kvm: x86/mmu: Support invalidate range MMU notifier for TDP MMU
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/vmx.h>
52 #include <asm/kvm_page_track.h>
53 #include "trace.h"
54
55 extern bool itlb_multihit_kvm_mitigation;
56
57 static int __read_mostly nx_huge_pages = -1;
58 #ifdef CONFIG_PREEMPT_RT
59 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
60 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61 #else
62 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63 #endif
64
65 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
67
68 static const struct kernel_param_ops nx_huge_pages_ops = {
69         .set = set_nx_huge_pages,
70         .get = param_get_bool,
71 };
72
73 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74         .set = set_nx_huge_pages_recovery_ratio,
75         .get = param_get_uint,
76 };
77
78 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
80 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81                 &nx_huge_pages_recovery_ratio, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
83
84 static bool __read_mostly force_flush_and_sync_on_reuse;
85 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86
87 /*
88  * When setting this variable to true it enables Two-Dimensional-Paging
89  * where the hardware walks 2 page tables:
90  * 1. the guest-virtual to guest-physical
91  * 2. while doing 1. it walks guest-physical to host-physical
92  * If the hardware supports that we don't need to do shadow paging.
93  */
94 bool tdp_enabled = false;
95
96 static int max_huge_page_level __read_mostly;
97 static int max_tdp_level __read_mostly;
98
99 enum {
100         AUDIT_PRE_PAGE_FAULT,
101         AUDIT_POST_PAGE_FAULT,
102         AUDIT_PRE_PTE_WRITE,
103         AUDIT_POST_PTE_WRITE,
104         AUDIT_PRE_SYNC,
105         AUDIT_POST_SYNC
106 };
107
108 #ifdef MMU_DEBUG
109 bool dbg = 0;
110 module_param(dbg, bool, 0644);
111 #endif
112
113 #define PTE_PREFETCH_NUM                8
114
115 #define PT32_LEVEL_BITS 10
116
117 #define PT32_LEVEL_SHIFT(level) \
118                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
119
120 #define PT32_LVL_OFFSET_MASK(level) \
121         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122                                                 * PT32_LEVEL_BITS))) - 1))
123
124 #define PT32_INDEX(address, level)\
125         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #include <trace/events/kvm.h>
136
137 /* make pte_list_desc fit well in cache line */
138 #define PTE_LIST_EXT 3
139
140 struct pte_list_desc {
141         u64 *sptes[PTE_LIST_EXT];
142         struct pte_list_desc *more;
143 };
144
145 struct kvm_shadow_walk_iterator {
146         u64 addr;
147         hpa_t shadow_addr;
148         u64 *sptep;
149         int level;
150         unsigned index;
151 };
152
153 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
154         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
155                                          (_root), (_addr));                \
156              shadow_walk_okay(&(_walker));                                 \
157              shadow_walk_next(&(_walker)))
158
159 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
160         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
161              shadow_walk_okay(&(_walker));                      \
162              shadow_walk_next(&(_walker)))
163
164 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
165         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
166              shadow_walk_okay(&(_walker)) &&                            \
167                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
168              __shadow_walk_next(&(_walker), spte))
169
170 static struct kmem_cache *pte_list_desc_cache;
171 struct kmem_cache *mmu_page_header_cache;
172 static struct percpu_counter kvm_total_used_mmu_pages;
173
174 static void mmu_spte_set(u64 *sptep, u64 spte);
175 static union kvm_mmu_page_role
176 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
177
178 #define CREATE_TRACE_POINTS
179 #include "mmutrace.h"
180
181
182 static inline bool kvm_available_flush_tlb_with_range(void)
183 {
184         return kvm_x86_ops.tlb_remote_flush_with_range;
185 }
186
187 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188                 struct kvm_tlb_range *range)
189 {
190         int ret = -ENOTSUPP;
191
192         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193                 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
194
195         if (ret)
196                 kvm_flush_remote_tlbs(kvm);
197 }
198
199 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
200                 u64 start_gfn, u64 pages)
201 {
202         struct kvm_tlb_range range;
203
204         range.start_gfn = start_gfn;
205         range.pages = pages;
206
207         kvm_flush_remote_tlbs_with_range(kvm, &range);
208 }
209
210 bool is_nx_huge_page_enabled(void)
211 {
212         return READ_ONCE(nx_huge_pages);
213 }
214
215 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216                            unsigned int access)
217 {
218         u64 mask = make_mmio_spte(vcpu, gfn, access);
219
220         trace_mark_mmio_spte(sptep, gfn, mask);
221         mmu_spte_set(sptep, mask);
222 }
223
224 static gfn_t get_mmio_spte_gfn(u64 spte)
225 {
226         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
227
228         gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
229                & shadow_nonpresent_or_rsvd_mask;
230
231         return gpa >> PAGE_SHIFT;
232 }
233
234 static unsigned get_mmio_spte_access(u64 spte)
235 {
236         return spte & shadow_mmio_access_mask;
237 }
238
239 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
240                           kvm_pfn_t pfn, unsigned int access)
241 {
242         if (unlikely(is_noslot_pfn(pfn))) {
243                 mark_mmio_spte(vcpu, sptep, gfn, access);
244                 return true;
245         }
246
247         return false;
248 }
249
250 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
251 {
252         u64 kvm_gen, spte_gen, gen;
253
254         gen = kvm_vcpu_memslots(vcpu)->generation;
255         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256                 return false;
257
258         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
259         spte_gen = get_mmio_spte_generation(spte);
260
261         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262         return likely(kvm_gen == spte_gen);
263 }
264
265 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266                                   struct x86_exception *exception)
267 {
268         /* Check if guest physical address doesn't exceed guest maximum */
269         if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
270                 exception->error_code |= PFERR_RSVD_MASK;
271                 return UNMAPPED_GVA;
272         }
273
274         return gpa;
275 }
276
277 static int is_cpuid_PSE36(void)
278 {
279         return 1;
280 }
281
282 static int is_nx(struct kvm_vcpu *vcpu)
283 {
284         return vcpu->arch.efer & EFER_NX;
285 }
286
287 static gfn_t pse36_gfn_delta(u32 gpte)
288 {
289         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
290
291         return (gpte & PT32_DIR_PSE36_MASK) << shift;
292 }
293
294 #ifdef CONFIG_X86_64
295 static void __set_spte(u64 *sptep, u64 spte)
296 {
297         WRITE_ONCE(*sptep, spte);
298 }
299
300 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
301 {
302         WRITE_ONCE(*sptep, spte);
303 }
304
305 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
306 {
307         return xchg(sptep, spte);
308 }
309
310 static u64 __get_spte_lockless(u64 *sptep)
311 {
312         return READ_ONCE(*sptep);
313 }
314 #else
315 union split_spte {
316         struct {
317                 u32 spte_low;
318                 u32 spte_high;
319         };
320         u64 spte;
321 };
322
323 static void count_spte_clear(u64 *sptep, u64 spte)
324 {
325         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
326
327         if (is_shadow_present_pte(spte))
328                 return;
329
330         /* Ensure the spte is completely set before we increase the count */
331         smp_wmb();
332         sp->clear_spte_count++;
333 }
334
335 static void __set_spte(u64 *sptep, u64 spte)
336 {
337         union split_spte *ssptep, sspte;
338
339         ssptep = (union split_spte *)sptep;
340         sspte = (union split_spte)spte;
341
342         ssptep->spte_high = sspte.spte_high;
343
344         /*
345          * If we map the spte from nonpresent to present, We should store
346          * the high bits firstly, then set present bit, so cpu can not
347          * fetch this spte while we are setting the spte.
348          */
349         smp_wmb();
350
351         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352 }
353
354 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
355 {
356         union split_spte *ssptep, sspte;
357
358         ssptep = (union split_spte *)sptep;
359         sspte = (union split_spte)spte;
360
361         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
362
363         /*
364          * If we map the spte from present to nonpresent, we should clear
365          * present bit firstly to avoid vcpu fetch the old high bits.
366          */
367         smp_wmb();
368
369         ssptep->spte_high = sspte.spte_high;
370         count_spte_clear(sptep, spte);
371 }
372
373 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374 {
375         union split_spte *ssptep, sspte, orig;
376
377         ssptep = (union split_spte *)sptep;
378         sspte = (union split_spte)spte;
379
380         /* xchg acts as a barrier before the setting of the high bits */
381         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
382         orig.spte_high = ssptep->spte_high;
383         ssptep->spte_high = sspte.spte_high;
384         count_spte_clear(sptep, spte);
385
386         return orig.spte;
387 }
388
389 /*
390  * The idea using the light way get the spte on x86_32 guest is from
391  * gup_get_pte (mm/gup.c).
392  *
393  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394  * coalesces them and we are running out of the MMU lock.  Therefore
395  * we need to protect against in-progress updates of the spte.
396  *
397  * Reading the spte while an update is in progress may get the old value
398  * for the high part of the spte.  The race is fine for a present->non-present
399  * change (because the high part of the spte is ignored for non-present spte),
400  * but for a present->present change we must reread the spte.
401  *
402  * All such changes are done in two steps (present->non-present and
403  * non-present->present), hence it is enough to count the number of
404  * present->non-present updates: if it changed while reading the spte,
405  * we might have hit the race.  This is done using clear_spte_count.
406  */
407 static u64 __get_spte_lockless(u64 *sptep)
408 {
409         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
410         union split_spte spte, *orig = (union split_spte *)sptep;
411         int count;
412
413 retry:
414         count = sp->clear_spte_count;
415         smp_rmb();
416
417         spte.spte_low = orig->spte_low;
418         smp_rmb();
419
420         spte.spte_high = orig->spte_high;
421         smp_rmb();
422
423         if (unlikely(spte.spte_low != orig->spte_low ||
424               count != sp->clear_spte_count))
425                 goto retry;
426
427         return spte.spte;
428 }
429 #endif
430
431 static bool spte_has_volatile_bits(u64 spte)
432 {
433         if (!is_shadow_present_pte(spte))
434                 return false;
435
436         /*
437          * Always atomically update spte if it can be updated
438          * out of mmu-lock, it can ensure dirty bit is not lost,
439          * also, it can help us to get a stable is_writable_pte()
440          * to ensure tlb flush is not missed.
441          */
442         if (spte_can_locklessly_be_made_writable(spte) ||
443             is_access_track_spte(spte))
444                 return true;
445
446         if (spte_ad_enabled(spte)) {
447                 if ((spte & shadow_accessed_mask) == 0 ||
448                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449                         return true;
450         }
451
452         return false;
453 }
454
455 /* Rules for using mmu_spte_set:
456  * Set the sptep from nonpresent to present.
457  * Note: the sptep being assigned *must* be either not present
458  * or in a state where the hardware will not attempt to update
459  * the spte.
460  */
461 static void mmu_spte_set(u64 *sptep, u64 new_spte)
462 {
463         WARN_ON(is_shadow_present_pte(*sptep));
464         __set_spte(sptep, new_spte);
465 }
466
467 /*
468  * Update the SPTE (excluding the PFN), but do not track changes in its
469  * accessed/dirty status.
470  */
471 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
472 {
473         u64 old_spte = *sptep;
474
475         WARN_ON(!is_shadow_present_pte(new_spte));
476
477         if (!is_shadow_present_pte(old_spte)) {
478                 mmu_spte_set(sptep, new_spte);
479                 return old_spte;
480         }
481
482         if (!spte_has_volatile_bits(old_spte))
483                 __update_clear_spte_fast(sptep, new_spte);
484         else
485                 old_spte = __update_clear_spte_slow(sptep, new_spte);
486
487         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
488
489         return old_spte;
490 }
491
492 /* Rules for using mmu_spte_update:
493  * Update the state bits, it means the mapped pfn is not changed.
494  *
495  * Whenever we overwrite a writable spte with a read-only one we
496  * should flush remote TLBs. Otherwise rmap_write_protect
497  * will find a read-only spte, even though the writable spte
498  * might be cached on a CPU's TLB, the return value indicates this
499  * case.
500  *
501  * Returns true if the TLB needs to be flushed
502  */
503 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
504 {
505         bool flush = false;
506         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
507
508         if (!is_shadow_present_pte(old_spte))
509                 return false;
510
511         /*
512          * For the spte updated out of mmu-lock is safe, since
513          * we always atomically update it, see the comments in
514          * spte_has_volatile_bits().
515          */
516         if (spte_can_locklessly_be_made_writable(old_spte) &&
517               !is_writable_pte(new_spte))
518                 flush = true;
519
520         /*
521          * Flush TLB when accessed/dirty states are changed in the page tables,
522          * to guarantee consistency between TLB and page tables.
523          */
524
525         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526                 flush = true;
527                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
528         }
529
530         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531                 flush = true;
532                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
533         }
534
535         return flush;
536 }
537
538 /*
539  * Rules for using mmu_spte_clear_track_bits:
540  * It sets the sptep from present to nonpresent, and track the
541  * state bits, it is used to clear the last level sptep.
542  * Returns non-zero if the PTE was previously valid.
543  */
544 static int mmu_spte_clear_track_bits(u64 *sptep)
545 {
546         kvm_pfn_t pfn;
547         u64 old_spte = *sptep;
548
549         if (!spte_has_volatile_bits(old_spte))
550                 __update_clear_spte_fast(sptep, 0ull);
551         else
552                 old_spte = __update_clear_spte_slow(sptep, 0ull);
553
554         if (!is_shadow_present_pte(old_spte))
555                 return 0;
556
557         pfn = spte_to_pfn(old_spte);
558
559         /*
560          * KVM does not hold the refcount of the page used by
561          * kvm mmu, before reclaiming the page, we should
562          * unmap it from mmu first.
563          */
564         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
565
566         if (is_accessed_spte(old_spte))
567                 kvm_set_pfn_accessed(pfn);
568
569         if (is_dirty_spte(old_spte))
570                 kvm_set_pfn_dirty(pfn);
571
572         return 1;
573 }
574
575 /*
576  * Rules for using mmu_spte_clear_no_track:
577  * Directly clear spte without caring the state bits of sptep,
578  * it is used to set the upper level spte.
579  */
580 static void mmu_spte_clear_no_track(u64 *sptep)
581 {
582         __update_clear_spte_fast(sptep, 0ull);
583 }
584
585 static u64 mmu_spte_get_lockless(u64 *sptep)
586 {
587         return __get_spte_lockless(sptep);
588 }
589
590 /* Restore an acc-track PTE back to a regular PTE */
591 static u64 restore_acc_track_spte(u64 spte)
592 {
593         u64 new_spte = spte;
594         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
595                          & shadow_acc_track_saved_bits_mask;
596
597         WARN_ON_ONCE(spte_ad_enabled(spte));
598         WARN_ON_ONCE(!is_access_track_spte(spte));
599
600         new_spte &= ~shadow_acc_track_mask;
601         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
602                       shadow_acc_track_saved_bits_shift);
603         new_spte |= saved_bits;
604
605         return new_spte;
606 }
607
608 /* Returns the Accessed status of the PTE and resets it at the same time. */
609 static bool mmu_spte_age(u64 *sptep)
610 {
611         u64 spte = mmu_spte_get_lockless(sptep);
612
613         if (!is_accessed_spte(spte))
614                 return false;
615
616         if (spte_ad_enabled(spte)) {
617                 clear_bit((ffs(shadow_accessed_mask) - 1),
618                           (unsigned long *)sptep);
619         } else {
620                 /*
621                  * Capture the dirty status of the page, so that it doesn't get
622                  * lost when the SPTE is marked for access tracking.
623                  */
624                 if (is_writable_pte(spte))
625                         kvm_set_pfn_dirty(spte_to_pfn(spte));
626
627                 spte = mark_spte_for_access_track(spte);
628                 mmu_spte_update_no_track(sptep, spte);
629         }
630
631         return true;
632 }
633
634 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635 {
636         /*
637          * Prevent page table teardown by making any free-er wait during
638          * kvm_flush_remote_tlbs() IPI to all active vcpus.
639          */
640         local_irq_disable();
641
642         /*
643          * Make sure a following spte read is not reordered ahead of the write
644          * to vcpu->mode.
645          */
646         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
647 }
648
649 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650 {
651         /*
652          * Make sure the write to vcpu->mode is not reordered in front of
653          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
654          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655          */
656         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
657         local_irq_enable();
658 }
659
660 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
661 {
662         int r;
663
664         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
665         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
667         if (r)
668                 return r;
669         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670                                        PT64_ROOT_MAX_LEVEL);
671         if (r)
672                 return r;
673         if (maybe_indirect) {
674                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675                                                PT64_ROOT_MAX_LEVEL);
676                 if (r)
677                         return r;
678         }
679         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680                                           PT64_ROOT_MAX_LEVEL);
681 }
682
683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684 {
685         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
689 }
690
691 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
692 {
693         return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
694 }
695
696 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
697 {
698         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
699 }
700
701 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
702 {
703         if (!sp->role.direct)
704                 return sp->gfns[index];
705
706         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
707 }
708
709 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
710 {
711         if (!sp->role.direct) {
712                 sp->gfns[index] = gfn;
713                 return;
714         }
715
716         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717                 pr_err_ratelimited("gfn mismatch under direct page %llx "
718                                    "(expected %llx, got %llx)\n",
719                                    sp->gfn,
720                                    kvm_mmu_page_get_gfn(sp, index), gfn);
721 }
722
723 /*
724  * Return the pointer to the large page information for a given gfn,
725  * handling slots that are not large page aligned.
726  */
727 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728                                               struct kvm_memory_slot *slot,
729                                               int level)
730 {
731         unsigned long idx;
732
733         idx = gfn_to_index(gfn, slot->base_gfn, level);
734         return &slot->arch.lpage_info[level - 2][idx];
735 }
736
737 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738                                             gfn_t gfn, int count)
739 {
740         struct kvm_lpage_info *linfo;
741         int i;
742
743         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
744                 linfo = lpage_info_slot(gfn, slot, i);
745                 linfo->disallow_lpage += count;
746                 WARN_ON(linfo->disallow_lpage < 0);
747         }
748 }
749
750 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
751 {
752         update_gfn_disallow_lpage_count(slot, gfn, 1);
753 }
754
755 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
756 {
757         update_gfn_disallow_lpage_count(slot, gfn, -1);
758 }
759
760 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
761 {
762         struct kvm_memslots *slots;
763         struct kvm_memory_slot *slot;
764         gfn_t gfn;
765
766         kvm->arch.indirect_shadow_pages++;
767         gfn = sp->gfn;
768         slots = kvm_memslots_for_spte_role(kvm, sp->role);
769         slot = __gfn_to_memslot(slots, gfn);
770
771         /* the non-leaf shadow pages are keeping readonly. */
772         if (sp->role.level > PG_LEVEL_4K)
773                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
774                                                     KVM_PAGE_TRACK_WRITE);
775
776         kvm_mmu_gfn_disallow_lpage(slot, gfn);
777 }
778
779 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
780 {
781         if (sp->lpage_disallowed)
782                 return;
783
784         ++kvm->stat.nx_lpage_splits;
785         list_add_tail(&sp->lpage_disallowed_link,
786                       &kvm->arch.lpage_disallowed_mmu_pages);
787         sp->lpage_disallowed = true;
788 }
789
790 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
791 {
792         struct kvm_memslots *slots;
793         struct kvm_memory_slot *slot;
794         gfn_t gfn;
795
796         kvm->arch.indirect_shadow_pages--;
797         gfn = sp->gfn;
798         slots = kvm_memslots_for_spte_role(kvm, sp->role);
799         slot = __gfn_to_memslot(slots, gfn);
800         if (sp->role.level > PG_LEVEL_4K)
801                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802                                                        KVM_PAGE_TRACK_WRITE);
803
804         kvm_mmu_gfn_allow_lpage(slot, gfn);
805 }
806
807 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
808 {
809         --kvm->stat.nx_lpage_splits;
810         sp->lpage_disallowed = false;
811         list_del(&sp->lpage_disallowed_link);
812 }
813
814 static struct kvm_memory_slot *
815 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816                             bool no_dirty_log)
817 {
818         struct kvm_memory_slot *slot;
819
820         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
821         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822                 return NULL;
823         if (no_dirty_log && slot->dirty_bitmap)
824                 return NULL;
825
826         return slot;
827 }
828
829 /*
830  * About rmap_head encoding:
831  *
832  * If the bit zero of rmap_head->val is clear, then it points to the only spte
833  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
834  * pte_list_desc containing more mappings.
835  */
836
837 /*
838  * Returns the number of pointers in the rmap chain, not counting the new one.
