Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-microblaze.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/pgtable.h>
25
26 #include <asm/stackprotector.h>
27 #include <asm/perf_event.h>
28 #include <asm/mmu_context.h>
29 #include <asm/doublefault.h>
30 #include <asm/archrandom.h>
31 #include <asm/hypervisor.h>
32 #include <asm/processor.h>
33 #include <asm/tlbflush.h>
34 #include <asm/debugreg.h>
35 #include <asm/sections.h>
36 #include <asm/vsyscall.h>
37 #include <linux/topology.h>
38 #include <linux/cpumask.h>
39 #include <linux/atomic.h>
40 #include <asm/proto.h>
41 #include <asm/setup.h>
42 #include <asm/apic.h>
43 #include <asm/desc.h>
44 #include <asm/fpu/internal.h>
45 #include <asm/mtrr.h>
46 #include <asm/hwcap2.h>
47 #include <linux/numa.h>
48 #include <asm/asm.h>
49 #include <asm/bugs.h>
50 #include <asm/cpu.h>
51 #include <asm/mce.h>
52 #include <asm/msr.h>
53 #include <asm/memtype.h>
54 #include <asm/microcode.h>
55 #include <asm/microcode_intel.h>
56 #include <asm/intel-family.h>
57 #include <asm/cpu_device_id.h>
58 #include <asm/uv/uv.h>
59
60 #include "cpu.h"
61
62 u32 elf_hwcap2 __read_mostly;
63
64 /* all of these masks are initialized in setup_cpu_local_masks() */
65 cpumask_var_t cpu_initialized_mask;
66 cpumask_var_t cpu_callout_mask;
67 cpumask_var_t cpu_callin_mask;
68
69 /* representing cpus for which sibling maps can be computed */
70 cpumask_var_t cpu_sibling_setup_mask;
71
72 /* Number of siblings per CPU package */
73 int smp_num_siblings = 1;
74 EXPORT_SYMBOL(smp_num_siblings);
75
76 /* Last level cache ID of each logical CPU */
77 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
78
79 /* correctly size the local cpu masks */
80 void __init setup_cpu_local_masks(void)
81 {
82         alloc_bootmem_cpumask_var(&cpu_initialized_mask);
83         alloc_bootmem_cpumask_var(&cpu_callin_mask);
84         alloc_bootmem_cpumask_var(&cpu_callout_mask);
85         alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
86 }
87
88 static void default_init(struct cpuinfo_x86 *c)
89 {
90 #ifdef CONFIG_X86_64
91         cpu_detect_cache_sizes(c);
92 #else
93         /* Not much we can do here... */
94         /* Check if at least it has cpuid */
95         if (c->cpuid_level == -1) {
96                 /* No cpuid. It must be an ancient CPU */
97                 if (c->x86 == 4)
98                         strcpy(c->x86_model_id, "486");
99                 else if (c->x86 == 3)
100                         strcpy(c->x86_model_id, "386");
101         }
102 #endif
103 }
104
105 static const struct cpu_dev default_cpu = {
106         .c_init         = default_init,
107         .c_vendor       = "Unknown",
108         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
109 };
110
111 static const struct cpu_dev *this_cpu = &default_cpu;
112
113 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
114 #ifdef CONFIG_X86_64
115         /*
116          * We need valid kernel segments for data and code in long mode too
117          * IRET will check the segment types  kkeil 2000/10/28
118          * Also sysret mandates a special GDT layout
119          *
120          * TLS descriptors are currently at a different place compared to i386.
121          * Hopefully nobody expects them at a fixed place (Wine?)
122          */
123         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
124         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
125         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
126         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
127         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
128         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
129 #else
130         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
131         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
132         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
133         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
134         /*
135          * Segments used for calling PnP BIOS have byte granularity.
136          * They code segments and data segments have fixed 64k limits,
137          * the transfer segment sizes are set at run time.
138          */
139         /* 32-bit code */
140         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
141         /* 16-bit code */
142         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
143         /* 16-bit data */
144         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
145         /* 16-bit data */
146         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
147         /* 16-bit data */
148         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
149         /*
150          * The APM segments have byte granularity and their bases
151          * are set at run time.  All have 64k limits.
152          */
153         /* 32-bit code */
154         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
155         /* 16-bit code */
156         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
157         /* data */
158         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
159
160         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
161         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
162         GDT_STACK_CANARY_INIT
163 #endif
164 } };
165 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
166
167 #ifdef CONFIG_X86_64
168 static int __init x86_nopcid_setup(char *s)
169 {
170         /* nopcid doesn't accept parameters */
171         if (s)
172                 return -EINVAL;
173
174         /* do not emit a message if the feature is not present */
175         if (!boot_cpu_has(X86_FEATURE_PCID))
176                 return 0;
177
178         setup_clear_cpu_cap(X86_FEATURE_PCID);
179         pr_info("nopcid: PCID feature disabled\n");
180         return 0;
181 }
182 early_param("nopcid", x86_nopcid_setup);
183 #endif
184
185 static int __init x86_noinvpcid_setup(char *s)
186 {
187         /* noinvpcid doesn't accept parameters */
188         if (s)
189                 return -EINVAL;
190
191         /* do not emit a message if the feature is not present */
192         if (!boot_cpu_has(X86_FEATURE_INVPCID))
193                 return 0;
194
195         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
196         pr_info("noinvpcid: INVPCID feature disabled\n");
197         return 0;
198 }
199 early_param("noinvpcid", x86_noinvpcid_setup);
200
201 #ifdef CONFIG_X86_32
202 static int cachesize_override = -1;
203 static int disable_x86_serial_nr = 1;
204
205 static int __init cachesize_setup(char *str)
206 {
207         get_option(&str, &cachesize_override);
208         return 1;
209 }
210 __setup("cachesize=", cachesize_setup);
211
212 static int __init x86_sep_setup(char *s)
213 {
214         setup_clear_cpu_cap(X86_FEATURE_SEP);
215         return 1;
216 }
217 __setup("nosep", x86_sep_setup);
218
219 /* Standard macro to see if a specific flag is changeable */
220 static inline int flag_is_changeable_p(u32 flag)
221 {
222         u32 f1, f2;
223
224         /*
225          * Cyrix and IDT cpus allow disabling of CPUID
226          * so the code below may return different results
227          * when it is executed before and after enabling
228          * the CPUID. Add "volatile" to not allow gcc to
229          * optimize the subsequent calls to this function.
