Merge tag 'for-linus-20191012' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / arch / x86 / kvm / hyperv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * KVM Microsoft Hyper-V emulation
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
12  *
13  * Authors:
14  *   Avi Kivity   <avi@qumranet.com>
15  *   Yaniv Kamay  <yaniv@qumranet.com>
16  *   Amit Shah    <amit.shah@qumranet.com>
17  *   Ben-Ami Yassour <benami@il.ibm.com>
18  *   Andrey Smetanin <asmetanin@virtuozzo.com>
19  */
20
21 #include "x86.h"
22 #include "lapic.h"
23 #include "ioapic.h"
24 #include "hyperv.h"
25
26 #include <linux/cpu.h>
27 #include <linux/kvm_host.h>
28 #include <linux/highmem.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/eventfd.h>
31
32 #include <asm/apicdef.h>
33 #include <trace/events/kvm.h>
34
35 #include "trace.h"
36
37 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
38
39 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
40                                 bool vcpu_kick);
41
42 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
43 {
44         return atomic64_read(&synic->sint[sint]);
45 }
46
47 static inline int synic_get_sint_vector(u64 sint_value)
48 {
49         if (sint_value & HV_SYNIC_SINT_MASKED)
50                 return -1;
51         return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
52 }
53
54 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
55                                       int vector)
56 {
57         int i;
58
59         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
60                 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
61                         return true;
62         }
63         return false;
64 }
65
66 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
67                                      int vector)
68 {
69         int i;
70         u64 sint_value;
71
72         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
73                 sint_value = synic_read_sint(synic, i);
74                 if (synic_get_sint_vector(sint_value) == vector &&
75                     sint_value & HV_SYNIC_SINT_AUTO_EOI)
76                         return true;
77         }
78         return false;
79 }
80
81 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
82                                 int vector)
83 {
84         if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
85                 return;
86
87         if (synic_has_vector_connected(synic, vector))
88                 __set_bit(vector, synic->vec_bitmap);
89         else
90                 __clear_bit(vector, synic->vec_bitmap);
91
92         if (synic_has_vector_auto_eoi(synic, vector))
93                 __set_bit(vector, synic->auto_eoi_bitmap);
94         else
95                 __clear_bit(vector, synic->auto_eoi_bitmap);
96 }
97
98 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
99                           u64 data, bool host)
100 {
101         int vector, old_vector;
102         bool masked;
103
104         vector = data & HV_SYNIC_SINT_VECTOR_MASK;
105         masked = data & HV_SYNIC_SINT_MASKED;
106
107         /*
108          * Valid vectors are 16-255, however, nested Hyper-V attempts to write
109          * default '0x10000' value on boot and this should not #GP. We need to
110          * allow zero-initing the register from host as well.
111          */
112         if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
113                 return 1;
114         /*
115          * Guest may configure multiple SINTs to use the same vector, so
116          * we maintain a bitmap of vectors handled by synic, and a
117          * bitmap of vectors with auto-eoi behavior.  The bitmaps are
118          * updated here, and atomically queried on fast paths.
119          */
120         old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
121
122         atomic64_set(&synic->sint[sint], data);
123
124         synic_update_vector(synic, old_vector);
125
126         synic_update_vector(synic, vector);
127
128         /* Load SynIC vectors into EOI exit bitmap */
129         kvm_make_request(KVM_REQ_SCAN_IOAPIC, synic_to_vcpu(synic));
130         return 0;
131 }
132
133 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
134 {
135         struct kvm_vcpu *vcpu = NULL;
136         int i;
137
138         if (vpidx >= KVM_MAX_VCPUS)
139                 return NULL;
140
141         vcpu = kvm_get_vcpu(kvm, vpidx);
142         if (vcpu && vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
143                 return vcpu;
144         kvm_for_each_vcpu(i, vcpu, kvm)
145                 if (vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
146                         return vcpu;
147         return NULL;
148 }
149
150 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
151 {
152         struct kvm_vcpu *vcpu;
153         struct kvm_vcpu_hv_synic *synic;
154
155         vcpu = get_vcpu_by_vpidx(kvm, vpidx);
156         if (!vcpu)
157                 return NULL;
158         synic = vcpu_to_synic(vcpu);
159         return (synic->active) ? synic : NULL;
160 }
161
162 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
163 {
164         struct kvm *kvm = vcpu->kvm;
165         struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
166         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
167         struct kvm_vcpu_hv_stimer *stimer;
168         int gsi, idx;
169
170         trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
171
172         /* Try to deliver pending Hyper-V SynIC timers messages */
173         for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
174                 stimer = &hv_vcpu->stimer[idx];
175                 if (stimer->msg_pending && stimer->config.enable &&
176                     !stimer->config.direct_mode &&
177                     stimer->config.sintx == sint)
178                         stimer_mark_pending(stimer, false);
179         }
180
181         idx = srcu_read_lock(&kvm->irq_srcu);
182         gsi = atomic_read(&synic->sint_to_gsi[sint]);
183         if (gsi != -1)
184                 kvm_notify_acked_gsi(kvm, gsi);
185         srcu_read_unlock(&kvm->irq_srcu, idx);
186 }
187
188 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
189 {
190         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
191         struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
192
193         hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
194         hv_vcpu->exit.u.synic.msr = msr;
195         hv_vcpu->exit.u.synic.control = synic->control;
196         hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
197         hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
198
199         kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
200 }
201
202 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
203                          u32 msr, u64 data, bool host)
204 {
205         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
206         int ret;
207
208         if (!synic->active && !host)
209                 return 1;
210
211         trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
212
213         ret = 0;
214         switch (msr) {
215         case HV_X64_MSR_SCONTROL:
216                 synic->control = data;
217                 if (!host)
218                         synic_exit(synic, msr);
219                 break;
220         case HV_X64_MSR_SVERSION:
221                 if (!host) {
222                         ret = 1;
223                         break;
224                 }
225                 synic->version = data;
226                 break;
227         case HV_X64_MSR_SIEFP:
228                 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
229                     !synic->dont_zero_synic_pages)
230                         if (kvm_clear_guest(vcpu->kvm,
231                                             data & PAGE_MASK, PAGE_SIZE)) {
232                                 ret = 1;
233                                 break;
234                         }
235                 synic->evt_page = data;
236                 if (!host)
237                         synic_exit(synic, msr);
238                 break;
239         case HV_X64_MSR_SIMP:
240                 if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
241                     !synic->dont_zero_synic_pages)
242                         if (kvm_clear_guest(vcpu->kvm,
243                                             data & PAGE_MASK, PAGE_SIZE)) {
244                                 ret = 1;
245                                 break;
246                         }
247                 synic->msg_page = data;
248                 if (!host)
249                         synic_exit(synic, msr);