839  */
840 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
841                         struct kvm_rmap_head *rmap_head)
842 {
843         struct pte_list_desc *desc;
844         int i, count = 0;
845
846         if (!rmap_head->val) {
847                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
848                 rmap_head->val = (unsigned long)spte;
849         } else if (!(rmap_head->val & 1)) {
850                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
851                 desc = mmu_alloc_pte_list_desc(vcpu);
852                 desc->sptes[0] = (u64 *)rmap_head->val;
853                 desc->sptes[1] = spte;
854                 rmap_head->val = (unsigned long)desc | 1;
855                 ++count;
856         } else {
857                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
858                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
859                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
860                         desc = desc->more;
861                         count += PTE_LIST_EXT;
862                 }
863                 if (desc->sptes[PTE_LIST_EXT-1]) {
864                         desc->more = mmu_alloc_pte_list_desc(vcpu);
865                         desc = desc->more;
866                 }
867                 for (i = 0; desc->sptes[i]; ++i)
868                         ++count;
869                 desc->sptes[i] = spte;
870         }
871         return count;
872 }
873
874 static void
875 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
876                            struct pte_list_desc *desc, int i,
877                            struct pte_list_desc *prev_desc)
878 {
879         int j;
880
881         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
882                 ;
883         desc->sptes[i] = desc->sptes[j];
884         desc->sptes[j] = NULL;
885         if (j != 0)
886                 return;
887         if (!prev_desc && !desc->more)
888                 rmap_head->val = 0;
889         else
890                 if (prev_desc)
891                         prev_desc->more = desc->more;
892                 else
893                         rmap_head->val = (unsigned long)desc->more | 1;
894         mmu_free_pte_list_desc(desc);
895 }
896
897 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
898 {
899         struct pte_list_desc *desc;
900         struct pte_list_desc *prev_desc;
901         int i;
902
903         if (!rmap_head->val) {
904                 pr_err("%s: %p 0->BUG\n", __func__, spte);
905                 BUG();
906         } else if (!(rmap_head->val & 1)) {
907                 rmap_printk("%s:  %p 1->0\n", __func__, spte);
908                 if ((u64 *)rmap_head->val != spte) {
909                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
910                         BUG();
911                 }
912                 rmap_head->val = 0;
913         } else {
914                 rmap_printk("%s:  %p many->many\n", __func__, spte);
915                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
916                 prev_desc = NULL;
917                 while (desc) {
918                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
919                                 if (desc->sptes[i] == spte) {
920                                         pte_list_desc_remove_entry(rmap_head,
921                                                         desc, i, prev_desc);
922                                         return;
923                                 }
924                         }
925                         prev_desc = desc;
926                         desc = desc->more;
927                 }
928                 pr_err("%s: %p many->many\n", __func__, spte);
929                 BUG();
930         }
931 }
932
933 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
934 {
935         mmu_spte_clear_track_bits(sptep);
936         __pte_list_remove(sptep, rmap_head);
937 }
938
939 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
940                                            struct kvm_memory_slot *slot)
941 {
942         unsigned long idx;
943
944         idx = gfn_to_index(gfn, slot->base_gfn, level);
945         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
946 }
947
948 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
949                                          struct kvm_mmu_page *sp)
950 {
951         struct kvm_memslots *slots;
952         struct kvm_memory_slot *slot;
953
954         slots = kvm_memslots_for_spte_role(kvm, sp->role);
955         slot = __gfn_to_memslot(slots, gfn);
956         return __gfn_to_rmap(gfn, sp->role.level, slot);
957 }
958
959 static bool rmap_can_add(struct kvm_vcpu *vcpu)
960 {
961         struct kvm_mmu_memory_cache *mc;
962
963         mc = &vcpu->arch.mmu_pte_list_desc_cache;
964         return kvm_mmu_memory_cache_nr_free_objects(mc);
965 }
966
967 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
968 {
969         struct kvm_mmu_page *sp;
970         struct kvm_rmap_head *rmap_head;
971
972         sp = sptep_to_sp(spte);
973         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
974         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
975         return pte_list_add(vcpu, spte, rmap_head);
976 }
977
978 static void rmap_remove(struct kvm *kvm, u64 *spte)
979 {
980         struct kvm_mmu_page *sp;
981         gfn_t gfn;
982         struct kvm_rmap_head *rmap_head;
983
984         sp = sptep_to_sp(spte);
985         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
986         rmap_head = gfn_to_rmap(kvm, gfn, sp);
987         __pte_list_remove(spte, rmap_head);
988 }
989
990 /*
991  * Used by the following functions to iterate through the sptes linked by a
992  * rmap.  All fields are private and not assumed to be used outside.
993  */
994 struct rmap_iterator {
995         /* private fields */
996         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
997         int pos;                        /* index of the sptep */
998 };
999
1000 /*
1001  * Iteration must be started by this function.  This should also be used after
1002  * removing/dropping sptes from the rmap link because in such cases the
1003  * information in the iterator may not be valid.
1004  *
1005  * Returns sptep if found, NULL otherwise.
1006  */
1007 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1008                            struct rmap_iterator *iter)
1009 {
1010         u64 *sptep;
1011
1012         if (!rmap_head->val)
1013                 return NULL;
1014
1015         if (!(rmap_head->val & 1)) {
1016                 iter->desc = NULL;
1017                 sptep = (u64 *)rmap_head->val;
1018                 goto out;
1019         }
1020
1021         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1022         iter->pos = 0;
1023         sptep = iter->desc->sptes[iter->pos];
1024 out:
1025         BUG_ON(!is_shadow_present_pte(*sptep));
1026         return sptep;
1027 }
1028
1029 /*
1030  * Must be used with a valid iterator: e.g. after rmap_get_first().
1031  *
1032  * Returns sptep if found, NULL otherwise.
1033  */
1034 static u64 *rmap_get_next(struct rmap_iterator *iter)
1035 {
1036         u64 *sptep;
1037
1038         if (iter->desc) {
1039                 if (iter->pos < PTE_LIST_EXT - 1) {
1040                         ++iter->pos;
1041                         sptep = iter->desc->sptes[iter->pos];
1042                         if (sptep)
1043                                 goto out;
1044                 }
1045
1046                 iter->desc = iter->desc->more;
1047
1048                 if (iter->desc) {
1049                         iter->pos = 0;
1050                         /* desc->sptes[0] cannot be NULL */
1051                         sptep = iter->desc->sptes[iter->pos];
1052                         goto out;
1053                 }
1054         }
1055
1056         return NULL;
1057 out:
1058         BUG_ON(!is_shadow_present_pte(*sptep));
1059         return sptep;
1060 }
1061
1062 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1063         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1064              _spte_; _spte_ = rmap_get_next(_iter_))
1065
1066 static void drop_spte(struct kvm *kvm, u64 *sptep)
1067 {
1068         if (mmu_spte_clear_track_bits(sptep))
1069                 rmap_remove(kvm, sptep);
1070 }
1071
1072
1073 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1074 {
1075         if (is_large_pte(*sptep)) {
1076                 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1077                 drop_spte(kvm, sptep);
1078                 --kvm->stat.lpages;
1079                 return true;
1080         }
1081
1082         return false;
1083 }
1084
1085 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1086 {
1087         if (__drop_large_spte(vcpu->kvm, sptep)) {
1088                 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1089
1090                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1091                         KVM_PAGES_PER_HPAGE(sp->role.level));
1092         }
1093 }
1094
1095 /*
1096  * Write-protect on the specified @sptep, @pt_protect indicates whether
1097  * spte write-protection is caused by protecting shadow page table.
1098  *
1099  * Note: write protection is difference between dirty logging and spte
1100  * protection:
1101  * - for dirty logging, the spte can be set to writable at anytime if
1102  *   its dirty bitmap is properly set.
1103  * - for spte protection, the spte can be writable only after unsync-ing
1104  *   shadow page.
1105  *
1106  * Return true if tlb need be flushed.
1107  */
1108 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1109 {
1110         u64 spte = *sptep;
1111
1112         if (!is_writable_pte(spte) &&
1113               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1114                 return false;
1115
1116         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1117
1118         if (pt_protect)
1119                 spte &= ~SPTE_MMU_WRITEABLE;
1120         spte = spte & ~PT_WRITABLE_MASK;
1121
1122         return mmu_spte_update(sptep, spte);
1123 }
1124
1125 static bool __rmap_write_protect(struct kvm *kvm,
1126                                  struct kvm_rmap_head *rmap_head,
1127                                  bool pt_protect)
1128 {
1129         u64 *sptep;
1130         struct rmap_iterator iter;
1131         bool flush = false;
1132
1133         for_each_rmap_spte(rmap_head, &iter, sptep)
1134                 flush |= spte_write_protect(sptep, pt_protect);
1135
1136         return flush;
1137 }
1138
1139 static bool spte_clear_dirty(u64 *sptep)
1140 {
1141         u64 spte = *sptep;
1142
1143         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1144
1145         MMU_WARN_ON(!spte_ad_enabled(spte));
1146         spte &= ~shadow_dirty_mask;
1147         return mmu_spte_update(sptep, spte);
1148 }
1149
1150 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1151 {
1152         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1153                                                (unsigned long *)sptep);
1154         if (was_writable && !spte_ad_enabled(*sptep))
1155                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1156
1157         return was_writable;
1158 }
1159
1160 /*
1161  * Gets the GFN ready for another round of dirty logging by clearing the
1162  *      - D bit on ad-enabled SPTEs, and
1163  *      - W bit on ad-disabled SPTEs.
1164  * Returns true iff any D or W bits were cleared.
1165  */
1166 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1167 {
1168         u64 *sptep;
1169         struct rmap_iterator iter;
1170         bool flush = false;
1171
1172         for_each_rmap_spte(rmap_head, &iter, sptep)
1173                 if (spte_ad_need_write_protect(*sptep))
1174                         flush |= spte_wrprot_for_clear_dirty(sptep);
1175                 else
1176                         flush |= spte_clear_dirty(sptep);
1177
1178         return flush;
1179 }
1180
1181 static bool spte_set_dirty(u64 *sptep)
1182 {
1183         u64 spte = *sptep;
1184
1185         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1186
1187         /*
1188          * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1189          * do not bother adding back write access to pages marked
1190          * SPTE_AD_WRPROT_ONLY_MASK.
1191          */
1192         spte |= shadow_dirty_mask;
1193
1194         return mmu_spte_update(sptep, spte);
1195 }
1196
1197 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1198 {
1199         u64 *sptep;
1200         struct rmap_iterator iter;
1201         bool flush = false;
1202
1203         for_each_rmap_spte(rmap_head, &iter, sptep)
1204                 if (spte_ad_enabled(*sptep))
1205                         flush |= spte_set_dirty(sptep);
1206
1207         return flush;
1208 }
1209
1210 /**
1211  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1212  * @kvm: kvm instance
1213  * @slot: slot to protect
1214  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1215  * @mask: indicates which pages we should protect
1216  *
1217  * Used when we do not need to care about huge page mappings: e.g. during dirty
1218  * logging we do not have any such mappings.
1219  */
1220 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1221                                      struct kvm_memory_slot *slot,
1222                                      gfn_t gfn_offset, unsigned long mask)
1223 {
1224         struct kvm_rmap_head *rmap_head;
1225
1226         while (mask) {
1227                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1228                                           PG_LEVEL_4K, slot);
1229                 __rmap_write_protect(kvm, rmap_head, false);
1230
1231                 /* clear the first set bit */
1232                 mask &= mask - 1;
1233         }
1234 }
1235
1236 /**
1237  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1238  * protect the page if the D-bit isn't supported.
1239  * @kvm: kvm instance
1240  * @slot: slot to clear D-bit
1241  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1242  * @mask: indicates which pages we should clear D-bit
1243  *
1244  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1245  */
1246 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1247                                      struct kvm_memory_slot *slot,
1248                                      gfn_t gfn_offset, unsigned long mask)
1249 {
1250         struct kvm_rmap_head *rmap_head;
1251
1252         while (mask) {
1253                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1254                                           PG_LEVEL_4K, slot);
1255                 __rmap_clear_dirty(kvm, rmap_head);
1256
1257                 /* clear the first set bit */
1258                 mask &= mask - 1;
1259         }
1260 }
1261 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1262
1263 /**
1264  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1265  * PT level pages.
1266  *
1267  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1268  * enable dirty logging for them.
1269  *
1270  * Used when we do not need to care about huge page mappings: e.g. during dirty
1271  * logging we do not have any such mappings.
1272  */
1273 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1274                                 struct kvm_memory_slot *slot,
1275                                 gfn_t gfn_offset, unsigned long mask)
1276 {
1277         if (kvm_x86_ops.enable_log_dirty_pt_masked)
1278                 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1279                                 mask);
1280         else
1281                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1282 }
1283
1284 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1285                                     struct kvm_memory_slot *slot, u64 gfn)
1286 {
1287         struct kvm_rmap_head *rmap_head;
1288         int i;
1289         bool write_protected = false;
1290
1291         for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1292                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1293                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1294         }
1295
1296         return write_protected;
1297 }
1298
1299 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1300 {
1301         struct kvm_memory_slot *slot;
1302
1303         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1304         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1305 }
1306
1307 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1308 {
1309         u64 *sptep;
1310         struct rmap_iterator iter;
1311         bool flush = false;
1312
1313         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1314                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1315
1316                 pte_list_remove(rmap_head, sptep);
1317                 flush = true;
1318         }
1319
1320         return flush;
1321 }
1322
1323 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1324                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1325                            unsigned long data)
1326 {
1327         return kvm_zap_rmapp(kvm, rmap_head);
1328 }
1329
1330 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1331                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1332                              unsigned long data)
1333 {
1334         u64 *sptep;
1335         struct rmap_iterator iter;
1336         int need_flush = 0;
1337         u64 new_spte;
1338         pte_t *ptep = (pte_t *)data;
1339         kvm_pfn_t new_pfn;
1340
1341         WARN_ON(pte_huge(*ptep));
1342         new_pfn = pte_pfn(*ptep);
1343
1344 restart:
1345         for_each_rmap_spte(rmap_head, &iter, sptep) {
1346                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1347                             sptep, *sptep, gfn, level);
1348
1349                 need_flush = 1;
1350
1351                 if (pte_write(*ptep)) {
1352                         pte_list_remove(rmap_head, sptep);
1353                         goto restart;
1354                 } else {
1355                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1356                                         *sptep, new_pfn);
1357
1358                         mmu_spte_clear_track_bits(sptep);
1359                         mmu_spte_set(sptep, new_spte);
1360                 }
1361         }
1362
1363         if (need_flush && kvm_available_flush_tlb_with_range()) {
1364                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1365                 return 0;
1366         }
1367
1368         return need_flush;
1369 }
1370
1371 struct slot_rmap_walk_iterator {
1372         /* input fields. */
1373         struct kvm_memory_slot *slot;
1374         gfn_t start_gfn;
1375         gfn_t end_gfn;
1376         int start_level;
1377         int end_level;
1378
1379         /* output fields. */
1380         gfn_t gfn;
1381         struct kvm_rmap_head *rmap;
1382         int level;
1383
1384         /* private field. */
1385         struct kvm_rmap_head *end_rmap;
1386 };
1387
1388 static void
1389 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1390 {
1391         iterator->level = level;
1392         iterator->gfn = iterator->start_gfn;
1393         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1394         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1395                                            iterator->slot);
1396 }
1397
1398 static void
1399 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1400                     struct kvm_memory_slot *slot, int start_level,
1401                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1402 {
1403         iterator->slot = slot;
1404         iterator->start_level = start_level;
1405         iterator->end_level = end_level;
1406         iterator->start_gfn = start_gfn;
1407         iterator->end_gfn = end_gfn;
1408
1409         rmap_walk_init_level(iterator, iterator->start_level);
1410 }
1411
1412 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1413 {
1414         return !!iterator->rmap;
1415 }
1416
1417 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1418 {
1419         if (++iterator->rmap <= iterator->end_rmap) {
1420                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1421                 return;
1422         }
1423
1424         if (++iterator->level > iterator->end_level) {
1425                 iterator->rmap = NULL;
1426                 return;
1427         }
1428
1429         rmap_walk_init_level(iterator, iterator->level);
1430 }
1431
1432 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1433            _start_gfn, _end_gfn, _iter_)                                \
1434         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1435                                  _end_level_, _start_gfn, _end_gfn);    \
1436              slot_rmap_walk_okay(_iter_);                               \
1437              slot_rmap_walk_next(_iter_))
1438
1439 static int kvm_handle_hva_range(struct kvm *kvm,
1440                                 unsigned long start,
1441                                 unsigned long end,
1442                                 unsigned long data,
1443                                 int (*handler)(struct kvm *kvm,
1444                                                struct kvm_rmap_head *rmap_head,
1445                                                struct kvm_memory_slot *slot,
1446                                                gfn_t gfn,
1447                                                int level,
1448                                                unsigned long data))
1449 {
1450         struct kvm_memslots *slots;
1451         struct kvm_memory_slot *memslot;
1452         struct slot_rmap_walk_iterator iterator;
1453         int ret = 0;
1454         int i;
1455
1456         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1457                 slots = __kvm_memslots(kvm, i);
1458                 kvm_for_each_memslot(memslot, slots) {
1459                         unsigned long hva_start, hva_end;
1460                         gfn_t gfn_start, gfn_end;
1461
1462                         hva_start = max(start, memslot->userspace_addr);
1463                         hva_end = min(end, memslot->userspace_addr +
1464                                       (memslot->npages << PAGE_SHIFT));
1465                         if (hva_start >= hva_end)
1466                                 continue;
1467                         /*
1468                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1469                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1470                          */
1471                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1472                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1473
1474                         for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1475                                                  KVM_MAX_HUGEPAGE_LEVEL,
1476                                                  gfn_start, gfn_end - 1,
1477                                                  &iterator)
1478                                 ret |= handler(kvm, iterator.rmap, memslot,
1479                                                iterator.gfn, iterator.level, data);
1480                 }
1481         }
1482
1483         return ret;
1484 }
1485
1486 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1487                           unsigned long data,
1488                           int (*handler)(struct kvm *kvm,
1489                                          struct kvm_rmap_head *rmap_head,
1490                                          struct kvm_memory_slot *slot,
1491                                          gfn_t gfn, int level,
1492                                          unsigned long data))
1493 {
1494         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1495 }
1496
1497 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1498                         unsigned flags)
1499 {
1500         int r;
1501
1502         r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1503
1504         if (kvm->arch.tdp_mmu_enabled)
1505                 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1506
1507         return r;
1508 }
1509
1510 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1511 {
1512         return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1513 }
1514
1515 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1516                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1517                          unsigned long data)
1518 {
1519         u64 *sptep;
1520         struct rmap_iterator iter;
1521         int young = 0;
1522
1523         for_each_rmap_spte(rmap_head, &iter, sptep)
1524                 young |= mmu_spte_age(sptep);
1525
1526         trace_kvm_age_page(gfn, level, slot, young);
1527         return young;
1528 }
1529
1530 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1531                               struct kvm_memory_slot *slot, gfn_t gfn,
1532                               int level, unsigned long data)
1533 {
1534         u64 *sptep;
1535         struct rmap_iterator iter;
1536
1537         for_each_rmap_spte(rmap_head, &iter, sptep)
1538                 if (is_accessed_spte(*sptep))
1539                         return 1;
1540         return 0;
1541 }
1542
1543 #define RMAP_RECYCLE_THRESHOLD 1000
1544
1545 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1546 {
1547         struct kvm_rmap_head *rmap_head;
1548         struct kvm_mmu_page *sp;
1549
1550         sp = sptep_to_sp(spte);
1551
1552         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1553
1554         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1555         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1556                         KVM_PAGES_PER_HPAGE(sp->role.level));
1557 }
1558
1559 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1560 {
1561         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1562 }
1563
1564 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1565 {
1566         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1567 }
1568
1569 #ifdef MMU_DEBUG
1570 static int is_empty_shadow_page(u64 *spt)
1571 {
1572         u64 *pos;
1573         u64 *end;
1574
1575         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1576                 if (is_shadow_present_pte(*pos)) {
1577                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1578                                pos, *pos);
1579                         return 0;
1580                 }
1581         return 1;
1582 }
1583 #endif
1584
1585 /*
1586  * This value is the sum of all of the kvm instances's
1587  * kvm->arch.n_used_mmu_pages values.  We need a global,
1588  * aggregate version in order to make the slab shrinker
1589  * faster
1590  */
1591 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1592 {
1593         kvm->arch.n_used_mmu_pages += nr;
1594         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1595 }
1596
1597 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1598 {
1599         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1600         hlist_del(&sp->hash_link);
1601         list_del(&sp->link);
1602         free_page((unsigned long)sp->spt);
1603         if (!sp->role.direct)
1604                 free_page((unsigned long)sp->gfns);
1605         kmem_cache_free(mmu_page_header_cache, sp);
1606 }
1607
1608 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1609 {
1610         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1611 }
1612
1613 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1614                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1615 {
1616         if (!parent_pte)
1617                 return;
1618
1619         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1620 }
1621
1622 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1623                                        u64 *parent_pte)
1624 {
1625         __pte_list_remove(parent_pte, &sp->parent_ptes);
1626 }
1627
1628 static void drop_parent_pte(struct kvm_mmu_page *sp,
1629                             u64 *parent_pte)
1630 {
1631         mmu_page_remove_parent_pte(sp, parent_pte);
1632         mmu_spte_clear_no_track(parent_pte);
1633 }
1634
1635 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1636 {
1637         struct kvm_mmu_page *sp;
1638
1639         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1640         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1641         if (!direct)
1642                 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1643         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1644
1645         /*
1646          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1647          * depends on valid pages being added to the head of the list.  See
1648          * comments in kvm_zap_obsolete_pages().