230          */
231         asm volatile ("pushfl           \n\t"
232                       "pushfl           \n\t"
233                       "popl %0          \n\t"
234                       "movl %0, %1      \n\t"
235                       "xorl %2, %0      \n\t"
236                       "pushl %0         \n\t"
237                       "popfl            \n\t"
238                       "pushfl           \n\t"
239                       "popl %0          \n\t"
240                       "popfl            \n\t"
241
242                       : "=&r" (f1), "=&r" (f2)
243                       : "ir" (flag));
244
245         return ((f1^f2) & flag) != 0;
246 }
247
248 /* Probe for the CPUID instruction */
249 int have_cpuid_p(void)
250 {
251         return flag_is_changeable_p(X86_EFLAGS_ID);
252 }
253
254 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
255 {
256         unsigned long lo, hi;
257
258         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
259                 return;
260
261         /* Disable processor serial number: */
262
263         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
264         lo |= 0x200000;
265         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
266
267         pr_notice("CPU serial number disabled.\n");
268         clear_cpu_cap(c, X86_FEATURE_PN);
269
270         /* Disabling the serial number may affect the cpuid level */
271         c->cpuid_level = cpuid_eax(0);
272 }
273
274 static int __init x86_serial_nr_setup(char *s)
275 {
276         disable_x86_serial_nr = 0;
277         return 1;
278 }
279 __setup("serialnumber", x86_serial_nr_setup);
280 #else
281 static inline int flag_is_changeable_p(u32 flag)
282 {
283         return 1;
284 }
285 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
286 {
287 }
288 #endif
289
290 static __init int setup_disable_smep(char *arg)
291 {
292         setup_clear_cpu_cap(X86_FEATURE_SMEP);
293         return 1;
294 }
295 __setup("nosmep", setup_disable_smep);
296
297 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
298 {
299         if (cpu_has(c, X86_FEATURE_SMEP))
300                 cr4_set_bits(X86_CR4_SMEP);
301 }
302
303 static __init int setup_disable_smap(char *arg)
304 {
305         setup_clear_cpu_cap(X86_FEATURE_SMAP);
306         return 1;
307 }
308 __setup("nosmap", setup_disable_smap);
309
310 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
311 {
312         unsigned long eflags = native_save_fl();
313
314         /* This should have been cleared long ago */
315         BUG_ON(eflags & X86_EFLAGS_AC);
316
317         if (cpu_has(c, X86_FEATURE_SMAP)) {
318 #ifdef CONFIG_X86_SMAP
319                 cr4_set_bits(X86_CR4_SMAP);
320 #else
321                 cr4_clear_bits(X86_CR4_SMAP);
322 #endif
323         }
324 }
325
326 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
327 {
328         /* Check the boot processor, plus build option for UMIP. */
329         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
330                 goto out;
331
332         /* Check the current processor's cpuid bits. */
333         if (!cpu_has(c, X86_FEATURE_UMIP))
334                 goto out;
335
336         cr4_set_bits(X86_CR4_UMIP);
337
338         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
339
340         return;
341
342 out:
343         /*
344          * Make sure UMIP is disabled in case it was enabled in a
345          * previous boot (e.g., via kexec).
346          */
347         cr4_clear_bits(X86_CR4_UMIP);
348 }
349
350 /* These bits should not change their value after CPU init is finished. */
351 static const unsigned long cr4_pinned_mask =
352         X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
353 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
354 static unsigned long cr4_pinned_bits __ro_after_init;
355
356 void native_write_cr0(unsigned long val)
357 {
358         unsigned long bits_missing = 0;
359
360 set_register:
361         asm volatile("mov %0,%%cr0": "+r" (val), "+m" (__force_order));
362
363         if (static_branch_likely(&cr_pinning)) {
364                 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
365                         bits_missing = X86_CR0_WP;
366                         val |= bits_missing;
367                         goto set_register;
368                 }
369                 /* Warn after we've set the missing bits. */
370                 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
371         }
372 }
373 EXPORT_SYMBOL(native_write_cr0);
374
375 void native_write_cr4(unsigned long val)
376 {
377         unsigned long bits_changed = 0;
378
379 set_register:
380         asm volatile("mov %0,%%cr4": "+r" (val), "+m" (cr4_pinned_bits));
381
382         if (static_branch_likely(&cr_pinning)) {
383                 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
384                         bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
385                         val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
386                         goto set_register;
387                 }
388                 /* Warn after we've corrected the changed bits. */
389                 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
390                           bits_changed);
391         }
392 }
393 #if IS_MODULE(CONFIG_LKDTM)
394 EXPORT_SYMBOL_GPL(native_write_cr4);
395 #endif
396
397 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
398 {
399         unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
400
401         lockdep_assert_irqs_disabled();
402
403         newval = (cr4 & ~clear) | set;
404         if (newval != cr4) {
405                 this_cpu_write(cpu_tlbstate.cr4, newval);
406                 __write_cr4(newval);
407         }
408 }
409 EXPORT_SYMBOL(cr4_update_irqsoff);
410
411 /* Read the CR4 shadow. */
412 unsigned long cr4_read_shadow(void)
413 {
414         return this_cpu_read(cpu_tlbstate.cr4);
415 }
416 EXPORT_SYMBOL_GPL(cr4_read_shadow);
417
418 void cr4_init(void)
419 {
420         unsigned long cr4 = __read_cr4();
421
422         if (boot_cpu_has(X86_FEATURE_PCID))
423                 cr4 |= X86_CR4_PCIDE;
424         if (static_branch_likely(&cr_pinning))
425                 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
426
427         __write_cr4(cr4);
428
429         /* Initialize cr4 shadow for this CPU. */
430         this_cpu_write(cpu_tlbstate.cr4, cr4);
431 }
432
433 /*
434  * Once CPU feature detection is finished (and boot params have been
435  * parsed), record any of the sensitive CR bits that are set, and
436  * enable CR pinning.
437  */
438 static void __init setup_cr_pinning(void)
439 {
440         cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
441         static_key_enable(&cr_pinning.key);
442 }
443
444 static __init int x86_nofsgsbase_setup(char *arg)
445 {
446         /* Require an exact match without trailing characters. */
447         if (strlen(arg))
448                 return 0;
449
450         /* Do not emit a message if the feature is not present. */
451         if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
452                 return 1;
453
454         setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
455         pr_info("FSGSBASE disabled via kernel command line\n");
456         return 1;
457 }
458 __setup("nofsgsbase", x86_nofsgsbase_setup);
459
460 /*
461  * Protection Keys are not available in 32-bit mode.
462  */
463 static bool pku_disabled;
464
465 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
466 {
467         struct pkru_state *pk;
468
469         /* check the boot processor, plus compile options for PKU: */
470         if (!cpu_feature_enabled(X86_FEATURE_PKU))
471                 return;
472         /* checks the actual processor's cpuid bits: */
473         if (!cpu_has(c, X86_FEATURE_PKU))
474                 return;
475         if (pku_disabled)
476                 return;
477
478         cr4_set_bits(X86_CR4_PKE);
479         pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
480         if (pk)
481                 pk->pkru = init_pkru_value;
482         /*
483          * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
484          * cpuid bit to be set.  We need to ensure that we
485          * update that bit in this CPU's "cpu_info".
486          */
487         set_cpu_cap(c, X86_FEATURE_OSPKE);
488 }
489
490 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
491 static __init int setup_disable_pku(char *arg)
492 {
493         /*
494          * Do not clear the X86_FEATURE_PKU bit.  All of the
495          * runtime checks are against OSPKE so clearing the
496          * bit does nothing.
497          *
498          * This way, we will see "pku" in cpuinfo, but not
499          * "ospke", which is exactly what we want.  It shows
500          * that the CPU has PKU, but the OS has not enabled it.
501          * This happens to be exactly how a system would look
502          * if we disabled the config option.
503          */
504         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
505         pku_disabled = true;
506         return 1;
507 }
508 __setup("nopku", setup_disable_pku);
509 #endif /* CONFIG_X86_64 */
510
511 /*
512  * Some CPU features depend on higher CPUID levels, which may not always
513  * be available due to CPUID level capping or broken virtualization
514  * software.  Add those features to this table to auto-disable them.
