Linux 6.9-rc1
[linux-2.6-microblaze.git] / arch / x86 / kvm / i8254.c
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  *
28  * Authors:
29  *   Sheng Yang <sheng.yang@intel.com>
30  *   Based on QEMU and Xen.
31  */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37
38 #include "ioapic.h"
39 #include "irq.h"
40 #include "i8254.h"
41 #include "x86.h"
42
43 #ifndef CONFIG_X86_64
44 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
45 #else
46 #define mod_64(x, y) ((x) % (y))
47 #endif
48
49 #define RW_STATE_LSB 1
50 #define RW_STATE_MSB 2
51 #define RW_STATE_WORD0 3
52 #define RW_STATE_WORD1 4
53
54 static void pit_set_gate(struct kvm_pit *pit, int channel, u32 val)
55 {
56         struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
57
58         switch (c->mode) {
59         default:
60         case 0:
61         case 4:
62                 /* XXX: just disable/enable counting */
63                 break;
64         case 1:
65         case 2:
66         case 3:
67         case 5:
68                 /* Restart counting on rising edge. */
69                 if (c->gate < val)
70                         c->count_load_time = ktime_get();
71                 break;
72         }
73
74         c->gate = val;
75 }
76
77 static int pit_get_gate(struct kvm_pit *pit, int channel)
78 {
79         return pit->pit_state.channels[channel].gate;
80 }
81
82 static s64 __kpit_elapsed(struct kvm_pit *pit)
83 {
84         s64 elapsed;
85         ktime_t remaining;
86         struct kvm_kpit_state *ps = &pit->pit_state;
87
88         if (!ps->period)
89                 return 0;
90
91         /*
92          * The Counter does not stop when it reaches zero. In
93          * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
94          * the highest count, either FFFF hex for binary counting
95          * or 9999 for BCD counting, and continues counting.
96          * Modes 2 and 3 are periodic; the Counter reloads
97          * itself with the initial count and continues counting
98          * from there.
99          */
100         remaining = hrtimer_get_remaining(&ps->timer);
101         elapsed = ps->period - ktime_to_ns(remaining);
102
103         return elapsed;
104 }
105
106 static s64 kpit_elapsed(struct kvm_pit *pit, struct kvm_kpit_channel_state *c,
107                         int channel)
108 {
109         if (channel == 0)
110                 return __kpit_elapsed(pit);
111
112         return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
113 }
114
115 static int pit_get_count(struct kvm_pit *pit, int channel)
116 {
117         struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
118         s64 d, t;
119         int counter;
120
121         t = kpit_elapsed(pit, c, channel);
122         d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
123
124         switch (c->mode) {
125         case 0:
126         case 1:
127         case 4:
128         case 5:
129                 counter = (c->count - d) & 0xffff;
130                 break;
131         case 3:
132                 /* XXX: may be incorrect for odd counts */
133                 counter = c->count - (mod_64((2 * d), c->count));
134                 break;
135         default:
136                 counter = c->count - mod_64(d, c->count);
137                 break;
138         }
139         return counter;
140 }
141
142 static int pit_get_out(struct kvm_pit *pit, int channel)
143 {
144         struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
145         s64 d, t;
146         int out;
147
148         t = kpit_elapsed(pit, c, channel);
149         d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
150
151         switch (c->mode) {
152         default:
153         case 0:
154                 out = (d >= c->count);
155                 break;
156         case 1:
157                 out = (d < c->count);
158                 break;
159         case 2:
160                 out = ((mod_64(d, c->count) == 0) && (d != 0));
161                 break;
162         case 3:
163                 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
164                 break;
165         case 4:
166         case 5:
167                 out = (d == c->count);
168                 break;
169         }
170
171         return out;
172 }
173
174 static void pit_latch_count(struct kvm_pit *pit, int channel)
175 {
176         struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
177
178         if (!c->count_latched) {
179                 c->latched_count = pit_get_count(pit, channel);
180                 c->count_latched = c->rw_mode;
181         }
182 }
183
184 static void pit_latch_status(struct kvm_pit *pit, int channel)
185 {
186         struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
187
188         if (!c->status_latched) {
189                 /* TODO: Return NULL COUNT (bit 6). */
190                 c->status = ((pit_get_out(pit, channel) << 7) |
191                                 (c->rw_mode << 4) |
192                                 (c->mode << 1) |
193                                 c->bcd);
194                 c->status_latched = 1;
195         }
196 }
197
198 static inline struct kvm_pit *pit_state_to_pit(struct kvm_kpit_state *ps)
199 {
200         return container_of(ps, struct kvm_pit, pit_state);
201 }
202
203 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
204 {
205         struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
206                                                  irq_ack_notifier);
207         struct kvm_pit *pit = pit_state_to_pit(ps);
208
209         atomic_set(&ps->irq_ack, 1);
210         /* irq_ack should be set before pending is read.  Order accesses with
211          * inc(pending) in pit_timer_fn and xchg(irq_ack, 0) in pit_do_work.
