Merge tag 'arm-defconfig-5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/pgtable.h>
25
26 #include <asm/stackprotector.h>
27 #include <asm/perf_event.h>
28 #include <asm/mmu_context.h>
29 #include <asm/doublefault.h>
30 #include <asm/archrandom.h>
31 #include <asm/hypervisor.h>
32 #include <asm/processor.h>
33 #include <asm/tlbflush.h>
34 #include <asm/debugreg.h>
35 #include <asm/sections.h>
36 #include <asm/vsyscall.h>
37 #include <linux/topology.h>
38 #include <linux/cpumask.h>
39 #include <linux/atomic.h>
40 #include <asm/proto.h>
41 #include <asm/setup.h>
42 #include <asm/apic.h>
43 #include <asm/desc.h>
44 #include <asm/fpu/internal.h>
45 #include <asm/mtrr.h>
46 #include <asm/hwcap2.h>
47 #include <linux/numa.h>
48 #include <asm/asm.h>
49 #include <asm/bugs.h>
50 #include <asm/cpu.h>
51 #include <asm/mce.h>
52 #include <asm/msr.h>
53 #include <asm/memtype.h>
54 #include <asm/microcode.h>
55 #include <asm/microcode_intel.h>
56 #include <asm/intel-family.h>
57 #include <asm/cpu_device_id.h>
58 #include <asm/uv/uv.h>
59
60 #include "cpu.h"
61
62 u32 elf_hwcap2 __read_mostly;
63
64 /* all of these masks are initialized in setup_cpu_local_masks() */
65 cpumask_var_t cpu_initialized_mask;
66 cpumask_var_t cpu_callout_mask;
67 cpumask_var_t cpu_callin_mask;
68
69 /* representing cpus for which sibling maps can be computed */
70 cpumask_var_t cpu_sibling_setup_mask;
71
72 /* Number of siblings per CPU package */
73 int smp_num_siblings = 1;
74 EXPORT_SYMBOL(smp_num_siblings);
75
76 /* Last level cache ID of each logical CPU */
77 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
78
79 /* correctly size the local cpu masks */
80 void __init setup_cpu_local_masks(void)
81 {
82         alloc_bootmem_cpumask_var(&cpu_initialized_mask);
83         alloc_bootmem_cpumask_var(&cpu_callin_mask);
84         alloc_bootmem_cpumask_var(&cpu_callout_mask);
85         alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
86 }
87
88 static void default_init(struct cpuinfo_x86 *c)
89 {
90 #ifdef CONFIG_X86_64
91         cpu_detect_cache_sizes(c);
92 #else
93         /* Not much we can do here... */
94         /* Check if at least it has cpuid */
95         if (c->cpuid_level == -1) {
96                 /* No cpuid. It must be an ancient CPU */
97                 if (c->x86 == 4)
98                         strcpy(c->x86_model_id, "486");
99                 else if (c->x86 == 3)
100                         strcpy(c->x86_model_id, "386");
101         }
102 #endif
103 }
104
105 static const struct cpu_dev default_cpu = {
106         .c_init         = default_init,
107         .c_vendor       = "Unknown",
108         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
109 };
110
111 static const struct cpu_dev *this_cpu = &default_cpu;
112
113 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
114 #ifdef CONFIG_X86_64
115         /*
116          * We need valid kernel segments for data and code in long mode too
117          * IRET will check the segment types  kkeil 2000/10/28
118          * Also sysret mandates a special GDT layout
119          *
120          * TLS descriptors are currently at a different place compared to i386.
121          * Hopefully nobody expects them at a fixed place (Wine?)
122          */
123         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
124         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
125         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
126         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
127         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
128         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
129 #else
130         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
131         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
132         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
133         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
134         /*
135          * Segments used for calling PnP BIOS have byte granularity.
136          * They code segments and data segments have fixed 64k limits,
137          * the transfer segment sizes are set at run time.
138          */
139         /* 32-bit code */
140         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
141         /* 16-bit code */
142         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
143         /* 16-bit data */
144         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
145         /* 16-bit data */
146         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
147         /* 16-bit data */
148         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
149         /*
150          * The APM segments have byte granularity and their bases
151          * are set at run time.  All have 64k limits.
152          */
153         /* 32-bit code */
154         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
155         /* 16-bit code */
156         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
157         /* data */
158         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
159
160         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
161         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
162         GDT_STACK_CANARY_INIT
163 #endif
164 } };
165 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
166
167 #ifdef CONFIG_X86_64
168 static int __init x86_nopcid_setup(char *s)
169 {
170         /* nopcid doesn't accept parameters */
171         if (s)
172                 return -EINVAL;
173
174         /* do not emit a message if the feature is not present */
175         if (!boot_cpu_has(X86_FEATURE_PCID))
176                 return 0;
177
178         setup_clear_cpu_cap(X86_FEATURE_PCID);
179         pr_info("nopcid: PCID feature disabled\n");
180         return 0;
181 }
182 early_param("nopcid", x86_nopcid_setup);
183 #endif
184
185 static int __init x86_noinvpcid_setup(char *s)
186 {
187         /* noinvpcid doesn't accept parameters */
188         if (s)
189                 return -EINVAL;
190
191         /* do not emit a message if the feature is not present */
192         if (!boot_cpu_has(X86_FEATURE_INVPCID))
193                 return 0;
194
195         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
196         pr_info("noinvpcid: INVPCID feature disabled\n");
197         return 0;
198 }
199 early_param("noinvpcid", x86_noinvpcid_setup);
200
201 #ifdef CONFIG_X86_32
202 static int cachesize_override = -1;
203 static int disable_x86_serial_nr = 1;
204
205 static int __init cachesize_setup(char *str)
206 {
207         get_option(&str, &cachesize_override);
208         return 1;
209 }
210 __setup("cachesize=", cachesize_setup);
211
212 static int __init x86_sep_setup(char *s)
213 {
214         setup_clear_cpu_cap(X86_FEATURE_SEP);
215         return 1;
216 }
217 __setup("nosep", x86_sep_setup);
218
219 /* Standard macro to see if a specific flag is changeable */
220 static inline int flag_is_changeable_p(u32 flag)
221 {
222         u32 f1, f2;
223
224         /*
225          * Cyrix and IDT cpus allow disabling of CPUID
226          * so the code below may return different results
227          * when it is executed before and after enabling
228          * the CPUID. Add "volatile" to not allow gcc to
229          * optimize the subsequent calls to this function.