515  */
516 struct cpuid_dependent_feature {
517         u32 feature;
518         u32 level;
519 };
520
521 static const struct cpuid_dependent_feature
522 cpuid_dependent_features[] = {
523         { X86_FEATURE_MWAIT,            0x00000005 },
524         { X86_FEATURE_DCA,              0x00000009 },
525         { X86_FEATURE_XSAVE,            0x0000000d },
526         { 0, 0 }
527 };
528
529 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
530 {
531         const struct cpuid_dependent_feature *df;
532
533         for (df = cpuid_dependent_features; df->feature; df++) {
534
535                 if (!cpu_has(c, df->feature))
536                         continue;
537                 /*
538                  * Note: cpuid_level is set to -1 if unavailable, but
539                  * extended_extended_level is set to 0 if unavailable
540                  * and the legitimate extended levels are all negative
541                  * when signed; hence the weird messing around with
542                  * signs here...
543                  */
544                 if (!((s32)df->level < 0 ?
545                      (u32)df->level > (u32)c->extended_cpuid_level :
546                      (s32)df->level > (s32)c->cpuid_level))
547                         continue;
548
549                 clear_cpu_cap(c, df->feature);
550                 if (!warn)
551                         continue;
552
553                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
554                         x86_cap_flag(df->feature), df->level);
555         }
556 }
557
558 /*
559  * Naming convention should be: <Name> [(<Codename>)]
560  * This table only is used unless init_<vendor>() below doesn't set it;
561  * in particular, if CPUID levels 0x80000002..4 are supported, this
562  * isn't used
563  */
564
565 /* Look up CPU names by table lookup. */
566 static const char *table_lookup_model(struct cpuinfo_x86 *c)
567 {
568 #ifdef CONFIG_X86_32
569         const struct legacy_cpu_model_info *info;
570
571         if (c->x86_model >= 16)
572                 return NULL;    /* Range check */
573
574         if (!this_cpu)
575                 return NULL;
576
577         info = this_cpu->legacy_models;
578
579         while (info->family) {
580                 if (info->family == c->x86)
581                         return info->model_names[c->x86_model];
582                 info++;
583         }
584 #endif
585         return NULL;            /* Not found */
586 }
587
588 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
589 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
590 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
591
592 void load_percpu_segment(int cpu)
593 {
594 #ifdef CONFIG_X86_32
595         loadsegment(fs, __KERNEL_PERCPU);
596 #else
597         __loadsegment_simple(gs, 0);
598         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
599 #endif
600         load_stack_canary_segment();
601 }
602
603 #ifdef CONFIG_X86_32
604 /* The 32-bit entry code needs to find cpu_entry_area. */
605 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
606 #endif
607
608 /* Load the original GDT from the per-cpu structure */
609 void load_direct_gdt(int cpu)
610 {
611         struct desc_ptr gdt_descr;
612
613         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
614         gdt_descr.size = GDT_SIZE - 1;
615         load_gdt(&gdt_descr);
616 }
617 EXPORT_SYMBOL_GPL(load_direct_gdt);
618
619 /* Load a fixmap remapping of the per-cpu GDT */
620 void load_fixmap_gdt(int cpu)
621 {
622         struct desc_ptr gdt_descr;
623
624         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
625         gdt_descr.size = GDT_SIZE - 1;
626         load_gdt(&gdt_descr);
627 }
628 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
629
630 /*
631  * Current gdt points %fs at the "master" per-cpu area: after this,
632  * it's on the real one.
633  */
634 void switch_to_new_gdt(int cpu)
635 {
636         /* Load the original GDT */
637         load_direct_gdt(cpu);
638         /* Reload the per-cpu base */
639         load_percpu_segment(cpu);
640 }
641
642 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
643
644 static void get_model_name(struct cpuinfo_x86 *c)
645 {
646         unsigned int *v;
647         char *p, *q, *s;
648
649         if (c->extended_cpuid_level < 0x80000004)
650                 return;
651
652         v = (unsigned int *)c->x86_model_id;
653         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
654         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
655         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
656         c->x86_model_id[48] = 0;
657
658         /* Trim whitespace */
659         p = q = s = &c->x86_model_id[0];
660
661         while (*p == ' ')
662                 p++;
663
664         while (*p) {
665                 /* Note the last non-whitespace index */
666                 if (!isspace(*p))
667                         s = q;
668
669                 *q++ = *p++;
670         }
671
672         *(s + 1) = '\0';
673 }
674
675 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
676 {
677         unsigned int eax, ebx, ecx, edx;
678
679         c->x86_max_cores = 1;
680         if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
681                 return;
682
683         cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
684         if (eax & 0x1f)
685                 c->x86_max_cores = (eax >> 26) + 1;
686 }
687
688 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
689 {
690         unsigned int n, dummy, ebx, ecx, edx, l2size;
691
692         n = c->extended_cpuid_level;
693
694         if (n >= 0x80000005) {
695                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
696                 c->x86_cache_size = (ecx>>24) + (edx>>24);
697 #ifdef CONFIG_X86_64
698                 /* On K8 L1 TLB is inclusive, so don't count it */
699                 c->x86_tlbsize = 0;
700 #endif
701         }
702
703         if (n < 0x80000006)     /* Some chips just has a large L1. */
704                 return;
705
706         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
707         l2size = ecx >> 16;
708
709 #ifdef CONFIG_X86_64
710         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
711 #else
712         /* do processor-specific cache resizing */
713         if (this_cpu->legacy_cache_size)
714                 l2size = this_cpu->legacy_cache_size(c, l2size);
715
716         /* Allow user to override all this if necessary. */
717         if (cachesize_override != -1)
718                 l2size = cachesize_override;
719
720         if (l2size == 0)
721                 return;         /* Again, no L2 cache is possible */
722 #endif
723
724         c->x86_cache_size = l2size;
725 }
726
727 u16 __read_mostly tlb_lli_4k[NR_INFO];
728 u16 __read_mostly tlb_lli_2m[NR_INFO];
729 u16 __read_mostly tlb_lli_4m[NR_INFO];
730 u16 __read_mostly tlb_lld_4k[NR_INFO];
731 u16 __read_mostly tlb_lld_2m[NR_INFO];
732 u16 __read_mostly tlb_lld_4m[NR_INFO];
733 u16 __read_mostly tlb_lld_1g[NR_INFO];
734
735 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
736 {
737         if (this_cpu->c_detect_tlb)
738                 this_cpu->c_detect_tlb(c);
739
740         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
741                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
742                 tlb_lli_4m[ENTRIES]);
743
744         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
745                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
746                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
747 }
748
749 int detect_ht_early(struct cpuinfo_x86 *c)
750 {
751 #ifdef CONFIG_SMP
752         u32 eax, ebx, ecx, edx;
753
754         if (!cpu_has(c, X86_FEATURE_HT))
755                 return -1;
756
757         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
758                 return -1;
759
760         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
761                 return -1;
762
763         cpuid(1, &eax, &ebx, &ecx, &edx);
764
765         smp_num_siblings = (ebx & 0xff0000) >> 16;
766         if (smp_num_siblings == 1)
767                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
768 #endif
769         return 0;
770 }
771
772 void detect_ht(struct cpuinfo_x86 *c)
773 {
774 #ifdef CONFIG_SMP
775         int index_msb, core_bits;
776
777         if (detect_ht_early(c) < 0)
778                 return;
779
780         index_msb = get_count_order(smp_num_siblings);
781         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
782
783         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
784
785         index_msb = get_count_order(smp_num_siblings);
786
787         core_bits = get_count_order(c->x86_max_cores);
788
789         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
790                                        ((1 << core_bits) - 1);
791 #endif
792 }
793
794 static void get_cpu_vendor(struct cpuinfo_x86 *c)
795 {
796         char *v = c->x86_vendor_id;
797         int i;
798
799         for (i = 0; i < X86_VENDOR_NUM; i++) {
800                 if (!cpu_devs[i])
801                         break;
802
803                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
804                     (cpu_devs[i]->c_ident[1] &&
805                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
806
807                         this_cpu = cpu_devs[i];
808                         c->x86_vendor = this_cpu->c_x86_vendor;
809                         return;
810                 }
811         }
812
813         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
814                     "CPU: Your system may be unstable.\n", v);
815
816         c->x86_vendor = X86_VENDOR_UNKNOWN;
817         this_cpu = &default_cpu;
818 }
819
820 void cpu_detect(struct cpuinfo_x86 *c)
821 {
822         /* Get vendor name */
823         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
824               (unsigned int *)&c->x86_vendor_id[0],
825               (unsigned int *)&c->x86_vendor_id[8],