212          */
213         smp_mb();
214         if (atomic_dec_if_positive(&ps->pending) > 0)
215                 kthread_queue_work(pit->worker, &pit->expired);
216 }
217
218 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
219 {
220         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
221         struct hrtimer *timer;
222
223         /* Somewhat arbitrarily make vcpu0 the owner of the PIT. */
224         if (vcpu->vcpu_id || !pit)
225                 return;
226
227         timer = &pit->pit_state.timer;
228         mutex_lock(&pit->pit_state.lock);
229         if (hrtimer_cancel(timer))
230                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
231         mutex_unlock(&pit->pit_state.lock);
232 }
233
234 static void destroy_pit_timer(struct kvm_pit *pit)
235 {
236         hrtimer_cancel(&pit->pit_state.timer);
237         kthread_flush_work(&pit->expired);
238 }
239
240 static void pit_do_work(struct kthread_work *work)
241 {
242         struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
243         struct kvm *kvm = pit->kvm;
244         struct kvm_vcpu *vcpu;
245         unsigned long i;
246         struct kvm_kpit_state *ps = &pit->pit_state;
247
248         if (atomic_read(&ps->reinject) && !atomic_xchg(&ps->irq_ack, 0))
249                 return;
250
251         kvm_set_irq(kvm, pit->irq_source_id, 0, 1, false);
252         kvm_set_irq(kvm, pit->irq_source_id, 0, 0, false);
253
254         /*
255          * Provides NMI watchdog support via Virtual Wire mode.
256          * The route is: PIT -> LVT0 in NMI mode.
257          *
258          * Note: Our Virtual Wire implementation does not follow
259          * the MP specification.  We propagate a PIT interrupt to all
260          * VCPUs and only when LVT0 is in NMI mode.  The interrupt can
261          * also be simultaneously delivered through PIC and IOAPIC.
262          */
263         if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
264                 kvm_for_each_vcpu(i, vcpu, kvm)
265                         kvm_apic_nmi_wd_deliver(vcpu);
266 }
267
268 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
269 {
270         struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
271         struct kvm_pit *pt = pit_state_to_pit(ps);
272
273         if (atomic_read(&ps->reinject))
274                 atomic_inc(&ps->pending);
275
276         kthread_queue_work(pt->worker, &pt->expired);
277
278         if (ps->is_periodic) {
279                 hrtimer_add_expires_ns(&ps->timer, ps->period);
280                 return HRTIMER_RESTART;
281         } else
282                 return HRTIMER_NORESTART;
283 }
284
285 static inline void kvm_pit_reset_reinject(struct kvm_pit *pit)
286 {
287         atomic_set(&pit->pit_state.pending, 0);
288         atomic_set(&pit->pit_state.irq_ack, 1);
289 }
290
291 void kvm_pit_set_reinject(struct kvm_pit *pit, bool reinject)
292 {
293         struct kvm_kpit_state *ps = &pit->pit_state;
294         struct kvm *kvm = pit->kvm;
295
296         if (atomic_read(&ps->reinject) == reinject)
297                 return;
298
299         /*
300          * AMD SVM AVIC accelerates EOI write and does not trap.
