Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/hid/hid
[linux-2.6-microblaze.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/pgtable.h>
25
26 #include <asm/cmdline.h>
27 #include <asm/stackprotector.h>
28 #include <asm/perf_event.h>
29 #include <asm/mmu_context.h>
30 #include <asm/doublefault.h>
31 #include <asm/archrandom.h>
32 #include <asm/hypervisor.h>
33 #include <asm/processor.h>
34 #include <asm/tlbflush.h>
35 #include <asm/debugreg.h>
36 #include <asm/sections.h>
37 #include <asm/vsyscall.h>
38 #include <linux/topology.h>
39 #include <linux/cpumask.h>
40 #include <linux/atomic.h>
41 #include <asm/proto.h>
42 #include <asm/setup.h>
43 #include <asm/apic.h>
44 #include <asm/desc.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/mtrr.h>
47 #include <asm/hwcap2.h>
48 #include <linux/numa.h>
49 #include <asm/numa.h>
50 #include <asm/asm.h>
51 #include <asm/bugs.h>
52 #include <asm/cpu.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/memtype.h>
56 #include <asm/microcode.h>
57 #include <asm/microcode_intel.h>
58 #include <asm/intel-family.h>
59 #include <asm/cpu_device_id.h>
60 #include <asm/uv/uv.h>
61 #include <asm/sigframe.h>
62
63 #include "cpu.h"
64
65 u32 elf_hwcap2 __read_mostly;
66
67 /* all of these masks are initialized in setup_cpu_local_masks() */
68 cpumask_var_t cpu_initialized_mask;
69 cpumask_var_t cpu_callout_mask;
70 cpumask_var_t cpu_callin_mask;
71
72 /* representing cpus for which sibling maps can be computed */
73 cpumask_var_t cpu_sibling_setup_mask;
74
75 /* Number of siblings per CPU package */
76 int smp_num_siblings = 1;
77 EXPORT_SYMBOL(smp_num_siblings);
78
79 /* Last level cache ID of each logical CPU */
80 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
81
82 /* correctly size the local cpu masks */
83 void __init setup_cpu_local_masks(void)
84 {
85         alloc_bootmem_cpumask_var(&cpu_initialized_mask);
86         alloc_bootmem_cpumask_var(&cpu_callin_mask);
87         alloc_bootmem_cpumask_var(&cpu_callout_mask);
88         alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
89 }
90
91 static void default_init(struct cpuinfo_x86 *c)
92 {
93 #ifdef CONFIG_X86_64
94         cpu_detect_cache_sizes(c);
95 #else
96         /* Not much we can do here... */
97         /* Check if at least it has cpuid */
98         if (c->cpuid_level == -1) {
99                 /* No cpuid. It must be an ancient CPU */
100                 if (c->x86 == 4)
101                         strcpy(c->x86_model_id, "486");
102                 else if (c->x86 == 3)
103                         strcpy(c->x86_model_id, "386");
104         }
105 #endif
106 }
107
108 static const struct cpu_dev default_cpu = {
109         .c_init         = default_init,
110         .c_vendor       = "Unknown",
111         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
112 };
113
114 static const struct cpu_dev *this_cpu = &default_cpu;
115
116 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
117 #ifdef CONFIG_X86_64
118         /*
119          * We need valid kernel segments for data and code in long mode too
120          * IRET will check the segment types  kkeil 2000/10/28
121          * Also sysret mandates a special GDT layout
122          *
123          * TLS descriptors are currently at a different place compared to i386.
124          * Hopefully nobody expects them at a fixed place (Wine?)
125          */
126         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
127         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
128         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
129         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
130         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
131         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
132 #else
133         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
134         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
135         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
136         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
137         /*
138          * Segments used for calling PnP BIOS have byte granularity.
139          * They code segments and data segments have fixed 64k limits,
140          * the transfer segment sizes are set at run time.
141          */
142         /* 32-bit code */
143         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
144         /* 16-bit code */
145         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
146         /* 16-bit data */
147         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
148         /* 16-bit data */
149         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
150         /* 16-bit data */
151         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
152         /*
153          * The APM segments have byte granularity and their bases
154          * are set at run time.  All have 64k limits.
155          */
156         /* 32-bit code */
157         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
158         /* 16-bit code */
159         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
160         /* data */
161         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
162
163         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
164         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
165 #endif
166 } };
167 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
168
169 #ifdef CONFIG_X86_64
170 static int __init x86_nopcid_setup(char *s)
171 {
172         /* nopcid doesn't accept parameters */
173         if (s)
174                 return -EINVAL;
175
176         /* do not emit a message if the feature is not present */
177         if (!boot_cpu_has(X86_FEATURE_PCID))
178                 return 0;
179
180         setup_clear_cpu_cap(X86_FEATURE_PCID);
181         pr_info("nopcid: PCID feature disabled\n");
182         return 0;
183 }
184 early_param("nopcid", x86_nopcid_setup);
185 #endif
186
187 static int __init x86_noinvpcid_setup(char *s)
188 {
189         /* noinvpcid doesn't accept parameters */
190         if (s)
191                 return -EINVAL;
192
193         /* do not emit a message if the feature is not present */
194         if (!boot_cpu_has(X86_FEATURE_INVPCID))
195                 return 0;
196
197         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
198         pr_info("noinvpcid: INVPCID feature disabled\n");
199         return 0;
200 }
201 early_param("noinvpcid", x86_noinvpcid_setup);
202
203 #ifdef CONFIG_X86_32
204 static int cachesize_override = -1;
205 static int disable_x86_serial_nr = 1;
206
207 static int __init cachesize_setup(char *str)
208 {
209         get_option(&str, &cachesize_override);
210         return 1;
211 }
212 __setup("cachesize=", cachesize_setup);
213
214 static int __init x86_sep_setup(char *s)
215 {
216         setup_clear_cpu_cap(X86_FEATURE_SEP);
217         return 1;
218 }
219 __setup("nosep", x86_sep_setup);
220
221 /* Standard macro to see if a specific flag is changeable */
222 static inline int flag_is_changeable_p(u32 flag)
223 {
224         u32 f1, f2;
225
226         /*
227          * Cyrix and IDT cpus allow disabling of CPUID
228          * so the code below may return different results
229          * when it is executed before and after enabling
230          * the CPUID. Add "volatile" to not allow gcc to
231          * optimize the subsequent calls to this function.
