Merge tag 'riscv-for-linus-5.13-mw0' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/pgtable.h>
25
26 #include <asm/cmdline.h>
27 #include <asm/stackprotector.h>
28 #include <asm/perf_event.h>
29 #include <asm/mmu_context.h>
30 #include <asm/doublefault.h>
31 #include <asm/archrandom.h>
32 #include <asm/hypervisor.h>
33 #include <asm/processor.h>
34 #include <asm/tlbflush.h>
35 #include <asm/debugreg.h>
36 #include <asm/sections.h>
37 #include <asm/vsyscall.h>
38 #include <linux/topology.h>
39 #include <linux/cpumask.h>
40 #include <linux/atomic.h>
41 #include <asm/proto.h>
42 #include <asm/setup.h>
43 #include <asm/apic.h>
44 #include <asm/desc.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/mtrr.h>
47 #include <asm/hwcap2.h>
48 #include <linux/numa.h>
49 #include <asm/numa.h>
50 #include <asm/asm.h>
51 #include <asm/bugs.h>
52 #include <asm/cpu.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/memtype.h>
56 #include <asm/microcode.h>
57 #include <asm/microcode_intel.h>
58 #include <asm/intel-family.h>
59 #include <asm/cpu_device_id.h>
60 #include <asm/uv/uv.h>
61
62 #include "cpu.h"
63
64 u32 elf_hwcap2 __read_mostly;
65
66 /* all of these masks are initialized in setup_cpu_local_masks() */
67 cpumask_var_t cpu_initialized_mask;
68 cpumask_var_t cpu_callout_mask;
69 cpumask_var_t cpu_callin_mask;
70
71 /* representing cpus for which sibling maps can be computed */
72 cpumask_var_t cpu_sibling_setup_mask;
73
74 /* Number of siblings per CPU package */
75 int smp_num_siblings = 1;
76 EXPORT_SYMBOL(smp_num_siblings);
77
78 /* Last level cache ID of each logical CPU */
79 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
80
81 /* correctly size the local cpu masks */
82 void __init setup_cpu_local_masks(void)
83 {
84         alloc_bootmem_cpumask_var(&cpu_initialized_mask);
85         alloc_bootmem_cpumask_var(&cpu_callin_mask);
86         alloc_bootmem_cpumask_var(&cpu_callout_mask);
87         alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
88 }
89
90 static void default_init(struct cpuinfo_x86 *c)
91 {
92 #ifdef CONFIG_X86_64
93         cpu_detect_cache_sizes(c);
94 #else
95         /* Not much we can do here... */
96         /* Check if at least it has cpuid */
97         if (c->cpuid_level == -1) {
98                 /* No cpuid. It must be an ancient CPU */
99                 if (c->x86 == 4)
100                         strcpy(c->x86_model_id, "486");
101                 else if (c->x86 == 3)
102                         strcpy(c->x86_model_id, "386");
103         }
104 #endif
105 }
106
107 static const struct cpu_dev default_cpu = {
108         .c_init         = default_init,
109         .c_vendor       = "Unknown",
110         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
111 };
112
113 static const struct cpu_dev *this_cpu = &default_cpu;
114
115 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
116 #ifdef CONFIG_X86_64
117         /*
118          * We need valid kernel segments for data and code in long mode too
119          * IRET will check the segment types  kkeil 2000/10/28
120          * Also sysret mandates a special GDT layout
121          *
122          * TLS descriptors are currently at a different place compared to i386.
123          * Hopefully nobody expects them at a fixed place (Wine?)
124          */
125         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
126         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
127         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
128         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
129         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
130         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
131 #else
132         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
133         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
134         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
135         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
136         /*
137          * Segments used for calling PnP BIOS have byte granularity.
138          * They code segments and data segments have fixed 64k limits,
139          * the transfer segment sizes are set at run time.
140          */
141         /* 32-bit code */
142         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
143         /* 16-bit code */
144         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
145         /* 16-bit data */
146         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
147         /* 16-bit data */
148         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
149         /* 16-bit data */
150         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
151         /*
152          * The APM segments have byte granularity and their bases
153          * are set at run time.  All have 64k limits.
154          */
155         /* 32-bit code */
156         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
157         /* 16-bit code */
158         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
159         /* data */
160         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
161
162         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
163         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
164 #endif
165 } };
166 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
167
168 #ifdef CONFIG_X86_64
169 static int __init x86_nopcid_setup(char *s)
170 {
171         /* nopcid doesn't accept parameters */
172         if (s)
173                 return -EINVAL;
174
175         /* do not emit a message if the feature is not present */
176         if (!boot_cpu_has(X86_FEATURE_PCID))
177                 return 0;
178
179         setup_clear_cpu_cap(X86_FEATURE_PCID);
180         pr_info("nopcid: PCID feature disabled\n");
181         return 0;
182 }
183 early_param("nopcid", x86_nopcid_setup);
184 #endif
185
186 static int __init x86_noinvpcid_setup(char *s)
187 {
188         /* noinvpcid doesn't accept parameters */
189         if (s)
190                 return -EINVAL;
191
192         /* do not emit a message if the feature is not present */
193         if (!boot_cpu_has(X86_FEATURE_INVPCID))
194                 return 0;
195
196         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
197         pr_info("noinvpcid: INVPCID feature disabled\n");
198         return 0;
199 }
200 early_param("noinvpcid", x86_noinvpcid_setup);
201
202 #ifdef CONFIG_X86_32
203 static int cachesize_override = -1;
204 static int disable_x86_serial_nr = 1;
205
206 static int __init cachesize_setup(char *str)
207 {
208         get_option(&str, &cachesize_override);
209         return 1;
210 }
211 __setup("cachesize=", cachesize_setup);
212
213 static int __init x86_sep_setup(char *s)
214 {
215         setup_clear_cpu_cap(X86_FEATURE_SEP);
216         return 1;
217 }
218 __setup("nosep", x86_sep_setup);
219
220 /* Standard macro to see if a specific flag is changeable */
221 static inline int flag_is_changeable_p(u32 flag)
222 {
223         u32 f1, f2;
224
225         /*
226          * Cyrix and IDT cpus allow disabling of CPUID
227          * so the code below may return different results
228          * when it is executed before and after enabling
229          * the CPUID. Add "volatile" to not allow gcc to
230          * optimize the subsequent calls to this function.