1649          */
1650         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1651         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1652         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1653         return sp;
1654 }
1655
1656 static void mark_unsync(u64 *spte);
1657 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1658 {
1659         u64 *sptep;
1660         struct rmap_iterator iter;
1661
1662         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1663                 mark_unsync(sptep);
1664         }
1665 }
1666
1667 static void mark_unsync(u64 *spte)
1668 {
1669         struct kvm_mmu_page *sp;
1670         unsigned int index;
1671
1672         sp = sptep_to_sp(spte);
1673         index = spte - sp->spt;
1674         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1675                 return;
1676         if (sp->unsync_children++)
1677                 return;
1678         kvm_mmu_mark_parents_unsync(sp);
1679 }
1680
1681 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1682                                struct kvm_mmu_page *sp)
1683 {
1684         return 0;
1685 }
1686
1687 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1688                                  struct kvm_mmu_page *sp, u64 *spte,
1689                                  const void *pte)
1690 {
1691         WARN_ON(1);
1692 }
1693
1694 #define KVM_PAGE_ARRAY_NR 16
1695
1696 struct kvm_mmu_pages {
1697         struct mmu_page_and_offset {
1698                 struct kvm_mmu_page *sp;
1699                 unsigned int idx;
1700         } page[KVM_PAGE_ARRAY_NR];
1701         unsigned int nr;
1702 };
1703
1704 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1705                          int idx)
1706 {
1707         int i;
1708
1709         if (sp->unsync)
1710                 for (i=0; i < pvec->nr; i++)
1711                         if (pvec->page[i].sp == sp)
1712                                 return 0;
1713
1714         pvec->page[pvec->nr].sp = sp;
1715         pvec->page[pvec->nr].idx = idx;
1716         pvec->nr++;
1717         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1718 }
1719
1720 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1721 {
1722         --sp->unsync_children;
1723         WARN_ON((int)sp->unsync_children < 0);
1724         __clear_bit(idx, sp->unsync_child_bitmap);
1725 }
1726
1727 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1728                            struct kvm_mmu_pages *pvec)
1729 {
1730         int i, ret, nr_unsync_leaf = 0;
1731
1732         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1733                 struct kvm_mmu_page *child;
1734                 u64 ent = sp->spt[i];
1735
1736                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1737                         clear_unsync_child_bit(sp, i);
1738                         continue;
1739                 }
1740
1741                 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1742
1743                 if (child->unsync_children) {
1744                         if (mmu_pages_add(pvec, child, i))
1745                                 return -ENOSPC;
1746
1747                         ret = __mmu_unsync_walk(child, pvec);
1748                         if (!ret) {
1749                                 clear_unsync_child_bit(sp, i);
1750                                 continue;
1751                         } else if (ret > 0) {
1752                                 nr_unsync_leaf += ret;
1753                         } else
1754                                 return ret;
1755                 } else if (child->unsync) {
1756                         nr_unsync_leaf++;
1757                         if (mmu_pages_add(pvec, child, i))
1758                                 return -ENOSPC;
1759                 } else
1760                         clear_unsync_child_bit(sp, i);
1761         }
1762
1763         return nr_unsync_leaf;
1764 }
1765
1766 #define INVALID_INDEX (-1)
1767
1768 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1769                            struct kvm_mmu_pages *pvec)
1770 {
1771         pvec->nr = 0;
1772         if (!sp->unsync_children)
1773                 return 0;
1774
1775         mmu_pages_add(pvec, sp, INVALID_INDEX);
1776         return __mmu_unsync_walk(sp, pvec);
1777 }
1778
1779 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1780 {
1781         WARN_ON(!sp->unsync);
1782         trace_kvm_mmu_sync_page(sp);
1783         sp->unsync = 0;
1784         --kvm->stat.mmu_unsync;
1785 }
1786
1787 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1788                                      struct list_head *invalid_list);
1789 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1790                                     struct list_head *invalid_list);
1791
1792 #define for_each_valid_sp(_kvm, _sp, _list)                             \
1793         hlist_for_each_entry(_sp, _list, hash_link)                     \
1794                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
1795                 } else
1796
1797 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1798         for_each_valid_sp(_kvm, _sp,                                    \
1799           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
1800                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1801
1802 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1803 {
1804         return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1805 }
1806
1807 /* @sp->gfn should be write-protected at the call site */
1808 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1809                             struct list_head *invalid_list)
1810 {
1811         if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1812             vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1813                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1814                 return false;
1815         }
1816
1817         return true;
1818 }
1819
1820 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1821                                         struct list_head *invalid_list,
1822                                         bool remote_flush)
1823 {
1824         if (!remote_flush && list_empty(invalid_list))
1825                 return false;
1826
1827         if (!list_empty(invalid_list))
1828                 kvm_mmu_commit_zap_page(kvm, invalid_list);
1829         else
1830                 kvm_flush_remote_tlbs(kvm);
1831         return true;
1832 }
1833
1834 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1835                                  struct list_head *invalid_list,
1836                                  bool remote_flush, bool local_flush)
1837 {
1838         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1839                 return;
1840
1841         if (local_flush)
1842                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1843 }
1844
1845 #ifdef CONFIG_KVM_MMU_AUDIT
1846 #include "mmu_audit.c"
1847 #else
1848 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1849 static void mmu_audit_disable(void) { }
1850 #endif
1851
1852 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1853 {
1854         return sp->role.invalid ||
1855                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1856 }
1857
1858 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1859                          struct list_head *invalid_list)
1860 {
1861         kvm_unlink_unsync_page(vcpu->kvm, sp);
1862         return __kvm_sync_page(vcpu, sp, invalid_list);
1863 }
1864
1865 /* @gfn should be write-protected at the call site */
1866 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1867                            struct list_head *invalid_list)
1868 {
1869         struct kvm_mmu_page *s;
1870         bool ret = false;
1871
1872         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1873                 if (!s->unsync)
1874                         continue;
1875
1876                 WARN_ON(s->role.level != PG_LEVEL_4K);
1877                 ret |= kvm_sync_page(vcpu, s, invalid_list);
1878         }
1879
1880         return ret;
1881 }
1882
1883 struct mmu_page_path {
1884         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1885         unsigned int idx[PT64_ROOT_MAX_LEVEL];
1886 };
1887
1888 #define for_each_sp(pvec, sp, parents, i)                       \
1889                 for (i = mmu_pages_first(&pvec, &parents);      \
1890                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1891                         i = mmu_pages_next(&pvec, &parents, i))
1892
1893 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1894                           struct mmu_page_path *parents,
1895                           int i)
1896 {
1897         int n;
1898
1899         for (n = i+1; n < pvec->nr; n++) {
1900                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1901                 unsigned idx = pvec->page[n].idx;
1902                 int level = sp->role.level;
1903
1904                 parents->idx[level-1] = idx;
1905                 if (level == PG_LEVEL_4K)
1906                         break;
1907
1908                 parents->parent[level-2] = sp;
1909         }
1910
1911         return n;
1912 }
1913
1914 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1915                            struct mmu_page_path *parents)
1916 {
1917         struct kvm_mmu_page *sp;
1918         int level;
1919
1920         if (pvec->nr == 0)
1921                 return 0;
1922
1923         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1924
1925         sp = pvec->page[0].sp;
1926         level = sp->role.level;
1927         WARN_ON(level == PG_LEVEL_4K);
1928
1929         parents->parent[level-2] = sp;
1930
1931         /* Also set up a sentinel.  Further entries in pvec are all
1932          * children of sp, so this element is never overwritten.
1933          */
1934         parents->parent[level-1] = NULL;
1935         return mmu_pages_next(pvec, parents, 0);
1936 }
1937
1938 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1939 {
1940         struct kvm_mmu_page *sp;
1941         unsigned int level = 0;
1942
1943         do {
1944                 unsigned int idx = parents->idx[level];
1945                 sp = parents->parent[level];
1946                 if (!sp)
1947                         return;
1948
1949                 WARN_ON(idx == INVALID_INDEX);
1950                 clear_unsync_child_bit(sp, idx);
1951                 level++;
1952         } while (!sp->unsync_children);
1953 }
1954
1955 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1956                               struct kvm_mmu_page *parent)
1957 {
1958         int i;
1959         struct kvm_mmu_page *sp;
1960         struct mmu_page_path parents;
1961         struct kvm_mmu_pages pages;
1962         LIST_HEAD(invalid_list);
1963         bool flush = false;
1964
1965         while (mmu_unsync_walk(parent, &pages)) {
1966                 bool protected = false;
1967
1968                 for_each_sp(pages, sp, parents, i)
1969                         protected |= rmap_write_protect(vcpu, sp->gfn);
1970
1971                 if (protected) {
1972                         kvm_flush_remote_tlbs(vcpu->kvm);
1973                         flush = false;
1974                 }
1975
1976                 for_each_sp(pages, sp, parents, i) {
1977                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1978                         mmu_pages_clear_parents(&parents);
1979                 }
1980                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
1981                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1982                         cond_resched_lock(&vcpu->kvm->mmu_lock);
1983                         flush = false;
1984                 }
1985         }
1986
1987         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1988 }
1989
1990 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1991 {
1992         atomic_set(&sp->write_flooding_count,  0);
1993 }
1994
1995 static void clear_sp_write_flooding_count(u64 *spte)
1996 {
1997         __clear_sp_write_flooding_count(sptep_to_sp(spte));
1998 }
1999
2000 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2001                                              gfn_t gfn,
2002                                              gva_t gaddr,
2003                                              unsigned level,
2004                                              int direct,
2005                                              unsigned int access)
2006 {
2007         bool direct_mmu = vcpu->arch.mmu->direct_map;
2008         union kvm_mmu_page_role role;
2009         struct hlist_head *sp_list;
2010         unsigned quadrant;
2011         struct kvm_mmu_page *sp;
2012         bool need_sync = false;
2013         bool flush = false;
2014         int collisions = 0;
2015         LIST_HEAD(invalid_list);
2016
2017         role = vcpu->arch.mmu->mmu_role.base;
2018         role.level = level;
2019         role.direct = direct;
2020         if (role.direct)
2021                 role.gpte_is_8_bytes = true;
2022         role.access = access;
2023         if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2024                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2025                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2026                 role.quadrant = quadrant;
2027         }
2028
2029         sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2030         for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2031                 if (sp->gfn != gfn) {
2032                         collisions++;
2033                         continue;
2034                 }
2035
2036                 if (!need_sync && sp->unsync)
2037                         need_sync = true;
2038
2039                 if (sp->role.word != role.word)
2040                         continue;
2041
2042                 if (direct_mmu)
2043                         goto trace_get_page;
2044
2045                 if (sp->unsync) {
2046                         /* The page is good, but __kvm_sync_page might still end
2047                          * up zapping it.  If so, break in order to rebuild it.
2048                          */
2049                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2050                                 break;
2051
2052                         WARN_ON(!list_empty(&invalid_list));
2053                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2054                 }
2055
2056                 if (sp->unsync_children)
2057                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2058
2059                 __clear_sp_write_flooding_count(sp);
2060
2061 trace_get_page:
2062                 trace_kvm_mmu_get_page(sp, false);
2063                 goto out;
2064         }
2065
2066         ++vcpu->kvm->stat.mmu_cache_miss;
2067
2068         sp = kvm_mmu_alloc_page(vcpu, direct);
2069
2070         sp->gfn = gfn;
2071         sp->role = role;
2072         hlist_add_head(&sp->hash_link, sp_list);
2073         if (!direct) {
2074                 /*
2075                  * we should do write protection before syncing pages
2076                  * otherwise the content of the synced shadow page may
2077                  * be inconsistent with guest page table.
2078                  */
2079                 account_shadowed(vcpu->kvm, sp);
2080                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2081                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2082
2083                 if (level > PG_LEVEL_4K && need_sync)
2084                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2085         }
2086         trace_kvm_mmu_get_page(sp, true);
2087
2088         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2089 out:
2090         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2091                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2092         return sp;
2093 }
2094
2095 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2096                                         struct kvm_vcpu *vcpu, hpa_t root,
2097                                         u64 addr)
2098 {
2099         iterator->addr = addr;
2100         iterator->shadow_addr = root;
2101         iterator->level = vcpu->arch.mmu->shadow_root_level;
2102
2103         if (iterator->level == PT64_ROOT_4LEVEL &&
2104             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2105             !vcpu->arch.mmu->direct_map)
2106                 --iterator->level;
2107
2108         if (iterator->level == PT32E_ROOT_LEVEL) {
2109                 /*
2110                  * prev_root is currently only used for 64-bit hosts. So only
2111                  * the active root_hpa is valid here.
2112                  */
2113                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2114
2115                 iterator->shadow_addr
2116                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2117                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2118                 --iterator->level;
2119                 if (!iterator->shadow_addr)
2120                         iterator->level = 0;
2121         }
2122 }
2123
2124 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2125                              struct kvm_vcpu *vcpu, u64 addr)
2126 {
2127         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2128                                     addr);
2129 }
2130
2131 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2132 {
2133         if (iterator->level < PG_LEVEL_4K)
2134                 return false;
2135
2136         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2137         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2138         return true;
2139 }
2140
2141 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2142                                u64 spte)
2143 {
2144         if (is_last_spte(spte, iterator->level)) {
2145                 iterator->level = 0;
2146                 return;
2147         }
2148
2149         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2150         --iterator->level;
2151 }
2152
2153 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2154 {
2155         __shadow_walk_next(iterator, *iterator->sptep);
2156 }
2157
2158 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2159                              struct kvm_mmu_page *sp)
2160 {
2161         u64 spte;
2162
2163         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2164
2165         spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2166
2167         mmu_spte_set(sptep, spte);
2168
2169         mmu_page_add_parent_pte(vcpu, sp, sptep);
2170
2171         if (sp->unsync_children || sp->unsync)
2172                 mark_unsync(sptep);
2173 }
2174
2175 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2176                                    unsigned direct_access)
2177 {
2178         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2179                 struct kvm_mmu_page *child;
2180
2181                 /*
2182                  * For the direct sp, if the guest pte's dirty bit
2183                  * changed form clean to dirty, it will corrupt the
2184                  * sp's access: allow writable in the read-only sp,
2185                  * so we should update the spte at this point to get
2186                  * a new sp with the correct access.
2187                  */
2188                 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2189                 if (child->role.access == direct_access)
2190                         return;
2191
2192                 drop_parent_pte(child, sptep);
2193                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2194         }
2195 }
2196
2197 /* Returns the number of zapped non-leaf child shadow pages. */
2198 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2199                             u64 *spte, struct list_head *invalid_list)
2200 {
2201         u64 pte;
2202         struct kvm_mmu_page *child;
2203
2204         pte = *spte;
2205         if (is_shadow_present_pte(pte)) {
2206                 if (is_last_spte(pte, sp->role.level)) {
2207                         drop_spte(kvm, spte);
2208                         if (is_large_pte(pte))
2209                                 --kvm->stat.lpages;
2210                 } else {
2211                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2212                         drop_parent_pte(child, spte);
2213
2214                         /*
2215                          * Recursively zap nested TDP SPs, parentless SPs are
2216                          * unlikely to be used again in the near future.  This
2217                          * avoids retaining a large number of stale nested SPs.
2218                          */
2219                         if (tdp_enabled && invalid_list &&
2220                             child->role.guest_mode && !child->parent_ptes.val)
2221                                 return kvm_mmu_prepare_zap_page(kvm, child,
2222                                                                 invalid_list);
2223                 }
2224         } else if (is_mmio_spte(pte)) {
2225                 mmu_spte_clear_no_track(spte);
2226         }
2227         return 0;
2228 }
2229
2230 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2231                                         struct kvm_mmu_page *sp,
2232                                         struct list_head *invalid_list)
2233 {
2234         int zapped = 0;
2235         unsigned i;
2236
2237         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2238                 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2239
2240         return zapped;
2241 }
2242
2243 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2244 {
2245         u64 *sptep;
2246         struct rmap_iterator iter;
2247
2248         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2249                 drop_parent_pte(sp, sptep);
2250 }
2251
2252 static int mmu_zap_unsync_children(struct kvm *kvm,
2253                                    struct kvm_mmu_page *parent,
2254                                    struct list_head *invalid_list)
2255 {
2256         int i, zapped = 0;
2257         struct mmu_page_path parents;
2258         struct kvm_mmu_pages pages;
2259
2260         if (parent->role.level == PG_LEVEL_4K)
2261                 return 0;
2262
2263         while (mmu_unsync_walk(parent, &pages)) {
2264                 struct kvm_mmu_page *sp;
2265
2266                 for_each_sp(pages, sp, parents, i) {
2267                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2268                         mmu_pages_clear_parents(&parents);
2269                         zapped++;
2270                 }
2271         }
2272
2273         return zapped;
2274 }
2275
2276 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2277                                        struct kvm_mmu_page *sp,
2278                                        struct list_head *invalid_list,
2279                                        int *nr_zapped)
2280 {
2281         bool list_unstable;
2282
2283         trace_kvm_mmu_prepare_zap_page(sp);
2284         ++kvm->stat.mmu_shadow_zapped;
2285         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2286         *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2287         kvm_mmu_unlink_parents(kvm, sp);
2288
2289         /* Zapping children means active_mmu_pages has become unstable. */
2290         list_unstable = *nr_zapped;
2291
2292         if (!sp->role.invalid && !sp->role.direct)
2293                 unaccount_shadowed(kvm, sp);
2294
2295         if (sp->unsync)
2296                 kvm_unlink_unsync_page(kvm, sp);
2297         if (!sp->root_count) {
2298                 /* Count self */
2299                 (*nr_zapped)++;
2300
2301                 /*
2302                  * Already invalid pages (previously active roots) are not on
2303                  * the active page list.  See list_del() in the "else" case of
2304                  * !sp->root_count.
2305                  */
2306                 if (sp->role.invalid)
2307                         list_add(&sp->link, invalid_list);
2308                 else
2309                         list_move(&sp->link, invalid_list);
2310                 kvm_mod_used_mmu_pages(kvm, -1);
2311         } else {
2312                 /*
2313                  * Remove the active root from the active page list, the root
2314                  * will be explicitly freed when the root_count hits zero.
2315                  */
2316                 list_del(&sp->link);
2317
2318                 /*
2319                  * Obsolete pages cannot be used on any vCPUs, see the comment
2320                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2321                  * treats invalid shadow pages as being obsolete.
2322                  */
2323                 if (!is_obsolete_sp(kvm, sp))
2324                         kvm_reload_remote_mmus(kvm);
2325         }
2326
2327         if (sp->lpage_disallowed)
2328                 unaccount_huge_nx_page(kvm, sp);
2329
2330         sp->role.invalid = 1;
2331         return list_unstable;
2332 }
2333
2334 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2335                                      struct list_head *invalid_list)
2336 {
2337         int nr_zapped;
2338
2339         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2340         return nr_zapped;
2341 }
2342
2343 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2344                                     struct list_head *invalid_list)
2345 {
2346         struct kvm_mmu_page *sp, *nsp;
2347
2348         if (list_empty(invalid_list))
2349                 return;
2350
2351         /*
2352          * We need to make sure everyone sees our modifications to
2353          * the page tables and see changes to vcpu->mode here. The barrier
2354          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2355          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2356          *
2357          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2358          * guest mode and/or lockless shadow page table walks.
