!pte_list_desc_cache)
5952                 goto out;
5953
5954         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5955                                                   sizeof(struct kvm_mmu_page),
5956                                                   0, SLAB_ACCOUNT, NULL);
5957         if (!mmu_page_header_cache)
5958                 goto out;
5959
5960         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5961                 goto out;
5962
5963         ret = register_shrinker(&mmu_shrinker);
5964         if (ret)
5965                 goto out;
5966
5967         return 0;
5968
5969 out:
5970         mmu_destroy_caches();
5971         return ret;
5972 }
5973
5974 /*
5975  * Calculate mmu pages needed for kvm.
5976  */
5977 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5978 {
5979         unsigned long nr_mmu_pages;
5980         unsigned long nr_pages = 0;
5981         struct kvm_memslots *slots;
5982         struct kvm_memory_slot *memslot;
5983         int i;
5984
5985         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5986                 slots = __kvm_memslots(kvm, i);
5987
5988                 kvm_for_each_memslot(memslot, slots)
5989                         nr_pages += memslot->npages;
5990         }
5991
5992         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5993         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5994
5995         return nr_mmu_pages;
5996 }
5997
5998 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5999 {
6000         kvm_mmu_unload(vcpu);
6001         free_mmu_pages(&vcpu->arch.root_mmu);
6002         free_mmu_pages(&vcpu->arch.guest_mmu);
6003         mmu_free_memory_caches(vcpu);
6004 }
6005
6006 void kvm_mmu_module_exit(void)
6007 {
6008         mmu_destroy_caches();
6009         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6010         unregister_shrinker(&mmu_shrinker);
6011         mmu_audit_disable();
6012 }
6013
6014 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6015 {
6016         unsigned int old_val;
6017         int err;
6018
6019         old_val = nx_huge_pages_recovery_ratio;
6020         err = param_set_uint(val, kp);
6021         if (err)
6022                 return err;
6023
6024         if (READ_ONCE(nx_huge_pages) &&
6025             !old_val && nx_huge_pages_recovery_ratio) {
6026                 struct kvm *kvm;
6027
6028                 mutex_lock(&kvm_lock);
6029
6030                 list_for_each_entry(kvm, &vm_list, vm_list)
6031                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6032
6033                 mutex_unlock(&kvm_lock);
6034         }
6035
6036         return err;
6037 }
6038
6039 static void kvm_recover_nx_lpages(struct kvm *kvm)
6040 {
6041         unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6042         int rcu_idx;
6043         struct kvm_mmu_page *sp;
6044         unsigned int ratio;
6045         LIST_HEAD(invalid_list);
6046         bool flush = false;
6047         ulong to_zap;
6048
6049         rcu_idx = srcu_read_lock(&kvm->srcu);
6050         write_lock(&kvm->mmu_lock);
6051
6052         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6053         to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6054         for ( ; to_zap; --to_zap) {
6055                 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6056                         break;
6057
6058                 /*
6059                  * We use a separate list instead of just using active_mmu_pages
6060                  * because the number of lpage_disallowed pages is expected to
6061                  * be relatively small compared to the total.
6062                  */
6063                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6064                                       struct kvm_mmu_page,
6065                                       lpage_disallowed_link);
6066                 WARN_ON_ONCE(!sp->lpage_disallowed);
6067                 if (is_tdp_mmu_page(sp)) {
6068                         flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6069                 } else {
6070                         kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6071                         WARN_ON_ONCE(sp->lpage_disallowed);
6072                 }
6073
6074                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6075                         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6076                         cond_resched_rwlock_write(&kvm->mmu_lock);
6077                         flush = false;
6078                 }
6079         }
6080         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6081
6082         write_unlock(&kvm->mmu_lock);
6083         srcu_read_unlock(&kvm->srcu, rcu_idx);
6084 }
6085
6086 static long get_nx_lpage_recovery_timeout(u64 start_time)
6087 {
6088         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6089                 ? start_time + 60 * HZ - get_jiffies_64()
6090                 : MAX_SCHEDULE_TIMEOUT;
6091 }
6092
6093 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6094 {
6095         u64 start_time;
6096         long remaining_time;
6097
6098         while (true) {
6099                 start_time = get_jiffies_64();
6100                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6101
6102                 set_current_state(TASK_INTERRUPTIBLE);
6103                 while (!kthread_should_stop() && remaining_time > 0) {
6104                         schedule_timeout(remaining_time);
6105                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6106                         set_current_state(TASK_INTERRUPTIBLE);
6107                 }
6108
6109                 set_current_state(TASK_RUNNING);
6110
6111                 if (kthread_should_stop())
6112                         return 0;
6113
6114                 kvm_recover_nx_lpages(kvm);
6115         }
6116 }
6117
6118 int kvm_mmu_post_init_vm(struct kvm *kvm)
6119 {
6120         int err;
6121
6122         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6123                                           "kvm-nx-lpage-recovery",
6124                                           &kvm->arch.nx_lpage_recovery_thread);
6125         if (!err)
6126                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6127
6128         return err;
6129 }
6130
6131 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6132 {
6133         if (kvm->arch.nx_lpage_recovery_thread)
6134                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6135 }