231          */
232         asm volatile ("pushfl           \n\t"
233                       "pushfl           \n\t"
234                       "popl %0          \n\t"
235                       "movl %0, %1      \n\t"
236                       "xorl %2, %0      \n\t"
237                       "pushl %0         \n\t"
238                       "popfl            \n\t"
239                       "pushfl           \n\t"
240                       "popl %0          \n\t"
241                       "popfl            \n\t"
242
243                       : "=&r" (f1), "=&r" (f2)
244                       : "ir" (flag));
245
246         return ((f1^f2) & flag) != 0;
247 }
248
249 /* Probe for the CPUID instruction */
250 int have_cpuid_p(void)
251 {
252         return flag_is_changeable_p(X86_EFLAGS_ID);
253 }
254
255 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
256 {
257         unsigned long lo, hi;
258
259         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
260                 return;
261
262         /* Disable processor serial number: */
263
264         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
265         lo |= 0x200000;
266         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
267
268         pr_notice("CPU serial number disabled.\n");
269         clear_cpu_cap(c, X86_FEATURE_PN);
270
271         /* Disabling the serial number may affect the cpuid level */
272         c->cpuid_level = cpuid_eax(0);
273 }
274
275 static int __init x86_serial_nr_setup(char *s)
276 {
277         disable_x86_serial_nr = 0;
278         return 1;
279 }
280 __setup("serialnumber", x86_serial_nr_setup);
281 #else
282 static inline int flag_is_changeable_p(u32 flag)
283 {
284         return 1;
285 }
286 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
287 {
288 }
289 #endif
290
291 static __init int setup_disable_smep(char *arg)
292 {
293         setup_clear_cpu_cap(X86_FEATURE_SMEP);
294         return 1;
295 }
296 __setup("nosmep", setup_disable_smep);
297
298 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
299 {
300         if (cpu_has(c, X86_FEATURE_SMEP))
301                 cr4_set_bits(X86_CR4_SMEP);
302 }
303
304 static __init int setup_disable_smap(char *arg)
305 {
306         setup_clear_cpu_cap(X86_FEATURE_SMAP);
307         return 1;
308 }
309 __setup("nosmap", setup_disable_smap);
310
311 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
312 {
313         unsigned long eflags = native_save_fl();
314
315         /* This should have been cleared long ago */
316         BUG_ON(eflags & X86_EFLAGS_AC);
317
318         if (cpu_has(c, X86_FEATURE_SMAP)) {
319 #ifdef CONFIG_X86_SMAP
320                 cr4_set_bits(X86_CR4_SMAP);
321 #else
322                 cr4_clear_bits(X86_CR4_SMAP);
323 #endif
324         }
325 }
326
327 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
328 {
329         /* Check the boot processor, plus build option for UMIP. */
330         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
331                 goto out;
332
333         /* Check the current processor's cpuid bits. */
334         if (!cpu_has(c, X86_FEATURE_UMIP))
335                 goto out;
336
337         cr4_set_bits(X86_CR4_UMIP);
338
339         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
340
341         return;
342
343 out:
344         /*
345          * Make sure UMIP is disabled in case it was enabled in a
346          * previous boot (e.g., via kexec).
347          */
348         cr4_clear_bits(X86_CR4_UMIP);
349 }
350
351 /* These bits should not change their value after CPU init is finished. */
352 static const unsigned long cr4_pinned_mask =
353         X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
354 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
355 static unsigned long cr4_pinned_bits __ro_after_init;
356
357 void native_write_cr0(unsigned long val)
358 {
359         unsigned long bits_missing = 0;
360
361 set_register:
362         asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
363
364         if (static_branch_likely(&cr_pinning)) {
365                 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
366                         bits_missing = X86_CR0_WP;
367                         val |= bits_missing;
368                         goto set_register;
369                 }
370                 /* Warn after we've set the missing bits. */
371                 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
372         }
373 }
374 EXPORT_SYMBOL(native_write_cr0);
375
376 void native_write_cr4(unsigned long val)
377 {
378         unsigned long bits_changed = 0;
379
380 set_register:
381         asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
382
383         if (static_branch_likely(&cr_pinning)) {
384                 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
385                         bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
386                         val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
387                         goto set_register;
388                 }
389                 /* Warn after we've corrected the changed bits. */
390                 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
391                           bits_changed);
392         }
393 }
394 #if IS_MODULE(CONFIG_LKDTM)
395 EXPORT_SYMBOL_GPL(native_write_cr4);
396 #endif
397
398 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
399 {
400         unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
401
402         lockdep_assert_irqs_disabled();
403
404         newval = (cr4 & ~clear) | set;
405         if (newval != cr4) {
406                 this_cpu_write(cpu_tlbstate.cr4, newval);
407                 __write_cr4(newval);
408         }
409 }
410 EXPORT_SYMBOL(cr4_update_irqsoff);
411
412 /* Read the CR4 shadow. */
413 unsigned long cr4_read_shadow(void)
414 {
415         return this_cpu_read(cpu_tlbstate.cr4);
416 }
417 EXPORT_SYMBOL_GPL(cr4_read_shadow);
418
419 void cr4_init(void)
420 {
421         unsigned long cr4 = __read_cr4();
422
423         if (boot_cpu_has(X86_FEATURE_PCID))
424                 cr4 |= X86_CR4_PCIDE;
425         if (static_branch_likely(&cr_pinning))
426                 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
427
428         __write_cr4(cr4);
429
430         /* Initialize cr4 shadow for this CPU. */
431         this_cpu_write(cpu_tlbstate.cr4, cr4);
432 }
433
434 /*
435  * Once CPU feature detection is finished (and boot params have been
436  * parsed), record any of the sensitive CR bits that are set, and
437  * enable CR pinning.
438  */
439 static void __init setup_cr_pinning(void)
440 {
441         cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
442         static_key_enable(&cr_pinning.key);
443 }
444
445 static __init int x86_nofsgsbase_setup(char *arg)
446 {
447         /* Require an exact match without trailing characters. */
448         if (strlen(arg))
449                 return 0;
450
451         /* Do not emit a message if the feature is not present. */
452         if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
453                 return 1;
454
455         setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
456         pr_info("FSGSBASE disabled via kernel command line\n");
457         return 1;
458 }
459 __setup("nofsgsbase", x86_nofsgsbase_setup);
460
461 /*
462  * Protection Keys are not available in 32-bit mode.
463  */
464 static bool pku_disabled;
465
466 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
467 {
468         struct pkru_state *pk;
469
470         /* check the boot processor, plus compile options for PKU: */
471         if (!cpu_feature_enabled(X86_FEATURE_PKU))
472                 return;
473         /* checks the actual processor's cpuid bits: */
474         if (!cpu_has(c, X86_FEATURE_PKU))
475                 return;
476         if (pku_disabled)
477                 return;
478
479         cr4_set_bits(X86_CR4_PKE);
480         pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
481         if (pk)
482                 pk->pkru = init_pkru_value;
483         /*
484          * Setting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
485          * cpuid bit to be set.  We need to ensure that we
486          * update that bit in this CPU's "cpu_info".
487          */
488         set_cpu_cap(c, X86_FEATURE_OSPKE);
489 }
490
491 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
492 static __init int setup_disable_pku(char *arg)
493 {
494         /*
495          * Do not clear the X86_FEATURE_PKU bit.  All of the
496          * runtime checks are against OSPKE so clearing the
497          * bit does nothing.
498          *
499          * This way, we will see "pku" in cpuinfo, but not
500          * "ospke", which is exactly what we want.  It shows
501          * that the CPU has PKU, but the OS has not enabled it.
502          * This happens to be exactly how a system would look
503          * if we disabled the config option.
504          */
505         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
506         pku_disabled = true;
507         return 1;
508 }
509 __setup("nopku", setup_disable_pku);
510 #endif /* CONFIG_X86_64 */
511
512 /*
513  * Some CPU features depend on higher CPUID levels, which may not always
514  * be available due to CPUID level capping or broken virtualization
515  * software.  Add those features to this table to auto-disable them.
516  */
517 struct cpuid_dependent_feature {
518         u32 feature;
519         u32 level;
520 };
521
522 static const struct cpuid_dependent_feature
523 cpuid_dependent_features[] = {
524         { X86_FEATURE_MWAIT,            0x00000005 },
525         { X86_FEATURE_DCA,              0x00000009 },
526         { X86_FEATURE_XSAVE,            0x0000000d },
527         { 0, 0 }
528 };
529
530 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
531 {
532         const struct cpuid_dependent_feature *df;
533
534         for (df = cpuid_dependent_features; df->feature; df++) {
535
536                 if (!cpu_has(c, df->feature))
537                         continue;
538                 /*
539                  * Note: cpuid_level is set to -1 if unavailable, but
540                  * extended_extended_level is set to 0 if unavailable
541                  * and the legitimate extended levels are all negative
542                  * when signed; hence the weird messing around with
543                  * signs here...