826               (unsigned int *)&c->x86_vendor_id[4]);
827
828         c->x86 = 4;
829         /* Intel-defined flags: level 0x00000001 */
830         if (c->cpuid_level >= 0x00000001) {
831                 u32 junk, tfms, cap0, misc;
832
833                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
834                 c->x86          = x86_family(tfms);
835                 c->x86_model    = x86_model(tfms);
836                 c->x86_stepping = x86_stepping(tfms);
837
838                 if (cap0 & (1<<19)) {
839                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
840                         c->x86_cache_alignment = c->x86_clflush_size;
841                 }
842         }
843 }
844
845 static void apply_forced_caps(struct cpuinfo_x86 *c)
846 {
847         int i;
848
849         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
850                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
851                 c->x86_capability[i] |= cpu_caps_set[i];
852         }
853 }
854
855 static void init_speculation_control(struct cpuinfo_x86 *c)
856 {
857         /*
858          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
859          * and they also have a different bit for STIBP support. Also,
860          * a hypervisor might have set the individual AMD bits even on
861          * Intel CPUs, for finer-grained selection of what's available.
862          */
863         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
864                 set_cpu_cap(c, X86_FEATURE_IBRS);
865                 set_cpu_cap(c, X86_FEATURE_IBPB);
866                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
867         }
868
869         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
870                 set_cpu_cap(c, X86_FEATURE_STIBP);
871
872         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
873             cpu_has(c, X86_FEATURE_VIRT_SSBD))
874                 set_cpu_cap(c, X86_FEATURE_SSBD);
875
876         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
877                 set_cpu_cap(c, X86_FEATURE_IBRS);
878                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
879         }
880
881         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
882                 set_cpu_cap(c, X86_FEATURE_IBPB);
883
884         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
885                 set_cpu_cap(c, X86_FEATURE_STIBP);
886                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
887         }
888
889         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
890                 set_cpu_cap(c, X86_FEATURE_SSBD);
891                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
892                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
893         }
894 }
895
896 void get_cpu_cap(struct cpuinfo_x86 *c)
897 {
898         u32 eax, ebx, ecx, edx;
899
900         /* Intel-defined flags: level 0x00000001 */
901         if (c->cpuid_level >= 0x00000001) {
902                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
903
904                 c->x86_capability[CPUID_1_ECX] = ecx;
905                 c->x86_capability[CPUID_1_EDX] = edx;
906         }
907
908         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
909         if (c->cpuid_level >= 0x00000006)
910                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
911
912         /* Additional Intel-defined flags: level 0x00000007 */
913         if (c->cpuid_level >= 0x00000007) {
914                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
915                 c->x86_capability[CPUID_7_0_EBX] = ebx;
916                 c->x86_capability[CPUID_7_ECX] = ecx;
917                 c->x86_capability[CPUID_7_EDX] = edx;
918
919                 /* Check valid sub-leaf index before accessing it */
920                 if (eax >= 1) {
921                         cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
922                         c->x86_capability[CPUID_7_1_EAX] = eax;
923                 }
924         }
925
926         /* Extended state features: level 0x0000000d */
927         if (c->cpuid_level >= 0x0000000d) {
928                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
929
930                 c->x86_capability[CPUID_D_1_EAX] = eax;
931         }
932
933         /* AMD-defined flags: level 0x80000001 */
934         eax = cpuid_eax(0x80000000);
935         c->extended_cpuid_level = eax;
936
937         if ((eax & 0xffff0000) == 0x80000000) {
938                 if (eax >= 0x80000001) {
939                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
940
941                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
942                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
943                 }
944         }
945
946         if (c->extended_cpuid_level >= 0x80000007) {
947                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
948
949                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
950                 c->x86_power = edx;
951         }
952
953         if (c->extended_cpuid_level >= 0x80000008) {
954                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
955                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
956         }
957
958         if (c->extended_cpuid_level >= 0x8000000a)
959                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
960
961         init_scattered_cpuid_features(c);
962         init_speculation_control(c);
963
964         /*
965          * Clear/Set all flags overridden by options, after probe.
966          * This needs to happen each time we re-probe, which may happen
967          * several times during CPU initialization.
968          */
969         apply_forced_caps(c);
970 }
971
972 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
973 {
974         u32 eax, ebx, ecx, edx;
975
976         if (c->extended_cpuid_level >= 0x80000008) {
977                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
978
979                 c->x86_virt_bits = (eax >> 8) & 0xff;
980                 c->x86_phys_bits = eax & 0xff;
981         }
982 #ifdef CONFIG_X86_32
983         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
984                 c->x86_phys_bits = 36;
985 #endif
986         c->x86_cache_bits = c->x86_phys_bits;
987 }
988
989 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
990 {
991 #ifdef CONFIG_X86_32
992         int i;
993
994         /*
995          * First of all, decide if this is a 486 or higher
996          * It's a 486 if we can modify the AC flag
997          */
998         if (flag_is_changeable_p(X86_EFLAGS_AC))
999                 c->x86 = 4;
1000         else
1001                 c->x86 = 3;
1002
1003         for (i = 0; i < X86_VENDOR_NUM; i++)
1004                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1005                         c->x86_vendor_id[0] = 0;
1006                         cpu_devs[i]->c_identify(c);
1007                         if (c->x86_vendor_id[0]) {
1008                                 get_cpu_vendor(c);
1009                                 break;
1010                         }
1011                 }
1012 #endif
1013 }
1014
1015 #define NO_SPECULATION          BIT(0)
1016 #define NO_MELTDOWN             BIT(1)
1017 #define NO_SSB                  BIT(2)
1018 #define NO_L1TF                 BIT(3)
1019 #define NO_MDS                  BIT(4)
1020 #define MSBDS_ONLY              BIT(5)
1021 #define NO_SWAPGS               BIT(6)
1022 #define NO_ITLB_MULTIHIT        BIT(7)
1023 #define NO_SPECTRE_V2           BIT(8)
1024
1025 #define VULNWL(vendor, family, model, whitelist)        \
1026         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1027
1028 #define VULNWL_INTEL(model, whitelist)          \
1029         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1030
1031 #define VULNWL_AMD(family, whitelist)           \
1032         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1033
1034 #define VULNWL_HYGON(family, whitelist)         \
1035         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1036
1037 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1038         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1039         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1040         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1041         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1042
1043         /* Intel Family 6 */
1044         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
1045         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1046         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
1047         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
1048         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
1049
1050         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1051         VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1052         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1053         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1054         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1055         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1056
1057         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
1058
1059         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1060         VULNWL_INTEL(ATOM_AIRMONT_NP,           NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1061
1062         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1063         VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1065
1066         /*
1067          * Technically, swapgs isn't serializing on AMD (despite it previously
1068          * being documented as such in the APM).  But according to AMD, %gs is
1069          * updated non-speculatively, and the issuing of %gs-relative memory
1070          * operands will be blocked until the %gs update completes, which is
1071          * good enough for our purposes.