2359          */
2360         kvm_flush_remote_tlbs(kvm);
2361
2362         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2363                 WARN_ON(!sp->role.invalid || sp->root_count);
2364                 kvm_mmu_free_page(sp);
2365         }
2366 }
2367
2368 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2369                                                   unsigned long nr_to_zap)
2370 {
2371         unsigned long total_zapped = 0;
2372         struct kvm_mmu_page *sp, *tmp;
2373         LIST_HEAD(invalid_list);
2374         bool unstable;
2375         int nr_zapped;
2376
2377         if (list_empty(&kvm->arch.active_mmu_pages))
2378                 return 0;
2379
2380 restart:
2381         list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2382                 /*
2383                  * Don't zap active root pages, the page itself can't be freed
2384                  * and zapping it will just force vCPUs to realloc and reload.
2385                  */
2386                 if (sp->root_count)
2387                         continue;
2388
2389                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2390                                                       &nr_zapped);
2391                 total_zapped += nr_zapped;
2392                 if (total_zapped >= nr_to_zap)
2393                         break;
2394
2395                 if (unstable)
2396                         goto restart;
2397         }
2398
2399         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2400
2401         kvm->stat.mmu_recycled += total_zapped;
2402         return total_zapped;
2403 }
2404
2405 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2406 {
2407         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2408                 return kvm->arch.n_max_mmu_pages -
2409                         kvm->arch.n_used_mmu_pages;
2410
2411         return 0;
2412 }
2413
2414 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2415 {
2416         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2417
2418         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2419                 return 0;
2420
2421         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2422
2423         if (!kvm_mmu_available_pages(vcpu->kvm))
2424                 return -ENOSPC;
2425         return 0;
2426 }
2427
2428 /*
2429  * Changing the number of mmu pages allocated to the vm
2430  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2431  */
2432 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2433 {
2434         spin_lock(&kvm->mmu_lock);
2435
2436         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2437                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2438                                                   goal_nr_mmu_pages);
2439
2440                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2441         }
2442
2443         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2444
2445         spin_unlock(&kvm->mmu_lock);
2446 }
2447
2448 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2449 {
2450         struct kvm_mmu_page *sp;
2451         LIST_HEAD(invalid_list);
2452         int r;
2453
2454         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2455         r = 0;
2456         spin_lock(&kvm->mmu_lock);
2457         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2458                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2459                          sp->role.word);
2460                 r = 1;
2461                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2462         }
2463         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2464         spin_unlock(&kvm->mmu_lock);
2465
2466         return r;
2467 }
2468 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2469
2470 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2471 {
2472         trace_kvm_mmu_unsync_page(sp);
2473         ++vcpu->kvm->stat.mmu_unsync;
2474         sp->unsync = 1;
2475
2476         kvm_mmu_mark_parents_unsync(sp);
2477 }
2478
2479 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2480                             bool can_unsync)
2481 {
2482         struct kvm_mmu_page *sp;
2483
2484         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2485                 return true;
2486
2487         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2488                 if (!can_unsync)
2489                         return true;
2490
2491                 if (sp->unsync)
2492                         continue;
2493
2494                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2495                 kvm_unsync_page(vcpu, sp);
2496         }
2497
2498         /*
2499          * We need to ensure that the marking of unsync pages is visible
2500          * before the SPTE is updated to allow writes because
2501          * kvm_mmu_sync_roots() checks the unsync flags without holding
2502          * the MMU lock and so can race with this. If the SPTE was updated
2503          * before the page had been marked as unsync-ed, something like the
2504          * following could happen:
2505          *
2506          * CPU 1                    CPU 2
2507          * ---------------------------------------------------------------------
2508          * 1.2 Host updates SPTE
2509          *     to be writable
2510          *                      2.1 Guest writes a GPTE for GVA X.
2511          *                          (GPTE being in the guest page table shadowed
2512          *                           by the SP from CPU 1.)
2513          *                          This reads SPTE during the page table walk.
2514          *                          Since SPTE.W is read as 1, there is no
2515          *                          fault.
2516          *
2517          *                      2.2 Guest issues TLB flush.
2518          *                          That causes a VM Exit.
2519          *
2520          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2521          *                          Since it is false, so it just returns.
2522          *
2523          *                      2.4 Guest accesses GVA X.
2524          *                          Since the mapping in the SP was not updated,
2525          *                          so the old mapping for GVA X incorrectly
2526          *                          gets used.
2527          * 1.1 Host marks SP
2528          *     as unsync
2529          *     (sp->unsync = true)
2530          *
2531          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2532          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2533          * pairs with this write barrier.
2534          */
2535         smp_wmb();
2536
2537         return false;
2538 }
2539
2540 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2541                     unsigned int pte_access, int level,
2542                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2543                     bool can_unsync, bool host_writable)
2544 {
2545         u64 spte;
2546         struct kvm_mmu_page *sp;
2547         int ret;
2548
2549         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2550                 return 0;
2551
2552         sp = sptep_to_sp(sptep);
2553
2554         ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2555                         can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2556
2557         if (spte & PT_WRITABLE_MASK)
2558                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2559
2560         if (*sptep == spte)
2561                 ret |= SET_SPTE_SPURIOUS;
2562         else if (mmu_spte_update(sptep, spte))
2563                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2564         return ret;
2565 }
2566
2567 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2568                         unsigned int pte_access, bool write_fault, int level,
2569                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2570                         bool host_writable)
2571 {
2572         int was_rmapped = 0;
2573         int rmap_count;
2574         int set_spte_ret;
2575         int ret = RET_PF_FIXED;
2576         bool flush = false;
2577
2578         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2579                  *sptep, write_fault, gfn);
2580
2581         if (is_shadow_present_pte(*sptep)) {
2582                 /*
2583                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2584                  * the parent of the now unreachable PTE.
2585                  */
2586                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2587                         struct kvm_mmu_page *child;
2588                         u64 pte = *sptep;
2589
2590                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2591                         drop_parent_pte(child, sptep);
2592                         flush = true;
2593                 } else if (pfn != spte_to_pfn(*sptep)) {
2594                         pgprintk("hfn old %llx new %llx\n",
2595                                  spte_to_pfn(*sptep), pfn);
2596                         drop_spte(vcpu->kvm, sptep);
2597                         flush = true;
2598                 } else
2599                         was_rmapped = 1;
2600         }
2601
2602         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2603                                 speculative, true, host_writable);
2604         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2605                 if (write_fault)
2606                         ret = RET_PF_EMULATE;
2607                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2608         }
2609
2610         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2611                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2612                                 KVM_PAGES_PER_HPAGE(level));
2613
2614         if (unlikely(is_mmio_spte(*sptep)))
2615                 ret = RET_PF_EMULATE;
2616
2617         /*
2618          * The fault is fully spurious if and only if the new SPTE and old SPTE
2619          * are identical, and emulation is not required.
2620          */
2621         if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2622                 WARN_ON_ONCE(!was_rmapped);
2623                 return RET_PF_SPURIOUS;
2624         }
2625
2626         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2627         trace_kvm_mmu_set_spte(level, gfn, sptep);
2628         if (!was_rmapped && is_large_pte(*sptep))
2629                 ++vcpu->kvm->stat.lpages;
2630
2631         if (is_shadow_present_pte(*sptep)) {
2632                 if (!was_rmapped) {
2633                         rmap_count = rmap_add(vcpu, sptep, gfn);
2634                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2635                                 rmap_recycle(vcpu, sptep, gfn);
2636                 }
2637         }
2638
2639         return ret;
2640 }
2641
2642 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2643                                      bool no_dirty_log)
2644 {
2645         struct kvm_memory_slot *slot;
2646
2647         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2648         if (!slot)
2649                 return KVM_PFN_ERR_FAULT;
2650
2651         return gfn_to_pfn_memslot_atomic(slot, gfn);
2652 }
2653
2654 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2655                                     struct kvm_mmu_page *sp,
2656                                     u64 *start, u64 *end)
2657 {
2658         struct page *pages[PTE_PREFETCH_NUM];
2659         struct kvm_memory_slot *slot;
2660         unsigned int access = sp->role.access;
2661         int i, ret;
2662         gfn_t gfn;
2663
2664         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2665         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2666         if (!slot)
2667                 return -1;
2668
2669         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2670         if (ret <= 0)
2671                 return -1;
2672
2673         for (i = 0; i < ret; i++, gfn++, start++) {
2674                 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2675                              page_to_pfn(pages[i]), true, true);
2676                 put_page(pages[i]);
2677         }
2678
2679         return 0;
2680 }
2681
2682 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2683                                   struct kvm_mmu_page *sp, u64 *sptep)
2684 {
2685         u64 *spte, *start = NULL;
2686         int i;
2687
2688         WARN_ON(!sp->role.direct);
2689
2690         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2691         spte = sp->spt + i;
2692
2693         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2694                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2695                         if (!start)
2696                                 continue;
2697                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2698                                 break;
2699                         start = NULL;
2700                 } else if (!start)
2701                         start = spte;
2702         }
2703 }
2704
2705 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2706 {
2707         struct kvm_mmu_page *sp;
2708
2709         sp = sptep_to_sp(sptep);
2710
2711         /*
2712          * Without accessed bits, there's no way to distinguish between
2713          * actually accessed translations and prefetched, so disable pte
2714          * prefetch if accessed bits aren't available.
2715          */
2716         if (sp_ad_disabled(sp))
2717                 return;
2718
2719         if (sp->role.level > PG_LEVEL_4K)
2720                 return;
2721
2722         __direct_pte_prefetch(vcpu, sp, sptep);
2723 }
2724
2725 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
2726                                   kvm_pfn_t pfn, struct kvm_memory_slot *slot)
2727 {
2728         unsigned long hva;
2729         pte_t *pte;
2730         int level;
2731
2732         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2733                 return PG_LEVEL_4K;
2734
2735         /*
2736          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2737          * is not solely for performance, it's also necessary to avoid the
2738          * "writable" check in __gfn_to_hva_many(), which will always fail on
2739          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2740          * page fault steps have already verified the guest isn't writing a
2741          * read-only memslot.
2742          */
2743         hva = __gfn_to_hva_memslot(slot, gfn);
2744
2745         pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2746         if (unlikely(!pte))
2747                 return PG_LEVEL_4K;
2748
2749         return level;
2750 }
2751
2752 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2753                             int max_level, kvm_pfn_t *pfnp,
2754                             bool huge_page_disallowed, int *req_level)
2755 {
2756         struct kvm_memory_slot *slot;
2757         struct kvm_lpage_info *linfo;
2758         kvm_pfn_t pfn = *pfnp;
2759         kvm_pfn_t mask;
2760         int level;
2761
2762         *req_level = PG_LEVEL_4K;
2763
2764         if (unlikely(max_level == PG_LEVEL_4K))
2765                 return PG_LEVEL_4K;
2766
2767         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2768                 return PG_LEVEL_4K;
2769
2770         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2771         if (!slot)
2772                 return PG_LEVEL_4K;
2773
2774         max_level = min(max_level, max_huge_page_level);
2775         for ( ; max_level > PG_LEVEL_4K; max_level--) {
2776                 linfo = lpage_info_slot(gfn, slot, max_level);
2777                 if (!linfo->disallow_lpage)
2778                         break;
2779         }
2780
2781         if (max_level == PG_LEVEL_4K)
2782                 return PG_LEVEL_4K;
2783
2784         level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
2785         if (level == PG_LEVEL_4K)
2786                 return level;
2787
2788         *req_level = level = min(level, max_level);
2789
2790         /*
2791          * Enforce the iTLB multihit workaround after capturing the requested
2792          * level, which will be used to do precise, accurate accounting.
2793          */
2794         if (huge_page_disallowed)
2795                 return PG_LEVEL_4K;
2796
2797         /*
2798          * mmu_notifier_retry() was successful and mmu_lock is held, so
2799          * the pmd can't be split from under us.
2800          */
2801         mask = KVM_PAGES_PER_HPAGE(level) - 1;
2802         VM_BUG_ON((gfn & mask) != (pfn & mask));
2803         *pfnp = pfn & ~mask;
2804
2805         return level;
2806 }
2807
2808 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2809                                 kvm_pfn_t *pfnp, int *goal_levelp)
2810 {
2811         int level = *goal_levelp;
2812
2813         if (cur_level == level && level > PG_LEVEL_4K &&
2814             is_shadow_present_pte(spte) &&
2815             !is_large_pte(spte)) {
2816                 /*
2817                  * A small SPTE exists for this pfn, but FNAME(fetch)
2818                  * and __direct_map would like to create a large PTE
2819                  * instead: just force them to go down another level,
2820                  * patching back for them into pfn the next 9 bits of
2821                  * the address.
2822                  */
2823                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2824                                 KVM_PAGES_PER_HPAGE(level - 1);
2825                 *pfnp |= gfn & page_mask;
2826                 (*goal_levelp)--;
2827         }
2828 }
2829
2830 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2831                         int map_writable, int max_level, kvm_pfn_t pfn,
2832                         bool prefault, bool is_tdp)
2833 {
2834         bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2835         bool write = error_code & PFERR_WRITE_MASK;
2836         bool exec = error_code & PFERR_FETCH_MASK;
2837         bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2838         struct kvm_shadow_walk_iterator it;
2839         struct kvm_mmu_page *sp;
2840         int level, req_level, ret;
2841         gfn_t gfn = gpa >> PAGE_SHIFT;
2842         gfn_t base_gfn = gfn;
2843
2844         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2845                 return RET_PF_RETRY;
2846
2847         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2848                                         huge_page_disallowed, &req_level);
2849
2850         trace_kvm_mmu_spte_requested(gpa, level, pfn);
2851         for_each_shadow_entry(vcpu, gpa, it) {
2852                 /*
2853                  * We cannot overwrite existing page tables with an NX
2854                  * large page, as the leaf could be executable.
2855                  */
2856                 if (nx_huge_page_workaround_enabled)
2857                         disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2858                                                    &pfn, &level);
2859
2860                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2861                 if (it.level == level)
2862                         break;
2863
2864                 drop_large_spte(vcpu, it.sptep);
2865                 if (!is_shadow_present_pte(*it.sptep)) {
2866                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2867                                               it.level - 1, true, ACC_ALL);
2868
2869                         link_shadow_page(vcpu, it.sptep, sp);
2870                         if (is_tdp && huge_page_disallowed &&
2871                             req_level >= it.level)
2872                                 account_huge_nx_page(vcpu->kvm, sp);
2873                 }
2874         }
2875
2876         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2877                            write, level, base_gfn, pfn, prefault,
2878                            map_writable);
2879         if (ret == RET_PF_SPURIOUS)
2880                 return ret;
2881
2882         direct_pte_prefetch(vcpu, it.sptep);
2883         ++vcpu->stat.pf_fixed;
2884         return ret;
2885 }
2886
2887 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2888 {
2889         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2890 }
2891
2892 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2893 {
2894         /*
2895          * Do not cache the mmio info caused by writing the readonly gfn
2896          * into the spte otherwise read access on readonly gfn also can
2897          * caused mmio page fault and treat it as mmio access.
2898          */
2899         if (pfn == KVM_PFN_ERR_RO_FAULT)
2900                 return RET_PF_EMULATE;
2901
2902         if (pfn == KVM_PFN_ERR_HWPOISON) {
2903                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2904                 return RET_PF_RETRY;
2905         }
2906
2907         return -EFAULT;
2908 }
2909
2910 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2911                                 kvm_pfn_t pfn, unsigned int access,
2912                                 int *ret_val)
2913 {
2914         /* The pfn is invalid, report the error! */
2915         if (unlikely(is_error_pfn(pfn))) {
2916                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2917                 return true;
2918         }
2919
2920         if (unlikely(is_noslot_pfn(pfn)))
2921                 vcpu_cache_mmio_info(vcpu, gva, gfn,
2922                                      access & shadow_mmio_access_mask);
2923
2924         return false;
2925 }
2926
2927 static bool page_fault_can_be_fast(u32 error_code)
2928 {
2929         /*
2930          * Do not fix the mmio spte with invalid generation number which
2931          * need to be updated by slow page fault path.
2932          */
2933         if (unlikely(error_code & PFERR_RSVD_MASK))
2934                 return false;
2935
2936         /* See if the page fault is due to an NX violation */
2937         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2938                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2939                 return false;
2940
2941         /*
2942          * #PF can be fast if:
2943          * 1. The shadow page table entry is not present, which could mean that
2944          *    the fault is potentially caused by access tracking (if enabled).
2945          * 2. The shadow page table entry is present and the fault
2946          *    is caused by write-protect, that means we just need change the W
2947          *    bit of the spte which can be done out of mmu-lock.
2948          *
2949          * However, if access tracking is disabled we know that a non-present
2950          * page must be a genuine page fault where we have to create a new SPTE.
2951          * So, if access tracking is disabled, we return true only for write
2952          * accesses to a present page.
2953          */
2954
2955         return shadow_acc_track_mask != 0 ||
2956                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2957                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2958 }
2959
2960 /*
2961  * Returns true if the SPTE was fixed successfully. Otherwise,
2962  * someone else modified the SPTE from its original value.
2963  */
2964 static bool
2965 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2966                         u64 *sptep, u64 old_spte, u64 new_spte)
2967 {
2968         gfn_t gfn;
2969
2970         WARN_ON(!sp->role.direct);
2971
2972         /*
2973          * Theoretically we could also set dirty bit (and flush TLB) here in
2974          * order to eliminate unnecessary PML logging. See comments in
2975          * set_spte. But fast_page_fault is very unlikely to happen with PML
2976          * enabled, so we do not do this. This might result in the same GPA
2977          * to be logged in PML buffer again when the write really happens, and
2978          * eventually to be called by mark_page_dirty twice. But it's also no
2979          * harm. This also avoids the TLB flush needed after setting dirty bit
2980          * so non-PML cases won't be impacted.
2981          *
2982          * Compare with set_spte where instead shadow_dirty_mask is set.
2983          */
2984         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
2985                 return false;
2986
2987         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
2988                 /*
2989                  * The gfn of direct spte is stable since it is
2990                  * calculated by sp->gfn.
2991                  */
2992                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2993                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2994         }
2995
2996         return true;
2997 }
2998
2999 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3000 {
3001         if (fault_err_code & PFERR_FETCH_MASK)
3002                 return is_executable_pte(spte);
3003
3004         if (fault_err_code & PFERR_WRITE_MASK)
3005                 return is_writable_pte(spte);
3006
3007         /* Fault was on Read access */
3008         return spte & PT_PRESENT_MASK;
3009 }
3010
3011 /*
3012  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3013  */
3014 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3015                            u32 error_code)
3016 {
3017         struct kvm_shadow_walk_iterator iterator;
3018         struct kvm_mmu_page *sp;
3019         int ret = RET_PF_INVALID;
3020         u64 spte = 0ull;
3021         uint retry_count = 0;
3022
3023         if (!page_fault_can_be_fast(error_code))
3024                 return ret;
3025
3026         walk_shadow_page_lockless_begin(vcpu);
3027
3028         do {
3029                 u64 new_spte;
3030
3031                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3032                         if (!is_shadow_present_pte(spte))
3033                                 break;
3034
3035                 sp = sptep_to_sp(iterator.sptep);
3036                 if (!is_last_spte(spte, sp->role.level))
3037                         break;
3038
3039                 /*
3040                  * Check whether the memory access that caused the fault would
3041                  * still cause it if it were to be performed right now. If not,
3042                  * then this is a spurious fault caused by TLB lazily flushed,
3043                  * or some other CPU has already fixed the PTE after the
3044                  * current CPU took the fault.
3045                  *
3046                  * Need not check the access of upper level table entries since
3047                  * they are always ACC_ALL.
3048                  */
3049                 if (is_access_allowed(error_code, spte)) {
3050                         ret = RET_PF_SPURIOUS;
3051                         break;
3052                 }
3053
3054                 new_spte = spte;
3055
3056                 if (is_access_track_spte(spte))
3057                         new_spte = restore_acc_track_spte(new_spte);
3058
3059                 /*
3060                  * Currently, to simplify the code, write-protection can
3061                  * be removed in the fast path only if the SPTE was
3062                  * write-protected for dirty-logging or access tracking.
