Merge tag 'for-linus-20191012' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
26
27 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
28 {
29         int feature_bit = 0;
30         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
31
32         xstate_bv &= XFEATURE_MASK_EXTEND;
33         while (xstate_bv) {
34                 if (xstate_bv & 0x1) {
35                         u32 eax, ebx, ecx, edx, offset;
36                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
37                         offset = compacted ? ret : ebx;
38                         ret = max(ret, offset + eax);
39                 }
40
41                 xstate_bv >>= 1;
42                 feature_bit++;
43         }
44
45         return ret;
46 }
47
48 bool kvm_mpx_supported(void)
49 {
50         return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
51                  && kvm_x86_ops->mpx_supported());
52 }
53 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
54
55 u64 kvm_supported_xcr0(void)
56 {
57         u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
58
59         if (!kvm_mpx_supported())
60                 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
61
62         return xcr0;
63 }
64
65 #define F(x) bit(X86_FEATURE_##x)
66
67 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
68 {
69         struct kvm_cpuid_entry2 *best;
70         struct kvm_lapic *apic = vcpu->arch.apic;
71
72         best = kvm_find_cpuid_entry(vcpu, 1, 0);
73         if (!best)
74                 return 0;
75
76         /* Update OSXSAVE bit */
77         if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
78                 best->ecx &= ~F(OSXSAVE);
79                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
80                         best->ecx |= F(OSXSAVE);
81         }
82
83         best->edx &= ~F(APIC);
84         if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
85                 best->edx |= F(APIC);
86
87         if (apic) {
88                 if (best->ecx & F(TSC_DEADLINE_TIMER))
89                         apic->lapic_timer.timer_mode_mask = 3 << 17;
90                 else
91                         apic->lapic_timer.timer_mode_mask = 1 << 17;
92         }
93
94         best = kvm_find_cpuid_entry(vcpu, 7, 0);
95         if (best) {
96                 /* Update OSPKE bit */
97                 if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
98                         best->ecx &= ~F(OSPKE);
99                         if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
100                                 best->ecx |= F(OSPKE);
101                 }
102         }
103
104         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
105         if (!best) {
106                 vcpu->arch.guest_supported_xcr0 = 0;
107                 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
108         } else {
109                 vcpu->arch.guest_supported_xcr0 =
110                         (best->eax | ((u64)best->edx << 32)) &
111                         kvm_supported_xcr0();
112                 vcpu->arch.guest_xstate_size = best->ebx =
113                         xstate_required_size(vcpu->arch.xcr0, false);
114         }
115
116         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
117         if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
118                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
119
120         /*
121          * The existing code assumes virtual address is 48-bit or 57-bit in the
122          * canonical address checks; exit if it is ever changed.
123          */
124         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
125         if (best) {
126                 int vaddr_bits = (best->eax & 0xff00) >> 8;
127
128                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
129                         return -EINVAL;
130         }
131
132         best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
133         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
134                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
135                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
136
137         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
138                 best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
139                 if (best) {
140                         if (vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT)
141                                 best->ecx |= F(MWAIT);
142                         else
143                                 best->ecx &= ~F(MWAIT);
144                 }
145         }
146
147         /* Update physical-address width */
148         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
149         kvm_mmu_reset_context(vcpu);
150
151         kvm_pmu_refresh(vcpu);
152         return 0;
153 }
154
155 static int is_efer_nx(void)
156 {
157         unsigned long long efer = 0;
158
159         rdmsrl_safe(MSR_EFER, &efer);
160         return efer & EFER_NX;
161 }
162
163 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
164 {
165         int i;
166         struct kvm_cpuid_entry2 *e, *entry;
167
168         entry = NULL;
169         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
170                 e = &vcpu->arch.cpuid_entries[i];
171                 if (e->function == 0x80000001) {
172                         entry = e;
173                         break;
174                 }
175         }
176         if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
177                 entry->edx &= ~F(NX);
178                 printk(KERN_INFO "kvm: guest NX capability removed\n");
179         }
180 }
181
182 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
183 {
184         struct kvm_cpuid_entry2 *best;
185
186         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
187         if (!best || best->eax < 0x80000008)
188                 goto not_found;
189         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
190         if (best)
191                 return best->eax & 0xff;