1072          */
1073
1074         VULNWL_INTEL(ATOM_TREMONT_D,            NO_ITLB_MULTIHIT),
1075
1076         /* AMD Family 0xf - 0x12 */
1077         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1078         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1079         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1080         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1081
1082         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1083         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1084         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1085
1086         /* Zhaoxin Family 7 */
1087         VULNWL(CENTAUR, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1088         VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1089         {}
1090 };
1091
1092 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
1093         X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
1094                                             INTEL_FAM6_##model, steppings, \
1095                                             X86_FEATURE_ANY, issues)
1096
1097 #define SRBDS           BIT(0)
1098
1099 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1100         VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
1101         VULNBL_INTEL_STEPPINGS(HASWELL,         X86_STEPPING_ANY,               SRBDS),
1102         VULNBL_INTEL_STEPPINGS(HASWELL_L,       X86_STEPPING_ANY,               SRBDS),
1103         VULNBL_INTEL_STEPPINGS(HASWELL_G,       X86_STEPPING_ANY,               SRBDS),
1104         VULNBL_INTEL_STEPPINGS(BROADWELL_G,     X86_STEPPING_ANY,               SRBDS),
1105         VULNBL_INTEL_STEPPINGS(BROADWELL,       X86_STEPPING_ANY,               SRBDS),
1106         VULNBL_INTEL_STEPPINGS(SKYLAKE_L,       X86_STEPPING_ANY,               SRBDS),
1107         VULNBL_INTEL_STEPPINGS(SKYLAKE,         X86_STEPPING_ANY,               SRBDS),
1108         VULNBL_INTEL_STEPPINGS(KABYLAKE_L,      X86_STEPPINGS(0x0, 0xC),        SRBDS),
1109         VULNBL_INTEL_STEPPINGS(KABYLAKE,        X86_STEPPINGS(0x0, 0xD),        SRBDS),
1110         {}
1111 };
1112
1113 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1114 {
1115         const struct x86_cpu_id *m = x86_match_cpu(table);
1116
1117         return m && !!(m->driver_data & which);
1118 }
1119
1120 u64 x86_read_arch_cap_msr(void)
1121 {
1122         u64 ia32_cap = 0;
1123
1124         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1125                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1126
1127         return ia32_cap;
1128 }
1129
1130 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1131 {
1132         u64 ia32_cap = x86_read_arch_cap_msr();
1133
1134         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1135         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1136             !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1137                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1138
1139         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1140                 return;
1141
1142         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1143
1144         if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1145                 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1146
1147         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1148             !(ia32_cap & ARCH_CAP_SSB_NO) &&
1149            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1150                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1151
1152         if (ia32_cap & ARCH_CAP_IBRS_ALL)
1153                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1154
1155         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1156             !(ia32_cap & ARCH_CAP_MDS_NO)) {
1157                 setup_force_cpu_bug(X86_BUG_MDS);
1158                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1159                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1160         }
1161
1162         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1163                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1164
1165         /*
1166          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1167          *      - TSX is supported or
1168          *      - TSX_CTRL is present
1169          *
1170          * TSX_CTRL check is needed for cases when TSX could be disabled before
1171          * the kernel boot e.g. kexec.
1172          * TSX_CTRL check alone is not sufficient for cases when the microcode
1173          * update is not present or running as guest that don't get TSX_CTRL.
1174          */
1175         if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1176             (cpu_has(c, X86_FEATURE_RTM) ||
1177              (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1178                 setup_force_cpu_bug(X86_BUG_TAA);
1179
1180         /*
1181          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1182          * in the vulnerability blacklist.
1183          */
1184         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1185              cpu_has(c, X86_FEATURE_RDSEED)) &&
1186             cpu_matches(cpu_vuln_blacklist, SRBDS))
1187                     setup_force_cpu_bug(X86_BUG_SRBDS);
1188
1189         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1190                 return;
1191
1192         /* Rogue Data Cache Load? No! */
1193         if (ia32_cap & ARCH_CAP_RDCL_NO)
1194                 return;
1195
1196         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1197
1198         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1199                 return;
1200
1201         setup_force_cpu_bug(X86_BUG_L1TF);
1202 }
1203
1204 /*
1205  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1206  * unfortunately, that's not true in practice because of early VIA
1207  * chips and (more importantly) broken virtualizers that are not easy
1208  * to detect. In the latter case it doesn't even *fail* reliably, so
1209  * probing for it doesn't even work. Disable it completely on 32-bit
1210  * unless we can find a reliable way to detect all the broken cases.
1211  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1212  */
1213 static void detect_nopl(void)
1214 {
1215 #ifdef CONFIG_X86_32
1216         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1217 #else
1218         setup_force_cpu_cap(X86_FEATURE_NOPL);
1219 #endif
1220 }
1221
1222 /*
1223  * Do minimum CPU detection early.
1224  * Fields really needed: vendor, cpuid_level, family, model, mask,
1225  * cache alignment.
1226  * The others are not touched to avoid unwanted side effects.
1227  *
1228  * WARNING: this function is only called on the boot CPU.  Don't add code
1229  * here that is supposed to run on all CPUs.
1230  */
1231 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1232 {
1233 #ifdef CONFIG_X86_64
1234         c->x86_clflush_size = 64;
1235         c->x86_phys_bits = 36;
1236         c->x86_virt_bits = 48;
1237 #else
1238         c->x86_clflush_size = 32;
1239         c->x86_phys_bits = 32;
1240         c->x86_virt_bits = 32;
1241 #endif
1242         c->x86_cache_alignment = c->x86_clflush_size;
1243
1244         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1245         c->extended_cpuid_level = 0;
1246
1247         if (!have_cpuid_p())
1248                 identify_cpu_without_cpuid(c);
1249
1250         /* cyrix could have cpuid enabled via c_identify()*/
1251         if (have_cpuid_p()) {
1252                 cpu_detect(c);
1253                 get_cpu_vendor(c);
1254                 get_cpu_cap(c);
1255                 get_cpu_address_sizes(c);
1256                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1257
1258                 if (this_cpu->c_early_init)
1259                         this_cpu->c_early_init(c);
1260
1261                 c->cpu_index = 0;
1262                 filter_cpuid_features(c, false);
1263
1264                 if (this_cpu->c_bsp_init)
1265                         this_cpu->c_bsp_init(c);
1266         } else {
1267                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1268         }
1269
1270         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1271
1272         cpu_set_bug_bits(c);
1273
1274         cpu_set_core_cap_bits(c);
1275
1276         fpu__init_system(c);
1277
1278 #ifdef CONFIG_X86_32
1279         /*
1280          * Regardless of whether PCID is enumerated, the SDM says
1281          * that it can't be enabled in 32-bit mode.
