Merge tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt
[linux-2.6-microblaze.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/pgtable.h>
25
26 #include <asm/cmdline.h>
27 #include <asm/stackprotector.h>
28 #include <asm/perf_event.h>
29 #include <asm/mmu_context.h>
30 #include <asm/doublefault.h>
31 #include <asm/archrandom.h>
32 #include <asm/hypervisor.h>
33 #include <asm/processor.h>
34 #include <asm/tlbflush.h>
35 #include <asm/debugreg.h>
36 #include <asm/sections.h>
37 #include <asm/vsyscall.h>
38 #include <linux/topology.h>
39 #include <linux/cpumask.h>
40 #include <linux/atomic.h>
41 #include <asm/proto.h>
42 #include <asm/setup.h>
43 #include <asm/apic.h>
44 #include <asm/desc.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/mtrr.h>
47 #include <asm/hwcap2.h>
48 #include <linux/numa.h>
49 #include <asm/numa.h>
50 #include <asm/asm.h>
51 #include <asm/bugs.h>
52 #include <asm/cpu.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/memtype.h>
56 #include <asm/microcode.h>
57 #include <asm/microcode_intel.h>
58 #include <asm/intel-family.h>
59 #include <asm/cpu_device_id.h>
60 #include <asm/uv/uv.h>
61 #include <asm/sigframe.h>
62
63 #include "cpu.h"
64
65 u32 elf_hwcap2 __read_mostly;
66
67 /* all of these masks are initialized in setup_cpu_local_masks() */
68 cpumask_var_t cpu_initialized_mask;
69 cpumask_var_t cpu_callout_mask;
70 cpumask_var_t cpu_callin_mask;
71
72 /* representing cpus for which sibling maps can be computed */
73 cpumask_var_t cpu_sibling_setup_mask;
74
75 /* Number of siblings per CPU package */
76 int smp_num_siblings = 1;
77 EXPORT_SYMBOL(smp_num_siblings);
78
79 /* Last level cache ID of each logical CPU */
80 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
81
82 u16 get_llc_id(unsigned int cpu)
83 {
84         return per_cpu(cpu_llc_id, cpu);
85 }
86 EXPORT_SYMBOL_GPL(get_llc_id);
87
88 /* correctly size the local cpu masks */
89 void __init setup_cpu_local_masks(void)
90 {
91         alloc_bootmem_cpumask_var(&cpu_initialized_mask);
92         alloc_bootmem_cpumask_var(&cpu_callin_mask);
93         alloc_bootmem_cpumask_var(&cpu_callout_mask);
94         alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
95 }
96
97 static void default_init(struct cpuinfo_x86 *c)
98 {
99 #ifdef CONFIG_X86_64
100         cpu_detect_cache_sizes(c);
101 #else
102         /* Not much we can do here... */
103         /* Check if at least it has cpuid */
104         if (c->cpuid_level == -1) {
105                 /* No cpuid. It must be an ancient CPU */
106                 if (c->x86 == 4)
107                         strcpy(c->x86_model_id, "486");
108                 else if (c->x86 == 3)
109                         strcpy(c->x86_model_id, "386");
110         }
111 #endif
112 }
113
114 static const struct cpu_dev default_cpu = {
115         .c_init         = default_init,
116         .c_vendor       = "Unknown",
117         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
118 };
119
120 static const struct cpu_dev *this_cpu = &default_cpu;
121
122 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
123 #ifdef CONFIG_X86_64
124         /*
125          * We need valid kernel segments for data and code in long mode too
126          * IRET will check the segment types  kkeil 2000/10/28
127          * Also sysret mandates a special GDT layout
128          *
129          * TLS descriptors are currently at a different place compared to i386.
130          * Hopefully nobody expects them at a fixed place (Wine?)
131          */
132         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
133         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
134         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
135         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
136         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
137         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
138 #else
139         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
140         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
141         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
142         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
143         /*
144          * Segments used for calling PnP BIOS have byte granularity.
145          * They code segments and data segments have fixed 64k limits,
146          * the transfer segment sizes are set at run time.
147          */
148         /* 32-bit code */
149         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
150         /* 16-bit code */
151         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
152         /* 16-bit data */
153         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
154         /* 16-bit data */
155         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
156         /* 16-bit data */
157         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
158         /*
159          * The APM segments have byte granularity and their bases
160          * are set at run time.  All have 64k limits.
161          */
162         /* 32-bit code */
163         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
164         /* 16-bit code */
165         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
166         /* data */
167         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
168
169         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
170         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
171 #endif
172 } };
173 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
174
175 #ifdef CONFIG_X86_64
176 static int __init x86_nopcid_setup(char *s)
177 {
178         /* nopcid doesn't accept parameters */
179         if (s)
180                 return -EINVAL;
181
182         /* do not emit a message if the feature is not present */
183         if (!boot_cpu_has(X86_FEATURE_PCID))
184                 return 0;
185
186         setup_clear_cpu_cap(X86_FEATURE_PCID);
187         pr_info("nopcid: PCID feature disabled\n");
188         return 0;
189 }
190 early_param("nopcid", x86_nopcid_setup);
191 #endif
192
193 static int __init x86_noinvpcid_setup(char *s)
194 {
195         /* noinvpcid doesn't accept parameters */
196         if (s)
197                 return -EINVAL;
198
199         /* do not emit a message if the feature is not present */
200         if (!boot_cpu_has(X86_FEATURE_INVPCID))
201                 return 0;
202
203         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
204         pr_info("noinvpcid: INVPCID feature disabled\n");
205         return 0;
206 }
207 early_param("noinvpcid", x86_noinvpcid_setup);
208
209 #ifdef CONFIG_X86_32
210 static int cachesize_override = -1;
211 static int disable_x86_serial_nr = 1;
212
213 static int __init cachesize_setup(char *str)
214 {
215         get_option(&str, &cachesize_override);
216         return 1;
217 }
218 __setup("cachesize=", cachesize_setup);
219
220 static int __init x86_sep_setup(char *s)
221 {
222         setup_clear_cpu_cap(X86_FEATURE_SEP);
223         return 1;
224 }
225 __setup("nosep", x86_sep_setup);
226
227 /* Standard macro to see if a specific flag is changeable */
228 static inline int flag_is_changeable_p(u32 flag)
229 {
230         u32 f1, f2;
231
232         /*
233          * Cyrix and IDT cpus allow disabling of CPUID
234          * so the code below may return different results
235          * when it is executed before and after enabling
236          * the CPUID. Add "volatile" to not allow gcc to
237          * optimize the subsequent calls to this function.