250                 break;
251         case HV_X64_MSR_EOM: {
252                 int i;
253
254                 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
255                         kvm_hv_notify_acked_sint(vcpu, i);
256                 break;
257         }
258         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
259                 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
260                 break;
261         default:
262                 ret = 1;
263                 break;
264         }
265         return ret;
266 }
267
268 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
269                          bool host)
270 {
271         int ret;
272
273         if (!synic->active && !host)
274                 return 1;
275
276         ret = 0;
277         switch (msr) {
278         case HV_X64_MSR_SCONTROL:
279                 *pdata = synic->control;
280                 break;
281         case HV_X64_MSR_SVERSION:
282                 *pdata = synic->version;
283                 break;
284         case HV_X64_MSR_SIEFP:
285                 *pdata = synic->evt_page;
286                 break;
287         case HV_X64_MSR_SIMP:
288                 *pdata = synic->msg_page;
289                 break;
290         case HV_X64_MSR_EOM:
291                 *pdata = 0;
292                 break;
293         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
294                 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
295                 break;
296         default:
297                 ret = 1;
298                 break;
299         }
300         return ret;
301 }
302
303 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
304 {
305         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
306         struct kvm_lapic_irq irq;
307         int ret, vector;
308
309         if (sint >= ARRAY_SIZE(synic->sint))
310                 return -EINVAL;
311
312         vector = synic_get_sint_vector(synic_read_sint(synic, sint));
313         if (vector < 0)
314                 return -ENOENT;
315
316         memset(&irq, 0, sizeof(irq));
317         irq.shorthand = APIC_DEST_SELF;
318         irq.dest_mode = APIC_DEST_PHYSICAL;
319         irq.delivery_mode = APIC_DM_FIXED;
320         irq.vector = vector;
321         irq.level = 1;
322
323         ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
324         trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
325         return ret;
326 }
327
328 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
329 {
330         struct kvm_vcpu_hv_synic *synic;
331
332         synic = synic_get(kvm, vpidx);
333         if (!synic)
334                 return -EINVAL;
335
336         return synic_set_irq(synic, sint);
337 }
338
339 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
340 {
341         struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
342         int i;
343
344         trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
345
346         for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
347                 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
348                         kvm_hv_notify_acked_sint(vcpu, i);
349 }
350
351 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
352 {
353         struct kvm_vcpu_hv_synic *synic;
354
355         synic = synic_get(kvm, vpidx);
356         if (!synic)
357                 return -EINVAL;
358
359         if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
360                 return -EINVAL;
361
362         atomic_set(&synic->sint_to_gsi[sint], gsi);
363         return 0;
364 }
365
366 void kvm_hv_irq_routing_update(struct kvm *kvm)
367 {
368         struct kvm_irq_routing_table *irq_rt;
369         struct kvm_kernel_irq_routing_entry *e;
370         u32 gsi;
371
372         irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
373                                         lockdep_is_held(&kvm->irq_lock));
374
375         for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
376                 hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
377                         if (e->type == KVM_IRQ_ROUTING_HV_SINT)
378                                 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
379                                                     e->hv_sint.sint, gsi);
380                 }
381         }
382 }
383
384 static void synic_init(struct kvm_vcpu_hv_synic *synic)
385 {
386         int i;
387
388         memset(synic, 0, sizeof(*synic));
389         synic->version = HV_SYNIC_VERSION_1;
390         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
391                 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
392                 atomic_set(&synic->sint_to_gsi[i], -1);
393         }
394 }
395
396 static u64 get_time_ref_counter(struct kvm *kvm)
397 {
398         struct kvm_hv *hv = &kvm->arch.hyperv;
399         struct kvm_vcpu *vcpu;
400         u64 tsc;
401
402         /*
403          * The guest has not set up the TSC page or the clock isn't
404          * stable, fall back to get_kvmclock_ns.
405          */
406         if (!hv->tsc_ref.tsc_sequence)
407                 return div_u64(get_kvmclock_ns(kvm), 100);
408
409         vcpu = kvm_get_vcpu(kvm, 0);
410         tsc = kvm_read_l1_tsc(vcpu, rdtsc());
411         return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
412                 + hv->tsc_ref.tsc_offset;
413 }
414
415 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
416                                 bool vcpu_kick)
417 {
418         struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
419
420         set_bit(stimer->index,
421                 vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
422         kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
423         if (vcpu_kick)
424                 kvm_vcpu_kick(vcpu);
425 }
426
427 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
428 {
429         struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
430
431         trace_kvm_hv_stimer_cleanup(stimer_to_vcpu(stimer)->vcpu_id,
432                                     stimer->index);
433
434         hrtimer_cancel(&stimer->timer);
435         clear_bit(stimer->index,
436                   vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
437         stimer->msg_pending = false;
438         stimer->exp_time = 0;
439 }
440
441 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
442 {
443         struct kvm_vcpu_hv_stimer *stimer;
444
445         stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
446         trace_kvm_hv_stimer_callback(stimer_to_vcpu(stimer)->vcpu_id,
447                                      stimer->index);
448         stimer_mark_pending(stimer, true);
449
450         return HRTIMER_NORESTART;
451 }
452
453 /*
454  * stimer_start() assumptions:
455  * a) stimer->count is not equal to 0
456  * b) stimer->config has HV_STIMER_ENABLE flag
457  */
458 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
459 {
460         u64 time_now;
461         ktime_t ktime_now;
462
463         time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm);
464         ktime_now = ktime_get();
465
466         if (stimer->config.periodic) {
467                 if (stimer->exp_time) {
468                         if (time_now >= stimer->exp_time) {
469                                 u64 remainder;
470
471                                 div64_u64_rem(time_now - stimer->exp_time,
472                                               stimer->count, &remainder);
473                                 stimer->exp_time =
474                                         time_now + (stimer->count - remainder);
475                         }
476                 } else
477                         stimer->exp_time = time_now + stimer->count;
478
479                 trace_kvm_hv_stimer_start_periodic(
480                                         stimer_to_vcpu(stimer)->vcpu_id,
481                                         stimer->index,
482                                         time_now, stimer->exp_time);
483
484                 hrtimer_start(&stimer->timer,
485                               ktime_add_ns(ktime_now,
486                                            100 * (stimer->exp_time - time_now)),
487                               HRTIMER_MODE_ABS);
488                 return 0;
489         }
490         stimer->exp_time = stimer->count;
491         if (time_now >= stimer->count) {
492                 /*
493                  * Expire timer according to Hypervisor Top-Level Functional
494                  * specification v4(15.3.1):
495                  * "If a one shot is enabled and the specified count is in
496                  * the past, it will expire immediately."