232          */
233         asm volatile ("pushfl           \n\t"
234                       "pushfl           \n\t"
235                       "popl %0          \n\t"
236                       "movl %0, %1      \n\t"
237                       "xorl %2, %0      \n\t"
238                       "pushl %0         \n\t"
239                       "popfl            \n\t"
240                       "pushfl           \n\t"
241                       "popl %0          \n\t"
242                       "popfl            \n\t"
243
244                       : "=&r" (f1), "=&r" (f2)
245                       : "ir" (flag));
246
247         return ((f1^f2) & flag) != 0;
248 }
249
250 /* Probe for the CPUID instruction */
251 int have_cpuid_p(void)
252 {
253         return flag_is_changeable_p(X86_EFLAGS_ID);
254 }
255
256 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
257 {
258         unsigned long lo, hi;
259
260         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
261                 return;
262
263         /* Disable processor serial number: */
264
265         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
266         lo |= 0x200000;
267         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
268
269         pr_notice("CPU serial number disabled.\n");
270         clear_cpu_cap(c, X86_FEATURE_PN);
271
272         /* Disabling the serial number may affect the cpuid level */
273         c->cpuid_level = cpuid_eax(0);
274 }
275
276 static int __init x86_serial_nr_setup(char *s)
277 {
278         disable_x86_serial_nr = 0;
279         return 1;
280 }
281 __setup("serialnumber", x86_serial_nr_setup);
282 #else
283 static inline int flag_is_changeable_p(u32 flag)
284 {
285         return 1;
286 }
287 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
288 {
289 }
290 #endif
291
292 static __init int setup_disable_smep(char *arg)
293 {
294         setup_clear_cpu_cap(X86_FEATURE_SMEP);
295         return 1;
296 }
297 __setup("nosmep", setup_disable_smep);
298
299 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
300 {
301         if (cpu_has(c, X86_FEATURE_SMEP))
302                 cr4_set_bits(X86_CR4_SMEP);
303 }
304
305 static __init int setup_disable_smap(char *arg)
306 {
307         setup_clear_cpu_cap(X86_FEATURE_SMAP);
308         return 1;
309 }
310 __setup("nosmap", setup_disable_smap);
311
312 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
313 {
314         unsigned long eflags = native_save_fl();
315
316         /* This should have been cleared long ago */
317         BUG_ON(eflags & X86_EFLAGS_AC);
318
319         if (cpu_has(c, X86_FEATURE_SMAP)) {
320 #ifdef CONFIG_X86_SMAP
321                 cr4_set_bits(X86_CR4_SMAP);
322 #else
323                 cr4_clear_bits(X86_CR4_SMAP);
324 #endif
325         }
326 }
327
328 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
329 {
330         /* Check the boot processor, plus build option for UMIP. */
331         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
332                 goto out;
333
334         /* Check the current processor's cpuid bits. */
335         if (!cpu_has(c, X86_FEATURE_UMIP))
336                 goto out;
337
338         cr4_set_bits(X86_CR4_UMIP);
339
340         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
341
342         return;
343
344 out:
345         /*
346          * Make sure UMIP is disabled in case it was enabled in a
347          * previous boot (e.g., via kexec).
348          */
349         cr4_clear_bits(X86_CR4_UMIP);
350 }
351
352 /* These bits should not change their value after CPU init is finished. */
353 static const unsigned long cr4_pinned_mask =
354         X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
355 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
356 static unsigned long cr4_pinned_bits __ro_after_init;
357
358 void native_write_cr0(unsigned long val)
359 {
360         unsigned long bits_missing = 0;
361
362 set_register:
363         asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
364
365         if (static_branch_likely(&cr_pinning)) {
366                 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
367                         bits_missing = X86_CR0_WP;
368                         val |= bits_missing;
369                         goto set_register;
370                 }
371                 /* Warn after we've set the missing bits. */
372                 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
373         }
374 }
375 EXPORT_SYMBOL(native_write_cr0);
376
377 void native_write_cr4(unsigned long val)
378 {
379         unsigned long bits_changed = 0;
380
381 set_register:
382         asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
383
384         if (static_branch_likely(&cr_pinning)) {
385                 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
386                         bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
387                         val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
388                         goto set_register;
389                 }
390                 /* Warn after we've corrected the changed bits. */
391                 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
392                           bits_changed);
393         }
394 }
395 #if IS_MODULE(CONFIG_LKDTM)
396 EXPORT_SYMBOL_GPL(native_write_cr4);
397 #endif
398
399 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
400 {
401         unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
402
403         lockdep_assert_irqs_disabled();
404
405         newval = (cr4 & ~clear) | set;
406         if (newval != cr4) {
407                 this_cpu_write(cpu_tlbstate.cr4, newval);
408                 __write_cr4(newval);
409         }
410 }
411 EXPORT_SYMBOL(cr4_update_irqsoff);
412
413 /* Read the CR4 shadow. */
414 unsigned long cr4_read_shadow(void)
415 {
416         return this_cpu_read(cpu_tlbstate.cr4);
417 }
418 EXPORT_SYMBOL_GPL(cr4_read_shadow);
419
420 void cr4_init(void)
421 {
422         unsigned long cr4 = __read_cr4();
423
424         if (boot_cpu_has(X86_FEATURE_PCID))
425                 cr4 |= X86_CR4_PCIDE;
426         if (static_branch_likely(&cr_pinning))
427                 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
428
429         __write_cr4(cr4);
430
431         /* Initialize cr4 shadow for this CPU. */
432         this_cpu_write(cpu_tlbstate.cr4, cr4);
433 }
434
435 /*
436  * Once CPU feature detection is finished (and boot params have been
437  * parsed), record any of the sensitive CR bits that are set, and
438  * enable CR pinning.
439  */
440 static void __init setup_cr_pinning(void)
441 {
442         cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
443         static_key_enable(&cr_pinning.key);
444 }
445
446 static __init int x86_nofsgsbase_setup(char *arg)
447 {
448         /* Require an exact match without trailing characters. */
449         if (strlen(arg))
450                 return 0;
451
452         /* Do not emit a message if the feature is not present. */
453         if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
454                 return 1;
455
456         setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
457         pr_info("FSGSBASE disabled via kernel command line\n");
458         return 1;
459 }
460 __setup("nofsgsbase", x86_nofsgsbase_setup);
461
462 /*
463  * Protection Keys are not available in 32-bit mode.
464  */
465 static bool pku_disabled;
466
467 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
468 {
469         if (c == &boot_cpu_data) {
470                 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
471                         return;
472                 /*
473                  * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
474                  * bit to be set.  Enforce it.
475                  */
476                 setup_force_cpu_cap(X86_FEATURE_OSPKE);
477
478         } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
479                 return;
480         }
481
482         cr4_set_bits(X86_CR4_PKE);
483         /* Load the default PKRU value */
484         pkru_write_default();
485 }
486
487 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
488 static __init int setup_disable_pku(char *arg)
489 {
490         /*
491          * Do not clear the X86_FEATURE_PKU bit.  All of the
492          * runtime checks are against OSPKE so clearing the
493          * bit does nothing.
494          *
495          * This way, we will see "pku" in cpuinfo, but not
496          * "ospke", which is exactly what we want.  It shows
497          * that the CPU has PKU, but the OS has not enabled it.
498          * This happens to be exactly how a system would look
499          * if we disabled the config option.
500          */
501         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
502         pku_disabled = true;
503         return 1;
504 }
505 __setup("nopku", setup_disable_pku);
506 #endif /* CONFIG_X86_64 */
507
508 /*
509  * Some CPU features depend on higher CPUID levels, which may not always
510  * be available due to CPUID level capping or broken virtualization
511  * software.  Add those features to this table to auto-disable them.
512  */
513 struct cpuid_dependent_feature {
514         u32 feature;
515         u32 level;
516 };
517
518 static const struct cpuid_dependent_feature
519 cpuid_dependent_features[] = {
520         { X86_FEATURE_MWAIT,            0x00000005 },
521         { X86_FEATURE_DCA,              0x00000009 },
522         { X86_FEATURE_XSAVE,            0x0000000d },
523         { 0, 0 }
524 };
525
526 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
527 {
528         const struct cpuid_dependent_feature *df;
529
530         for (df = cpuid_dependent_features; df->feature; df++) {
531
532                 if (!cpu_has(c, df->feature))
533                         continue;
534                 /*
535                  * Note: cpuid_level is set to -1 if unavailable, but
536                  * extended_extended_level is set to 0 if unavailable
537                  * and the legitimate extended levels are all negative
538                  * when signed; hence the weird messing around with
539                  * signs here...