238          */
239         asm volatile ("pushfl           \n\t"
240                       "pushfl           \n\t"
241                       "popl %0          \n\t"
242                       "movl %0, %1      \n\t"
243                       "xorl %2, %0      \n\t"
244                       "pushl %0         \n\t"
245                       "popfl            \n\t"
246                       "pushfl           \n\t"
247                       "popl %0          \n\t"
248                       "popfl            \n\t"
249
250                       : "=&r" (f1), "=&r" (f2)
251                       : "ir" (flag));
252
253         return ((f1^f2) & flag) != 0;
254 }
255
256 /* Probe for the CPUID instruction */
257 int have_cpuid_p(void)
258 {
259         return flag_is_changeable_p(X86_EFLAGS_ID);
260 }
261
262 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
263 {
264         unsigned long lo, hi;
265
266         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
267                 return;
268
269         /* Disable processor serial number: */
270
271         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
272         lo |= 0x200000;
273         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
274
275         pr_notice("CPU serial number disabled.\n");
276         clear_cpu_cap(c, X86_FEATURE_PN);
277
278         /* Disabling the serial number may affect the cpuid level */
279         c->cpuid_level = cpuid_eax(0);
280 }
281
282 static int __init x86_serial_nr_setup(char *s)
283 {
284         disable_x86_serial_nr = 0;
285         return 1;
286 }
287 __setup("serialnumber", x86_serial_nr_setup);
288 #else
289 static inline int flag_is_changeable_p(u32 flag)
290 {
291         return 1;
292 }
293 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
294 {
295 }
296 #endif
297
298 static __init int setup_disable_smep(char *arg)
299 {
300         setup_clear_cpu_cap(X86_FEATURE_SMEP);
301         return 1;
302 }
303 __setup("nosmep", setup_disable_smep);
304
305 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
306 {
307         if (cpu_has(c, X86_FEATURE_SMEP))
308                 cr4_set_bits(X86_CR4_SMEP);
309 }
310
311 static __init int setup_disable_smap(char *arg)
312 {
313         setup_clear_cpu_cap(X86_FEATURE_SMAP);
314         return 1;
315 }
316 __setup("nosmap", setup_disable_smap);
317
318 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
319 {
320         unsigned long eflags = native_save_fl();
321
322         /* This should have been cleared long ago */
323         BUG_ON(eflags & X86_EFLAGS_AC);
324
325         if (cpu_has(c, X86_FEATURE_SMAP)) {
326 #ifdef CONFIG_X86_SMAP
327                 cr4_set_bits(X86_CR4_SMAP);
328 #else
329                 cr4_clear_bits(X86_CR4_SMAP);
330 #endif
331         }
332 }
333
334 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
335 {
336         /* Check the boot processor, plus build option for UMIP. */
337         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
338                 goto out;
339
340         /* Check the current processor's cpuid bits. */
341         if (!cpu_has(c, X86_FEATURE_UMIP))
342                 goto out;
343
344         cr4_set_bits(X86_CR4_UMIP);
345
346         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
347
348         return;
349
350 out:
351         /*
352          * Make sure UMIP is disabled in case it was enabled in a
353          * previous boot (e.g., via kexec).
354          */
355         cr4_clear_bits(X86_CR4_UMIP);
356 }
357
358 /* These bits should not change their value after CPU init is finished. */
359 static const unsigned long cr4_pinned_mask =
360         X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
361 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
362 static unsigned long cr4_pinned_bits __ro_after_init;
363
364 void native_write_cr0(unsigned long val)
365 {
366         unsigned long bits_missing = 0;
367
368 set_register:
369         asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
370
371         if (static_branch_likely(&cr_pinning)) {
372                 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
373                         bits_missing = X86_CR0_WP;
374                         val |= bits_missing;
375                         goto set_register;
376                 }
377                 /* Warn after we've set the missing bits. */
378                 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
379         }
380 }
381 EXPORT_SYMBOL(native_write_cr0);
382
383 void native_write_cr4(unsigned long val)
384 {
385         unsigned long bits_changed = 0;
386
387 set_register:
388         asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
389
390         if (static_branch_likely(&cr_pinning)) {
391                 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
392                         bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
393                         val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
394                         goto set_register;
395                 }
396                 /* Warn after we've corrected the changed bits. */
397                 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
398                           bits_changed);
399         }
400 }
401 #if IS_MODULE(CONFIG_LKDTM)
402 EXPORT_SYMBOL_GPL(native_write_cr4);
403 #endif
404
405 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
406 {
407         unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
408
409         lockdep_assert_irqs_disabled();
410
411         newval = (cr4 & ~clear) | set;
412         if (newval != cr4) {
413                 this_cpu_write(cpu_tlbstate.cr4, newval);
414                 __write_cr4(newval);
415         }
416 }
417 EXPORT_SYMBOL(cr4_update_irqsoff);
418
419 /* Read the CR4 shadow. */
420 unsigned long cr4_read_shadow(void)
421 {
422         return this_cpu_read(cpu_tlbstate.cr4);
423 }
424 EXPORT_SYMBOL_GPL(cr4_read_shadow);
425
426 void cr4_init(void)
427 {
428         unsigned long cr4 = __read_cr4();
429
430         if (boot_cpu_has(X86_FEATURE_PCID))
431                 cr4 |= X86_CR4_PCIDE;
432         if (static_branch_likely(&cr_pinning))
433                 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
434
435         __write_cr4(cr4);
436
437         /* Initialize cr4 shadow for this CPU. */
438         this_cpu_write(cpu_tlbstate.cr4, cr4);
439 }
440
441 /*
442  * Once CPU feature detection is finished (and boot params have been
443  * parsed), record any of the sensitive CR bits that are set, and
444  * enable CR pinning.
445  */
446 static void __init setup_cr_pinning(void)
447 {
448         cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
449         static_key_enable(&cr_pinning.key);
450 }
451
452 static __init int x86_nofsgsbase_setup(char *arg)
453 {
454         /* Require an exact match without trailing characters. */
455         if (strlen(arg))
456                 return 0;
457
458         /* Do not emit a message if the feature is not present. */
459         if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
460                 return 1;
461
462         setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
463         pr_info("FSGSBASE disabled via kernel command line\n");
464         return 1;
465 }
466 __setup("nofsgsbase", x86_nofsgsbase_setup);
467
468 /*
469  * Protection Keys are not available in 32-bit mode.
470  */
471 static bool pku_disabled;
472
473 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
474 {
475         if (c == &boot_cpu_data) {
476                 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
477                         return;
478                 /*
479                  * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
480                  * bit to be set.  Enforce it.
481                  */
482                 setup_force_cpu_cap(X86_FEATURE_OSPKE);
483
484         } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
485                 return;
486         }
487
488         cr4_set_bits(X86_CR4_PKE);
489         /* Load the default PKRU value */
490         pkru_write_default();
491 }
492
493 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
494 static __init int setup_disable_pku(char *arg)
495 {
496         /*
497          * Do not clear the X86_FEATURE_PKU bit.  All of the
498          * runtime checks are against OSPKE so clearing the
499          * bit does nothing.
500          *
501          * This way, we will see "pku" in cpuinfo, but not
502          * "ospke", which is exactly what we want.  It shows
503          * that the CPU has PKU, but the OS has not enabled it.
504          * This happens to be exactly how a system would look
505          * if we disabled the config option.
506          */
507         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
508         pku_disabled = true;
509         return 1;
510 }
511 __setup("nopku", setup_disable_pku);
512 #endif /* CONFIG_X86_64 */
513
514 /*
515  * Some CPU features depend on higher CPUID levels, which may not always
516  * be available due to CPUID level capping or broken virtualization
517  * software.  Add those features to this table to auto-disable them.
518  */
519 struct cpuid_dependent_feature {
520         u32 feature;
521         u32 level;
522 };
523
524 static const struct cpuid_dependent_feature
525 cpuid_dependent_features[] = {
526         { X86_FEATURE_MWAIT,            0x00000005 },
527         { X86_FEATURE_DCA,              0x00000009 },
528         { X86_FEATURE_XSAVE,            0x0000000d },
529         { 0, 0 }
530 };
531
532 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
533 {
534         const struct cpuid_dependent_feature *df;
535
536         for (df = cpuid_dependent_features; df->feature; df++) {
537
538                 if (!cpu_has(c, df->feature))
539                         continue;
540                 /*
541                  * Note: cpuid_level is set to -1 if unavailable, but
542                  * extended_extended_level is set to 0 if unavailable
543                  * and the legitimate extended levels are all negative
544                  * when signed; hence the weird messing around with
545                  * signs here...