230          */
231         asm volatile ("pushfl           \n\t"
232                       "pushfl           \n\t"
233                       "popl %0          \n\t"
234                       "movl %0, %1      \n\t"
235                       "xorl %2, %0      \n\t"
236                       "pushl %0         \n\t"
237                       "popfl            \n\t"
238                       "pushfl           \n\t"
239                       "popl %0          \n\t"
240                       "popfl            \n\t"
241
242                       : "=&r" (f1), "=&r" (f2)
243                       : "ir" (flag));
244
245         return ((f1^f2) & flag) != 0;
246 }
247
248 /* Probe for the CPUID instruction */
249 int have_cpuid_p(void)
250 {
251         return flag_is_changeable_p(X86_EFLAGS_ID);
252 }
253
254 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
255 {
256         unsigned long lo, hi;
257
258         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
259                 return;
260
261         /* Disable processor serial number: */
262
263         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
264         lo |= 0x200000;
265         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
266
267         pr_notice("CPU serial number disabled.\n");
268         clear_cpu_cap(c, X86_FEATURE_PN);
269
270         /* Disabling the serial number may affect the cpuid level */
271         c->cpuid_level = cpuid_eax(0);
272 }
273
274 static int __init x86_serial_nr_setup(char *s)
275 {
276         disable_x86_serial_nr = 0;
277         return 1;
278 }
279 __setup("serialnumber", x86_serial_nr_setup);
280 #else
281 static inline int flag_is_changeable_p(u32 flag)
282 {
283         return 1;
284 }
285 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
286 {
287 }
288 #endif
289
290 static __init int setup_disable_smep(char *arg)
291 {
292         setup_clear_cpu_cap(X86_FEATURE_SMEP);
293         return 1;
294 }
295 __setup("nosmep", setup_disable_smep);
296
297 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
298 {
299         if (cpu_has(c, X86_FEATURE_SMEP))
300                 cr4_set_bits(X86_CR4_SMEP);
301 }
302
303 static __init int setup_disable_smap(char *arg)
304 {
305         setup_clear_cpu_cap(X86_FEATURE_SMAP);
306         return 1;
307 }
308 __setup("nosmap", setup_disable_smap);
309
310 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
311 {
312         unsigned long eflags = native_save_fl();
313
314         /* This should have been cleared long ago */
315         BUG_ON(eflags & X86_EFLAGS_AC);
316
317         if (cpu_has(c, X86_FEATURE_SMAP)) {
318 #ifdef CONFIG_X86_SMAP
319                 cr4_set_bits(X86_CR4_SMAP);
320 #else
321                 cr4_clear_bits(X86_CR4_SMAP);
322 #endif
323         }
324 }
325
326 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
327 {
328         /* Check the boot processor, plus build option for UMIP. */
329         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
330                 goto out;
331
332         /* Check the current processor's cpuid bits. */
333         if (!cpu_has(c, X86_FEATURE_UMIP))
334                 goto out;
335
336         cr4_set_bits(X86_CR4_UMIP);
337
338         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
339
340         return;
341
342 out:
343         /*
344          * Make sure UMIP is disabled in case it was enabled in a
345          * previous boot (e.g., via kexec).
346          */
347         cr4_clear_bits(X86_CR4_UMIP);
348 }
349
350 /* These bits should not change their value after CPU init is finished. */
351 static const unsigned long cr4_pinned_mask =
352         X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
353 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
354 static unsigned long cr4_pinned_bits __ro_after_init;
355
356 void native_write_cr0(unsigned long val)
357 {
358         unsigned long bits_missing = 0;
359
360 set_register:
361         asm volatile("mov %0,%%cr0": "+r" (val), "+m" (__force_order));
362
363         if (static_branch_likely(&cr_pinning)) {
364                 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
365                         bits_missing = X86_CR0_WP;
366                         val |= bits_missing;
367                         goto set_register;
368                 }
369                 /* Warn after we've set the missing bits. */
370                 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
371         }
372 }
373 EXPORT_SYMBOL(native_write_cr0);
374
375 void native_write_cr4(unsigned long val)
376 {
377         unsigned long bits_changed = 0;
378
379 set_register:
380         asm volatile("mov %0,%%cr4": "+r" (val), "+m" (cr4_pinned_bits));
381
382         if (static_branch_likely(&cr_pinning)) {
383                 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
384                         bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
385                         val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
386                         goto set_register;
387                 }
388                 /* Warn after we've corrected the changed bits. */
389                 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
390                           bits_changed);
391         }
392 }
393 #if IS_MODULE(CONFIG_LKDTM)
394 EXPORT_SYMBOL_GPL(native_write_cr4);
395 #endif
396
397 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
398 {
399         unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
400
401         lockdep_assert_irqs_disabled();
402
403         newval = (cr4 & ~clear) | set;
404         if (newval != cr4) {
405                 this_cpu_write(cpu_tlbstate.cr4, newval);
406                 __write_cr4(newval);
407         }
408 }
409 EXPORT_SYMBOL(cr4_update_irqsoff);
410
411 /* Read the CR4 shadow. */
412 unsigned long cr4_read_shadow(void)
413 {
414         return this_cpu_read(cpu_tlbstate.cr4);
415 }
416 EXPORT_SYMBOL_GPL(cr4_read_shadow);
417
418 void cr4_init(void)
419 {
420         unsigned long cr4 = __read_cr4();
421
422         if (boot_cpu_has(X86_FEATURE_PCID))
423                 cr4 |= X86_CR4_PCIDE;
424         if (static_branch_likely(&cr_pinning))
425                 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
426
427         __write_cr4(cr4);
428
429         /* Initialize cr4 shadow for this CPU. */
430         this_cpu_write(cpu_tlbstate.cr4, cr4);
431 }
432
433 /*
434  * Once CPU feature detection is finished (and boot params have been
435  * parsed), record any of the sensitive CR bits that are set, and
436  * enable CR pinning.
437  */
438 static void __init setup_cr_pinning(void)
439 {
440         cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
441         static_key_enable(&cr_pinning.key);
442 }
443
444 /*
445  * Protection Keys are not available in 32-bit mode.
446  */
447 static bool pku_disabled;
448
449 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
450 {
451         struct pkru_state *pk;
452
453         /* check the boot processor, plus compile options for PKU: */
454         if (!cpu_feature_enabled(X86_FEATURE_PKU))
455                 return;
456         /* checks the actual processor's cpuid bits: */
457         if (!cpu_has(c, X86_FEATURE_PKU))
458                 return;
459         if (pku_disabled)
460                 return;
461
462         cr4_set_bits(X86_CR4_PKE);
463         pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
464         if (pk)
465                 pk->pkru = init_pkru_value;
466         /*
467          * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
468          * cpuid bit to be set.  We need to ensure that we
469          * update that bit in this CPU's "cpu_info".
470          */
471         set_cpu_cap(c, X86_FEATURE_OSPKE);
472 }
473
474 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
475 static __init int setup_disable_pku(char *arg)
476 {
477         /*
478          * Do not clear the X86_FEATURE_PKU bit.  All of the
479          * runtime checks are against OSPKE so clearing the
480          * bit does nothing.
481          *
482          * This way, we will see "pku" in cpuinfo, but not
483          * "ospke", which is exactly what we want.  It shows
484          * that the CPU has PKU, but the OS has not enabled it.
485          * This happens to be exactly how a system would look
486          * if we disabled the config option.
487          */
488         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
489         pku_disabled = true;
490         return 1;
491 }
492 __setup("nopku", setup_disable_pku);
493 #endif /* CONFIG_X86_64 */
494
495 /*
496  * Some CPU features depend on higher CPUID levels, which may not always
497  * be available due to CPUID level capping or broken virtualization
498  * software.  Add those features to this table to auto-disable them.