497                  */
498                 stimer_mark_pending(stimer, false);
499                 return 0;
500         }
501
502         trace_kvm_hv_stimer_start_one_shot(stimer_to_vcpu(stimer)->vcpu_id,
503                                            stimer->index,
504                                            time_now, stimer->count);
505
506         hrtimer_start(&stimer->timer,
507                       ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
508                       HRTIMER_MODE_ABS);
509         return 0;
510 }
511
512 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
513                              bool host)
514 {
515         union hv_stimer_config new_config = {.as_uint64 = config},
516                 old_config = {.as_uint64 = stimer->config.as_uint64};
517
518         trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id,
519                                        stimer->index, config, host);
520
521         stimer_cleanup(stimer);
522         if (old_config.enable &&
523             !new_config.direct_mode && new_config.sintx == 0)
524                 new_config.enable = 0;
525         stimer->config.as_uint64 = new_config.as_uint64;
526
527         if (stimer->config.enable)
528                 stimer_mark_pending(stimer, false);
529
530         return 0;
531 }
532
533 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
534                             bool host)
535 {
536         trace_kvm_hv_stimer_set_count(stimer_to_vcpu(stimer)->vcpu_id,
537                                       stimer->index, count, host);
538
539         stimer_cleanup(stimer);
540         stimer->count = count;
541         if (stimer->count == 0)
542                 stimer->config.enable = 0;
543         else if (stimer->config.auto_enable)
544                 stimer->config.enable = 1;
545
546         if (stimer->config.enable)
547                 stimer_mark_pending(stimer, false);
548
549         return 0;
550 }
551
552 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
553 {
554         *pconfig = stimer->config.as_uint64;
555         return 0;
556 }
557
558 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
559 {
560         *pcount = stimer->count;
561         return 0;
562 }
563
564 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
565                              struct hv_message *src_msg, bool no_retry)
566 {
567         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
568         int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
569         gfn_t msg_page_gfn;
570         struct hv_message_header hv_hdr;
571         int r;
572
573         if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
574                 return -ENOENT;
575
576         msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
577
578         /*
579          * Strictly following the spec-mandated ordering would assume setting
580          * .msg_pending before checking .message_type.  However, this function
581          * is only called in vcpu context so the entire update is atomic from
582          * guest POV and thus the exact order here doesn't matter.
583          */
584         r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
585                                      msg_off + offsetof(struct hv_message,
586                                                         header.message_type),
587                                      sizeof(hv_hdr.message_type));
588         if (r < 0)
589                 return r;
590
591         if (hv_hdr.message_type != HVMSG_NONE) {
592                 if (no_retry)
593                         return 0;
594
595                 hv_hdr.message_flags.msg_pending = 1;
596                 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
597                                               &hv_hdr.message_flags,
598                                               msg_off +
599                                               offsetof(struct hv_message,
600                                                        header.message_flags),
601                                               sizeof(hv_hdr.message_flags));
602                 if (r < 0)
603                         return r;
604                 return -EAGAIN;
605         }
606
607         r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
608                                       sizeof(src_msg->header) +
609                                       src_msg->header.payload_size);
610         if (r < 0)
611                 return r;
612
613         r = synic_set_irq(synic, sint);
614         if (r < 0)
615                 return r;
616         if (r == 0)
617                 return -EFAULT;
618         return 0;
619 }
620
621 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
622 {
623         struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
624         struct hv_message *msg = &stimer->msg;
625         struct hv_timer_message_payload *payload =
626                         (struct hv_timer_message_payload *)&msg->u.payload;
627
628         /*
629          * To avoid piling up periodic ticks, don't retry message
630          * delivery for them (within "lazy" lost ticks policy).
631          */
632         bool no_retry = stimer->config.periodic;
633
634         payload->expiration_time = stimer->exp_time;
635         payload->delivery_time = get_time_ref_counter(vcpu->kvm);
636         return synic_deliver_msg(vcpu_to_synic(vcpu),
637                                  stimer->config.sintx, msg,
638                                  no_retry);
639 }
640
641 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
642 {
643         struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
644         struct kvm_lapic_irq irq = {
645                 .delivery_mode = APIC_DM_FIXED,
646                 .vector = stimer->config.apic_vector
647         };
648
649         if (lapic_in_kernel(vcpu))
650                 return !kvm_apic_set_irq(vcpu, &irq, NULL);
651         return 0;
652 }
653
654 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
655 {
656         int r, direct = stimer->config.direct_mode;
657
658         stimer->msg_pending = true;
659         if (!direct)
660                 r = stimer_send_msg(stimer);
661         else
662                 r = stimer_notify_direct(stimer);
663         trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id,
664                                        stimer->index, direct, r);
665         if (!r) {
666                 stimer->msg_pending = false;
667                 if (!(stimer->config.periodic))
668                         stimer->config.enable = 0;
669         }
670 }
671
672 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
673 {
674         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
675         struct kvm_vcpu_hv_stimer *stimer;
676         u64 time_now, exp_time;
677         int i;
678
679         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
680                 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
681                         stimer = &hv_vcpu->stimer[i];
682                         if (stimer->config.enable) {
683                                 exp_time = stimer->exp_time;
684
685                                 if (exp_time) {
686                                         time_now =
687                                                 get_time_ref_counter(vcpu->kvm);
688                                         if (time_now >= exp_time)
689                                                 stimer_expiration(stimer);
690                                 }
691
692                                 if ((stimer->config.enable) &&
693                                     stimer->count) {
694                                         if (!stimer->msg_pending)
695                                                 stimer_start(stimer);
696                                 } else
697                                         stimer_cleanup(stimer);
698                         }
699                 }
700 }
701
702 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
703 {
704         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
705         int i;
706
707         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
708                 stimer_cleanup(&hv_vcpu->stimer[i]);
709 }
710
711 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
712 {
713         if (!(vcpu->arch.hyperv.hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
714                 return false;
715         return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
716 }
717 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
718
719 bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
720                             struct hv_vp_assist_page *assist_page)
721 {
722         if (!kvm_hv_assist_page_enabled(vcpu))
723                 return false;
724         return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
725                                       assist_page, sizeof(*assist_page));
726 }
727 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
728
729 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
730 {
731         struct hv_message *msg = &stimer->msg;
732         struct hv_timer_message_payload *payload =
733                         (struct hv_timer_message_payload *)&msg->u.payload;
734
735         memset(&msg->header, 0, sizeof(msg->header));
736         msg->header.message_type = HVMSG_TIMER_EXPIRED;
737         msg->header.payload_size = sizeof(*payload);
738
739         payload->timer_index = stimer->index;
740         payload->expiration_time = 0;
741         payload->delivery_time = 0;
742 }
743
744 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
745 {
746         memset(stimer, 0, sizeof(*stimer));
747         stimer->index = timer_index;
748         hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
749         stimer->timer.function = stimer_timer_callback;
750         stimer_prepare_msg(stimer);
751 }
752
753 void kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
754 {
755         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
756         int i;
757
758         synic_init(&hv_vcpu->synic);
759
760         bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
761         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
762                 stimer_init(&hv_vcpu->stimer[i], i);
763 }
764
765 void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu)
766 {
767         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
768
769         hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);
770 }
771
772 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
773 {
774         struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
775
776         /*
777          * Hyper-V SynIC auto EOI SINT's are
778          * not compatible with APICV, so deactivate APICV
779          */
780         kvm_vcpu_deactivate_apicv(vcpu);
781         synic->active = true;
782         synic->dont_zero_synic_pages = dont_zero_synic_pages;
783         return 0;
784 }
785
786 static bool kvm_hv_msr_partition_wide(u32 msr)
787 {
788         bool r = false;
789
790         switch (msr) {
791         case HV_X64_MSR_GUEST_OS_ID:
792         case HV_X64_MSR_HYPERCALL:
793         case HV_X64_MSR_REFERENCE_TSC:
794         case HV_X64_MSR_TIME_REF_COUNT:
795         case HV_X64_MSR_CRASH_CTL:
796         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
797         case HV_X64_MSR_RESET:
798         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
799         case HV_X64_MSR_TSC_EMULATION_CONTROL:
800         case HV_X64_MSR_TSC_EMULATION_STATUS:
801                 r = true;
802                 break;
803         }
804
805         return r;
806 }
807
808 static int kvm_hv_msr_get_crash_data(struct kvm_vcpu *vcpu,