301          * This cause in-kernel PIT re-inject mode to fail
302          * since it checks ps->irq_ack before kvm_set_irq()
303          * and relies on the ack notifier to timely queue
304          * the pt->worker work iterm and reinject the missed tick.
305          * So, deactivate APICv when PIT is in reinject mode.
306          */
307         if (reinject) {
308                 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PIT_REINJ);
309                 /* The initial state is preserved while ps->reinject == 0. */
310                 kvm_pit_reset_reinject(pit);
311                 kvm_register_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
312                 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
313         } else {
314                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PIT_REINJ);
315                 kvm_unregister_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
316                 kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
317         }
318
319         atomic_set(&ps->reinject, reinject);
320 }
321
322 static void create_pit_timer(struct kvm_pit *pit, u32 val, int is_period)
323 {
324         struct kvm_kpit_state *ps = &pit->pit_state;
325         struct kvm *kvm = pit->kvm;
326         s64 interval;
327
328         if (!ioapic_in_kernel(kvm) ||
329             ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
330                 return;
331
332         interval = mul_u64_u32_div(val, NSEC_PER_SEC, KVM_PIT_FREQ);
333
334         pr_debug("create pit timer, interval is %llu nsec\n", interval);
335
336         /* TODO The new value only affected after the retriggered */
337         hrtimer_cancel(&ps->timer);
338         kthread_flush_work(&pit->expired);
339         ps->period = interval;
340         ps->is_periodic = is_period;
341
342         kvm_pit_reset_reinject(pit);
343
344         /*
345          * Do not allow the guest to program periodic timers with small
346          * interval, since the hrtimers are not throttled by the host
347          * scheduler.
348          */
349         if (ps->is_periodic) {
350                 s64 min_period = min_timer_period_us * 1000LL;
351
352                 if (ps->period < min_period) {
353                         pr_info_ratelimited(
354                             "requested %lld ns "
355                             "i8254 timer period limited to %lld ns\n",
356                             ps->period, min_period);
357                         ps->period = min_period;
358                 }
359         }
360
361         hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
362                       HRTIMER_MODE_ABS);
363 }
364
365 static void pit_load_count(struct kvm_pit *pit, int channel, u32 val)
366 {
367         struct kvm_kpit_state *ps = &pit->pit_state;
368
369         pr_debug("load_count val is %u, channel is %d\n", val, channel);
370
371         /*
372          * The largest possible initial count is 0; this is equivalent
373          * to 216 for binary counting and 104 for BCD counting.