499  */
500 struct cpuid_dependent_feature {
501         u32 feature;
502         u32 level;
503 };
504
505 static const struct cpuid_dependent_feature
506 cpuid_dependent_features[] = {
507         { X86_FEATURE_MWAIT,            0x00000005 },
508         { X86_FEATURE_DCA,              0x00000009 },
509         { X86_FEATURE_XSAVE,            0x0000000d },
510         { 0, 0 }
511 };
512
513 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
514 {
515         const struct cpuid_dependent_feature *df;
516
517         for (df = cpuid_dependent_features; df->feature; df++) {
518
519                 if (!cpu_has(c, df->feature))
520                         continue;
521                 /*
522                  * Note: cpuid_level is set to -1 if unavailable, but
523                  * extended_extended_level is set to 0 if unavailable
524                  * and the legitimate extended levels are all negative
525                  * when signed; hence the weird messing around with
526                  * signs here...
527                  */
528                 if (!((s32)df->level < 0 ?
529                      (u32)df->level > (u32)c->extended_cpuid_level :
530                      (s32)df->level > (s32)c->cpuid_level))
531                         continue;
532
533                 clear_cpu_cap(c, df->feature);
534                 if (!warn)
535                         continue;
536
537                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
538                         x86_cap_flag(df->feature), df->level);
539         }
540 }
541
542 /*
543  * Naming convention should be: <Name> [(<Codename>)]
544  * This table only is used unless init_<vendor>() below doesn't set it;
545  * in particular, if CPUID levels 0x80000002..4 are supported, this
546  * isn't used
547  */
548
549 /* Look up CPU names by table lookup. */
550 static const char *table_lookup_model(struct cpuinfo_x86 *c)
551 {
552 #ifdef CONFIG_X86_32
553         const struct legacy_cpu_model_info *info;
554
555         if (c->x86_model >= 16)
556                 return NULL;    /* Range check */
557
558         if (!this_cpu)
559                 return NULL;
560
561         info = this_cpu->legacy_models;
562
563         while (info->family) {
564                 if (info->family == c->x86)
565                         return info->model_names[c->x86_model];
566                 info++;
567         }
568 #endif
569         return NULL;            /* Not found */
570 }
571
572 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
573 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
574 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
575
576 void load_percpu_segment(int cpu)
577 {
578 #ifdef CONFIG_X86_32
579         loadsegment(fs, __KERNEL_PERCPU);
580 #else
581         __loadsegment_simple(gs, 0);
582         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
583 #endif
584         load_stack_canary_segment();
585 }
586
587 #ifdef CONFIG_X86_32
588 /* The 32-bit entry code needs to find cpu_entry_area. */
589 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
590 #endif
591
592 /* Load the original GDT from the per-cpu structure */
593 void load_direct_gdt(int cpu)
594 {
595         struct desc_ptr gdt_descr;
596
597         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
598         gdt_descr.size = GDT_SIZE - 1;
599         load_gdt(&gdt_descr);
600 }
601 EXPORT_SYMBOL_GPL(load_direct_gdt);
602
603 /* Load a fixmap remapping of the per-cpu GDT */
604 void load_fixmap_gdt(int cpu)
605 {
606         struct desc_ptr gdt_descr;
607
608         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
609         gdt_descr.size = GDT_SIZE - 1;
610         load_gdt(&gdt_descr);
611 }
612 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
613
614 /*
615  * Current gdt points %fs at the "master" per-cpu area: after this,
616  * it's on the real one.
617  */
618 void switch_to_new_gdt(int cpu)
619 {
620         /* Load the original GDT */
621         load_direct_gdt(cpu);
622         /* Reload the per-cpu base */
623         load_percpu_segment(cpu);
624 }
625
626 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
627
628 static void get_model_name(struct cpuinfo_x86 *c)
629 {
630         unsigned int *v;
631         char *p, *q, *s;
632
633         if (c->extended_cpuid_level < 0x80000004)
634                 return;
635
636         v = (unsigned int *)c->x86_model_id;
637         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
638         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
639         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
640         c->x86_model_id[48] = 0;
641
642         /* Trim whitespace */
643         p = q = s = &c->x86_model_id[0];
644
645         while (*p == ' ')
646                 p++;
647
648         while (*p) {
649                 /* Note the last non-whitespace index */
650                 if (!isspace(*p))
651                         s = q;
652
653                 *q++ = *p++;
654         }
655
656         *(s + 1) = '\0';
657 }
658
659 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
660 {
661         unsigned int eax, ebx, ecx, edx;
662
663         c->x86_max_cores = 1;
664         if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
665                 return;
666
667         cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
668         if (eax & 0x1f)
669                 c->x86_max_cores = (eax >> 26) + 1;
670 }
671
672 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
673 {
674         unsigned int n, dummy, ebx, ecx, edx, l2size;
675
676         n = c->extended_cpuid_level;
677
678         if (n >= 0x80000005) {
679                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
680                 c->x86_cache_size = (ecx>>24) + (edx>>24);
681 #ifdef CONFIG_X86_64
682                 /* On K8 L1 TLB is inclusive, so don't count it */
683                 c->x86_tlbsize = 0;
684 #endif
685         }
686
687         if (n < 0x80000006)     /* Some chips just has a large L1. */
688                 return;
689
690         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
691         l2size = ecx >> 16;
692
693 #ifdef CONFIG_X86_64
694         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
695 #else
696         /* do processor-specific cache resizing */
697         if (this_cpu->legacy_cache_size)
698                 l2size = this_cpu->legacy_cache_size(c, l2size);
699
700         /* Allow user to override all this if necessary. */
701         if (cachesize_override != -1)
702                 l2size = cachesize_override;
703
704         if (l2size == 0)
705                 return;         /* Again, no L2 cache is possible */
706 #endif
707
708         c->x86_cache_size = l2size;
709 }
710
711 u16 __read_mostly tlb_lli_4k[NR_INFO];
712 u16 __read_mostly tlb_lli_2m[NR_INFO];
713 u16 __read_mostly tlb_lli_4m[NR_INFO];
714 u16 __read_mostly tlb_lld_4k[NR_INFO];
715 u16 __read_mostly tlb_lld_2m[NR_INFO];
716 u16 __read_mostly tlb_lld_4m[NR_INFO];
717 u16 __read_mostly tlb_lld_1g[NR_INFO];
718
719 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
720 {
721         if (this_cpu->c_detect_tlb)
722                 this_cpu->c_detect_tlb(c);
723
724         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
725                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
726                 tlb_lli_4m[ENTRIES]);
727
728         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
729                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
730                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
731 }
732
733 int detect_ht_early(struct cpuinfo_x86 *c)
734 {
735 #ifdef CONFIG_SMP
736         u32 eax, ebx, ecx, edx;
737
738         if (!cpu_has(c, X86_FEATURE_HT))
739                 return -1;
740
741         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
742                 return -1;
743
744         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
745                 return -1;
746
747         cpuid(1, &eax, &ebx, &ecx, &edx);
748
749         smp_num_siblings = (ebx & 0xff0000) >> 16;
750         if (smp_num_siblings == 1)
751                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
752 #endif
753         return 0;
754 }
755
756 void detect_ht(struct cpuinfo_x86 *c)
757 {
758 #ifdef CONFIG_SMP
759         int index_msb, core_bits;
760
761         if (detect_ht_early(c) < 0)
762                 return;
763
764         index_msb = get_count_order(smp_num_siblings);
765         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
766
767         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
768
769         index_msb = get_count_order(smp_num_siblings);
770
771         core_bits = get_count_order(c->x86_max_cores);
772
773         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
774                                        ((1 << core_bits) - 1);
775 #endif
776 }
777
778 static void get_cpu_vendor(struct cpuinfo_x86 *c)
779 {
780         char *v = c->x86_vendor_id;
781         int i;
782
783         for (i = 0; i < X86_VENDOR_NUM; i++) {
784                 if (!cpu_devs[i])
785                         break;
786
787                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
788                     (cpu_devs[i]->c_ident[1] &&
789                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
790
791                         this_cpu = cpu_devs[i];
792                         c->x86_vendor = this_cpu->c_x86_vendor;
793                         return;
794                 }
795         }
796
797         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
798                     "CPU: Your system may be unstable.\n", v);
799
800         c->x86_vendor = X86_VENDOR_UNKNOWN;
801         this_cpu = &default_cpu;
802 }
803
804 void cpu_detect(struct cpuinfo_x86 *c)
805 {
806         /* Get vendor name */
807         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
808               (unsigned int *)&c->x86_vendor_id[0],
809               (unsigned int *)&c->x86_vendor_id[8],