809                                      u32 index, u64 *pdata)
810 {
811         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
812
813         if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
814                 return -EINVAL;
815
816         *pdata = hv->hv_crash_param[index];
817         return 0;
818 }
819
820 static int kvm_hv_msr_get_crash_ctl(struct kvm_vcpu *vcpu, u64 *pdata)
821 {
822         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
823
824         *pdata = hv->hv_crash_ctl;
825         return 0;
826 }
827
828 static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host)
829 {
830         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
831
832         if (host)
833                 hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
834
835         if (!host && (data & HV_CRASH_CTL_CRASH_NOTIFY)) {
836
837                 vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
838                           hv->hv_crash_param[0],
839                           hv->hv_crash_param[1],
840                           hv->hv_crash_param[2],
841                           hv->hv_crash_param[3],
842                           hv->hv_crash_param[4]);
843
844                 /* Send notification about crash to user space */
845                 kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
846         }
847
848         return 0;
849 }
850
851 static int kvm_hv_msr_set_crash_data(struct kvm_vcpu *vcpu,
852                                      u32 index, u64 data)
853 {
854         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
855
856         if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
857                 return -EINVAL;
858
859         hv->hv_crash_param[index] = data;
860         return 0;
861 }
862
863 /*
864  * The kvmclock and Hyper-V TSC page use similar formulas, and converting
865  * between them is possible:
866  *
867  * kvmclock formula:
868  *    nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
869  *           + system_time
870  *
871  * Hyper-V formula:
872  *    nsec/100 = ticks * scale / 2^64 + offset
873  *
874  * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
875  * By dividing the kvmclock formula by 100 and equating what's left we get:
876  *    ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
877  *            scale / 2^64 =         tsc_to_system_mul * 2^(tsc_shift-32) / 100
878  *            scale        =         tsc_to_system_mul * 2^(32+tsc_shift) / 100
879  *
880  * Now expand the kvmclock formula and divide by 100:
881  *    nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
882  *           - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
883  *           + system_time
884  *    nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
885  *               - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
886  *               + system_time / 100
887  *
888  * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
889  *    nsec/100 = ticks * scale / 2^64
890  *               - tsc_timestamp * scale / 2^64
891  *               + system_time / 100
892  *
893  * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
894  *    offset = system_time / 100 - tsc_timestamp * scale / 2^64
895  *
896  * These two equivalencies are implemented in this function.
897  */
898 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
899                                         HV_REFERENCE_TSC_PAGE *tsc_ref)
900 {
901         u64 max_mul;
902
903         if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
904                 return false;
905
906         /*
907          * check if scale would overflow, if so we use the time ref counter
908          *    tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
909          *    tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
910          *    tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
911          */
912         max_mul = 100ull << (32 - hv_clock->tsc_shift);
913         if (hv_clock->tsc_to_system_mul >= max_mul)
914                 return false;
915
916         /*
917          * Otherwise compute the scale and offset according to the formulas
918          * derived above.
919          */
920         tsc_ref->tsc_scale =
921                 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
922                                 hv_clock->tsc_to_system_mul,
923                                 100);
924
925         tsc_ref->tsc_offset = hv_clock->system_time;
926         do_div(tsc_ref->tsc_offset, 100);
927         tsc_ref->tsc_offset -=
928                 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
929         return true;
930 }
931
932 void kvm_hv_setup_tsc_page(struct kvm *kvm,
933                            struct pvclock_vcpu_time_info *hv_clock)
934 {
935         struct kvm_hv *hv = &kvm->arch.hyperv;
936         u32 tsc_seq;
937         u64 gfn;
938
939         BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
940         BUILD_BUG_ON(offsetof(HV_REFERENCE_TSC_PAGE, tsc_sequence) != 0);
941
942         if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
943                 return;
944
945         mutex_lock(&kvm->arch.hyperv.hv_lock);
946         if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
947                 goto out_unlock;
948
949         gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
950         /*
951          * Because the TSC parameters only vary when there is a
952          * change in the master clock, do not bother with caching.
953          */
954         if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
955                                     &tsc_seq, sizeof(tsc_seq))))
956                 goto out_unlock;
957
958         /*
959          * While we're computing and writing the parameters, force the
960          * guest to use the time reference count MSR.
961          */
962         hv->tsc_ref.tsc_sequence = 0;
963         if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
964                             &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
965                 goto out_unlock;
966
967         if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
968                 goto out_unlock;
969
970         /* Ensure sequence is zero before writing the rest of the struct.  */
971         smp_wmb();
972         if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
973                 goto out_unlock;
974
975         /*
976          * Now switch to the TSC page mechanism by writing the sequence.
977          */
978         tsc_seq++;
979         if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
980                 tsc_seq = 1;
981
982         /* Write the struct entirely before the non-zero sequence.  */
983         smp_wmb();
984
985         hv->tsc_ref.tsc_sequence = tsc_seq;
986         kvm_write_guest(kvm, gfn_to_gpa(gfn),
987                         &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence));
988 out_unlock:
989         mutex_unlock(&kvm->arch.hyperv.hv_lock);
990 }
991
992 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
993                              bool host)
994 {
995         struct kvm *kvm = vcpu->kvm;
996         struct kvm_hv *hv = &kvm->arch.hyperv;
997
998         switch (msr) {
999         case HV_X64_MSR_GUEST_OS_ID:
1000                 hv->hv_guest_os_id = data;
1001                 /* setting guest os id to zero disables hypercall page */
1002                 if (!hv->hv_guest_os_id)
1003                         hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1004                 break;
1005         case HV_X64_MSR_HYPERCALL: {
1006                 u64 gfn;
1007                 unsigned long addr;
1008                 u8 instructions[4];
1009
1010                 /* if guest os id is not set hypercall should remain disabled */
1011                 if (!hv->hv_guest_os_id)
1012                         break;
1013                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1014                         hv->hv_hypercall = data;
1015                         break;
1016                 }
1017                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1018                 addr = gfn_to_hva(kvm, gfn);
1019                 if (kvm_is_error_hva(addr))
1020                         return 1;
1021                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1022                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1023                 if (__copy_to_user((void __user *)addr, instructions, 4))
1024                         return 1;
1025                 hv->hv_hypercall = data;
1026                 mark_page_dirty(kvm, gfn);
1027                 break;
1028         }
1029         case HV_X64_MSR_REFERENCE_TSC:
1030                 hv->hv_tsc_page = data;
1031                 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)
1032                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1033                 break;
1034         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1035                 return kvm_hv_msr_set_crash_data(vcpu,
1036                                                  msr - HV_X64_MSR_CRASH_P0,
1037                                                  data);
1038         case HV_X64_MSR_CRASH_CTL:
1039                 return kvm_hv_msr_set_crash_ctl(vcpu, data, host);
1040         case HV_X64_MSR_RESET:
1041                 if (data == 1) {
1042                         vcpu_debug(vcpu, "hyper-v reset requested\n");
1043                         kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1044                 }
1045                 break;
1046         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1047                 hv->hv_reenlightenment_control = data;
1048                 break;
1049         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1050                 hv->hv_tsc_emulation_control = data;
1051                 break;
1052         case HV_X64_MSR_TSC_EMULATION_STATUS:
1053                 hv->hv_tsc_emulation_status = data;
1054                 break;
1055         case HV_X64_MSR_TIME_REF_COUNT:
1056                 /* read-only, but still ignore it if host-initiated */
1057                 if (!host)
1058                         return 1;
1059                 break;
1060         default:
1061                 vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
1062                             msr, data);
1063                 return 1;
1064         }
1065         return 0;
1066 }
1067
1068 /* Calculate cpu time spent by current task in 100ns units */
1069 static u64 current_task_runtime_100ns(void)
1070 {
1071         u64 utime, stime;
1072
1073         task_cputime_adjusted(current, &utime, &stime);
1074
1075         return div_u64(utime + stime, 100);
1076 }
1077
1078 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1079 {
1080         struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1081
1082         switch (msr) {
1083         case HV_X64_MSR_VP_INDEX: {
1084                 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
1085                 int vcpu_idx = kvm_vcpu_get_idx(vcpu);
1086                 u32 new_vp_index = (u32)data;
1087
1088                 if (!host || new_vp_index >= KVM_MAX_VCPUS)
1089                         return 1;
1090
1091                 if (new_vp_index == hv_vcpu->vp_index)
1092                         return 0;
1093
1094                 /*
1095                  * The VP index is initialized to vcpu_index by
1096                  * kvm_hv_vcpu_postcreate so they initially match.  Now the
1097                  * VP index is changing, adjust num_mismatched_vp_indexes if
1098                  * it now matches or no longer matches vcpu_idx.