192 not_found:
193         return 36;
194 }
195 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
196
197 /* when an old userspace process fills a new kernel module */
198 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
199                              struct kvm_cpuid *cpuid,
200                              struct kvm_cpuid_entry __user *entries)
201 {
202         int r, i;
203         struct kvm_cpuid_entry *cpuid_entries = NULL;
204
205         r = -E2BIG;
206         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
207                 goto out;
208         r = -ENOMEM;
209         if (cpuid->nent) {
210                 cpuid_entries =
211                         vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
212                                            cpuid->nent));
213                 if (!cpuid_entries)
214                         goto out;
215                 r = -EFAULT;
216                 if (copy_from_user(cpuid_entries, entries,
217                                    cpuid->nent * sizeof(struct kvm_cpuid_entry)))
218                         goto out;
219         }
220         for (i = 0; i < cpuid->nent; i++) {
221                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
222                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
223                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
224                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
225                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
226                 vcpu->arch.cpuid_entries[i].index = 0;
227                 vcpu->arch.cpuid_entries[i].flags = 0;
228                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
229                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
230                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
231         }
232         vcpu->arch.cpuid_nent = cpuid->nent;
233         cpuid_fix_nx_cap(vcpu);
234         kvm_apic_set_version(vcpu);
235         kvm_x86_ops->cpuid_update(vcpu);
236         r = kvm_update_cpuid(vcpu);
237
238 out:
239         vfree(cpuid_entries);
240         return r;
241 }
242
243 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
244                               struct kvm_cpuid2 *cpuid,
245                               struct kvm_cpuid_entry2 __user *entries)
246 {
247         int r;
248
249         r = -E2BIG;
250         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
251                 goto out;
252         r = -EFAULT;
253         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
254                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
255                 goto out;
256         vcpu->arch.cpuid_nent = cpuid->nent;
257         kvm_apic_set_version(vcpu);
258         kvm_x86_ops->cpuid_update(vcpu);
259         r = kvm_update_cpuid(vcpu);
260 out:
261         return r;
262 }
263
264 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
265                               struct kvm_cpuid2 *cpuid,
266                               struct kvm_cpuid_entry2 __user *entries)
267 {
268         int r;
269
270         r = -E2BIG;
271         if (cpuid->nent < vcpu->arch.cpuid_nent)
272                 goto out;
273         r = -EFAULT;
274         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
275                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
276                 goto out;
277         return 0;
278
279 out:
280         cpuid->nent = vcpu->arch.cpuid_nent;
281         return r;
282 }
283
284 static void cpuid_mask(u32 *word, int wordnum)
285 {
286         *word &= boot_cpu_data.x86_capability[wordnum];
287 }
288
289 static void do_host_cpuid(struct kvm_cpuid_entry2 *entry, u32 function,
290                            u32 index)
291 {
292         entry->function = function;
293         entry->index = index;
294         entry->flags = 0;
295
296         cpuid_count(entry->function, entry->index,
297                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
298
299         switch (function) {
300         case 2:
301                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
302                 break;
303         case 4:
304         case 7:
305         case 0xb:
306         case 0xd:
307         case 0xf:
308         case 0x10:
309         case 0x12:
310         case 0x14:
311         case 0x17:
312         case 0x18:
313         case 0x1f:
314         case 0x8000001d:
315                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
316                 break;
317         }
318 }
319
320 static int __do_cpuid_func_emulated(struct kvm_cpuid_entry2 *entry,
321                                     u32 func, int *nent, int maxnent)
322 {
323         entry->function = func;
324         entry->index = 0;
325         entry->flags = 0;
326
327         switch (func) {
328         case 0:
329                 entry->eax = 7;
330                 ++*nent;
331                 break;
332         case 1:
333                 entry->ecx = F(MOVBE);
334                 ++*nent;
335                 break;
336         case 7:
337                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
338                 entry->eax = 0;
339                 entry->ecx = F(RDPID);
340                 ++*nent;
341         default:
342                 break;
343         }
344
345         return 0;
346 }
347
348 static inline void do_cpuid_7_mask(struct kvm_cpuid_entry2 *entry, int index)
349 {
350         unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
351         unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
352         unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
353         unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
354         unsigned f_la57;
355
356         /* cpuid 7.0.ebx */
357         const u32 kvm_cpuid_7_0_ebx_x86_features =
358                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
359                 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
360                 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