3063                  */
3064                 if ((error_code & PFERR_WRITE_MASK) &&
3065                     spte_can_locklessly_be_made_writable(spte)) {
3066                         new_spte |= PT_WRITABLE_MASK;
3067
3068                         /*
3069                          * Do not fix write-permission on the large spte.  Since
3070                          * we only dirty the first page into the dirty-bitmap in
3071                          * fast_pf_fix_direct_spte(), other pages are missed
3072                          * if its slot has dirty logging enabled.
3073                          *
3074                          * Instead, we let the slow page fault path create a
3075                          * normal spte to fix the access.
3076                          *
3077                          * See the comments in kvm_arch_commit_memory_region().
3078                          */
3079                         if (sp->role.level > PG_LEVEL_4K)
3080                                 break;
3081                 }
3082
3083                 /* Verify that the fault can be handled in the fast path */
3084                 if (new_spte == spte ||
3085                     !is_access_allowed(error_code, new_spte))
3086                         break;
3087
3088                 /*
3089                  * Currently, fast page fault only works for direct mapping
3090                  * since the gfn is not stable for indirect shadow page. See
3091                  * Documentation/virt/kvm/locking.rst to get more detail.
3092                  */
3093                 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3094                                             new_spte)) {
3095                         ret = RET_PF_FIXED;
3096                         break;
3097                 }
3098
3099                 if (++retry_count > 4) {
3100                         printk_once(KERN_WARNING
3101                                 "kvm: Fast #PF retrying more than 4 times.\n");
3102                         break;
3103                 }
3104
3105         } while (true);
3106
3107         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3108                               spte, ret);
3109         walk_shadow_page_lockless_end(vcpu);
3110
3111         return ret;
3112 }
3113
3114 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3115                                struct list_head *invalid_list)
3116 {
3117         struct kvm_mmu_page *sp;
3118
3119         if (!VALID_PAGE(*root_hpa))
3120                 return;
3121
3122         sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3123
3124         if (kvm_mmu_put_root(kvm, sp)) {
3125                 if (sp->tdp_mmu_page)
3126                         kvm_tdp_mmu_free_root(kvm, sp);
3127                 else if (sp->role.invalid)
3128                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3129         }
3130
3131         *root_hpa = INVALID_PAGE;
3132 }
3133
3134 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3135 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3136                         ulong roots_to_free)
3137 {
3138         struct kvm *kvm = vcpu->kvm;
3139         int i;
3140         LIST_HEAD(invalid_list);
3141         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3142
3143         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3144
3145         /* Before acquiring the MMU lock, see if we need to do any real work. */
3146         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3147                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3148                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3149                             VALID_PAGE(mmu->prev_roots[i].hpa))
3150                                 break;
3151
3152                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3153                         return;
3154         }
3155
3156         spin_lock(&kvm->mmu_lock);
3157
3158         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3159                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3160                         mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3161                                            &invalid_list);
3162
3163         if (free_active_root) {
3164                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3165                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3166                         mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3167                 } else {
3168                         for (i = 0; i < 4; ++i)
3169                                 if (mmu->pae_root[i] != 0)
3170                                         mmu_free_root_page(kvm,
3171                                                            &mmu->pae_root[i],
3172                                                            &invalid_list);
3173                         mmu->root_hpa = INVALID_PAGE;
3174                 }
3175                 mmu->root_pgd = 0;
3176         }
3177
3178         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3179         spin_unlock(&kvm->mmu_lock);
3180 }
3181 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3182
3183 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3184 {
3185         int ret = 0;
3186
3187         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3188                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3189                 ret = 1;
3190         }
3191
3192         return ret;
3193 }
3194
3195 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3196                             u8 level, bool direct)
3197 {
3198         struct kvm_mmu_page *sp;
3199
3200         spin_lock(&vcpu->kvm->mmu_lock);
3201
3202         if (make_mmu_pages_available(vcpu)) {
3203                 spin_unlock(&vcpu->kvm->mmu_lock);
3204                 return INVALID_PAGE;
3205         }
3206         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3207         ++sp->root_count;
3208
3209         spin_unlock(&vcpu->kvm->mmu_lock);
3210         return __pa(sp->spt);
3211 }
3212
3213 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3214 {
3215         u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3216         hpa_t root;
3217         unsigned i;
3218
3219         if (vcpu->kvm->arch.tdp_mmu_enabled) {
3220                 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3221
3222                 if (!VALID_PAGE(root))
3223                         return -ENOSPC;
3224                 vcpu->arch.mmu->root_hpa = root;
3225         } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3226                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3227                                       true);
3228
3229                 if (!VALID_PAGE(root))
3230                         return -ENOSPC;
3231                 vcpu->arch.mmu->root_hpa = root;
3232         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3233                 for (i = 0; i < 4; ++i) {
3234                         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3235
3236                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3237                                               i << 30, PT32_ROOT_LEVEL, true);
3238                         if (!VALID_PAGE(root))
3239                                 return -ENOSPC;
3240                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3241                 }
3242                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3243         } else
3244                 BUG();
3245
3246         /* root_pgd is ignored for direct MMUs. */
3247         vcpu->arch.mmu->root_pgd = 0;
3248
3249         return 0;
3250 }
3251
3252 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3253 {
3254         u64 pdptr, pm_mask;
3255         gfn_t root_gfn, root_pgd;
3256         hpa_t root;
3257         int i;
3258
3259         root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3260         root_gfn = root_pgd >> PAGE_SHIFT;
3261
3262         if (mmu_check_root(vcpu, root_gfn))
3263                 return 1;
3264
3265         /*
3266          * Do we shadow a long mode page table? If so we need to
3267          * write-protect the guests page table root.
3268          */
3269         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3270                 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3271
3272                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3273                                       vcpu->arch.mmu->shadow_root_level, false);
3274                 if (!VALID_PAGE(root))
3275                         return -ENOSPC;
3276                 vcpu->arch.mmu->root_hpa = root;
3277                 goto set_root_pgd;
3278         }
3279
3280         /*
3281          * We shadow a 32 bit page table. This may be a legacy 2-level
3282          * or a PAE 3-level page table. In either case we need to be aware that
3283          * the shadow page table may be a PAE or a long mode page table.
3284          */
3285         pm_mask = PT_PRESENT_MASK;
3286         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3287                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3288
3289         for (i = 0; i < 4; ++i) {
3290                 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3291                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3292                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3293                         if (!(pdptr & PT_PRESENT_MASK)) {
3294                                 vcpu->arch.mmu->pae_root[i] = 0;
3295                                 continue;
3296                         }
3297                         root_gfn = pdptr >> PAGE_SHIFT;
3298                         if (mmu_check_root(vcpu, root_gfn))
3299                                 return 1;
3300                 }
3301
3302                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3303                                       PT32_ROOT_LEVEL, false);
3304                 if (!VALID_PAGE(root))
3305                         return -ENOSPC;
3306                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3307         }
3308         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3309
3310         /*
3311          * If we shadow a 32 bit page table with a long mode page
3312          * table we enter this path.
3313          */
3314         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3315                 if (vcpu->arch.mmu->lm_root == NULL) {
3316                         /*
3317                          * The additional page necessary for this is only
3318                          * allocated on demand.
3319                          */
3320
3321                         u64 *lm_root;
3322
3323                         lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3324                         if (lm_root == NULL)
3325                                 return 1;
3326
3327                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3328
3329                         vcpu->arch.mmu->lm_root = lm_root;
3330                 }
3331
3332                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3333         }
3334
3335 set_root_pgd:
3336         vcpu->arch.mmu->root_pgd = root_pgd;
3337
3338         return 0;
3339 }
3340
3341 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3342 {
3343         if (vcpu->arch.mmu->direct_map)
3344                 return mmu_alloc_direct_roots(vcpu);
3345         else
3346                 return mmu_alloc_shadow_roots(vcpu);
3347 }
3348
3349 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3350 {
3351         int i;
3352         struct kvm_mmu_page *sp;
3353
3354         if (vcpu->arch.mmu->direct_map)
3355                 return;
3356
3357         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3358                 return;
3359
3360         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3361
3362         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3363                 hpa_t root = vcpu->arch.mmu->root_hpa;
3364                 sp = to_shadow_page(root);
3365
3366                 /*
3367                  * Even if another CPU was marking the SP as unsync-ed
3368                  * simultaneously, any guest page table changes are not
3369                  * guaranteed to be visible anyway until this VCPU issues a TLB
3370                  * flush strictly after those changes are made. We only need to
3371                  * ensure that the other CPU sets these flags before any actual
3372                  * changes to the page tables are made. The comments in
3373                  * mmu_need_write_protect() describe what could go wrong if this
3374                  * requirement isn't satisfied.
3375                  */
3376                 if (!smp_load_acquire(&sp->unsync) &&
3377                     !smp_load_acquire(&sp->unsync_children))
3378                         return;
3379
3380                 spin_lock(&vcpu->kvm->mmu_lock);
3381                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3382
3383                 mmu_sync_children(vcpu, sp);
3384
3385                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3386                 spin_unlock(&vcpu->kvm->mmu_lock);
3387                 return;
3388         }
3389
3390         spin_lock(&vcpu->kvm->mmu_lock);
3391         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3392
3393         for (i = 0; i < 4; ++i) {
3394                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3395
3396                 if (root && VALID_PAGE(root)) {
3397                         root &= PT64_BASE_ADDR_MASK;
3398                         sp = to_shadow_page(root);
3399                         mmu_sync_children(vcpu, sp);
3400                 }
3401         }
3402
3403         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3404         spin_unlock(&vcpu->kvm->mmu_lock);
3405 }
3406 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3407
3408 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3409                                   u32 access, struct x86_exception *exception)
3410 {
3411         if (exception)
3412                 exception->error_code = 0;
3413         return vaddr;
3414 }
3415
3416 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3417                                          u32 access,
3418                                          struct x86_exception *exception)
3419 {
3420         if (exception)
3421                 exception->error_code = 0;
3422         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3423 }
3424
3425 static bool
3426 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3427 {
3428         int bit7 = (pte >> 7) & 1;
3429
3430         return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3431 }
3432
3433 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3434 {
3435         return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3436 }
3437
3438 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3439 {
3440         /*
3441          * A nested guest cannot use the MMIO cache if it is using nested
3442          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3443          */
3444         if (mmu_is_nested(vcpu))
3445                 return false;
3446
3447         if (direct)
3448                 return vcpu_match_mmio_gpa(vcpu, addr);
3449
3450         return vcpu_match_mmio_gva(vcpu, addr);
3451 }
3452
3453 /* return true if reserved bit is detected on spte. */
3454 static bool
3455 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3456 {
3457         struct kvm_shadow_walk_iterator iterator;
3458         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3459         struct rsvd_bits_validate *rsvd_check;
3460         int root, leaf;
3461         bool reserved = false;
3462
3463         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3464
3465         walk_shadow_page_lockless_begin(vcpu);
3466
3467         for (shadow_walk_init(&iterator, vcpu, addr),
3468                  leaf = root = iterator.level;
3469              shadow_walk_okay(&iterator);
3470              __shadow_walk_next(&iterator, spte)) {
3471                 spte = mmu_spte_get_lockless(iterator.sptep);
3472
3473                 sptes[leaf - 1] = spte;
3474                 leaf--;
3475
3476                 if (!is_shadow_present_pte(spte))
3477                         break;
3478
3479                 /*
3480                  * Use a bitwise-OR instead of a logical-OR to aggregate the
3481                  * reserved bit and EPT's invalid memtype/XWR checks to avoid
3482                  * adding a Jcc in the loop.
3483                  */
3484                 reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3485                             __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
3486         }
3487
3488         walk_shadow_page_lockless_end(vcpu);
3489
3490         if (reserved) {
3491                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3492                        __func__, addr);
3493                 while (root > leaf) {
3494                         pr_err("------ spte 0x%llx level %d.\n",
3495                                sptes[root - 1], root);
3496                         root--;
3497                 }
3498         }
3499
3500         *sptep = spte;
3501         return reserved;
3502 }
3503
3504 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3505 {
3506         u64 spte;
3507         bool reserved;
3508
3509         if (mmio_info_in_cache(vcpu, addr, direct))
3510                 return RET_PF_EMULATE;
3511
3512         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3513         if (WARN_ON(reserved))
3514                 return -EINVAL;
3515
3516         if (is_mmio_spte(spte)) {
3517                 gfn_t gfn = get_mmio_spte_gfn(spte);
3518                 unsigned int access = get_mmio_spte_access(spte);
3519
3520                 if (!check_mmio_spte(vcpu, spte))
3521                         return RET_PF_INVALID;
3522
3523                 if (direct)
3524                         addr = 0;
3525
3526                 trace_handle_mmio_page_fault(addr, gfn, access);
3527                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3528                 return RET_PF_EMULATE;
3529         }
3530
3531         /*
3532          * If the page table is zapped by other cpus, let CPU fault again on
3533          * the address.
3534          */
3535         return RET_PF_RETRY;
3536 }
3537
3538 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3539                                          u32 error_code, gfn_t gfn)
3540 {
3541         if (unlikely(error_code & PFERR_RSVD_MASK))
3542                 return false;
3543
3544         if (!(error_code & PFERR_PRESENT_MASK) ||
3545               !(error_code & PFERR_WRITE_MASK))
3546                 return false;
3547
3548         /*
3549          * guest is writing the page which is write tracked which can
3550          * not be fixed by page fault handler.
3551          */
3552         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3553                 return true;
3554
3555         return false;
3556 }
3557
3558 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3559 {
3560         struct kvm_shadow_walk_iterator iterator;
3561         u64 spte;
3562
3563         walk_shadow_page_lockless_begin(vcpu);
3564         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3565                 clear_sp_write_flooding_count(iterator.sptep);
3566                 if (!is_shadow_present_pte(spte))
3567                         break;
3568         }
3569         walk_shadow_page_lockless_end(vcpu);
3570 }
3571
3572 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3573                                     gfn_t gfn)
3574 {
3575         struct kvm_arch_async_pf arch;
3576
3577         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3578         arch.gfn = gfn;
3579         arch.direct_map = vcpu->arch.mmu->direct_map;
3580         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3581
3582         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3583                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3584 }
3585
3586 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3587                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3588                          bool *writable)
3589 {
3590         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3591         bool async;
3592
3593         /* Don't expose private memslots to L2. */
3594         if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3595                 *pfn = KVM_PFN_NOSLOT;
3596                 *writable = false;
3597                 return false;
3598         }
3599
3600         async = false;
3601         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3602         if (!async)
3603                 return false; /* *pfn has correct page already */
3604
3605         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3606                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3607                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3608                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3609                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3610                         return true;
3611                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3612                         return true;
3613         }
3614
3615         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3616         return false;
3617 }
3618
3619 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3620                              bool prefault, int max_level, bool is_tdp)
3621 {
3622         bool write = error_code & PFERR_WRITE_MASK;
3623         bool map_writable;
3624
3625         gfn_t gfn = gpa >> PAGE_SHIFT;
3626         unsigned long mmu_seq;
3627         kvm_pfn_t pfn;
3628         int r;
3629
3630         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3631                 return RET_PF_EMULATE;
3632
3633         if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3634                 r = fast_page_fault(vcpu, gpa, error_code);
3635                 if (r != RET_PF_INVALID)
3636                         return r;
3637         }
3638
3639         r = mmu_topup_memory_caches(vcpu, false);
3640         if (r)
3641                 return r;
3642
3643         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3644         smp_rmb();
3645
3646         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3647                 return RET_PF_RETRY;
3648
3649         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3650                 return r;
3651
3652         r = RET_PF_RETRY;
3653         spin_lock(&vcpu->kvm->mmu_lock);
3654         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3655                 goto out_unlock;
3656         r = make_mmu_pages_available(vcpu);
3657         if (r)
3658                 goto out_unlock;
3659
3660         if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3661                 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3662                                     pfn, prefault);
3663         else
3664                 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3665                                  prefault, is_tdp);
3666
3667 out_unlock:
3668         spin_unlock(&vcpu->kvm->mmu_lock);
3669         kvm_release_pfn_clean(pfn);
3670         return r;
3671 }
3672
3673 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3674                                 u32 error_code, bool prefault)
3675 {
3676         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3677
3678         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3679         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3680                                  PG_LEVEL_2M, false);
3681 }
3682
3683 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3684                                 u64 fault_address, char *insn, int insn_len)
3685 {
3686         int r = 1;
3687         u32 flags = vcpu->arch.apf.host_apf_flags;
3688
3689 #ifndef CONFIG_X86_64
3690         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3691         if (WARN_ON_ONCE(fault_address >> 32))
3692                 return -EFAULT;
3693 #endif
3694
3695         vcpu->arch.l1tf_flush_l1d = true;
3696         if (!flags) {
3697                 trace_kvm_page_fault(fault_address, error_code);
3698
3699                 if (kvm_event_needs_reinjection(vcpu))
3700                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3701                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3702                                 insn_len);
3703         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3704                 vcpu->arch.apf.host_apf_flags = 0;
3705                 local_irq_disable();
3706                 kvm_async_pf_task_wait_schedule(fault_address);
3707                 local_irq_enable();
3708         } else {
3709                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3710         }
3711
3712         return r;
3713 }
3714 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3715
3716 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3717                        bool prefault)
3718 {
3719         int max_level;
3720
3721         for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3722              max_level > PG_LEVEL_4K;
3723              max_level--) {
3724                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3725                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3726
3727                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3728                         break;
3729         }
3730
3731         return direct_page_fault(vcpu, gpa, error_code, prefault,
3732                                  max_level, true);
3733 }
3734
3735 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3736                                    struct kvm_mmu *context)
3737 {
3738         context->page_fault = nonpaging_page_fault;
3739         context->gva_to_gpa = nonpaging_gva_to_gpa;
3740         context->sync_page = nonpaging_sync_page;
3741         context->invlpg = NULL;
3742         context->update_pte = nonpaging_update_pte;
3743         context->root_level = 0;
3744         context->shadow_root_level = PT32E_ROOT_LEVEL;
3745         context->direct_map = true;
3746         context->nx = false;
3747 }
3748
3749 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3750                                   union kvm_mmu_page_role role)
3751 {
3752         return (role.direct || pgd == root->pgd) &&
3753                VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3754                role.word == to_shadow_page(root->hpa)->role.word;
3755 }
3756
3757 /*
3758  * Find out if a previously cached root matching the new pgd/role is available.
3759  * The current root is also inserted into the cache.
3760  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3761  * returned.
3762  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3763  * false is returned. This root should now be freed by the caller.
3764  */
3765 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3766                                   union kvm_mmu_page_role new_role)
3767 {
3768         uint i;
3769         struct kvm_mmu_root_info root;
3770         struct kvm_mmu *mmu = vcpu->arch.mmu;
3771
3772         root.pgd = mmu->root_pgd;
3773         root.hpa = mmu->root_hpa;
3774
3775         if (is_root_usable(&root, new_pgd, new_role))
3776                 return true;
3777
3778         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3779                 swap(root, mmu->prev_roots[i]);
3780
3781                 if (is_root_usable(&root, new_pgd, new_role))
3782                         break;
3783         }
3784
3785         mmu->root_hpa = root.hpa;
3786         mmu->root_pgd = root.pgd;
3787
3788         return i < KVM_MMU_NUM_PREV_ROOTS;
3789 }
3790
3791 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3792                             union kvm_mmu_page_role new_role)
3793 {
3794         struct kvm_mmu *mmu = vcpu->arch.mmu;
3795
3796         /*
3797          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3798          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3799          * later if necessary.
3800          */
3801         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3802             mmu->root_level >= PT64_ROOT_4LEVEL)
3803                 return cached_root_available(vcpu, new_pgd, new_role);
3804
3805         return false;
3806 }
3807
3808 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3809                               union kvm_mmu_page_role new_role,
3810                               bool skip_tlb_flush, bool skip_mmu_sync)
3811 {
3812         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3813                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3814                 return;
3815         }
3816
3817         /*
3818          * It's possible that the cached previous root page is obsolete because
3819          * of a change in the MMU generation number. However, changing the
3820          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3821          * free the root set here and allocate a new one.
3822          */
3823         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3824
3825         if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3826                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3827         if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3828                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3829
3830         /*
3831          * The last MMIO access's GVA and GPA are cached in the VCPU. When
3832          * switching to a new CR3, that GVA->GPA mapping may no longer be
3833          * valid. So clear any cached MMIO info even when we don't need to sync
3834          * the shadow page tables.