1282          */
1283         setup_clear_cpu_cap(X86_FEATURE_PCID);
1284 #endif
1285
1286         /*
1287          * Later in the boot process pgtable_l5_enabled() relies on
1288          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1289          * enabled by this point we need to clear the feature bit to avoid
1290          * false-positives at the later stage.
1291          *
1292          * pgtable_l5_enabled() can be false here for several reasons:
1293          *  - 5-level paging is disabled compile-time;
1294          *  - it's 32-bit kernel;
1295          *  - machine doesn't support 5-level paging;
1296          *  - user specified 'no5lvl' in kernel command line.
1297          */
1298         if (!pgtable_l5_enabled())
1299                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1300
1301         detect_nopl();
1302 }
1303
1304 void __init early_cpu_init(void)
1305 {
1306         const struct cpu_dev *const *cdev;
1307         int count = 0;
1308
1309 #ifdef CONFIG_PROCESSOR_SELECT
1310         pr_info("KERNEL supported cpus:\n");
1311 #endif
1312
1313         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1314                 const struct cpu_dev *cpudev = *cdev;
1315
1316                 if (count >= X86_VENDOR_NUM)
1317                         break;
1318                 cpu_devs[count] = cpudev;
1319                 count++;
1320
1321 #ifdef CONFIG_PROCESSOR_SELECT
1322                 {
1323                         unsigned int j;
1324
1325                         for (j = 0; j < 2; j++) {
1326                                 if (!cpudev->c_ident[j])
1327                                         continue;
1328                                 pr_info("  %s %s\n", cpudev->c_vendor,
1329                                         cpudev->c_ident[j]);
1330                         }
1331                 }
1332 #endif
1333         }
1334         early_identify_cpu(&boot_cpu_data);
1335 }
1336
1337 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1338 {
1339 #ifdef CONFIG_X86_64
1340         /*
1341          * Empirically, writing zero to a segment selector on AMD does
1342          * not clear the base, whereas writing zero to a segment
1343          * selector on Intel does clear the base.  Intel's behavior
1344          * allows slightly faster context switches in the common case
1345          * where GS is unused by the prev and next threads.
1346          *
1347          * Since neither vendor documents this anywhere that I can see,
1348          * detect it directly instead of hardcoding the choice by
1349          * vendor.
1350          *
1351          * I've designated AMD's behavior as the "bug" because it's
1352          * counterintuitive and less friendly.
1353          */
1354
1355         unsigned long old_base, tmp;
1356         rdmsrl(MSR_FS_BASE, old_base);
1357         wrmsrl(MSR_FS_BASE, 1);
1358         loadsegment(fs, 0);
1359         rdmsrl(MSR_FS_BASE, tmp);
1360         if (tmp != 0)
1361                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1362         wrmsrl(MSR_FS_BASE, old_base);
1363 #endif
1364 }
1365
1366 static void generic_identify(struct cpuinfo_x86 *c)
1367 {
1368         c->extended_cpuid_level = 0;
1369
1370         if (!have_cpuid_p())
1371                 identify_cpu_without_cpuid(c);
1372
1373         /* cyrix could have cpuid enabled via c_identify()*/
1374         if (!have_cpuid_p())
1375                 return;
1376
1377         cpu_detect(c);
1378
1379         get_cpu_vendor(c);
1380
1381         get_cpu_cap(c);
1382
1383         get_cpu_address_sizes(c);
1384
1385         if (c->cpuid_level >= 0x00000001) {
1386                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1387 #ifdef CONFIG_X86_32
1388 # ifdef CONFIG_SMP
1389                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1390 # else
1391                 c->apicid = c->initial_apicid;
1392 # endif
1393 #endif
1394                 c->phys_proc_id = c->initial_apicid;
1395         }
1396
1397         get_model_name(c); /* Default name */
1398
1399         detect_null_seg_behavior(c);
1400
1401         /*
1402          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1403          * systems that run Linux at CPL > 0 may or may not have the
1404          * issue, but, even if they have the issue, there's absolutely
1405          * nothing we can do about it because we can't use the real IRET
1406          * instruction.
1407          *
1408          * NB: For the time being, only 32-bit kernels support
1409          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1410          * whether to apply espfix using paravirt hooks.  If any
1411          * non-paravirt system ever shows up that does *not* have the
1412          * ESPFIX issue, we can change this.
1413          */
1414 #ifdef CONFIG_X86_32
1415 # ifdef CONFIG_PARAVIRT_XXL
1416         do {
1417                 extern void native_iret(void);
1418                 if (pv_ops.cpu.iret == native_iret)
1419                         set_cpu_bug(c, X86_BUG_ESPFIX);
1420         } while (0);
1421 # else
1422         set_cpu_bug(c, X86_BUG_ESPFIX);
1423 # endif
1424 #endif
1425 }
1426
1427 /*
1428  * Validate that ACPI/mptables have the same information about the
1429  * effective APIC id and update the package map.
1430  */
1431 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1432 {
1433 #ifdef CONFIG_SMP
1434         unsigned int apicid, cpu = smp_processor_id();
1435
1436         apicid = apic->cpu_present_to_apicid(cpu);
1437
1438         if (apicid != c->apicid) {
1439                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1440                        cpu, apicid, c->initial_apicid);
1441         }
1442         BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1443         BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1444 #else
1445         c->logical_proc_id = 0;
1446 #endif
1447 }
1448
1449 /*
1450  * This does the hard work of actually picking apart the CPU stuff...
1451  */
1452 static void identify_cpu(struct cpuinfo_x86 *c)
1453 {
1454         int i;
1455
1456         c->loops_per_jiffy = loops_per_jiffy;
1457         c->x86_cache_size = 0;
1458         c->x86_vendor = X86_VENDOR_UNKNOWN;
1459         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1460         c->x86_vendor_id[0] = '\0'; /* Unset */
1461         c->x86_model_id[0] = '\0';  /* Unset */
1462         c->x86_max_cores = 1;
1463         c->x86_coreid_bits = 0;
1464         c->cu_id = 0xff;
1465 #ifdef CONFIG_X86_64
1466         c->x86_clflush_size = 64;
1467         c->x86_phys_bits = 36;
1468         c->x86_virt_bits = 48;
1469 #else
1470         c->cpuid_level = -1;    /* CPUID not detected */
1471         c->x86_clflush_size = 32;
1472         c->x86_phys_bits = 32;
1473         c->x86_virt_bits = 32;
1474 #endif
1475         c->x86_cache_alignment = c->x86_clflush_size;
1476         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1477 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1478         memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1479 #endif
1480
1481         generic_identify(c);
1482
1483         if (this_cpu->c_identify)
1484                 this_cpu->c_identify(c);
1485
1486         /* Clear/Set all flags overridden by options, after probe */
1487         apply_forced_caps(c);
1488
1489 #ifdef CONFIG_X86_64
1490         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1491 #endif
1492
1493         /*
1494          * Vendor-specific initialization.  In this section we
1495          * canonicalize the feature flags, meaning if there are
1496          * features a certain CPU supports which CPUID doesn't
1497          * tell us, CPUID claiming incorrect flags, or other bugs,
1498          * we handle them here.