544                  */
545                 if (!((s32)df->level < 0 ?
546                      (u32)df->level > (u32)c->extended_cpuid_level :
547                      (s32)df->level > (s32)c->cpuid_level))
548                         continue;
549
550                 clear_cpu_cap(c, df->feature);
551                 if (!warn)
552                         continue;
553
554                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
555                         x86_cap_flag(df->feature), df->level);
556         }
557 }
558
559 /*
560  * Naming convention should be: <Name> [(<Codename>)]
561  * This table only is used unless init_<vendor>() below doesn't set it;
562  * in particular, if CPUID levels 0x80000002..4 are supported, this
563  * isn't used
564  */
565
566 /* Look up CPU names by table lookup. */
567 static const char *table_lookup_model(struct cpuinfo_x86 *c)
568 {
569 #ifdef CONFIG_X86_32
570         const struct legacy_cpu_model_info *info;
571
572         if (c->x86_model >= 16)
573                 return NULL;    /* Range check */
574
575         if (!this_cpu)
576                 return NULL;
577
578         info = this_cpu->legacy_models;
579
580         while (info->family) {
581                 if (info->family == c->x86)
582                         return info->model_names[c->x86_model];
583                 info++;
584         }
585 #endif
586         return NULL;            /* Not found */
587 }
588
589 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
590 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
591 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
592
593 void load_percpu_segment(int cpu)
594 {
595 #ifdef CONFIG_X86_32
596         loadsegment(fs, __KERNEL_PERCPU);
597 #else
598         __loadsegment_simple(gs, 0);
599         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
600 #endif
601 }
602
603 #ifdef CONFIG_X86_32
604 /* The 32-bit entry code needs to find cpu_entry_area. */
605 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
606 #endif
607
608 /* Load the original GDT from the per-cpu structure */
609 void load_direct_gdt(int cpu)
610 {
611         struct desc_ptr gdt_descr;
612
613         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
614         gdt_descr.size = GDT_SIZE - 1;
615         load_gdt(&gdt_descr);
616 }
617 EXPORT_SYMBOL_GPL(load_direct_gdt);
618
619 /* Load a fixmap remapping of the per-cpu GDT */
620 void load_fixmap_gdt(int cpu)
621 {
622         struct desc_ptr gdt_descr;
623
624         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
625         gdt_descr.size = GDT_SIZE - 1;
626         load_gdt(&gdt_descr);
627 }
628 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
629
630 /*
631  * Current gdt points %fs at the "master" per-cpu area: after this,
632  * it's on the real one.
633  */
634 void switch_to_new_gdt(int cpu)
635 {
636         /* Load the original GDT */
637         load_direct_gdt(cpu);
638         /* Reload the per-cpu base */
639         load_percpu_segment(cpu);
640 }
641
642 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
643
644 static void get_model_name(struct cpuinfo_x86 *c)
645 {
646         unsigned int *v;
647         char *p, *q, *s;
648
649         if (c->extended_cpuid_level < 0x80000004)
650                 return;
651
652         v = (unsigned int *)c->x86_model_id;
653         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
654         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
655         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
656         c->x86_model_id[48] = 0;
657
658         /* Trim whitespace */
659         p = q = s = &c->x86_model_id[0];
660
661         while (*p == ' ')
662                 p++;
663
664         while (*p) {
665                 /* Note the last non-whitespace index */
666                 if (!isspace(*p))
667                         s = q;
668
669                 *q++ = *p++;
670         }
671
672         *(s + 1) = '\0';
673 }
674
675 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
676 {
677         unsigned int eax, ebx, ecx, edx;
678
679         c->x86_max_cores = 1;
680         if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
681                 return;
682
683         cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
684         if (eax & 0x1f)
685                 c->x86_max_cores = (eax >> 26) + 1;
686 }
687
688 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
689 {
690         unsigned int n, dummy, ebx, ecx, edx, l2size;
691
692         n = c->extended_cpuid_level;
693
694         if (n >= 0x80000005) {
695                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
696                 c->x86_cache_size = (ecx>>24) + (edx>>24);
697 #ifdef CONFIG_X86_64
698                 /* On K8 L1 TLB is inclusive, so don't count it */
699                 c->x86_tlbsize = 0;
700 #endif
701         }
702
703         if (n < 0x80000006)     /* Some chips just has a large L1. */
704                 return;
705
706         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
707         l2size = ecx >> 16;
708
709 #ifdef CONFIG_X86_64
710         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
711 #else
712         /* do processor-specific cache resizing */
713         if (this_cpu->legacy_cache_size)
714                 l2size = this_cpu->legacy_cache_size(c, l2size);
715
716         /* Allow user to override all this if necessary. */
717         if (cachesize_override != -1)
718                 l2size = cachesize_override;
719
720         if (l2size == 0)
721                 return;         /* Again, no L2 cache is possible */
722 #endif
723
724         c->x86_cache_size = l2size;
725 }
726
727 u16 __read_mostly tlb_lli_4k[NR_INFO];
728 u16 __read_mostly tlb_lli_2m[NR_INFO];
729 u16 __read_mostly tlb_lli_4m[NR_INFO];
730 u16 __read_mostly tlb_lld_4k[NR_INFO];
731 u16 __read_mostly tlb_lld_2m[NR_INFO];
732 u16 __read_mostly tlb_lld_4m[NR_INFO];
733 u16 __read_mostly tlb_lld_1g[NR_INFO];
734
735 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
736 {
737         if (this_cpu->c_detect_tlb)
738                 this_cpu->c_detect_tlb(c);
739
740         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
741                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
742                 tlb_lli_4m[ENTRIES]);
743
744         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
745                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
746                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
747 }
748
749 int detect_ht_early(struct cpuinfo_x86 *c)
750 {
751 #ifdef CONFIG_SMP
752         u32 eax, ebx, ecx, edx;
753
754         if (!cpu_has(c, X86_FEATURE_HT))
755                 return -1;
756
757         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
758                 return -1;
759
760         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
761                 return -1;
762
763         cpuid(1, &eax, &ebx, &ecx, &edx);
764
765         smp_num_siblings = (ebx & 0xff0000) >> 16;
766         if (smp_num_siblings == 1)
767                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
768 #endif
769         return 0;
770 }
771
772 void detect_ht(struct cpuinfo_x86 *c)
773 {
774 #ifdef CONFIG_SMP
775         int index_msb, core_bits;
776
777         if (detect_ht_early(c) < 0)
778                 return;
779
780         index_msb = get_count_order(smp_num_siblings);
781         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
782
783         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
784
785         index_msb = get_count_order(smp_num_siblings);
786
787         core_bits = get_count_order(c->x86_max_cores);
788
789         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
790                                        ((1 << core_bits) - 1);
791 #endif
792 }
793
794 static void get_cpu_vendor(struct cpuinfo_x86 *c)
795 {
796         char *v = c->x86_vendor_id;
797         int i;
798
799         for (i = 0; i < X86_VENDOR_NUM; i++) {
800                 if (!cpu_devs[i])
801                         break;
802
803                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
804                     (cpu_devs[i]->c_ident[1] &&
805                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
806
807                         this_cpu = cpu_devs[i];
808                         c->x86_vendor = this_cpu->c_x86_vendor;
809                         return;
810                 }
811         }
812
813         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
814                     "CPU: Your system may be unstable.\n", v);
815
816         c->x86_vendor = X86_VENDOR_UNKNOWN;
817         this_cpu = &default_cpu;
818 }
819
820 void cpu_detect(struct cpuinfo_x86 *c)
821 {
822         /* Get vendor name */
823         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
824               (unsigned int *)&c->x86_vendor_id[0],
825               (unsigned int *)&c->x86_vendor_id[8],
826               (unsigned int *)&c->x86_vendor_id[4]);
827
828         c->x86 = 4;
829         /* Intel-defined flags: level 0x00000001 */
830         if (c->cpuid_level >= 0x00000001) {
831                 u32 junk, tfms, cap0, misc;
832
833                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
834                 c->x86          = x86_family(tfms);
835                 c->x86_model    = x86_model(tfms);
836                 c->x86_stepping = x86_stepping(tfms);
837
838                 if (cap0 & (1<<19)) {
839                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
840                         c->x86_cache_alignment = c->x86_clflush_size;
841                 }
842         }
843 }
844
845 static void apply_forced_caps(struct cpuinfo_x86 *c)
846 {
847         int i;
848
849         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
850                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
851                 c->x86_capability[i] |= cpu_caps_set[i];
852         }
853 }
854
855 static void init_speculation_control(struct cpuinfo_x86 *c)
856 {
857         /*
858          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
859          * and they also have a different bit for STIBP support. Also,
860          * a hypervisor might have set the individual AMD bits even on
861          * Intel CPUs, for finer-grained selection of what's available.