1099                  */
1100                 if (hv_vcpu->vp_index == vcpu_idx)
1101                         atomic_inc(&hv->num_mismatched_vp_indexes);
1102                 else if (new_vp_index == vcpu_idx)
1103                         atomic_dec(&hv->num_mismatched_vp_indexes);
1104
1105                 hv_vcpu->vp_index = new_vp_index;
1106                 break;
1107         }
1108         case HV_X64_MSR_VP_ASSIST_PAGE: {
1109                 u64 gfn;
1110                 unsigned long addr;
1111
1112                 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1113                         hv_vcpu->hv_vapic = data;
1114                         if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0))
1115                                 return 1;
1116                         break;
1117                 }
1118                 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1119                 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1120                 if (kvm_is_error_hva(addr))
1121                         return 1;
1122
1123                 /*
1124                  * Clear apic_assist portion of f(struct hv_vp_assist_page
1125                  * only, there can be valuable data in the rest which needs
1126                  * to be preserved e.g. on migration.
1127                  */
1128                 if (__clear_user((void __user *)addr, sizeof(u32)))
1129                         return 1;
1130                 hv_vcpu->hv_vapic = data;
1131                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1132                 if (kvm_lapic_enable_pv_eoi(vcpu,
1133                                             gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1134                                             sizeof(struct hv_vp_assist_page)))
1135                         return 1;
1136                 break;
1137         }
1138         case HV_X64_MSR_EOI:
1139                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1140         case HV_X64_MSR_ICR:
1141                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1142         case HV_X64_MSR_TPR:
1143                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1144         case HV_X64_MSR_VP_RUNTIME:
1145                 if (!host)
1146                         return 1;
1147                 hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1148                 break;
1149         case HV_X64_MSR_SCONTROL:
1150         case HV_X64_MSR_SVERSION:
1151         case HV_X64_MSR_SIEFP:
1152         case HV_X64_MSR_SIMP:
1153         case HV_X64_MSR_EOM:
1154         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1155                 return synic_set_msr(vcpu_to_synic(vcpu), msr, data, host);
1156         case HV_X64_MSR_STIMER0_CONFIG:
1157         case HV_X64_MSR_STIMER1_CONFIG:
1158         case HV_X64_MSR_STIMER2_CONFIG:
1159         case HV_X64_MSR_STIMER3_CONFIG: {
1160                 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1161
1162                 return stimer_set_config(vcpu_to_stimer(vcpu, timer_index),
1163                                          data, host);
1164         }
1165         case HV_X64_MSR_STIMER0_COUNT:
1166         case HV_X64_MSR_STIMER1_COUNT:
1167         case HV_X64_MSR_STIMER2_COUNT:
1168         case HV_X64_MSR_STIMER3_COUNT: {
1169                 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1170
1171                 return stimer_set_count(vcpu_to_stimer(vcpu, timer_index),
1172                                         data, host);
1173         }
1174         case HV_X64_MSR_TSC_FREQUENCY:
1175         case HV_X64_MSR_APIC_FREQUENCY:
1176                 /* read-only, but still ignore it if host-initiated */
1177                 if (!host)
1178                         return 1;
1179                 break;
1180         default:
1181                 vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
1182                             msr, data);
1183                 return 1;
1184         }
1185
1186         return 0;
1187 }
1188
1189 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1190 {
1191         u64 data = 0;
1192         struct kvm *kvm = vcpu->kvm;
1193         struct kvm_hv *hv = &kvm->arch.hyperv;
1194
1195         switch (msr) {
1196         case HV_X64_MSR_GUEST_OS_ID:
1197                 data = hv->hv_guest_os_id;
1198                 break;
1199         case HV_X64_MSR_HYPERCALL:
1200                 data = hv->hv_hypercall;
1201                 break;
1202         case HV_X64_MSR_TIME_REF_COUNT:
1203                 data = get_time_ref_counter(kvm);
1204                 break;
1205         case HV_X64_MSR_REFERENCE_TSC:
1206                 data = hv->hv_tsc_page;
1207                 break;
1208         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1209                 return kvm_hv_msr_get_crash_data(vcpu,
1210                                                  msr - HV_X64_MSR_CRASH_P0,
1211                                                  pdata);
1212         case HV_X64_MSR_CRASH_CTL:
1213                 return kvm_hv_msr_get_crash_ctl(vcpu, pdata);
1214         case HV_X64_MSR_RESET:
1215                 data = 0;
1216                 break;
1217         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1218                 data = hv->hv_reenlightenment_control;
1219                 break;
1220         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1221                 data = hv->hv_tsc_emulation_control;
1222                 break;
1223         case HV_X64_MSR_TSC_EMULATION_STATUS:
1224                 data = hv->hv_tsc_emulation_status;
1225                 break;
1226         default:
1227                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1228                 return 1;
1229         }
1230
1231         *pdata = data;
1232         return 0;
1233 }
1234
1235 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1236                           bool host)
1237 {
1238         u64 data = 0;
1239         struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1240
1241         switch (msr) {
1242         case HV_X64_MSR_VP_INDEX:
1243                 data = hv_vcpu->vp_index;
1244                 break;
1245         case HV_X64_MSR_EOI:
1246                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1247         case HV_X64_MSR_ICR:
1248                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1249         case HV_X64_MSR_TPR:
1250                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1251         case HV_X64_MSR_VP_ASSIST_PAGE:
1252                 data = hv_vcpu->hv_vapic;
1253                 break;
1254         case HV_X64_MSR_VP_RUNTIME:
1255                 data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1256                 break;
1257         case HV_X64_MSR_SCONTROL:
1258         case HV_X64_MSR_SVERSION:
1259         case HV_X64_MSR_SIEFP:
1260         case HV_X64_MSR_SIMP:
1261         case HV_X64_MSR_EOM:
1262         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1263                 return synic_get_msr(vcpu_to_synic(vcpu), msr, pdata, host);