1499          *
1500          * At the end of this section, c->x86_capability better
1501          * indicate the features this CPU genuinely supports!
1502          */
1503         if (this_cpu->c_init)
1504                 this_cpu->c_init(c);
1505
1506         /* Disable the PN if appropriate */
1507         squash_the_stupid_serial_number(c);
1508
1509         /* Set up SMEP/SMAP/UMIP */
1510         setup_smep(c);
1511         setup_smap(c);
1512         setup_umip(c);
1513
1514         /* Enable FSGSBASE instructions if available. */
1515         if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1516                 cr4_set_bits(X86_CR4_FSGSBASE);
1517                 elf_hwcap2 |= HWCAP2_FSGSBASE;
1518         }
1519
1520         /*
1521          * The vendor-specific functions might have changed features.
1522          * Now we do "generic changes."
1523          */
1524
1525         /* Filter out anything that depends on CPUID levels we don't have */
1526         filter_cpuid_features(c, true);
1527
1528         /* If the model name is still unset, do table lookup. */
1529         if (!c->x86_model_id[0]) {
1530                 const char *p;
1531                 p = table_lookup_model(c);
1532                 if (p)
1533                         strcpy(c->x86_model_id, p);
1534                 else
1535                         /* Last resort... */
1536                         sprintf(c->x86_model_id, "%02x/%02x",
1537                                 c->x86, c->x86_model);
1538         }
1539
1540 #ifdef CONFIG_X86_64
1541         detect_ht(c);
1542 #endif
1543
1544         x86_init_rdrand(c);
1545         setup_pku(c);
1546
1547         /*
1548          * Clear/Set all flags overridden by options, need do it
1549          * before following smp all cpus cap AND.
1550          */
1551         apply_forced_caps(c);
1552
1553         /*
1554          * On SMP, boot_cpu_data holds the common feature set between
1555          * all CPUs; so make sure that we indicate which features are
1556          * common between the CPUs.  The first time this routine gets
1557          * executed, c == &boot_cpu_data.
1558          */
1559         if (c != &boot_cpu_data) {
1560                 /* AND the already accumulated flags with these */
1561                 for (i = 0; i < NCAPINTS; i++)
1562                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1563
1564                 /* OR, i.e. replicate the bug flags */
1565                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1566                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1567         }
1568
1569         /* Init Machine Check Exception if available. */
1570         mcheck_cpu_init(c);
1571
1572         select_idle_routine(c);
1573
1574 #ifdef CONFIG_NUMA
1575         numa_add_cpu(smp_processor_id());
1576 #endif
1577 }
1578
1579 /*
1580  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1581  * on 32-bit kernels:
1582  */
1583 #ifdef CONFIG_X86_32
1584 void enable_sep_cpu(void)
1585 {
1586         struct tss_struct *tss;
1587         int cpu;
1588
1589         if (!boot_cpu_has(X86_FEATURE_SEP))
1590                 return;
1591
1592         cpu = get_cpu();
1593         tss = &per_cpu(cpu_tss_rw, cpu);
1594
1595         /*
1596          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1597          * see the big comment in struct x86_hw_tss's definition.
1598          */
1599
1600         tss->x86_tss.ss1 = __KERNEL_CS;
1601         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1602         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1603         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1604
1605         put_cpu();
1606 }
1607 #endif
1608
1609 void __init identify_boot_cpu(void)
1610 {
1611         identify_cpu(&boot_cpu_data);
1612 #ifdef CONFIG_X86_32
1613         sysenter_setup();
1614         enable_sep_cpu();
1615 #endif
1616         cpu_detect_tlb(&boot_cpu_data);
1617         setup_cr_pinning();
1618
1619         tsx_init();
1620 }
1621
1622 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1623 {
1624         BUG_ON(c == &boot_cpu_data);
1625         identify_cpu(c);
1626 #ifdef CONFIG_X86_32
1627         enable_sep_cpu();
1628 #endif
1629         mtrr_ap_init();
1630         validate_apic_and_package_id(c);
1631         x86_spec_ctrl_setup_ap();
1632         update_srbds_msr();
1633 }
1634
1635 static __init int setup_noclflush(char *arg)
1636 {
1637         setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1638         setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1639         return 1;
1640 }
1641 __setup("noclflush", setup_noclflush);
1642
1643 void print_cpu_info(struct cpuinfo_x86 *c)
1644 {
1645         const char *vendor = NULL;
1646
1647         if (c->x86_vendor < X86_VENDOR_NUM) {
1648                 vendor = this_cpu->c_vendor;
1649         } else {
1650                 if (c->cpuid_level >= 0)
1651                         vendor = c->x86_vendor_id;
1652         }
1653
1654         if (vendor && !strstr(c->x86_model_id, vendor))
1655                 pr_cont("%s ", vendor);
1656
1657         if (c->x86_model_id[0])
1658                 pr_cont("%s", c->x86_model_id);
1659         else
1660                 pr_cont("%d86", c->x86);
1661
1662         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1663
1664         if (c->x86_stepping || c->cpuid_level >= 0)
1665                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1666         else
1667                 pr_cont(")\n");
1668 }
1669
1670 /*
1671  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1672  * But we need to keep a dummy __setup around otherwise it would
1673  * show up as an environment variable for init.
1674  */
1675 static __init int setup_clearcpuid(char *arg)
1676 {
1677         return 1;
1678 }
1679 __setup("clearcpuid=", setup_clearcpuid);
1680
1681 #ifdef CONFIG_X86_64
1682 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1683                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1684 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1685
1686 /*
1687  * The following percpu variables are hot.  Align current_task to
1688  * cacheline size such that they fall in the same cacheline.
1689  */
1690 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1691         &init_task;
1692 EXPORT_PER_CPU_SYMBOL(current_task);
1693
1694 DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1695 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1696
1697 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1698 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1699
1700 /* May not be marked __init: used by software suspend */
1701 void syscall_init(void)
1702 {
1703         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1704         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1705
1706 #ifdef CONFIG_IA32_EMULATION
1707         wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1708         /*
1709          * This only works on Intel CPUs.
1710          * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1711          * This does not cause SYSENTER to jump to the wrong location, because
1712          * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1713          */
1714         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1715         wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1716                     (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1717         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1718 #else
1719         wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1720         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1721         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1722         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1723 #endif
1724
1725         /* Flags to clear on syscall */
1726         wrmsrl(MSR_SYSCALL_MASK,
1727                X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1728                X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1729 }
1730
1731 #else   /* CONFIG_X86_64 */
1732
1733 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1734 EXPORT_PER_CPU_SYMBOL(current_task);
1735 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1736 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1737
1738 /*
1739  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1740  * the top of the kernel stack.  Use an extra percpu variable to track the
1741  * top of the kernel stack directly.