862          */
863         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
864                 set_cpu_cap(c, X86_FEATURE_IBRS);
865                 set_cpu_cap(c, X86_FEATURE_IBPB);
866                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
867         }
868
869         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
870                 set_cpu_cap(c, X86_FEATURE_STIBP);
871
872         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
873             cpu_has(c, X86_FEATURE_VIRT_SSBD))
874                 set_cpu_cap(c, X86_FEATURE_SSBD);
875
876         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
877                 set_cpu_cap(c, X86_FEATURE_IBRS);
878                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
879         }
880
881         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
882                 set_cpu_cap(c, X86_FEATURE_IBPB);
883
884         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
885                 set_cpu_cap(c, X86_FEATURE_STIBP);
886                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
887         }
888
889         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
890                 set_cpu_cap(c, X86_FEATURE_SSBD);
891                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
892                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
893         }
894 }
895
896 void get_cpu_cap(struct cpuinfo_x86 *c)
897 {
898         u32 eax, ebx, ecx, edx;
899
900         /* Intel-defined flags: level 0x00000001 */
901         if (c->cpuid_level >= 0x00000001) {
902                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
903
904                 c->x86_capability[CPUID_1_ECX] = ecx;
905                 c->x86_capability[CPUID_1_EDX] = edx;
906         }
907
908         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
909         if (c->cpuid_level >= 0x00000006)
910                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
911
912         /* Additional Intel-defined flags: level 0x00000007 */
913         if (c->cpuid_level >= 0x00000007) {
914                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
915                 c->x86_capability[CPUID_7_0_EBX] = ebx;
916                 c->x86_capability[CPUID_7_ECX] = ecx;
917                 c->x86_capability[CPUID_7_EDX] = edx;
918
919                 /* Check valid sub-leaf index before accessing it */
920                 if (eax >= 1) {
921                         cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
922                         c->x86_capability[CPUID_7_1_EAX] = eax;
923                 }
924         }
925
926         /* Extended state features: level 0x0000000d */
927         if (c->cpuid_level >= 0x0000000d) {
928                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
929
930                 c->x86_capability[CPUID_D_1_EAX] = eax;
931         }
932
933         /* AMD-defined flags: level 0x80000001 */
934         eax = cpuid_eax(0x80000000);
935         c->extended_cpuid_level = eax;
936
937         if ((eax & 0xffff0000) == 0x80000000) {
938                 if (eax >= 0x80000001) {
939                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
940
941                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
942                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
943                 }
944         }
945
946         if (c->extended_cpuid_level >= 0x80000007) {
947                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
948
949                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
950                 c->x86_power = edx;
951         }
952
953         if (c->extended_cpuid_level >= 0x80000008) {
954                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
955                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
956         }
957
958         if (c->extended_cpuid_level >= 0x8000000a)
959                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
960
961         if (c->extended_cpuid_level >= 0x8000001f)
962                 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
963
964         init_scattered_cpuid_features(c);
965         init_speculation_control(c);
966
967         /*
968          * Clear/Set all flags overridden by options, after probe.
969          * This needs to happen each time we re-probe, which may happen
970          * several times during CPU initialization.
971          */
972         apply_forced_caps(c);
973 }
974
975 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
976 {
977         u32 eax, ebx, ecx, edx;
978
979         if (c->extended_cpuid_level >= 0x80000008) {
980                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
981
982                 c->x86_virt_bits = (eax >> 8) & 0xff;
983                 c->x86_phys_bits = eax & 0xff;
984         }
985 #ifdef CONFIG_X86_32
986         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
987                 c->x86_phys_bits = 36;
988 #endif
989         c->x86_cache_bits = c->x86_phys_bits;
990 }
991
992 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
993 {
994 #ifdef CONFIG_X86_32
995         int i;
996
997         /*
998          * First of all, decide if this is a 486 or higher
999          * It's a 486 if we can modify the AC flag
1000          */
1001         if (flag_is_changeable_p(X86_EFLAGS_AC))
1002                 c->x86 = 4;
1003         else
1004                 c->x86 = 3;
1005
1006         for (i = 0; i < X86_VENDOR_NUM; i++)
1007                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1008                         c->x86_vendor_id[0] = 0;
1009                         cpu_devs[i]->c_identify(c);
1010                         if (c->x86_vendor_id[0]) {
1011                                 get_cpu_vendor(c);
1012                                 break;
1013                         }
1014                 }
1015 #endif
1016 }
1017
1018 #define NO_SPECULATION          BIT(0)
1019 #define NO_MELTDOWN             BIT(1)
1020 #define NO_SSB                  BIT(2)
1021 #define NO_L1TF                 BIT(3)
1022 #define NO_MDS                  BIT(4)
1023 #define MSBDS_ONLY              BIT(5)
1024 #define NO_SWAPGS               BIT(6)
1025 #define NO_ITLB_MULTIHIT        BIT(7)
1026 #define NO_SPECTRE_V2           BIT(8)
1027
1028 #define VULNWL(vendor, family, model, whitelist)        \
1029         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1030
1031 #define VULNWL_INTEL(model, whitelist)          \
1032         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1033
1034 #define VULNWL_AMD(family, whitelist)           \
1035         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1036
1037 #define VULNWL_HYGON(family, whitelist)         \
1038         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1039
1040 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1041         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1042         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1043         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1044         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1045
1046         /* Intel Family 6 */
1047         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
1048         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1049         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
1050         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
1051         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
1052
1053         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1054         VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1055         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1056         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1057         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1058         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1059
1060         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
1061
1062         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1063         VULNWL_INTEL(ATOM_AIRMONT_NP,           NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064
1065         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1066         VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1067         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1068
1069         /*
1070          * Technically, swapgs isn't serializing on AMD (despite it previously
1071          * being documented as such in the APM).  But according to AMD, %gs is
1072          * updated non-speculatively, and the issuing of %gs-relative memory
1073          * operands will be blocked until the %gs update completes, which is
1074          * good enough for our purposes.