361                 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
362                 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt;
363
364         /* cpuid 7.0.ecx*/
365         const u32 kvm_cpuid_7_0_ecx_x86_features =
366                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ |
367                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
368                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
369                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/;
370
371         /* cpuid 7.0.edx*/
372         const u32 kvm_cpuid_7_0_edx_x86_features =
373                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
374                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
375                 F(MD_CLEAR);
376
377         /* cpuid 7.1.eax */
378         const u32 kvm_cpuid_7_1_eax_x86_features =
379                 F(AVX512_BF16);
380
381         switch (index) {
382         case 0:
383                 entry->eax = min(entry->eax, 1u);
384                 entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
385                 cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
386                 /* TSC_ADJUST is emulated */
387                 entry->ebx |= F(TSC_ADJUST);
388
389                 entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
390                 f_la57 = entry->ecx & F(LA57);
391                 cpuid_mask(&entry->ecx, CPUID_7_ECX);
392                 /* Set LA57 based on hardware capability. */
393                 entry->ecx |= f_la57;
394                 entry->ecx |= f_umip;
395                 /* PKU is not yet implemented for shadow paging. */
396                 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
397                         entry->ecx &= ~F(PKU);
398
399                 entry->edx &= kvm_cpuid_7_0_edx_x86_features;
400                 cpuid_mask(&entry->edx, CPUID_7_EDX);
401                 if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
402                         entry->edx |= F(SPEC_CTRL);
403                 if (boot_cpu_has(X86_FEATURE_STIBP))
404                         entry->edx |= F(INTEL_STIBP);
405                 if (boot_cpu_has(X86_FEATURE_SSBD))
406                         entry->edx |= F(SPEC_CTRL_SSBD);
407                 /*
408                  * We emulate ARCH_CAPABILITIES in software even
409                  * if the host doesn't support it.
410                  */
411                 entry->edx |= F(ARCH_CAPABILITIES);
412                 break;
413         case 1:
414                 entry->eax &= kvm_cpuid_7_1_eax_x86_features;
415                 entry->ebx = 0;
416                 entry->ecx = 0;
417                 entry->edx = 0;
418                 break;
419         default:
420                 WARN_ON_ONCE(1);
421                 entry->eax = 0;
422                 entry->ebx = 0;
423                 entry->ecx = 0;
424                 entry->edx = 0;
425                 break;
426         }
427 }
428
429 static inline int __do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 function,
430                                   int *nent, int maxnent)
431 {
432         int r;
433         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
434 #ifdef CONFIG_X86_64
435         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
436                                 ? F(GBPAGES) : 0;
437         unsigned f_lm = F(LM);
438 #else
439         unsigned f_gbpages = 0;
440         unsigned f_lm = 0;
441 #endif
442         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
443         unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
444         unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
445
446         /* cpuid 1.edx */
447         const u32 kvm_cpuid_1_edx_x86_features =
448                 F(FPU) | F(VME) | F(DE) | F(PSE) |
449                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
450                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
451                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
452                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
453                 0 /* Reserved, DS, ACPI */ | F(MMX) |
454                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
455                 0 /* HTT, TM, Reserved, PBE */;
456         /* cpuid 0x80000001.edx */
457         const u32 kvm_cpuid_8000_0001_edx_x86_features =
458                 F(FPU) | F(VME) | F(DE) | F(PSE) |
459                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
460                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
461                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
462                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
463                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
464                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
465                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
466         /* cpuid 1.ecx */
467         const u32 kvm_cpuid_1_ecx_x86_features =
468                 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
469                  * but *not* advertised to guests via CPUID ! */
470                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
471                 0 /* DS-CPL, VMX, SMX, EST */ |
472                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
473                 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
474                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
475                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
476                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
477                 F(F16C) | F(RDRAND);
478         /* cpuid 0x80000001.ecx */
479         const u32 kvm_cpuid_8000_0001_ecx_x86_features =
480                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
481                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