1264         case HV_X64_MSR_STIMER0_CONFIG:
1265         case HV_X64_MSR_STIMER1_CONFIG:
1266         case HV_X64_MSR_STIMER2_CONFIG:
1267         case HV_X64_MSR_STIMER3_CONFIG: {
1268                 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1269
1270                 return stimer_get_config(vcpu_to_stimer(vcpu, timer_index),
1271                                          pdata);
1272         }
1273         case HV_X64_MSR_STIMER0_COUNT:
1274         case HV_X64_MSR_STIMER1_COUNT:
1275         case HV_X64_MSR_STIMER2_COUNT:
1276         case HV_X64_MSR_STIMER3_COUNT: {
1277                 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1278
1279                 return stimer_get_count(vcpu_to_stimer(vcpu, timer_index),
1280                                         pdata);
1281         }
1282         case HV_X64_MSR_TSC_FREQUENCY:
1283                 data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1284                 break;
1285         case HV_X64_MSR_APIC_FREQUENCY:
1286                 data = APIC_BUS_FREQUENCY;
1287                 break;
1288         default:
1289                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1290                 return 1;
1291         }
1292         *pdata = data;
1293         return 0;
1294 }
1295
1296 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1297 {
1298         if (kvm_hv_msr_partition_wide(msr)) {
1299                 int r;
1300
1301                 mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1302                 r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1303                 mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1304                 return r;
1305         } else
1306                 return kvm_hv_set_msr(vcpu, msr, data, host);
1307 }
1308
1309 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1310 {
1311         if (kvm_hv_msr_partition_wide(msr)) {
1312                 int r;
1313
1314                 mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1315                 r = kvm_hv_get_msr_pw(vcpu, msr, pdata);
1316                 mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1317                 return r;
1318         } else
1319                 return kvm_hv_get_msr(vcpu, msr, pdata, host);
1320 }
1321
1322 static __always_inline unsigned long *sparse_set_to_vcpu_mask(
1323         struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
1324         u64 *vp_bitmap, unsigned long *vcpu_bitmap)
1325 {
1326         struct kvm_hv *hv = &kvm->arch.hyperv;
1327         struct kvm_vcpu *vcpu;
1328         int i, bank, sbank = 0;
1329
1330         memset(vp_bitmap, 0,
1331                KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
1332         for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1333                          KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
1334                 vp_bitmap[bank] = sparse_banks[sbank++];
1335
1336         if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
1337                 /* for all vcpus vp_index == vcpu_idx */
1338                 return (unsigned long *)vp_bitmap;
1339         }
1340
1341         bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
1342         kvm_for_each_vcpu(i, vcpu, kvm) {
1343                 if (test_bit(vcpu_to_hv_vcpu(vcpu)->vp_index,
1344                              (unsigned long *)vp_bitmap))
1345                         __set_bit(i, vcpu_bitmap);
1346         }
1347         return vcpu_bitmap;
1348 }
1349
1350 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
1351                             u16 rep_cnt, bool ex)
1352 {
1353         struct kvm *kvm = current_vcpu->kvm;
1354         struct kvm_vcpu_hv *hv_vcpu = &current_vcpu->arch.hyperv;
1355         struct hv_tlb_flush_ex flush_ex;
1356         struct hv_tlb_flush flush;
1357         u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1358         DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1359         unsigned long *vcpu_mask;
1360         u64 valid_bank_mask;
1361         u64 sparse_banks[64];
1362         int sparse_banks_len;
1363         bool all_cpus;
1364
1365         if (!ex) {
1366                 if (unlikely(kvm_read_guest(kvm, ingpa, &flush, sizeof(flush))))
1367                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1368
1369                 trace_kvm_hv_flush_tlb(flush.processor_mask,
1370                                        flush.address_space, flush.flags);
1371
1372                 valid_bank_mask = BIT_ULL(0);
1373                 sparse_banks[0] = flush.processor_mask;
1374
1375                 /*
1376                  * Work around possible WS2012 bug: it sends hypercalls
1377                  * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
1378                  * while also expecting us to flush something and crashing if
1379                  * we don't. Let's treat processor_mask == 0 same as
1380                  * HV_FLUSH_ALL_PROCESSORS.
1381                  */
1382                 all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
1383                         flush.processor_mask == 0;
1384         } else {
1385                 if (unlikely(kvm_read_guest(kvm, ingpa, &flush_ex,
1386                                             sizeof(flush_ex))))
1387                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1388
1389                 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
1390                                           flush_ex.hv_vp_set.format,
1391                                           flush_ex.address_space,
1392                                           flush_ex.flags);
1393
1394                 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
1395                 all_cpus = flush_ex.hv_vp_set.format !=
1396                         HV_GENERIC_SET_SPARSE_4K;
1397
1398                 sparse_banks_len =
1399                         bitmap_weight((unsigned long *)&valid_bank_mask, 64) *
1400                         sizeof(sparse_banks[0]);
1401
1402                 if (!sparse_banks_len && !all_cpus)
1403                         goto ret_success;
1404
1405                 if (!all_cpus &&
1406                     kvm_read_guest(kvm,
1407                                    ingpa + offsetof(struct hv_tlb_flush_ex,
1408                                                     hv_vp_set.bank_contents),
1409                                    sparse_banks,
1410                                    sparse_banks_len))
1411                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1412         }
1413
1414         cpumask_clear(&hv_vcpu->tlb_flush);
1415
1416         vcpu_mask = all_cpus ? NULL :
1417                 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1418                                         vp_bitmap, vcpu_bitmap);
1419
1420         /*
1421          * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
1422          * analyze it here, flush TLB regardless of the specified address space.