540                  */
541                 if (!((s32)df->level < 0 ?
542                      (u32)df->level > (u32)c->extended_cpuid_level :
543                      (s32)df->level > (s32)c->cpuid_level))
544                         continue;
545
546                 clear_cpu_cap(c, df->feature);
547                 if (!warn)
548                         continue;
549
550                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
551                         x86_cap_flag(df->feature), df->level);
552         }
553 }
554
555 /*
556  * Naming convention should be: <Name> [(<Codename>)]
557  * This table only is used unless init_<vendor>() below doesn't set it;
558  * in particular, if CPUID levels 0x80000002..4 are supported, this
559  * isn't used
560  */
561
562 /* Look up CPU names by table lookup. */
563 static const char *table_lookup_model(struct cpuinfo_x86 *c)
564 {
565 #ifdef CONFIG_X86_32
566         const struct legacy_cpu_model_info *info;
567
568         if (c->x86_model >= 16)
569                 return NULL;    /* Range check */
570
571         if (!this_cpu)
572                 return NULL;
573
574         info = this_cpu->legacy_models;
575
576         while (info->family) {
577                 if (info->family == c->x86)
578                         return info->model_names[c->x86_model];
579                 info++;
580         }
581 #endif
582         return NULL;            /* Not found */
583 }
584
585 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
586 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
587 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
588
589 void load_percpu_segment(int cpu)
590 {
591 #ifdef CONFIG_X86_32
592         loadsegment(fs, __KERNEL_PERCPU);
593 #else
594         __loadsegment_simple(gs, 0);
595         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
596 #endif
597 }
598
599 #ifdef CONFIG_X86_32
600 /* The 32-bit entry code needs to find cpu_entry_area. */
601 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
602 #endif
603
604 /* Load the original GDT from the per-cpu structure */
605 void load_direct_gdt(int cpu)
606 {
607         struct desc_ptr gdt_descr;
608
609         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
610         gdt_descr.size = GDT_SIZE - 1;
611         load_gdt(&gdt_descr);
612 }
613 EXPORT_SYMBOL_GPL(load_direct_gdt);
614
615 /* Load a fixmap remapping of the per-cpu GDT */
616 void load_fixmap_gdt(int cpu)
617 {
618         struct desc_ptr gdt_descr;
619
620         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
621         gdt_descr.size = GDT_SIZE - 1;
622         load_gdt(&gdt_descr);
623 }
624 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
625
626 /*
627  * Current gdt points %fs at the "master" per-cpu area: after this,
628  * it's on the real one.
629  */
630 void switch_to_new_gdt(int cpu)
631 {
632         /* Load the original GDT */
633         load_direct_gdt(cpu);
634         /* Reload the per-cpu base */
635         load_percpu_segment(cpu);
636 }
637
638 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
639
640 static void get_model_name(struct cpuinfo_x86 *c)
641 {
642         unsigned int *v;
643         char *p, *q, *s;
644
645         if (c->extended_cpuid_level < 0x80000004)
646                 return;
647
648         v = (unsigned int *)c->x86_model_id;
649         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
650         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
651         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
652         c->x86_model_id[48] = 0;
653
654         /* Trim whitespace */
655         p = q = s = &c->x86_model_id[0];
656
657         while (*p == ' ')
658                 p++;
659
660         while (*p) {
661                 /* Note the last non-whitespace index */
662                 if (!isspace(*p))
663                         s = q;
664
665                 *q++ = *p++;
666         }
667
668         *(s + 1) = '\0';
669 }
670
671 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
672 {
673         unsigned int eax, ebx, ecx, edx;
674
675         c->x86_max_cores = 1;
676         if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
677                 return;
678
679         cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
680         if (eax & 0x1f)
681                 c->x86_max_cores = (eax >> 26) + 1;
682 }
683
684 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
685 {
686         unsigned int n, dummy, ebx, ecx, edx, l2size;
687
688         n = c->extended_cpuid_level;
689
690         if (n >= 0x80000005) {
691                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
692                 c->x86_cache_size = (ecx>>24) + (edx>>24);
693 #ifdef CONFIG_X86_64
694                 /* On K8 L1 TLB is inclusive, so don't count it */
695                 c->x86_tlbsize = 0;
696 #endif
697         }
698
699         if (n < 0x80000006)     /* Some chips just has a large L1. */
700                 return;
701
702         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
703         l2size = ecx >> 16;
704
705 #ifdef CONFIG_X86_64
706         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
707 #else
708         /* do processor-specific cache resizing */
709         if (this_cpu->legacy_cache_size)
710                 l2size = this_cpu->legacy_cache_size(c, l2size);
711
712         /* Allow user to override all this if necessary. */
713         if (cachesize_override != -1)
714                 l2size = cachesize_override;
715
716         if (l2size == 0)
717                 return;         /* Again, no L2 cache is possible */
718 #endif
719
720         c->x86_cache_size = l2size;
721 }
722
723 u16 __read_mostly tlb_lli_4k[NR_INFO];
724 u16 __read_mostly tlb_lli_2m[NR_INFO];
725 u16 __read_mostly tlb_lli_4m[NR_INFO];
726 u16 __read_mostly tlb_lld_4k[NR_INFO];
727 u16 __read_mostly tlb_lld_2m[NR_INFO];
728 u16 __read_mostly tlb_lld_4m[NR_INFO];
729 u16 __read_mostly tlb_lld_1g[NR_INFO];
730
731 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
732 {
733         if (this_cpu->c_detect_tlb)
734                 this_cpu->c_detect_tlb(c);
735
736         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
737                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
738                 tlb_lli_4m[ENTRIES]);
739
740         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
741                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
742                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
743 }
744
745 int detect_ht_early(struct cpuinfo_x86 *c)
746 {
747 #ifdef CONFIG_SMP
748         u32 eax, ebx, ecx, edx;
749
750         if (!cpu_has(c, X86_FEATURE_HT))
751                 return -1;
752
753         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
754                 return -1;
755
756         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
757                 return -1;
758
759         cpuid(1, &eax, &ebx, &ecx, &edx);
760
761         smp_num_siblings = (ebx & 0xff0000) >> 16;
762         if (smp_num_siblings == 1)
763                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
764 #endif
765         return 0;
766 }
767
768 void detect_ht(struct cpuinfo_x86 *c)
769 {
770 #ifdef CONFIG_SMP
771         int index_msb, core_bits;
772
773         if (detect_ht_early(c) < 0)
774                 return;
775
776         index_msb = get_count_order(smp_num_siblings);
777         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
778
779         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
780
781         index_msb = get_count_order(smp_num_siblings);
782
783         core_bits = get_count_order(c->x86_max_cores);
784
785         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
786                                        ((1 << core_bits) - 1);
787 #endif
788 }
789
790 static void get_cpu_vendor(struct cpuinfo_x86 *c)
791 {
792         char *v = c->x86_vendor_id;
793         int i;
794
795         for (i = 0; i < X86_VENDOR_NUM; i++) {
796                 if (!cpu_devs[i])
797                         break;
798
799                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
800                     (cpu_devs[i]->c_ident[1] &&
801                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
802
803                         this_cpu = cpu_devs[i];
804                         c->x86_vendor = this_cpu->c_x86_vendor;
805                         return;
806                 }
807         }
808
809         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
810                     "CPU: Your system may be unstable.\n", v);
811
812         c->x86_vendor = X86_VENDOR_UNKNOWN;
813         this_cpu = &default_cpu;
814 }
815
816 void cpu_detect(struct cpuinfo_x86 *c)
817 {
818         /* Get vendor name */
819         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
820               (unsigned int *)&c->x86_vendor_id[0],
821               (unsigned int *)&c->x86_vendor_id[8],
822               (unsigned int *)&c->x86_vendor_id[4]);
823
824         c->x86 = 4;
825         /* Intel-defined flags: level 0x00000001 */
826         if (c->cpuid_level >= 0x00000001) {
827                 u32 junk, tfms, cap0, misc;
828
829                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
830                 c->x86          = x86_family(tfms);
831                 c->x86_model    = x86_model(tfms);
832                 c->x86_stepping = x86_stepping(tfms);
833
834                 if (cap0 & (1<<19)) {
835                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
836                         c->x86_cache_alignment = c->x86_clflush_size;
837                 }
838         }
839 }
840
841 static void apply_forced_caps(struct cpuinfo_x86 *c)
842 {
843         int i;
844
845         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
846                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
847                 c->x86_capability[i] |= cpu_caps_set[i];
848         }
849 }
850
851 static void init_speculation_control(struct cpuinfo_x86 *c)
852 {
853         /*
854          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
855          * and they also have a different bit for STIBP support. Also,
856          * a hypervisor might have set the individual AMD bits even on
857          * Intel CPUs, for finer-grained selection of what's available.