482                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
483                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
484                 F(TOPOEXT) | F(PERFCTR_CORE);
485
486         /* cpuid 0x80000008.ebx */
487         const u32 kvm_cpuid_8000_0008_ebx_x86_features =
488                 F(CLZERO) | F(XSAVEERPTR) |
489                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
490                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON);
491
492         /* cpuid 0xC0000001.edx */
493         const u32 kvm_cpuid_C000_0001_edx_x86_features =
494                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
495                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
496                 F(PMM) | F(PMM_EN);
497
498         /* cpuid 0xD.1.eax */
499         const u32 kvm_cpuid_D_1_eax_x86_features =
500                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
501
502         /* all calls to cpuid_count() should be made on the same cpu */
503         get_cpu();
504
505         r = -E2BIG;
506
507         if (*nent >= maxnent)
508                 goto out;
509
510         do_host_cpuid(entry, function, 0);
511         ++*nent;
512
513         switch (function) {
514         case 0:
515                 /* Limited to the highest leaf implemented in KVM. */
516                 entry->eax = min(entry->eax, 0x1fU);
517                 break;
518         case 1:
519                 entry->edx &= kvm_cpuid_1_edx_x86_features;
520                 cpuid_mask(&entry->edx, CPUID_1_EDX);
521                 entry->ecx &= kvm_cpuid_1_ecx_x86_features;
522                 cpuid_mask(&entry->ecx, CPUID_1_ECX);
523                 /* we support x2apic emulation even if host does not support
524                  * it since we emulate x2apic in software */
525                 entry->ecx |= F(X2APIC);
526                 break;
527         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
528          * may return different values. This forces us to get_cpu() before
529          * issuing the first command, and also to emulate this annoying behavior
530          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
531         case 2: {
532                 int t, times = entry->eax & 0xff;
533
534                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
535                 for (t = 1; t < times; ++t) {
536                         if (*nent >= maxnent)
537                                 goto out;
538
539                         do_host_cpuid(&entry[t], function, 0);
540                         ++*nent;
541                 }
542                 break;
543         }
544         /* functions 4 and 0x8000001d have additional index. */
545         case 4:
546         case 0x8000001d: {
547                 int i, cache_type;
548
549                 /* read more entries until cache_type is zero */
550                 for (i = 1; ; ++i) {
551                         if (*nent >= maxnent)
552                                 goto out;
553
554                         cache_type = entry[i - 1].eax & 0x1f;
555                         if (!cache_type)
556                                 break;
557                         do_host_cpuid(&entry[i], function, i);
558                         ++*nent;
559                 }
560                 break;
561         }
562         case 6: /* Thermal management */
563                 entry->eax = 0x4; /* allow ARAT */
564                 entry->ebx = 0;
565                 entry->ecx = 0;
566                 entry->edx = 0;
567                 break;
568         /* function 7 has additional index. */
569         case 7: {
570                 int i;
571
572                 for (i = 0; ; ) {
573                         do_cpuid_7_mask(&entry[i], i);
574                         if (i == entry->eax)
575                                 break;
576                         if (*nent >= maxnent)
577                                 goto out;
578
579                         ++i;
580                         do_host_cpuid(&entry[i], function, i);
581                         ++*nent;
582                 }
583                 break;
584         }
585         case 9:
586                 break;
587         case 0xa: { /* Architectural Performance Monitoring */
588                 struct x86_pmu_capability cap;
589                 union cpuid10_eax eax;
590                 union cpuid10_edx edx;
591
592                 perf_get_x86_pmu_capability(&cap);
593
594                 /*
595                  * Only support guest architectural pmu on a host
596                  * with architectural pmu.
597                  */
598                 if (!cap.version)
599                         memset(&cap, 0, sizeof(cap));
600
601                 eax.split.version_id = min(cap.version, 2);
602                 eax.split.num_counters = cap.num_counters_gp;
603                 eax.split.bit_width = cap.bit_width_gp;
604                 eax.split.mask_length = cap.events_mask_len;
605
606                 edx.split.num_counters_fixed = cap.num_counters_fixed;
607                 edx.split.bit_width_fixed = cap.bit_width_fixed;
608                 edx.split.reserved = 0;
609
610                 entry->eax = eax.full;
611                 entry->ebx = cap.events_mask;
612                 entry->ecx = 0;
613                 entry->edx = edx.full;
614                 break;
615         }
616         /*
617          * Per Intel's SDM, the 0x1f is a superset of 0xb,
618          * thus they can be handled by common code.
619          */
620         case 0x1f:
621         case 0xb: {
622                 int i;
623
624                 /*
625                  * We filled in entry[0] for CPUID(EAX=<function>,
626                  * ECX=00H) above.  If its level type (ECX[15:8]) is
627                  * zero, then the leaf is unimplemented, and we're
628                  * done.  Otherwise, continue to populate entries
629                  * until the level type (ECX[15:8]) of the previously
630                  * added entry is zero.