1075          */
1076
1077         VULNWL_INTEL(ATOM_TREMONT_D,            NO_ITLB_MULTIHIT),
1078
1079         /* AMD Family 0xf - 0x12 */
1080         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1081         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1082         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1083         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1084
1085         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1086         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1087         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1088
1089         /* Zhaoxin Family 7 */
1090         VULNWL(CENTAUR, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1091         VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1092         {}
1093 };
1094
1095 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
1096         X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
1097                                             INTEL_FAM6_##model, steppings, \
1098                                             X86_FEATURE_ANY, issues)
1099
1100 #define SRBDS           BIT(0)
1101
1102 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1103         VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
1104         VULNBL_INTEL_STEPPINGS(HASWELL,         X86_STEPPING_ANY,               SRBDS),
1105         VULNBL_INTEL_STEPPINGS(HASWELL_L,       X86_STEPPING_ANY,               SRBDS),
1106         VULNBL_INTEL_STEPPINGS(HASWELL_G,       X86_STEPPING_ANY,               SRBDS),
1107         VULNBL_INTEL_STEPPINGS(BROADWELL_G,     X86_STEPPING_ANY,               SRBDS),
1108         VULNBL_INTEL_STEPPINGS(BROADWELL,       X86_STEPPING_ANY,               SRBDS),
1109         VULNBL_INTEL_STEPPINGS(SKYLAKE_L,       X86_STEPPING_ANY,               SRBDS),
1110         VULNBL_INTEL_STEPPINGS(SKYLAKE,         X86_STEPPING_ANY,               SRBDS),
1111         VULNBL_INTEL_STEPPINGS(KABYLAKE_L,      X86_STEPPINGS(0x0, 0xC),        SRBDS),
1112         VULNBL_INTEL_STEPPINGS(KABYLAKE,        X86_STEPPINGS(0x0, 0xD),        SRBDS),
1113         {}
1114 };
1115
1116 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1117 {
1118         const struct x86_cpu_id *m = x86_match_cpu(table);
1119
1120         return m && !!(m->driver_data & which);
1121 }
1122
1123 u64 x86_read_arch_cap_msr(void)
1124 {
1125         u64 ia32_cap = 0;
1126
1127         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1128                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1129
1130         return ia32_cap;
1131 }
1132
1133 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1134 {
1135         u64 ia32_cap = x86_read_arch_cap_msr();
1136
1137         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1138         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1139             !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1140                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1141
1142         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1143                 return;
1144
1145         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1146
1147         if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1148                 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1149
1150         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1151             !(ia32_cap & ARCH_CAP_SSB_NO) &&
1152            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1153                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1154
1155         if (ia32_cap & ARCH_CAP_IBRS_ALL)
1156                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1157
1158         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1159             !(ia32_cap & ARCH_CAP_MDS_NO)) {
1160                 setup_force_cpu_bug(X86_BUG_MDS);
1161                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1162                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1163         }
1164
1165         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1166                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1167
1168         /*
1169          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1170          *      - TSX is supported or
1171          *      - TSX_CTRL is present
1172          *
1173          * TSX_CTRL check is needed for cases when TSX could be disabled before
1174          * the kernel boot e.g. kexec.
1175          * TSX_CTRL check alone is not sufficient for cases when the microcode
1176          * update is not present or running as guest that don't get TSX_CTRL.
1177          */
1178         if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1179             (cpu_has(c, X86_FEATURE_RTM) ||
1180              (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1181                 setup_force_cpu_bug(X86_BUG_TAA);
1182
1183         /*
1184          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1185          * in the vulnerability blacklist.
1186          */
1187         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1188              cpu_has(c, X86_FEATURE_RDSEED)) &&
1189             cpu_matches(cpu_vuln_blacklist, SRBDS))
1190                     setup_force_cpu_bug(X86_BUG_SRBDS);
1191
1192         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1193                 return;
1194
1195         /* Rogue Data Cache Load? No! */
1196         if (ia32_cap & ARCH_CAP_RDCL_NO)
1197                 return;
1198
1199         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1200
1201         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1202                 return;
1203
1204         setup_force_cpu_bug(X86_BUG_L1TF);
1205 }
1206
1207 /*
1208  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1209  * unfortunately, that's not true in practice because of early VIA
1210  * chips and (more importantly) broken virtualizers that are not easy
1211  * to detect. In the latter case it doesn't even *fail* reliably, so
1212  * probing for it doesn't even work. Disable it completely on 32-bit
1213  * unless we can find a reliable way to detect all the broken cases.
1214  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1215  */
1216 static void detect_nopl(void)
1217 {
1218 #ifdef CONFIG_X86_32
1219         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1220 #else
1221         setup_force_cpu_cap(X86_FEATURE_NOPL);
1222 #endif
1223 }
1224
1225 /*
1226  * We parse cpu parameters early because fpu__init_system() is executed
1227  * before parse_early_param().
1228  */
1229 static void __init cpu_parse_early_param(void)
1230 {
1231         char arg[128];
1232         char *argptr = arg;
1233         int arglen, res, bit;
1234
1235 #ifdef CONFIG_X86_32
1236         if (cmdline_find_option_bool(boot_command_line, "no387"))
1237 #ifdef CONFIG_MATH_EMULATION
1238                 setup_clear_cpu_cap(X86_FEATURE_FPU);
1239 #else
1240                 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1241 #endif
1242
1243         if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1244                 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1245 #endif
1246
1247         if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1248                 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1249
1250         if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1251                 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1252
1253         if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1254                 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1255
1256         arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1257         if (arglen <= 0)
1258                 return;
1259
1260         pr_info("Clearing CPUID bits:");
1261         do {
1262                 res = get_option(&argptr, &bit);
1263                 if (res == 0 || res == 3)
1264                         break;
1265
1266                 /* If the argument was too long, the last bit may be cut off */
1267                 if (res == 1 && arglen >= sizeof(arg))
1268                         break;
1269
1270                 if (bit >= 0 && bit < NCAPINTS * 32) {
1271                         pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1272                         setup_clear_cpu_cap(bit);
1273                 }
1274         } while (res == 2);
1275         pr_cont("\n");
1276 }
1277
1278 /*
1279  * Do minimum CPU detection early.
1280  * Fields really needed: vendor, cpuid_level, family, model, mask,
1281  * cache alignment.
1282  * The others are not touched to avoid unwanted side effects.
1283  *
1284  * WARNING: this function is only called on the boot CPU.  Don't add code
1285  * here that is supposed to run on all CPUs.