546                  */
547                 if (!((s32)df->level < 0 ?
548                      (u32)df->level > (u32)c->extended_cpuid_level :
549                      (s32)df->level > (s32)c->cpuid_level))
550                         continue;
551
552                 clear_cpu_cap(c, df->feature);
553                 if (!warn)
554                         continue;
555
556                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
557                         x86_cap_flag(df->feature), df->level);
558         }
559 }
560
561 /*
562  * Naming convention should be: <Name> [(<Codename>)]
563  * This table only is used unless init_<vendor>() below doesn't set it;
564  * in particular, if CPUID levels 0x80000002..4 are supported, this
565  * isn't used
566  */
567
568 /* Look up CPU names by table lookup. */
569 static const char *table_lookup_model(struct cpuinfo_x86 *c)
570 {
571 #ifdef CONFIG_X86_32
572         const struct legacy_cpu_model_info *info;
573
574         if (c->x86_model >= 16)
575                 return NULL;    /* Range check */
576
577         if (!this_cpu)
578                 return NULL;
579
580         info = this_cpu->legacy_models;
581
582         while (info->family) {
583                 if (info->family == c->x86)
584                         return info->model_names[c->x86_model];
585                 info++;
586         }
587 #endif
588         return NULL;            /* Not found */
589 }
590
591 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
592 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
593 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
594
595 void load_percpu_segment(int cpu)
596 {
597 #ifdef CONFIG_X86_32
598         loadsegment(fs, __KERNEL_PERCPU);
599 #else
600         __loadsegment_simple(gs, 0);
601         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
602 #endif
603 }
604
605 #ifdef CONFIG_X86_32
606 /* The 32-bit entry code needs to find cpu_entry_area. */
607 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
608 #endif
609
610 /* Load the original GDT from the per-cpu structure */
611 void load_direct_gdt(int cpu)
612 {
613         struct desc_ptr gdt_descr;
614
615         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
616         gdt_descr.size = GDT_SIZE - 1;
617         load_gdt(&gdt_descr);
618 }
619 EXPORT_SYMBOL_GPL(load_direct_gdt);
620
621 /* Load a fixmap remapping of the per-cpu GDT */
622 void load_fixmap_gdt(int cpu)
623 {
624         struct desc_ptr gdt_descr;
625
626         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
627         gdt_descr.size = GDT_SIZE - 1;
628         load_gdt(&gdt_descr);
629 }
630 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
631
632 /*
633  * Current gdt points %fs at the "master" per-cpu area: after this,
634  * it's on the real one.
635  */
636 void switch_to_new_gdt(int cpu)
637 {
638         /* Load the original GDT */
639         load_direct_gdt(cpu);
640         /* Reload the per-cpu base */
641         load_percpu_segment(cpu);
642 }
643
644 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
645
646 static void get_model_name(struct cpuinfo_x86 *c)
647 {
648         unsigned int *v;
649         char *p, *q, *s;
650
651         if (c->extended_cpuid_level < 0x80000004)
652                 return;
653
654         v = (unsigned int *)c->x86_model_id;
655         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
656         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
657         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
658         c->x86_model_id[48] = 0;
659
660         /* Trim whitespace */
661         p = q = s = &c->x86_model_id[0];
662
663         while (*p == ' ')
664                 p++;
665
666         while (*p) {
667                 /* Note the last non-whitespace index */
668                 if (!isspace(*p))
669                         s = q;
670
671                 *q++ = *p++;
672         }
673
674         *(s + 1) = '\0';
675 }
676
677 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
678 {
679         unsigned int eax, ebx, ecx, edx;
680
681         c->x86_max_cores = 1;
682         if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
683                 return;
684
685         cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
686         if (eax & 0x1f)
687                 c->x86_max_cores = (eax >> 26) + 1;
688 }
689
690 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
691 {
692         unsigned int n, dummy, ebx, ecx, edx, l2size;
693
694         n = c->extended_cpuid_level;
695
696         if (n >= 0x80000005) {
697                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
698                 c->x86_cache_size = (ecx>>24) + (edx>>24);
699 #ifdef CONFIG_X86_64
700                 /* On K8 L1 TLB is inclusive, so don't count it */
701                 c->x86_tlbsize = 0;
702 #endif
703         }
704
705         if (n < 0x80000006)     /* Some chips just has a large L1. */
706                 return;
707
708         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
709         l2size = ecx >> 16;
710
711 #ifdef CONFIG_X86_64
712         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
713 #else
714         /* do processor-specific cache resizing */
715         if (this_cpu->legacy_cache_size)
716                 l2size = this_cpu->legacy_cache_size(c, l2size);
717
718         /* Allow user to override all this if necessary. */
719         if (cachesize_override != -1)
720                 l2size = cachesize_override;
721
722         if (l2size == 0)
723                 return;         /* Again, no L2 cache is possible */
724 #endif
725
726         c->x86_cache_size = l2size;
727 }
728
729 u16 __read_mostly tlb_lli_4k[NR_INFO];
730 u16 __read_mostly tlb_lli_2m[NR_INFO];
731 u16 __read_mostly tlb_lli_4m[NR_INFO];
732 u16 __read_mostly tlb_lld_4k[NR_INFO];
733 u16 __read_mostly tlb_lld_2m[NR_INFO];
734 u16 __read_mostly tlb_lld_4m[NR_INFO];
735 u16 __read_mostly tlb_lld_1g[NR_INFO];
736
737 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
738 {
739         if (this_cpu->c_detect_tlb)
740                 this_cpu->c_detect_tlb(c);
741
742         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
743                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
744                 tlb_lli_4m[ENTRIES]);
745
746         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
747                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
748                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
749 }
750
751 int detect_ht_early(struct cpuinfo_x86 *c)
752 {
753 #ifdef CONFIG_SMP
754         u32 eax, ebx, ecx, edx;
755
756         if (!cpu_has(c, X86_FEATURE_HT))
757                 return -1;
758
759         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
760                 return -1;
761
762         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
763                 return -1;
764
765         cpuid(1, &eax, &ebx, &ecx, &edx);
766
767         smp_num_siblings = (ebx & 0xff0000) >> 16;
768         if (smp_num_siblings == 1)
769                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
770 #endif
771         return 0;
772 }
773
774 void detect_ht(struct cpuinfo_x86 *c)
775 {
776 #ifdef CONFIG_SMP
777         int index_msb, core_bits;
778
779         if (detect_ht_early(c) < 0)
780                 return;
781
782         index_msb = get_count_order(smp_num_siblings);
783         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
784
785         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
786
787         index_msb = get_count_order(smp_num_siblings);
788
789         core_bits = get_count_order(c->x86_max_cores);
790
791         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
792                                        ((1 << core_bits) - 1);
793 #endif
794 }
795
796 static void get_cpu_vendor(struct cpuinfo_x86 *c)
797 {
798         char *v = c->x86_vendor_id;
799         int i;
800
801         for (i = 0; i < X86_VENDOR_NUM; i++) {
802                 if (!cpu_devs[i])
803                         break;
804
805                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
806                     (cpu_devs[i]->c_ident[1] &&
807                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
808
809                         this_cpu = cpu_devs[i];
810                         c->x86_vendor = this_cpu->c_x86_vendor;
811                         return;
812                 }
813         }
814
815         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
816                     "CPU: Your system may be unstable.\n", v);
817
818         c->x86_vendor = X86_VENDOR_UNKNOWN;
819         this_cpu = &default_cpu;
820 }
821
822 void cpu_detect(struct cpuinfo_x86 *c)
823 {
824         /* Get vendor name */
825         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
826               (unsigned int *)&c->x86_vendor_id[0],
827               (unsigned int *)&c->x86_vendor_id[8],
828               (unsigned int *)&c->x86_vendor_id[4]);
829
830         c->x86 = 4;
831         /* Intel-defined flags: level 0x00000001 */
832         if (c->cpuid_level >= 0x00000001) {
833                 u32 junk, tfms, cap0, misc;
834
835                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
836                 c->x86          = x86_family(tfms);
837                 c->x86_model    = x86_model(tfms);
838                 c->x86_stepping = x86_stepping(tfms);
839
840                 if (cap0 & (1<<19)) {
841                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
842                         c->x86_cache_alignment = c->x86_clflush_size;
843                 }
844         }
845 }
846
847 static void apply_forced_caps(struct cpuinfo_x86 *c)
848 {
849         int i;
850
851         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
852                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
853                 c->x86_capability[i] |= cpu_caps_set[i];
854         }
855 }
856
857 static void init_speculation_control(struct cpuinfo_x86 *c)
858 {
859         /*
860          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
861          * and they also have a different bit for STIBP support. Also,
862          * a hypervisor might have set the individual AMD bits even on
863          * Intel CPUs, for finer-grained selection of what's available.