631                  */
632                 for (i = 1; entry[i - 1].ecx & 0xff00; ++i) {
633                         if (*nent >= maxnent)
634                                 goto out;
635
636                         do_host_cpuid(&entry[i], function, i);
637                         ++*nent;
638                 }
639                 break;
640         }
641         case 0xd: {
642                 int idx, i;
643                 u64 supported = kvm_supported_xcr0();
644
645                 entry->eax &= supported;
646                 entry->ebx = xstate_required_size(supported, false);
647                 entry->ecx = entry->ebx;
648                 entry->edx &= supported >> 32;
649                 if (!supported)
650                         break;
651
652                 for (idx = 1, i = 1; idx < 64; ++idx) {
653                         u64 mask = ((u64)1 << idx);
654                         if (*nent >= maxnent)
655                                 goto out;
656
657                         do_host_cpuid(&entry[i], function, idx);
658                         if (idx == 1) {
659                                 entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
660                                 cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
661                                 entry[i].ebx = 0;
662                                 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
663                                         entry[i].ebx =
664                                                 xstate_required_size(supported,
665                                                                      true);
666                         } else {
667                                 if (entry[i].eax == 0 || !(supported & mask))
668                                         continue;
669                                 if (WARN_ON_ONCE(entry[i].ecx & 1))
670                                         continue;
671                         }
672                         entry[i].ecx = 0;
673                         entry[i].edx = 0;
674                         ++*nent;
675                         ++i;
676                 }
677                 break;
678         }
679         /* Intel PT */
680         case 0x14: {
681                 int t, times = entry->eax;
682
683                 if (!f_intel_pt)
684                         break;
685
686                 for (t = 1; t <= times; ++t) {
687                         if (*nent >= maxnent)
688                                 goto out;
689                         do_host_cpuid(&entry[t], function, t);
690                         ++*nent;
691                 }
692                 break;
693         }
694         case KVM_CPUID_SIGNATURE: {
695                 static const char signature[12] = "KVMKVMKVM\0\0";
696                 const u32 *sigptr = (const u32 *)signature;
697                 entry->eax = KVM_CPUID_FEATURES;
698                 entry->ebx = sigptr[0];
699                 entry->ecx = sigptr[1];
700                 entry->edx = sigptr[2];
701                 break;
702         }
703         case KVM_CPUID_FEATURES:
704                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
705                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
706                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
707                              (1 << KVM_FEATURE_ASYNC_PF) |
708                              (1 << KVM_FEATURE_PV_EOI) |
709                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
710                              (1 << KVM_FEATURE_PV_UNHALT) |
711                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
712                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
713                              (1 << KVM_FEATURE_PV_SEND_IPI) |
714                              (1 << KVM_FEATURE_POLL_CONTROL) |
715                              (1 << KVM_FEATURE_PV_SCHED_YIELD);
716
717                 if (sched_info_on())
718                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
719
720                 entry->ebx = 0;
721                 entry->ecx = 0;
722                 entry->edx = 0;
723                 break;
724         case 0x80000000:
725                 entry->eax = min(entry->eax, 0x8000001f);
726                 break;
727         case 0x80000001:
728                 entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
729                 cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
730                 entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
731                 cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
732                 break;
733         case 0x80000007: /* Advanced power management */
734                 /* invariant TSC is CPUID.80000007H:EDX[8] */
735                 entry->edx &= (1 << 8);
736                 /* mask against host */
737                 entry->edx &= boot_cpu_data.x86_power;
738                 entry->eax = entry->ebx = entry->ecx = 0;
739                 break;
740         case 0x80000008: {
741                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
742                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
743                 unsigned phys_as = entry->eax & 0xff;
744
745                 if (!g_phys_as)
746                         g_phys_as = phys_as;
747                 entry->eax = g_phys_as | (virt_as << 8);
748                 entry->edx = 0;
749                 entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
750                 cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
751                 /*
752                  * AMD has separate bits for each SPEC_CTRL bit.
753                  * arch/x86/kernel/cpu/bugs.c is kind enough to
754                  * record that in cpufeatures so use them.
755                  */
756                 if (boot_cpu_has(X86_FEATURE_IBPB))
757                         entry->ebx |= F(AMD_IBPB);
758                 if (boot_cpu_has(X86_FEATURE_IBRS))
759                         entry->ebx |= F(AMD_IBRS);
760                 if (boot_cpu_has(X86_FEATURE_STIBP))
761                         entry->ebx |= F(AMD_STIBP);
762                 if (boot_cpu_has(X86_FEATURE_SSBD))
763                         entry->ebx |= F(AMD_SSBD);
764                 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
765                         entry->ebx |= F(AMD_SSB_NO);
766                 /*
767                  * The preference is to use SPEC CTRL MSR instead of the
768                  * VIRT_SPEC MSR.