1286  */
1287 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1288 {
1289 #ifdef CONFIG_X86_64
1290         c->x86_clflush_size = 64;
1291         c->x86_phys_bits = 36;
1292         c->x86_virt_bits = 48;
1293 #else
1294         c->x86_clflush_size = 32;
1295         c->x86_phys_bits = 32;
1296         c->x86_virt_bits = 32;
1297 #endif
1298         c->x86_cache_alignment = c->x86_clflush_size;
1299
1300         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1301         c->extended_cpuid_level = 0;
1302
1303         if (!have_cpuid_p())
1304                 identify_cpu_without_cpuid(c);
1305
1306         /* cyrix could have cpuid enabled via c_identify()*/
1307         if (have_cpuid_p()) {
1308                 cpu_detect(c);
1309                 get_cpu_vendor(c);
1310                 get_cpu_cap(c);
1311                 get_cpu_address_sizes(c);
1312                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1313                 cpu_parse_early_param();
1314
1315                 if (this_cpu->c_early_init)
1316                         this_cpu->c_early_init(c);
1317
1318                 c->cpu_index = 0;
1319                 filter_cpuid_features(c, false);
1320
1321                 if (this_cpu->c_bsp_init)
1322                         this_cpu->c_bsp_init(c);
1323         } else {
1324                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1325         }
1326
1327         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1328
1329         cpu_set_bug_bits(c);
1330
1331         sld_setup(c);
1332
1333         fpu__init_system(c);
1334
1335 #ifdef CONFIG_X86_32
1336         /*
1337          * Regardless of whether PCID is enumerated, the SDM says
1338          * that it can't be enabled in 32-bit mode.
1339          */
1340         setup_clear_cpu_cap(X86_FEATURE_PCID);
1341 #endif
1342
1343         /*
1344          * Later in the boot process pgtable_l5_enabled() relies on
1345          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1346          * enabled by this point we need to clear the feature bit to avoid
1347          * false-positives at the later stage.
1348          *
1349          * pgtable_l5_enabled() can be false here for several reasons:
1350          *  - 5-level paging is disabled compile-time;
1351          *  - it's 32-bit kernel;
1352          *  - machine doesn't support 5-level paging;
1353          *  - user specified 'no5lvl' in kernel command line.
1354          */
1355         if (!pgtable_l5_enabled())
1356                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1357
1358         detect_nopl();
1359 }
1360
1361 void __init early_cpu_init(void)
1362 {
1363         const struct cpu_dev *const *cdev;
1364         int count = 0;
1365
1366 #ifdef CONFIG_PROCESSOR_SELECT
1367         pr_info("KERNEL supported cpus:\n");
1368 #endif
1369
1370         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1371                 const struct cpu_dev *cpudev = *cdev;
1372
1373                 if (count >= X86_VENDOR_NUM)
1374                         break;
1375                 cpu_devs[count] = cpudev;
1376                 count++;
1377
1378 #ifdef CONFIG_PROCESSOR_SELECT
1379                 {
1380                         unsigned int j;
1381
1382                         for (j = 0; j < 2; j++) {
1383                                 if (!cpudev->c_ident[j])
1384                                         continue;
1385                                 pr_info("  %s %s\n", cpudev->c_vendor,
1386                                         cpudev->c_ident[j]);
1387                         }
1388                 }
1389 #endif
1390         }
1391         early_identify_cpu(&boot_cpu_data);
1392 }
1393
1394 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1395 {
1396 #ifdef CONFIG_X86_64
1397         /*
1398          * Empirically, writing zero to a segment selector on AMD does
1399          * not clear the base, whereas writing zero to a segment
1400          * selector on Intel does clear the base.  Intel's behavior
1401          * allows slightly faster context switches in the common case
1402          * where GS is unused by the prev and next threads.
1403          *
1404          * Since neither vendor documents this anywhere that I can see,
1405          * detect it directly instead of hard-coding the choice by
1406          * vendor.
1407          *
1408          * I've designated AMD's behavior as the "bug" because it's
1409          * counterintuitive and less friendly.
1410          */
1411
1412         unsigned long old_base, tmp;
1413         rdmsrl(MSR_FS_BASE, old_base);
1414         wrmsrl(MSR_FS_BASE, 1);
1415         loadsegment(fs, 0);
1416         rdmsrl(MSR_FS_BASE, tmp);
1417         if (tmp != 0)
1418                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1419         wrmsrl(MSR_FS_BASE, old_base);
1420 #endif
1421 }
1422
1423 static void generic_identify(struct cpuinfo_x86 *c)
1424 {
1425         c->extended_cpuid_level = 0;
1426
1427         if (!have_cpuid_p())
1428                 identify_cpu_without_cpuid(c);
1429
1430         /* cyrix could have cpuid enabled via c_identify()*/
1431         if (!have_cpuid_p())
1432                 return;
1433
1434         cpu_detect(c);
1435
1436         get_cpu_vendor(c);
1437
1438         get_cpu_cap(c);
1439
1440         get_cpu_address_sizes(c);
1441
1442         if (c->cpuid_level >= 0x00000001) {
1443                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1444 #ifdef CONFIG_X86_32
1445 # ifdef CONFIG_SMP
1446                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1447 # else
1448                 c->apicid = c->initial_apicid;
1449 # endif
1450 #endif
1451                 c->phys_proc_id = c->initial_apicid;
1452         }
1453
1454         get_model_name(c); /* Default name */
1455
1456         detect_null_seg_behavior(c);
1457
1458         /*
1459          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1460          * systems that run Linux at CPL > 0 may or may not have the
1461          * issue, but, even if they have the issue, there's absolutely
1462          * nothing we can do about it because we can't use the real IRET
1463          * instruction.
1464          *
1465          * NB: For the time being, only 32-bit kernels support
1466          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1467          * whether to apply espfix using paravirt hooks.  If any
1468          * non-paravirt system ever shows up that does *not* have the
1469          * ESPFIX issue, we can change this.
1470          */
1471 #ifdef CONFIG_X86_32
1472         set_cpu_bug(c, X86_BUG_ESPFIX);
1473 #endif
1474 }
1475
1476 /*
1477  * Validate that ACPI/mptables have the same information about the
1478  * effective APIC id and update the package map.
1479  */
1480 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1481 {
1482 #ifdef CONFIG_SMP
1483         unsigned int apicid, cpu = smp_processor_id();
1484
1485         apicid = apic->cpu_present_to_apicid(cpu);
1486
1487         if (apicid != c->apicid) {
1488                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1489                        cpu, apicid, c->initial_apicid);
1490         }
1491         BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1492         BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1493 #else
1494         c->logical_proc_id = 0;
1495 #endif
1496 }
1497
1498 /*
1499  * This does the hard work of actually picking apart the CPU stuff...
1500  */
1501 static void identify_cpu(struct cpuinfo_x86 *c)
1502 {
1503         int i;
1504
1505         c->loops_per_jiffy = loops_per_jiffy;
1506         c->x86_cache_size = 0;
1507         c->x86_vendor = X86_VENDOR_UNKNOWN;
1508         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1509         c->x86_vendor_id[0] = '\0'; /* Unset */
1510         c->x86_model_id[0] = '\0';  /* Unset */
1511         c->x86_max_cores = 1;
1512         c->x86_coreid_bits = 0;
1513         c->cu_id = 0xff;
1514 #ifdef CONFIG_X86_64
1515         c->x86_clflush_size = 64;
1516         c->x86_phys_bits = 36;
1517         c->x86_virt_bits = 48;
1518 #else
1519         c->cpuid_level = -1;    /* CPUID not detected */
1520         c->x86_clflush_size = 32;
1521         c->x86_phys_bits = 32;
1522         c->x86_virt_bits = 32;
1523 #endif
1524         c->x86_cache_alignment = c->x86_clflush_size;
1525         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1526 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1527         memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1528 #endif
1529
1530         generic_identify(c);
1531
1532         if (this_cpu->c_identify)
1533                 this_cpu->c_identify(c);
1534
1535         /* Clear/Set all flags overridden by options, after probe */
1536         apply_forced_caps(c);
1537
1538 #ifdef CONFIG_X86_64
1539         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1540 #endif
1541
1542         /*
1543          * Vendor-specific initialization.  In this section we
1544          * canonicalize the feature flags, meaning if there are
1545          * features a certain CPU supports which CPUID doesn't
1546          * tell us, CPUID claiming incorrect flags, or other bugs,
1547          * we handle them here.