864          */
865         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
866                 set_cpu_cap(c, X86_FEATURE_IBRS);
867                 set_cpu_cap(c, X86_FEATURE_IBPB);
868                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
869         }
870
871         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
872                 set_cpu_cap(c, X86_FEATURE_STIBP);
873
874         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
875             cpu_has(c, X86_FEATURE_VIRT_SSBD))
876                 set_cpu_cap(c, X86_FEATURE_SSBD);
877
878         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
879                 set_cpu_cap(c, X86_FEATURE_IBRS);
880                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
881         }
882
883         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
884                 set_cpu_cap(c, X86_FEATURE_IBPB);
885
886         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
887                 set_cpu_cap(c, X86_FEATURE_STIBP);
888                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
889         }
890
891         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
892                 set_cpu_cap(c, X86_FEATURE_SSBD);
893                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
894                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
895         }
896 }
897
898 void get_cpu_cap(struct cpuinfo_x86 *c)
899 {
900         u32 eax, ebx, ecx, edx;
901
902         /* Intel-defined flags: level 0x00000001 */
903         if (c->cpuid_level >= 0x00000001) {
904                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
905
906                 c->x86_capability[CPUID_1_ECX] = ecx;
907                 c->x86_capability[CPUID_1_EDX] = edx;
908         }
909
910         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
911         if (c->cpuid_level >= 0x00000006)
912                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
913
914         /* Additional Intel-defined flags: level 0x00000007 */
915         if (c->cpuid_level >= 0x00000007) {
916                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
917                 c->x86_capability[CPUID_7_0_EBX] = ebx;
918                 c->x86_capability[CPUID_7_ECX] = ecx;
919                 c->x86_capability[CPUID_7_EDX] = edx;
920
921                 /* Check valid sub-leaf index before accessing it */
922                 if (eax >= 1) {
923                         cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
924                         c->x86_capability[CPUID_7_1_EAX] = eax;
925                 }
926         }
927
928         /* Extended state features: level 0x0000000d */
929         if (c->cpuid_level >= 0x0000000d) {
930                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
931
932                 c->x86_capability[CPUID_D_1_EAX] = eax;
933         }
934
935         /* AMD-defined flags: level 0x80000001 */
936         eax = cpuid_eax(0x80000000);
937         c->extended_cpuid_level = eax;
938
939         if ((eax & 0xffff0000) == 0x80000000) {
940                 if (eax >= 0x80000001) {
941                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
942
943                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
944                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
945                 }
946         }
947
948         if (c->extended_cpuid_level >= 0x80000007) {
949                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
950
951                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
952                 c->x86_power = edx;
953         }
954
955         if (c->extended_cpuid_level >= 0x80000008) {
956                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
957                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
958         }
959
960         if (c->extended_cpuid_level >= 0x8000000a)
961                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
962
963         if (c->extended_cpuid_level >= 0x8000001f)
964                 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
965
966         init_scattered_cpuid_features(c);
967         init_speculation_control(c);
968
969         /*
970          * Clear/Set all flags overridden by options, after probe.
971          * This needs to happen each time we re-probe, which may happen
972          * several times during CPU initialization.
973          */
974         apply_forced_caps(c);
975 }
976
977 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
978 {
979         u32 eax, ebx, ecx, edx;
980
981         if (c->extended_cpuid_level >= 0x80000008) {
982                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
983
984                 c->x86_virt_bits = (eax >> 8) & 0xff;
985                 c->x86_phys_bits = eax & 0xff;
986         }
987 #ifdef CONFIG_X86_32
988         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
989                 c->x86_phys_bits = 36;
990 #endif
991         c->x86_cache_bits = c->x86_phys_bits;
992 }
993
994 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
995 {
996 #ifdef CONFIG_X86_32
997         int i;
998
999         /*
1000          * First of all, decide if this is a 486 or higher
1001          * It's a 486 if we can modify the AC flag
1002          */
1003         if (flag_is_changeable_p(X86_EFLAGS_AC))
1004                 c->x86 = 4;
1005         else
1006                 c->x86 = 3;
1007
1008         for (i = 0; i < X86_VENDOR_NUM; i++)
1009                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1010                         c->x86_vendor_id[0] = 0;
1011                         cpu_devs[i]->c_identify(c);
1012                         if (c->x86_vendor_id[0]) {
1013                                 get_cpu_vendor(c);
1014                                 break;
1015                         }
1016                 }
1017 #endif
1018 }
1019
1020 #define NO_SPECULATION          BIT(0)
1021 #define NO_MELTDOWN             BIT(1)
1022 #define NO_SSB                  BIT(2)
1023 #define NO_L1TF                 BIT(3)
1024 #define NO_MDS                  BIT(4)
1025 #define MSBDS_ONLY              BIT(5)
1026 #define NO_SWAPGS               BIT(6)
1027 #define NO_ITLB_MULTIHIT        BIT(7)
1028 #define NO_SPECTRE_V2           BIT(8)
1029
1030 #define VULNWL(vendor, family, model, whitelist)        \
1031         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1032
1033 #define VULNWL_INTEL(model, whitelist)          \
1034         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1035
1036 #define VULNWL_AMD(family, whitelist)           \
1037         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1038
1039 #define VULNWL_HYGON(family, whitelist)         \
1040         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1041
1042 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1043         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1044         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1045         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1046         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1047
1048         /* Intel Family 6 */
1049         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
1050         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1051         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
1052         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
1053         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
1054
1055         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1056         VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1057         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1058         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1059         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1060         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1061
1062         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
1063
1064         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1065         VULNWL_INTEL(ATOM_AIRMONT_NP,           NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1066
1067         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1068         VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1069         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1070
1071         /*
1072          * Technically, swapgs isn't serializing on AMD (despite it previously
1073          * being documented as such in the APM).  But according to AMD, %gs is
1074          * updated non-speculatively, and the issuing of %gs-relative memory
1075          * operands will be blocked until the %gs update completes, which is
1076          * good enough for our purposes.