3835          */
3836         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3837
3838         __clear_sp_write_flooding_count(to_shadow_page(vcpu->arch.mmu->root_hpa));
3839 }
3840
3841 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3842                      bool skip_mmu_sync)
3843 {
3844         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3845                           skip_tlb_flush, skip_mmu_sync);
3846 }
3847 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3848
3849 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3850 {
3851         return kvm_read_cr3(vcpu);
3852 }
3853
3854 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3855                            unsigned int access, int *nr_present)
3856 {
3857         if (unlikely(is_mmio_spte(*sptep))) {
3858                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3859                         mmu_spte_clear_no_track(sptep);
3860                         return true;
3861                 }
3862
3863                 (*nr_present)++;
3864                 mark_mmio_spte(vcpu, sptep, gfn, access);
3865                 return true;
3866         }
3867
3868         return false;
3869 }
3870
3871 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3872                                 unsigned level, unsigned gpte)
3873 {
3874         /*
3875          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3876          * If it is clear, there are no large pages at this level, so clear
3877          * PT_PAGE_SIZE_MASK in gpte if that is the case.
3878          */
3879         gpte &= level - mmu->last_nonleaf_level;
3880
3881         /*
3882          * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
3883          * iff level <= PG_LEVEL_4K, which for our purpose means
3884          * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3885          */
3886         gpte |= level - PG_LEVEL_4K - 1;
3887
3888         return gpte & PT_PAGE_SIZE_MASK;
3889 }
3890
3891 #define PTTYPE_EPT 18 /* arbitrary */
3892 #define PTTYPE PTTYPE_EPT
3893 #include "paging_tmpl.h"
3894 #undef PTTYPE
3895
3896 #define PTTYPE 64
3897 #include "paging_tmpl.h"
3898 #undef PTTYPE
3899
3900 #define PTTYPE 32
3901 #include "paging_tmpl.h"
3902 #undef PTTYPE
3903
3904 static void
3905 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3906                         struct rsvd_bits_validate *rsvd_check,
3907                         int maxphyaddr, int level, bool nx, bool gbpages,
3908                         bool pse, bool amd)
3909 {
3910         u64 exb_bit_rsvd = 0;
3911         u64 gbpages_bit_rsvd = 0;
3912         u64 nonleaf_bit8_rsvd = 0;
3913
3914         rsvd_check->bad_mt_xwr = 0;
3915
3916         if (!nx)
3917                 exb_bit_rsvd = rsvd_bits(63, 63);
3918         if (!gbpages)
3919                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3920
3921         /*
3922          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3923          * leaf entries) on AMD CPUs only.
3924          */
3925         if (amd)
3926                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3927
3928         switch (level) {
3929         case PT32_ROOT_LEVEL:
3930                 /* no rsvd bits for 2 level 4K page table entries */
3931                 rsvd_check->rsvd_bits_mask[0][1] = 0;
3932                 rsvd_check->rsvd_bits_mask[0][0] = 0;
3933                 rsvd_check->rsvd_bits_mask[1][0] =
3934                         rsvd_check->rsvd_bits_mask[0][0];
3935
3936                 if (!pse) {
3937                         rsvd_check->rsvd_bits_mask[1][1] = 0;
3938                         break;
3939                 }
3940
3941                 if (is_cpuid_PSE36())
3942                         /* 36bits PSE 4MB page */
3943                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3944                 else
3945                         /* 32 bits PSE 4MB page */
3946                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3947                 break;
3948         case PT32E_ROOT_LEVEL:
3949                 rsvd_check->rsvd_bits_mask[0][2] =
3950                         rsvd_bits(maxphyaddr, 63) |
3951                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3952                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3953                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3954                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3955                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3956                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3957                         rsvd_bits(maxphyaddr, 62) |
3958                         rsvd_bits(13, 20);              /* large page */
3959                 rsvd_check->rsvd_bits_mask[1][0] =
3960                         rsvd_check->rsvd_bits_mask[0][0];
3961                 break;
3962         case PT64_ROOT_5LEVEL:
3963                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
3964                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3965                         rsvd_bits(maxphyaddr, 51);
3966                 rsvd_check->rsvd_bits_mask[1][4] =
3967                         rsvd_check->rsvd_bits_mask[0][4];
3968                 fallthrough;
3969         case PT64_ROOT_4LEVEL:
3970                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3971                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3972                         rsvd_bits(maxphyaddr, 51);
3973                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3974                         gbpages_bit_rsvd |
3975                         rsvd_bits(maxphyaddr, 51);
3976                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3977                         rsvd_bits(maxphyaddr, 51);
3978                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3979                         rsvd_bits(maxphyaddr, 51);
3980                 rsvd_check->rsvd_bits_mask[1][3] =
3981                         rsvd_check->rsvd_bits_mask[0][3];
3982                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3983                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3984                         rsvd_bits(13, 29);
3985                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3986                         rsvd_bits(maxphyaddr, 51) |
3987                         rsvd_bits(13, 20);              /* large page */
3988                 rsvd_check->rsvd_bits_mask[1][0] =
3989                         rsvd_check->rsvd_bits_mask[0][0];
3990                 break;
3991         }
3992 }
3993
3994 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3995                                   struct kvm_mmu *context)
3996 {
3997         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3998                                 cpuid_maxphyaddr(vcpu), context->root_level,
3999                                 context->nx,
4000                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4001                                 is_pse(vcpu),
4002                                 guest_cpuid_is_amd_or_hygon(vcpu));
4003 }
4004
4005 static void
4006 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4007                             int maxphyaddr, bool execonly)
4008 {
4009         u64 bad_mt_xwr;
4010
4011         rsvd_check->rsvd_bits_mask[0][4] =
4012                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4013         rsvd_check->rsvd_bits_mask[0][3] =
4014                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4015         rsvd_check->rsvd_bits_mask[0][2] =
4016                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4017         rsvd_check->rsvd_bits_mask[0][1] =
4018                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4019         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4020
4021         /* large page */
4022         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4023         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4024         rsvd_check->rsvd_bits_mask[1][2] =
4025                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4026         rsvd_check->rsvd_bits_mask[1][1] =
4027                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4028         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4029
4030         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4031         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4032         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4033         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4034         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4035         if (!execonly) {
4036                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4037                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4038         }
4039         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4040 }
4041
4042 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4043                 struct kvm_mmu *context, bool execonly)
4044 {
4045         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4046                                     cpuid_maxphyaddr(vcpu), execonly);
4047 }
4048
4049 /*
4050  * the page table on host is the shadow page table for the page
4051  * table in guest or amd nested guest, its mmu features completely
4052  * follow the features in guest.
4053  */
4054 void
4055 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4056 {
4057         bool uses_nx = context->nx ||
4058                 context->mmu_role.base.smep_andnot_wp;
4059         struct rsvd_bits_validate *shadow_zero_check;
4060         int i;
4061
4062         /*
4063          * Passing "true" to the last argument is okay; it adds a check
4064          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4065          */
4066         shadow_zero_check = &context->shadow_zero_check;
4067         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4068                                 shadow_phys_bits,
4069                                 context->shadow_root_level, uses_nx,
4070                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4071                                 is_pse(vcpu), true);
4072
4073         if (!shadow_me_mask)
4074                 return;
4075
4076         for (i = context->shadow_root_level; --i >= 0;) {
4077                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4078                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4079         }
4080
4081 }
4082 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4083
4084 static inline bool boot_cpu_is_amd(void)
4085 {
4086         WARN_ON_ONCE(!tdp_enabled);
4087         return shadow_x_mask == 0;
4088 }
4089
4090 /*
4091  * the direct page table on host, use as much mmu features as
4092  * possible, however, kvm currently does not do execution-protection.
4093  */
4094 static void
4095 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4096                                 struct kvm_mmu *context)
4097 {
4098         struct rsvd_bits_validate *shadow_zero_check;
4099         int i;
4100
4101         shadow_zero_check = &context->shadow_zero_check;
4102
4103         if (boot_cpu_is_amd())
4104                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4105                                         shadow_phys_bits,
4106                                         context->shadow_root_level, false,
4107                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4108                                         true, true);
4109         else
4110                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4111                                             shadow_phys_bits,
4112                                             false);
4113
4114         if (!shadow_me_mask)
4115                 return;
4116
4117         for (i = context->shadow_root_level; --i >= 0;) {
4118                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4119                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4120         }
4121 }
4122
4123 /*
4124  * as the comments in reset_shadow_zero_bits_mask() except it
4125  * is the shadow page table for intel nested guest.
4126  */
4127 static void
4128 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4129                                 struct kvm_mmu *context, bool execonly)
4130 {
4131         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4132                                     shadow_phys_bits, execonly);
4133 }
4134
4135 #define BYTE_MASK(access) \
4136         ((1 & (access) ? 2 : 0) | \
4137          (2 & (access) ? 4 : 0) | \
4138          (3 & (access) ? 8 : 0) | \
4139          (4 & (access) ? 16 : 0) | \
4140          (5 & (access) ? 32 : 0) | \
4141          (6 & (access) ? 64 : 0) | \
4142          (7 & (access) ? 128 : 0))
4143
4144
4145 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4146                                       struct kvm_mmu *mmu, bool ept)
4147 {
4148         unsigned byte;
4149
4150         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4151         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4152         const u8 u = BYTE_MASK(ACC_USER_MASK);
4153
4154         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4155         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4156         bool cr0_wp = is_write_protection(vcpu);
4157
4158         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4159                 unsigned pfec = byte << 1;
4160
4161                 /*
4162                  * Each "*f" variable has a 1 bit for each UWX value
4163                  * that causes a fault with the given PFEC.
4164                  */
4165
4166                 /* Faults from writes to non-writable pages */
4167                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4168                 /* Faults from user mode accesses to supervisor pages */
4169                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4170                 /* Faults from fetches of non-executable pages*/
4171                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4172                 /* Faults from kernel mode fetches of user pages */
4173                 u8 smepf = 0;
4174                 /* Faults from kernel mode accesses of user pages */
4175                 u8 smapf = 0;
4176
4177                 if (!ept) {
4178                         /* Faults from kernel mode accesses to user pages */
4179                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4180
4181                         /* Not really needed: !nx will cause pte.nx to fault */
4182                         if (!mmu->nx)
4183                                 ff = 0;
4184
4185                         /* Allow supervisor writes if !cr0.wp */
4186                         if (!cr0_wp)
4187                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4188
4189                         /* Disallow supervisor fetches of user code if cr4.smep */
4190                         if (cr4_smep)
4191                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4192
4193                         /*
4194                          * SMAP:kernel-mode data accesses from user-mode
4195                          * mappings should fault. A fault is considered
4196                          * as a SMAP violation if all of the following
4197                          * conditions are true:
4198                          *   - X86_CR4_SMAP is set in CR4
4199                          *   - A user page is accessed
4200                          *   - The access is not a fetch
4201                          *   - Page fault in kernel mode
4202                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4203                          *
4204                          * Here, we cover the first three conditions.
4205                          * The fourth is computed dynamically in permission_fault();
4206                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4207                          * *not* subject to SMAP restrictions.
4208                          */
4209                         if (cr4_smap)
4210                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4211                 }
4212
4213                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4214         }
4215 }
4216
4217 /*
4218 * PKU is an additional mechanism by which the paging controls access to
4219 * user-mode addresses based on the value in the PKRU register.  Protection
4220 * key violations are reported through a bit in the page fault error code.
4221 * Unlike other bits of the error code, the PK bit is not known at the
4222 * call site of e.g. gva_to_gpa; it must be computed directly in
4223 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4224 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4225 *
4226 * In particular the following conditions come from the error code, the
4227 * page tables and the machine state:
4228 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4229 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4230 * - PK is always zero if U=0 in the page tables
4231 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4232 *
4233 * The PKRU bitmask caches the result of these four conditions.  The error
4234 * code (minus the P bit) and the page table's U bit form an index into the
4235 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4236 * with the two bits of the PKRU register corresponding to the protection key.
4237 * For the first three conditions above the bits will be 00, thus masking
4238 * away both AD and WD.  For all reads or if the last condition holds, WD
4239 * only will be masked away.
4240 */
4241 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4242                                 bool ept)
4243 {
4244         unsigned bit;
4245         bool wp;
4246
4247         if (ept) {
4248                 mmu->pkru_mask = 0;
4249                 return;
4250         }
4251
4252         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4253         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4254                 mmu->pkru_mask = 0;
4255                 return;
4256         }
4257
4258         wp = is_write_protection(vcpu);
4259
4260         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4261                 unsigned pfec, pkey_bits;
4262                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4263
4264                 pfec = bit << 1;
4265                 ff = pfec & PFERR_FETCH_MASK;
4266                 uf = pfec & PFERR_USER_MASK;
4267                 wf = pfec & PFERR_WRITE_MASK;
4268
4269                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4270                 pte_user = pfec & PFERR_RSVD_MASK;
4271
4272                 /*
4273                  * Only need to check the access which is not an
4274                  * instruction fetch and is to a user page.
4275                  */
4276                 check_pkey = (!ff && pte_user);
4277                 /*
4278                  * write access is controlled by PKRU if it is a
4279                  * user access or CR0.WP = 1.
4280                  */
4281                 check_write = check_pkey && wf && (uf || wp);
4282
4283                 /* PKRU.AD stops both read and write access. */
4284                 pkey_bits = !!check_pkey;
4285                 /* PKRU.WD stops write access. */
4286                 pkey_bits |= (!!check_write) << 1;
4287
4288                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4289         }
4290 }
4291
4292 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4293 {
4294         unsigned root_level = mmu->root_level;
4295
4296         mmu->last_nonleaf_level = root_level;
4297         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4298                 mmu->last_nonleaf_level++;
4299 }
4300
4301 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4302                                          struct kvm_mmu *context,
4303                                          int level)
4304 {
4305         context->nx = is_nx(vcpu);
4306         context->root_level = level;
4307
4308         reset_rsvds_bits_mask(vcpu, context);
4309         update_permission_bitmask(vcpu, context, false);
4310         update_pkru_bitmask(vcpu, context, false);
4311         update_last_nonleaf_level(vcpu, context);
4312
4313         MMU_WARN_ON(!is_pae(vcpu));
4314         context->page_fault = paging64_page_fault;
4315         context->gva_to_gpa = paging64_gva_to_gpa;
4316         context->sync_page = paging64_sync_page;
4317         context->invlpg = paging64_invlpg;
4318         context->update_pte = paging64_update_pte;
4319         context->shadow_root_level = level;
4320         context->direct_map = false;
4321 }
4322
4323 static void paging64_init_context(struct kvm_vcpu *vcpu,
4324                                   struct kvm_mmu *context)
4325 {
4326         int root_level = is_la57_mode(vcpu) ?
4327                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4328
4329         paging64_init_context_common(vcpu, context, root_level);
4330 }
4331
4332 static void paging32_init_context(struct kvm_vcpu *vcpu,
4333                                   struct kvm_mmu *context)
4334 {
4335         context->nx = false;
4336         context->root_level = PT32_ROOT_LEVEL;
4337
4338         reset_rsvds_bits_mask(vcpu, context);
4339         update_permission_bitmask(vcpu, context, false);
4340         update_pkru_bitmask(vcpu, context, false);
4341         update_last_nonleaf_level(vcpu, context);
4342
4343         context->page_fault = paging32_page_fault;
4344         context->gva_to_gpa = paging32_gva_to_gpa;
4345         context->sync_page = paging32_sync_page;
4346         context->invlpg = paging32_invlpg;
4347         context->update_pte = paging32_update_pte;
4348         context->shadow_root_level = PT32E_ROOT_LEVEL;
4349         context->direct_map = false;
4350 }
4351
4352 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4353                                    struct kvm_mmu *context)
4354 {
4355         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4356 }
4357
4358 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4359 {
4360         union kvm_mmu_extended_role ext = {0};
4361
4362         ext.cr0_pg = !!is_paging(vcpu);
4363         ext.cr4_pae = !!is_pae(vcpu);
4364         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4365         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4366         ext.cr4_pse = !!is_pse(vcpu);
4367         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4368         ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4369
4370         ext.valid = 1;
4371
4372         return ext;
4373 }
4374
4375 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4376                                                    bool base_only)
4377 {
4378         union kvm_mmu_role role = {0};
4379
4380         role.base.access = ACC_ALL;
4381         role.base.nxe = !!is_nx(vcpu);
4382         role.base.cr0_wp = is_write_protection(vcpu);
4383         role.base.smm = is_smm(vcpu);
4384         role.base.guest_mode = is_guest_mode(vcpu);
4385
4386         if (base_only)
4387                 return role;
4388
4389         role.ext = kvm_calc_mmu_role_ext(vcpu);
4390
4391         return role;
4392 }
4393
4394 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4395 {
4396         /* Use 5-level TDP if and only if it's useful/necessary. */
4397         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4398                 return 4;
4399
4400         return max_tdp_level;
4401 }
4402
4403 static union kvm_mmu_role
4404 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4405 {
4406         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4407
4408         role.base.ad_disabled = (shadow_accessed_mask == 0);
4409         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4410         role.base.direct = true;
4411         role.base.gpte_is_8_bytes = true;
4412
4413         return role;
4414 }
4415
4416 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4417 {
4418         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4419         union kvm_mmu_role new_role =
4420                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4421
4422         if (new_role.as_u64 == context->mmu_role.as_u64)
4423                 return;
4424
4425         context->mmu_role.as_u64 = new_role.as_u64;
4426         context->page_fault = kvm_tdp_page_fault;
4427         context->sync_page = nonpaging_sync_page;
4428         context->invlpg = NULL;
4429         context->update_pte = nonpaging_update_pte;
4430         context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4431         context->direct_map = true;
4432         context->get_guest_pgd = get_cr3;
4433         context->get_pdptr = kvm_pdptr_read;
4434         context->inject_page_fault = kvm_inject_page_fault;
4435
4436         if (!is_paging(vcpu)) {
4437                 context->nx = false;
4438                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4439                 context->root_level = 0;
4440         } else if (is_long_mode(vcpu)) {
4441                 context->nx = is_nx(vcpu);
4442                 context->root_level = is_la57_mode(vcpu) ?
4443                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4444                 reset_rsvds_bits_mask(vcpu, context);
4445                 context->gva_to_gpa = paging64_gva_to_gpa;
4446         } else if (is_pae(vcpu)) {
4447                 context->nx = is_nx(vcpu);
4448                 context->root_level = PT32E_ROOT_LEVEL;
4449                 reset_rsvds_bits_mask(vcpu, context);
4450                 context->gva_to_gpa = paging64_gva_to_gpa;
4451         } else {
4452                 context->nx = false;
4453                 context->root_level = PT32_ROOT_LEVEL;
4454                 reset_rsvds_bits_mask(vcpu, context);
4455                 context->gva_to_gpa = paging32_gva_to_gpa;
4456         }
4457
4458         update_permission_bitmask(vcpu, context, false);
4459         update_pkru_bitmask(vcpu, context, false);
4460         update_last_nonleaf_level(vcpu, context);
4461         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4462 }
4463
4464 static union kvm_mmu_role
4465 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4466 {
4467         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4468
4469         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4470                 !is_write_protection(vcpu);
4471         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4472                 !is_write_protection(vcpu);
4473         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4474
4475         return role;
4476 }
4477
4478 static union kvm_mmu_role
4479 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4480 {
4481         union kvm_mmu_role role =
4482                 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4483
4484         role.base.direct = !is_paging(vcpu);
4485
4486         if (!is_long_mode(vcpu))
4487                 role.base.level = PT32E_ROOT_LEVEL;
4488         else if (is_la57_mode(vcpu))
4489                 role.base.level = PT64_ROOT_5LEVEL;
4490         else
4491                 role.base.level = PT64_ROOT_4LEVEL;
4492
4493         return role;
4494 }
4495
4496 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4497                                     u32 cr0, u32 cr4, u32 efer,
4498                                     union kvm_mmu_role new_role)
4499 {
4500         if (!(cr0 & X86_CR0_PG))
4501                 nonpaging_init_context(vcpu, context);
4502         else if (efer & EFER_LMA)
4503                 paging64_init_context(vcpu, context);
4504         else if (cr4 & X86_CR4_PAE)
4505                 paging32E_init_context(vcpu, context);
4506         else
4507                 paging32_init_context(vcpu, context);
4508
4509         context->mmu_role.as_u64 = new_role.as_u64;
4510         reset_shadow_zero_bits_mask(vcpu, context);
4511 }
4512
4513 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4514 {
4515         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4516         union kvm_mmu_role new_role =
4517                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4518
4519         if (new_role.as_u64 != context->mmu_role.as_u64)
4520                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4521 }
4522
4523 static union kvm_mmu_role
4524 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4525 {
4526         union kvm_mmu_role role =
4527                 kvm_calc_shadow_root_page_role_common(vcpu, false);
4528
4529         role.base.direct = false;
4530         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4531
4532         return role;
4533 }
4534
4535 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4536                              gpa_t nested_cr3)
4537 {
4538         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4539         union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4540
4541         context->shadow_root_level = new_role.base.level;
4542
4543         __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4544
4545         if (new_role.as_u64 != context->mmu_role.as_u64)
4546                 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4547 }
4548 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4549
4550 static union kvm_mmu_role
4551 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4552                                    bool execonly, u8 level)
4553 {
4554         union kvm_mmu_role role = {0};
4555
4556         /* SMM flag is inherited from root_mmu */
4557         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4558
4559         role.base.level = level;
4560         role.base.gpte_is_8_bytes = true;
4561         role.base.direct = false;
4562         role.base.ad_disabled = !accessed_dirty;
4563         role.base.guest_mode = true;
4564         role.base.access = ACC_ALL;
4565
4566         /*
4567          * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4568          * SMAP variation to denote shadow EPT entries.