1548          *
1549          * At the end of this section, c->x86_capability better
1550          * indicate the features this CPU genuinely supports!
1551          */
1552         if (this_cpu->c_init)
1553                 this_cpu->c_init(c);
1554
1555         /* Disable the PN if appropriate */
1556         squash_the_stupid_serial_number(c);
1557
1558         /* Set up SMEP/SMAP/UMIP */
1559         setup_smep(c);
1560         setup_smap(c);
1561         setup_umip(c);
1562
1563         /* Enable FSGSBASE instructions if available. */
1564         if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1565                 cr4_set_bits(X86_CR4_FSGSBASE);
1566                 elf_hwcap2 |= HWCAP2_FSGSBASE;
1567         }
1568
1569         /*
1570          * The vendor-specific functions might have changed features.
1571          * Now we do "generic changes."
1572          */
1573
1574         /* Filter out anything that depends on CPUID levels we don't have */
1575         filter_cpuid_features(c, true);
1576
1577         /* If the model name is still unset, do table lookup. */
1578         if (!c->x86_model_id[0]) {
1579                 const char *p;
1580                 p = table_lookup_model(c);
1581                 if (p)
1582                         strcpy(c->x86_model_id, p);
1583                 else
1584                         /* Last resort... */
1585                         sprintf(c->x86_model_id, "%02x/%02x",
1586                                 c->x86, c->x86_model);
1587         }
1588
1589 #ifdef CONFIG_X86_64
1590         detect_ht(c);
1591 #endif
1592
1593         x86_init_rdrand(c);
1594         setup_pku(c);
1595
1596         /*
1597          * Clear/Set all flags overridden by options, need do it
1598          * before following smp all cpus cap AND.
1599          */
1600         apply_forced_caps(c);
1601
1602         /*
1603          * On SMP, boot_cpu_data holds the common feature set between
1604          * all CPUs; so make sure that we indicate which features are
1605          * common between the CPUs.  The first time this routine gets
1606          * executed, c == &boot_cpu_data.
1607          */
1608         if (c != &boot_cpu_data) {
1609                 /* AND the already accumulated flags with these */
1610                 for (i = 0; i < NCAPINTS; i++)
1611                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1612
1613                 /* OR, i.e. replicate the bug flags */
1614                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1615                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1616         }
1617
1618         /* Init Machine Check Exception if available. */
1619         mcheck_cpu_init(c);
1620
1621         select_idle_routine(c);
1622
1623 #ifdef CONFIG_NUMA
1624         numa_add_cpu(smp_processor_id());
1625 #endif
1626 }
1627
1628 /*
1629  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1630  * on 32-bit kernels:
1631  */
1632 #ifdef CONFIG_X86_32
1633 void enable_sep_cpu(void)
1634 {
1635         struct tss_struct *tss;
1636         int cpu;
1637
1638         if (!boot_cpu_has(X86_FEATURE_SEP))
1639                 return;
1640
1641         cpu = get_cpu();
1642         tss = &per_cpu(cpu_tss_rw, cpu);
1643
1644         /*
1645          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1646          * see the big comment in struct x86_hw_tss's definition.
1647          */
1648
1649         tss->x86_tss.ss1 = __KERNEL_CS;
1650         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1651         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1652         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1653
1654         put_cpu();
1655 }
1656 #endif
1657
1658 void __init identify_boot_cpu(void)
1659 {
1660         identify_cpu(&boot_cpu_data);
1661 #ifdef CONFIG_X86_32
1662         sysenter_setup();
1663         enable_sep_cpu();
1664 #endif
1665         cpu_detect_tlb(&boot_cpu_data);
1666         setup_cr_pinning();
1667
1668         tsx_init();
1669 }
1670
1671 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1672 {
1673         BUG_ON(c == &boot_cpu_data);
1674         identify_cpu(c);
1675 #ifdef CONFIG_X86_32
1676         enable_sep_cpu();
1677 #endif
1678         mtrr_ap_init();
1679         validate_apic_and_package_id(c);
1680         x86_spec_ctrl_setup_ap();
1681         update_srbds_msr();
1682 }
1683
1684 static __init int setup_noclflush(char *arg)
1685 {
1686         setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1687         setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1688         return 1;
1689 }
1690 __setup("noclflush", setup_noclflush);
1691
1692 void print_cpu_info(struct cpuinfo_x86 *c)
1693 {
1694         const char *vendor = NULL;
1695
1696         if (c->x86_vendor < X86_VENDOR_NUM) {
1697                 vendor = this_cpu->c_vendor;
1698         } else {
1699                 if (c->cpuid_level >= 0)
1700                         vendor = c->x86_vendor_id;
1701         }
1702
1703         if (vendor && !strstr(c->x86_model_id, vendor))
1704                 pr_cont("%s ", vendor);
1705
1706         if (c->x86_model_id[0])
1707                 pr_cont("%s", c->x86_model_id);
1708         else
1709                 pr_cont("%d86", c->x86);
1710
1711         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1712
1713         if (c->x86_stepping || c->cpuid_level >= 0)
1714                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1715         else
1716                 pr_cont(")\n");
1717 }
1718
1719 /*
1720  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1721  * But we need to keep a dummy __setup around otherwise it would
1722  * show up as an environment variable for init.
1723  */
1724 static __init int setup_clearcpuid(char *arg)
1725 {
1726         return 1;
1727 }
1728 __setup("clearcpuid=", setup_clearcpuid);
1729
1730 #ifdef CONFIG_X86_64
1731 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1732                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1733 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1734
1735 /*
1736  * The following percpu variables are hot.  Align current_task to
1737  * cacheline size such that they fall in the same cacheline.
1738  */
1739 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1740         &init_task;
1741 EXPORT_PER_CPU_SYMBOL(current_task);
1742
1743 DEFINE_PER_CPU(void *, hardirq_stack_ptr);
1744 DEFINE_PER_CPU(bool, hardirq_stack_inuse);
1745
1746 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1747 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1748
1749 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
1750
1751 /* May not be marked __init: used by software suspend */
1752 void syscall_init(void)
1753 {
1754         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1755         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1756
1757 #ifdef CONFIG_IA32_EMULATION
1758         wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1759         /*
1760          * This only works on Intel CPUs.
1761          * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1762          * This does not cause SYSENTER to jump to the wrong location, because
1763          * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1764          */
1765         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1766         wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1767                     (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1768         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1769 #else
1770         wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1771         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1772         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1773         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1774 #endif
1775
1776         /* Flags to clear on syscall */
1777         wrmsrl(MSR_SYSCALL_MASK,
1778                X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1779                X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1780 }
1781
1782 #else   /* CONFIG_X86_64 */
1783
1784 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1785 EXPORT_PER_CPU_SYMBOL(current_task);
1786 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1787 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1788
1789 /*
1790  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1791  * the top of the kernel stack.  Use an extra percpu variable to track the
1792  * top of the kernel stack directly.