858          */
859         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
860                 set_cpu_cap(c, X86_FEATURE_IBRS);
861                 set_cpu_cap(c, X86_FEATURE_IBPB);
862                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
863         }
864
865         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
866                 set_cpu_cap(c, X86_FEATURE_STIBP);
867
868         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
869             cpu_has(c, X86_FEATURE_VIRT_SSBD))
870                 set_cpu_cap(c, X86_FEATURE_SSBD);
871
872         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
873                 set_cpu_cap(c, X86_FEATURE_IBRS);
874                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
875         }
876
877         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
878                 set_cpu_cap(c, X86_FEATURE_IBPB);
879
880         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
881                 set_cpu_cap(c, X86_FEATURE_STIBP);
882                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
883         }
884
885         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
886                 set_cpu_cap(c, X86_FEATURE_SSBD);
887                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
888                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
889         }
890 }
891
892 void get_cpu_cap(struct cpuinfo_x86 *c)
893 {
894         u32 eax, ebx, ecx, edx;
895
896         /* Intel-defined flags: level 0x00000001 */
897         if (c->cpuid_level >= 0x00000001) {
898                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
899
900                 c->x86_capability[CPUID_1_ECX] = ecx;
901                 c->x86_capability[CPUID_1_EDX] = edx;
902         }
903
904         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
905         if (c->cpuid_level >= 0x00000006)
906                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
907
908         /* Additional Intel-defined flags: level 0x00000007 */
909         if (c->cpuid_level >= 0x00000007) {
910                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
911                 c->x86_capability[CPUID_7_0_EBX] = ebx;
912                 c->x86_capability[CPUID_7_ECX] = ecx;
913                 c->x86_capability[CPUID_7_EDX] = edx;
914
915                 /* Check valid sub-leaf index before accessing it */
916                 if (eax >= 1) {
917                         cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
918                         c->x86_capability[CPUID_7_1_EAX] = eax;
919                 }
920         }
921
922         /* Extended state features: level 0x0000000d */
923         if (c->cpuid_level >= 0x0000000d) {
924                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
925
926                 c->x86_capability[CPUID_D_1_EAX] = eax;
927         }
928
929         /* AMD-defined flags: level 0x80000001 */
930         eax = cpuid_eax(0x80000000);
931         c->extended_cpuid_level = eax;
932
933         if ((eax & 0xffff0000) == 0x80000000) {
934                 if (eax >= 0x80000001) {
935                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
936
937                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
938                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
939                 }
940         }
941
942         if (c->extended_cpuid_level >= 0x80000007) {
943                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
944
945                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
946                 c->x86_power = edx;
947         }
948
949         if (c->extended_cpuid_level >= 0x80000008) {
950                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
951                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
952         }
953
954         if (c->extended_cpuid_level >= 0x8000000a)
955                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
956
957         if (c->extended_cpuid_level >= 0x8000001f)
958                 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
959
960         init_scattered_cpuid_features(c);
961         init_speculation_control(c);
962
963         /*
964          * Clear/Set all flags overridden by options, after probe.
965          * This needs to happen each time we re-probe, which may happen
966          * several times during CPU initialization.
967          */
968         apply_forced_caps(c);
969 }
970
971 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
972 {
973         u32 eax, ebx, ecx, edx;
974
975         if (c->extended_cpuid_level >= 0x80000008) {
976                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
977
978                 c->x86_virt_bits = (eax >> 8) & 0xff;
979                 c->x86_phys_bits = eax & 0xff;
980         }
981 #ifdef CONFIG_X86_32
982         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
983                 c->x86_phys_bits = 36;
984 #endif
985         c->x86_cache_bits = c->x86_phys_bits;
986 }
987
988 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
989 {
990 #ifdef CONFIG_X86_32
991         int i;
992
993         /*
994          * First of all, decide if this is a 486 or higher
995          * It's a 486 if we can modify the AC flag
996          */
997         if (flag_is_changeable_p(X86_EFLAGS_AC))
998                 c->x86 = 4;
999         else
1000                 c->x86 = 3;
1001
1002         for (i = 0; i < X86_VENDOR_NUM; i++)
1003                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1004                         c->x86_vendor_id[0] = 0;
1005                         cpu_devs[i]->c_identify(c);
1006                         if (c->x86_vendor_id[0]) {
1007                                 get_cpu_vendor(c);
1008                                 break;
1009                         }
1010                 }
1011 #endif
1012 }
1013
1014 #define NO_SPECULATION          BIT(0)
1015 #define NO_MELTDOWN             BIT(1)
1016 #define NO_SSB                  BIT(2)
1017 #define NO_L1TF                 BIT(3)
1018 #define NO_MDS                  BIT(4)
1019 #define MSBDS_ONLY              BIT(5)
1020 #define NO_SWAPGS               BIT(6)
1021 #define NO_ITLB_MULTIHIT        BIT(7)
1022 #define NO_SPECTRE_V2           BIT(8)
1023
1024 #define VULNWL(vendor, family, model, whitelist)        \
1025         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1026
1027 #define VULNWL_INTEL(model, whitelist)          \
1028         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1029
1030 #define VULNWL_AMD(family, whitelist)           \
1031         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1032
1033 #define VULNWL_HYGON(family, whitelist)         \
1034         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1035
1036 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1037         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1038         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1039         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1040         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1041
1042         /* Intel Family 6 */
1043         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
1044         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1045         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
1046         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
1047         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
1048
1049         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1050         VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1051         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1052         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1053         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1054         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1055
1056         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
1057
1058         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1059         VULNWL_INTEL(ATOM_AIRMONT_NP,           NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1060
1061         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1062         VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1063         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064
1065         /*
1066          * Technically, swapgs isn't serializing on AMD (despite it previously
1067          * being documented as such in the APM).  But according to AMD, %gs is
1068          * updated non-speculatively, and the issuing of %gs-relative memory
1069          * operands will be blocked until the %gs update completes, which is
1070          * good enough for our purposes.