769                  */
770                 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
771                     !boot_cpu_has(X86_FEATURE_AMD_SSBD))
772                         entry->ebx |= F(VIRT_SSBD);
773                 break;
774         }
775         case 0x80000019:
776                 entry->ecx = entry->edx = 0;
777                 break;
778         case 0x8000001a:
779         case 0x8000001e:
780                 break;
781         /*Add support for Centaur's CPUID instruction*/
782         case 0xC0000000:
783                 /*Just support up to 0xC0000004 now*/
784                 entry->eax = min(entry->eax, 0xC0000004);
785                 break;
786         case 0xC0000001:
787                 entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
788                 cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
789                 break;
790         case 3: /* Processor serial number */
791         case 5: /* MONITOR/MWAIT */
792         case 0xC0000002:
793         case 0xC0000003:
794         case 0xC0000004:
795         default:
796                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
797                 break;
798         }
799
800         kvm_x86_ops->set_supported_cpuid(function, entry);
801
802         r = 0;
803
804 out:
805         put_cpu();
806
807         return r;
808 }
809
810 static int do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 func,
811                          int *nent, int maxnent, unsigned int type)
812 {
813         if (type == KVM_GET_EMULATED_CPUID)
814                 return __do_cpuid_func_emulated(entry, func, nent, maxnent);
815
816         return __do_cpuid_func(entry, func, nent, maxnent);
817 }
818
819 #undef F
820
821 struct kvm_cpuid_param {
822         u32 func;
823         bool (*qualifier)(const struct kvm_cpuid_param *param);
824 };
825
826 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
827 {
828         return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
829 }
830
831 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
832                                  __u32 num_entries, unsigned int ioctl_type)
833 {
834         int i;
835         __u32 pad[3];
836
837         if (ioctl_type != KVM_GET_EMULATED_CPUID)
838                 return false;
839
840         /*
841          * We want to make sure that ->padding is being passed clean from
842          * userspace in case we want to use it for something in the future.
843          *
844          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
845          * have to give ourselves satisfied only with the emulated side. /me
846          * sheds a tear.
847          */
848         for (i = 0; i < num_entries; i++) {
849                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
850                         return true;
851
852                 if (pad[0] || pad[1] || pad[2])
853                         return true;
854         }
855         return false;
856 }
857
858 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
859                             struct kvm_cpuid_entry2 __user *entries,
860                             unsigned int type)
861 {
862         struct kvm_cpuid_entry2 *cpuid_entries;
863         int limit, nent = 0, r = -E2BIG, i;
864         u32 func;
865         static const struct kvm_cpuid_param param[] = {
866                 { .func = 0 },
867                 { .func = 0x80000000 },
868                 { .func = 0xC0000000, .qualifier = is_centaur_cpu },
869                 { .func = KVM_CPUID_SIGNATURE },
870         };
871
872         if (cpuid->nent < 1)
873                 goto out;
874         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
875                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
876
877         if (sanity_check_entries(entries, cpuid->nent, type))
878                 return -EINVAL;
879
880         r = -ENOMEM;
881         cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
882                                            cpuid->nent));
883         if (!cpuid_entries)
884                 goto out;
885
886         r = 0;
887         for (i = 0; i < ARRAY_SIZE(param); i++) {
888                 const struct kvm_cpuid_param *ent = &param[i];
889
890                 if (ent->qualifier && !ent->qualifier(ent))
891                         continue;
892
893                 r = do_cpuid_func(&cpuid_entries[nent], ent->func,
894                                   &nent, cpuid->nent, type);
895
896                 if (r)
897                         goto out_free;
898
899                 limit = cpuid_entries[nent - 1].eax;
900                 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
901                         r = do_cpuid_func(&cpuid_entries[nent], func,
902                                           &nent, cpuid->nent, type);
903
904                 if (r)
905                         goto out_free;
906         }
907
908         r = -EFAULT;
909         if (copy_to_user(entries, cpuid_entries,
910                          nent * sizeof(struct kvm_cpuid_entry2)))
911                 goto out_free;
912         cpuid->nent = nent;
913         r = 0;
914
915 out_free:
916         vfree(cpuid_entries);
917 out:
918         return r;
919 }
920
921 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
922 {