810               (unsigned int *)&c->x86_vendor_id[4]);
811
812         c->x86 = 4;
813         /* Intel-defined flags: level 0x00000001 */
814         if (c->cpuid_level >= 0x00000001) {
815                 u32 junk, tfms, cap0, misc;
816
817                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
818                 c->x86          = x86_family(tfms);
819                 c->x86_model    = x86_model(tfms);
820                 c->x86_stepping = x86_stepping(tfms);
821
822                 if (cap0 & (1<<19)) {
823                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
824                         c->x86_cache_alignment = c->x86_clflush_size;
825                 }
826         }
827 }
828
829 static void apply_forced_caps(struct cpuinfo_x86 *c)
830 {
831         int i;
832
833         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
834                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
835                 c->x86_capability[i] |= cpu_caps_set[i];
836         }
837 }
838
839 static void init_speculation_control(struct cpuinfo_x86 *c)
840 {
841         /*
842          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
843          * and they also have a different bit for STIBP support. Also,
844          * a hypervisor might have set the individual AMD bits even on
845          * Intel CPUs, for finer-grained selection of what's available.
846          */
847         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
848                 set_cpu_cap(c, X86_FEATURE_IBRS);
849                 set_cpu_cap(c, X86_FEATURE_IBPB);
850                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
851         }
852
853         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
854                 set_cpu_cap(c, X86_FEATURE_STIBP);
855
856         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
857             cpu_has(c, X86_FEATURE_VIRT_SSBD))
858                 set_cpu_cap(c, X86_FEATURE_SSBD);
859
860         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
861                 set_cpu_cap(c, X86_FEATURE_IBRS);
862                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
863         }
864
865         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
866                 set_cpu_cap(c, X86_FEATURE_IBPB);
867
868         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
869                 set_cpu_cap(c, X86_FEATURE_STIBP);
870                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
871         }
872
873         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
874                 set_cpu_cap(c, X86_FEATURE_SSBD);
875                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
876                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
877         }
878 }
879
880 void get_cpu_cap(struct cpuinfo_x86 *c)
881 {
882         u32 eax, ebx, ecx, edx;
883
884         /* Intel-defined flags: level 0x00000001 */
885         if (c->cpuid_level >= 0x00000001) {
886                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
887
888                 c->x86_capability[CPUID_1_ECX] = ecx;
889                 c->x86_capability[CPUID_1_EDX] = edx;
890         }
891
892         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
893         if (c->cpuid_level >= 0x00000006)
894                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
895
896         /* Additional Intel-defined flags: level 0x00000007 */
897         if (c->cpuid_level >= 0x00000007) {
898                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
899                 c->x86_capability[CPUID_7_0_EBX] = ebx;
900                 c->x86_capability[CPUID_7_ECX] = ecx;
901                 c->x86_capability[CPUID_7_EDX] = edx;
902
903                 /* Check valid sub-leaf index before accessing it */
904                 if (eax >= 1) {
905                         cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
906                         c->x86_capability[CPUID_7_1_EAX] = eax;
907                 }
908         }
909
910         /* Extended state features: level 0x0000000d */
911         if (c->cpuid_level >= 0x0000000d) {
912                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
913
914                 c->x86_capability[CPUID_D_1_EAX] = eax;
915         }
916
917         /* AMD-defined flags: level 0x80000001 */
918         eax = cpuid_eax(0x80000000);
919         c->extended_cpuid_level = eax;
920
921         if ((eax & 0xffff0000) == 0x80000000) {
922                 if (eax >= 0x80000001) {
923                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
924
925                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
926                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
927                 }
928         }
929
930         if (c->extended_cpuid_level >= 0x80000007) {
931                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
932
933                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
934                 c->x86_power = edx;
935         }
936
937         if (c->extended_cpuid_level >= 0x80000008) {
938                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
939                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
940         }
941
942         if (c->extended_cpuid_level >= 0x8000000a)
943                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
944
945         init_scattered_cpuid_features(c);
946         init_speculation_control(c);
947
948         /*
949          * Clear/Set all flags overridden by options, after probe.
950          * This needs to happen each time we re-probe, which may happen
951          * several times during CPU initialization.
952          */
953         apply_forced_caps(c);
954 }
955
956 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
957 {
958         u32 eax, ebx, ecx, edx;
959
960         if (c->extended_cpuid_level >= 0x80000008) {
961                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
962
963                 c->x86_virt_bits = (eax >> 8) & 0xff;
964                 c->x86_phys_bits = eax & 0xff;
965         }
966 #ifdef CONFIG_X86_32
967         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
968                 c->x86_phys_bits = 36;
969 #endif
970         c->x86_cache_bits = c->x86_phys_bits;
971 }
972
973 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
974 {
975 #ifdef CONFIG_X86_32
976         int i;
977
978         /*
979          * First of all, decide if this is a 486 or higher
980          * It's a 486 if we can modify the AC flag
981          */
982         if (flag_is_changeable_p(X86_EFLAGS_AC))
983                 c->x86 = 4;
984         else
985                 c->x86 = 3;
986
987         for (i = 0; i < X86_VENDOR_NUM; i++)
988                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
989                         c->x86_vendor_id[0] = 0;
990                         cpu_devs[i]->c_identify(c);
991                         if (c->x86_vendor_id[0]) {
992                                 get_cpu_vendor(c);
993                                 break;
994                         }
995                 }
996 #endif
997 }
998
999 #define NO_SPECULATION          BIT(0)
1000 #define NO_MELTDOWN             BIT(1)
1001 #define NO_SSB                  BIT(2)
1002 #define NO_L1TF                 BIT(3)
1003 #define NO_MDS                  BIT(4)
1004 #define MSBDS_ONLY              BIT(5)
1005 #define NO_SWAPGS               BIT(6)
1006 #define NO_ITLB_MULTIHIT        BIT(7)
1007 #define NO_SPECTRE_V2           BIT(8)
1008
1009 #define VULNWL(vendor, family, model, whitelist)        \
1010         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1011
1012 #define VULNWL_INTEL(model, whitelist)          \
1013         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1014
1015 #define VULNWL_AMD(family, whitelist)           \
1016         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1017
1018 #define VULNWL_HYGON(family, whitelist)         \
1019         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1020
1021 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1022         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1023         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1024         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1025         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1026
1027         /* Intel Family 6 */
1028         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
1029         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1030         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
1031         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
1032         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
1033
1034         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1035         VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1036         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1037         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1038         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1039         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1040
1041         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
1042
1043         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1044         VULNWL_INTEL(ATOM_AIRMONT_NP,           NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1045
1046         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1047         VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1048         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1049
1050         /*
1051          * Technically, swapgs isn't serializing on AMD (despite it previously
1052          * being documented as such in the APM).  But according to AMD, %gs is
1053          * updated non-speculatively, and the issuing of %gs-relative memory
1054          * operands will be blocked until the %gs update completes, which is
1055          * good enough for our purposes.