374          */
375         if (val == 0)
376                 val = 0x10000;
377
378         ps->channels[channel].count = val;
379
380         if (channel != 0) {
381                 ps->channels[channel].count_load_time = ktime_get();
382                 return;
383         }
384
385         /* Two types of timer
386          * mode 1 is one shot, mode 2 is period, otherwise del timer */
387         switch (ps->channels[0].mode) {
388         case 0:
389         case 1:
390         /* FIXME: enhance mode 4 precision */
391         case 4:
392                 create_pit_timer(pit, val, 0);
393                 break;
394         case 2:
395         case 3:
396                 create_pit_timer(pit, val, 1);
397                 break;
398         default:
399                 destroy_pit_timer(pit);
400         }
401 }
402
403 void kvm_pit_load_count(struct kvm_pit *pit, int channel, u32 val,
404                 int hpet_legacy_start)
405 {
406         u8 saved_mode;
407
408         WARN_ON_ONCE(!mutex_is_locked(&pit->pit_state.lock));
409
410         if (hpet_legacy_start) {
411                 /* save existing mode for later reenablement */
412                 WARN_ON(channel != 0);
413                 saved_mode = pit->pit_state.channels[0].mode;
414                 pit->pit_state.channels[0].mode = 0xff; /* disable timer */
415                 pit_load_count(pit, channel, val);
416                 pit->pit_state.channels[0].mode = saved_mode;
417         } else {
418                 pit_load_count(pit, channel, val);
419         }
420 }
421
422 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
423 {
424         return container_of(dev, struct kvm_pit, dev);
425 }
426
427 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
428 {
429         return container_of(dev, struct kvm_pit, speaker_dev);
430 }
431
432 static inline int pit_in_range(gpa_t addr)
433 {
434         return ((addr >= KVM_PIT_BASE_ADDRESS) &&
435                 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
436 }
437
438 static int pit_ioport_write(struct kvm_vcpu *vcpu,
439                                 struct kvm_io_device *this,
440                             gpa_t addr, int len, const void *data)
441 {
442         struct kvm_pit *pit = dev_to_pit(this);
443         struct kvm_kpit_state *pit_state = &pit->pit_state;
444         int channel, access;
445         struct kvm_kpit_channel_state *s;
446         u32 val = *(u32 *) data;
447         if (!pit_in_range(addr))
448                 return -EOPNOTSUPP;
449
450         val  &= 0xff;
451         addr &= KVM_PIT_CHANNEL_MASK;
452
453         mutex_lock(&pit_state->lock);
454
455         if (val != 0)
456                 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
457                          (unsigned int)addr, len, val);
458
459         if (addr == 3) {
460                 channel = val >> 6;
461                 if (channel == 3) {
462                         /* Read-Back Command. */
463                         for (channel = 0; channel < 3; channel++) {
464                                 if (val & (2 << channel)) {
465                                         if (!(val & 0x20))
466                                                 pit_latch_count(pit, channel);
467                                         if (!(val & 0x10))
468                                                 pit_latch_status(pit, channel);
469                                 }
470                         }
471                 } else {
472                         /* Select Counter <channel>. */
473                         s = &pit_state->channels[channel];
474                         access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
475                         if (access == 0) {
476                                 pit_latch_count(pit, channel);
477                         } else {
478                                 s->rw_mode = access;
479                                 s->read_state = access;
480                                 s->write_state = access;
481                                 s->mode = (val >> 1) & 7;
482                                 if (s->mode > 5)
483                                         s->mode -= 4;
484                                 s->bcd = val & 1;
485                         }
486                 }
487         } else {
488                 /* Write Count. */
489                 s = &pit_state->channels[addr];
490                 switch (s->write_state) {
491                 default:
492                 case RW_STATE_LSB:
493                         pit_load_count(pit, addr, val);
494                         break;
495                 case RW_STATE_MSB:
496                         pit_load_count(pit, addr, val << 8);
497                         break;
498                 case RW_STATE_WORD0:
499                         s->write_latch = val;
500                         s->write_state = RW_STATE_WORD1;
501                         break;
502                 case RW_STATE_WORD1:
503                         pit_load_count(pit, addr, s->write_latch | (val << 8));
504                         s->write_state = RW_STATE_WORD0;
505                         break;
506                 }
507         }
508
509         mutex_unlock(&pit_state->lock);
510         return 0;
511 }
512
513 static int pit_ioport_read(struct kvm_vcpu *vcpu,
514                            struct kvm_io_device *this,
515                            gpa_t addr, int len, void *data)
516 {
517         struct kvm_pit *pit = dev_to_pit(this);
518         struct kvm_kpit_state *pit_state = &pit->pit_state;
519         int ret, count;
520         struct kvm_kpit_channel_state *s;
521         if (!pit_in_range(addr))
522                 return -EOPNOTSUPP;
523
524         addr &= KVM_PIT_CHANNEL_MASK;
525         if (addr == 3)
526                 return 0;
527
528         s = &pit_state->channels[addr];
529
530         mutex_lock(&pit_state->lock);
531
532         if (s->status_latched) {
533                 s->status_latched = 0;
534                 ret = s->status;
535         } else if (s->count_latched) {
536                 switch (s->count_latched) {
537                 default:
538                 case RW_STATE_LSB:
539                         ret = s->latched_count & 0xff;
540                         s->count_latched = 0;
541                         break;
542                 case RW_STATE_MSB:
543                         ret = s->latched_count >> 8;
544                         s->count_latched = 0;
545                         break;
546                 case RW_STATE_WORD0:
547                         ret = s->latched_count & 0xff;
548                         s->count_latched = RW_STATE_MSB;
549                         break;
550                 }
551         } else {
552                 switch (s->read_state) {
553                 default:
554                 case RW_STATE_LSB:
555                         count = pit_get_count(pit, addr);
556                         ret = count & 0xff;
557                         break;
558                 case RW_STATE_MSB:
559                         count = pit_get_count(pit, addr);
560                         ret = (count >> 8) & 0xff;
561                         break;
562                 case RW_STATE_WORD0:
563                         count = pit_get_count(pit, addr);
564                         ret = count & 0xff;
565                         s->read_state = RW_STATE_WORD1;
566                         break;
567                 case RW_STATE_WORD1:
568                         count = pit_get_count(pit, addr);
569                         ret = (count >> 8) & 0xff;
570                         s->read_state = RW_STATE_WORD0;
571                         break;
572                 }
573         }
574
575         if (len > sizeof(ret))
576                 len = sizeof(ret);
577         memcpy(data, (char *)&ret, len);
578
579         mutex_unlock(&pit_state->lock);
580         return 0;
581 }
582
583 static int speaker_ioport_write(struct kvm_vcpu *vcpu,
584                                 struct kvm_io_device *this,
585                                 gpa_t addr, int len, const void *data)
586 {
587         struct kvm_pit *pit = speaker_to_pit(this);
588         struct kvm_kpit_state *pit_state = &pit->pit_state;
589         u32 val = *(u32 *) data;
590         if (addr != KVM_SPEAKER_BASE_ADDRESS)
591                 return -EOPNOTSUPP;
592
593         mutex_lock(&pit_state->lock);
594         if (val & (1 << 1))
595                 pit_state->flags |= KVM_PIT_FLAGS_SPEAKER_DATA_ON;
596         else
597                 pit_state->flags &= ~KVM_PIT_FLAGS_SPEAKER_DATA_ON;
598         pit_set_gate(pit, 2, val & 1);
599         mutex_unlock(&pit_state->lock);
600         return 0;
601 }
602
603 static int speaker_ioport_read(struct kvm_vcpu *vcpu,
604                                    struct kvm_io_device *this,
605                                    gpa_t addr, int len, void *data)
606 {
607         struct kvm_pit *pit = speaker_to_pit(this);
608         struct kvm_kpit_state *pit_state = &pit->pit_state;
609         unsigned int refresh_clock;
610         int ret;
611         if (addr != KVM_SPEAKER_BASE_ADDRESS)
612                 return -EOPNOTSUPP;
613
614         /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
615         refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