923         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
924         struct kvm_cpuid_entry2 *ej;
925         int j = i;
926         int nent = vcpu->arch.cpuid_nent;
927
928         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
929         /* when no next entry is found, the current entry[i] is reselected */
930         do {
931                 j = (j + 1) % nent;
932                 ej = &vcpu->arch.cpuid_entries[j];
933         } while (ej->function != e->function);
934
935         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
936
937         return j;
938 }
939
940 /* find an entry with matching function, matching index (if needed), and that
941  * should be read next (if it's stateful) */
942 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
943         u32 function, u32 index)
944 {
945         if (e->function != function)
946                 return 0;
947         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
948                 return 0;
949         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
950             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
951                 return 0;
952         return 1;
953 }
954
955 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
956                                               u32 function, u32 index)
957 {
958         int i;
959         struct kvm_cpuid_entry2 *best = NULL;
960
961         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
962                 struct kvm_cpuid_entry2 *e;
963
964                 e = &vcpu->arch.cpuid_entries[i];
965                 if (is_matching_cpuid_entry(e, function, index)) {
966                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
967                                 move_to_next_stateful_cpuid_entry(vcpu, i);
968                         best = e;
969                         break;
970                 }
971         }
972         return best;
973 }
974 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
975
976 /*
977  * If the basic or extended CPUID leaf requested is higher than the
978  * maximum supported basic or extended leaf, respectively, then it is
979  * out of range.
980  */
981 static bool cpuid_function_in_range(struct kvm_vcpu *vcpu, u32 function)
982 {
983         struct kvm_cpuid_entry2 *max;
984
985         max = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
986         return max && function <= max->eax;
987 }
988
989 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
990                u32 *ecx, u32 *edx, bool check_limit)
991 {
992         u32 function = *eax, index = *ecx;
993         struct kvm_cpuid_entry2 *entry;
994         struct kvm_cpuid_entry2 *max;
995         bool found;
996
997         entry = kvm_find_cpuid_entry(vcpu, function, index);
998         found = entry;
999         /*
1000          * Intel CPUID semantics treats any query for an out-of-range
1001          * leaf as if the highest basic leaf (i.e. CPUID.0H:EAX) were
1002          * requested. AMD CPUID semantics returns all zeroes for any
1003          * undefined leaf, whether or not the leaf is in range.
1004          */
1005         if (!entry && check_limit && !guest_cpuid_is_amd(vcpu) &&
1006             !cpuid_function_in_range(vcpu, function)) {
1007                 max = kvm_find_cpuid_entry(vcpu, 0, 0);
1008                 if (max) {
1009                         function = max->eax;
1010                         entry = kvm_find_cpuid_entry(vcpu, function, index);
1011                 }
1012         }
1013         if (entry) {
1014                 *eax = entry->eax;
1015                 *ebx = entry->ebx;
1016                 *ecx = entry->ecx;
1017                 *edx = entry->edx;
1018         } else {
1019                 *eax = *ebx = *ecx = *edx = 0;
1020                 /*
1021                  * When leaf 0BH or 1FH is defined, CL is pass-through
1022                  * and EDX is always the x2APIC ID, even for undefined
1023                  * subleaves. Index 1 will exist iff the leaf is
1024                  * implemented, so we pass through CL iff leaf 1
1025                  * exists. EDX can be copied from any existing index.
1026                  */
1027                 if (function == 0xb || function == 0x1f) {
1028                         entry = kvm_find_cpuid_entry(vcpu, function, 1);
1029                         if (entry) {
1030                                 *ecx = index & 0xff;
1031                                 *edx = entry->edx;
1032                         }
1033                 }
1034         }
1035         trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, found);
1036         return found;
1037 }
1038 EXPORT_SYMBOL_GPL(kvm_cpuid);
1039
1040 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1041 {
1042         u32 eax, ebx, ecx, edx;
1043
1044         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1045                 return 1;
1046
1047         eax = kvm_rax_read(vcpu);
1048         ecx = kvm_rcx_read(vcpu);
1049         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
1050         kvm_rax_write(vcpu, eax);
1051         kvm_rbx_write(vcpu, ebx);
1052         kvm_rcx_write(vcpu, ecx);
1053         kvm_rdx_write(vcpu, edx);
1054         return kvm_skip_emulated_instruction(vcpu);
1055 }
1056 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);