1077          */
1078
1079         VULNWL_INTEL(ATOM_TREMONT_D,            NO_ITLB_MULTIHIT),
1080
1081         /* AMD Family 0xf - 0x12 */
1082         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1083         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1084         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1085         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1086
1087         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1088         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1089         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1090
1091         /* Zhaoxin Family 7 */
1092         VULNWL(CENTAUR, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1093         VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1094         {}
1095 };
1096
1097 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
1098         X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
1099                                             INTEL_FAM6_##model, steppings, \
1100                                             X86_FEATURE_ANY, issues)
1101
1102 #define SRBDS           BIT(0)
1103
1104 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1105         VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
1106         VULNBL_INTEL_STEPPINGS(HASWELL,         X86_STEPPING_ANY,               SRBDS),
1107         VULNBL_INTEL_STEPPINGS(HASWELL_L,       X86_STEPPING_ANY,               SRBDS),
1108         VULNBL_INTEL_STEPPINGS(HASWELL_G,       X86_STEPPING_ANY,               SRBDS),
1109         VULNBL_INTEL_STEPPINGS(BROADWELL_G,     X86_STEPPING_ANY,               SRBDS),
1110         VULNBL_INTEL_STEPPINGS(BROADWELL,       X86_STEPPING_ANY,               SRBDS),
1111         VULNBL_INTEL_STEPPINGS(SKYLAKE_L,       X86_STEPPING_ANY,               SRBDS),
1112         VULNBL_INTEL_STEPPINGS(SKYLAKE,         X86_STEPPING_ANY,               SRBDS),
1113         VULNBL_INTEL_STEPPINGS(KABYLAKE_L,      X86_STEPPINGS(0x0, 0xC),        SRBDS),
1114         VULNBL_INTEL_STEPPINGS(KABYLAKE,        X86_STEPPINGS(0x0, 0xD),        SRBDS),
1115         {}
1116 };
1117
1118 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1119 {
1120         const struct x86_cpu_id *m = x86_match_cpu(table);
1121
1122         return m && !!(m->driver_data & which);
1123 }
1124
1125 u64 x86_read_arch_cap_msr(void)
1126 {
1127         u64 ia32_cap = 0;
1128
1129         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1130                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1131
1132         return ia32_cap;
1133 }
1134
1135 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1136 {
1137         u64 ia32_cap = x86_read_arch_cap_msr();
1138
1139         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1140         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1141             !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1142                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1143
1144         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1145                 return;
1146
1147         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1148
1149         if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1150                 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1151
1152         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1153             !(ia32_cap & ARCH_CAP_SSB_NO) &&
1154            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1155                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1156
1157         if (ia32_cap & ARCH_CAP_IBRS_ALL)
1158                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1159
1160         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1161             !(ia32_cap & ARCH_CAP_MDS_NO)) {
1162                 setup_force_cpu_bug(X86_BUG_MDS);
1163                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1164                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1165         }
1166
1167         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1168                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1169
1170         /*
1171          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1172          *      - TSX is supported or
1173          *      - TSX_CTRL is present
1174          *
1175          * TSX_CTRL check is needed for cases when TSX could be disabled before
1176          * the kernel boot e.g. kexec.
1177          * TSX_CTRL check alone is not sufficient for cases when the microcode
1178          * update is not present or running as guest that don't get TSX_CTRL.
1179          */
1180         if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1181             (cpu_has(c, X86_FEATURE_RTM) ||
1182              (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1183                 setup_force_cpu_bug(X86_BUG_TAA);
1184
1185         /*
1186          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1187          * in the vulnerability blacklist.
1188          */
1189         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1190              cpu_has(c, X86_FEATURE_RDSEED)) &&
1191             cpu_matches(cpu_vuln_blacklist, SRBDS))
1192                     setup_force_cpu_bug(X86_BUG_SRBDS);
1193
1194         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1195                 return;
1196
1197         /* Rogue Data Cache Load? No! */
1198         if (ia32_cap & ARCH_CAP_RDCL_NO)
1199                 return;
1200
1201         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1202
1203         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1204                 return;
1205
1206         setup_force_cpu_bug(X86_BUG_L1TF);
1207 }
1208
1209 /*
1210  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1211  * unfortunately, that's not true in practice because of early VIA
1212  * chips and (more importantly) broken virtualizers that are not easy
1213  * to detect. In the latter case it doesn't even *fail* reliably, so
1214  * probing for it doesn't even work. Disable it completely on 32-bit
1215  * unless we can find a reliable way to detect all the broken cases.
1216  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1217  */
1218 static void detect_nopl(void)
1219 {
1220 #ifdef CONFIG_X86_32
1221         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1222 #else
1223         setup_force_cpu_cap(X86_FEATURE_NOPL);
1224 #endif
1225 }
1226
1227 /*
1228  * We parse cpu parameters early because fpu__init_system() is executed
1229  * before parse_early_param().
1230  */
1231 static void __init cpu_parse_early_param(void)
1232 {
1233         char arg[128];
1234         char *argptr = arg;
1235         int arglen, res, bit;
1236
1237 #ifdef CONFIG_X86_32
1238         if (cmdline_find_option_bool(boot_command_line, "no387"))
1239 #ifdef CONFIG_MATH_EMULATION
1240                 setup_clear_cpu_cap(X86_FEATURE_FPU);
1241 #else
1242                 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1243 #endif
1244
1245         if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1246                 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1247 #endif
1248
1249         if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1250                 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1251
1252         if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1253                 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1254
1255         if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1256                 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1257
1258         arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1259         if (arglen <= 0)
1260                 return;
1261
1262         pr_info("Clearing CPUID bits:");
1263         do {
1264                 res = get_option(&argptr, &bit);
1265                 if (res == 0 || res == 3)
1266                         break;
1267
1268                 /* If the argument was too long, the last bit may be cut off */
1269                 if (res == 1 && arglen >= sizeof(arg))
1270                         break;
1271
1272                 if (bit >= 0 && bit < NCAPINTS * 32) {
1273                         pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1274                         setup_clear_cpu_cap(bit);
1275                 }
1276         } while (res == 2);
1277         pr_cont("\n");
1278 }
1279
1280 /*
1281  * Do minimum CPU detection early.
1282  * Fields really needed: vendor, cpuid_level, family, model, mask,
1283  * cache alignment.
1284  * The others are not touched to avoid unwanted side effects.
1285  *
1286  * WARNING: this function is only called on the boot CPU.  Don't add code
1287  * here that is supposed to run on all CPUs.
1288  */
1289 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1290 {
1291 #ifdef CONFIG_X86_64
1292         c->x86_clflush_size = 64;
1293         c->x86_phys_bits = 36;
1294         c->x86_virt_bits = 48;
1295 #else
1296         c->x86_clflush_size = 32;
1297         c->x86_phys_bits = 32;
1298         c->x86_virt_bits = 32;
1299 #endif
1300         c->x86_cache_alignment = c->x86_clflush_size;
1301
1302         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1303         c->extended_cpuid_level = 0;
1304
1305         if (!have_cpuid_p())
1306                 identify_cpu_without_cpuid(c);
1307
1308         /* cyrix could have cpuid enabled via c_identify()*/
1309         if (have_cpuid_p()) {
1310                 cpu_detect(c);
1311                 get_cpu_vendor(c);
1312                 get_cpu_cap(c);
1313                 get_cpu_address_sizes(c);
1314                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1315                 cpu_parse_early_param();
1316
1317                 if (this_cpu->c_early_init)
1318                         this_cpu->c_early_init(c);
1319
1320                 c->cpu_index = 0;
1321                 filter_cpuid_features(c, false);
1322
1323                 if (this_cpu->c_bsp_init)
1324                         this_cpu->c_bsp_init(c);
1325         } else {
1326                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1327         }
1328
1329         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1330
1331         cpu_set_bug_bits(c);
1332
1333         sld_setup(c);
1334
1335         fpu__init_system(c);
1336
1337         init_sigframe_size();
1338
1339 #ifdef CONFIG_X86_32
1340         /*
1341          * Regardless of whether PCID is enumerated, the SDM says
1342          * that it can't be enabled in 32-bit mode.
