1d2c4f2e4bb6feaf456ca7b951cec1dbaa381730
[linux-2.6-microblaze.git] / arch / x86 / kvm / cpuid.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_CPUID_H
3 #define ARCH_X86_KVM_CPUID_H
4
5 #include "x86.h"
6 #include <asm/cpu.h>
7 #include <asm/processor.h>
8
9 extern u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
10 void kvm_set_cpu_caps(void);
11
12 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu);
13 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
14                                               u32 function, u32 index);
15 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
16                             struct kvm_cpuid_entry2 __user *entries,
17                             unsigned int type);
18 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
19                              struct kvm_cpuid *cpuid,
20                              struct kvm_cpuid_entry __user *entries);
21 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
22                               struct kvm_cpuid2 *cpuid,
23                               struct kvm_cpuid_entry2 __user *entries);
24 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
25                               struct kvm_cpuid2 *cpuid,
26                               struct kvm_cpuid_entry2 __user *entries);
27 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
28                u32 *ecx, u32 *edx, bool exact_only);
29
30 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu);
31
32 static inline int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
33 {
34         return vcpu->arch.maxphyaddr;
35 }
36
37 static inline bool kvm_vcpu_is_illegal_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
38 {
39         return (gpa >= BIT_ULL(cpuid_maxphyaddr(vcpu)));
40 }
41
42 struct cpuid_reg {
43         u32 function;
44         u32 index;
45         int reg;
46 };
47
48 static const struct cpuid_reg reverse_cpuid[] = {
49         [CPUID_1_EDX]         = {         1, 0, CPUID_EDX},
50         [CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
51         [CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
52         [CPUID_1_ECX]         = {         1, 0, CPUID_ECX},
53         [CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
54         [CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
55         [CPUID_7_0_EBX]       = {         7, 0, CPUID_EBX},
56         [CPUID_D_1_EAX]       = {       0xd, 1, CPUID_EAX},
57         [CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
58         [CPUID_6_EAX]         = {         6, 0, CPUID_EAX},
59         [CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
60         [CPUID_7_ECX]         = {         7, 0, CPUID_ECX},
61         [CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
62         [CPUID_7_EDX]         = {         7, 0, CPUID_EDX},
63         [CPUID_7_1_EAX]       = {         7, 1, CPUID_EAX},
64 };
65
66 /*
67  * Reverse CPUID and its derivatives can only be used for hardware-defined
68  * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
69  * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
70  * is nonsensical as the bit number/mask is an arbitrary software-defined value
71  * and can't be used by KVM to query/control guest capabilities.  And obviously
72  * the leaf being queried must have an entry in the lookup table.
73  */
74 static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
75 {
76         BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
77         BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
78         BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
79         BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
80         BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
81         BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
82 }
83
84 /*
85  * Retrieve the bit mask from an X86_FEATURE_* definition.  Features contain
86  * the hardware defined bit number (stored in bits 4:0) and a software defined
87  * "word" (stored in bits 31:5).  The word is used to index into arrays of
88  * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
89  */
90 static __always_inline u32 __feature_bit(int x86_feature)
91 {
92         reverse_cpuid_check(x86_feature / 32);
93         return 1 << (x86_feature & 31);
94 }
95
96 #define feature_bit(name)  __feature_bit(X86_FEATURE_##name)
97
98 static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
99 {
100         unsigned int x86_leaf = x86_feature / 32;
101
102         reverse_cpuid_check(x86_leaf);
103         return reverse_cpuid[x86_leaf];
104 }
105
106 static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
107                                                   u32 reg)
108 {
109         switch (reg) {
110         case CPUID_EAX:
111                 return &entry->eax;
112         case CPUID_EBX:
113                 return &entry->ebx;
114         case CPUID_ECX:
115                 return &entry->ecx;
116         case CPUID_EDX:
117                 return &entry->edx;
118         default:
119                 BUILD_BUG();
120                 return NULL;
121         }
122 }
123
124 static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
125                                                 unsigned int x86_feature)
126 {
127         const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
128
129         return __cpuid_entry_get_reg(entry, cpuid.reg);
130 }
131
132 static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
133                                            unsigned int x86_feature)
134 {
135         u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
136
137         return *reg & __feature_bit(x86_feature);
138 }
139
140 static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
141                                             unsigned int x86_feature)
142 {
143         return cpuid_entry_get(entry, x86_feature);
144 }
145
146 static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
147                                               unsigned int x86_feature)
148 {
149         u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
150
151         *reg &= ~__feature_bit(x86_feature);
152 }
153
154 static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
155                                             unsigned int x86_feature)
156 {
157         u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
158
159         *reg |= __feature_bit(x86_feature);
160 }
161
162 static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
163                                                unsigned int x86_feature,
164                                                bool set)
165 {
166         u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
167
168         /*
169          * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
170          * compiler into using CMOV instead of Jcc when possible.