1742  */
1743 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1744         (unsigned long)&init_thread_union + THREAD_SIZE;
1745 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1746
1747 #ifdef CONFIG_STACKPROTECTOR
1748 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1749 #endif
1750
1751 #endif  /* CONFIG_X86_64 */
1752
1753 /*
1754  * Clear all 6 debug registers:
1755  */
1756 static void clear_all_debug_regs(void)
1757 {
1758         int i;
1759
1760         for (i = 0; i < 8; i++) {
1761                 /* Ignore db4, db5 */
1762                 if ((i == 4) || (i == 5))
1763                         continue;
1764
1765                 set_debugreg(0, i);
1766         }
1767 }
1768
1769 #ifdef CONFIG_KGDB
1770 /*
1771  * Restore debug regs if using kgdbwait and you have a kernel debugger
1772  * connection established.
1773  */
1774 static void dbg_restore_debug_regs(void)
1775 {
1776         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1777                 arch_kgdb_ops.correct_hw_break();
1778 }
1779 #else /* ! CONFIG_KGDB */
1780 #define dbg_restore_debug_regs()
1781 #endif /* ! CONFIG_KGDB */
1782
1783 static void wait_for_master_cpu(int cpu)
1784 {
1785 #ifdef CONFIG_SMP
1786         /*
1787          * wait for ACK from master CPU before continuing
1788          * with AP initialization
1789          */
1790         WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1791         while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1792                 cpu_relax();
1793 #endif
1794 }
1795
1796 #ifdef CONFIG_X86_64
1797 static inline void setup_getcpu(int cpu)
1798 {
1799         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1800         struct desc_struct d = { };
1801
1802         if (boot_cpu_has(X86_FEATURE_RDTSCP))
1803                 write_rdtscp_aux(cpudata);
1804
1805         /* Store CPU and node number in limit. */
1806         d.limit0 = cpudata;
1807         d.limit1 = cpudata >> 16;
1808
1809         d.type = 5;             /* RO data, expand down, accessed */
1810         d.dpl = 3;              /* Visible to user code */
1811         d.s = 1;                /* Not a system segment */
1812         d.p = 1;                /* Present */
1813         d.d = 1;                /* 32-bit */
1814
1815         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1816 }
1817
1818 static inline void ucode_cpu_init(int cpu)
1819 {
1820         if (cpu)
1821                 load_ucode_ap();
1822 }
1823
1824 static inline void tss_setup_ist(struct tss_struct *tss)
1825 {
1826         /* Set up the per-CPU TSS IST stacks */
1827         tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1828         tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1829         tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1830         tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1831 }
1832
1833 #else /* CONFIG_X86_64 */
1834
1835 static inline void setup_getcpu(int cpu) { }
1836
1837 static inline void ucode_cpu_init(int cpu)
1838 {
1839         show_ucode_info_early();
1840 }
1841
1842 static inline void tss_setup_ist(struct tss_struct *tss) { }
1843
1844 #endif /* !CONFIG_X86_64 */
1845
1846 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1847 {
1848         tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1849
1850 #ifdef CONFIG_X86_IOPL_IOPERM
1851         tss->io_bitmap.prev_max = 0;
1852         tss->io_bitmap.prev_sequence = 0;
1853         memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1854         /*
1855          * Invalidate the extra array entry past the end of the all
1856          * permission bitmap as required by the hardware.
1857          */
1858         tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1859 #endif
1860 }
1861
1862 /*
1863  * cpu_init() initializes state that is per-CPU. Some data is already
1864  * initialized (naturally) in the bootstrap process, such as the GDT
1865  * and IDT. We reload them nevertheless, this function acts as a
1866  * 'CPU state barrier', nothing should get across.
1867  */
1868 void cpu_init(void)
1869 {
1870         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1871         struct task_struct *cur = current;
1872         int cpu = raw_smp_processor_id();
1873
1874         wait_for_master_cpu(cpu);
1875
1876         ucode_cpu_init(cpu);
1877
1878 #ifdef CONFIG_NUMA
1879         if (this_cpu_read(numa_node) == 0 &&
1880             early_cpu_to_node(cpu) != NUMA_NO_NODE)
1881                 set_numa_node(early_cpu_to_node(cpu));
1882 #endif
1883         setup_getcpu(cpu);
1884
1885         pr_debug("Initializing CPU#%d\n", cpu);
1886
1887         if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1888             boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1889                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1890
1891         /*
1892          * Initialize the per-CPU GDT with the boot GDT,
1893          * and set up the GDT descriptor:
1894          */
1895         switch_to_new_gdt(cpu);
1896         load_current_idt();
1897
1898         if (IS_ENABLED(CONFIG_X86_64)) {
1899                 loadsegment(fs, 0);
1900                 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1901                 syscall_init();
1902
1903                 wrmsrl(MSR_FS_BASE, 0);
1904                 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1905                 barrier();
1906
1907                 x2apic_setup();
1908         }
1909
1910         mmgrab(&init_mm);
1911         cur->active_mm = &init_mm;
1912         BUG_ON(cur->mm);
1913         initialize_tlbstate_and_flush();
1914         enter_lazy_tlb(&init_mm, cur);
1915
1916         /* Initialize the TSS. */
1917         tss_setup_ist(tss);
1918         tss_setup_io_bitmap(tss);
1919         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1920
1921         load_TR_desc();
1922         /*
1923          * sp0 points to the entry trampoline stack regardless of what task
1924          * is running.
1925          */
1926         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1927
1928         load_mm_ldt(&init_mm);
1929
1930         clear_all_debug_regs();
1931         dbg_restore_debug_regs();
1932
1933         doublefault_init_cpu_tss();
1934
1935         fpu__init_cpu();
1936
1937         if (is_uv_system())
1938                 uv_cpu_init();
1939
1940         load_fixmap_gdt(cpu);
1941 }
1942
1943 /*
1944  * The microcode loader calls this upon late microcode load to recheck features,
1945  * only when microcode has been updated. Caller holds microcode_mutex and CPU
1946  * hotplug lock.
1947  */
1948 void microcode_check(void)
1949 {
1950         struct cpuinfo_x86 info;
1951
1952         perf_check_microcode();
1953
1954         /* Reload CPUID max function as it might've changed. */
1955         info.cpuid_level = cpuid_eax(0);
1956
1957         /*
1958          * Copy all capability leafs to pick up the synthetic ones so that
1959          * memcmp() below doesn't fail on that. The ones coming from CPUID will
1960          * get overwritten in get_cpu_cap().
1961          */
1962         memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1963
1964         get_cpu_cap(&info);
1965
1966         if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1967                 return;
1968
1969         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1970         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1971 }
1972
1973 /*
1974  * Invoked from core CPU hotplug code after hotplug operations
1975  */
1976 void arch_smt_update(void)
1977 {
1978         /* Handle the speculative execution misfeatures */
1979         cpu_bugs_smt_update();
1980         /* Check whether IPI broadcasting can be enabled */
1981         apic_smt_update();
1982 }