1343          */
1344         setup_clear_cpu_cap(X86_FEATURE_PCID);
1345 #endif
1346
1347         /*
1348          * Later in the boot process pgtable_l5_enabled() relies on
1349          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1350          * enabled by this point we need to clear the feature bit to avoid
1351          * false-positives at the later stage.
1352          *
1353          * pgtable_l5_enabled() can be false here for several reasons:
1354          *  - 5-level paging is disabled compile-time;
1355          *  - it's 32-bit kernel;
1356          *  - machine doesn't support 5-level paging;
1357          *  - user specified 'no5lvl' in kernel command line.
1358          */
1359         if (!pgtable_l5_enabled())
1360                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1361
1362         detect_nopl();
1363 }
1364
1365 void __init early_cpu_init(void)
1366 {
1367         const struct cpu_dev *const *cdev;
1368         int count = 0;
1369
1370 #ifdef CONFIG_PROCESSOR_SELECT
1371         pr_info("KERNEL supported cpus:\n");
1372 #endif
1373
1374         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1375                 const struct cpu_dev *cpudev = *cdev;
1376
1377                 if (count >= X86_VENDOR_NUM)
1378                         break;
1379                 cpu_devs[count] = cpudev;
1380                 count++;
1381
1382 #ifdef CONFIG_PROCESSOR_SELECT
1383                 {
1384                         unsigned int j;
1385
1386                         for (j = 0; j < 2; j++) {
1387                                 if (!cpudev->c_ident[j])
1388                                         continue;
1389                                 pr_info("  %s %s\n", cpudev->c_vendor,
1390                                         cpudev->c_ident[j]);
1391                         }
1392                 }
1393 #endif
1394         }
1395         early_identify_cpu(&boot_cpu_data);
1396 }
1397
1398 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1399 {
1400 #ifdef CONFIG_X86_64
1401         /*
1402          * Empirically, writing zero to a segment selector on AMD does
1403          * not clear the base, whereas writing zero to a segment
1404          * selector on Intel does clear the base.  Intel's behavior
1405          * allows slightly faster context switches in the common case
1406          * where GS is unused by the prev and next threads.
1407          *
1408          * Since neither vendor documents this anywhere that I can see,
1409          * detect it directly instead of hard-coding the choice by
1410          * vendor.
1411          *
1412          * I've designated AMD's behavior as the "bug" because it's
1413          * counterintuitive and less friendly.
1414          */
1415
1416         unsigned long old_base, tmp;
1417         rdmsrl(MSR_FS_BASE, old_base);
1418         wrmsrl(MSR_FS_BASE, 1);
1419         loadsegment(fs, 0);
1420         rdmsrl(MSR_FS_BASE, tmp);
1421         if (tmp != 0)
1422                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1423         wrmsrl(MSR_FS_BASE, old_base);
1424 #endif
1425 }
1426
1427 static void generic_identify(struct cpuinfo_x86 *c)
1428 {
1429         c->extended_cpuid_level = 0;
1430
1431         if (!have_cpuid_p())
1432                 identify_cpu_without_cpuid(c);
1433
1434         /* cyrix could have cpuid enabled via c_identify()*/
1435         if (!have_cpuid_p())
1436                 return;
1437
1438         cpu_detect(c);
1439
1440         get_cpu_vendor(c);
1441
1442         get_cpu_cap(c);
1443
1444         get_cpu_address_sizes(c);
1445
1446         if (c->cpuid_level >= 0x00000001) {
1447                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1448 #ifdef CONFIG_X86_32
1449 # ifdef CONFIG_SMP
1450                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1451 # else
1452                 c->apicid = c->initial_apicid;
1453 # endif
1454 #endif
1455                 c->phys_proc_id = c->initial_apicid;
1456         }
1457
1458         get_model_name(c); /* Default name */
1459
1460         detect_null_seg_behavior(c);
1461
1462         /*
1463          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1464          * systems that run Linux at CPL > 0 may or may not have the
1465          * issue, but, even if they have the issue, there's absolutely
1466          * nothing we can do about it because we can't use the real IRET
1467          * instruction.
1468          *
1469          * NB: For the time being, only 32-bit kernels support
1470          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1471          * whether to apply espfix using paravirt hooks.  If any
1472          * non-paravirt system ever shows up that does *not* have the
1473          * ESPFIX issue, we can change this.
1474          */
1475 #ifdef CONFIG_X86_32
1476         set_cpu_bug(c, X86_BUG_ESPFIX);
1477 #endif
1478 }
1479
1480 /*
1481  * Validate that ACPI/mptables have the same information about the
1482  * effective APIC id and update the package map.
1483  */
1484 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1485 {
1486 #ifdef CONFIG_SMP
1487         unsigned int apicid, cpu = smp_processor_id();
1488
1489         apicid = apic->cpu_present_to_apicid(cpu);
1490
1491         if (apicid != c->apicid) {
1492                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1493                        cpu, apicid, c->initial_apicid);
1494         }
1495         BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1496         BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1497 #else
1498         c->logical_proc_id = 0;
1499 #endif
1500 }
1501
1502 /*
1503  * This does the hard work of actually picking apart the CPU stuff...
1504  */
1505 static void identify_cpu(struct cpuinfo_x86 *c)
1506 {
1507         int i;
1508
1509         c->loops_per_jiffy = loops_per_jiffy;
1510         c->x86_cache_size = 0;
1511         c->x86_vendor = X86_VENDOR_UNKNOWN;
1512         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1513         c->x86_vendor_id[0] = '\0'; /* Unset */
1514         c->x86_model_id[0] = '\0';  /* Unset */
1515         c->x86_max_cores = 1;
1516         c->x86_coreid_bits = 0;
1517         c->cu_id = 0xff;
1518 #ifdef CONFIG_X86_64
1519         c->x86_clflush_size = 64;
1520         c->x86_phys_bits = 36;
1521         c->x86_virt_bits = 48;
1522 #else
1523         c->cpuid_level = -1;    /* CPUID not detected */
1524         c->x86_clflush_size = 32;
1525         c->x86_phys_bits = 32;
1526         c->x86_virt_bits = 32;
1527 #endif
1528         c->x86_cache_alignment = c->x86_clflush_size;
1529         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1530 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1531         memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1532 #endif
1533
1534         generic_identify(c);
1535
1536         if (this_cpu->c_identify)
1537                 this_cpu->c_identify(c);
1538
1539         /* Clear/Set all flags overridden by options, after probe */
1540         apply_forced_caps(c);
1541
1542 #ifdef CONFIG_X86_64
1543         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1544 #endif
1545
1546         /*
1547          * Vendor-specific initialization.  In this section we
1548          * canonicalize the feature flags, meaning if there are
1549          * features a certain CPU supports which CPUID doesn't
1550          * tell us, CPUID claiming incorrect flags, or other bugs,
1551          * we handle them here.