1071          */
1072
1073         VULNWL_INTEL(ATOM_TREMONT_D,            NO_ITLB_MULTIHIT),
1074
1075         /* AMD Family 0xf - 0x12 */
1076         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1077         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1078         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1079         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1080
1081         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1082         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1083         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1084
1085         /* Zhaoxin Family 7 */
1086         VULNWL(CENTAUR, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1087         VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1088         {}
1089 };
1090
1091 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
1092         X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
1093                                             INTEL_FAM6_##model, steppings, \
1094                                             X86_FEATURE_ANY, issues)
1095
1096 #define SRBDS           BIT(0)
1097
1098 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1099         VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
1100         VULNBL_INTEL_STEPPINGS(HASWELL,         X86_STEPPING_ANY,               SRBDS),
1101         VULNBL_INTEL_STEPPINGS(HASWELL_L,       X86_STEPPING_ANY,               SRBDS),
1102         VULNBL_INTEL_STEPPINGS(HASWELL_G,       X86_STEPPING_ANY,               SRBDS),
1103         VULNBL_INTEL_STEPPINGS(BROADWELL_G,     X86_STEPPING_ANY,               SRBDS),
1104         VULNBL_INTEL_STEPPINGS(BROADWELL,       X86_STEPPING_ANY,               SRBDS),
1105         VULNBL_INTEL_STEPPINGS(SKYLAKE_L,       X86_STEPPING_ANY,               SRBDS),
1106         VULNBL_INTEL_STEPPINGS(SKYLAKE,         X86_STEPPING_ANY,               SRBDS),
1107         VULNBL_INTEL_STEPPINGS(KABYLAKE_L,      X86_STEPPINGS(0x0, 0xC),        SRBDS),
1108         VULNBL_INTEL_STEPPINGS(KABYLAKE,        X86_STEPPINGS(0x0, 0xD),        SRBDS),
1109         {}
1110 };
1111
1112 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1113 {
1114         const struct x86_cpu_id *m = x86_match_cpu(table);
1115
1116         return m && !!(m->driver_data & which);
1117 }
1118
1119 u64 x86_read_arch_cap_msr(void)
1120 {
1121         u64 ia32_cap = 0;
1122
1123         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1124                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1125
1126         return ia32_cap;
1127 }
1128
1129 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1130 {
1131         u64 ia32_cap = x86_read_arch_cap_msr();
1132
1133         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1134         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1135             !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1136                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1137
1138         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1139                 return;
1140
1141         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1142
1143         if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1144                 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1145
1146         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1147             !(ia32_cap & ARCH_CAP_SSB_NO) &&
1148            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1149                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1150
1151         if (ia32_cap & ARCH_CAP_IBRS_ALL)
1152                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1153
1154         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1155             !(ia32_cap & ARCH_CAP_MDS_NO)) {
1156                 setup_force_cpu_bug(X86_BUG_MDS);
1157                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1158                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1159         }
1160
1161         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1162                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1163
1164         /*
1165          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1166          *      - TSX is supported or
1167          *      - TSX_CTRL is present
1168          *
1169          * TSX_CTRL check is needed for cases when TSX could be disabled before
1170          * the kernel boot e.g. kexec.
1171          * TSX_CTRL check alone is not sufficient for cases when the microcode
1172          * update is not present or running as guest that don't get TSX_CTRL.
1173          */
1174         if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1175             (cpu_has(c, X86_FEATURE_RTM) ||
1176              (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1177                 setup_force_cpu_bug(X86_BUG_TAA);
1178
1179         /*
1180          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1181          * in the vulnerability blacklist.
1182          */
1183         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1184              cpu_has(c, X86_FEATURE_RDSEED)) &&
1185             cpu_matches(cpu_vuln_blacklist, SRBDS))
1186                     setup_force_cpu_bug(X86_BUG_SRBDS);
1187
1188         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1189                 return;
1190
1191         /* Rogue Data Cache Load? No! */
1192         if (ia32_cap & ARCH_CAP_RDCL_NO)
1193                 return;
1194
1195         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1196
1197         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1198                 return;
1199
1200         setup_force_cpu_bug(X86_BUG_L1TF);
1201 }
1202
1203 /*
1204  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1205  * unfortunately, that's not true in practice because of early VIA
1206  * chips and (more importantly) broken virtualizers that are not easy
1207  * to detect. In the latter case it doesn't even *fail* reliably, so
1208  * probing for it doesn't even work. Disable it completely on 32-bit
1209  * unless we can find a reliable way to detect all the broken cases.
1210  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1211  */
1212 static void detect_nopl(void)
1213 {
1214 #ifdef CONFIG_X86_32
1215         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1216 #else
1217         setup_force_cpu_cap(X86_FEATURE_NOPL);
1218 #endif
1219 }
1220
1221 /*
1222  * We parse cpu parameters early because fpu__init_system() is executed
1223  * before parse_early_param().
1224  */
1225 static void __init cpu_parse_early_param(void)
1226 {
1227         char arg[128];
1228         char *argptr = arg;
1229         int arglen, res, bit;
1230
1231 #ifdef CONFIG_X86_32
1232         if (cmdline_find_option_bool(boot_command_line, "no387"))
1233 #ifdef CONFIG_MATH_EMULATION
1234                 setup_clear_cpu_cap(X86_FEATURE_FPU);
1235 #else
1236                 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1237 #endif
1238
1239         if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1240                 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1241 #endif
1242
1243         if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1244                 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1245
1246         if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1247                 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1248
1249         if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1250                 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1251
1252         arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1253         if (arglen <= 0)
1254                 return;
1255
1256         pr_info("Clearing CPUID bits:");
1257         do {
1258                 res = get_option(&argptr, &bit);
1259                 if (res == 0 || res == 3)
1260                         break;
1261
1262                 /* If the argument was too long, the last bit may be cut off */
1263                 if (res == 1 && arglen >= sizeof(arg))
1264                         break;
1265
1266                 if (bit >= 0 && bit < NCAPINTS * 32) {
1267                         pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1268                         setup_clear_cpu_cap(bit);
1269                 }
1270         } while (res == 2);
1271         pr_cont("\n");
1272 }
1273
1274 /*
1275  * Do minimum CPU detection early.
1276  * Fields really needed: vendor, cpuid_level, family, model, mask,
1277  * cache alignment.
1278  * The others are not touched to avoid unwanted side effects.
1279  *
1280  * WARNING: this function is only called on the boot CPU.  Don't add code
1281  * here that is supposed to run on all CPUs.
1282  */
1283 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1284 {
1285 #ifdef CONFIG_X86_64
1286         c->x86_clflush_size = 64;
1287         c->x86_phys_bits = 36;
1288         c->x86_virt_bits = 48;
1289 #else
1290         c->x86_clflush_size = 32;
1291         c->x86_phys_bits = 32;
1292         c->x86_virt_bits = 32;
1293 #endif
1294         c->x86_cache_alignment = c->x86_clflush_size;
1295
1296         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1297         c->extended_cpuid_level = 0;
1298
1299         if (!have_cpuid_p())
1300                 identify_cpu_without_cpuid(c);
1301
1302         /* cyrix could have cpuid enabled via c_identify()*/
1303         if (have_cpuid_p()) {
1304                 cpu_detect(c);
1305                 get_cpu_vendor(c);
1306                 get_cpu_cap(c);
1307                 get_cpu_address_sizes(c);
1308                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1309                 cpu_parse_early_param();
1310
1311                 if (this_cpu->c_early_init)
1312                         this_cpu->c_early_init(c);
1313
1314                 c->cpu_index = 0;
1315                 filter_cpuid_features(c, false);
1316
1317                 if (this_cpu->c_bsp_init)
1318                         this_cpu->c_bsp_init(c);
1319         } else {
1320                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1321         }
1322
1323         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1324
1325         cpu_set_bug_bits(c);
1326
1327         sld_setup(c);
1328
1329         fpu__init_system(c);
1330
1331         init_sigframe_size();
1332
1333 #ifdef CONFIG_X86_32
1334         /*
1335          * Regardless of whether PCID is enumerated, the SDM says
1336          * that it can't be enabled in 32-bit mode.