4569          */
4570         role.base.cr0_wp = true;
4571         role.base.smap_andnot_wp = true;
4572
4573         role.ext = kvm_calc_mmu_role_ext(vcpu);
4574         role.ext.execonly = execonly;
4575
4576         return role;
4577 }
4578
4579 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4580                              bool accessed_dirty, gpa_t new_eptp)
4581 {
4582         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4583         u8 level = vmx_eptp_page_walk_level(new_eptp);
4584         union kvm_mmu_role new_role =
4585                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4586                                                    execonly, level);
4587
4588         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4589
4590         if (new_role.as_u64 == context->mmu_role.as_u64)
4591                 return;
4592
4593         context->shadow_root_level = level;
4594
4595         context->nx = true;
4596         context->ept_ad = accessed_dirty;
4597         context->page_fault = ept_page_fault;
4598         context->gva_to_gpa = ept_gva_to_gpa;
4599         context->sync_page = ept_sync_page;
4600         context->invlpg = ept_invlpg;
4601         context->update_pte = ept_update_pte;
4602         context->root_level = level;
4603         context->direct_map = false;
4604         context->mmu_role.as_u64 = new_role.as_u64;
4605
4606         update_permission_bitmask(vcpu, context, true);
4607         update_pkru_bitmask(vcpu, context, true);
4608         update_last_nonleaf_level(vcpu, context);
4609         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4610         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4611 }
4612 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4613
4614 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4615 {
4616         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4617
4618         kvm_init_shadow_mmu(vcpu,
4619                             kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4620                             kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4621                             vcpu->arch.efer);
4622
4623         context->get_guest_pgd     = get_cr3;
4624         context->get_pdptr         = kvm_pdptr_read;
4625         context->inject_page_fault = kvm_inject_page_fault;
4626 }
4627
4628 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4629 {
4630         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4631         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4632
4633         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4634                 return;
4635
4636         g_context->mmu_role.as_u64 = new_role.as_u64;
4637         g_context->get_guest_pgd     = get_cr3;
4638         g_context->get_pdptr         = kvm_pdptr_read;
4639         g_context->inject_page_fault = kvm_inject_page_fault;
4640
4641         /*
4642          * L2 page tables are never shadowed, so there is no need to sync
4643          * SPTEs.
4644          */
4645         g_context->invlpg            = NULL;
4646
4647         /*
4648          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4649          * L1's nested page tables (e.g. EPT12). The nested translation
4650          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4651          * L2's page tables as the first level of translation and L1's
4652          * nested page tables as the second level of translation. Basically
4653          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4654          */
4655         if (!is_paging(vcpu)) {
4656                 g_context->nx = false;
4657                 g_context->root_level = 0;
4658                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4659         } else if (is_long_mode(vcpu)) {
4660                 g_context->nx = is_nx(vcpu);
4661                 g_context->root_level = is_la57_mode(vcpu) ?
4662                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4663                 reset_rsvds_bits_mask(vcpu, g_context);
4664                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4665         } else if (is_pae(vcpu)) {
4666                 g_context->nx = is_nx(vcpu);
4667                 g_context->root_level = PT32E_ROOT_LEVEL;
4668                 reset_rsvds_bits_mask(vcpu, g_context);
4669                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4670         } else {
4671                 g_context->nx = false;
4672                 g_context->root_level = PT32_ROOT_LEVEL;
4673                 reset_rsvds_bits_mask(vcpu, g_context);
4674                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4675         }
4676
4677         update_permission_bitmask(vcpu, g_context, false);
4678         update_pkru_bitmask(vcpu, g_context, false);
4679         update_last_nonleaf_level(vcpu, g_context);
4680 }
4681
4682 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4683 {
4684         if (reset_roots) {
4685                 uint i;
4686
4687                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4688
4689                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4690                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4691         }
4692
4693         if (mmu_is_nested(vcpu))
4694                 init_kvm_nested_mmu(vcpu);
4695         else if (tdp_enabled)
4696                 init_kvm_tdp_mmu(vcpu);
4697         else
4698                 init_kvm_softmmu(vcpu);
4699 }
4700 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4701
4702 static union kvm_mmu_page_role
4703 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4704 {
4705         union kvm_mmu_role role;
4706
4707         if (tdp_enabled)
4708                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4709         else
4710                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4711
4712         return role.base;
4713 }
4714
4715 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4716 {
4717         kvm_mmu_unload(vcpu);
4718         kvm_init_mmu(vcpu, true);
4719 }
4720 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4721
4722 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4723 {
4724         int r;
4725
4726         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4727         if (r)
4728                 goto out;
4729         r = mmu_alloc_roots(vcpu);
4730         kvm_mmu_sync_roots(vcpu);
4731         if (r)
4732                 goto out;
4733         kvm_mmu_load_pgd(vcpu);
4734         kvm_x86_ops.tlb_flush_current(vcpu);
4735 out:
4736         return r;
4737 }
4738 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4739
4740 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4741 {
4742         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4743         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4744         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4745         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4746 }
4747 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4748
4749 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4750                                   struct kvm_mmu_page *sp, u64 *spte,
4751                                   const void *new)
4752 {
4753         if (sp->role.level != PG_LEVEL_4K) {
4754                 ++vcpu->kvm->stat.mmu_pde_zapped;
4755                 return;
4756         }
4757
4758         ++vcpu->kvm->stat.mmu_pte_updated;
4759         vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
4760 }
4761
4762 static bool need_remote_flush(u64 old, u64 new)
4763 {
4764         if (!is_shadow_present_pte(old))
4765                 return false;
4766         if (!is_shadow_present_pte(new))
4767                 return true;
4768         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4769                 return true;
4770         old ^= shadow_nx_mask;
4771         new ^= shadow_nx_mask;
4772         return (old & ~new & PT64_PERM_MASK) != 0;
4773 }
4774
4775 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4776                                     int *bytes)
4777 {
4778         u64 gentry = 0;
4779         int r;
4780
4781         /*
4782          * Assume that the pte write on a page table of the same type
4783          * as the current vcpu paging mode since we update the sptes only
4784          * when they have the same mode.
4785          */
4786         if (is_pae(vcpu) && *bytes == 4) {
4787                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4788                 *gpa &= ~(gpa_t)7;
4789                 *bytes = 8;
4790         }
4791
4792         if (*bytes == 4 || *bytes == 8) {
4793                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4794                 if (r)
4795                         gentry = 0;
4796         }
4797
4798         return gentry;
4799 }
4800
4801 /*
4802  * If we're seeing too many writes to a page, it may no longer be a page table,
4803  * or we may be forking, in which case it is better to unmap the page.
4804  */
4805 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4806 {
4807         /*
4808          * Skip write-flooding detected for the sp whose level is 1, because
4809          * it can become unsync, then the guest page is not write-protected.
4810          */
4811         if (sp->role.level == PG_LEVEL_4K)
4812                 return false;
4813
4814         atomic_inc(&sp->write_flooding_count);
4815         return atomic_read(&sp->write_flooding_count) >= 3;
4816 }
4817
4818 /*
4819  * Misaligned accesses are too much trouble to fix up; also, they usually
4820  * indicate a page is not used as a page table.
4821  */
4822 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4823                                     int bytes)
4824 {
4825         unsigned offset, pte_size, misaligned;
4826
4827         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4828                  gpa, bytes, sp->role.word);
4829
4830         offset = offset_in_page(gpa);
4831         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4832
4833         /*
4834          * Sometimes, the OS only writes the last one bytes to update status
4835          * bits, for example, in linux, andb instruction is used in clear_bit().
4836          */
4837         if (!(offset & (pte_size - 1)) && bytes == 1)
4838                 return false;
4839
4840         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4841         misaligned |= bytes < 4;
4842
4843         return misaligned;
4844 }
4845
4846 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4847 {
4848         unsigned page_offset, quadrant;
4849         u64 *spte;
4850         int level;
4851
4852         page_offset = offset_in_page(gpa);
4853         level = sp->role.level;
4854         *nspte = 1;
4855         if (!sp->role.gpte_is_8_bytes) {
4856                 page_offset <<= 1;      /* 32->64 */
4857                 /*
4858                  * A 32-bit pde maps 4MB while the shadow pdes map
4859                  * only 2MB.  So we need to double the offset again
4860                  * and zap two pdes instead of one.
4861                  */
4862                 if (level == PT32_ROOT_LEVEL) {
4863                         page_offset &= ~7; /* kill rounding error */
4864                         page_offset <<= 1;
4865                         *nspte = 2;
4866                 }
4867                 quadrant = page_offset >> PAGE_SHIFT;
4868                 page_offset &= ~PAGE_MASK;
4869                 if (quadrant != sp->role.quadrant)
4870                         return NULL;
4871         }
4872
4873         spte = &sp->spt[page_offset / sizeof(*spte)];
4874         return spte;
4875 }
4876
4877 /*
4878  * Ignore various flags when determining if a SPTE can be immediately
4879  * overwritten for the current MMU.
4880  *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
4881  *    match the current MMU role, as MMU's level tracks the root level.
4882  *  - access: updated based on the new guest PTE
4883  *  - quadrant: handled by get_written_sptes()
4884  *  - invalid: always false (loop only walks valid shadow pages)
4885  */
4886 static const union kvm_mmu_page_role role_ign = {
4887         .level = 0xf,
4888         .access = 0x7,
4889         .quadrant = 0x3,
4890         .invalid = 0x1,
4891 };
4892
4893 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4894                               const u8 *new, int bytes,
4895                               struct kvm_page_track_notifier_node *node)
4896 {
4897         gfn_t gfn = gpa >> PAGE_SHIFT;
4898         struct kvm_mmu_page *sp;
4899         LIST_HEAD(invalid_list);
4900         u64 entry, gentry, *spte;
4901         int npte;
4902         bool remote_flush, local_flush;
4903
4904         /*
4905          * If we don't have indirect shadow pages, it means no page is
4906          * write-protected, so we can exit simply.
4907          */
4908         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4909                 return;
4910
4911         remote_flush = local_flush = false;
4912
4913         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4914
4915         /*
4916          * No need to care whether allocation memory is successful
4917          * or not since pte prefetch is skiped if it does not have
4918          * enough objects in the cache.
4919          */
4920         mmu_topup_memory_caches(vcpu, true);
4921
4922         spin_lock(&vcpu->kvm->mmu_lock);
4923
4924         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4925
4926         ++vcpu->kvm->stat.mmu_pte_write;
4927         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4928
4929         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4930                 if (detect_write_misaligned(sp, gpa, bytes) ||
4931                       detect_write_flooding(sp)) {
4932                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4933                         ++vcpu->kvm->stat.mmu_flooded;
4934                         continue;
4935                 }
4936
4937                 spte = get_written_sptes(sp, gpa, &npte);
4938                 if (!spte)
4939                         continue;
4940
4941                 local_flush = true;
4942                 while (npte--) {
4943                         u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
4944
4945                         entry = *spte;
4946                         mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
4947                         if (gentry &&
4948                             !((sp->role.word ^ base_role) & ~role_ign.word) &&
4949                             rmap_can_add(vcpu))
4950                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4951                         if (need_remote_flush(entry, *spte))
4952                                 remote_flush = true;
4953                         ++spte;
4954                 }
4955         }
4956         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4957         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4958         spin_unlock(&vcpu->kvm->mmu_lock);
4959 }
4960
4961 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4962 {
4963         gpa_t gpa;
4964         int r;
4965
4966         if (vcpu->arch.mmu->direct_map)
4967                 return 0;
4968
4969         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4970
4971         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4972
4973         return r;
4974 }
4975 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4976
4977 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
4978                        void *insn, int insn_len)
4979 {
4980         int r, emulation_type = EMULTYPE_PF;
4981         bool direct = vcpu->arch.mmu->direct_map;
4982
4983         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
4984                 return RET_PF_RETRY;
4985
4986         r = RET_PF_INVALID;
4987         if (unlikely(error_code & PFERR_RSVD_MASK)) {
4988                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
4989                 if (r == RET_PF_EMULATE)
4990                         goto emulate;
4991         }
4992
4993         if (r == RET_PF_INVALID) {
4994                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
4995                                           lower_32_bits(error_code), false);
4996                 if (WARN_ON_ONCE(r == RET_PF_INVALID))
4997                         return -EIO;
4998         }
4999
5000         if (r < 0)
5001                 return r;
5002         if (r != RET_PF_EMULATE)
5003                 return 1;
5004
5005         /*
5006          * Before emulating the instruction, check if the error code
5007          * was due to a RO violation while translating the guest page.
5008          * This can occur when using nested virtualization with nested
5009          * paging in both guests. If true, we simply unprotect the page
5010          * and resume the guest.
5011          */
5012         if (vcpu->arch.mmu->direct_map &&
5013             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5014                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5015                 return 1;
5016         }
5017
5018         /*
5019          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5020          * optimistically try to just unprotect the page and let the processor
5021          * re-execute the instruction that caused the page fault.  Do not allow
5022          * retrying MMIO emulation, as it's not only pointless but could also
5023          * cause us to enter an infinite loop because the processor will keep
5024          * faulting on the non-existent MMIO address.  Retrying an instruction
5025          * from a nested guest is also pointless and dangerous as we are only
5026          * explicitly shadowing L1's page tables, i.e. unprotecting something
5027          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5028          */
5029         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5030                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5031 emulate:
5032         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5033                                        insn_len);
5034 }
5035 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5036
5037 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5038                             gva_t gva, hpa_t root_hpa)
5039 {
5040         int i;
5041
5042         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5043         if (mmu != &vcpu->arch.guest_mmu) {
5044                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5045                 if (is_noncanonical_address(gva, vcpu))
5046                         return;
5047
5048                 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5049         }
5050
5051         if (!mmu->invlpg)
5052                 return;
5053
5054         if (root_hpa == INVALID_PAGE) {
5055                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5056
5057                 /*
5058                  * INVLPG is required to invalidate any global mappings for the VA,
5059                  * irrespective of PCID. Since it would take us roughly similar amount
5060                  * of work to determine whether any of the prev_root mappings of the VA
5061                  * is marked global, or to just sync it blindly, so we might as well
5062                  * just always sync it.
5063                  *
5064                  * Mappings not reachable via the current cr3 or the prev_roots will be
5065                  * synced when switching to that cr3, so nothing needs to be done here
5066                  * for them.
5067                  */
5068                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5069                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5070                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5071         } else {
5072                 mmu->invlpg(vcpu, gva, root_hpa);
5073         }
5074 }
5075 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5076
5077 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5078 {
5079         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5080         ++vcpu->stat.invlpg;
5081 }
5082 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5083
5084
5085 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5086 {
5087         struct kvm_mmu *mmu = vcpu->arch.mmu;
5088         bool tlb_flush = false;
5089         uint i;
5090
5091         if (pcid == kvm_get_active_pcid(vcpu)) {
5092                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5093                 tlb_flush = true;
5094         }
5095
5096         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5097                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5098                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5099                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5100                         tlb_flush = true;
5101                 }
5102         }
5103
5104         if (tlb_flush)
5105                 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5106
5107         ++vcpu->stat.invlpg;
5108
5109         /*
5110          * Mappings not reachable via the current cr3 or the prev_roots will be
5111          * synced when switching to that cr3, so nothing needs to be done here
5112          * for them.
5113          */
5114 }
5115 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5116
5117 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5118                        int tdp_huge_page_level)
5119 {
5120         tdp_enabled = enable_tdp;
5121         max_tdp_level = tdp_max_root_level;
5122
5123         /*
5124          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5125          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5126          * the kernel is not.  But, KVM never creates a page size greater than
5127          * what is used by the kernel for any given HVA, i.e. the kernel's
5128          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5129          */
5130         if (tdp_enabled)
5131                 max_huge_page_level = tdp_huge_page_level;
5132         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5133                 max_huge_page_level = PG_LEVEL_1G;
5134         else
5135                 max_huge_page_level = PG_LEVEL_2M;
5136 }
5137 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5138
5139 /* The return value indicates if tlb flush on all vcpus is needed. */
5140 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5141
5142 /* The caller should hold mmu-lock before calling this function. */
5143 static __always_inline bool
5144 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5145                         slot_level_handler fn, int start_level, int end_level,
5146                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5147 {
5148         struct slot_rmap_walk_iterator iterator;
5149         bool flush = false;
5150
5151         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5152                         end_gfn, &iterator) {
5153                 if (iterator.rmap)
5154                         flush |= fn(kvm, iterator.rmap);
5155
5156                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5157                         if (flush && lock_flush_tlb) {
5158                                 kvm_flush_remote_tlbs_with_address(kvm,
5159                                                 start_gfn,
5160                                                 iterator.gfn - start_gfn + 1);
5161                                 flush = false;
5162                         }
5163                         cond_resched_lock(&kvm->mmu_lock);
5164                 }
5165         }
5166
5167         if (flush && lock_flush_tlb) {
5168                 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5169                                                    end_gfn - start_gfn + 1);
5170                 flush = false;
5171         }
5172
5173         return flush;
5174 }
5175
5176 static __always_inline bool
5177 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5178                   slot_level_handler fn, int start_level, int end_level,
5179                   bool lock_flush_tlb)
5180 {
5181         return slot_handle_level_range(kvm, memslot, fn, start_level,
5182                         end_level, memslot->base_gfn,
5183                         memslot->base_gfn + memslot->npages - 1,
5184                         lock_flush_tlb);
5185 }
5186
5187 static __always_inline bool
5188 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5189                       slot_level_handler fn, bool lock_flush_tlb)
5190 {
5191         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5192                                  KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5193 }
5194
5195 static __always_inline bool
5196 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5197                         slot_level_handler fn, bool lock_flush_tlb)
5198 {
5199         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5200                                  KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5201 }
5202
5203 static __always_inline bool
5204 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5205                  slot_level_handler fn, bool lock_flush_tlb)
5206 {
5207         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5208                                  PG_LEVEL_4K, lock_flush_tlb);
5209 }
5210
5211 static void free_mmu_pages(struct kvm_mmu *mmu)
5212 {
5213         free_page((unsigned long)mmu->pae_root);
5214         free_page((unsigned long)mmu->lm_root);
5215 }
5216
5217 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5218 {
5219         struct page *page;
5220         int i;
5221
5222         mmu->root_hpa = INVALID_PAGE;
5223         mmu->root_pgd = 0;
5224         mmu->translate_gpa = translate_gpa;
5225         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5226                 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5227
5228         /*
5229          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5230          * while the PDP table is a per-vCPU construct that's allocated at MMU
5231          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5232          * x86_64.  Therefore we need to allocate the PDP table in the first
5233          * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5234          * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5235          * skip allocating the PDP table.
5236          */
5237         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5238                 return 0;
5239
5240         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5241         if (!page)
5242                 return -ENOMEM;
5243
5244         mmu->pae_root = page_address(page);
5245         for (i = 0; i < 4; ++i)
5246                 mmu->pae_root[i] = INVALID_PAGE;
5247
5248         return 0;
5249 }
5250
5251 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5252 {
5253         int ret;
5254
5255         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5256         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5257
5258         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5259         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5260
5261         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5262
5263         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5264         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5265
5266         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5267
5268         ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5269         if (ret)
5270                 return ret;
5271
5272         ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5273         if (ret)
5274                 goto fail_allocate_root;
5275
5276         return ret;
5277  fail_allocate_root:
5278         free_mmu_pages(&vcpu->arch.guest_mmu);
5279         return ret;
5280 }
5281
5282 #define BATCH_ZAP_PAGES 10
5283 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5284 {
5285         struct kvm_mmu_page *sp, *node;
5286         int nr_zapped, batch = 0;
5287
5288 restart:
5289         list_for_each_entry_safe_reverse(sp, node,
5290               &kvm->arch.active_mmu_pages, link) {
5291                 /*
5292                  * No obsolete valid page exists before a newly created page
5293                  * since active_mmu_pages is a FIFO list.