1552          *
1553          * At the end of this section, c->x86_capability better
1554          * indicate the features this CPU genuinely supports!
1555          */
1556         if (this_cpu->c_init)
1557                 this_cpu->c_init(c);
1558
1559         /* Disable the PN if appropriate */
1560         squash_the_stupid_serial_number(c);
1561
1562         /* Set up SMEP/SMAP/UMIP */
1563         setup_smep(c);
1564         setup_smap(c);
1565         setup_umip(c);
1566
1567         /* Enable FSGSBASE instructions if available. */
1568         if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1569                 cr4_set_bits(X86_CR4_FSGSBASE);
1570                 elf_hwcap2 |= HWCAP2_FSGSBASE;
1571         }
1572
1573         /*
1574          * The vendor-specific functions might have changed features.
1575          * Now we do "generic changes."
1576          */
1577
1578         /* Filter out anything that depends on CPUID levels we don't have */
1579         filter_cpuid_features(c, true);
1580
1581         /* If the model name is still unset, do table lookup. */
1582         if (!c->x86_model_id[0]) {
1583                 const char *p;
1584                 p = table_lookup_model(c);
1585                 if (p)
1586                         strcpy(c->x86_model_id, p);
1587                 else
1588                         /* Last resort... */
1589                         sprintf(c->x86_model_id, "%02x/%02x",
1590                                 c->x86, c->x86_model);
1591         }
1592
1593 #ifdef CONFIG_X86_64
1594         detect_ht(c);
1595 #endif
1596
1597         x86_init_rdrand(c);
1598         setup_pku(c);
1599
1600         /*
1601          * Clear/Set all flags overridden by options, need do it
1602          * before following smp all cpus cap AND.
1603          */
1604         apply_forced_caps(c);
1605
1606         /*
1607          * On SMP, boot_cpu_data holds the common feature set between
1608          * all CPUs; so make sure that we indicate which features are
1609          * common between the CPUs.  The first time this routine gets
1610          * executed, c == &boot_cpu_data.
1611          */
1612         if (c != &boot_cpu_data) {
1613                 /* AND the already accumulated flags with these */
1614                 for (i = 0; i < NCAPINTS; i++)
1615                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1616
1617                 /* OR, i.e. replicate the bug flags */
1618                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1619                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1620         }
1621
1622         /* Init Machine Check Exception if available. */
1623         mcheck_cpu_init(c);
1624
1625         select_idle_routine(c);
1626
1627 #ifdef CONFIG_NUMA
1628         numa_add_cpu(smp_processor_id());
1629 #endif
1630 }
1631
1632 /*
1633  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1634  * on 32-bit kernels:
1635  */
1636 #ifdef CONFIG_X86_32
1637 void enable_sep_cpu(void)
1638 {
1639         struct tss_struct *tss;
1640         int cpu;
1641
1642         if (!boot_cpu_has(X86_FEATURE_SEP))
1643                 return;
1644
1645         cpu = get_cpu();
1646         tss = &per_cpu(cpu_tss_rw, cpu);
1647
1648         /*
1649          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1650          * see the big comment in struct x86_hw_tss's definition.
1651          */
1652
1653         tss->x86_tss.ss1 = __KERNEL_CS;
1654         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1655         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1656         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1657
1658         put_cpu();
1659 }
1660 #endif
1661
1662 void __init identify_boot_cpu(void)
1663 {
1664         identify_cpu(&boot_cpu_data);
1665 #ifdef CONFIG_X86_32
1666         sysenter_setup();
1667         enable_sep_cpu();
1668 #endif
1669         cpu_detect_tlb(&boot_cpu_data);
1670         setup_cr_pinning();
1671
1672         tsx_init();
1673 }
1674
1675 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1676 {
1677         BUG_ON(c == &boot_cpu_data);
1678         identify_cpu(c);
1679 #ifdef CONFIG_X86_32
1680         enable_sep_cpu();
1681 #endif
1682         mtrr_ap_init();
1683         validate_apic_and_package_id(c);
1684         x86_spec_ctrl_setup_ap();
1685         update_srbds_msr();
1686 }
1687
1688 static __init int setup_noclflush(char *arg)
1689 {
1690         setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1691         setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1692         return 1;
1693 }
1694 __setup("noclflush", setup_noclflush);
1695
1696 void print_cpu_info(struct cpuinfo_x86 *c)
1697 {
1698         const char *vendor = NULL;
1699
1700         if (c->x86_vendor < X86_VENDOR_NUM) {
1701                 vendor = this_cpu->c_vendor;
1702         } else {
1703                 if (c->cpuid_level >= 0)
1704                         vendor = c->x86_vendor_id;
1705         }
1706
1707         if (vendor && !strstr(c->x86_model_id, vendor))
1708                 pr_cont("%s ", vendor);
1709
1710         if (c->x86_model_id[0])
1711                 pr_cont("%s", c->x86_model_id);
1712         else
1713                 pr_cont("%d86", c->x86);
1714
1715         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1716
1717         if (c->x86_stepping || c->cpuid_level >= 0)
1718                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1719         else
1720                 pr_cont(")\n");
1721 }
1722
1723 /*
1724  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
1725  * function prevents it from becoming an environment variable for init.
1726  */
1727 static __init int setup_clearcpuid(char *arg)
1728 {
1729         return 1;
1730 }
1731 __setup("clearcpuid=", setup_clearcpuid);
1732
1733 #ifdef CONFIG_X86_64
1734 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1735                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1736 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1737
1738 /*
1739  * The following percpu variables are hot.  Align current_task to
1740  * cacheline size such that they fall in the same cacheline.
1741  */
1742 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1743         &init_task;
1744 EXPORT_PER_CPU_SYMBOL(current_task);
1745
1746 DEFINE_PER_CPU(void *, hardirq_stack_ptr);
1747 DEFINE_PER_CPU(bool, hardirq_stack_inuse);
1748
1749 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1750 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1751
1752 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
1753
1754 /* May not be marked __init: used by software suspend */
1755 void syscall_init(void)
1756 {
1757         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1758         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1759
1760 #ifdef CONFIG_IA32_EMULATION
1761         wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1762         /*
1763          * This only works on Intel CPUs.
1764          * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1765          * This does not cause SYSENTER to jump to the wrong location, because
1766          * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1767          */
1768         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1769         wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1770                     (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1771         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1772 #else
1773         wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1774         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1775         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1776         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1777 #endif
1778
1779         /*
1780          * Flags to clear on syscall; clear as much as possible
1781          * to minimize user space-kernel interference.
1782          */
1783         wrmsrl(MSR_SYSCALL_MASK,
1784                X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
1785                X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
1786                X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
1787                X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
1788                X86_EFLAGS_AC|X86_EFLAGS_ID);
1789 }
1790
1791 #else   /* CONFIG_X86_64 */
1792
1793 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1794 EXPORT_PER_CPU_SYMBOL(current_task);
1795 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1796 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1797
1798 /*
1799  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1800  * the top of the kernel stack.  Use an extra percpu variable to track the
1801  * top of the kernel stack directly.