1337          */
1338         setup_clear_cpu_cap(X86_FEATURE_PCID);
1339 #endif
1340
1341         /*
1342          * Later in the boot process pgtable_l5_enabled() relies on
1343          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1344          * enabled by this point we need to clear the feature bit to avoid
1345          * false-positives at the later stage.
1346          *
1347          * pgtable_l5_enabled() can be false here for several reasons:
1348          *  - 5-level paging is disabled compile-time;
1349          *  - it's 32-bit kernel;
1350          *  - machine doesn't support 5-level paging;
1351          *  - user specified 'no5lvl' in kernel command line.
1352          */
1353         if (!pgtable_l5_enabled())
1354                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1355
1356         detect_nopl();
1357 }
1358
1359 void __init early_cpu_init(void)
1360 {
1361         const struct cpu_dev *const *cdev;
1362         int count = 0;
1363
1364 #ifdef CONFIG_PROCESSOR_SELECT
1365         pr_info("KERNEL supported cpus:\n");
1366 #endif
1367
1368         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1369                 const struct cpu_dev *cpudev = *cdev;
1370
1371                 if (count >= X86_VENDOR_NUM)
1372                         break;
1373                 cpu_devs[count] = cpudev;
1374                 count++;
1375
1376 #ifdef CONFIG_PROCESSOR_SELECT
1377                 {
1378                         unsigned int j;
1379
1380                         for (j = 0; j < 2; j++) {
1381                                 if (!cpudev->c_ident[j])
1382                                         continue;
1383                                 pr_info("  %s %s\n", cpudev->c_vendor,
1384                                         cpudev->c_ident[j]);
1385                         }
1386                 }
1387 #endif
1388         }
1389         early_identify_cpu(&boot_cpu_data);
1390 }
1391
1392 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1393 {
1394 #ifdef CONFIG_X86_64
1395         /*
1396          * Empirically, writing zero to a segment selector on AMD does
1397          * not clear the base, whereas writing zero to a segment
1398          * selector on Intel does clear the base.  Intel's behavior
1399          * allows slightly faster context switches in the common case
1400          * where GS is unused by the prev and next threads.
1401          *
1402          * Since neither vendor documents this anywhere that I can see,
1403          * detect it directly instead of hard-coding the choice by
1404          * vendor.
1405          *
1406          * I've designated AMD's behavior as the "bug" because it's
1407          * counterintuitive and less friendly.
1408          */
1409
1410         unsigned long old_base, tmp;
1411         rdmsrl(MSR_FS_BASE, old_base);
1412         wrmsrl(MSR_FS_BASE, 1);
1413         loadsegment(fs, 0);
1414         rdmsrl(MSR_FS_BASE, tmp);
1415         if (tmp != 0)
1416                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1417         wrmsrl(MSR_FS_BASE, old_base);
1418 #endif
1419 }
1420
1421 static void generic_identify(struct cpuinfo_x86 *c)
1422 {
1423         c->extended_cpuid_level = 0;
1424
1425         if (!have_cpuid_p())
1426                 identify_cpu_without_cpuid(c);
1427
1428         /* cyrix could have cpuid enabled via c_identify()*/
1429         if (!have_cpuid_p())
1430                 return;
1431
1432         cpu_detect(c);
1433
1434         get_cpu_vendor(c);
1435
1436         get_cpu_cap(c);
1437
1438         get_cpu_address_sizes(c);
1439
1440         if (c->cpuid_level >= 0x00000001) {
1441                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1442 #ifdef CONFIG_X86_32
1443 # ifdef CONFIG_SMP
1444                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1445 # else
1446                 c->apicid = c->initial_apicid;
1447 # endif
1448 #endif
1449                 c->phys_proc_id = c->initial_apicid;
1450         }
1451
1452         get_model_name(c); /* Default name */
1453
1454         detect_null_seg_behavior(c);
1455
1456         /*
1457          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1458          * systems that run Linux at CPL > 0 may or may not have the
1459          * issue, but, even if they have the issue, there's absolutely
1460          * nothing we can do about it because we can't use the real IRET
1461          * instruction.
1462          *
1463          * NB: For the time being, only 32-bit kernels support
1464          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1465          * whether to apply espfix using paravirt hooks.  If any
1466          * non-paravirt system ever shows up that does *not* have the
1467          * ESPFIX issue, we can change this.
1468          */
1469 #ifdef CONFIG_X86_32
1470         set_cpu_bug(c, X86_BUG_ESPFIX);
1471 #endif
1472 }
1473
1474 /*
1475  * Validate that ACPI/mptables have the same information about the
1476  * effective APIC id and update the package map.
1477  */
1478 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1479 {
1480 #ifdef CONFIG_SMP
1481         unsigned int apicid, cpu = smp_processor_id();
1482
1483         apicid = apic->cpu_present_to_apicid(cpu);
1484
1485         if (apicid != c->apicid) {
1486                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1487                        cpu, apicid, c->initial_apicid);
1488         }
1489         BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1490         BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1491 #else
1492         c->logical_proc_id = 0;
1493 #endif
1494 }
1495
1496 /*
1497  * This does the hard work of actually picking apart the CPU stuff...
1498  */
1499 static void identify_cpu(struct cpuinfo_x86 *c)
1500 {
1501         int i;
1502
1503         c->loops_per_jiffy = loops_per_jiffy;
1504         c->x86_cache_size = 0;
1505         c->x86_vendor = X86_VENDOR_UNKNOWN;
1506         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1507         c->x86_vendor_id[0] = '\0'; /* Unset */
1508         c->x86_model_id[0] = '\0';  /* Unset */
1509         c->x86_max_cores = 1;
1510         c->x86_coreid_bits = 0;
1511         c->cu_id = 0xff;
1512 #ifdef CONFIG_X86_64
1513         c->x86_clflush_size = 64;
1514         c->x86_phys_bits = 36;
1515         c->x86_virt_bits = 48;
1516 #else
1517         c->cpuid_level = -1;    /* CPUID not detected */
1518         c->x86_clflush_size = 32;
1519         c->x86_phys_bits = 32;
1520         c->x86_virt_bits = 32;
1521 #endif
1522         c->x86_cache_alignment = c->x86_clflush_size;
1523         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1524 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1525         memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1526 #endif
1527
1528         generic_identify(c);
1529
1530         if (this_cpu->c_identify)
1531                 this_cpu->c_identify(c);
1532
1533         /* Clear/Set all flags overridden by options, after probe */
1534         apply_forced_caps(c);
1535
1536 #ifdef CONFIG_X86_64
1537         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1538 #endif
1539
1540         /*
1541          * Vendor-specific initialization.  In this section we
1542          * canonicalize the feature flags, meaning if there are
1543          * features a certain CPU supports which CPUID doesn't
1544          * tell us, CPUID claiming incorrect flags, or other bugs,
1545          * we handle them here.