1793  */
1794 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1795         (unsigned long)&init_thread_union + THREAD_SIZE;
1796 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1797
1798 #ifdef CONFIG_STACKPROTECTOR
1799 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
1800 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
1801 #endif
1802
1803 #endif  /* CONFIG_X86_64 */
1804
1805 /*
1806  * Clear all 6 debug registers:
1807  */
1808 static void clear_all_debug_regs(void)
1809 {
1810         int i;
1811
1812         for (i = 0; i < 8; i++) {
1813                 /* Ignore db4, db5 */
1814                 if ((i == 4) || (i == 5))
1815                         continue;
1816
1817                 set_debugreg(0, i);
1818         }
1819 }
1820
1821 #ifdef CONFIG_KGDB
1822 /*
1823  * Restore debug regs if using kgdbwait and you have a kernel debugger
1824  * connection established.
1825  */
1826 static void dbg_restore_debug_regs(void)
1827 {
1828         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1829                 arch_kgdb_ops.correct_hw_break();
1830 }
1831 #else /* ! CONFIG_KGDB */
1832 #define dbg_restore_debug_regs()
1833 #endif /* ! CONFIG_KGDB */
1834
1835 static void wait_for_master_cpu(int cpu)
1836 {
1837 #ifdef CONFIG_SMP
1838         /*
1839          * wait for ACK from master CPU before continuing
1840          * with AP initialization
1841          */
1842         WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1843         while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1844                 cpu_relax();
1845 #endif
1846 }
1847
1848 #ifdef CONFIG_X86_64
1849 static inline void setup_getcpu(int cpu)
1850 {
1851         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1852         struct desc_struct d = { };
1853
1854         if (boot_cpu_has(X86_FEATURE_RDTSCP))
1855                 write_rdtscp_aux(cpudata);
1856
1857         /* Store CPU and node number in limit. */
1858         d.limit0 = cpudata;
1859         d.limit1 = cpudata >> 16;
1860
1861         d.type = 5;             /* RO data, expand down, accessed */
1862         d.dpl = 3;              /* Visible to user code */
1863         d.s = 1;                /* Not a system segment */
1864         d.p = 1;                /* Present */
1865         d.d = 1;                /* 32-bit */
1866
1867         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1868 }
1869
1870 static inline void ucode_cpu_init(int cpu)
1871 {
1872         if (cpu)
1873                 load_ucode_ap();
1874 }
1875
1876 static inline void tss_setup_ist(struct tss_struct *tss)
1877 {
1878         /* Set up the per-CPU TSS IST stacks */
1879         tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1880         tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1881         tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1882         tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1883         /* Only mapped when SEV-ES is active */
1884         tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
1885 }
1886
1887 #else /* CONFIG_X86_64 */
1888
1889 static inline void setup_getcpu(int cpu) { }
1890
1891 static inline void ucode_cpu_init(int cpu)
1892 {
1893         show_ucode_info_early();
1894 }
1895
1896 static inline void tss_setup_ist(struct tss_struct *tss) { }
1897
1898 #endif /* !CONFIG_X86_64 */
1899
1900 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1901 {
1902         tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1903
1904 #ifdef CONFIG_X86_IOPL_IOPERM
1905         tss->io_bitmap.prev_max = 0;
1906         tss->io_bitmap.prev_sequence = 0;
1907         memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1908         /*
1909          * Invalidate the extra array entry past the end of the all
1910          * permission bitmap as required by the hardware.
1911          */
1912         tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1913 #endif
1914 }
1915
1916 /*
1917  * Setup everything needed to handle exceptions from the IDT, including the IST
1918  * exceptions which use paranoid_entry().
1919  */
1920 void cpu_init_exception_handling(void)
1921 {
1922         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1923         int cpu = raw_smp_processor_id();
1924
1925         /* paranoid_entry() gets the CPU number from the GDT */
1926         setup_getcpu(cpu);
1927
1928         /* IST vectors need TSS to be set up. */
1929         tss_setup_ist(tss);
1930         tss_setup_io_bitmap(tss);
1931         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1932
1933         load_TR_desc();
1934
1935         /* Finally load the IDT */
1936         load_current_idt();
1937 }
1938
1939 /*
1940  * cpu_init() initializes state that is per-CPU. Some data is already
1941  * initialized (naturally) in the bootstrap process, such as the GDT
1942  * and IDT. We reload them nevertheless, this function acts as a
1943  * 'CPU state barrier', nothing should get across.
1944  */
1945 void cpu_init(void)
1946 {
1947         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1948         struct task_struct *cur = current;
1949         int cpu = raw_smp_processor_id();
1950
1951         wait_for_master_cpu(cpu);
1952
1953         ucode_cpu_init(cpu);
1954
1955 #ifdef CONFIG_NUMA
1956         if (this_cpu_read(numa_node) == 0 &&
1957             early_cpu_to_node(cpu) != NUMA_NO_NODE)
1958                 set_numa_node(early_cpu_to_node(cpu));
1959 #endif
1960         setup_getcpu(cpu);
1961
1962         pr_debug("Initializing CPU#%d\n", cpu);
1963
1964         if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1965             boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1966                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1967
1968         /*
1969          * Initialize the per-CPU GDT with the boot GDT,
1970          * and set up the GDT descriptor:
1971          */
1972         switch_to_new_gdt(cpu);
1973         load_current_idt();
1974
1975         if (IS_ENABLED(CONFIG_X86_64)) {
1976                 loadsegment(fs, 0);
1977                 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1978                 syscall_init();
1979
1980                 wrmsrl(MSR_FS_BASE, 0);
1981                 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1982                 barrier();
1983
1984                 x2apic_setup();
1985         }
1986
1987         mmgrab(&init_mm);
1988         cur->active_mm = &init_mm;
1989         BUG_ON(cur->mm);
1990         initialize_tlbstate_and_flush();
1991         enter_lazy_tlb(&init_mm, cur);
1992
1993         /* Initialize the TSS. */
1994         tss_setup_ist(tss);
1995         tss_setup_io_bitmap(tss);
1996         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1997
1998         load_TR_desc();
1999         /*
2000          * sp0 points to the entry trampoline stack regardless of what task
2001          * is running.
2002          */
2003         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2004
2005         load_mm_ldt(&init_mm);
2006
2007         clear_all_debug_regs();
2008         dbg_restore_debug_regs();
2009
2010         doublefault_init_cpu_tss();
2011
2012         fpu__init_cpu();
2013
2014         if (is_uv_system())
2015                 uv_cpu_init();
2016
2017         load_fixmap_gdt(cpu);
2018 }
2019
2020 /*
2021  * The microcode loader calls this upon late microcode load to recheck features,
2022  * only when microcode has been updated. Caller holds microcode_mutex and CPU
2023  * hotplug lock.
2024  */
2025 void microcode_check(void)
2026 {
2027         struct cpuinfo_x86 info;
2028
2029         perf_check_microcode();
2030
2031         /* Reload CPUID max function as it might've changed. */
2032         info.cpuid_level = cpuid_eax(0);
2033
2034         /*
2035          * Copy all capability leafs to pick up the synthetic ones so that
2036          * memcmp() below doesn't fail on that. The ones coming from CPUID will
2037          * get overwritten in get_cpu_cap().
2038          */
2039         memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2040
2041         get_cpu_cap(&info);
2042
2043         if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2044                 return;
2045
2046         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2047         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2048 }
2049
2050 /*
2051  * Invoked from core CPU hotplug code after hotplug operations
2052  */
2053 void arch_smt_update(void)
2054 {
2055         /* Handle the speculative execution misfeatures */
2056         cpu_bugs_smt_update();
2057         /* Check whether IPI broadcasting can be enabled */
2058         apic_smt_update();
2059 }