1056          */
1057
1058         VULNWL_INTEL(ATOM_TREMONT_D,            NO_ITLB_MULTIHIT),
1059
1060         /* AMD Family 0xf - 0x12 */
1061         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1062         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1063         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1065
1066         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1067         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1068         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1069
1070         /* Zhaoxin Family 7 */
1071         VULNWL(CENTAUR, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1072         VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1073         {}
1074 };
1075
1076 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
1077         X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
1078                                             INTEL_FAM6_##model, steppings, \
1079                                             X86_FEATURE_ANY, issues)
1080
1081 #define SRBDS           BIT(0)
1082
1083 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1084         VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
1085         VULNBL_INTEL_STEPPINGS(HASWELL,         X86_STEPPING_ANY,               SRBDS),
1086         VULNBL_INTEL_STEPPINGS(HASWELL_L,       X86_STEPPING_ANY,               SRBDS),
1087         VULNBL_INTEL_STEPPINGS(HASWELL_G,       X86_STEPPING_ANY,               SRBDS),
1088         VULNBL_INTEL_STEPPINGS(BROADWELL_G,     X86_STEPPING_ANY,               SRBDS),
1089         VULNBL_INTEL_STEPPINGS(BROADWELL,       X86_STEPPING_ANY,               SRBDS),
1090         VULNBL_INTEL_STEPPINGS(SKYLAKE_L,       X86_STEPPING_ANY,               SRBDS),
1091         VULNBL_INTEL_STEPPINGS(SKYLAKE,         X86_STEPPING_ANY,               SRBDS),
1092         VULNBL_INTEL_STEPPINGS(KABYLAKE_L,      X86_STEPPINGS(0x0, 0xC),        SRBDS),
1093         VULNBL_INTEL_STEPPINGS(KABYLAKE,        X86_STEPPINGS(0x0, 0xD),        SRBDS),
1094         {}
1095 };
1096
1097 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1098 {
1099         const struct x86_cpu_id *m = x86_match_cpu(table);
1100
1101         return m && !!(m->driver_data & which);
1102 }
1103
1104 u64 x86_read_arch_cap_msr(void)
1105 {
1106         u64 ia32_cap = 0;
1107
1108         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1109                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1110
1111         return ia32_cap;
1112 }
1113
1114 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1115 {
1116         u64 ia32_cap = x86_read_arch_cap_msr();
1117
1118         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1119         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1120             !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1121                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1122
1123         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1124                 return;
1125
1126         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1127
1128         if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1129                 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1130
1131         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1132             !(ia32_cap & ARCH_CAP_SSB_NO) &&
1133            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1134                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1135
1136         if (ia32_cap & ARCH_CAP_IBRS_ALL)
1137                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1138
1139         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1140             !(ia32_cap & ARCH_CAP_MDS_NO)) {
1141                 setup_force_cpu_bug(X86_BUG_MDS);
1142                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1143                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1144         }
1145
1146         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1147                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1148
1149         /*
1150          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1151          *      - TSX is supported or
1152          *      - TSX_CTRL is present
1153          *
1154          * TSX_CTRL check is needed for cases when TSX could be disabled before
1155          * the kernel boot e.g. kexec.
1156          * TSX_CTRL check alone is not sufficient for cases when the microcode
1157          * update is not present or running as guest that don't get TSX_CTRL.
1158          */
1159         if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1160             (cpu_has(c, X86_FEATURE_RTM) ||
1161              (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1162                 setup_force_cpu_bug(X86_BUG_TAA);
1163
1164         /*
1165          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1166          * in the vulnerability blacklist.
1167          */
1168         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1169              cpu_has(c, X86_FEATURE_RDSEED)) &&
1170             cpu_matches(cpu_vuln_blacklist, SRBDS))
1171                     setup_force_cpu_bug(X86_BUG_SRBDS);
1172
1173         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1174                 return;
1175
1176         /* Rogue Data Cache Load? No! */
1177         if (ia32_cap & ARCH_CAP_RDCL_NO)
1178                 return;
1179
1180         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1181
1182         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1183                 return;
1184
1185         setup_force_cpu_bug(X86_BUG_L1TF);
1186 }
1187
1188 /*
1189  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1190  * unfortunately, that's not true in practice because of early VIA
1191  * chips and (more importantly) broken virtualizers that are not easy
1192  * to detect. In the latter case it doesn't even *fail* reliably, so
1193  * probing for it doesn't even work. Disable it completely on 32-bit
1194  * unless we can find a reliable way to detect all the broken cases.
1195  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1196  */
1197 static void detect_nopl(void)
1198 {
1199 #ifdef CONFIG_X86_32
1200         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1201 #else
1202         setup_force_cpu_cap(X86_FEATURE_NOPL);
1203 #endif
1204 }
1205
1206 /*
1207  * Do minimum CPU detection early.
1208  * Fields really needed: vendor, cpuid_level, family, model, mask,
1209  * cache alignment.
1210  * The others are not touched to avoid unwanted side effects.
1211  *
1212  * WARNING: this function is only called on the boot CPU.  Don't add code
1213  * here that is supposed to run on all CPUs.
1214  */
1215 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1216 {
1217 #ifdef CONFIG_X86_64
1218         c->x86_clflush_size = 64;
1219         c->x86_phys_bits = 36;
1220         c->x86_virt_bits = 48;
1221 #else
1222         c->x86_clflush_size = 32;
1223         c->x86_phys_bits = 32;
1224         c->x86_virt_bits = 32;
1225 #endif
1226         c->x86_cache_alignment = c->x86_clflush_size;
1227
1228         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1229         c->extended_cpuid_level = 0;
1230
1231         if (!have_cpuid_p())
1232                 identify_cpu_without_cpuid(c);
1233
1234         /* cyrix could have cpuid enabled via c_identify()*/
1235         if (have_cpuid_p()) {
1236                 cpu_detect(c);
1237                 get_cpu_vendor(c);
1238                 get_cpu_cap(c);
1239                 get_cpu_address_sizes(c);
1240                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1241
1242                 if (this_cpu->c_early_init)
1243                         this_cpu->c_early_init(c);
1244
1245                 c->cpu_index = 0;
1246                 filter_cpuid_features(c, false);
1247
1248                 if (this_cpu->c_bsp_init)
1249                         this_cpu->c_bsp_init(c);
1250         } else {
1251                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1252         }
1253
1254         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1255
1256         cpu_set_bug_bits(c);
1257
1258         cpu_set_core_cap_bits(c);
1259
1260         fpu__init_system(c);
1261
1262 #ifdef CONFIG_X86_32
1263         /*
1264          * Regardless of whether PCID is enumerated, the SDM says
1265          * that it can't be enabled in 32-bit mode.