1546          *
1547          * At the end of this section, c->x86_capability better
1548          * indicate the features this CPU genuinely supports!
1549          */
1550         if (this_cpu->c_init)
1551                 this_cpu->c_init(c);
1552
1553         /* Disable the PN if appropriate */
1554         squash_the_stupid_serial_number(c);
1555
1556         /* Set up SMEP/SMAP/UMIP */
1557         setup_smep(c);
1558         setup_smap(c);
1559         setup_umip(c);
1560
1561         /* Enable FSGSBASE instructions if available. */
1562         if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1563                 cr4_set_bits(X86_CR4_FSGSBASE);
1564                 elf_hwcap2 |= HWCAP2_FSGSBASE;
1565         }
1566
1567         /*
1568          * The vendor-specific functions might have changed features.
1569          * Now we do "generic changes."
1570          */
1571
1572         /* Filter out anything that depends on CPUID levels we don't have */
1573         filter_cpuid_features(c, true);
1574
1575         /* If the model name is still unset, do table lookup. */
1576         if (!c->x86_model_id[0]) {
1577                 const char *p;
1578                 p = table_lookup_model(c);
1579                 if (p)
1580                         strcpy(c->x86_model_id, p);
1581                 else
1582                         /* Last resort... */
1583                         sprintf(c->x86_model_id, "%02x/%02x",
1584                                 c->x86, c->x86_model);
1585         }
1586
1587 #ifdef CONFIG_X86_64
1588         detect_ht(c);
1589 #endif
1590
1591         x86_init_rdrand(c);
1592         setup_pku(c);
1593
1594         /*
1595          * Clear/Set all flags overridden by options, need do it
1596          * before following smp all cpus cap AND.
1597          */
1598         apply_forced_caps(c);
1599
1600         /*
1601          * On SMP, boot_cpu_data holds the common feature set between
1602          * all CPUs; so make sure that we indicate which features are
1603          * common between the CPUs.  The first time this routine gets
1604          * executed, c == &boot_cpu_data.
1605          */
1606         if (c != &boot_cpu_data) {
1607                 /* AND the already accumulated flags with these */
1608                 for (i = 0; i < NCAPINTS; i++)
1609                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1610
1611                 /* OR, i.e. replicate the bug flags */
1612                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1613                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1614         }
1615
1616         /* Init Machine Check Exception if available. */
1617         mcheck_cpu_init(c);
1618
1619         select_idle_routine(c);
1620
1621 #ifdef CONFIG_NUMA
1622         numa_add_cpu(smp_processor_id());
1623 #endif
1624 }
1625
1626 /*
1627  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1628  * on 32-bit kernels:
1629  */
1630 #ifdef CONFIG_X86_32
1631 void enable_sep_cpu(void)
1632 {
1633         struct tss_struct *tss;
1634         int cpu;
1635
1636         if (!boot_cpu_has(X86_FEATURE_SEP))
1637                 return;
1638
1639         cpu = get_cpu();
1640         tss = &per_cpu(cpu_tss_rw, cpu);
1641
1642         /*
1643          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1644          * see the big comment in struct x86_hw_tss's definition.
1645          */
1646
1647         tss->x86_tss.ss1 = __KERNEL_CS;
1648         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1649         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1650         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1651
1652         put_cpu();
1653 }
1654 #endif
1655
1656 void __init identify_boot_cpu(void)
1657 {
1658         identify_cpu(&boot_cpu_data);
1659 #ifdef CONFIG_X86_32
1660         sysenter_setup();
1661         enable_sep_cpu();
1662 #endif
1663         cpu_detect_tlb(&boot_cpu_data);
1664         setup_cr_pinning();
1665
1666         tsx_init();
1667 }
1668
1669 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1670 {
1671         BUG_ON(c == &boot_cpu_data);
1672         identify_cpu(c);
1673 #ifdef CONFIG_X86_32
1674         enable_sep_cpu();
1675 #endif
1676         mtrr_ap_init();
1677         validate_apic_and_package_id(c);
1678         x86_spec_ctrl_setup_ap();
1679         update_srbds_msr();
1680 }
1681
1682 static __init int setup_noclflush(char *arg)
1683 {
1684         setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1685         setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1686         return 1;
1687 }
1688 __setup("noclflush", setup_noclflush);
1689
1690 void print_cpu_info(struct cpuinfo_x86 *c)
1691 {
1692         const char *vendor = NULL;
1693
1694         if (c->x86_vendor < X86_VENDOR_NUM) {
1695                 vendor = this_cpu->c_vendor;
1696         } else {
1697                 if (c->cpuid_level >= 0)
1698                         vendor = c->x86_vendor_id;
1699         }
1700
1701         if (vendor && !strstr(c->x86_model_id, vendor))
1702                 pr_cont("%s ", vendor);
1703
1704         if (c->x86_model_id[0])
1705                 pr_cont("%s", c->x86_model_id);
1706         else
1707                 pr_cont("%d86", c->x86);
1708
1709         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1710
1711         if (c->x86_stepping || c->cpuid_level >= 0)
1712                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1713         else
1714                 pr_cont(")\n");
1715 }
1716
1717 /*
1718  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
1719  * function prevents it from becoming an environment variable for init.
1720  */
1721 static __init int setup_clearcpuid(char *arg)
1722 {
1723         return 1;
1724 }
1725 __setup("clearcpuid=", setup_clearcpuid);
1726
1727 #ifdef CONFIG_X86_64
1728 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1729                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1730 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1731
1732 /*
1733  * The following percpu variables are hot.  Align current_task to
1734  * cacheline size such that they fall in the same cacheline.
1735  */
1736 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1737         &init_task;
1738 EXPORT_PER_CPU_SYMBOL(current_task);
1739
1740 DEFINE_PER_CPU(void *, hardirq_stack_ptr);
1741 DEFINE_PER_CPU(bool, hardirq_stack_inuse);
1742
1743 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1744 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1745
1746 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
1747
1748 /* May not be marked __init: used by software suspend */
1749 void syscall_init(void)
1750 {
1751         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1752         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1753
1754 #ifdef CONFIG_IA32_EMULATION
1755         wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1756         /*
1757          * This only works on Intel CPUs.
1758          * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1759          * This does not cause SYSENTER to jump to the wrong location, because
1760          * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1761          */
1762         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1763         wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1764                     (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1765         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1766 #else
1767         wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1768         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1769         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1770         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1771 #endif
1772
1773         /*
1774          * Flags to clear on syscall; clear as much as possible
1775          * to minimize user space-kernel interference.
1776          */
1777         wrmsrl(MSR_SYSCALL_MASK,
1778                X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
1779                X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
1780                X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
1781                X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
1782                X86_EFLAGS_AC|X86_EFLAGS_ID);
1783 }
1784
1785 #else   /* CONFIG_X86_64 */
1786
1787 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1788 EXPORT_PER_CPU_SYMBOL(current_task);
1789 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1790 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1791
1792 /*
1793  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1794  * the top of the kernel stack.  Use an extra percpu variable to track the
1795  * top of the kernel stack directly.