1423          */
1424         kvm_make_vcpus_request_mask(kvm,
1425                                     KVM_REQ_TLB_FLUSH | KVM_REQUEST_NO_WAKEUP,
1426                                     vcpu_mask, &hv_vcpu->tlb_flush);
1427
1428 ret_success:
1429         /* We always do full TLB flush, set rep_done = rep_cnt. */
1430         return (u64)HV_STATUS_SUCCESS |
1431                 ((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
1432 }
1433
1434 static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
1435                                  unsigned long *vcpu_bitmap)
1436 {
1437         struct kvm_lapic_irq irq = {
1438                 .delivery_mode = APIC_DM_FIXED,
1439                 .vector = vector
1440         };
1441         struct kvm_vcpu *vcpu;
1442         int i;
1443
1444         kvm_for_each_vcpu(i, vcpu, kvm) {
1445                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
1446                         continue;
1447
1448                 /* We fail only when APIC is disabled */
1449                 kvm_apic_set_irq(vcpu, &irq, NULL);
1450         }
1451 }
1452
1453 static u64 kvm_hv_send_ipi(struct kvm_vcpu *current_vcpu, u64 ingpa, u64 outgpa,
1454                            bool ex, bool fast)
1455 {
1456         struct kvm *kvm = current_vcpu->kvm;
1457         struct hv_send_ipi_ex send_ipi_ex;
1458         struct hv_send_ipi send_ipi;
1459         u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1460         DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1461         unsigned long *vcpu_mask;
1462         unsigned long valid_bank_mask;
1463         u64 sparse_banks[64];
1464         int sparse_banks_len;
1465         u32 vector;
1466         bool all_cpus;
1467
1468         if (!ex) {
1469                 if (!fast) {
1470                         if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi,
1471                                                     sizeof(send_ipi))))
1472                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1473                         sparse_banks[0] = send_ipi.cpu_mask;
1474                         vector = send_ipi.vector;
1475                 } else {
1476                         /* 'reserved' part of hv_send_ipi should be 0 */
1477                         if (unlikely(ingpa >> 32 != 0))
1478                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1479                         sparse_banks[0] = outgpa;
1480                         vector = (u32)ingpa;
1481                 }
1482                 all_cpus = false;
1483                 valid_bank_mask = BIT_ULL(0);
1484
1485                 trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
1486         } else {
1487                 if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi_ex,
1488                                             sizeof(send_ipi_ex))))
1489                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1490
1491                 trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
1492                                          send_ipi_ex.vp_set.format,
1493                                          send_ipi_ex.vp_set.valid_bank_mask);
1494
1495                 vector = send_ipi_ex.vector;
1496                 valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
1497                 sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
1498                         sizeof(sparse_banks[0]);
1499
1500                 all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
1501
1502                 if (!sparse_banks_len)
1503                         goto ret_success;
1504
1505                 if (!all_cpus &&
1506                     kvm_read_guest(kvm,
1507                                    ingpa + offsetof(struct hv_send_ipi_ex,
1508                                                     vp_set.bank_contents),
1509                                    sparse_banks,
1510                                    sparse_banks_len))
1511                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1512         }
1513
1514         if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
1515                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1516
1517         vcpu_mask = all_cpus ? NULL :
1518                 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1519                                         vp_bitmap, vcpu_bitmap);
1520
1521         kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
1522
1523 ret_success:
1524         return HV_STATUS_SUCCESS;
1525 }
1526
1527 bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1528 {
1529         return READ_ONCE(kvm->arch.hyperv.hv_hypercall) & HV_X64_MSR_HYPERCALL_ENABLE;
1530 }
1531
1532 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1533 {
1534         bool longmode;
1535
1536         longmode = is_64_bit_mode(vcpu);
1537         if (longmode)
1538                 kvm_rax_write(vcpu, result);
1539         else {
1540                 kvm_rdx_write(vcpu, result >> 32);
1541                 kvm_rax_write(vcpu, result & 0xffffffff);
1542         }
1543 }
1544
1545 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
1546 {
1547         kvm_hv_hypercall_set_result(vcpu, result);
1548         ++vcpu->stat.hypercalls;
1549         return kvm_skip_emulated_instruction(vcpu);
1550 }
1551
1552 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1553 {
1554         return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
1555 }
1556
1557 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, bool fast, u64 param)
1558 {
1559         struct eventfd_ctx *eventfd;
1560
1561         if (unlikely(!fast)) {
1562                 int ret;
1563                 gpa_t gpa = param;
1564
1565                 if ((gpa & (__alignof__(param) - 1)) ||
1566                     offset_in_page(gpa) + sizeof(param) > PAGE_SIZE)
1567                         return HV_STATUS_INVALID_ALIGNMENT;
1568
1569                 ret = kvm_vcpu_read_guest(vcpu, gpa, &param, sizeof(param));
1570                 if (ret < 0)
1571                         return HV_STATUS_INVALID_ALIGNMENT;
1572         }
1573
1574         /*
1575          * Per spec, bits 32-47 contain the extra "flag number".  However, we
1576          * have no use for it, and in all known usecases it is zero, so just
1577          * report lookup failure if it isn't.
1578          */
1579         if (param & 0xffff00000000ULL)
1580                 return HV_STATUS_INVALID_PORT_ID;
1581         /* remaining bits are reserved-zero */
1582         if (param & ~KVM_HYPERV_CONN_ID_MASK)
1583                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1584
1585         /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
1586         rcu_read_lock();
1587         eventfd = idr_find(&vcpu->kvm->arch.hyperv.conn_to_evt, param);
1588         rcu_read_unlock();
1589         if (!eventfd)
1590                 return HV_STATUS_INVALID_PORT_ID;
1591
1592         eventfd_signal(eventfd, 1);
1593         return HV_STATUS_SUCCESS;
1594 }
1595
1596 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
1597 {
1598         u64 param, ingpa, outgpa, ret = HV_STATUS_SUCCESS;
1599         uint16_t code, rep_idx, rep_cnt;
1600         bool fast, rep;
1601
1602         /*
1603          * hypercall generates UD from non zero cpl and real mode
1604          * per HYPER-V spec
1605          */
1606         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
1607                 kvm_queue_exception(vcpu, UD_VECTOR);
1608                 return 1;
1609         }
1610
1611 #ifdef CONFIG_X86_64
1612         if (is_64_bit_mode(vcpu)) {
1613                 param = kvm_rcx_read(vcpu);
1614                 ingpa = kvm_rdx_read(vcpu);
1615                 outgpa = kvm_r8_read(vcpu);
1616         } else
1617 #endif
1618         {
1619                 param = ((u64)kvm_rdx_read(vcpu) << 32) |
1620                         (kvm_rax_read(vcpu) & 0xffffffff);
1621                 ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
1622                         (kvm_rcx_read(vcpu) & 0xffffffff);
1623                 outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
1624                         (kvm_rsi_read(vcpu) & 0xffffffff);
1625         }
1626
1627         code = param & 0xffff;
1628         fast = !!(param & HV_HYPERCALL_FAST_BIT);
1629         rep_cnt = (param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
1630         rep_idx = (param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
1631         rep = !!(rep_cnt || rep_idx);
1632
1633         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
1634
1635         switch (code) {
1636         case HVCALL_NOTIFY_LONG_SPIN_WAIT:
1637                 if (unlikely(rep)) {
1638                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1639                         break;
1640                 }
1641                 kvm_vcpu_on_spin(vcpu, true);
1642                 break;
1643         case HVCALL_SIGNAL_EVENT:
1644                 if (unlikely(rep)) {
1645                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1646                         break;
1647                 }
1648                 ret = kvm_hvcall_signal_event(vcpu, fast, ingpa);
1649                 if (ret != HV_STATUS_INVALID_PORT_ID)
1650                         break;
1651                 /* fall through - maybe userspace knows this conn_id. */
1652         case HVCALL_POST_MESSAGE:
1653                 /* don't bother userspace if it has no way to handle it */
1654                 if (unlikely(rep || !vcpu_to_synic(vcpu)->active)) {
1655                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1656                         break;
1657                 }
1658                 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
1659                 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
1660                 vcpu->run->hyperv.u.hcall.input = param;
1661                 vcpu->run->hyperv.u.hcall.params[0] = ingpa;
1662                 vcpu->run->hyperv.u.hcall.params[1] = outgpa;
1663                 vcpu->arch.complete_userspace_io =
1664                                 kvm_hv_hypercall_complete_userspace;
1665                 return 0;
1666         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
1667                 if (unlikely(fast || !rep_cnt || rep_idx)) {