1266          */
1267         setup_clear_cpu_cap(X86_FEATURE_PCID);
1268 #endif
1269
1270         /*
1271          * Later in the boot process pgtable_l5_enabled() relies on
1272          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1273          * enabled by this point we need to clear the feature bit to avoid
1274          * false-positives at the later stage.
1275          *
1276          * pgtable_l5_enabled() can be false here for several reasons:
1277          *  - 5-level paging is disabled compile-time;
1278          *  - it's 32-bit kernel;
1279          *  - machine doesn't support 5-level paging;
1280          *  - user specified 'no5lvl' in kernel command line.
1281          */
1282         if (!pgtable_l5_enabled())
1283                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1284
1285         detect_nopl();
1286 }
1287
1288 void __init early_cpu_init(void)
1289 {
1290         const struct cpu_dev *const *cdev;
1291         int count = 0;
1292
1293 #ifdef CONFIG_PROCESSOR_SELECT
1294         pr_info("KERNEL supported cpus:\n");
1295 #endif
1296
1297         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1298                 const struct cpu_dev *cpudev = *cdev;
1299
1300                 if (count >= X86_VENDOR_NUM)
1301                         break;
1302                 cpu_devs[count] = cpudev;
1303                 count++;
1304
1305 #ifdef CONFIG_PROCESSOR_SELECT
1306                 {
1307                         unsigned int j;
1308
1309                         for (j = 0; j < 2; j++) {
1310                                 if (!cpudev->c_ident[j])
1311                                         continue;
1312                                 pr_info("  %s %s\n", cpudev->c_vendor,
1313                                         cpudev->c_ident[j]);
1314                         }
1315                 }
1316 #endif
1317         }
1318         early_identify_cpu(&boot_cpu_data);
1319 }
1320
1321 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1322 {
1323 #ifdef CONFIG_X86_64
1324         /*
1325          * Empirically, writing zero to a segment selector on AMD does
1326          * not clear the base, whereas writing zero to a segment
1327          * selector on Intel does clear the base.  Intel's behavior
1328          * allows slightly faster context switches in the common case
1329          * where GS is unused by the prev and next threads.
1330          *
1331          * Since neither vendor documents this anywhere that I can see,
1332          * detect it directly instead of hardcoding the choice by
1333          * vendor.
1334          *
1335          * I've designated AMD's behavior as the "bug" because it's
1336          * counterintuitive and less friendly.
1337          */
1338
1339         unsigned long old_base, tmp;
1340         rdmsrl(MSR_FS_BASE, old_base);
1341         wrmsrl(MSR_FS_BASE, 1);
1342         loadsegment(fs, 0);
1343         rdmsrl(MSR_FS_BASE, tmp);
1344         if (tmp != 0)
1345                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1346         wrmsrl(MSR_FS_BASE, old_base);
1347 #endif
1348 }
1349
1350 static void generic_identify(struct cpuinfo_x86 *c)
1351 {
1352         c->extended_cpuid_level = 0;
1353
1354         if (!have_cpuid_p())
1355                 identify_cpu_without_cpuid(c);
1356
1357         /* cyrix could have cpuid enabled via c_identify()*/
1358         if (!have_cpuid_p())
1359                 return;
1360
1361         cpu_detect(c);
1362
1363         get_cpu_vendor(c);
1364
1365         get_cpu_cap(c);
1366
1367         get_cpu_address_sizes(c);
1368
1369         if (c->cpuid_level >= 0x00000001) {
1370                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1371 #ifdef CONFIG_X86_32
1372 # ifdef CONFIG_SMP
1373                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1374 # else
1375                 c->apicid = c->initial_apicid;
1376 # endif
1377 #endif
1378                 c->phys_proc_id = c->initial_apicid;
1379         }
1380
1381         get_model_name(c); /* Default name */
1382
1383         detect_null_seg_behavior(c);
1384
1385         /*
1386          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1387          * systems that run Linux at CPL > 0 may or may not have the
1388          * issue, but, even if they have the issue, there's absolutely
1389          * nothing we can do about it because we can't use the real IRET
1390          * instruction.
1391          *
1392          * NB: For the time being, only 32-bit kernels support
1393          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1394          * whether to apply espfix using paravirt hooks.  If any
1395          * non-paravirt system ever shows up that does *not* have the
1396          * ESPFIX issue, we can change this.
1397          */
1398 #ifdef CONFIG_X86_32
1399 # ifdef CONFIG_PARAVIRT_XXL
1400         do {
1401                 extern void native_iret(void);
1402                 if (pv_ops.cpu.iret == native_iret)
1403                         set_cpu_bug(c, X86_BUG_ESPFIX);
1404         } while (0);
1405 # else
1406         set_cpu_bug(c, X86_BUG_ESPFIX);
1407 # endif
1408 #endif
1409 }
1410
1411 /*
1412  * Validate that ACPI/mptables have the same information about the
1413  * effective APIC id and update the package map.
1414  */
1415 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1416 {
1417 #ifdef CONFIG_SMP
1418         unsigned int apicid, cpu = smp_processor_id();
1419
1420         apicid = apic->cpu_present_to_apicid(cpu);
1421
1422         if (apicid != c->apicid) {
1423                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1424                        cpu, apicid, c->initial_apicid);
1425         }
1426         BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1427         BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1428 #else
1429         c->logical_proc_id = 0;
1430 #endif
1431 }
1432
1433 /*
1434  * This does the hard work of actually picking apart the CPU stuff...
1435  */
1436 static void identify_cpu(struct cpuinfo_x86 *c)
1437 {
1438         int i;
1439
1440         c->loops_per_jiffy = loops_per_jiffy;
1441         c->x86_cache_size = 0;
1442         c->x86_vendor = X86_VENDOR_UNKNOWN;
1443         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1444         c->x86_vendor_id[0] = '\0'; /* Unset */
1445         c->x86_model_id[0] = '\0';  /* Unset */
1446         c->x86_max_cores = 1;
1447         c->x86_coreid_bits = 0;
1448         c->cu_id = 0xff;
1449 #ifdef CONFIG_X86_64
1450         c->x86_clflush_size = 64;
1451         c->x86_phys_bits = 36;
1452         c->x86_virt_bits = 48;
1453 #else
1454         c->cpuid_level = -1;    /* CPUID not detected */
1455         c->x86_clflush_size = 32;
1456         c->x86_phys_bits = 32;
1457         c->x86_virt_bits = 32;
1458 #endif
1459         c->x86_cache_alignment = c->x86_clflush_size;
1460         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1461 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1462         memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1463 #endif
1464
1465         generic_identify(c);
1466
1467         if (this_cpu->c_identify)
1468                 this_cpu->c_identify(c);
1469
1470         /* Clear/Set all flags overridden by options, after probe */
1471         apply_forced_caps(c);
1472
1473 #ifdef CONFIG_X86_64
1474         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1475 #endif
1476
1477         /*
1478          * Vendor-specific initialization.  In this section we
1479          * canonicalize the feature flags, meaning if there are
1480          * features a certain CPU supports which CPUID doesn't
1481          * tell us, CPUID claiming incorrect flags, or other bugs,
1482          * we handle them here.