616
617         mutex_lock(&pit_state->lock);
618         ret = (!!(pit_state->flags & KVM_PIT_FLAGS_SPEAKER_DATA_ON) << 1) |
619                 pit_get_gate(pit, 2) | (pit_get_out(pit, 2) << 5) |
620                 (refresh_clock << 4);
621         if (len > sizeof(ret))
622                 len = sizeof(ret);
623         memcpy(data, (char *)&ret, len);
624         mutex_unlock(&pit_state->lock);
625         return 0;
626 }
627
628 static void kvm_pit_reset(struct kvm_pit *pit)
629 {
630         int i;
631         struct kvm_kpit_channel_state *c;
632
633         pit->pit_state.flags = 0;
634         for (i = 0; i < 3; i++) {
635                 c = &pit->pit_state.channels[i];
636                 c->mode = 0xff;
637                 c->gate = (i != 2);
638                 pit_load_count(pit, i, 0);
639         }
640
641         kvm_pit_reset_reinject(pit);
642 }
643
644 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
645 {
646         struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
647
648         if (!mask)
649                 kvm_pit_reset_reinject(pit);
650 }
651
652 static const struct kvm_io_device_ops pit_dev_ops = {
653         .read     = pit_ioport_read,
654         .write    = pit_ioport_write,
655 };
656
657 static const struct kvm_io_device_ops speaker_dev_ops = {
658         .read     = speaker_ioport_read,
659         .write    = speaker_ioport_write,
660 };
661
662 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
663 {
664         struct kvm_pit *pit;
665         struct kvm_kpit_state *pit_state;
666         struct pid *pid;
667         pid_t pid_nr;
668         int ret;
669
670         pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL_ACCOUNT);
671         if (!pit)
672                 return NULL;
673
674         pit->irq_source_id = kvm_request_irq_source_id(kvm);
675         if (pit->irq_source_id < 0)
676                 goto fail_request;
677
678         mutex_init(&pit->pit_state.lock);
679
680         pid = get_pid(task_tgid(current));
681         pid_nr = pid_vnr(pid);
682         put_pid(pid);
683
684         pit->worker = kthread_create_worker(0, "kvm-pit/%d", pid_nr);
685         if (IS_ERR(pit->worker))
686                 goto fail_kthread;
687
688         kthread_init_work(&pit->expired, pit_do_work);
689
690         pit->kvm = kvm;
691
692         pit_state = &pit->pit_state;
693         hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
694         pit_state->timer.function = pit_timer_fn;
695
696         pit_state->irq_ack_notifier.gsi = 0;
697         pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
698         pit->mask_notifier.func = pit_mask_notifer;
699
700         kvm_pit_reset(pit);
701
702         kvm_pit_set_reinject(pit, true);
703
704         mutex_lock(&kvm->slots_lock);
705         kvm_iodevice_init(&pit->dev, &pit_dev_ops);
706         ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
707                                       KVM_PIT_MEM_LENGTH, &pit->dev);
708         if (ret < 0)
709                 goto fail_register_pit;
710
711         if (flags & KVM_PIT_SPEAKER_DUMMY) {
712                 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
713                 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
714                                               KVM_SPEAKER_BASE_ADDRESS, 4,
715                                               &pit->speaker_dev);
716                 if (ret < 0)
717                         goto fail_register_speaker;
718         }
719         mutex_unlock(&kvm->slots_lock);
720
721         return pit;
722
723 fail_register_speaker:
724         kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
725 fail_register_pit:
726         mutex_unlock(&kvm->slots_lock);
727         kvm_pit_set_reinject(pit, false);
728         kthread_destroy_worker(pit->worker);
729 fail_kthread:
730         kvm_free_irq_source_id(kvm, pit->irq_source_id);
731 fail_request:
732         kfree(pit);
733         return NULL;
734 }
735
736 void kvm_free_pit(struct kvm *kvm)
737 {
738         struct kvm_pit *pit = kvm->arch.vpit;
739
740         if (pit) {
741                 mutex_lock(&kvm->slots_lock);
742                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
743                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->speaker_dev);
744                 mutex_unlock(&kvm->slots_lock);
745                 kvm_pit_set_reinject(pit, false);
746                 hrtimer_cancel(&pit->pit_state.timer);
747                 kthread_destroy_worker(pit->worker);
748                 kvm_free_irq_source_id(kvm, pit->irq_source_id);
749                 kfree(pit);
750         }
751 }