1796  */
1797 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1798         (unsigned long)&init_thread_union + THREAD_SIZE;
1799 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1800
1801 #ifdef CONFIG_STACKPROTECTOR
1802 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
1803 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
1804 #endif
1805
1806 #endif  /* CONFIG_X86_64 */
1807
1808 /*
1809  * Clear all 6 debug registers:
1810  */
1811 static void clear_all_debug_regs(void)
1812 {
1813         int i;
1814
1815         for (i = 0; i < 8; i++) {
1816                 /* Ignore db4, db5 */
1817                 if ((i == 4) || (i == 5))
1818                         continue;
1819
1820                 set_debugreg(0, i);
1821         }
1822 }
1823
1824 #ifdef CONFIG_KGDB
1825 /*
1826  * Restore debug regs if using kgdbwait and you have a kernel debugger
1827  * connection established.
1828  */
1829 static void dbg_restore_debug_regs(void)
1830 {
1831         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1832                 arch_kgdb_ops.correct_hw_break();
1833 }
1834 #else /* ! CONFIG_KGDB */
1835 #define dbg_restore_debug_regs()
1836 #endif /* ! CONFIG_KGDB */
1837
1838 static void wait_for_master_cpu(int cpu)
1839 {
1840 #ifdef CONFIG_SMP
1841         /*
1842          * wait for ACK from master CPU before continuing
1843          * with AP initialization
1844          */
1845         WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1846         while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1847                 cpu_relax();
1848 #endif
1849 }
1850
1851 #ifdef CONFIG_X86_64
1852 static inline void setup_getcpu(int cpu)
1853 {
1854         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1855         struct desc_struct d = { };
1856
1857         if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
1858                 wrmsr(MSR_TSC_AUX, cpudata, 0);
1859
1860         /* Store CPU and node number in limit. */
1861         d.limit0 = cpudata;
1862         d.limit1 = cpudata >> 16;
1863
1864         d.type = 5;             /* RO data, expand down, accessed */
1865         d.dpl = 3;              /* Visible to user code */
1866         d.s = 1;                /* Not a system segment */
1867         d.p = 1;                /* Present */
1868         d.d = 1;                /* 32-bit */
1869
1870         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1871 }
1872
1873 static inline void ucode_cpu_init(int cpu)
1874 {
1875         if (cpu)
1876                 load_ucode_ap();
1877 }
1878
1879 static inline void tss_setup_ist(struct tss_struct *tss)
1880 {
1881         /* Set up the per-CPU TSS IST stacks */
1882         tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1883         tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1884         tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1885         tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1886         /* Only mapped when SEV-ES is active */
1887         tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
1888 }
1889
1890 #else /* CONFIG_X86_64 */
1891
1892 static inline void setup_getcpu(int cpu) { }
1893
1894 static inline void ucode_cpu_init(int cpu)
1895 {
1896         show_ucode_info_early();
1897 }
1898
1899 static inline void tss_setup_ist(struct tss_struct *tss) { }
1900
1901 #endif /* !CONFIG_X86_64 */
1902
1903 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1904 {
1905         tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1906
1907 #ifdef CONFIG_X86_IOPL_IOPERM
1908         tss->io_bitmap.prev_max = 0;
1909         tss->io_bitmap.prev_sequence = 0;
1910         memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1911         /*
1912          * Invalidate the extra array entry past the end of the all
1913          * permission bitmap as required by the hardware.
1914          */
1915         tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1916 #endif
1917 }
1918
1919 /*
1920  * Setup everything needed to handle exceptions from the IDT, including the IST
1921  * exceptions which use paranoid_entry().
1922  */
1923 void cpu_init_exception_handling(void)
1924 {
1925         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1926         int cpu = raw_smp_processor_id();
1927
1928         /* paranoid_entry() gets the CPU number from the GDT */
1929         setup_getcpu(cpu);
1930
1931         /* IST vectors need TSS to be set up. */
1932         tss_setup_ist(tss);
1933         tss_setup_io_bitmap(tss);
1934         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1935
1936         load_TR_desc();
1937
1938         /* Finally load the IDT */
1939         load_current_idt();
1940 }
1941
1942 /*
1943  * cpu_init() initializes state that is per-CPU. Some data is already
1944  * initialized (naturally) in the bootstrap process, such as the GDT.  We
1945  * reload it nevertheless, this function acts as a 'CPU state barrier',
1946  * nothing should get across.
1947  */
1948 void cpu_init(void)
1949 {
1950         struct task_struct *cur = current;
1951         int cpu = raw_smp_processor_id();
1952
1953         wait_for_master_cpu(cpu);
1954
1955         ucode_cpu_init(cpu);
1956
1957 #ifdef CONFIG_NUMA
1958         if (this_cpu_read(numa_node) == 0 &&
1959             early_cpu_to_node(cpu) != NUMA_NO_NODE)
1960                 set_numa_node(early_cpu_to_node(cpu));
1961 #endif
1962         pr_debug("Initializing CPU#%d\n", cpu);
1963
1964         if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1965             boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1966                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1967
1968         /*
1969          * Initialize the per-CPU GDT with the boot GDT,
1970          * and set up the GDT descriptor:
1971          */
1972         switch_to_new_gdt(cpu);
1973
1974         if (IS_ENABLED(CONFIG_X86_64)) {
1975                 loadsegment(fs, 0);
1976                 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1977                 syscall_init();
1978
1979                 wrmsrl(MSR_FS_BASE, 0);
1980                 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1981                 barrier();
1982
1983                 x2apic_setup();
1984         }
1985
1986         mmgrab(&init_mm);
1987         cur->active_mm = &init_mm;
1988         BUG_ON(cur->mm);
1989         initialize_tlbstate_and_flush();
1990         enter_lazy_tlb(&init_mm, cur);
1991
1992         /*
1993          * sp0 points to the entry trampoline stack regardless of what task
1994          * is running.
1995          */
1996         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1997
1998         load_mm_ldt(&init_mm);
1999
2000         clear_all_debug_regs();
2001         dbg_restore_debug_regs();
2002
2003         doublefault_init_cpu_tss();
2004
2005         fpu__init_cpu();
2006
2007         if (is_uv_system())
2008                 uv_cpu_init();
2009
2010         load_fixmap_gdt(cpu);
2011 }
2012
2013 #ifdef CONFIG_SMP
2014 void cpu_init_secondary(void)
2015 {
2016         /*
2017          * Relies on the BP having set-up the IDT tables, which are loaded
2018          * on this CPU in cpu_init_exception_handling().
2019          */
2020         cpu_init_exception_handling();
2021         cpu_init();
2022 }
2023 #endif
2024
2025 /*
2026  * The microcode loader calls this upon late microcode load to recheck features,
2027  * only when microcode has been updated. Caller holds microcode_mutex and CPU
2028  * hotplug lock.
2029  */
2030 void microcode_check(void)
2031 {
2032         struct cpuinfo_x86 info;
2033
2034         perf_check_microcode();
2035
2036         /* Reload CPUID max function as it might've changed. */
2037         info.cpuid_level = cpuid_eax(0);
2038
2039         /*
2040          * Copy all capability leafs to pick up the synthetic ones so that
2041          * memcmp() below doesn't fail on that. The ones coming from CPUID will
2042          * get overwritten in get_cpu_cap().
2043          */
2044         memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2045
2046         get_cpu_cap(&info);
2047
2048         if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2049                 return;
2050
2051         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2052         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2053 }
2054
2055 /*
2056  * Invoked from core CPU hotplug code after hotplug operations
2057  */
2058 void arch_smt_update(void)
2059 {
2060         /* Handle the speculative execution misfeatures */
2061         cpu_bugs_smt_update();
2062         /* Check whether IPI broadcasting can be enabled */
2063         apic_smt_update();
2064 }