1483          *
1484          * At the end of this section, c->x86_capability better
1485          * indicate the features this CPU genuinely supports!
1486          */
1487         if (this_cpu->c_init)
1488                 this_cpu->c_init(c);
1489
1490         /* Disable the PN if appropriate */
1491         squash_the_stupid_serial_number(c);
1492
1493         /* Set up SMEP/SMAP/UMIP */
1494         setup_smep(c);
1495         setup_smap(c);
1496         setup_umip(c);
1497
1498         /*
1499          * The vendor-specific functions might have changed features.
1500          * Now we do "generic changes."
1501          */
1502
1503         /* Filter out anything that depends on CPUID levels we don't have */
1504         filter_cpuid_features(c, true);
1505
1506         /* If the model name is still unset, do table lookup. */
1507         if (!c->x86_model_id[0]) {
1508                 const char *p;
1509                 p = table_lookup_model(c);
1510                 if (p)
1511                         strcpy(c->x86_model_id, p);
1512                 else
1513                         /* Last resort... */
1514                         sprintf(c->x86_model_id, "%02x/%02x",
1515                                 c->x86, c->x86_model);
1516         }
1517
1518 #ifdef CONFIG_X86_64
1519         detect_ht(c);
1520 #endif
1521
1522         x86_init_rdrand(c);
1523         setup_pku(c);
1524
1525         /*
1526          * Clear/Set all flags overridden by options, need do it
1527          * before following smp all cpus cap AND.
1528          */
1529         apply_forced_caps(c);
1530
1531         /*
1532          * On SMP, boot_cpu_data holds the common feature set between
1533          * all CPUs; so make sure that we indicate which features are
1534          * common between the CPUs.  The first time this routine gets
1535          * executed, c == &boot_cpu_data.
1536          */
1537         if (c != &boot_cpu_data) {
1538                 /* AND the already accumulated flags with these */
1539                 for (i = 0; i < NCAPINTS; i++)
1540                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1541
1542                 /* OR, i.e. replicate the bug flags */
1543                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1544                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1545         }
1546
1547         /* Init Machine Check Exception if available. */
1548         mcheck_cpu_init(c);
1549
1550         select_idle_routine(c);
1551
1552 #ifdef CONFIG_NUMA
1553         numa_add_cpu(smp_processor_id());
1554 #endif
1555 }
1556
1557 /*
1558  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1559  * on 32-bit kernels:
1560  */
1561 #ifdef CONFIG_X86_32
1562 void enable_sep_cpu(void)
1563 {
1564         struct tss_struct *tss;
1565         int cpu;
1566
1567         if (!boot_cpu_has(X86_FEATURE_SEP))
1568                 return;
1569
1570         cpu = get_cpu();
1571         tss = &per_cpu(cpu_tss_rw, cpu);
1572
1573         /*
1574          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1575          * see the big comment in struct x86_hw_tss's definition.
1576          */
1577
1578         tss->x86_tss.ss1 = __KERNEL_CS;
1579         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1580         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1581         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1582
1583         put_cpu();
1584 }
1585 #endif
1586
1587 void __init identify_boot_cpu(void)
1588 {
1589         identify_cpu(&boot_cpu_data);
1590 #ifdef CONFIG_X86_32
1591         sysenter_setup();
1592         enable_sep_cpu();
1593 #endif
1594         cpu_detect_tlb(&boot_cpu_data);
1595         setup_cr_pinning();
1596
1597         tsx_init();
1598 }
1599
1600 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1601 {
1602         BUG_ON(c == &boot_cpu_data);
1603         identify_cpu(c);
1604 #ifdef CONFIG_X86_32
1605         enable_sep_cpu();
1606 #endif
1607         mtrr_ap_init();
1608         validate_apic_and_package_id(c);
1609         x86_spec_ctrl_setup_ap();
1610         update_srbds_msr();
1611 }
1612
1613 static __init int setup_noclflush(char *arg)
1614 {
1615         setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1616         setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1617         return 1;
1618 }
1619 __setup("noclflush", setup_noclflush);
1620
1621 void print_cpu_info(struct cpuinfo_x86 *c)
1622 {
1623         const char *vendor = NULL;
1624
1625         if (c->x86_vendor < X86_VENDOR_NUM) {
1626                 vendor = this_cpu->c_vendor;
1627         } else {
1628                 if (c->cpuid_level >= 0)
1629                         vendor = c->x86_vendor_id;
1630         }
1631
1632         if (vendor && !strstr(c->x86_model_id, vendor))
1633                 pr_cont("%s ", vendor);
1634
1635         if (c->x86_model_id[0])
1636                 pr_cont("%s", c->x86_model_id);
1637         else
1638                 pr_cont("%d86", c->x86);
1639
1640         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1641
1642         if (c->x86_stepping || c->cpuid_level >= 0)
1643                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1644         else
1645                 pr_cont(")\n");
1646 }
1647
1648 /*
1649  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1650  * But we need to keep a dummy __setup around otherwise it would
1651  * show up as an environment variable for init.
1652  */
1653 static __init int setup_clearcpuid(char *arg)
1654 {
1655         return 1;
1656 }
1657 __setup("clearcpuid=", setup_clearcpuid);
1658
1659 #ifdef CONFIG_X86_64
1660 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1661                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1662 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1663
1664 /*
1665  * The following percpu variables are hot.  Align current_task to
1666  * cacheline size such that they fall in the same cacheline.
1667  */
1668 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1669         &init_task;
1670 EXPORT_PER_CPU_SYMBOL(current_task);
1671
1672 DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1673 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1674
1675 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1676 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1677
1678 /* May not be marked __init: used by software suspend */
1679 void syscall_init(void)
1680 {
1681         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1682         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1683
1684 #ifdef CONFIG_IA32_EMULATION
1685         wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1686         /*
1687          * This only works on Intel CPUs.
1688          * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1689          * This does not cause SYSENTER to jump to the wrong location, because
1690          * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1691          */
1692         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1693         wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1694                     (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1695         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1696 #else
1697         wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1698         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1699         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1700         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1701 #endif
1702
1703         /* Flags to clear on syscall */
1704         wrmsrl(MSR_SYSCALL_MASK,
1705                X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1706                X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1707 }
1708
1709 #else   /* CONFIG_X86_64 */
1710
1711 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1712 EXPORT_PER_CPU_SYMBOL(current_task);
1713 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1714 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1715
1716 /*
1717  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1718  * the top of the kernel stack.  Use an extra percpu variable to track the
1719  * top of the kernel stack directly.