5294                  */
5295                 if (!is_obsolete_sp(kvm, sp))
5296                         break;
5297
5298                 /*
5299                  * Invalid pages should never land back on the list of active
5300                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
5301                  * infinite loop if the page gets put back on the list (again).
5302                  */
5303                 if (WARN_ON(sp->role.invalid))
5304                         continue;
5305
5306                 /*
5307                  * No need to flush the TLB since we're only zapping shadow
5308                  * pages with an obsolete generation number and all vCPUS have
5309                  * loaded a new root, i.e. the shadow pages being zapped cannot
5310                  * be in active use by the guest.
5311                  */
5312                 if (batch >= BATCH_ZAP_PAGES &&
5313                     cond_resched_lock(&kvm->mmu_lock)) {
5314                         batch = 0;
5315                         goto restart;
5316                 }
5317
5318                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5319                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5320                         batch += nr_zapped;
5321                         goto restart;
5322                 }
5323         }
5324
5325         /*
5326          * Trigger a remote TLB flush before freeing the page tables to ensure
5327          * KVM is not in the middle of a lockless shadow page table walk, which
5328          * may reference the pages.
5329          */
5330         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5331 }
5332
5333 /*
5334  * Fast invalidate all shadow pages and use lock-break technique
5335  * to zap obsolete pages.
5336  *
5337  * It's required when memslot is being deleted or VM is being
5338  * destroyed, in these cases, we should ensure that KVM MMU does
5339  * not use any resource of the being-deleted slot or all slots
5340  * after calling the function.
5341  */
5342 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5343 {
5344         lockdep_assert_held(&kvm->slots_lock);
5345
5346         spin_lock(&kvm->mmu_lock);
5347         trace_kvm_mmu_zap_all_fast(kvm);
5348
5349         /*
5350          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5351          * held for the entire duration of zapping obsolete pages, it's
5352          * impossible for there to be multiple invalid generations associated
5353          * with *valid* shadow pages at any given time, i.e. there is exactly
5354          * one valid generation and (at most) one invalid generation.
5355          */
5356         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5357
5358         /*
5359          * Notify all vcpus to reload its shadow page table and flush TLB.
5360          * Then all vcpus will switch to new shadow page table with the new
5361          * mmu_valid_gen.
5362          *
5363          * Note: we need to do this under the protection of mmu_lock,
5364          * otherwise, vcpu would purge shadow page but miss tlb flush.
5365          */
5366         kvm_reload_remote_mmus(kvm);
5367
5368         kvm_zap_obsolete_pages(kvm);
5369
5370         if (kvm->arch.tdp_mmu_enabled)
5371                 kvm_tdp_mmu_zap_all(kvm);
5372
5373         spin_unlock(&kvm->mmu_lock);
5374 }
5375
5376 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5377 {
5378         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5379 }
5380
5381 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5382                         struct kvm_memory_slot *slot,
5383                         struct kvm_page_track_notifier_node *node)
5384 {
5385         kvm_mmu_zap_all_fast(kvm);
5386 }
5387
5388 void kvm_mmu_init_vm(struct kvm *kvm)
5389 {
5390         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5391
5392         kvm_mmu_init_tdp_mmu(kvm);
5393
5394         node->track_write = kvm_mmu_pte_write;
5395         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5396         kvm_page_track_register_notifier(kvm, node);
5397 }
5398
5399 void kvm_mmu_uninit_vm(struct kvm *kvm)
5400 {
5401         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5402
5403         kvm_page_track_unregister_notifier(kvm, node);
5404
5405         kvm_mmu_uninit_tdp_mmu(kvm);
5406 }
5407
5408 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5409 {
5410         struct kvm_memslots *slots;
5411         struct kvm_memory_slot *memslot;
5412         int i;
5413         bool flush;
5414
5415         spin_lock(&kvm->mmu_lock);
5416         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5417                 slots = __kvm_memslots(kvm, i);
5418                 kvm_for_each_memslot(memslot, slots) {
5419                         gfn_t start, end;
5420
5421                         start = max(gfn_start, memslot->base_gfn);
5422                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5423                         if (start >= end)
5424                                 continue;
5425
5426                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5427                                                 PG_LEVEL_4K,
5428                                                 KVM_MAX_HUGEPAGE_LEVEL,
5429                                                 start, end - 1, true);
5430                 }
5431         }
5432
5433         if (kvm->arch.tdp_mmu_enabled) {
5434                 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5435                 if (flush)
5436                         kvm_flush_remote_tlbs(kvm);
5437         }
5438
5439         spin_unlock(&kvm->mmu_lock);
5440 }
5441
5442 static bool slot_rmap_write_protect(struct kvm *kvm,
5443                                     struct kvm_rmap_head *rmap_head)
5444 {
5445         return __rmap_write_protect(kvm, rmap_head, false);
5446 }
5447
5448 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5449                                       struct kvm_memory_slot *memslot,
5450                                       int start_level)
5451 {
5452         bool flush;
5453
5454         spin_lock(&kvm->mmu_lock);
5455         flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5456                                 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5457         spin_unlock(&kvm->mmu_lock);
5458
5459         /*
5460          * We can flush all the TLBs out of the mmu lock without TLB
5461          * corruption since we just change the spte from writable to
5462          * readonly so that we only need to care the case of changing
5463          * spte from present to present (changing the spte from present
5464          * to nonpresent will flush all the TLBs immediately), in other
5465          * words, the only case we care is mmu_spte_update() where we
5466          * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5467          * instead of PT_WRITABLE_MASK, that means it does not depend
5468          * on PT_WRITABLE_MASK anymore.
5469          */
5470         if (flush)
5471                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5472 }
5473
5474 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5475                                          struct kvm_rmap_head *rmap_head)
5476 {
5477         u64 *sptep;
5478         struct rmap_iterator iter;
5479         int need_tlb_flush = 0;
5480         kvm_pfn_t pfn;
5481         struct kvm_mmu_page *sp;
5482
5483 restart:
5484         for_each_rmap_spte(rmap_head, &iter, sptep) {
5485                 sp = sptep_to_sp(sptep);
5486                 pfn = spte_to_pfn(*sptep);
5487
5488                 /*
5489                  * We cannot do huge page mapping for indirect shadow pages,
5490                  * which are found on the last rmap (level = 1) when not using
5491                  * tdp; such shadow pages are synced with the page table in
5492                  * the guest, and the guest page table is using 4K page size
5493                  * mapping if the indirect sp has level = 1.
5494                  */
5495                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5496                     (kvm_is_zone_device_pfn(pfn) ||
5497                      PageCompound(pfn_to_page(pfn)))) {
5498                         pte_list_remove(rmap_head, sptep);
5499
5500                         if (kvm_available_flush_tlb_with_range())
5501                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5502                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5503                         else
5504                                 need_tlb_flush = 1;
5505
5506                         goto restart;
5507                 }
5508         }
5509
5510         return need_tlb_flush;
5511 }
5512
5513 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5514                                    const struct kvm_memory_slot *memslot)
5515 {
5516         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5517         spin_lock(&kvm->mmu_lock);
5518         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5519                          kvm_mmu_zap_collapsible_spte, true);
5520         spin_unlock(&kvm->mmu_lock);
5521 }
5522
5523 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5524                                         struct kvm_memory_slot *memslot)
5525 {
5526         /*
5527          * All current use cases for flushing the TLBs for a specific memslot
5528          * are related to dirty logging, and do the TLB flush out of mmu_lock.
5529          * The interaction between the various operations on memslot must be
5530          * serialized by slots_locks to ensure the TLB flush from one operation
5531          * is observed by any other operation on the same memslot.
5532          */
5533         lockdep_assert_held(&kvm->slots_lock);
5534         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5535                                            memslot->npages);
5536 }
5537
5538 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5539                                    struct kvm_memory_slot *memslot)
5540 {
5541         bool flush;
5542
5543         spin_lock(&kvm->mmu_lock);
5544         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5545         spin_unlock(&kvm->mmu_lock);
5546
5547         /*
5548          * It's also safe to flush TLBs out of mmu lock here as currently this
5549          * function is only used for dirty logging, in which case flushing TLB
5550          * out of mmu lock also guarantees no dirty pages will be lost in
5551          * dirty_bitmap.
5552          */
5553         if (flush)
5554                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5555 }
5556 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5557
5558 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5559                                         struct kvm_memory_slot *memslot)
5560 {
5561         bool flush;
5562
5563         spin_lock(&kvm->mmu_lock);
5564         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5565                                         false);
5566         spin_unlock(&kvm->mmu_lock);
5567
5568         if (flush)
5569                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5570 }
5571 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5572
5573 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5574                             struct kvm_memory_slot *memslot)
5575 {
5576         bool flush;
5577
5578         spin_lock(&kvm->mmu_lock);
5579         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5580         spin_unlock(&kvm->mmu_lock);
5581
5582         if (flush)
5583                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5584 }
5585 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5586
5587 void kvm_mmu_zap_all(struct kvm *kvm)
5588 {
5589         struct kvm_mmu_page *sp, *node;
5590         LIST_HEAD(invalid_list);
5591         int ign;
5592
5593         spin_lock(&kvm->mmu_lock);
5594 restart:
5595         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5596                 if (WARN_ON(sp->role.invalid))
5597                         continue;
5598                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5599                         goto restart;
5600                 if (cond_resched_lock(&kvm->mmu_lock))
5601                         goto restart;
5602         }
5603
5604         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5605
5606         if (kvm->arch.tdp_mmu_enabled)
5607                 kvm_tdp_mmu_zap_all(kvm);
5608
5609         spin_unlock(&kvm->mmu_lock);
5610 }
5611
5612 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5613 {
5614         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5615
5616         gen &= MMIO_SPTE_GEN_MASK;
5617
5618         /*
5619          * Generation numbers are incremented in multiples of the number of
5620          * address spaces in order to provide unique generations across all
5621          * address spaces.  Strip what is effectively the address space
5622          * modifier prior to checking for a wrap of the MMIO generation so
5623          * that a wrap in any address space is detected.
5624          */
5625         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5626
5627         /*
5628          * The very rare case: if the MMIO generation number has wrapped,
5629          * zap all shadow pages.
5630          */
5631         if (unlikely(gen == 0)) {
5632                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5633                 kvm_mmu_zap_all_fast(kvm);
5634         }
5635 }
5636
5637 static unsigned long
5638 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5639 {
5640         struct kvm *kvm;
5641         int nr_to_scan = sc->nr_to_scan;
5642         unsigned long freed = 0;
5643
5644         mutex_lock(&kvm_lock);
5645
5646         list_for_each_entry(kvm, &vm_list, vm_list) {
5647                 int idx;
5648                 LIST_HEAD(invalid_list);
5649
5650                 /*
5651                  * Never scan more than sc->nr_to_scan VM instances.
5652                  * Will not hit this condition practically since we do not try
5653                  * to shrink more than one VM and it is very unlikely to see
5654                  * !n_used_mmu_pages so many times.
5655                  */
5656                 if (!nr_to_scan--)
5657                         break;
5658                 /*
5659                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5660                  * here. We may skip a VM instance errorneosly, but we do not
5661                  * want to shrink a VM that only started to populate its MMU
5662                  * anyway.
5663                  */
5664                 if (!kvm->arch.n_used_mmu_pages &&
5665                     !kvm_has_zapped_obsolete_pages(kvm))
5666                         continue;
5667
5668                 idx = srcu_read_lock(&kvm->srcu);
5669                 spin_lock(&kvm->mmu_lock);
5670
5671                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5672                         kvm_mmu_commit_zap_page(kvm,
5673                               &kvm->arch.zapped_obsolete_pages);
5674                         goto unlock;
5675                 }
5676
5677                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5678
5679 unlock:
5680                 spin_unlock(&kvm->mmu_lock);
5681                 srcu_read_unlock(&kvm->srcu, idx);
5682
5683                 /*
5684                  * unfair on small ones
5685                  * per-vm shrinkers cry out
5686                  * sadness comes quickly
5687                  */
5688                 list_move_tail(&kvm->vm_list, &vm_list);
5689                 break;
5690         }
5691
5692         mutex_unlock(&kvm_lock);
5693         return freed;
5694 }
5695
5696 static unsigned long
5697 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5698 {
5699         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5700 }
5701
5702 static struct shrinker mmu_shrinker = {
5703         .count_objects = mmu_shrink_count,
5704         .scan_objects = mmu_shrink_scan,
5705         .seeks = DEFAULT_SEEKS * 10,
5706 };
5707
5708 static void mmu_destroy_caches(void)
5709 {
5710         kmem_cache_destroy(pte_list_desc_cache);
5711         kmem_cache_destroy(mmu_page_header_cache);
5712 }
5713
5714 static void kvm_set_mmio_spte_mask(void)
5715 {
5716         u64 mask;
5717
5718         /*
5719          * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5720          * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
5721          * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5722          * 52-bit physical addresses then there are no reserved PA bits in the
5723          * PTEs and so the reserved PA approach must be disabled.
5724          */
5725         if (shadow_phys_bits < 52)
5726                 mask = BIT_ULL(51) | PT_PRESENT_MASK;
5727         else
5728                 mask = 0;
5729
5730         kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5731 }
5732
5733 static bool get_nx_auto_mode(void)
5734 {
5735         /* Return true when CPU has the bug, and mitigations are ON */
5736         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5737 }
5738
5739 static void __set_nx_huge_pages(bool val)
5740 {
5741         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5742 }
5743
5744 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5745 {
5746         bool old_val = nx_huge_pages;
5747         bool new_val;
5748
5749         /* In "auto" mode deploy workaround only if CPU has the bug. */
5750         if (sysfs_streq(val, "off"))
5751                 new_val = 0;
5752         else if (sysfs_streq(val, "force"))
5753                 new_val = 1;
5754         else if (sysfs_streq(val, "auto"))
5755                 new_val = get_nx_auto_mode();
5756         else if (strtobool(val, &new_val) < 0)
5757                 return -EINVAL;
5758
5759         __set_nx_huge_pages(new_val);
5760
5761         if (new_val != old_val) {
5762                 struct kvm *kvm;
5763
5764                 mutex_lock(&kvm_lock);
5765
5766                 list_for_each_entry(kvm, &vm_list, vm_list) {
5767                         mutex_lock(&kvm->slots_lock);
5768                         kvm_mmu_zap_all_fast(kvm);
5769                         mutex_unlock(&kvm->slots_lock);
5770
5771                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5772                 }
5773                 mutex_unlock(&kvm_lock);
5774         }
5775
5776         return 0;
5777 }
5778
5779 int kvm_mmu_module_init(void)
5780 {
5781         int ret = -ENOMEM;
5782
5783         if (nx_huge_pages == -1)
5784                 __set_nx_huge_pages(get_nx_auto_mode());
5785
5786         /*
5787          * MMU roles use union aliasing which is, generally speaking, an
5788          * undefined behavior. However, we supposedly know how compilers behave
5789          * and the current status quo is unlikely to change. Guardians below are
5790          * supposed to let us know if the assumption becomes false.
5791          */
5792         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5793         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5794         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5795
5796         kvm_mmu_reset_all_pte_masks();
5797
5798         kvm_set_mmio_spte_mask();
5799
5800         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5801                                             sizeof(struct pte_list_desc),
5802                                             0, SLAB_ACCOUNT, NULL);
5803         if (!pte_list_desc_cache)
5804                 goto out;
5805
5806         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5807                                                   sizeof(struct kvm_mmu_page),
5808                                                   0, SLAB_ACCOUNT, NULL);
5809         if (!mmu_page_header_cache)
5810                 goto out;
5811
5812         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5813                 goto out;
5814
5815         ret = register_shrinker(&mmu_shrinker);
5816         if (ret)
5817                 goto out;
5818
5819         return 0;
5820
5821 out:
5822         mmu_destroy_caches();
5823         return ret;
5824 }
5825
5826 /*
5827  * Calculate mmu pages needed for kvm.
5828  */
5829 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5830 {
5831         unsigned long nr_mmu_pages;
5832         unsigned long nr_pages = 0;
5833         struct kvm_memslots *slots;
5834         struct kvm_memory_slot *memslot;
5835         int i;
5836
5837         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5838                 slots = __kvm_memslots(kvm, i);
5839
5840                 kvm_for_each_memslot(memslot, slots)
5841                         nr_pages += memslot->npages;
5842         }
5843
5844         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5845         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5846
5847         return nr_mmu_pages;
5848 }
5849
5850 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5851 {
5852         kvm_mmu_unload(vcpu);
5853         free_mmu_pages(&vcpu->arch.root_mmu);
5854         free_mmu_pages(&vcpu->arch.guest_mmu);
5855         mmu_free_memory_caches(vcpu);
5856 }
5857
5858 void kvm_mmu_module_exit(void)
5859 {
5860         mmu_destroy_caches();
5861         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5862         unregister_shrinker(&mmu_shrinker);
5863         mmu_audit_disable();
5864 }
5865
5866 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5867 {
5868         unsigned int old_val;
5869         int err;
5870
5871         old_val = nx_huge_pages_recovery_ratio;
5872         err = param_set_uint(val, kp);
5873         if (err)
5874                 return err;
5875
5876         if (READ_ONCE(nx_huge_pages) &&
5877             !old_val && nx_huge_pages_recovery_ratio) {
5878                 struct kvm *kvm;
5879
5880                 mutex_lock(&kvm_lock);
5881
5882                 list_for_each_entry(kvm, &vm_list, vm_list)
5883                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5884
5885                 mutex_unlock(&kvm_lock);
5886         }
5887
5888         return err;
5889 }
5890
5891 static void kvm_recover_nx_lpages(struct kvm *kvm)
5892 {
5893         int rcu_idx;
5894         struct kvm_mmu_page *sp;
5895         unsigned int ratio;
5896         LIST_HEAD(invalid_list);
5897         ulong to_zap;
5898
5899         rcu_idx = srcu_read_lock(&kvm->srcu);
5900         spin_lock(&kvm->mmu_lock);
5901
5902         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5903         to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5904         for ( ; to_zap; --to_zap) {
5905                 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5906                         break;
5907
5908                 /*
5909                  * We use a separate list instead of just using active_mmu_pages
5910                  * because the number of lpage_disallowed pages is expected to
5911                  * be relatively small compared to the total.
5912                  */
5913                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5914                                       struct kvm_mmu_page,
5915                                       lpage_disallowed_link);
5916                 WARN_ON_ONCE(!sp->lpage_disallowed);
5917                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5918                 WARN_ON_ONCE(sp->lpage_disallowed);
5919
5920                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5921                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5922                         cond_resched_lock(&kvm->mmu_lock);
5923                 }
5924         }
5925         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5926
5927         spin_unlock(&kvm->mmu_lock);
5928         srcu_read_unlock(&kvm->srcu, rcu_idx);
5929 }
5930
5931 static long get_nx_lpage_recovery_timeout(u64 start_time)
5932 {
5933         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
5934                 ? start_time + 60 * HZ - get_jiffies_64()
5935                 : MAX_SCHEDULE_TIMEOUT;
5936 }
5937
5938 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
5939 {
5940         u64 start_time;
5941         long remaining_time;
5942
5943         while (true) {
5944                 start_time = get_jiffies_64();
5945                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
5946
5947                 set_current_state(TASK_INTERRUPTIBLE);
5948                 while (!kthread_should_stop() && remaining_time > 0) {
5949                         schedule_timeout(remaining_time);
5950                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
5951                         set_current_state(TASK_INTERRUPTIBLE);
5952                 }
5953
5954                 set_current_state(TASK_RUNNING);
5955
5956                 if (kthread_should_stop())
5957                         return 0;
5958
5959                 kvm_recover_nx_lpages(kvm);
5960         }
5961 }
5962
5963 int kvm_mmu_post_init_vm(struct kvm *kvm)
5964 {
5965         int err;
5966
5967         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
5968                                           "kvm-nx-lpage-recovery",
5969                                           &kvm->arch.nx_lpage_recovery_thread);
5970         if (!err)
5971                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
5972
5973         return err;
5974 }
5975
5976 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
5977 {
5978         if (kvm->arch.nx_lpage_recovery_thread)
5979                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
5980 }