1802  */
1803 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1804         (unsigned long)&init_thread_union + THREAD_SIZE;
1805 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1806
1807 #ifdef CONFIG_STACKPROTECTOR
1808 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
1809 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
1810 #endif
1811
1812 #endif  /* CONFIG_X86_64 */
1813
1814 /*
1815  * Clear all 6 debug registers:
1816  */
1817 static void clear_all_debug_regs(void)
1818 {
1819         int i;
1820
1821         for (i = 0; i < 8; i++) {
1822                 /* Ignore db4, db5 */
1823                 if ((i == 4) || (i == 5))
1824                         continue;
1825
1826                 set_debugreg(0, i);
1827         }
1828 }
1829
1830 #ifdef CONFIG_KGDB
1831 /*
1832  * Restore debug regs if using kgdbwait and you have a kernel debugger
1833  * connection established.
1834  */
1835 static void dbg_restore_debug_regs(void)
1836 {
1837         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1838                 arch_kgdb_ops.correct_hw_break();
1839 }
1840 #else /* ! CONFIG_KGDB */
1841 #define dbg_restore_debug_regs()
1842 #endif /* ! CONFIG_KGDB */
1843
1844 static void wait_for_master_cpu(int cpu)
1845 {
1846 #ifdef CONFIG_SMP
1847         /*
1848          * wait for ACK from master CPU before continuing
1849          * with AP initialization
1850          */
1851         WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1852         while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1853                 cpu_relax();
1854 #endif
1855 }
1856
1857 #ifdef CONFIG_X86_64
1858 static inline void setup_getcpu(int cpu)
1859 {
1860         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1861         struct desc_struct d = { };
1862
1863         if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
1864                 wrmsr(MSR_TSC_AUX, cpudata, 0);
1865
1866         /* Store CPU and node number in limit. */
1867         d.limit0 = cpudata;
1868         d.limit1 = cpudata >> 16;
1869
1870         d.type = 5;             /* RO data, expand down, accessed */
1871         d.dpl = 3;              /* Visible to user code */
1872         d.s = 1;                /* Not a system segment */
1873         d.p = 1;                /* Present */
1874         d.d = 1;                /* 32-bit */
1875
1876         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1877 }
1878
1879 static inline void ucode_cpu_init(int cpu)
1880 {
1881         if (cpu)
1882                 load_ucode_ap();
1883 }
1884
1885 static inline void tss_setup_ist(struct tss_struct *tss)
1886 {
1887         /* Set up the per-CPU TSS IST stacks */
1888         tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1889         tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1890         tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1891         tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1892         /* Only mapped when SEV-ES is active */
1893         tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
1894 }
1895
1896 #else /* CONFIG_X86_64 */
1897
1898 static inline void setup_getcpu(int cpu) { }
1899
1900 static inline void ucode_cpu_init(int cpu)
1901 {
1902         show_ucode_info_early();
1903 }
1904
1905 static inline void tss_setup_ist(struct tss_struct *tss) { }
1906
1907 #endif /* !CONFIG_X86_64 */
1908
1909 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1910 {
1911         tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1912
1913 #ifdef CONFIG_X86_IOPL_IOPERM
1914         tss->io_bitmap.prev_max = 0;
1915         tss->io_bitmap.prev_sequence = 0;
1916         memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1917         /*
1918          * Invalidate the extra array entry past the end of the all
1919          * permission bitmap as required by the hardware.
1920          */
1921         tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1922 #endif
1923 }
1924
1925 /*
1926  * Setup everything needed to handle exceptions from the IDT, including the IST
1927  * exceptions which use paranoid_entry().
1928  */
1929 void cpu_init_exception_handling(void)
1930 {
1931         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1932         int cpu = raw_smp_processor_id();
1933
1934         /* paranoid_entry() gets the CPU number from the GDT */
1935         setup_getcpu(cpu);
1936
1937         /* IST vectors need TSS to be set up. */
1938         tss_setup_ist(tss);
1939         tss_setup_io_bitmap(tss);
1940         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1941
1942         load_TR_desc();
1943
1944         /* Finally load the IDT */
1945         load_current_idt();
1946 }
1947
1948 /*
1949  * cpu_init() initializes state that is per-CPU. Some data is already
1950  * initialized (naturally) in the bootstrap process, such as the GDT.  We
1951  * reload it nevertheless, this function acts as a 'CPU state barrier',
1952  * nothing should get across.
1953  */
1954 void cpu_init(void)
1955 {
1956         struct task_struct *cur = current;
1957         int cpu = raw_smp_processor_id();
1958
1959         wait_for_master_cpu(cpu);
1960
1961         ucode_cpu_init(cpu);
1962
1963 #ifdef CONFIG_NUMA
1964         if (this_cpu_read(numa_node) == 0 &&
1965             early_cpu_to_node(cpu) != NUMA_NO_NODE)
1966                 set_numa_node(early_cpu_to_node(cpu));
1967 #endif
1968         pr_debug("Initializing CPU#%d\n", cpu);
1969
1970         if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1971             boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1972                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1973
1974         /*
1975          * Initialize the per-CPU GDT with the boot GDT,
1976          * and set up the GDT descriptor:
1977          */
1978         switch_to_new_gdt(cpu);
1979
1980         if (IS_ENABLED(CONFIG_X86_64)) {
1981                 loadsegment(fs, 0);
1982                 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1983                 syscall_init();
1984
1985                 wrmsrl(MSR_FS_BASE, 0);
1986                 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1987                 barrier();
1988
1989                 x2apic_setup();
1990         }
1991
1992         mmgrab(&init_mm);
1993         cur->active_mm = &init_mm;
1994         BUG_ON(cur->mm);
1995         initialize_tlbstate_and_flush();
1996         enter_lazy_tlb(&init_mm, cur);
1997
1998         /*
1999          * sp0 points to the entry trampoline stack regardless of what task
2000          * is running.
2001          */
2002         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2003
2004         load_mm_ldt(&init_mm);
2005
2006         clear_all_debug_regs();
2007         dbg_restore_debug_regs();
2008
2009         doublefault_init_cpu_tss();
2010
2011         fpu__init_cpu();
2012
2013         if (is_uv_system())
2014                 uv_cpu_init();
2015
2016         load_fixmap_gdt(cpu);
2017 }
2018
2019 #ifdef CONFIG_SMP
2020 void cpu_init_secondary(void)
2021 {
2022         /*
2023          * Relies on the BP having set-up the IDT tables, which are loaded
2024          * on this CPU in cpu_init_exception_handling().
2025          */
2026         cpu_init_exception_handling();
2027         cpu_init();
2028 }
2029 #endif
2030
2031 /*
2032  * The microcode loader calls this upon late microcode load to recheck features,
2033  * only when microcode has been updated. Caller holds microcode_mutex and CPU
2034  * hotplug lock.
2035  */
2036 void microcode_check(void)
2037 {
2038         struct cpuinfo_x86 info;
2039
2040         perf_check_microcode();
2041
2042         /* Reload CPUID max function as it might've changed. */
2043         info.cpuid_level = cpuid_eax(0);
2044
2045         /*
2046          * Copy all capability leafs to pick up the synthetic ones so that
2047          * memcmp() below doesn't fail on that. The ones coming from CPUID will
2048          * get overwritten in get_cpu_cap().
2049          */
2050         memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2051
2052         get_cpu_cap(&info);
2053
2054         if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2055                 return;
2056
2057         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2058         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2059 }
2060
2061 /*
2062  * Invoked from core CPU hotplug code after hotplug operations
2063  */
2064 void arch_smt_update(void)
2065 {
2066         /* Handle the speculative execution misfeatures */
2067         cpu_bugs_smt_update();
2068         /* Check whether IPI broadcasting can be enabled */
2069         apic_smt_update();
2070 }