1720  */
1721 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1722         (unsigned long)&init_thread_union + THREAD_SIZE;
1723 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1724
1725 #ifdef CONFIG_STACKPROTECTOR
1726 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1727 #endif
1728
1729 #endif  /* CONFIG_X86_64 */
1730
1731 /*
1732  * Clear all 6 debug registers:
1733  */
1734 static void clear_all_debug_regs(void)
1735 {
1736         int i;
1737
1738         for (i = 0; i < 8; i++) {
1739                 /* Ignore db4, db5 */
1740                 if ((i == 4) || (i == 5))
1741                         continue;
1742
1743                 set_debugreg(0, i);
1744         }
1745 }
1746
1747 #ifdef CONFIG_KGDB
1748 /*
1749  * Restore debug regs if using kgdbwait and you have a kernel debugger
1750  * connection established.
1751  */
1752 static void dbg_restore_debug_regs(void)
1753 {
1754         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1755                 arch_kgdb_ops.correct_hw_break();
1756 }
1757 #else /* ! CONFIG_KGDB */
1758 #define dbg_restore_debug_regs()
1759 #endif /* ! CONFIG_KGDB */
1760
1761 static void wait_for_master_cpu(int cpu)
1762 {
1763 #ifdef CONFIG_SMP
1764         /*
1765          * wait for ACK from master CPU before continuing
1766          * with AP initialization
1767          */
1768         WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1769         while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1770                 cpu_relax();
1771 #endif
1772 }
1773
1774 #ifdef CONFIG_X86_64
1775 static inline void setup_getcpu(int cpu)
1776 {
1777         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1778         struct desc_struct d = { };
1779
1780         if (boot_cpu_has(X86_FEATURE_RDTSCP))
1781                 write_rdtscp_aux(cpudata);
1782
1783         /* Store CPU and node number in limit. */
1784         d.limit0 = cpudata;
1785         d.limit1 = cpudata >> 16;
1786
1787         d.type = 5;             /* RO data, expand down, accessed */
1788         d.dpl = 3;              /* Visible to user code */
1789         d.s = 1;                /* Not a system segment */
1790         d.p = 1;                /* Present */
1791         d.d = 1;                /* 32-bit */
1792
1793         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1794 }
1795
1796 static inline void ucode_cpu_init(int cpu)
1797 {
1798         if (cpu)
1799                 load_ucode_ap();
1800 }
1801
1802 static inline void tss_setup_ist(struct tss_struct *tss)
1803 {
1804         /* Set up the per-CPU TSS IST stacks */
1805         tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1806         tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1807         tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1808         tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1809 }
1810
1811 #else /* CONFIG_X86_64 */
1812
1813 static inline void setup_getcpu(int cpu) { }
1814
1815 static inline void ucode_cpu_init(int cpu)
1816 {
1817         show_ucode_info_early();
1818 }
1819
1820 static inline void tss_setup_ist(struct tss_struct *tss) { }
1821
1822 #endif /* !CONFIG_X86_64 */
1823
1824 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1825 {
1826         tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1827
1828 #ifdef CONFIG_X86_IOPL_IOPERM
1829         tss->io_bitmap.prev_max = 0;
1830         tss->io_bitmap.prev_sequence = 0;
1831         memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1832         /*
1833          * Invalidate the extra array entry past the end of the all
1834          * permission bitmap as required by the hardware.
1835          */
1836         tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1837 #endif
1838 }
1839
1840 /*
1841  * cpu_init() initializes state that is per-CPU. Some data is already
1842  * initialized (naturally) in the bootstrap process, such as the GDT
1843  * and IDT. We reload them nevertheless, this function acts as a
1844  * 'CPU state barrier', nothing should get across.
1845  */
1846 void cpu_init(void)
1847 {
1848         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1849         struct task_struct *cur = current;
1850         int cpu = raw_smp_processor_id();
1851
1852         wait_for_master_cpu(cpu);
1853
1854         ucode_cpu_init(cpu);
1855
1856 #ifdef CONFIG_NUMA
1857         if (this_cpu_read(numa_node) == 0 &&
1858             early_cpu_to_node(cpu) != NUMA_NO_NODE)
1859                 set_numa_node(early_cpu_to_node(cpu));
1860 #endif
1861         setup_getcpu(cpu);
1862
1863         pr_debug("Initializing CPU#%d\n", cpu);
1864
1865         if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1866             boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1867                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1868
1869         /*
1870          * Initialize the per-CPU GDT with the boot GDT,
1871          * and set up the GDT descriptor:
1872          */
1873         switch_to_new_gdt(cpu);
1874         load_current_idt();
1875
1876         if (IS_ENABLED(CONFIG_X86_64)) {
1877                 loadsegment(fs, 0);
1878                 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1879                 syscall_init();
1880
1881                 wrmsrl(MSR_FS_BASE, 0);
1882                 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1883                 barrier();
1884
1885                 x2apic_setup();
1886         }
1887
1888         mmgrab(&init_mm);
1889         cur->active_mm = &init_mm;
1890         BUG_ON(cur->mm);
1891         initialize_tlbstate_and_flush();
1892         enter_lazy_tlb(&init_mm, cur);
1893
1894         /* Initialize the TSS. */
1895         tss_setup_ist(tss);
1896         tss_setup_io_bitmap(tss);
1897         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1898
1899         load_TR_desc();
1900         /*
1901          * sp0 points to the entry trampoline stack regardless of what task
1902          * is running.
1903          */
1904         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1905
1906         load_mm_ldt(&init_mm);
1907
1908         clear_all_debug_regs();
1909         dbg_restore_debug_regs();
1910
1911         doublefault_init_cpu_tss();
1912
1913         fpu__init_cpu();
1914
1915         if (is_uv_system())
1916                 uv_cpu_init();
1917
1918         load_fixmap_gdt(cpu);
1919 }
1920
1921 /*
1922  * The microcode loader calls this upon late microcode load to recheck features,
1923  * only when microcode has been updated. Caller holds microcode_mutex and CPU
1924  * hotplug lock.
1925  */
1926 void microcode_check(void)
1927 {
1928         struct cpuinfo_x86 info;
1929
1930         perf_check_microcode();
1931
1932         /* Reload CPUID max function as it might've changed. */
1933         info.cpuid_level = cpuid_eax(0);
1934
1935         /*
1936          * Copy all capability leafs to pick up the synthetic ones so that
1937          * memcmp() below doesn't fail on that. The ones coming from CPUID will
1938          * get overwritten in get_cpu_cap().
1939          */
1940         memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1941
1942         get_cpu_cap(&info);
1943
1944         if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1945                 return;
1946
1947         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1948         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1949 }
1950
1951 /*
1952  * Invoked from core CPU hotplug code after hotplug operations
1953  */
1954 void arch_smt_update(void)
1955 {
1956         /* Handle the speculative execution misfeatures */
1957         cpu_bugs_smt_update();
1958         /* Check whether IPI broadcasting can be enabled */
1959         apic_smt_update();
1960 }