171          */
172         if (set)
173                 *reg |= __feature_bit(x86_feature);
174         else
175                 *reg &= ~__feature_bit(x86_feature);
176 }
177
178 static __always_inline void cpuid_entry_override(struct kvm_cpuid_entry2 *entry,
179                                                  enum cpuid_leafs leaf)
180 {
181         u32 *reg = cpuid_entry_get_reg(entry, leaf * 32);
182
183         BUILD_BUG_ON(leaf >= ARRAY_SIZE(kvm_cpu_caps));
184         *reg = kvm_cpu_caps[leaf];
185 }
186
187 static __always_inline u32 *guest_cpuid_get_register(struct kvm_vcpu *vcpu,
188                                                      unsigned int x86_feature)
189 {
190         const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
191         struct kvm_cpuid_entry2 *entry;
192
193         entry = kvm_find_cpuid_entry(vcpu, cpuid.function, cpuid.index);
194         if (!entry)
195                 return NULL;
196
197         return __cpuid_entry_get_reg(entry, cpuid.reg);
198 }
199
200 static __always_inline bool guest_cpuid_has(struct kvm_vcpu *vcpu,
201                                             unsigned int x86_feature)
202 {
203         u32 *reg;
204
205         reg = guest_cpuid_get_register(vcpu, x86_feature);
206         if (!reg)
207                 return false;
208
209         return *reg & __feature_bit(x86_feature);
210 }
211
212 static __always_inline void guest_cpuid_clear(struct kvm_vcpu *vcpu,
213                                               unsigned int x86_feature)
214 {
215         u32 *reg;
216
217         reg = guest_cpuid_get_register(vcpu, x86_feature);
218         if (reg)
219                 *reg &= ~__feature_bit(x86_feature);
220 }
221
222 static inline bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
223 {
224         struct kvm_cpuid_entry2 *best;
225
226         best = kvm_find_cpuid_entry(vcpu, 0, 0);
227         return best &&
228                (is_guest_vendor_amd(best->ebx, best->ecx, best->edx) ||
229                 is_guest_vendor_hygon(best->ebx, best->ecx, best->edx));
230 }
231
232 static inline int guest_cpuid_family(struct kvm_vcpu *vcpu)
233 {
234         struct kvm_cpuid_entry2 *best;
235
236         best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
237         if (!best)
238                 return -1;
239
240         return x86_family(best->eax);
241 }
242
243 static inline int guest_cpuid_model(struct kvm_vcpu *vcpu)
244 {
245         struct kvm_cpuid_entry2 *best;
246
247         best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
248         if (!best)
249                 return -1;
250
251         return x86_model(best->eax);
252 }
253
254 static inline int guest_cpuid_stepping(struct kvm_vcpu *vcpu)
255 {
256         struct kvm_cpuid_entry2 *best;
257
258         best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
259         if (!best)
260                 return -1;
261
262         return x86_stepping(best->eax);
263 }
264
265 static inline bool supports_cpuid_fault(struct kvm_vcpu *vcpu)
266 {
267         return vcpu->arch.msr_platform_info & MSR_PLATFORM_INFO_CPUID_FAULT;
268 }
269
270 static inline bool cpuid_fault_enabled(struct kvm_vcpu *vcpu)
271 {
272         return vcpu->arch.msr_misc_features_enables &
273                   MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
274 }
275
276 static __always_inline void kvm_cpu_cap_clear(unsigned int x86_feature)
277 {
278         unsigned int x86_leaf = x86_feature / 32;
279
280         reverse_cpuid_check(x86_leaf);
281         kvm_cpu_caps[x86_leaf] &= ~__feature_bit(x86_feature);
282 }
283
284 static __always_inline void kvm_cpu_cap_set(unsigned int x86_feature)
285 {
286         unsigned int x86_leaf = x86_feature / 32;
287
288         reverse_cpuid_check(x86_leaf);
289         kvm_cpu_caps[x86_leaf] |= __feature_bit(x86_feature);
290 }
291
292 static __always_inline u32 kvm_cpu_cap_get(unsigned int x86_feature)
293 {
294         unsigned int x86_leaf = x86_feature / 32;
295
296         reverse_cpuid_check(x86_leaf);
297         return kvm_cpu_caps[x86_leaf] & __feature_bit(x86_feature);
298 }
299
300 static __always_inline bool kvm_cpu_cap_has(unsigned int x86_feature)
301 {
302         return !!kvm_cpu_cap_get(x86_feature);
303 }
304
305 static __always_inline void kvm_cpu_cap_check_and_set(unsigned int x86_feature)
306 {
307         if (boot_cpu_has(x86_feature))
308                 kvm_cpu_cap_set(x86_feature);
309 }
310
311 static inline bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
312 {
313         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
314 }
315
316 #endif