1668                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1669                         break;
1670                 }
1671                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1672                 break;
1673         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
1674                 if (unlikely(fast || rep)) {
1675                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1676                         break;
1677                 }
1678                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1679                 break;
1680         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
1681                 if (unlikely(fast || !rep_cnt || rep_idx)) {
1682                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1683                         break;
1684                 }
1685                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1686                 break;
1687         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
1688                 if (unlikely(fast || rep)) {
1689                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1690                         break;
1691                 }
1692                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1693                 break;
1694         case HVCALL_SEND_IPI:
1695                 if (unlikely(rep)) {
1696                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1697                         break;
1698                 }
1699                 ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, false, fast);
1700                 break;
1701         case HVCALL_SEND_IPI_EX:
1702                 if (unlikely(fast || rep)) {
1703                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1704                         break;
1705                 }
1706                 ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, true, false);
1707                 break;
1708         default:
1709                 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
1710                 break;
1711         }
1712
1713         return kvm_hv_hypercall_complete(vcpu, ret);
1714 }
1715
1716 void kvm_hv_init_vm(struct kvm *kvm)
1717 {
1718         mutex_init(&kvm->arch.hyperv.hv_lock);
1719         idr_init(&kvm->arch.hyperv.conn_to_evt);
1720 }
1721
1722 void kvm_hv_destroy_vm(struct kvm *kvm)
1723 {
1724         struct eventfd_ctx *eventfd;
1725         int i;
1726
1727         idr_for_each_entry(&kvm->arch.hyperv.conn_to_evt, eventfd, i)
1728                 eventfd_ctx_put(eventfd);
1729         idr_destroy(&kvm->arch.hyperv.conn_to_evt);
1730 }
1731
1732 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
1733 {
1734         struct kvm_hv *hv = &kvm->arch.hyperv;
1735         struct eventfd_ctx *eventfd;
1736         int ret;
1737
1738         eventfd = eventfd_ctx_fdget(fd);
1739         if (IS_ERR(eventfd))
1740                 return PTR_ERR(eventfd);
1741
1742         mutex_lock(&hv->hv_lock);
1743         ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
1744                         GFP_KERNEL_ACCOUNT);
1745         mutex_unlock(&hv->hv_lock);
1746
1747         if (ret >= 0)
1748                 return 0;
1749
1750         if (ret == -ENOSPC)
1751                 ret = -EEXIST;
1752         eventfd_ctx_put(eventfd);
1753         return ret;
1754 }
1755
1756 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
1757 {
1758         struct kvm_hv *hv = &kvm->arch.hyperv;
1759         struct eventfd_ctx *eventfd;
1760
1761         mutex_lock(&hv->hv_lock);
1762         eventfd = idr_remove(&hv->conn_to_evt, conn_id);
1763         mutex_unlock(&hv->hv_lock);
1764
1765         if (!eventfd)
1766                 return -ENOENT;
1767
1768         synchronize_srcu(&kvm->srcu);
1769         eventfd_ctx_put(eventfd);
1770         return 0;
1771 }
1772
1773 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
1774 {
1775         if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
1776             (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
1777                 return -EINVAL;
1778
1779         if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
1780                 return kvm_hv_eventfd_deassign(kvm, args->conn_id);
1781         return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
1782 }
1783
1784 int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
1785                                 struct kvm_cpuid_entry2 __user *entries)
1786 {
1787         uint16_t evmcs_ver = 0;
1788         struct kvm_cpuid_entry2 cpuid_entries[] = {
1789                 { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
1790                 { .function = HYPERV_CPUID_INTERFACE },
1791                 { .function = HYPERV_CPUID_VERSION },
1792                 { .function = HYPERV_CPUID_FEATURES },
1793                 { .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
1794                 { .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
1795                 { .function = HYPERV_CPUID_NESTED_FEATURES },
1796         };
1797         int i, nent = ARRAY_SIZE(cpuid_entries);
1798
1799         if (kvm_x86_ops->nested_get_evmcs_version)
1800                 evmcs_ver = kvm_x86_ops->nested_get_evmcs_version(vcpu);
1801
1802         /* Skip NESTED_FEATURES if eVMCS is not supported */
1803         if (!evmcs_ver)
1804                 --nent;
1805
1806         if (cpuid->nent < nent)
1807                 return -E2BIG;
1808
1809         if (cpuid->nent > nent)
1810                 cpuid->nent = nent;
1811
1812         for (i = 0; i < nent; i++) {
1813                 struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
1814                 u32 signature[3];
1815
1816                 switch (ent->function) {
1817                 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
1818                         memcpy(signature, "Linux KVM Hv", 12);
1819
1820                         ent->eax = HYPERV_CPUID_NESTED_FEATURES;
1821                         ent->ebx = signature[0];
1822                         ent->ecx = signature[1];
1823                         ent->edx = signature[2];
1824                         break;
1825
1826                 case HYPERV_CPUID_INTERFACE:
1827                         memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1828                         ent->eax = signature[0];
1829                         break;
1830
1831                 case HYPERV_CPUID_VERSION:
1832                         /*
1833                          * We implement some Hyper-V 2016 functions so let's use
1834                          * this version.
1835                          */
1836                         ent->eax = 0x00003839;
1837                         ent->ebx = 0x000A0000;
1838                         break;
1839
1840                 case HYPERV_CPUID_FEATURES:
1841                         ent->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE;
1842                         ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
1843                         ent->eax |= HV_X64_MSR_SYNIC_AVAILABLE;
1844                         ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
1845                         ent->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
1846                         ent->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
1847                         ent->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE;
1848                         ent->eax |= HV_X64_MSR_RESET_AVAILABLE;
1849                         ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
1850                         ent->eax |= HV_X64_ACCESS_FREQUENCY_MSRS;
1851                         ent->eax |= HV_X64_ACCESS_REENLIGHTENMENT;
1852
1853                         ent->ebx |= HV_X64_POST_MESSAGES;
1854                         ent->ebx |= HV_X64_SIGNAL_EVENTS;
1855
1856                         ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
1857                         ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
1858
1859                         /*
1860                          * Direct Synthetic timers only make sense with in-kernel
1861                          * LAPIC
1862                          */
1863                         if (lapic_in_kernel(vcpu))
1864                                 ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
1865
1866                         break;
1867
1868                 case HYPERV_CPUID_ENLIGHTMENT_INFO:
1869                         ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
1870                         ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
1871                         ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
1872                         ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
1873                         ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
1874                         if (evmcs_ver)
1875                                 ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
1876                         if (!cpu_smt_possible())
1877                                 ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
1878                         /*
1879                          * Default number of spinlock retry attempts, matches
1880                          * HyperV 2016.
1881                          */
1882                         ent->ebx = 0x00000FFF;
1883
1884                         break;
1885
1886                 case HYPERV_CPUID_IMPLEMENT_LIMITS:
1887                         /* Maximum number of virtual processors */
1888                         ent->eax = KVM_MAX_VCPUS;
1889                         /*
1890                          * Maximum number of logical processors, matches
1891                          * HyperV 2016.
1892                          */
1893                         ent->ebx = 64;
1894
1895                         break;
1896
1897                 case HYPERV_CPUID_NESTED_FEATURES:
1898                         ent->eax = evmcs_ver;
1899
1900                         break;
1901
1902                 default:
1903                         break;
1904                 }
1905         }
1906
1907         if (copy_to_user(entries, cpuid_entries,
1908                          nent * sizeof(struct kvm_cpuid_entry2)))
1909                 return -EFAULT;
1910
1911         return 0;
1912 }